Science.gov

Sample records for 5-aminosalicylic acid enhance

  1. Metronidazole and 5-aminosalicylic acid enhance the contractile activity of histaminergic agonists on the guinea-pig isolated ileum

    SciTech Connect

    Winbery, S.L.; Barker, L.A.

    1986-03-01

    The effects of metronidazole and 5-aminosalicylic acid (5-ASA) on histamine receptor-effector systems in the small intestine and right atrium of the guinea pig were studied. In an apparently all-or-none manner, both caused a sinistral shift in dose-response curves for the phasic component of the contractile response to histamine at H1 receptors on the ileum. In the presence of either, the EC50 value for histamine was reduced from 0.07 to about 0.03 microM. Similarly, in an apparently all-or-none fashion, both produced an elevation in the dose-response curve for the actions of dimaprit at H2-receptors in the ileum; the response to all doses was increased about 30% with no significant change in the EC50 value. Metronidazole and 5-ASA did not alter dose-response curves for the tonic contractile response to histamine or curves generated by the cumulative addition of histamine. Also, neither altered the positive chronotropic response on isolated right atria or the phasic contractile response on isolated segments of jejunum and duodenum to histamine or dimaprit. Likewise, neither altered dose-response curves for the direct action of carbamylcholine at muscarinic receptors or for the indirect actions of dimethylphenylpiperazinium on the ileum. The effects of 5-ASA or metronidazole on the response to histamine could be prevented as well as reversed by scopolamine or tetrodotoxin. The results suggest that metronidazole and 5-ASA enhance the actions of histamine and dimaprit on the ileum by an action on myenteric plexus neurons.

  2. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    PubMed Central

    Hu, Daode; Liu, Liang; Chen, Wenjuan; Li, Sining; Zhao, Yaping

    2012-01-01

    In this study, solution enhanced dispersion by supercritical fluids (SEDS) technique was applied for the preparation of 5-aminosalicylic acid (5-ASA) loaded Eudragit S100 (EU S100) nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA. PMID:22754377

  3. Design, Synthesis, and Testing of a Molecular Truck for Colonic Delivery of 5-Aminosalicylic Acid

    PubMed Central

    2012-01-01

    A molecular scaffold bearing eight terminal alkyne groups was synthesized from sucrose. Eight copies of an azide-terminated, azo-linked precursor to 5-aminosalicylic acid were attached to the scaffold via copper(I)-catalyzed azide–alkyne cycloaddition. The resulting compound was evaluated in a DSS model of colitis in BALB/c mice against sulfasalazine as a control. Two independent studies verified that the novel pro-drug, administered in a dose calculated to result in an equimolar 5-ASA yield, outperformed sulfasalazine in terms of protection from mucosal inflammation and T cell activation. A separate study established that 5-ASA appeared in feces produced 24–48 h following administration of the pro-drug. Thus, a new, orally administered pro-drug form of 5-aminosalicylic acid has been developed and successfully demonstrated. PMID:23029601

  4. Flavonoids and 5-Aminosalicylic Acid Inhibit the Formation of Neutrophil Extracellular Traps

    PubMed Central

    Möller, Sonja; Klinger, Matthias; Solbach, Werner; Laskay, Tamás

    2013-01-01

    Neutrophil extracellular traps (NETs) have been suggested to play a pathophysiological role in several autoimmune diseases. Since NET-formation in response to several biological and chemical stimuli is mostly ROS dependent, in theory any substance that inhibits or scavenges ROS could prevent ROS-dependent NET release. Therefore, in the present comprehensive study, several antioxidative substances were assessed for their capacity to inhibit NET formation of primary human neutrophils in vitro. We could show that the flavonoids (−)-epicatechin, (+)-catechin hydrate, and rutin trihydrate as well as vitamin C and the pharmacological substances N-acetyl-L-cysteine and 5-aminosalicylic acid inhibited PMA induced ROS production and NET formation. Therefore, a broad spectrum of antioxidative substances that reduce ROS production of primary human neutrophils also inhibits ROS-dependent NET formation. It is tempting to speculate that such antioxidants can have beneficial therapeutic effects in diseases associated with ROS-dependent NET formation. PMID:24381411

  5. The effect of 5-aminosalicylic acid on renal ischemia-reperfusion injury in rats

    PubMed Central

    Banaei, Shokofeh

    2016-01-01

    Objectives: Ischemia-reperfusion (IR) contributes to the development acute renal failure. Oxygen free radicals are involved in the pathophysiology of IR injury (IRI). This study was designed to investigate the effects of 5-aminosalicylic acid (5-ASA), which is known antioxidant agent, in IR-induced renal injury in rats. Materials and Methods: Male Wistar albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h of reperfusion. 5-ASA (300 mg/kg, i.p) was administered prior to ischemia. After 24 h reperfusion, urine and blood samples were collected for the determination of creatinine (Cr) and nitric oxide (NO) levels, and renal samples were taken for the histological evaluation. Results: Treatment with 5-ASA significantly decreased serum Cr and NO levels, also significantly increased urinary Cr level and decreased histopathological changes induced by IR. Conclusion: Treatment with 5-ASA had a beneficial effect on renal IRI. These results may indicate that 5-ASA exerts nephroprotective effects in renal IRI. PMID:27127324

  6. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity.

    PubMed

    Joshi, Ravi; Kumar, Sudheer; Unnikrishnan, M; Mukherjee, T

    2005-11-01

    Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD). PMID:16298742

  7. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake.

    PubMed

    König, Jörg; Glaeser, Hartmut; Keiser, Markus; Mandery, Kathrin; Klotz, Ulrich; Fromm, Martin F

    2011-06-01

    The therapeutic effects and metabolism of mesalazine (5-aminosalicylic acid) in patients with inflammatory bowel disease require intracellular accumulation of the drug in intestinal epithelial cells and hepatocytes. The molecular mechanisms of mesalazine uptake into cells have not been characterized so far. Using human embryonic kidney cells stably expressing uptake transporters of the organic anion-transporting polypeptide (OATP) family, which are expressed in human intestine and/or liver, we found that mesalazine uptake is mediated by OATP1B1, OATP1B3, and OATP2B1 but not by OATP1A2 and OATP4A1. Moreover, genetic variations (*1b, *5, *15) in the SLCO1B1 gene encoding OATP1B1 reduced the K(m) value for mesalazine uptake from 55.1 to 16.3, 24.3, and 32.4 μM, respectively, and the respective V(max) values. Finally, budesonide, cyclosporine, and rifampin were identified as inhibitors of OATP1B1-, OATP1B3-, and OATP2B1-meditated mesalazine uptake. These in vitro data indicate that OATP-mediated uptake and its modification by genetic factors and comedications may play a role for mesalazine effects. PMID:21430235

  8. Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.

    PubMed

    Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára

    2012-12-01

    The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model. PMID:23054987

  9. Chemoprevention of N-methylnitrosourea-induced colon carcinogenesis by ursodeoxycholic acid-5-aminosalicylic acid conjugate in F344 rats.

    PubMed

    Narisawa, Tomio; Fukaura, Yoko; Takeba, Naomi; Nakai, Keiko

    2002-02-01

    Bile acids enhance colon carcinogenesis in animal models, whereas ursodeoxycholic acid (UDCA) suppresses it. Nonsteroid anti-inflammatory drugs prevent colon cancer development in animals and humans. The aim of the present study was to explore the inhibitory effect of UDCA conjugate with 5-aminosalicylic acid (5-ASA), UDCA-5-ASA conjugate (UDCA-5-ASA), against colon carcinogenesis in rats. One-hundred-and-twenty-nine 7-week-old F344 rats received an intrarectal instillation of 2 mg of N-methylnitrosourea 3 times a week for 3 weeks, and were fed a 0% (control), 0.11% or 0.02% UDCA-5-ASA-, 0.08% UDCA- or 0.03% 5-ASA-supplemented diet for the next 27 weeks. The test diets contained an equimolar amount of a test agent, 2.0 mmol/kg diet, except for the 0.02% UDCA-5-ASA diet. The tumor incidence and the mean number of tumors/rat at week 30 were significantly lower and smaller in the UDCA-5-ASA diet groups, 48% and 0.7 in both, and marginally lower in the UDCA and 5-ASA diet groups, 56% and 0.9, and 64% and 0.8, compared to the control group, 83% and 1.3. All the tumors were polypoid in shape, and most of them were differentiated adenocarcinomas restricted to the mucosa or submucosa. An analysis by HPLC for bile acids and 5-ASA in the feces and serum collected at week 30 showed that one-half of ingested UDCA-5-ASA was cleaved into UDCA and 5-ASA in the colon. Thus, the two moieties may have independently affected the promotion stage of carcinogenesis. PMID:11856477

  10. The 5-aminosalicylic acid antineoplastic effect in the intestine is mediated by PPARγ

    PubMed Central

    Rousseaux, Christel; El-Jamal, Noura; Dubuquoy, Laurent

    2013-01-01

    Epidemiological evidences suggested that 5-aminosalicylic acid (5-ASA) therapy may prevent the development of colorectal cancer in inflammatory bowel disease patients. Our aim is to investigate whether peroxisome proliferator-activated receptor-γ (PPARγ) mediates the antineoplastic effects of 5-ASA. HT-29 and Caco-2 cells were treated by 5-ASA, rosiglitazone (PPARγ ligand) or etoposide (anticarcinogenic drug). Epithelial cell growth, proliferation and apoptosis were assessed by cell count, Ki-67 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. The antineoplastic effect of 5-ASA was evaluated in a xenograft tumor model in SCID mice and in azoxymethane (AOM)-induced colon carcinogenesis in A/JOlaHsd mice. The role of PPARγ was examined by administration of PPARγ antagonist, GW9662 and in PPAR knockdown cells. Compared with untreated cells, treatment of HT-29 cells by 5-ASA inhibited significantly cell growth and cell proliferation (respectively, 60% and 63%) and induced apoptosis in 75% of cells. These effects were abolished by co-treatment with GW9662 and blunted in PPAR knockdown cells. Contrarily to etoposide, similar inhibitory effects of GW9662 were obtained in HT-29 cells treated with rosiglitazone. In the xenograft model, GW9662 abolished the therapeutic effect of 5-ASA, which decreased tumor weight and volume by 80% in SCID mice compared with untreated mice. In A/JOlaHsd mice, 5-ASA suppressed colon carcinogenesis by decreasing the number of aberrant crypt foci (75%) and aberrant crypts (22%) induced by AOM treatment with an absence of 5-ASA response after GW9662 administration. In conclusion, 5-ASA exerts potent antineoplastic effects that are mediated through PPARγ. These data provide new rational for designing more effective and safe antineoplastic PPARγ ligands with topical effects. PMID:23843037

  11. Preparation and evaluation of colon adhesive pellets of 5-aminosalicylic acid.

    PubMed

    Xu, Meixia; Sun, Minjie; Qiao, Hongzhi; Ping, Qineng; Elamin, Eltayeb Suliman

    2014-07-01

    Oral modified-release delivery systems, such as bio-adhesive one, enable drug delivery to affected regions and minimize the side effects by reducing the systemic absorption. Our aim was to develop colon adhesive pellets of 5-aminosalicylic acid (5-ASA) for the treatment of ulcerative colitis. The core of the pellet was formulated from bioadhesive agents, Carbomer 940 and hydroxypropyl cellulose (HPC), by extrusion/spheronization method and coated with Surelease(®) as inner layer for waterproof and with Eudragit(®) S100 as outer layer for pH control. The rat model of ulcerative colitis was used to evaluate the efficiency of our loaded pellets as a drug carrier. Microcrystalline cellulose 101 (PH 301) was found to be the best agent for pellet core. The ratio of CP940 to HPC should be kept as (1:1) to achieve high bioadhesion. When the amount of Surelease(®) was from 16% to 20% and of Eudragit(®) S100 was 28%, the dissolution profiles of coated pellets revealed no drug release in the artificial gastric fluid (pH 1.0) within 2h and less than 10% was released in phosphate buffer (pH 6.0) within 2h whereas complete dissolution was observed in colonic fluid of pH 7.4 for 20 h. The animal experiment showed that 5-ASA loaded colon adhesive pellets had optimal therapeutic effect. We showed a novel approach to prepare effective bioadhesive pellets as colon targeted drug delivery system. PMID:24746693

  12. Toxicity of 50-nm polystyrene particles co-administered to mice with acetaminophen, 5-aminosalicylic acid or tetracycline.

    PubMed

    Isoda, K; Nozawa, T; Tezuka, M; Ishida, I

    2014-09-01

    We investigated whether nano-sized polystyrene particles affect drug-induced toxicity. The particles, which are widely used industrially, had diameters of 50 (NPP50), 200 (NPP200) or 1000 (NPP1000) nm. The toxic chemicals tested were acetaminophen (APAP), 5-aminosalicylic acid (5-ASA), tetracycline (TC), and sodium valproate (VPA). All treatments in the absence of the nanoparticles were non-lethal and did not result in severe toxicity. However, when mice were injected with APAP, 5-ASA or TC together with polystyrene particles, synergistic, enhanced toxicity was observed in mice injected with NPP50. These synergic effects were not observed in mice co-injected with NPP200 or NPP1000. On the other hand, co-administration of VPA and NPP50, NPP200 or NPP1000 did not elevate toxicity. The results show that NPP50 differs in hepatotoxicity depending on the drug co-administered. These findings suggest that further evaluation of the interactions between polystyrene nanoparticles and drugs is a critical prerequisite to the pharmaceutical application of nanotechnology. PMID:25272938

  13. Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice.

    PubMed

    Li, X; Kondoh, M; Watari, A; Hasezaki, T; Isoda, K; Tsutsumi, Y; Yagi, K

    2011-04-01

    Exposure to nano-sized particles is increasing because they are used in a wide variety of industrial products, cosmetics, and pharmaceuticals. Some animal studies indicate that such nanomaterials may have some toxicity, but their synergistic actions on the adverse effects of drugs are not well understood. In this study, we investigated whether 70-nm silica particles (nSP70), which are widely used in cosmetics and drug delivery, affect the toxicity of a drug for inflammatory bowel disease (5-aminosalicylic acid), an antibiotic drug (tetracycline), an antidepressant drug (trazodone), and an antipyretic drug (acetaminophen) in mice. Co-administration of nSP70 with trazodone did not increase a biochemical marker of liver injury. In contrast, co-administration increased the hepatotoxicity of the other drugs. Co-administration of nSP70 and tetracycline was lethal. These findings indicate that evaluation of synergistic adverse effects is important for the application of nano-sized materials. PMID:21612156

  14. The drug 5-aminosalicylic acid rescues alpha 1-proteinase inhibitor from the neutrophil oxidative inactivation. A possible contribution to its therapeutic action in ulcerative colitis.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Vitale, E; Dallegri, F

    1992-01-01

    The glycoprotein alpha 1-proteinase inhibitor is the specific inhibitor of neutrophil elastase, a major tissue-damaging protease. When incubated with activated neutrophils, alpha 1-proteinase inhibitor lost its pancreatic porcine elastase inhibitory capacity and became incapable of forming a sodium dodecyl sulphate-stable complex with pancreatic porcine elastase. Inhibitors and scavengers of neutrophil-derived reactive oxygen species outlined the crucial role of hypochlorous acid in the alpha 1-proteinase inhibitor inactivation. Moreover, the drug 5-aminosalicylic acid prevented the inactivation of alpha 1-proteinase inhibitor by neutrophils in a dose-dependent manner. Finally, when the capacity of 5-aminosalicylic acid to rescue alpha 1-proteinase inhibitor from the neutrophil-derived attack was plotted as a function of the 5-aminosalicylic acid ability to scavenge neutrophil-derived hypochlorous acid, a positive linear relationship was found. Thus, our results provide a direct evidence that 5-aminosalicylic acid is able to prevent the oxidative inactivation of alpha 1-proteinase inhibitor by neutrophils. Therefore, we suggest that the drug has the potential to limit the elastase-mediated damage of colonic connective tissue by creating a microenvironment of active alpha 1-proteinase inhibitor around the neutrophils. PMID:1521714

  15. Identification and Functional Characterization of Arylamine N-Acetyltransferases in Eubacteria: Evidence for Highly Selective Acetylation of 5-Aminosalicylic Acid

    PubMed Central

    Deloménie, Claudine; Fouix, Sylvaine; Longuemaux, Sandrine; Brahimi, Naïma; Bizet, Chantal; Picard, Bertrand; Denamur, Erick; Dupret, Jean-Marie

    2001-01-01

    Arylamine N-acetyltransferase activity has been described in various bacterial species. Bacterial N-acetyltransferases, including those from bacteria of the gut flora, may be involved in the metabolism of xenobiotics, thereby exerting physiopathological effects. We characterized these enzymes further by steady-state kinetics, time-dependent inhibition, and DNA hybridization in 40 species, mostly from the human intestinal microflora. We report for the first time N-acetyltransferase activity in 11 species of Proteobacteriaceae from seven genera: Citrobacter amalonaticus, Citrobacter farmeri, Citrobacter freundii, Klebsiella ozaenae, Klebsiella oxytoca, Klebsiella rhinoscleromatis, Morganella morganii, Serratia marcescens, Shigella flexneri, Plesiomonas shigelloides, and Vibrio cholerae. We estimated apparent kinetic parameters and found that 5-aminosalicylic acid, a compound efficient in the treatment of inflammatory bowel diseases, was acetylated with a catalytic efficiency 27 to 645 times higher than that for its isomer, 4-aminosalicylic acid. In contrast, para-aminobenzoic acid, a folate precursor in bacteria, was poorly acetylated. Of the wild-type strains studied, Pseudomonas aeruginosa was the best acetylator in terms of both substrate spectrum and catalytic efficiency. DNA hybridization with a Salmonella enterica serovar Typhimurium-derived probe suggested the presence of this enzyme in eight proteobacterial and four gram-positive species. Molecular aspects together with the kinetic data suggest distinct functional features for this class of microbial enzymes. PMID:11344150

  16. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery.

    PubMed

    Mura, C; Nácher, A; Merino, V; Merino-Sanjuán, M; Manconi, M; Loy, G; Fadda, A M; Díez-Sales, O

    2012-06-01

    The objective of this study was to prepare NS-chitosan microparticles for the delivery of 5-aminosalicylic acid (5-ASA) to the colon. Microparticles can spread out over a large area of colon allowing a more effective local efficacy of 5-ASA. N-Succinyl-chitosan was chosen as carrier system because of its excellent pharmaceutical properties in colon drug targeting such as poor solubility in acid environment, biocompatibility, mucoadhesive properties, and low toxicity. It was prepared by introducing succinic group into chitosan N-terminals of the glucosamine units. 5-ASA loaded NS-chitosan microparticles were prepared using spray-drying. As a control, a matrix obtained by freeze-drying technique was also prepared and tested. Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction studies show the 5-ASA/NS-chitosan electrostatic interactions in both the systems. Mean size of the microparticles was around 5 μm, zeta potential value of both systems was always negative. Scanning electron microscopy (SEM) images show an acceptable spherical non porous structure of microparticles. In vitro swelling and drug release studies were in accordance with the polymer properties, showing the highest swelling ratio and drug release at pH=7.4 (colonic pH) where microparticles were able to deliver more than 90% of 5-ASA during 24h experiments. Rheological studies are in accordance with the swelling and release studies. PMID:22341520

  17. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon.

    PubMed

    Duan, Haogang; Lü, Shaoyu; Gao, Chunmei; Bai, Xiao; Qin, Hongyan; Wei, Yuhui; Wu, Xin'an; Liu, Mingzhu

    2016-09-01

    In this work, thiolated chitosan/alginate composite microparticulates (CMPs) coated by Eudragit S-100 were developed for colon-specific delivery of 5-aminosalicylic acid (5-ASA) and curcumin (CUR), and the use of it as a multi drug delivery system for the treatment of colitis. The physicochemical properties of the CMPs were evaluated. In vitro release was performed in gradually pH-changing medium simulating the conditions of different parts of GIT, and the results showed that the Eudragit S-100 coating has a pH-sensitive release property, which can avoid drug being released at a pH lower than 7. An everted sac method was used to evaluate the mucoadhesion of CMPs. Ex vivo mucoadhesive tests showed CMPs have excellent mucosa adhesion for the colonic mucosa of rats. In vivo treatment effect of enteric microparticulates systems was evaluated in colitis rats. The results showed superior therapeutic efficiency of this drug delivery system for the colitis rats induced by TNBS. Therefore, the enteric microparticulates systems combined the properties of pH dependent delivery, mucoadhesive, and control release, and could be an available tool for the treatment of human inflammatory bowel disease. PMID:27239905

  18. Ulcerative Colitis Impairs the Acylethanolamide-Based Anti-Inflammatory System Reversal by 5-Aminosalicylic Acid and Glucocorticoids

    PubMed Central

    Suárez, Juan; Romero-Zerbo, Yanina; Márquez, Lucia; Rivera, Patricia; Iglesias, Mar; Bermúdez-Silva, Francisco J.; Andreu, Montserrat; de Fonseca, Fernando Rodríguez

    2012-01-01

    Studies in animal models and humans suggest anti-inflammatory roles on the N-acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages. PMID:22662201

  19. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis

    PubMed Central

    Pitcher, M; Beatty, E; Cummings, J

    2000-01-01

    BACKGROUND—Butyrate oxidation within the colonocyte is selectively inhibited by hydrogen sulphide, reproducing the metabolic lesion observed in active ulcerative colitis.
AIMS—To study generation of hydrogen sulphide by sulphate reducing bacteria (SRB) and the effects of 5-aminosalicylic acid (5-ASA) in patients with ulcerative colitis in order to identify a role of this noxious agent in pathogenesis.
PATIENTS—Fresh faeces were obtained from 37 patients with ulcerative colitis (23 with active disease) and 16 healthy controls.
METHODS—SRB were enumerated from fresh faecal slurries and measurements made of sulphate reducing activity, and sulphate and hydrogen sulphide concentrations. The effect of 5-ASA on hydrogen sulphide production was studied in vitro.
RESULTS—All controls and patients with active ulcerative colitis carried SRB and total viable counts were significantly related to the clinical severity grade. SRB were of two distinct types: rapidly growing strains (desulfovibrios) which showed high sulphate reduction rates, present in 30% of patients with ulcerative colitis and 44% of controls; and slow growing strains which had little activity. In vitro, 5-ASA inhibited sulphide production in a dose dependent manner; in patients with ulcerative colitis not on these drugs faecal sulphide was significantly higher than in controls (0.55 versus 0.25 mM, p=0.027).
CONCLUSIONS—Counts and carriage rates of SRB in faeces of patients with ulcerative colitis are not significantly different from those in controls. SRB metabolism is not uniform between strains and alternative sources of hydrogen sulphide production exist in the colonic lumen which may be similarly inhibited by 5-ASA. The evidence for hydrogen sulphide as a metabolic toxin in ulcerative colitis remains circumstantial.


Keywords: colitis; sulphate; sulphide; bacteria; fermentation; salicylate PMID:10601057

  20. Scavenging of reactive oxygen and nitrogen species by the prodrug sulfasalazine and its metabolites 5-aminosalicylic acid and sulfapyridine.

    PubMed

    Couto, Diana; Ribeiro, Daniela; Freitas, Marisa; Gomes, Ana; Lima, José L F C; Fernandes, Eduarda

    2010-01-01

    Sulfasalazine is a prodrug composed by a molecule of 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), linked by an azo bond, which has been shown to be effective in the therapy of inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease, as well as of rheumatic diseases, such as rheumatoid arthritis and ankylosing spondylitis. The precise mechanism of action of sulfasalazine and/or its metabolites has not been completely elucidated, though its antioxidant effects are well established and are probably due to its scavenging effects against reactive oxygen and nitrogen species (ROS and RNS), as well as metal chelating properties, in association to its inhibitory effects over neutrophil oxidative burst. The present work was focused on screening and comparing the potential scavenging activity for an array of ROS (O(2)(•-), H(2)O(2), (1)O(2), ROO(•) and HOCl) and RNS ((•)NO and ONOO(-)), mediated by sulfasalazine and its metabolites 5-ASA and SP, using validated in vitro screening systems. The results showed that both 5-ASA and sulfasalazine were able to scavenge all the tested ROS while SP was practically ineffective in all the assays. For HOCl, (1)O(2), and ROO(•), 5-ASA showed the best scavenging effects. A new and important finding of the present study was the strong scavenging effect of 5-ASA against (1)O(2). 5-ASA was shown to be a strong scavenger of (•)NO and ONOO(-). Sulfasalazine was also able to scavenge these RNS, although with a much lower potency than 5-ASA. SP was unable to scavenge (•)NO in the tested concentrations but was shown to scavenge ONOO(-), with a higher strength when the assay was performed in the presence of 25 mM bicarbonate, suggesting further scavenging of oxidizing carbonate radical. In conclusion, the ROS- and RNS-scavenging effects of sulfasalazine and its metabolites shown in this study may contribute to the anti-inflammatory effects mediated by sulfasalazine through the prevention of the

  1. 5-Aminosalicylic Acid Azo-Linked to Procainamide Acts as an Anticolitic Mutual Prodrug via Additive Inhibition of Nuclear Factor kappaB.

    PubMed

    Kim, Wooseong; Nam, Joon; Lee, Sunyoung; Jeong, Seongkeun; Jung, Yunjin

    2016-06-01

    To improve the anticolitic efficacy of 5-aminosalicylic acid (5-ASA), a colon-specific mutual prodrug of 5-ASA was designed. 5-ASA was coupled to procainamide (PA), a local anesthetic, via an azo bond to prepare 5-(4-{[2-(diethylamino)ethyl]carbamoyl}phenylazo)salicylic acid (5-ASA-azo-PA). 5-ASA-azo-PA was cleaved to 5-ASA and PA up to about 76% at 10 h in the cecal contents while remaining stable in the small intestinal contents. Oral gavage of 5-ASA-azo-PA and sulfasalazine, a colon-specific prodrug currently used in clinic, to rats showed similar efficiency in delivery of 5-ASA to the large intestine, and PA was not detectable in the blood after 5-ASA-azo-PA administration. Oral gavage of 5-ASA-azo-PA alleviated 2,4,6-trinitrobenzenesulfonic acid-induced rat colitis. Moreover, combined intracolonic treatment with 5-ASA and PA elicited an additive ameliorative effect. Furthermore, combined treatment with 5-ASA and PA additively inhibited nuclear factor-kappaB (NFκB) activity in human colon carcinoma cells and inflamed colonic tissues. Finally, 5-ASA-azo-PA administered orally was able to reduce inflammatory mediators, NFκB target gene products, in the inflamed colon. 5-ASA-azo-PA may be a colon-specific mutual prodrug acting against colitis, and the mutual anticolitic effects occurred at least partly through the cooperative inhibition of NFκB activity. PMID:27112518

  2. The effect of probiotic Escherichia coli strain Nissle 1917 lipopolysaccharide on the 5-aminosalicylic acid transepithelial transport across Caco-2 cell monolayers.

    PubMed

    Stětinová, Věra; Smetanová, Libuše; Kholová, Dagmar; Květina, Jaroslav; Svoboda, Zbyněk; Zídek, Zdeněk; Tlaskalová-Hogenová, Helena

    2013-09-01

    The object of this study was to investigate the effect of probiotic Escherichia coli strain Nissle 1917 (EcN) (i) EcN lipopolysaccharide (EcN LPS) and (ii) bacteria-free supernatant of EcN suspension (EcN supernatant) on in vitro transepithelial transport of mesalazine (5-aminosalicylic acid, 5-ASA), the most commonly prescribed anti-inflammatory drug in inflammatory bowel disease (IBD). Effect of co-administered EcN LPS (100 µg/ml) or EcN supernatant (50 µg/ml) on the 5-ASA transport (300 µmol/l) was studied using the Caco-2 monolayer (a human colon carcinoma cell line) as a model of human intestinal absorption. Permeability characteristics for absorptive and secretory transport of parent drug and its intracellularly-formed metabolite were determined. The quantification of 5-ASA and its main metabolite N-acetyl-5-amino-salicylic acid (N-Ac-5-ASA) was performed by high performance liquid chromatography. Obtained results suggest that neither EcN LPS nor EcN supernatant had effect on the total 5-ASA transport (secretory flux greater than absorptive flux) and on the transport of intracellularly formed N-Ac-5-ASA (preferentially transported in the secretory direction). The percent cumulative transport of the total 5-ASA alone or in combination with EcN LPS or EcN supernatant did not exceed 1%. PMID:23846256

  3. Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice.

    PubMed

    Bai, Xia Yan; Yan, Yan; Wang, Lin; Zhao, Lan Gui; Wang, Ke

    2016-07-01

    Current guidelines recommend patients with active and mild-to-moderate ulcerative colitis (UC), who have received initial therapy with 5-aminosalicylic acid (5-ASA). In this study, a novel drug delivery vehicle achieved by pH-sensitive hydrogels was applied to 5-ASA. In our previous work, a novel P(CE-MAA-MEG) pH-sensitive hydrogel was successfully synthesized by the heat-initiated free radical polymerization method. The aim of this study is to investigate its site-specific delivering of drugs to the colon and evaluate its colon-targeting characteristic in vivo. 5-ASA was chosen as a model drug and successfully loaded in the hydrogel. In vitro investigations were carried out to evaluate its release process. Above all, animal treatment results reveal an obvious effect on the UC healing. Therefore, all results suggested that the developed 5-ASA-P(CE-MAA-MEG) hydrogel (5-ASA-GEL) as a colon-targeting vector might have a great potential application in the UC therapy. PMID:25693641

  4. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice.

    PubMed

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  5. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice

    PubMed Central

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  6. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-06-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine. PMID:26377354

  7. Pharmacokinetics in Wistar Rats of 5-[(4-Carboxybutanoyl)Amino]-2-Hydroxybenzoic Acid: A Novel Synthetic Derivative of 5-Aminosalicylic Acid (5-ASA) with Possible Anti-Inflammatory Activity.

    PubMed

    Romero-Castro, Aurelio; Gutiérrez-Sánchez, Mara; Correa-Basurto, José; Rosales Hernández, Martha Cecilia; Padilla Martínez, Itzia Irene; Mendieta-Wejebe, Jessica Elena

    2016-01-01

    5-[(4-carboxybutanoyl)amino]-2-hydroxybenzoic acid (C2) is a novel synthetic derivative of 5-aminosalicylic acid (5-ASA), which is currently being evaluated ex vivo as an anti-inflammatory agent and has shown satisfactory results. This study aimed to obtain the pharmacokinetic profiles, tissue distribution and plasma protein binding of C2 in Wistar Rats. Additionally, an HPLC method was developed and validated to quantify C2 in rat plasma. The pharmacokinetic profiles of intragastric, intravenous and intraperitoneal administration routes at singles doses of 100, 50, and 100 mg/kg, respectively, were studied in Wistar rats. The elimination half-life of intravenously administered C2 was approximately 33 min. The maximum plasma level of C2 was reached approximately 24 min after intragastric administration, with a Cmax value of 2.5 g/mL and an AUCtot value of 157 μg min-1/mL; the oral bioavailability was approximately 13%. Following a single intragastric or oral dose (100 mg/kg), C2 was distributed and detected in all examined tissues (including the brain and colon). The results showed that C2 accumulates over time. The plasma protein binding results indicated that the unbound fraction of C2 at concentrations of 1 to 20 μg/mL ranged from 89.8% to 92.5%, meaning that this fraction of C2 is available to cross tissues. Finally, the blood-plasma partitioning (BP ratio) of C2 in rat plasma was 0.71 and 0.6 at concentrations of 5 and 10 μg/mL, respectively, which indicates that C2 is free in the plasmatic phase and not inside blood cells. The results of this study suggest that a fraction of the administered C2 dose is absorbed in the stomach, and the fraction that is not absorbed reaches the small intestine and colon. This distribution constitutes the main advantage of C2 compared with 5-ASA for the treatment of ulcerative colitis (UC) and Crohn's disease (CD). PMID:27454774

  8. Pharmacokinetics in Wistar Rats of 5-[(4-Carboxybutanoyl)Amino]-2-Hydroxybenzoic Acid: A Novel Synthetic Derivative of 5-Aminosalicylic Acid (5-ASA) with Possible Anti-Inflammatory Activity

    PubMed Central

    Correa-Basurto, José; Rosales Hernández, Martha Cecilia; Padilla Martínez, Itzia Irene; Mendieta-Wejebe, Jessica Elena

    2016-01-01

    5-[(4-carboxybutanoyl)amino]-2-hydroxybenzoic acid (C2) is a novel synthetic derivative of 5-aminosalicylic acid (5-ASA), which is currently being evaluated ex vivo as an anti-inflammatory agent and has shown satisfactory results. This study aimed to obtain the pharmacokinetic profiles, tissue distribution and plasma protein binding of C2 in Wistar Rats. Additionally, an HPLC method was developed and validated to quantify C2 in rat plasma. The pharmacokinetic profiles of intragastric, intravenous and intraperitoneal administration routes at singles doses of 100, 50, and 100 mg/kg, respectively, were studied in Wistar rats. The elimination half-life of intravenously administered C2 was approximately 33 min. The maximum plasma level of C2 was reached approximately 24 min after intragastric administration, with a Cmax value of 2.5 g/mL and an AUCtot value of 157 μg min-1/mL; the oral bioavailability was approximately 13%. Following a single intragastric or oral dose (100 mg/kg), C2 was distributed and detected in all examined tissues (including the brain and colon). The results showed that C2 accumulates over time. The plasma protein binding results indicated that the unbound fraction of C2 at concentrations of 1 to 20 μg/mL ranged from 89.8% to 92.5%, meaning that this fraction of C2 is available to cross tissues. Finally, the blood-plasma partitioning (BP ratio) of C2 in rat plasma was 0.71 and 0.6 at concentrations of 5 and 10 μg/mL, respectively, which indicates that C2 is free in the plasmatic phase and not inside blood cells. The results of this study suggest that a fraction of the administered C2 dose is absorbed in the stomach, and the fraction that is not absorbed reaches the small intestine and colon. This distribution constitutes the main advantage of C2 compared with 5-ASA for the treatment of ulcerative colitis (UC) and Crohn's disease (CD). PMID:27454774

  9. Determination of sulphasalazine and its main metabolite sulphapyridine and 5-aminosalicylic acid in human plasma by liquid chromatography/tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Gu, Guang-Zhi; Xia, Hui-Min; Pang, Zhi-Qing; Liu, Zhong-Yang; Jiang, Xin-Guo; Chen, Jun

    2011-02-15

    A simple and sensitive liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC-ESI-MS/MS) method has been developed for the simultaneous determination of sulphasalazine (SASP) and its main metabolite sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) with 100 μL of human plasma using dimenhydrinate as the internal standard (I.S.). The API-3000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Protein precipitation process was used to extract SASP, SP, 5-ASA and I.S. from human plasma. The total run time was 9.0 min and the elution of SASP, SP and 5-ASA was at 4.8 min, 2.5 min and 2.0 min, respectively. The separation was achieved with a mobile phase consisting of 0.2% formic acid, 2 mM ammonium acetate in water (mobile phase A) and 0.2% formic acid, 2 mM ammonium acetate in methanol (mobile phase B) by using gradient elution on a XBP Phenyl column (100 mm × 2.1 mm, 5 μm). The developed method was validated in human plasma with a lower limit of quantitation of 10 ng/mL for SASP, SP and 5-ASA, respectively. A linear response function was established for the range of concentrations 10-10,000 ng/mL (r>0.99) for SASP and 10-1000 ng/mL (r>0.99) for SP and 5-ASA. The intra and inter-day precision values for SASP, SP and 5-ASA met the acceptance as per FDA guidelines. SASP, SP and 5-ASA were stable during stability studies, i.e., long term, auto-sampler and freeze/thaw cycles. The method was successfully applied for the evaluation of pharmacokinetics of SASP, SP and 5-ASA after single oral doses of 250 mg SASP to 10 healthy volunteers. PMID:21251889

  10. Novel solid-phase extractor based on functionalization of multi-walled carbon nano tubes with 5-aminosalicylic acid for preconcentration of Pb(II) in water samples prior to determination by ICP-OES.

    PubMed

    Soliman, Ezzat M; Marwani, Hadi M; Albishri, Hassan M

    2013-12-01

    New solid-phase extractor (MWCNTs-5-ASA) was synthesized via covalent immobilization of 5-aminsalicylic acid onto multi-walled carbon nanotubes (MWCNs). The success of the functionalization process was confirmed using Fourier transform infrared spectroscopy, scanning electron microscope, and surface coverage determination. Batch experiments were conducted as a function of pH to explore MWCNTs-5-ASA efficiency to extract several metal ions viz., Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II). It was found that Pb(II) exhibits the highest extraction percentage with maximum adsorption capacity 32.75 mg g(-1). Its binding performance was well fitted with Langmuir sorption isotherm. On the other hand, the selective separation and preconcentration of trace Pb(II) under dynamic conditions prior to determination by inductively coupled plasma-optical emission spectrometry was investigated under different parameters. These included the rate of flow and volume of sample solution, in addition to the type of the eluate, its volume and concentration. The effect of a variety of foreign ions on the recovery percentage was also evaluated. Trace Pb(II) ions present in 500 mL aqueous solution adjusted to pH 4.0 were retained on 50 mg of MWCNTs-5-ASA and completely eluted using 4.0 mL of 2 M HNO₃. The limit of detection and the precision of the method were 0.25 ng mL(-1) and 2.8%, respectively (N = 5). This methodology has been applied for the determination of Pb(II) in water samples with good results. PMID:23832232

  11. Peripheral T-cell lymphoma mimicking 5-aminosalicylate hypersensitivity in ulcerative colitis.

    PubMed

    Kong, L M; Fok, K C; Tsui, A; Qian, C; Fisher, L

    2013-10-01

    5-aminosalicylates (5-ASA) remain an important strategy in the induction and maintenance of remission of inflammatory bowel diseases especially in ulcerative colitis. The prototypical drug of this class, sulfasalazine is generally well tolerated with severe hypersensitivity reactions and hepatotoxicity also described within the literature. When approaching a patient with an adverse reaction to 5-ASA, it can be difficult to differentiate clinically between a sulfa allergy versus a 5-ASA allergy versus a malignancy. We report on a case with initial signs and symptoms suggestive of a sulfa/5-ASA allergy that was subsequently found to be malignant in nature. PMID:24134170

  12. Oral 5-Aminosalicylate, Mesalamine Suppository, and Mesalamine Enema as Initial Therapy for Ulcerative Proctitis in Clinical Practice with Quality of Care Implications

    PubMed Central

    Richter, James M.; Arshi, Nabeela K.; Oster, Gerry

    2016-01-01

    Background. Ulcerative proctitis (UP) is typically treated initially with oral 5-aminosalicylate (“5-ASA”), mesalamine suppository, or mesalamine enema (“UP Rx”). Little is known about their effectiveness in practice. Methods. Using a US health insurance database, we identified new-onset UP patients between January 1, 2005, and December 31, 2007, based on the following: (1) initiation of UP Rx; (2) endoscopy in prior 30 days resulting in diagnosis of UP; and (3) no prior encounters for ulcerative colitis or Crohn's disease. We examined the incidence of therapy escalation and total costs in relation to initial UP Rx. Results. We identified 548 patients: 327 received mesalamine suppository, 138 received oral 5-ASA, and 83 received mesalamine enema, as initial UP Rx. One-third receiving oral 5-ASA experienced therapy escalation over 12 months, 21% for both mesalamine suppository and enema. Mean cumulative total cost of UP Rx over 12 months was $1552, $996, and $986 for patients beginning therapy with oral 5-ASA, mesalamine enema, and mesalamine suppository, respectively. Contrary to expert recommendations the treatments were often not continued prophylactically. Conclusions. Treatment escalation was common, and total costs of therapy were higher, in patients who initiated treatment with oral 5-ASA. Further study is necessary to assess the significance of these observations. PMID:27446860

  13. Efficacy and Safety of Beclomethasone Dipropionate versus 5-Aminosalicylic Acid in the Treatment of Ulcerative Colitis: A Systematic Review and Meta-Analysis

    PubMed Central

    Ma, Tao; Wang, ChunLi; Wang, Jun; You, ShengYi

    2016-01-01

    Background Ulcerative colitis (UC) is a chronic and remitting inflammatory disease that is characterized by chronic idiopathic inflammation of the colon and bloody diarrhea. Currently drug treatment is the main intervention for patients with mild to moderate UC. Mesalazine (5-ASA) and beclomethasone dipropionate (BDP) have been widely used for the treatment of UC and have yielded satisfactory results. This study compared the effectiveness of 5-ASA and BDP in the treatment of UC. Methods The PubMed, Medline, SinoMed, Embase, and Cochrane Librinary databases were searched for eligible studies. Data were extracted by two of the coauthors independently and were analyzed using RevMan statistical software, version 5.3. Weighted mean differences (WMDs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Cochrane Collaboration’s Risk of Bias Tool was used to assess the risk of bias. Results Seven randomized controlled trials that compared BDP with 5-ASA in treating UC were identified as eligible. The methodological quality of the trials ranged from low to moderate. A pooled analysis of effectiveness based on the Disease Activity Index (DAI) or other assessment method after treatment revealed that in the treatment of UC, there are no obvious differences between BDP and 5-ASA in inducing remission and clinical improvement (OR = 0.76, 95% CI = 0.56–1.03, P = 0.08). The total numbers of adverse events associated with BDP and 5-ASA treatments for UC were similar (OR = 1.21, 95% CI = 0.71–2.09, P = 0.48). The safety profiles for these two drugs are good. According to subgroup-analysis, we found no obvious differences of clinical efficacy between BDP and 5-ASA no matter oral or enema administration was used in the treatment of UC. A sensitivity analysis demonstrated the stability of the pooled results. Conclusion During induction treatment of mild to moderate UC, there is no obvious difference between the two groups with respect to remission and clinical improvement. Given that the upper confidence limit for the OR barely exceeds 1.0 and that the p-value is close to 0.05 for this primary efficacy outcome as well as that the horizontal block lies to the left of the vertical line, it indicates that the clinical efficacy of BDP may be better than 5-ASA. However, taking into account that BDP has the risk of hypothalamic-pituitary-adrenal axis (HPA) suppression, 5-ASA has a potential advantage of safety in the treatment of mild to moderate UC. PMID:27501314

  14. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  15. Bacterial Lipoteichoic Acid Enhances Cryosurvival

    PubMed Central

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Scull, Erin; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2015-01-01

    Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. We show that lipoteichoic acid (LTA), a biopolymer in the cell wall of Gram-positive bacteria, can be added to B. subtilis cultures and increase freeze tolerance. At 1% w/v, LTA enables a 50% survival rate, similar to the results obtained with 1% w/v glycerol as measured with the resazurin cell viability assay. In the absence of added LTA or glycerol, a very small number of B. subtilis cells survive freezing. This suggests that an innate freeze tolerance mechanism exists. While cryoprotection can be provided by extracellular polymeric substances (EPS), our data demonstrate a role for LTA in cryoprotection. Currently, the exact mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. However, low temperature microscopy data show small ice crystals aligned along channels of liquid water. Our observations suggest that teichoic acids could protect liquid water within biofilms and planktonic bacteria, augmenting the role of brine while also raising the possibility for survival without brine present. PMID:25477208

  16. Essential Fatty Acids as Transdermal Penetration Enhancers.

    PubMed

    van Zyl, Lindi; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta; Viljoen, Joe

    2016-01-01

    The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F, and Pheroid technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release studies were performed, and the results indicated the following rank order for flurbiprofen release from the different formulations: vitamin F > control > EPO > Pheroid. Topical skin delivery results indicated that flurbiprofen was present in the stratum corneum-epidermis and the epidermis-dermis. The average percentage flurbiprofen diffused to the receptor phase (representing human blood) indicated that the EPO formulation showed the highest average percentage diffused. The Pheroid formulation delivered the lowest concentration with a statistical significant difference (p < 0.05) compared with the control formulation (containing 1% flurbiprofen and no penetration enhancers). The control formulation presented the highest average flux, with the EPO formulation following the closest. It could, thus, be concluded that EPO is the most favorable chemical penetration enhancer when used in this formulation. PMID:26852854

  17. Enhancement of Platelet Aggregation by Ursolic Acid and Oleanolic Acid

    PubMed Central

    Kim, Mikyung; Han, Chang-ho; Lee, Moo-Yeol

    2014-01-01

    The pentacyclic triterpenoid ursolic acid (UA) and its isomer oleanolic acid (OA) are ubiquitous in food and plant medicine, and thus are easily exposed to the population through natural contact or intentional use. Although they have diverse health benefits, reported cardiovascular protective activity is contentious. In this study, the effect of UA and OA on platelet aggregation was examined on the basis that alteration of platelet activity is a potential process contributing to cardiovascular events. Treatment of UA enhanced platelet aggregation induced by thrombin or ADP, which was concentration-dependent in a range of 5–50 μM. Quite comparable results were obtained with OA, in which OA-treated platelets also exhibited an exaggerated response to either thrombin or ADP. UA treatment potentiated aggregation of whole blood, while OA failed to increase aggregation by thrombin. UA and OA did not affect plasma coagulation assessed by measuring prothrombin time and activated partial thromboplastin time. These results indicate that both UA and OA are capable of making platelets susceptible to aggregatory stimuli, and platelets rather than clotting factors are the primary target of them in proaggregatory activity. These compounds need to be used with caution, especially in the population with a predisposition to cardiovascular events. PMID:25009707

  18. Efficiency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship

    PubMed Central

    Ibrahim, Sarah A.; Li, S. Kevin

    2010-01-01

    Purpose The present study evaluated the effects of fatty acids commonly present in cosmetic and topical formulations on permeation enhancement across human epidermal membrane (HEM) lipoidal pathway when the fatty acids saturated the SC lipid domain without cosolvents (Emax). Methods HEM was treated with neat fatty acids or fatty acid suspensions to determine Emax. A volatile solvent system was used to deposit fatty acids on HEM surface to compare fatty acid enhancer efficiency in topical volatile formulations with Emax. To elucidate permeation enhancement mechanism(s), estradiol (E2β) uptake into fatty acid-treated SC lipid domain was determined. Results Emax of fatty acids was shown to increase with their octanol solubilities and decrease with their lipophilicities, similar to our previous findings with other enhancers. Emax of solid fatty acids was shown to depend on their melting points, an important parameter to the effectiveness of the enhancers. The E2β uptake results suggest that enhancer-induced permeation enhancement across HEM is related to enhanced permeant partitioning into the SC lipid domain. Conclusions The results suggest Emax as a model for studying the permeation enhancement effect of the fatty acids and their structure enhancement relationship. PMID:19911256

  19. The fatty acids as penetration enhancers of amino acids by ion pairing.

    PubMed

    Arct, J; Chelkowska, M; Kasiura, K; Pietrzykowski, P

    2002-12-01

    The influence of palmitic acid on n-octanol/water partition coefficient (log P) of selected amino acids, alanine, glycine, proline, hydroxyproline, seine, valine, threonine and lysine, was measured at a wide range of pH. A parabolic shape curve was obtained in every case (pH vs. Deltalog P), with maximum depending on the amino acid. In each case in the presence of palmitic acid, the apparent partition coefficient increased. To check the possible mechanism of extraction of amino acids into n-octanol phase in the presence of palmitate additionally, the influence of an amount of counter ion on partition coefficient of lysine was investigated. The results suggest that the enhanced partitioning of lysine results from the ion pair formation with palmitate. The ion pair stratum corneum-lipid membrane transport of the amino acids was investigated as well, using palmitate as a counter ion. The apparent permeability coefficients were enhanced significantly by palmitic acid at pH 7.4. As many substances (e.g. organic solvents, unsaturated fatty acids, etc.) are penetration enhancers which change the structure of intercellular lipid, the influence of palmitic acid on membrane was investigated. After pretreatment of membrane with palmitic acid, no changes in permeation of alanine were observed. Investigations suggest the enhanced permeation of amino acids via ion pairing. The method for prediction of pH in which the possibility of ion pairing is the highest was developed as well. PMID:18494885

  20. Sulfasalazine and the 5-Aminosalicylates (Beyond the Basics)

    MedlinePlus

    ... the Licensed Materials from any location via the Internet. b. STANDALONE WORKSTATION: A standalone subscription permits multiple ... computer. A Standalone Workstation license does not include Internet access to the Licensed Materials. c. INSTITUTIONAL SUBSCRIPTION: ...

  1. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  2. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham

    2016-03-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing.

  3. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Electroporation-enhanced delivery of nucleic acid vaccines.

    PubMed

    Broderick, Kate E; Humeau, Laurent M

    2015-02-01

    The naked delivery of nucleic acid vaccines is notoriously inefficient, and an enabling delivery technology is required to direct efficiently these constructs intracellularly. A delivery technology capable of enhancing nucleic acid uptake in both cells in tissues and in culture is electroporation (EP). EP is a physical delivery mechanism that increases the permeability of mammalian cell membranes and allows the trafficking of large macromolecules into the cell. EP has now been used extensively in the clinic and been shown to be an effective method to increase both the uptake of the construct and the breadth and magnitude of the resulting immune responses. Excitingly, 2014 saw the announcement of the first EP-enhanced DNA vaccine Phase II trial demonstrating clinical efficacy. This review seeks to introduce the reader to EP as a technology to enhance the delivery of DNA and RNA vaccines and highlight several published clinical trials using this delivery modality. PMID:25487734

  7. Acid Cleavable Surface enhanced Raman Tagging for Protein Detection

    PubMed Central

    Zhang, Dongmao; Vangala, Karthikeshwar; Li, Shaoyong; Yanney, Michael; Xia, Hao; Zou, Sige; Sygula, Andrzej

    2010-01-01

    Dye conjugation is a common strategy improving the surface enhanced Raman detection sensitivity of biomolecules. Reported is a proof-of-concept study of a novel surface enhanced Raman spectroscopic tagging strategy termed as acid-cleavable SERS tag (ACST) method. Using Rhodamine B as the starting material, we prepared the first ACST prototype that consisted of, from the distal end, a SERS tag moiety (STM), an acid-cleavable linker, and a protein reactive moiety. Complete acid cleavage of the ACST tags was achieved at a very mild condition that is 1.5% trifluoroacetic acid (TFA) aqueous solution at room temperature. SERS detection of this ACST tagged protein was demonstrated using bovine serum albumin (BSA) as the model protein. While the SERS spectrum of intact ACST-BSA was entirely dominated by the fluorescent signal of STM, quality SERS spectra can be readily obtained with the acid cleaved ACST-BSA conjugates. Separation of the acid cleaved STM from protein further enhances the SERS sensitivity. Current SERS detection sensitivity, achieved with the acid cleaved ACST-BSA conjugate is ~5 nM in terms of the BSA concentration and ~1.5 nM in ACST content. The linear dynamic range of the cleaved ACST-BSA conjugate spans four orders of magnitudes from ~10 nM to ~100 μM in protein concentrations. Further improvement in the SERS sensitivity can be achieved with resonance Raman acquisition. This cleavable tagging strategy may also be used for elimination of protein interference in fluorescence based biomolecule detection. PMID:21109888

  8. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation.

    PubMed Central

    Gahan, C G; O'Driscoll, B; Hill, C

    1996-01-01

    We have previously shown that tolerance to severe acid stress (pH 3.5) can be induced in Listeria monocytogenes following a 1-h adaptation to mild acid (pH 5.5), a phenomenon termed the acid tolerance response (ATR) (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1966). In an attempt to determine the industrial significance of the ATR, we have examined the survival of adapted and nonadapted cells in a variety of acidic foods. Acid adaptation enhanced the survival of L. monocytogenes in acidified dairy products, including cottage cheese, yogurt, and whole-fat cheddar cheese. Acid-adapted L. monocytogenes cultures also demonstrated increased survival during active milk fermentation by a lactic acid culture. Similarly, acid-adapted cells showed greatly improved survival in low-pH foods (orange juice and salad dressing) containing acids other than lactic acid. However, in foods with a marginally higher pH, such as mozzarella cheese, a commercial cottage cheese, or low-fat cheddar cheese, acid adaptation did not appear to enhance survival. We have previously isolated mutants of L. monocytogenes that are constitutively acid tolerant in the absence of an induction step (O'Driscoll et al., Appl. Environ. Microbiol. 62:1693-1698, 1996). In the present study, one such mutant, ATM56, demonstrated an increased ability to survive in low-pH foods and during milk fermentation when compared with the wild-type strain. Significant numbers of ATM56 could be recovered even after 70 days in both whole-fat and low-fat cheddar cheese. Collectively, the data suggest that ATR mechanisms, whether constitutive or induced, can greatly influence the survival of L. monocytogenes in low-pH food environments. PMID:8795199

  9. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  10. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  11. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  12. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  13. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  14. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers

    PubMed Central

    Sérandour, Aurélien A.; Avner, Stéphane; Oger, Frédérik; Bizot, Maud; Percevault, Frédéric; Lucchetti-Miganeh, Céline; Palierne, Gaëlle; Gheeraert, Céline; Barloy-Hubler, Frédérique; Péron, Christine Le; Madigou, Thierry; Durand, Emmanuelle; Froguel, Philippe; Staels, Bart; Lefebvre, Philippe; Métivier, Raphaël; Eeckhoute, Jérôme; Salbert, Gilles

    2012-01-01

    Enhancers are developmentally controlled transcriptional regulatory regions whose activities are modulated through histone modifications or histone variant deposition. In this study, we show by genome-wide mapping that the newly discovered deoxyribonucleic acid (DNA) modification 5-hydroxymethylcytosine (5hmC) is dynamically associated with transcription factor binding to distal regulatory sites during neural differentiation of mouse P19 cells and during adipocyte differentiation of mouse 3T3-L1 cells. Functional annotation reveals that regions gaining 5hmC are associated with genes expressed either in neural tissues when P19 cells undergo neural differentiation or in adipose tissue when 3T3-L1 cells undergo adipocyte differentiation. Furthermore, distal regions gaining 5hmC together with H3K4me2 and H3K27ac in P19 cells behave as differentiation-dependent transcriptional enhancers. Identified regions are enriched in motifs for transcription factors regulating specific cell fates such as Meis1 in P19 cells and PPARγ in 3T3-L1 cells. Accordingly, a fraction of hydroxymethylated Meis1 sites were associated with a dynamic engagement of the 5-methylcytosine hydroxylase Tet1. In addition, kinetic studies of cytosine hydroxymethylation of selected enhancers indicated that DNA hydroxymethylation is an early event of enhancer activation. Hence, acquisition of 5hmC in cell-specific distal regulatory regions may represent a major event of enhancer progression toward an active state and participate in selective activation of tissue-specific genes. PMID:22730288

  15. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    PubMed Central

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  16. Study of Valproic Acid-Enhanced Hepatocyte Steatosis.

    PubMed

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  17. [Enhancers on the transmembrane transport of chlorogenic acid].

    PubMed

    Ren, Jing; Deng, Sheng-Qi; Jiang, Xue-Hua; Wang, Ling-Ling; Xiao, Yu

    2014-02-01

    To investigate the influence of the difference enhancers on the transport mechanism of chlorogenic acid (CGA) across Caco-2 cells model, a RP-HPLC method was adopted to detect the concentrations of CGA. At the concentrations of 20 to 80 microg x mL(-1), the difference of absorption rate constants (K(a)) was not statistically significant. At the concentrations of 40 and 20 microg x mL(-1), the ratios of apparent permeability coefficients (P(app)) of the apical to basolateral and the basolateral to apical were 1.14 and 1.18, respectively. With the effect of enhancers K(a) and P(app) increased, the absorption half-life (T1/2) decreased. CGA passed through the Caco-2 cell membrane mainly by passive transport. It showed that monocarboxylic acid transporter (MCT) could be involved in the across membrane transport process of CGA. Borneol had no effect on the cell membrane transport processes. The order of increasing absorption of CGA caused by the enhancers was sodium lauryl sulphate > sodium taurocholate > carbomer. PMID:24761618

  18. Enhancement effect of poly(amino acid)s on insulin uptake in alveolar epithelial cells.

    PubMed

    Oda, Keisuke; Yumoto, Ryoko; Nagai, Junya; Katayama, Hirokazu; Takano, Mikihisa

    2012-01-01

    In this study, we elucidated the effect of poly(amino acid)s such as poly-L-ornithine (PLO) on FITC-insulin uptake in cultured alveolar type II epithelial cells, RLE-6TN. FITC-insulin uptake by RLE-6TN cells as well as its cell surface binding was markedly increased by PLO without cytotoxicity. The uptake of FITC-insulin in the presence of PLO was shown to be mediated by endocytosis, but in contrast to the uptake in the absence of PLO, the contribution of macropinocytosis emerged. Colocalization of FITC-insulin and LysoTracker Red was observed by confocal laser scanning microscopy both in the absence and presence of PLO, indicating that FITC-insulin was partly targeted to lysosomes in the cells and degraded. The half-life of the intracellular degradation of FITC-insulin was, however, prolonged by the presence of PLO. PLO also stimulated the uptake of other FITC-labeled compounds. Among them, the enhancement effects of PLO on FITC-albumin and FITC-insulin uptake were prominent. The effect of PLO on insulin absorption was also examined in in-vivo pulmonary administration in rats, and co-administration of PLO enhanced the hypoglycemic action of insulin. These findings suggest that co-administration of poly(amino acid)s such as PLO is a useful strategy for enhancing insulin uptake by alveolar epithelial cells and subsequent absorption from the lung. PMID:22510869

  19. [Comparison study of enhanced coagulation on humic acid and fulvic acid removal].

    PubMed

    Zhou, Ling-ling; Zhang, Yong-ji; Ye, He-xiu; Zhang, Yi-qing

    2012-08-01

    Enhanced coagulation effects of four coagulants, such as aluminium sulfate, ferric chloride, aluminium polychloride and poly-ferric chloride, were examined, with an emphasis on pH, turbidity, Ca+ and relative contents of humic acid and fulvic acid. The result showed that the removal efficiency of four kinds of coagulant for humic acid was higher than that for fulvic acid. Compared with aluminium polychloride and poly-ferric chloride, aluminium sulfate and ferric chloride possessed a better coagulation effect. At the coagulant dosage of 40 mg x L(-1), ferric chloride, aluminium sulfate, poly-ferric chloride and aluminium polychloride removed fulvic acid from 10 mg x L(-1) to 3.22 mg x L(-1), 4.34 mg x L(-1), 5.85 mg x L(-1) and 4.86 mg x L(-1) respectively, while the four coagulants removed humic acid from 10 mg x L(-1) to 1.13 mg x L(-1), 2.13 mg x L(-1), 3.44 mg x L(-1) and 2.50 mg x L(-1) respectively in water. At pH between 5.5 and 6.5, aluminium sullfate and ferric chloride had the best coagulation effect. The coagulant had the lower efficiency with increase of organic carbon in water. Especially, the content ratio of fulvic acid and humic acid was above 0.4, the coagulation effect markedly decreased. Turbidity has a little influence on organic carbon removal rate. With the concentration of Ca2+, the removal efficiency of humic acid and fulvic acid increased. PMID:23213890

  20. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  1. Enhanced production of docosahexaenoic acid in mammalian cells.

    PubMed

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  2. Guanidinoacetic acid as a performance-enhancing agent.

    PubMed

    Ostojic, Sergej M

    2016-08-01

    Guanidinoacetic acid (GAA; also known as glycocyamine or guanidinoacetate) is the natural precursor of creatine, and under investigation as a novel dietary agent. It was first identified as a natural compound in humans ~80 years ago. In the 1950s, GAA's use as a therapeutic agent was explored, showing that supplemental GAA improved patient-reported outcomes and work capacity in clinical populations. Recently, a few studies have examined the safety and efficacy of GAA and suggest potential ergogenic benefits for physically active men and women. The purpose of this review is to examine possible applications of GAA supplementation for exercise performance enhancement, safety, and legislation issues. PMID:26445773

  3. Self-enhanced ozonation of benzoic acid at acidic pHs.

    PubMed

    Huang, Xianfeng; Li, Xuchun; Pan, Bingcai; Li, Hongchao; Zhang, Yanyang; Xie, Bihuang

    2015-04-15

    Ozonation of recalcitrant contaminants under acidic conditions is inefficient due to the lack of initiator (e.g., OH(-)) for ozone to produce hydroxyl radicals (HO). In this study, we reported that benzoic acid (BA), which is inert to ozone attack, underwent efficient degradation by ozone at acidic pH (2.3). The kinetics of BA degradation and ozone decomposition were both enhanced by increasing BA concentrations. Essentially, it is a HO-mediated reaction. Based on the exclusion of possible contributions of H2O2 and phenol-like intermediates for HO production, the reaction mechanism involved the formation of ozone ion ( [Formula: see text] ), which is an effective precursor of HO, was thus proposed. The hydroxycyclohexadienyl-type radicals generated during the attack of BA by HO may lead to the formation of [Formula: see text] . Meanwhile, [Formula: see text] could also be possibly formed from the reaction between ozone and organic (e.g., ROO∙) or inorganic peroxyl radicals (e.g., HO2). In addition, the hydroxylated products like phenol-like intermediates also played a positive role in HO production. Consequently, HO was produced efficiently under acidic conditions, resulting in rapid degradation of BA. This study provides a new approach for ozone activation even at acidic pHs, and broadens the knowledge of ozonation in removal of micropollutants from water. PMID:25635752

  4. Desorption of copper and cadmium from soils enhanced by organic acids.

    PubMed

    Yuan, Songhu; Xi, Zhimin; Jiang, Yi; Wan, Jinzhong; Wu, Chan; Zheng, Zhonghua; Lu, Xiaohua

    2007-07-01

    The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils. PMID:17349675

  5. Enhancement of Commercial Antifungal Agents by Kojic Acid

    PubMed Central

    Kim, Jong H.; Chang, Perng-Kuang; Chan, Kathleen L.; Faria, Natália C. G.; Mahoney, Noreen; Kim, Young K.; Martins, Maria de L.; Campbell, Bruce C.

    2012-01-01

    Natural compounds that pose no significant medical or environmental side effects are potential sources of antifungal agents, either in their nascent form or as structural backbones for more effective derivatives. Kojic acid (KA) is one such compound. It is a natural by-product of fungal fermentation commonly employed by food and cosmetic industries. We show that KA greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations of commercial medicinal and agricultural antifungal agents, amphotericin B (AMB) and strobilurin, respectively, against pathogenic yeasts and filamentous fungi. Assays using two mitogen-activated protein kinase (MAPK) mutants, i.e., sakAΔ, mpkCΔ, of Aspergillus fumigatus, an agent for human invasive aspergillosis, with hydrogen peroxide (H2O2) or AMB indicate such chemosensitizing activity of KA is most conceivably through disruption of fungal antioxidation systems. KA could be developed as a chemosensitizer to enhance efficacy of certain conventional antifungal drugs or fungicides. PMID:23203038

  6. Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid.

    PubMed

    Ali, M A; Konishi, T

    1998-09-01

    The effect of various organic acids on hydroxyl radical (.OH) generation in the Fenton reaction were examined by the ESR spin trapping technique, where 5,5-dimethyl-1-pyroline-N-nitroxide (DMPO) and alpha-phenyl-tert-butyl nitrone (PBN) were used as the spin trapping reagents. alpha-Hydroxy acids such as lactic acid, glycolic acid and 2-hydroxy isobutyric acid were found to markedly enhance .OH generation in the reaction. In contrast, beta-hydroxy acid, alpha-keto acid, esters of alpha-hydroxy acids, aldehydes and other straight chain organic acids had no such enhancing activity. alpha-Amino acids had also no enhancing effect. The results suggest that the alpha-hydroxy acid moiety is prerequisite for the enhancement of .OH generation in the Fenton reaction. Superoxide dismutase did not inhibit the enhancing effect of alpha-hydroxy acids whereas catalase completely inhibited the .OH generation. Thus, alpha-hydroxy acids directly enhanced the .OH generation via the Fenton reaction but not the Haber-Weiss reaction. Possible role of lactic acid manipulating .OH generation is discussed in relation to the ischemia-reperfusion cell damage. PMID:9784848

  7. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis.

    PubMed

    Leng, Shuilong; Iwanowycz, Stephen; Saaoud, Fatma; Wang, Junfeng; Wang, Yuzhen; Sergin, Ismail; Razani, Babak; Fan, Daping

    2016-06-01

    Macrophage autophagy has been shown to be protective against atherosclerosis. We previously discovered that ursolic acid (UA) promoted cancer cell autophagy. In the present study, we aimed to examine whether UA enhances macrophage autophagy in the context of atherogenesis. Cell culture study showed that UA enhanced autophagy of macrophages by increasing the expression of Atg5 and Atg16l1, which led to altered macrophage function. UA reduced pro-interleukin (IL)-1β protein levels and mature IL-1β secretion in macrophages in response to lipopolysaccharide (LPS), without reducing IL-1β mRNA expression. Confocal microscopy showed that in LPS-treated macrophages, UA increased LC3 protein levels and LC3 appeared to colocalize with IL-1β. In cholesterol-loaded macrophages, UA increased cholesterol efflux to apoAI, although it did not alter mRNA or protein levels of ABCA1 and ABCG1. Electron microscopy showed that UA induced lipophagy in acetylated LDL-loaded macrophages, which may result in increased cholesterol ester hydrolysis in autophagolysosomes and presentation of free cholesterol to the cell membrane. In LDLR(-/-) mice fed a Western diet to induce atherogenesis, UA treatment significantly reduced atherosclerotic lesion size, accompanied by increased macrophage autophagy. In conclusion, the data suggest that UA promotes macrophage autophagy and, thereby, suppresses IL-1β secretion, promotes cholesterol efflux, and attenuates atherosclerosis in mice. PMID:27063951

  8. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.

    PubMed

    Sun, Dawei; Chen, Yuhui; Tran, Richard T; Xu, Song; Xie, Denghui; Jia, Chunhong; Wang, Yuchen; Guo, Ying; Zhang, Zhongmin; Guo, Jinshan; Yang, Jian; Jin, Dadi; Bai, Xiaochun

    2014-01-01

    Citric acid-based polymer/hydroxyapatite composites (CABP-HAs) are a novel class of biomimetic composites that have recently attracted significant attention in tissue engineering. The objective of this study was to compare the efficacy of using two different CABP-HAs, poly (1,8-octanediol citrate)-click-HA (POC-Click-HA) and crosslinked urethane-doped polyester-HA (CUPE-HA) as an alternative to autologous tissue grafts in the repair of skeletal defects. CABP-HA disc-shaped scaffolds (65 wt.-% HA with 70% porosity) were used as bare implants without the addition of growth factors or cells to renovate 4 mm diameter rat calvarial defects (n = 72, n = 18 per group). Defects were either left empty (negative control group), or treated with CUPE-HA scaffolds, POC-Click-HA scaffolds, or autologous bone grafts (AB group). Radiological and histological data showed a significant enhancement of osteogenesis in defects treated with CUPE-HA scaffolds when compared to POC-Click-HA scaffolds. Both, POC-Click-HA and CUPE-HA scaffolds, resulted in enhanced bone mineral density, trabecular thickness, and angiogenesis when compared to the control groups at 1, 3, and 6 months post-trauma. These results show the potential of CABP-HA bare implants as biocompatible, osteogenic, and off-shelf-available options in the repair of orthopedic defects. PMID:25372769

  9. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  10. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    PubMed Central

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-01-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species. PMID:9317021

  11. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    SciTech Connect

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  12. Phospholipase Dε and Phosphatidic Acid Enhance Arabidopsis Growth

    PubMed Central

    Hong, Yueyun; Devaiah, Shivakumar P.; Bahn, SungChul; Thamasandra, Bharath N.; Li, Maoyin; Welti, Ruth; Wang, Xuemin

    2014-01-01

    Summary The activation of phospholipase D (PLD) produces phosphatidic acid (PA), a new lipid messenger implicated in cell growth and proliferation, but direct evidence for PLD and PA promotion of growth at an organismal level is lacking. Here we characterized a new PLD, PLDε, and show that PLDε plays a role in promoting Arabidopsis growth. PLDε is mainly associated with the plasma membrane and is the most permissive of all PLDs tested in activity requirements. Knockout (KO) of PLDε decreases, whereas overexpression (OE) of PLDε enhances root growth and biomass accumulation. The level of PA was higher in OE, but lower in KO than in wild-type plants, and suppression of PLD-mediated PA formation by alcohol alleviated the growth-promoting effect of PLDε. OE and KO of PLDε had the opposite effect on lateral root elongation in response to nitrogen (N). Increased expression of PLDε also promoted root hair elongation and primary root growth at severe N deprivation. The results suggest that PLDε and PA promote organismal growth and play a role in N response. The lipid signaling process may play a role in translating the membrane sensing of nutrient status to increasing plant growth and biomass production. PMID:19143999

  13. Enhancement of cell viability after treatment with polyunsaturated fatty acids.

    PubMed

    Bartl, J; Walitza, S; Grünblatt, E

    2014-01-24

    Attention-deficit/hyperactivity disorder (ADHD) is highly prevalent in children and adolescents and both environmental and genetic factors play major roles. Polyunsaturated fatty acids (PUFAs) are postulated to contribute to the development of the infant brain and an imbalance in these may increase the risk of ADHD. In recent clinical studies, supplementation with PUFAs improved symptoms of ADHD in some cases. Similarly, some beneficial effects were observed with PUFA treatment in neuronal cell cultures. Therefore, in this study, we hypothesized that a specific PUFA combination (available on the market as Equazen™ [Vifor Pharma, Switzerland]) along with iron, zinc, or vitamin B5 (vitB5) would produce an additive beneficial effect on the viability of rat pheochromocytoma-12 dopaminergic cells. The specific PUFA combination alone, as well as added to each of the three nutrients, was tested in a dose-response manner. The specific PUFAs significantly improved cell viability, starting at very low doses (100pM) from 60h up to 90h; while the combined treatment with vitB5 and minerals did not provide additional benefit. Our results confirmed the beneficial effect of the specific PUFAs on neuronal cell viability; although supplementation with minerals and vitB5 did not enhance this effect. PMID:24269370

  14. Oxygen plasma surface modification enhances immobilization of simvastatin acid.

    PubMed

    Yoshinari, Masao; Hayakawa, Tohru; Matsuzaka, Kenichi; Inoue, Takashi; Oda, Yutaka; Shimono, Masaki; Ide, Takaharu; Tanaka, Teruo

    2006-02-01

    Simvastatin acid (SVA) has been reported to stimulate bone formation with increased expression of BMP-2. Therefore, immobilization of SVA onto dental implants is expected to promote osteogenesis at the bone tissue/implant interface. The aim of this study was to evaluate the immobilization behavior of SVA onto titanium (Ti), O(2)-plasma treated titanium (Ti + O(2)), thin-film coatings of hexamethyldisiloxane (HMDSO), and O(2)-plasma treated HMDSO (HMDSO + O(2)) by using the quartz crystal microbalance-dissipation (QCM-D) technique. HMDSO surfaces were activated by the introduction of an OH group and/or O(2)-functional groups by O(2)-plasma treatment. In contrast, titanium surfaces showed no appreciable compositional changes by O(2)-plasma treatment. The QCM-D technique enabled evaluation even at the adsorption behavior of a substance with a low molecular weight such as simvastatin. The largest amount of SVA was adsorbed on O(2)-plasma treated HMDSO surfaces compared to untreated titanium, HMDSO-coated titanium, and O(2)-plasma treated titanium. These findings suggested that the adsorption of SVA was enhanced on more hydrophilic surfaces concomitant with the presence of an OH group and/or O(2)-functional group resulting from the O(2)-plasma treatment, and that an organic film of HMDSO followed by O(2)-plasma treatment is a promising method for the adsorption of SVA in dental implant systems. PMID:16543663

  15. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis.

    PubMed

    Zhu, Qianqian; Xu, Xueqin; Huang, Yuanyuan; Xu, Liangjun; Chen, Guonan

    2012-07-13

    A technique known as field enhancement sample stacking (FESS) and capillary electrophoresis (CE) separation has been developed to analyze and detect organic acids in the three traditional Chinese medicines (such as Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L.). In FESS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. Under the optimized condition, the baseline separation of eight organic acids (linolenic acid, lauric acid, p-coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid and fumaric acid) could be achieved within 20 min. Validation parameters of this method (such as detection limits, linearity and precision) were also evaluated. The detection limits ranged from 0.4 to 60 ng/mL. The results indicated that the proposed method was effective for the separation of mixtures of organic acids. Satisfactory recoveries were also obtained in the analysis of these organic acids in the above traditional Chinese medicine samples. PMID:22381886

  16. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    SciTech Connect

    Tang, Yuting . E-mail: ytang@prdus.jnj.com; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  17. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer

    PubMed Central

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Watts, Gerald F; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB). The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA), which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA), two microencapsulated formulations were prepared: PB-SA (control) and PB-DCA-SA (test) at a constant ratio (1:30 and 1:3:30, respectively). Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting microcapsule stability. Hence, PB-DCA-SA microcapsules have good rheological and compatibility characteristics and may be suitable for the oral delivery of PB in type 2 diabetes. PMID:25302020

  18. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  19. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  20. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Zhao, Yaopeng; Xu, Shutao; Yang, Yan; Liu, Jia; Wei, Yingxu; Yang, Qihua

    2014-01-01

    Tightening environmental legislation is driving the chemical industries to develop efficient solid acid catalysts to replace conventional mineral acids. Polystyrene sulphonic acid resins, as some of the most important solid acid catalysts, have been widely studied. However, the influence of the morphology on their acid strength—closely related to the catalytic activity—has seldom been reported. Herein, we demonstrate that the acid strength of polystyrene sulphonic acid resins can be adjusted through their reversible morphology transformation from aggregated to swelling state, mainly driven by the formation and breakage of hydrogen bond interactions among adjacent sulphonic acid groups within the confined nanospace of hollow silica nanospheres. The hybrid solid acid catalyst demonstrates high activity and selectivity in a series of important acid-catalysed reactions. This may offer an efficient strategy to fabricate hybrid solid acid catalysts for green chemical processes.

  1. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  2. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  3. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  4. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    PubMed

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  5. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    PubMed

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics. PMID:11829128

  6. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  7. ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 2. TECHNICAL ASSESSMENT. PROJECT SUMMARY

    EPA Science Inventory

    The SO sub 2 removal efficiency with the adipic acid averaged 94.3% over a 30-day period, representing a significant improvement in the performance of the system using only limestone. Economic calculations for an industrial boiler adipic-acid-enhanced limestone FGD system indicat...

  8. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 2. TECHNICAL ASSESSMENT

    EPA Science Inventory

    The report gives results of an evaluation of an adipic acid enhanced limestone flue gas desulfurization (FGD) system on industrial boilers at Rickenbacker Air National Guard Base. The SO2 removal efficiency with the adipic acid averaged 94.3% over a 30-day period. This represents...

  9. KINETIC ASPECTS OF CATION-ENHANCED AGGREGATION IN AQUEOUS HUMIC ACIDS. (R822832)

    EPA Science Inventory

    The cation-enhanced formation of hydrophobic domains in aqueous humic acids has been shown to be a slow process, consistent with the evolution and disintegration of humic acid configurations over periods lasting from days to weeks. After the addition of a magnesium salt to a humi...

  10. Enhancement of commercial antifungal agents by kojic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

  11. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    PubMed

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  12. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids

    PubMed Central

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  13. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    PubMed

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  14. Enhancing cosmetic outcomes by combining superficial glycolic acid (alpha-hydroxy acid) peels with nonablative lasers, intense pulsed light, and trichloroacetic acid peels.

    PubMed

    Effron, Cheryl; Briden, M Elizabeth; Green, Barbara A

    2007-01-01

    Nonablative lasers, intense pulsed light (IPL), and trichloroacetic acid (TCA) peels are cosmetic rejuvenation techniques used to remodel skin and provide improved skin texture, firmness, and even pigmentation. Glycolic acid is an alpha-hydroxy acid that can be used as a topical skin peel to provide important complementary benefits to nonablative lasers, IPL, and TCA peels. Superficial glycolic acid peels provide both epidermal and dermal antiaging benefits, can be used to smooth the stratum corneum to reduce light scattering, and can enable the use of lower concentrations of TCA during a peel procedure. When used with these procedures, glycolic acid peels can enhance skin benefits and perceived patient outcomes. Methods of combining nonablative lasers, IPL, and TCA peels with glycolic acid peels were discussed at a dermatologist roundtable event and are summarized in this article. PMID:17455887

  15. Electric Field Enhanced Diffusion of Salicylic Acid through Polyacrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Niamlang, Sumonman; Sirivat, Anuvat

    2008-03-01

    The release mechanisms and the diffusion coefficients of salicylic acid -loaded polyacrylamide hydrogels were investigated experimentally by using a modified Franz-diffusion cell at 37 ^oC to determine the effects of crosslinking ratio and electric field strength. A significant amount of salicylic acid is released within 48 hours from the hydrogels of various crosslinking ratios, with and without electric field. The release characteristic follows the Q vs. t^1/2 linear relationship. Diffusion coefficient initially increases with increasing electric field strength and reaches the maximum value at electric field strength of 0.1 V; beyond that it decreases with electric field strength and becomes saturated at electric field strength of 5 V. The diffusion coefficient increases at low electric field strength (less 0.1 V) as a result of the electrophoresis of the salicylic acid, the expansion of pore size, and the induced pathway in pigskin. For electric field strength higher than 0.1 V, the decrease in the diffusion coefficient is due to the reduction of the polyacrylamide pore size. The diffusion coefficient obeys the scaling behavior D/Do=(drug size/pore size)^m, with the scaling exponent m equal to 0.93 and 0.42 at electric fields of 0 and 0.1 V, respectively.

  16. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    PubMed

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  17. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  18. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  19. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC. PMID:25393616

  20. Charge Delocalization and Enhanced Acidity in Tricationic Superelectrophiles

    PubMed Central

    Naredla, Rajasekhar Reddy; Zheng, Chong; Nilsson Lill, Sten O.

    2011-01-01

    This paper presents the results from studies related to the chemistry of tricationic superelectrophiles. A series of triaryl methanols were ionized in Brønsted superacids and the corresponding tricationic intermediates were formed. The trications are found to participate in two types of reactions, both are characteristic of highly charged organic cations. One set of reactions occurs through charge migration. A second set of reactions occurs through deprotonation of an unusually acidic site on the tricationic species. One of the tricationic intermediates has been directly observed by low temperature NMR spectroscopy. These highly charged ions and their reactions have also been studied using density functional theory calculations. As a result of charge migration, electron density at a carbocation site is found to increase with progression from monocationic to pentacationic structures. PMID:21744820

  1. Strategies for enhancing lead-acid battery production and performance

    NASA Astrophysics Data System (ADS)

    Lambert, D. W. H.; Manders, J. E.; Nelson, R. F.; Peters, K.; Rand, D. A. J.; Stevenson, M.

    This paper is a record of the replies given by an expert panel to questions asked by delegates to the Eighth Asian Battery Conference. The subjects are as follows. Analysis of lead and lead compounds: accuracy; critical aspects of sampling. Grid alloys: influence of tin on microstructure and grain size; optimum combination of grid-alloy technologies for automotive batteries. Battery manufacture and design: quality-assurance monitoring; acid-spray treatment of plates; efficiency of tank formation; control of α-PbO 2/β-PbO 2 ratio; PbO 2 conversion level; positive/negative plate ratio; amount and type of separator for valve-regulated technology. Battery performance: use of cadmium reference electrode; influence of positive/negative plate ratio; local action; negative-plate expanders; gas-recombination catalysts; selective discharge of negative and positive plates.

  2. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies

    PubMed Central

    Saturnino, Carmela; Sinicropi, Maria Stefania; Puoci, Francesco

    2014-01-01

    Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradation in vivo and its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1). PMID:25114930

  3. Enhanced phagocytosis of group A streptococci M type 6 by oleic acid

    SciTech Connect

    Speert, D.P.; Quie, P.G.; Wannamaker, L.W.

    1981-04-01

    M protein, located on the surface fimbriae of group A streptococci, is antiphagocytic by unknown means. It is known that oleic acid kills group A streptococci and distorts the fimbriae. The effect of oleic acid on phagocytosis of group A streptococci was examined. Phagocytosis of a strain possessing M protein (M+) and its M- variant was assessed by uptake of radiolabeled bacteria and by chemiluminescence. The M- but not the M+ streptococci were well phagocytized and induced chemiluminescence. Oleic acid-killed and heat-killed streptococci (both M+ and M-) were readily phagocytized and induced sustained chemiluminescence. M+ streptococci killed by ultraviolet irradiation were inefficiently phagocytized and did not induce chemiluminescence. Oleic acid-killed M+ streptococci absorbed type-specific antibody. An extract of M protein reduced the bactericidal capacity of oleic acid. It is proposed that oleic acid may bind to and alter the M protein of group A streptococci and thereby enhance phagocytosis.

  4. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA. PMID:27206446

  5. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.

    PubMed

    Jeon, Se Jin; Park, Ho Jae; Gao, Qingtao; Pena, Irene Joy Dela; Park, Se Jin; Lee, Hyung Eun; Woo, Hyun; Kim, Hee Jin; Cheong, Jae Hoon; Hong, Eunyoung; Ryu, Jong Hoon

    2015-09-01

    Prunella vulgaris is widely used as a herbal medicine for cancers, inflammatory diseases, and other infections. Although it has long been used, few studies have examined its effects on central nervous system function. Here, we first observed that ethanolic extracts of P. vulgaris (EEPV) prolonged pentobarbital-induced sleep duration in mice. It is known that EEPV consists of many active components including triterpenoid (ursolic acid and oleanolic acid), which have many biological activities. Therefore, we evaluated which EEPV components induced sleep extension in pentobarbital-mediated sleeping model in mice. Surprisingly, despite their structural similarity and other common functions such as anti-inflammation, anti-cancer, and tissue protection, only ursolic acid enhanced sleep duration in pentobarbital-treated mice. These results were attenuated by bicuculline treatment, which is a GABAA receptor antagonist. The present results suggest that ursolic acid from P. vulgaris enhances sleep duration through GABAA receptor activation and could be a therapeutic candidate for insomnia treatment. PMID:26102564

  6. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    PubMed Central

    2011-01-01

    Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose. PMID:22074910

  7. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  8. Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice.

    PubMed

    Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam

    2014-10-15

    According to our previous study, ellagic acid has both dose-related central and peripheral antinociceptive effect through the opioidergic and l-arginine-NO-cGMP-ATP sensitive K(+) channel pathways. In the present study, the systemic antinociceptive effects of ellagic acid in animal models of pain, and functional interactions between ellagic acid and morphine in terms of analgesia, tolerance and dependence were investigated. Ellagic acid (1-30mg/kg; i.p.) showed significant and dose-dependent antinociceptive effects in the acetic acid-induced writhing test. Intraperitoneal ellagic acid acutely interacted with morphine analgesia in a synergistic manner in this assay. Ellagic acid (1-10mg/kg; i.p.) also exerted analgesic activity in the hot-plate test. Pre-treatment with naloxone (1mg/kg; i.p.) significantly reversed ellagic acid, morphine as well as ellagic acid-morphine combination-induced antinociceptin in these two tests. More importantly, when co-administered with morphine, ellagic acid (1-10mg/kg) effectively blocked the development of tolerance to morphine analgesia in the hot-plate test. Likewise, ellagic acid dose-dependently prevented naloxone-precipitated withdrawal signs including jumping and weight loss. Ellagic acid treatment (1-30mg/kg; i.p.) had no significant effect on the locomotion activity of animals using open-field task. Therefore, these results showed that ellagic acid has notable systemic antinociceptive activity for both tonic and phasic pain models. Altogether, ellagic acid might be used in pain relief alone or in combination with opioid drugs because of enhancing morphine analgesia and preventing morphine-induced tolerance to analgesia and dependence. PMID:25179576

  9. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    PubMed

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  10. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    PubMed Central

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  11. Enhancement of metastable zone width for solution growth of potassium acid phthalate

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Meera, K.; Ramasamy, P.

    1999-09-01

    A new method has been developed in which the addition of a small amount of ethylenediamine tetra acetic acid (EDTA), a well-known chelating agent, enhances the metastable zone width significantly. Also, it has been found that this addition reduces the rate of nucleation and increases the growth rate of the crystal. This method has been employed for solution growth of potassium hydrogen phthalate (KC 8H 5O 4), which is also known as potassium acid phthalate (KAP).

  12. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  13. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  14. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Gong, Xun; Knorr, Gregor; Pike, Jennifer; Hall, Ian R.

    2016-03-01

    Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.

  15. Chemical enhancement of footwear impressions in blood on fabric - part 3: amino acid staining.

    PubMed

    Farrugia, Kevin J; Bandey, Helen; Savage, Kathleen; NicDaéid, Niamh

    2013-03-01

    Enhancement of footwear impressions, using ninhydrin or ninhydrin analogues is not considered common practice and such techniques are generally used to target amino acids present in fingermarks where the reaction gives rise to colour and possibly fluorescence. Ninhydrin and two of its analogues were used for the enhancement of footwear impressions in blood on various types, colours and porosities of fabric. Test footwear impressions on fabric were prepared using a specifically built rig to minimise the variability between each impression. Ninhydrin enhancement of footwear impressions in blood on light coloured fabric yielded good enhancement results, however the contrast was weak or non-existent on dark coloured fabrics. Other ninhydrin analogues which have the advantage of fluorescence failed to enhance the impressions in blood on all fabrics. The sequential treatment of impressions in blood on fabric with other blood enhancing reagents (e.g. protein stains and heme reagents) was also investigated. PMID:23380056

  16. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis

    PubMed Central

    Wiese, Dawn M.; Horst, Sara N.; Brown, Caroline T.; Allaman, Margaret M.; Hodges, Mallary E.; Slaughter, James C.; Druce, Jennifer P.; Beaulieu, Dawn B.; Schwartz, David A.; Wilson, Keith T.; Coburn, Lori A.

    2016-01-01

    Background and Aims Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Methods Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. Results UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. Conclusions In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC. PMID:27227540

  17. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    PubMed Central

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses. PMID:24956474

  18. Focal nodular hyperplasia: characterisation at gadoxetic acid-enhanced MRI and diffusion-weighted MRI

    PubMed Central

    An, H S; Kim, Y J; Jung, S I; Jeon, H J

    2013-01-01

    Purpose: The aim of this study was to assess the enhancement patterns of hepatic focal nodular hyperplasia (FNH) on gadoxetic acid-enhanced MRI and diffusion-weighted (DW) MRI. Methods: This retrospective study had institutional review board approval. Gadoxetic acid-enhanced and DW MR images were evaluated in 23 patients with 30 FNHs (26 histologically proven and 4 radiologically diagnosed). The lesion enhancement patterns of the hepatobiliary phase images were classified as heterogeneous or homogeneous signal intensity (SI), and as dominantly high/iso or low SI compared with those of adjacent liver parenchyma. Heterogeneous (any) SI lesions and homogeneous low SI lesions were categorised into the fibrosis group, whereas homogeneous high/iso SI lesions were categorised into the non-fibrosis group. Additionally, lesion SI on T2 weighted images, DW images and apparent diffusion coefficient (ADC) values were compared between the two groups. Results: The lesions showed heterogeneous high/iso SI (n=16), heterogeneous low SI (n=5), homogeneous high/iso SI (n=7) or homogeneous low SI (n=2) at the hepatobiliary phase MR images. The fibrosis group lesions were more likely to show high SI on DW images and T2 weighted images compared with those in the non-fibrosis group (p<0.05). ADC values tended to be lower in the fibrosis group than those in the non-fibrosis group without significance. Conclusion: FNH showed variable enhancement patterns on hepatobiliary phase images during gadoxetic acid-enhanced MRI. SI on DW and T2 weighted images differed according to the fibrosis component contained in the lesion. Advances in knowledge: FNH shows a wide spectrum of imaging findings on gadoxetic acid-enhanced MRI and DW MRI. PMID:23873903

  19. PROCEEDINGS: EPA'S INDUSTRY BRIEFING ON THE ADIPIC ACID ENHANCED LIMESTONE FGD PROCESS (JULY 1981)

    EPA Science Inventory

    The proceedings document presentations made during an EPA-sponsored industry briefing, July 15, 1981, in Springfield, MO. The briefing dealt with the status of EPA's research activities on the adipic-acid-enhanced limestone flue gas desulfurization (FGD) process. Subjects covered...

  20. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  1. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  2. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy.

    PubMed

    Tong, Hongxin; Wang, Yin; Li, Huan; Jin, Qiao; Ji, Jian

    2016-03-11

    Novel 5-aminolevulinic acid (ALA) pseudopolyrotaxane prodrug micelles with dual pH-responsive properties were prepared by the host-guest interaction of α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG). The micelles exhibited pH dependent cellular uptake and pH-sensitive ALA release, enabling enhanced photodynamic therapy. PMID:26882232

  3. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  4. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome. PMID:27374289

  5. Enhancement of the Electrical Properties of CVD-Grown Graphene with Ascorbic Acid Treatment

    NASA Astrophysics Data System (ADS)

    Tang, Chunmiao; Chen, Zhiying; Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Sui, Yanping; Yu, Guanghui; Cao, Yijiang

    2016-02-01

    Ascorbic acid was used to modify to chemical vapor deposition (CVD)-grown graphene films transferred onto SiO2 substrate. Residual polymer (polymethyl methacrylate), Fe3+, Cl-, H2O, and O2 affected the electrical and thermal properties on graphene during the transfer or device fabrication processes. Exposure of transferred graphene to ascorbic acid resulted in significantly enhanced electrical properties with increased charge carrier mobility. All devices exhibited more than 30% improvement in room temperature carrier mobility in air. The carrier mobility of the treated graphene did not significantly decrease in 21 days. This result can be attributed to electron donation to graphene through the -OH functional group in ascorbic acid that is absorbed in graphene. This work provides a method to enhance the electrical properties of CVD-grown graphene.

  6. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  7. The Hip Functional Retrieval after Elective Surgery May Be Enhanced by Supplemented Essential Amino Acids

    PubMed Central

    Baldissarro, Eleonora; Aquilani, Roberto; Boschi, Federica; Baiardi, Paola; Iadarola, Paolo; Fumagalli, Marco; Pasini, Evasio; Verri, Manuela; Dossena, Maurizia; Gambino, Arianna; Cammisuli, Sharon; Viglio, Simona

    2016-01-01

    It is not known whether postsurgery systemic inflammation and plasma amino acid abnormalities are still present during rehabilitation of individuals after elective hip arthroplasty (EHA). Sixty subjects (36 females; age 66.58 ± 8.37 years) were randomized to receive 14-day oral EAAs (8 g/day) or a placebo (maltodextrin). At admission to and discharge from the rehabilitation center, serum C-reactive protein (CRP) and venous plasma amino acid concentrations were determined. Post-EHA hip function was evaluated by Harris hip score (HHS) test. Ten matched healthy subjects served as controls. At baseline, all patients had high CRP levels, considerable reduction in several amino acids, and severely reduced hip function (HHS 40.78 ± 2.70 scores). After treatment, inflammation decreased both in the EAA group and in the placebo group. Only EAA patients significantly improved their levels of glycine, alanine, tyrosine, and total amino acids. In addition, they enhanced the rate of hip function recovery (HHS) (from baseline 41.8 ± 1.15 to 76.37 ± 6.6 versus baseline 39.78 ± 4.89 to 70.0 ± 7.1 in placebo one; p = 0.006). The study documents the persistence of inflammation and plasma amino acid abnormalities in post-EHA rehabilitation phase. EAAs enhance hip function retrieval and improve plasma amino acid abnormalities. PMID:27110573

  8. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  9. Humic Acids Enhanced U(VI) Attenuation in Acidic Waste Plumes: An In-situ Remediation Approach

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Tokunaga, T. K.

    2010-12-01

    and HA by groundwater leaching are non-detectable over a long period of time (200 days and > 100 PV without further addition of HA). As a natural reactive agent for in-situ remediation, HAs are cost-effective (enormous reservoir in nature), nontoxic, resistant to biodegradation, soluble, and easily introducible to the subsurface. This method has high potential to efficiently and sustainably enhance natural attenuation of U within acidic waste plumes.

  10. pH dependence of methyl phosphonic acid, dipicolinic acid, and cyanide by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.

    2004-03-01

    U.S. and Coalition forces fighting terrorism in Afghanistan and Iraq must consider a wide range of attack scenarios in addition to car bombings. Among these is the intentional poisoning of water supplies to obstruct military operations. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of methyl phosphonic acid and cyanide as a function of pH, an important factor affecting quantitation measurements, which to our knowledge has not been examined. In addition, dipicolinic acid, a chemical signature associated with anthrax-causing spores, is also presented.

  11. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei.

    PubMed

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2016-02-01

    Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus. PMID:26521243

  12. Mechanism of action of 5-arninosalicylic acid

    PubMed Central

    Greenfield, S. M.; Thompson, R. P. H.

    1992-01-01

    5-Aminosalicylic Acid (5-ASA) has been used for over 50 years in the treatment of inflammatory bowel disease in the pro-drug form sulphasalazine (SASP). SASP is also used to treat rheumatoid arthritis. However whether the therapeutic properties of SASP are due to the intact molecule, the 5-ASA or sulphapyridine components is unknown. Several mechanisms of action have been proposed for 5-ASA and SASP including interference in the metabolism of arachidonic acid to prostaglandins and leukotrienes, scavenging,of reactive oxygen species, effects on leucocyte function and production of cytokines. However, it is unlikely that the anti-inflammatory properties of SASP and 5-ASA are due to several different properties but more likely that a single property of 5-ASA explains the theraapeutic effects of 5-ASA and SASP. Reactive oxygen species (ROS) are involved in the metabolism of prostaglandins and leukotrienes and can act as second messengers, and so the scavenging of ROS may be the single mechanism of action of 5-ASA that gives rise to its antiinflammatory effects in both inflammatory bowel disease and rheumatoid arthritis. PMID:18475455

  13. Enhanced Extracorporeal CO2 Removal by Regional Blood Acidification: Effect of Infusion of Three Metabolizable Acids.

    PubMed

    Scaravilli, Vittorio; Kreyer, Stefan; Linden, Katharina; Belenkiy, Slava; Pesenti, Antonio; Zanella, Alberto; Cancio, Leopoldo C; Batchinsky, Andriy I

    2015-01-01

    Acidification of blood entering a membrane lung (ML) with lactic acid enhances CO2 removal (VCO2ML). We compared the effects of infusion of acetic, citric, and lactic acids on VCO2ML. Three sheep were connected to a custom-made circuit, consisting of a Hemolung device (Alung Technologies, Pittsburgh, PA), a hemofilter (NxStage, NxStage Medical, Lawrence, MA), and a peristaltic pump recirculating ultrafiltrate before the ML. Blood flow was set at 250 ml/min, gas flow (GF) at 10 L/min, and recirculating ultrafiltrate flow at 100 ml/min. Acetic (4.4 M), citric (0.4 M), or lactic (4.4 M) acids were infused in the ultrafiltrate at 1.5 mEq/min, for 2 hours each, in randomized fashion. VCO2ML was measured by the Hemolung built-in capnometer. Circuit and arterial blood gas samples were collected at baseline and during acid infusion. Hemodynamics and ventilation were monitored. Acetic, citric, or lactic acids similarly enhanced VCO2ML (+35%), from 37.4 ± 3.6 to 50.6 ± 7.4, 49.8 ± 5.6, and 52.0 ± 8.2 ml/min, respectively. Acids similarly decreased pH, increased pCO2, and reduced HCO3 of the post-acid extracorporeal blood sample. No significant effects on arterial gas values, ventilation, or hemodynamics were observed. In conclusion, it is possible to increase VCO2ML by more than one-third using any one of the three metabolizable acids. PMID:26273934

  14. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  15. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants.

    PubMed

    Chen, Hao; Saksa, Kristen; Zhao, Feiyi; Qiu, Joyce; Xiong, Liming

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. PMID:20497381

  16. Ursolic acid synergistically enhances the therapeutic effects of oxaliplatin in colorectal cancer.

    PubMed

    Shan, Jianzhen; Xuan, Yanyan; Zhang, Qi; Zhu, Chunpeng; Liu, Zhen; Zhang, Suzhan

    2016-08-01

    Oxaliplatin is a key drug in chemotherapy of colorectal cancer (CRC). However, its efficacy is unsatisfied due to drug resistance of cancer cells. In this study, we tested whether a natural agent, ursolic acid, was able to enhance the efficacy of oxaliplatin for CRC. Four CRC cell lines including SW480, SW620, LoVo, and RKO were used as in vitro models, and a SW620 xenograft mouse model was used in further in vivo study. We found that ursolic acid inhibited proliferation and induced apoptosis of all four cells and enhanced the cytotoxicity of oxaliplatin. This effect was associated with down-regulation of Bcl-xL, Bcl-2, survivin, activation of caspase-3, 8, 9, and inhibition of KRAS expression and BRAF, MEK1/2, ERK1/2, p-38, JNK, AKT, IKKα, IκBα, and p65 phosphorylation of the MAPK, PI3K/AKT, and NF-κB signaling pathways. The two agents also showed synergistic effects against tumor growth in vivo. In addition, ursolic acid restored liver function and body weight of the mice treated with oxaliplatin. Thus, we concluded that ursolic acid could enhance the therapeutic effects of oxaliplatin against CRC both in vitro and in vivo, which offers an effective strategy to minimize the burden of oxaliplatin-induced adverse events and provides the groundwork for a new clinical strategy to treat CRC. PMID:27472952

  17. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  18. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  19. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. PMID:25114016

  20. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid

    PubMed Central

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E.; Schwab, Wilfried; Vlot, A. Corina

    2014-01-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. PMID:25114016

  1. Maximizing the electromagnetic and chemical resonances of surface-enhanced Raman scattering for nucleic acids.

    PubMed

    Freeman, Lindsay M; Pang, Lin; Fainman, Yeshaiahu

    2014-08-26

    Although surface-enhanced Raman spectroscopy (SERS) has previously been performed with nucleic acids, the measured intensities for each nucleic acid have varied significantly depending on the SERS substrate and excitation wavelength. We have demonstrated that the charge-transfer (CT) mechanism, also known as the chemical enhancement of SERS, is responsible for the discrepancies previously reported in literature. The electronic states of cytosine and guanine attached to silver atoms are computationally calculated and experimentally measured to be in the visible range, which leads to a resonance Raman effect at the corresponding maximum wavelengths. The resulting SERS measurements are in good agreement with the simulated values, in which cytosine-silver shows stronger enhancement at 532 nm and guanine-silver shows stronger enhancement at 785 nm. An atomic layer of aluminum oxide is deposited on substrates to prevent charge-transfer, and corresponding measurements show weaker Raman signals caused by the suppression of the chemical resonance. These findings suggest the optimal SERS signal can be achieved by tuning the excitation wavelength to match both the electromagnetic and chemical resonances, paving the way for future single molecule detection of nucleic acids other than adenine. PMID:25065837

  2. Gadoxetic acid-enhanced MRI for T-staging of gallbladder carcinoma: emphasis on liver invasion

    PubMed Central

    Hwang, J; Choi, D; Rhim, H; Lee, W J; Hong, S S; Chang, Y-W

    2014-01-01

    Objective: To evaluate the diagnostic performance of gadoxetic acid-enhanced MRI with an emphasis on the usefulness of the hepatobiliary phase (HBP) in T-staging of gallbladder carcinoma. Methods: 66 patients with surgically confirmed gallbladder carcinoma underwent MRI. Two radiologists independently reviewed two sets of gadoxetic acid-enhanced MRI without and with the HBP. Local tumour spread was evaluated according to T-staging, and the results were compared with pathological findings. The diagnostic performance of two image sets to differentiate each T-stage was compared. Results: The sensitivities of MRI with the HBP to differentiate T1 vs ≥T2 lesions, ≤T2 vs ≥T3 lesions and ≤T3 vs T4 lesions were 96.3%, 85.7% and 100% for Observer 1 and 92.6%, 95.2% and 100% for Observer 2, respectively (p < 0.0001). By adding the HBP, the sensitivities to differentiate ≤T2 vs ≥T3 lesions were increased from 66.7% to 85.7% for Observer 1 and from 81.0% to 95.2% for Observer 2, although there was no significant difference (p > 0.05). The overall accuracies for T-staging were increased from 80.3% to 86.4% for Observer 1, a statistically significant degree (p = 0.046), and from 83.8% to 87.9% for Observer 2 (p > 0.05). The k-value for the two observers indicated excellent agreement. Conclusion: Gadoxetic acid-enhanced MRI provided acceptable diagnostic performance for T-staging of gallbladder carcinoma. Addition of the HBP aids in the detection of liver invasion. Advances in knowledge: In the T-staging of gallbladder carcinoma, gadoxetic acid-enhanced MRI with the HBP may enhance detection of liver invasion. PMID:24288397

  3. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  4. Valproic Acid Enhances the Anti-tumor Effect of (-)-gossypol to Burkitt Lymphoma Namalwa Cells.

    PubMed

    Gong, Yi; Ni, Zhen Hong; Zhang, Xi; Chen, Xing Hua; Zou, Zhong Min

    2015-10-01

    Burkitt lymphoma is a highly aggressive B-cell neoplasm. New therapeutic methods are needed to overcome the adverse effect of intensive chemotherapy regimens. Valproic acid and (-)-gossypol are two kinds of chemical compounds used as new anti-tumor drugs in recent years. To investigate the anti-tumor effect of valproic acid and (-)-gossypol, Burkitt lymphoma Namalwa cells were cultured and treated with valproic acid and (-)-gossypol at different concentrations. The proliferation of Namalwa cells was dramatically suppressed after the combination treatment with 2 mmol/L valproic acid and 5 μmol/L (-)-gossypol. The combined treatment also enhanced intrinsic apoptosis by down-regulating anti-apoptotic protein Mcl-1. Moreover, the autophagy flux significantly increased in Namalwa cells after combined treatment. However, the enhanced autophagy showed little effect on cell survival with present regimen. The results confirmed that combination of valproic acid and (-)-gossypol had synergistic anti-tumor effect to Burkitt lymphoma Namalwa cells. The related mechanisms might include the down-regulation of anti-apoptotic protein Mcl-1 and avianized pro-survival role of autophagy. PMID:26582100

  5. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  6. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid.

    PubMed

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  7. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  8. Mutations in a novel 9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2-4 % of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process...

  9. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  10. Enhanced charge transport in highly conducting PEDOT-PSS films after acid treatment

    NASA Astrophysics Data System (ADS)

    Shiva, V. Akshaya; Bhatia, Ravi; Menon, Reghu

    The high electrical conductivity, good stability, high strength, flexibility and good transparency of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), make it useful for many applications including polymeric anodes for organic photovoltaics, light-emitting diodes, flexible electrodes, supercapacitors, electrochromic devices, field-effect transistors and antistatic-coatings. However, the electrical conductivity of PEDOT-PSS has to be increased significantly for replacement of indium tin oxide (ITO) as the transparent electrode in optoelectronic devices. The as prepared (pristine) PEDOT-PSS film prepared from the PEDOT-PSS aqueous solution usually has conductivity below 1Scm-1, remarkably lower than ITO. Significant conductivity enhancement has been observed on transparent and conductive PEDOT-PSS films after a treatment with inorganic acids. Our study investigates the charge transport in pristine and H2SO4, HNO3, HCl treated PEDOT-PSS films. We have treated the films with various concentrations of acids to probe the effect of the acid treatment on the conduction mechanism. The study includes the measurement of dc and electric field dependent conductivity of films in the temperature range of 4.2K-300K. We have also performed magneto-resistance measurements in the range of 0-5T. An enhancement by a factor of~103 has been observed in the room temperature conductivity. The detailed magneto-transport studies explain the various mechanisms for the conductivity enhancement observed.

  11. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids.

    PubMed

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia. PMID:27379039

  12. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids

    PubMed Central

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H.; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia. PMID:27379039

  13. A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress

    PubMed Central

    Chittezham Thomas, Vinai; Kinkead, Lauren C.; Janssen, Ashley; Schaeffer, Carolyn R.; Woods, Keith M.; Lindgren, Jill K.; Peaster, Jonathan M.; Chaudhari, Sujata S.; Sadykov, Marat; Jones, Joselyn; Mohamadi AbdelGhani, Sameh M.; Zimmerman, Matthew C.; Bayles, Kenneth W.; Somerville, Greg A.; Fey, Paul D.

    2013-01-01

    ABSTRACT A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. PMID:23963176

  14. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  15. Incorporation of a Michael acceptor enhances the antitumor activity of triterpenoic acids.

    PubMed

    Heller, Lucie; Schwarz, Stefan; Perl, Vincent; Köwitsch, Alexander; Siewert, Bianka; Csuk, René

    2015-08-28

    Finding and developing drugs for the treatment of cancer has been challenging scientists for many decades, and using compounds of natural origin represents one of several strategies. Triterpenoic acids are a very promising class of secondary metabolites being able to induce apoptosis while their cytotoxicity is low. Therefore, derivatizations have to be conducted to improve cytotoxicity while retaining their ability to induce programmed cell death. The incorporation of a Michael acceptor into molecules resulted very often in drugs of improved cytotoxicity. Thus, in this study we synthesized and evaluated several Michael acceptor substituted compounds derived from glycyrrhetinic, ursolic, oleanolic and platanic acid. The influence of the presence of such a functional group onto the cytotoxicity was investigated in colorimetric sulforhodamine B assays employing several human cancer cell lines. EC50 values in the single-digit micromolar range were measured. Thus, the incorporation of a Michael acceptor unit into triterpenoic acids enhances the cytotoxicity of these compounds significantly. PMID:26177446

  16. α-Mangostin, a Natural Agent, Enhances the Response of NRAS Mutant Melanoma to Retinoic Acid.

    PubMed

    Xia, Yun; Chen, Jing; Gong, Chongwen; Chen, Hongxiang; Sun, Jiaming

    2016-01-01

    BACKGROUND The identification and use of novel compounds alone or in combination hold promise for the fight against NRAS mutant melanoma. MATERIAL AND METHODS We screened a kinase-specific inhibitor library through combining it with α-Mangostin in NRAS mutant melanoma cell line, and verified the enhancing effect of α-Mangostin through inhibition of the tumorigenesis pathway. RESULTS Within the kinase inhibitors, retinoic acid showed a significant synergistic effect with α-Mangostin. α-Mangostin also can reverse the drug resistance of retinoic acid in RARa siRNA-transduced sk-mel-2 cells. Colony assay, TUNEL staining, and the expressions of several apoptosis-related genes revealed that a-Mangostin enhanced the effect of retinoic acid-induced apoptosis. The combination treatment resulted in marked induction of ROS generation and inhibition of the AKT/S6 pathway. CONCLUSIONS These results indicate that the combination of these novel natural agents with retinoid acid may be clinically effective in NRAS mutant melanoma. PMID:27104669

  17. Maslinic Acid Enhances Signals for the Recruitment of Macrophages and Their Differentiation to M1 State

    PubMed Central

    Gaforio, José J.

    2015-01-01

    The inflammatory process is involved in the genesis and evolution of different diseases like obesity, cardiovascular disease, and cancer. Macrophages play a central role in inflammation. In addition, they can regulate some stages of cancer development. Macrophages can polarize into M1 or M2 functional phenotype depending on the cytokines present in the tissue microenvironment. On the other hand, triterpenes found in virgin olive oil are described to present different properties, such as antitumoral and anti-inflammatory activity. The present study was designed to elucidate if the four major triterpenes found in virgin olive oil (oleanolic acid, maslinic acid, uvaol, and erythrodiol) are able to enhance M1 macrophage response which represents an important defense mechanism against cancer. Our results indicated that maslinic acid modulated the inflammatory response by enhancing the production of IL-8, IL-1α, and IL-1β; it promoted M1 response through the synthesis of IFN-γ; and finally it did not modify significantly the levels of NFκβ or NO. Overall, our results showed that maslinic acid could prevent chronic inflammation, which represents a crucial step in the development of some cancers. PMID:25821495

  18. Maslinic Acid enhances signals for the recruitment of macrophages and their differentiation to m1 state.

    PubMed

    Sánchez-Quesada, Cristina; López-Biedma, Alicia; Gaforio, José J

    2015-01-01

    The inflammatory process is involved in the genesis and evolution of different diseases like obesity, cardiovascular disease, and cancer. Macrophages play a central role in inflammation. In addition, they can regulate some stages of cancer development. Macrophages can polarize into M1 or M2 functional phenotype depending on the cytokines present in the tissue microenvironment. On the other hand, triterpenes found in virgin olive oil are described to present different properties, such as antitumoral and anti-inflammatory activity. The present study was designed to elucidate if the four major triterpenes found in virgin olive oil (oleanolic acid, maslinic acid, uvaol, and erythrodiol) are able to enhance M1 macrophage response which represents an important defense mechanism against cancer. Our results indicated that maslinic acid modulated the inflammatory response by enhancing the production of IL-8, IL-1α, and IL-1β; it promoted M1 response through the synthesis of IFN-γ; and finally it did not modify significantly the levels of NFκβ or NO. Overall, our results showed that maslinic acid could prevent chronic inflammation, which represents a crucial step in the development of some cancers. PMID:25821495

  19. α-Mangostin, a Natural Agent, Enhances the Response of NRAS Mutant Melanoma to Retinoic Acid

    PubMed Central

    Xia, Yun; Chen, Jing; Gong, Chongwen; Chen, Hongxiang; Sun, Jiaming

    2016-01-01

    Background The identification and use of novel compounds alone or in combination hold promise for the fight against NRAS mutant melanoma. Material/Methods We screened a kinase-specific inhibitor library through combining it with α-Mangostin in NRAS mutant melanoma cell line, and verified the enhancing effect of α-Mangostin through inhibition of the tumorigenesis pathway. Results Within the kinase inhibitors, retinoic acid showed a significant synergistic effect with α-Mangostin. α-Mangostin also can reverse the drug resistance of retinoic acid in RARa siRNA-transduced sk-mel-2 cells. Colony assay, TUNEL staining, and the expressions of several apoptosis-related genes revealed that α-Mangostin enhanced the effect of retinoic acid-induced apoptosis. The combination treatment resulted in marked induction of ROS generation and inhibition of the AKT/S6 pathway. Conclusions These results indicate that the combination of these novel natural agents with retinoid acid may be clinically effective in NRAS mutant melanoma. PMID:27104669

  20. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    PubMed

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  1. Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer.

    PubMed

    Takayama, Chie; Mukaizawa, Fuyuki; Fujita, Takuya; Ogawara, Ken-ichi; Higaki, Kazutaka; Kimura, Toshikiro

    2009-12-01

    The formulation containing sodium laurate (C12), an absorption enhancer, and several amino acids such as taurine (Tau) and L-glutamine (L-Gln) is a promising preparation that can safely improve the intestinal absorption of poorly absorbable drugs. The safety for intestinal mucosa is achieved because the amino acids prevent C12 from causing mucosal damages via several mechanisms. In the present study, the possible involvement of apoptosis, programmed cell death, in mucosal damages caused by C12 and cytoprotection by amino acids was examined. C12 induced DNA fragmentation, a typical phenomenon of apoptosis, in rat large-intestinal epithelial cells while the addition of amino acids significantly attenuated it. C12 alone significantly increased the release of cytochrome C, an apoptosis-inducing factor, from mitochondria, which could be via the decrease in the level of Bcl-2, an inhibiting factor of cytochrome C release. The enhancement of cytochrome C release by C12 led to the activation of caspase 9, an initiator enzyme, and the subsequent activation of caspase 3, an effector enzyme. On the other hand, Tau or L-Gln significantly suppressed the release of cytochrome C from mitochondria and attenuated the activities of both caspases, which could be attributed to the maintenance of Bcl-2 expression. PMID:19630065

  2. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  3. The Efficacy of Probiotic (Lactobacillus rhamnosus GG) and 5-ASA (Aminosalicylic Acid) in the Treatment of Experimental Radiation Proctitis in Rats.

    PubMed

    Dandin, Özgür; Akin, Mehmet Levhi; Balta, Ahmet Ziya; Yücel, Ergün; Karakaş, Dursun Özgür; Demirbaş, Sezai; Özdemir, Sevim; Haholu, Apdullah

    2015-12-01

    The aims of the study are to demonstrate the effect of probiotic use on the healing of radiation proctitis (RP) and evaluate the efficiency of fecal biomarkers at follow-up of the treatment. Thirty-two male/female rats were randomly separated into four groups of eight rats. The first group (control) was not radiated. RP was created by 17.5 Gy single dose rectal irradiation. The second group (RP) was subjected to RP, but not treated. The third group (RP+ASA) was treated with 5-aminosalicylic acid (5-ASA) 250 mg/kg daily by gastric lavage for 14 days after the irradiation, and the forth group (RP+LGG) was treated with Lactobacillus GG (LGG) 25 × 100 million CFU daily. Feces samples were taken at the 7th and 14th day of the treatment for fecal biomarkers. Rectums of the rats were resected at the 14th day by laparotomy. Samples were evaluated both macroscopically and microscopically. RP was achieved both macroscopically and microscopically. Weight loss of RP group is statistically significant (p < 0.005) than other groups. The healing ratio of RP+ASA and RP+LGG groups was significantly better than the RP group (p < 0.005) both macroscopically and microscopically. But there was no significant difference between ASA and LGG groups. Biochemically, fecal calprotectin was found to be more effective than fecal myeloperoxidase and fecal lactoferrin to show the efficacy of treatment of radiation proctitis. The results of our study demonstrate that probiotic is as effective as 5-aminosalicylic in the treatment of radiation proctitis, and fecal calprotectin is a useful biomarker in determining the response to the treatment. PMID:26730065

  4. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.

    PubMed

    Wang, Huijiao; Yuan, Shi; Zhan, Juhong; Wang, Yujue; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin

    2015-09-01

    Electro-peroxone (E-peroxone) is a novel electrocatalytic ozonation process that combines ozonation and electrolysis process to enhance pollutant degradation during water and wastewater treatment. This enhancement has been mainly attributed to several mechanisms that increase O3 transformation to ·OH in the E-peroxone system, e.g., electro-generation of H2O2 from O2 at a carbon-based cathode and its subsequent peroxone reaction with O3 to ·OH, electro-reduction of O3 to ·OH at the cathode, and O3 decomposition to ·OH at high local pH near the cathode. To get more insight how these mechanisms contribute respectively to the enhancement, this study investigated total organic carbon (TOC) elimination from oxalic acid (OA) solutions by the E-peroxone process. Results show that the E-peroxone process significantly increased TOC elimination rate by 10.2-12.5 times compared with the linear addition of the individual rates of corresponding ozonation and electrolysis process. Kinetic analyses reveal that the electrochemically-driven peroxone reaction is the most important mechanism for the enhanced TOC elimination rate, while the other mechanisms contribute minor to the enhancement by a factor of 1.6-2.5. The results indicate that proper selection of electrodes that can effectively produce H2O2 at the cathode is critical to maximize TOC elimination in the E-peroxone process. PMID:25989593

  5. Surface enhanced raman spectroscopy on nucleic acids and related compounds adsorbed on colloidal silver particles

    NASA Astrophysics Data System (ADS)

    Kneipp, K.; Pohle, W.; Fabian, H.

    1991-04-01

    Various nucleic acids and related compounds have been investigated by surface enhanced Raman spectroscopy (SERS) on silver sol. The time delay between the addition of the various nucleic acids to the silver sol and the appearance of their SER spectra, i.e. the time needed by the various molecules to adsorb on an active site of the silver surface with an adsorption geometry which allows a SERS enhancement, shows strong differences. For instance, an immediate appearance of SER spectra has been found for DNA, whereas ribonucleic acids (RNAs) demonstrated a strong time delay (up to days) of the appearance of their SER spectra. This delay can be tentatively explained by the higher rigidity of RNA molecules compared with DNA. The more flexible DNA molecules are better adaptable to adsorption on silver than RNAs. The SER spectra of RNAs and DNAs showed strong changes within their relative line intensities as a function of time before they achieved stationary conditions, which indicates a protracted re-arrangement of the large molecules on the silver surface.

  6. Arachidonic Acid Enhances Reproduction in Daphnia magna and Mitigates Changes in Sex Ratios Induced by Pyriproxyfen

    PubMed Central

    Ginjupalli, Gautam K.; Gerard, Patrick D.; Baldwin, William S.

    2016-01-01

    Arachidonic acid (AA) is one of only two unsaturated fatty acids retained in the ovaries of crustaceans, and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. We hypothesized that as a key fatty acid, AA may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with AA indicate that it alters female/male sex ratios by increasing female production. This reproductive effect only occurred during a restricted P. subcapitata diet. Next, we tested whether enriching a poorer algal diet (C. vulgaris) with AA enhances overall reproduction and sex ratios. AA enrichment of a C. vulgaris diet also enhances fecundity at 1.0 and 4.0μM by 30–40% in the presence and absence of pyriproxyfen. This indicates that AA is crucial in reproduction regardless of environmental sex determination. Furthermore, our data indicates that P. subcapitata may provide a threshold concentration of AA needed for reproduction. Diet switch experiments from P. subcapitata to C. vulgaris mitigate some but not all of AA’s effects when compared to a C. vulgaris only diet, suggesting that some AA provided by P. subcapitata is retained. In summary, AA supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in AA may provide protection from some reproductive toxicants such as the juvenile hormone agonist, pyriproxyfen. PMID:25393616

  7. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI

    PubMed Central

    Joo, Ijin; Lee, Jeong Min

    2016-01-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  8. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

    PubMed

    Joo, Ijin; Lee, Jeong Min

    2016-02-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  9. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides

    SciTech Connect

    Wang Qian; Feng Yongjun; Feng Junting; Li Dianqing

    2011-06-15

    2,5-dichloro-4-(5-hydroxy-3-methyl-4-(sulphophenylazo) pyrazol-1-yl) benzenesulphonate (DHSB) anions, namely acid yellow 17 anions, have been successfully intercalated into Zn-Al layered double hydroxides (LDH) to produce a novel organic-inorganic pigment by a simple method involving separate nucleation and aging steps (SNAS), and the dye-intercalated LDH was analyzed by various techniques, e.g., XRD, SEM, FT-IR, TG-DTA and ICP. The d-spacing of the prepared LDH is 2.09 nm. Furthermore, the incorporation of the DHSB aims to enhance the thermal- and photo-stability of the guest dye molecule, for example, the less color change after accelerated thermal- and photo-aging test. - Graphical abstract: Acid yellow anions were successfully assembled into ZnAl layered double hydroxides (LDH) to produce a novel organic-inorganic composite pigment by a simple method involving separate nucleation and aging steps (SNAS). Highlights: > Acid yellow 17 was directly intercalated into ZnAl-LDH to form a novel pigment. > The pigment was prepared by a method involving separate nucleation and aging steps. > The intercalation of dye anions enhances its thermal- and photo-stability.

  10. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

    PubMed

    Kolev, Joshua N; Zaengle, Jacqueline M; Ravikumar, Rajesh; Fasan, Rudi

    2014-05-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  11. Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts via Unnatural Amino Acid Mutagenesis

    PubMed Central

    Kolev, Joshua N.; Zaengle, Jacqueline M.; Ravikumar, Rajesh

    2014-01-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. In this work, we investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. To this end, four unnatural amino acids comprising a diverse set of aromatic side-chain groups were incorporated into eleven active site positions of a substrate-promiscuous CYP102A1 variant. The resulting ‘uP450s’ were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates consisting of a small-molecule drug and a natural product. Large shifts in regioselectivity were obtained as a result of these single mutations and, in particular, via para-acetyl-Phe substitutions at positions in close proximity to the heme cofactor. Notably, screening of this mini library of uP450s enabled the rapid identification of P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp3)—H site not oxidized by the parent enzyme. Furthermore, our studies led to the discovery of a general activity-enhancing effect of active site substitutions involving the unnatural amino acid para-amino-Phe, resulting in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650 turnovers). The functional changes induced by the unnatural amino acids could not be recapitulated by any of the twenty natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising, new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  12. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. PMID:26950757

  13. Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw.

    PubMed

    Kim, Ilgook; Lee, Bomi; Park, Ji-Yeon; Choi, Sun-A; Han, Jong-In

    2014-01-01

    In this study, nitric acid (HNO₃) was evaluated as an acid catalyst for rice straw pretreatment, and, after neutralization, as a sole nitrogen source for subsequent fermentation. Response surface methodology was used to obtain optimal pretreatment condition with respect to HNO₃ concentration (0.2-1.0%), temperature (120-160 °C) and reaction time (1-20 min). In a condition of 0.65% HNO₃, 158.8 °C and 5.86 min, a maximum xylose yield of 86.5% and an enzymatic digestibility of 83.0% were achieved. The sugar solution that contained nitrate derived from the acid catalyst supported the enhancement of ethanol yield by Pichia stipitis from 10.92 g/L to 14.50 g/L. The results clearly reveal that nitric acid could be used not only as a pretreatment catalyst, but also as a nitrogen source in the fermentation process for bioethanol production. It is anticipated that the HNO₃-based pretreatment can reduce financial burden on the cellulosic bioethanol industry by simplifying after-pretreatment-steps as well as providing a nitrogen source. PMID:24274544

  14. Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Gopalakrishnan, Ranganath; Schaer, Tifany; Marger, Fabrice; Hovius, Ruud; Bertrand, Daniel; Pojer, Florence; Heinis, Christian

    2014-11-01

    The disulfide bonds that form between two cysteine residues are important in defining and rigidifying the structures of proteins and peptides. In polypeptides containing multiple cysteine residues, disulfide isomerization can lead to multiple products with different biological activities. Here, we describe the development of a dithiol amino acid (Dtaa) that can form two disulfide bridges at a single amino acid site. Application of Dtaas to a serine protease inhibitor and a nicotinic acetylcholine receptor inhibitor that contain disulfide constraints enhanced their inhibitory activities 40- and 7.6-fold, respectively. X-ray crystallographic and NMR structure analysis show that the peptide ligands containing Dtaas have retained their native tertiary structures. We furthermore show that replacement of two cysteines by Dtaas can avoid the formation of disulfide bond isomers. With these properties, Dtaas are likely to have broad application in the rational design or directed evolution of peptides and proteins with high activity and stability.

  15. Enhancing proton conduction via doping of supramolecular liquid crystals (4-alkoxybenzoic acids) with imidazole

    NASA Astrophysics Data System (ADS)

    Liang, Ting; Wu, Yong; Tan, Shuai; Yang, Xiaohui; Wei, Bingzhuo

    2015-09-01

    Enhancing proton conduction via doping was first achieved in hydrogen-bonded liquid crystals consisting of benzoic acids. Supramolecular liquid crystals formed by pure 4-alkoxybenzoic acids (nAOBA, n = 8, 10, 12) exhibited the maximum proton conductivity of 5.0 × 10-8 S cm-1. Doping of nAOBA with 25 mol% imidazole (Im0.25) had little impact on mesomorphism but increased proton conductivities by at least 3 orders of magnitude. The liquid crystals formed by nAOBA-Im0.25 exhibited the maximum proton conductivity of 1.9 × 10-4 S cm-1. It was proposed that structure diffusion of imidazole bridged interdimer proton transfer to form continuous conducting pathways in mesomorphic nAOBA-Im0.25.

  16. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation

    PubMed Central

    Vásquez, Valeria; Krieg, Michael; Lockhead, Dean; Goodman, Miriam B.

    2014-01-01

    Summary Mechano-electrical transduction (MeT) channels embedded in neuronal cell membranes are essential for touch and proprioception. Little is understood about the interplay between native MeT channels and membrane phospholipids, in part because few techniques are available for altering plasma membrane composition in vivo. Here, we leverage genetic dissection, chemical complementation, and optogenetics to establish that arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, enhances touch sensation and mechanoelectrical transduction activity while incorporated into membrane phospholipids in C. elegans touch receptor neurons (TRNs). Because dynamic force spectroscopy reveals that AA modulates the mechanical properties of TRN plasma membranes, we propose that this PUFA is needed for MeT channel activity. These findings establish that polyunsaturated phospholipids are crucial determinants of both the biochemistry and mechanics of mechanoreceptor neurons and reinforce the idea that sensory mechanotransduction in animals relies on a cellular machine composed of both proteins and membrane lipids. PMID:24388754

  17. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin.

    PubMed

    Suen, Yung Lee; Tang, Hongmei; Huang, Junchao; Chen, Feng

    2014-12-24

    Dissolved oxygen is a critical factor for heterotrophic cell growth and metabolite production. The aim of this study was to investigate the effects of an oxygen-involved protein on cell growth and fatty acid and astaxanthin production in the biologically important thraustochytrid Aurantiochytrium sp. The hemoglobin of the Vitreoscilla stercoraria (VHb) gene was fused upstream with a zeocin resistance gene (ble) and driven by the Aurantiochytrium tubulin promoter. The expression construct was introduced into two strains of Aurantiochytrium sp. by electroporation. Transgenic Aurantiochytrium sp. strains MP4 and SK4 expressing the heterologous VHb achieved significantly higher maximum biomass than their corresponding controls in microaerobic conditions. Furthermore, the transformants of Aurantiochytrium sp. SK4 produced 44% higher total fatty acid and 9-fold higher astaxanthin contents than the wild type control in aerobic conditions. The present study highlights the biotechnological application of VHb in high-cell density fermentation for enhanced biomass production as well as high-value metabolites. PMID:25420960

  18. Fluorescence-Enhanced Sensing of Hypochlorous Acid Based on 2-Pyridylthiazole Unit.

    PubMed

    Zheng, Ming-Hua; Hu, Xiang; Wang, Xiu-Wen; Liu, Xi-Ling; Jin, Jing-Yi

    2016-03-01

    Hypochlorous acid, being one of reactive oxygen species (ROS), is essential to protect the body against invasion of pathogens. Excess of hypochlorous acid (HOCl) is believed to be in tight connection with various inflammation-related diseases. It remains a challenge to detect the ROS in physiological conditions (aqueous buffer and neutral pH) with selectivity. In the presented paper, we have synthesized a ferrocence-modified pyridylthiazole derivatives, 1,4-di{5-[(4'-ferrocenyl-2'-(4"-pyridyl)]thiazinyl}benzene (DFPT). Only HOCl could turn-on the fluorescence of DFPT with enhanced emission at 465 nm. Compared to the other reported HOCl sensors, DFPT could selectively detect HOCl with rapid response (< 60 s) in the aqueous buffer (pH = 7.0). The detection limit at pH = 7.0 was 0.7 μM according to the titration experiment. PMID:26667476

  19. Histogram Analysis of Gadoxetic Acid-Enhanced MRI for Quantitative Hepatic Fibrosis Measurement

    PubMed Central

    Kim, Honsoul; Park, Seong Ho; Kim, Eun Kyung; Kim, Myeong-Jin; Park, Young Nyun; Park, Hae-Jeong; Choi, Jin-Young

    2014-01-01

    Purpose The diagnosis and monitoring of liver fibrosis is an important clinical issue; however, this is usually achieved by invasive methods such as biopsy. We aimed to determine whether histogram analysis of hepatobiliary phase images of gadoxetic acid-enhanced magnetic resonance imaging (MRI) can provide non-invasive quantitative measurement of liver fibrosis. Methods This retrospective study was approved by the institutional ethics committee, and a waiver of informed consent was obtained. Hepatobiliary phase images of preoperative gadoxetic acid-enhanced MRI studies of 105 patients (69 males, 36 females; age 56.1±12.2) with pathologically documented liver fibrosis grades were analyzed. Fibrosis staging was F0/F1/F2/F3/F4 (METAVIR system) for 11/20/13/15/46 patients, respectively. Four regions-of-interest (ROI, each about 2 cm2) were placed on predetermined locations of representative images. The measured signal intensity of pixels in each ROI was used to calculate corrected coefficient of variation (cCV), skewness, and kurtosis. An average value of each parameter was calculated for comparison. Statistical analysis was performed by ANOVA, receiver operating characteristic (ROC) curve analysis, and linear regression. Results The cCV showed statistically significant differences among pathological fibrosis grades (P<0.001) whereas skewness and kurtosis did not. Univariable linear regression analysis suggested cCV to be a meaningful parameter in predicting the fibrosis grade (P<0.001, β = 0.40 and standard error  = 0.06). For discriminating F0-3 from F4, the area under ROC score was 0.857, standard deviation 0.036, 95% confidence interval 0.785–0.928. Conclusion Histogram analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI can provide non-invasive quantitative measurements of hepatic fibrosis. PMID:25460180

  20. Design and evaluation of Lumefantrine – Oleic acid self nanoemulsifying ionic complex for enhanced dissolution

    PubMed Central

    2013-01-01

    Background Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs) of lumefantrine (LF) to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media. Methods Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer. Results LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA). Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm), shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%), no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release. Conclusion Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs. PMID:23531442

  1. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT).

    PubMed

    Lozano, Elisa; Monte, Maria J; Briz, Oscar; Hernández-Hernández, Angel; Banales, Jesus M; Marin, Jose J G; Macias, Rocio I R

    2015-10-28

    Novel antitumour drugs, such as cationic tyrosine kinase inhibitors, are useful in many types of cancer but not in others, such as cholangiocarcinoma (CCA), where their uptake through specific membrane transporters, such as OCT1, is very poor. Here we have investigated the usefulness of targeting cytostatic bile acid derivatives to enhance the delivery of chemotherapy to tumours expressing the bile acid transporter ASBT and whether this is the case for CCA. The analysis of paired samples of CCA and adjacent non-tumour tissue collected from human (n=15) and rat (n=29) CCA revealed that ASBT expression was preserved. Moreover, ASBT was expressed, although at different levels, in human and rat CCA cell lines. Both cells in vitro and rat tumours in vivo were able to carry out efficient uptake of bile acid derivatives. Using Bamet-UD2 (cisplatin-ursodeoxycholate conjugate) as a model ASBT-targeted drug, in vitro and in vivo antiproliferative activity was evaluated. ASBT expression enhanced the sensitivity to Bamet-UD2, but not to cisplatin, in vitro. In nude mice, Bamet-UD2 (more than cisplatin) inhibited the growth of human colon adenocarcinoma tumours with induced stable expression of ASBT. As compared with cisplatin, administration of Bamet-UD2 to rats with CCA resulted in an efficient liver and tumour uptake but low exposure of extrahepatic tissues to the drug. Consequently, signs of liver/renal toxicity were absent in animals treated with Bamet-UD2. In conclusion, endogenous or induced ASBT expression may be useful in pharmacological strategies to treat enterohepatic tumours based on the use of cytostatic bile acid derivatives. PMID:26278512

  2. Spectroscopic characterization of genetically modified flax fibres enhanced with poly-3-hydroxybutyric acid

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-02-01

    Genetically modified flax fibres, derived from transgenic flax with expression of three bacterial genes necessary for synthesis of poly-3-hydroxybutyric acid (PHB), have been analysed. These transgenic flaxes, enhanced with different amount of the PHB, have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes as well as the differences between the natural and genetically modified flax fibres. The spectroscopic data were compared to those obtained from chemical analysis of flax fibres.

  3. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    PubMed

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  4. Significantly enhancing supercapacitive performance of nitrogen-doped graphene nanosheet electrodes by phosphoric acid activation.

    PubMed

    Wang, Ping; He, Haili; Xu, Xiaolong; Jin, Yongdong

    2014-02-12

    In this work, we present a new method to synthesize the phosphorus, nitrogen contained graphene nanosheets, which uses dicyandiamide to prevent the aggregation of graphene oxide and act as the nitrogen precursor, and phosphoric acid (H3PO4) as the activation reagent. We have found that through the H3PO4 activation, the samples exhibit the remarkably enhanced supercapacitive performance, and depending on the amount of H3PO4 introduced, the specific capacitance of the samples is gradually increased from 7.6 to 244.6 F g(-1). Meanwhile, the samples also exhibit the good rate capability and excellent stability (up to 10 000 cycles). Through the transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analyses, H3PO4 treatment induced large pore volume and phosphorus related function groups in the product are assumed to response for the enhancement. PMID:24456232

  5. Thiolated Carboxymethyl-Hyaluronic-Acid-Based Biomaterials Enhance Wound Healing in Rats, Dogs, and Horses

    PubMed Central

    Yang, Guanghui; Prestwich, Glenn D.; Mann, Brenda K.

    2011-01-01

    The progression of wound healing is a complicated but well-known process involving many factors, yet there are few products on the market that enhance and accelerate wound healing. This is particularly problematic in veterinary medicine where multiple species must be treated and large animals heal slower, oftentimes with complicating factors such as the development of exuberant granulation tissue. In this study a crosslinked-hyaluronic-acid (HA-) based biomaterial was used to treat wounds on multiple species: rats, dogs, and horses. The base molecule, thiolated carboxymethyl HA, was first found to increase keratinocyte proliferation in vitro. Crosslinked gels and films were then both found to enhance the rate of wound healing in rats and resulted in thicker epidermis than untreated controls. Crosslinked films were used to treat wounds on forelimbs of dogs and horses. Although wounds healed slower compared to rats, the films again enhanced wound healing compared to untreated controls, both in terms of wound closure and quality of tissue. This study indicates that these crosslinked HA-based biomaterials enhance wound healing across multiple species and therefore may prove particularly useful in veterinary medicine. Reduced wound closure times and better quality of healed tissue would decrease risk of infection and pain associated with open wounds. PMID:23738117

  6. Optical clearing of skin enhanced with hyaluronic acid for increased contrast of optoacoustic imaging.

    PubMed

    Liopo, Anton; Su, Richard; Tsyboulski, Dmitri A; Oraevsky, Alexander A

    2016-08-01

    Enhanced delivery of optical clearing agents (OCA) through skin may improve sensitivity of optical and optoacoustic (OA) methods of imaging, sensing, and monitoring. This report describes a two-step method for enhancement of light penetration through skin. Here, we demonstrate that topical application of hyaluronic acid (HA) improves skin penetration of hydrophilic and lipophilic OCA and thus enhances their performance. We examined the OC effect of 100% polyethylene and polypropylene glycols (PPGs) and their mixture after pretreatment by HA, and demonstrated significant increase in efficiency of light penetration through skin. Increased light transmission resulted in a significant increase of OA image contrast in vitro. Topical pretreatment of skin for about 30 min with 0.5% HA in aqueous solution offers effective delivery of low molecular weight OCA such as a mixture of PPG-425 and polyethylene glycol (PEG)-400. The developed approach of pretreatment by HA prior to application of clearing agents (PEG and PPG) resulted in a ∼ 47-fold increase in transmission of red and near-infrared light and significantly enhanced contrast of OA images. PMID:27232721

  7. Growth hormone enhances amino acid uptake by the human small intestine.

    PubMed Central

    Inoue, Y; Copeland, E M; Souba, W W

    1994-01-01

    OBJECTIVE: The effects of growth hormone (GH) on the luminal transport of amino acids and glucose by the human small intestine were investigated. SUMMARY BACKGROUND DATA: The anabolic effect of growth hormone administration is associated with nitrogen retention and an increase muscle strength, but the impact of growth hormone on nutrient uptake from the gut lumen has not been examined. METHODS: Twelve healthy patients received a daily subcutaneous dose of low-dose GH (0.1 mg/kg), high-dose GH (0.2 mg/kg), or no treatment (controls) for 3 days before surgery. At operation, ileum (8 patients) or jejunum (4 patients) was resected, and brush border membrane vesicles (BBMVs) were prepared by differential centrifugation. Vesicle purity was confirmed by a 16-fold enrichment of marker enzymes. The carrier-mediated transport of glutamine (System B), leucine (System L), alanine (System B), arginine (System y+), MeAIB (methyl alpha-aminoisobutyric acid [System A]), and glucose (Na(+)-dependent glucose transporter) by BBMVs was measured by a rapid mixing/filtration technique. RESULTS: Treatment with low-dose GH resulted in a statistically insignificant increase in amino acid transport rates in jejunal and ileal BBMVs. High-dose GH resulted in a generalized 20%-to 70%-stimulation of amino acid transport, whereas glucose transport was not affected. The effects of GH were similar in ileum and jejunum. Kinetic analysis of the transport of glutamine (the most abundant amino acid in the body and the principal gut fuel) and the essential amino acid leucine revealed that the increase in transport was caused by a 50% increase in carrier Vmax, consistent with an increase in the number of functional carriers in the brush border membrane. Pooled analysis of transport velocities demonstrated that total rates of amino acid uptake from the gut lumen were increased significantly by 35% in GH-treated patients. CONCLUSIONS: The ability of GH to enhance amino acid uptake from the gut lumen

  8. Using Laboratory Activities Enhanced with Concept Cartoons to Support Progression in Students' Understanding of Acid-Base Concepts

    ERIC Educational Resources Information Center

    Ozmen, Haluk; Demircioglu, Gokhan; Burhan, Yasemin; Naseriazar, Akbar; Demircioglu, Hulya

    2012-01-01

    The aim of this study is to examine the effectiveness of an intervention based on a series of laboratory activities enhanced with concept cartoons. The purpose of the intervention was to enhance students' understanding of acid-base chemistry for eight grade students' from two classes in a Turkish primary school. A pretest-posttest non-equivalent…

  9. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  10. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  11. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 μm to 37 μm. PMID:25498717

  12. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  13. Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces

    NASA Astrophysics Data System (ADS)

    Akkan, Cagri K.; Hür, Deniz; Uzun, Lokman; Garipcan, Bora

    2016-03-01

    Surface wetting properties of implants are one of the most critical parameter, which determine the interaction of proteins and cells with the implant surface. In this regards, acid etching and sand blasting are the mostly used methods at surface modification of Titanium (Ti) for enhanced surface wettability. Besides, these kinds of modifications may cause a conflict whether the surface wettability is influenced by the process related surface contaminations or by the surface roughness. In contrast, lasers might be an option for the alteration of surface wetting properties via supporting micro and/or nano surface topographies while preventing surface chemical contaminations. In this work, we focused on two steps of surface processing approaches of Ti surface: physical and chemical modifications. Herein, we hierarchically structured Ti surfaces by using microsecond modulated pulsed fiber laser. Subsequently, laser structured and non-structured Ti surfaces were further modified with novel histidine and leucine Amino Acid conjugated Self-Assembled Molecules (His1-SAMs2 and Leu3-SAMs) to alter the surface wettability by introducing biologically hydrophilic and hydrophobic groups. Modification of Ti surfaces with His-SAMs and Leu-SAMs ended up with stable wetting properties when compared to non-modified surfaces after 7 days which may enhances the cell-surface interaction.

  14. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  15. Desire for penile girth enhancement and the effects of the self-injection of hyaluronic Acid gel.

    PubMed

    Coskuner, Enis Rauf; Canter, Halil Ibrahim

    2012-07-01

    Penile girth enhancement is a controversial subject but demands for enhancement are increasing steadily. Although various fillers have been widely used for soft tissue augmentation, there is no reliable material for this particular situation. Here we report a case of an acute hypersensitivity reaction in a man after his first self-injection of a filler material, which, he claimed, was hyaluronic acid gel for penile girth enhancement and glans penis augmentation. PMID:23112518

  16. Distinguishing intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma using precontrast and gadoxetic acid-enhanced MRI

    PubMed Central

    Asayama, Yoshiki; Nishie, Akihiro; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Fujita, Nobuhiro; Kubo, Yuichiro; Aishima, Shinichi; Shirabe, Ken; Yoshiura, Takashi; Honda, Hiroshi

    2015-01-01

    PURPOSE We aimed to gain further insight in magnetic resonance imaging characteristics of mass-forming intrahepatic cholangiocarcinoma (mICC), its enhancement pattern with gadoxetic acid contrast agent, and distinction from poorly differentiated hepatocellular carcinoma (pHCC). METHODS Fourteen mICC and 22 pHCC nodules were included in this study. Two observers recorded the tumor shape, intratumoral hemorrhage, fat on chemical shift imaging, signal intensity at the center of the tumor on T2-weighted image, fibrous capsule, enhancement pattern on arterial phase of dynamic study, late enhancement three minutes after contrast injection (dynamic late phase), contrast uptake on hepatobiliary phase, apparent diffusion coefficient, vascular invasion, and intrahepatic metastasis. RESULTS Late enhancement was more common in mICC (n=10, 71%) than in pHCC (n=3, 14%) (P < 0.001). A fat component was observed in 11 pHCC cases (50%) versus none of mICC cases (P = 0.002). Fibrous capsule was observed in 13 pHCC cases (59%) versus none of mICC cases (P < 0.001). On T2-weighted images a hypointense area was seen at the center of the tumor in 43% of mICC (6/14) and 9% of pHCC (2/22) cases (P = 0.018). Other parameters were not significantly different between the two types of nodules. CONCLUSION The absence of fat and fibrous capsule, and presence of enhancement at three minutes appear to be most characteristic for mICC and may help its differentiation from pHCC. PMID:25698097

  17. Enhanced Blood Compatibility of Metallocene Polyethylene Subjected to Hydrochloric Acid Treatment for Cardiovascular Implants

    PubMed Central

    Jaganathan, Saravana Kumar; Mohandas, Hemanth; Sivakumar, Gunalan; Kasi, Palaniappan; Sudheer, Theertha; Avineri Veetil, Sruthi; Murugesan, Selvakumar; Supriyanto, Eko

    2014-01-01

    Blood compatibility of metallocene polyethylene (mPE) was investigated after modifying the surface using hydrochloric acid. Contact angle of the mPE exposed to HCl poses a decrease in its value which indicates increasing wettability and better blood compatibility. Surface of mPE analyzed by using FTIR revealed no significant changes in its functional groups after treatment. Furthermore, scanning electron microscope images supported the increasing wettability through the modifications like pit formations and etching on the acid rendered surface. To evaluate the effect of acid treatment on the coagulation cascade, prothrombin time (PT) and activated partial thromboplastin time (APTT) were measured. Both PT and APTT were delayed significantly (P < 0.05) after 60 min exposure implying improved blood compatibility of the surfaces. Hemolysis assay of the treated surface showed a remarkable decrease in the percentage of lysis of red blood cells when compared with untreated surface. Moreover, platelet adhesion assay demonstrated that HCl exposed surfaces deter the attachment of platelets and thereby reduce the chances of activation of blood coagulation cascade. These results confirmed the enhanced blood compatibility of mPE after HCl exposure which can be utilized for cardiovascular implants like artificial vascular prostheses, implants, and various blood contacting devices. PMID:24955370

  18. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways. PMID:26514503

  19. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions.

    PubMed

    Fan, Hailong; Yu, Xiang; Liu, Yang; Shi, Zujin; Liu, Huihui; Nie, Zongxiu; Wu, Decheng; Jin, Zhaoxia

    2015-06-21

    Recent research has indicated that polydopamine and synthetic eumelanins are optoelectronic biomaterials in which one-dimensional aggregates composed of ordered-stacking oligomers have been proposed as unique organic semiconductors. However, improving the ordered-stacking of oligomers in polydopamine nanostructures is a big challenge. Herein, we first demonstrate how folic acid molecules influence the morphology and nanostructure of polydopamine via tuning the π-π interactions of oligomers. MALDI-TOF mass spectrometry reveals that porphyrin-like tetramers are characteristic of folic acid-polydopamine (FA-PDA) nanofibers. X-ray diffraction combined with simulation studies indicate that these oligomers favour aggregation into graphite-like ordered nanostructures via strong π-π interactions. High-resolution TEM characterization of carbonized FA-PDA hybrids show that in FA-PDA nanofibers the size of the graphite-like domains is over 100 nm. The addition of folic acid in polydopamine enhances the ordered stacking of oligomers in its nanostructure. Our study steps forward to discover the mystery of the structure-property relationship of FA-PDA hybrids. It paves a way to optimize the properties of PDA through the design and selection of oligomer structures. PMID:25959650

  20. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-01

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process. PMID:26444653

  1. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids.

    PubMed

    Weathers, Tess S; Higgins, Christopher P; Sharp, Jonathan O

    2015-05-01

    This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels. PMID:25806435

  2. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    SciTech Connect

    Ugawa, Shinya Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-03-14

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K{sup +} (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC{sub 50} (inhibition constant) = approximately 48.3 {mu}M) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction.

  3. A Novel Approach to Enhancing Ganoderic Acid Production by Ganoderma lucidum Using Apoptosis Induction

    PubMed Central

    You, Bang-Jau; Lee, Miin-Huey; Tien, Ni; Lee, Meng-Shiou; Hsieh, Hui-Chuan; Tseng, Lin-Hsien; Chung, Yu-Lin; Lee, Hong-Zin

    2013-01-01

    Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi. PMID:23326470

  4. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  5. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  6. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  7. Chromate enhanced visible light driven TiO₂ photocatalytic mechanism on Acid Orange 7 photodegradation.

    PubMed

    Wang, Yeoung-Sheng; Shen, Jyun-Hong; Horng, Jao-Jia

    2014-06-15

    When hexavalent chromium (Cr(VI)) is added to a TiO2 photocatalytic reaction, the decolorization and mineralization efficiencies of azo dyes Acid Orange 7 (AO7) are enhanced even though the mechanism is unclear. This study used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as the scavenger and the analysis of Electron Spin Resonance (ESR) to investigate this enhancement effect by observing the hydroxyl radical (OH) generation of the Cr(VI)/TiO2 system under UV and visible light (Vis) irradiation. With Cr(VI), the decolorization efficiencies were approximately 95% and 62% under UV and Vis, and those efficiencies were 25% less in the absence of Cr(VI). The phenomena of the DMPO-OH signals during the ESR analysis under Vis 405 and 550 nm irradiation were obviously the enhancement effects of Cr(VI) in aerobic conditions. In anoxic conditions, the catalytic effects of Cr(VI) could not be achieved due to the lack of a redox reaction between Cr(VI) and the adsorbed oxygen at the oxygen vacancy sites on the TiO2 surfaces. The results suggest that by introducing the agents of redox reactions such as chromate ions, we could lower the photoenergy of TiO2 needed and allow Vis irradiation to activate photocatalysis. PMID:24806871

  8. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria.

    PubMed

    Kawashima, Tadaomi; Murakami, Katsura; Nishimura, Ikuko; Nakano, Takahisa; Obata, Akio

    2012-03-01

    Fucoidan, a sulfated polysaccharide contained in brown algae, has a variety of immunomodulatory effects, including antitumor and antiviral effects. On the other hand, lactic acid bacteria (LAB) also have immunomodulatory effects such as anti-allergic effects. In this study, we demonstrated that fucoidan enhances the probiotic effects of LAB on immune functions. By using Peyer's patch cells and spleen cells in vitro, fucoidan amplified interferon (IFN)-γ production in response to a strain of LAB, Tetragenococcus halophilus KK221, and this activity was abolished by desulfation of fucoidan. Moreover, this IFN-γ response was abolished by interleukin (IL)-12 neutralization. These results indicate that fucoidan enhanced IL-12 production in response to KK221, resulting in promoting IFN-γ production. In an in vivo study, Th1/Th2 immunobalance was most improved by oral administration of both fucoidan and KK221 to ovalbumin-immunized mice. These findings suggest that fucoidan can enhance a variety of beneficial effects of LAB on immune functions. PMID:22160132

  9. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    PubMed Central

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  10. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions

    PubMed Central

    Kostic, Ivana; Fidalgo-Carvalho, Isabel; Aday, Sezin; Vazão, Helena; Carvalheiro, Tiago; Grãos, Mário; Duarte, António; Cardoso, Carla; Gonçalves, Lino; Carvalho, Lina; Paiva, Artur; Ferreira, Lino

    2015-01-01

    Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction. PMID:26553339

  11. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    PubMed

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  12. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  13. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  14. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver.

    PubMed

    Tripathy, Sasmita; Chapman, John D; Han, Chang Y; Hogarth, Cathryn A; Arnold, Samuel L M; Onken, Jennifer; Kent, Travis; Goodlett, David R; Isoherranen, Nina

    2016-05-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialβ-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1βand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedβ-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδrevealed that the enhancement of mitochondrial biogenesis andβ-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidβ-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction. PMID:26921399

  15. Current evidence for the diagnostic value of gadoxetic acid-enhanced magnetic resonance imaging for liver metastasis.

    PubMed

    Tsurusaki, Masakatsu; Sofue, Keitaro; Murakami, Takamichi

    2016-08-01

    A variety of imaging techniques, including ultrasonography (US), multidetector computed tomography (MDCT), magnetic resonance imaging (MRI) and positron emission tomography combined with CT scan (PET/CT), are available for diagnosis and treatment planning in liver metastasis. Contrast-enhanced MDCT is a relatively non-invasive, widely available and standardized method for hepatic work-up. Gadoxetic acid (gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid; EOB Primovist®]) is a recently developed liver-specific hepatobiliary MR contrast agent that offers both dynamic imaging as well as liver-specific static hepatocyte imaging, referred to as the hepatobiliary phase. Following contrast injection, this technique reveals dynamic vascular phases (arterial, portal venous and delayed phases), in addition to the hepatobiliary phase upon uptake by functional hepatocytes. The overall sensitivity of gadoxetic acid-enhanced MRI was significantly higher than that of contrast-enhanced CT. Specifically, the higher sensitivity of gadoxetic acid-enhanced MRI was observed in lesions smaller than 1 cm in diameter. Gadoxetic acid-enhanced MRI is considered an extremely useful tool for the diagnosis of liver metastases. Future studies will focus on diagnostic algorithms involving combinations of modalities such as MRI, MDCT and/or (18) F-fluorodeoxyglucose PET/CT, which may impact the treatment plan for these patients. PMID:26750497

  16. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. Conclusions In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs. PMID:24581179

  17. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K; Noel, Nakita K; Haghighirad, Amir A; Burlakov, Victor M; deQuilettes, Dane W; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S; Friend, Richard H; Snaith, Henry J

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I(-), and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  18. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    DOE PAGESBeta

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; et al

    2015-11-30

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 backmore » into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.« less

  19. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    SciTech Connect

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-11-30

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.

  20. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.

    PubMed

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  1. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    PubMed Central

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I−, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  2. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.

    PubMed

    Liu, Yaxuan; Shen, Jingya; Huang, Liping; Wu, Dan

    2013-11-15

    Enhancement of both cobalt leaching from LiCoO2 and acid utilization efficiency (AUE) in microbial fuel cells (MFCs) was successfully achieved by the addition of Cu(II). A dosage of 10mg/L Cu(II) improved both cobalt leaching up to 308% and AUE of 171% compared to the controls with no presence of Cu(II). The apparent activation energy of cobalt leaching catalyzed by Cu(II) in MFCs was only 11.8 kJ/mol. These results demonstrate cobalt leaching in MFCs using Cu(II) as a catalyst may be an effective strategy for cobalt recovery and recycle of spent Li-ion batteries, and the evidence of influence factors including solid/liquid ratio, temperature, and pH and solution conductivity can contribute to improving understanding of and optimizing cobalt leaching catalyzed by Cu(II) in MFCs. PMID:24007993

  3. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  4. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  5. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.

    PubMed

    López-Bernabeu, S; Ruiz-Rosas, R; Quijada, C; Montilla, F; Morallón, E

    2016-02-01

    The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential. PMID:26433936

  6. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  7. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    PubMed

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling. PMID:24731596

  8. NIR surface enhanced Raman spectroscopy and bands assignment by DFT calculations of non-natural β-amino acids

    NASA Astrophysics Data System (ADS)

    Iliescu, T.; Maniu, D.; Chis, V.; Irimie, F. D.; Paizs, Cs.; Tosa, M.

    2005-04-01

    FT-Raman and NIR surface-enhanced Raman (SER) spectroscopies have been applied to the vibrational characterization of non-natural β-amino acids, 3-amino-3-(furan-2yl)-propionic acid and 3-amino-3-[(5-benzothiazole-2yl)-furan-2yl]-propionic acid. Semiempirical and density-functional theory (DFT) calculations on both amino acids in their zwitterionic forms have been performed in order to find the optimized structure and to compute the vibrational spectra. The NIR SER spectra in silver hydrosol and Ag-coated filter paper have been recorded, compared and analyzed. Good SER spectra were obtained at the pH values where dipolar ion structures are present proving the chemisorption of β-amino acid molecules on the silver surface via positively charged NH3+ group. The carboxylate anion of both β-amino acids are parallel oriented, whereas the plane of rings is oriented perpendicular to the silver surface.

  9. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    PubMed

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  10. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid

    PubMed Central

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-01-01

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism. PMID:25721623

  11. Acidic phospholipids govern the enhanced activation of IgG-B cell receptor

    PubMed Central

    Chen, Xiangjun; Pan, Weiling; Sui, Yinqiang; Li, Hua; Shi, Xiaoshan; Guo, Xingdong; Qi, Hai; Xu, Chenqi; Liu, Wanli

    2015-01-01

    B cells that express the isotype-switched IgG-B cell receptor (IgG-BCR) are one of the driving forces for antibody memory. To allow for a rapid memory IgG antibody response, IgG-BCR evolved into a highly effective signalling machine. Here, we report that the positively charged cytoplasmic domain of mIgG (mIgG-tail) specifically interacts with negatively charged acidic phospholipids. The key immunoglobulin tail tyrosine (ITT) in mIgG-tail is thus sequestered in the membrane hydrophobic core in quiescent B cells. Pre-disruption of such interaction leads to excessive recruitment of BCRs and inflated BCR signalling upon antigen stimulation, resulting in hyperproliferation of primary B cells. Physiologically, membrane-sequestered mIgG-tail can be released by antigen engagement or Ca2+ mobilization in the initiation of B cell activation. Our studies suggest a novel regulatory mechanism for how dynamic association of mIgG-tail with acidic phospholipids governs the enhanced activation of IgG-BCR. PMID:26440273

  12. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wei, Bing; Cheng, Xu; Wang, Jun; Tang, Rupei

    2016-09-01

    Phenylboronic acid-decorated nanoparticles (NPs) were prepared for tumor-targeted drug delivery. 3-carboxyphenylboronic acid (3-CPBA) was modified on the surface of conventional gelatin NPs (designated as NP1) to give tumor-targeting NPs (designated as NP2). The morphology and stability of NP1 and NP2 were then investigated using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The results show that both NP1 and NP2 are spherical-like and kinetically stable under various conditions. Doxorubicin hydrochloride (DOX) was used as a model anticancer drug and was loaded into NP1 (NP1-DOX) and NP2 (NP2-DOX). The i n vitro cellular uptake and cytotoxicity of NP1-DOX and NP2-DOX were measured using SH-SY5Y cells, H22 cells, and HepG2 cells. Tumor penetration, accumulation, and antitumor activity were investigated using SH-SY5Y tumor-like spheroids and H22 tumor-bearing mice. All results demonstrated that the conjugation of 3-CPBA can efficiently enhance non-targeted NPs’ tumor-homing activity, thus improving their tumor accumulation and antitumor effect.

  13. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    NASA Astrophysics Data System (ADS)

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL- and Cu2L22-) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  14. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration.

    PubMed

    Wang, Xin; Wei, Bing; Cheng, Xu; Wang, Jun; Tang, Rupei

    2016-09-23

    Phenylboronic acid-decorated nanoparticles (NPs) were prepared for tumor-targeted drug delivery. 3-carboxyphenylboronic acid (3-CPBA) was modified on the surface of conventional gelatin NPs (designated as NP1) to give tumor-targeting NPs (designated as NP2). The morphology and stability of NP1 and NP2 were then investigated using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The results show that both NP1 and NP2 are spherical-like and kinetically stable under various conditions. Doxorubicin hydrochloride (DOX) was used as a model anticancer drug and was loaded into NP1 (NP1-DOX) and NP2 (NP2-DOX). The i n vitro cellular uptake and cytotoxicity of NP1-DOX and NP2-DOX were measured using SH-SY5Y cells, H22 cells, and HepG2 cells. Tumor penetration, accumulation, and antitumor activity were investigated using SH-SY5Y tumor-like spheroids and H22 tumor-bearing mice. All results demonstrated that the conjugation of 3-CPBA can efficiently enhance non-targeted NPs' tumor-homing activity, thus improving their tumor accumulation and antitumor effect. PMID:27514078

  15. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  16. Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle.

    PubMed

    Tsao, Jung-Piao; Liao, Su-Fen; Korivi, Mallikarjuna; Hou, Chien-Wen; Kuo, Chia-Hua; Wang, Hsueh-Fang; Cheng, I-Shiung

    2015-01-01

    Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P < 0.05). Muscle glucose transporter type 4 expression was significantly elevated immediately after exercise, and this elevation was continued until 3 h after exercise in CLA trial. However, P-Akt/Akt ratio was not significantly altered, while glucose tolerance was impaired with CLA. Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle. PMID:25385360

  17. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    PubMed Central

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-01-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970

  18. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    PubMed Central

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  19. Enhanced propionic acid degradation (EPAD) system: proof of principle and feasibility.

    PubMed

    Ma, Jingxing; Carballa, Marta; Van De Caveye, Pieter; Verstraete, Willy

    2009-07-01

    Full-scale anaerobic single-phase digesters can be confronted with process instabilities, which often result in the accumulation of propionic acid (HPr). As a solution, an enhanced propionic acid degradation (EPAD) system has been conceptually designed and experimentally tested at lab-scale. The system consisted of two components: a liquid/solid separator containing a microfiltration membrane and an up-flow anaerobic sludge bed (UASB) reactor specialized in HPr degradation. Two lab-scale continuous stirred tank reactors (CSTR) were used, i.e. the CSTR(control) and the CSTR(treatment). Firstly, the CSTRs were stressed by organic overloading to obtain high HPr levels. During the recovery period, besides stop feeding, no actions were taken to decrease the residual HPr concentration in the CSTR(control), while the CSTR(treatment) was connected to EPAD system in order to accelerate its recovery. By the end of the experiment, the CSTR(treatment) completely recovered from HPr accumulation, while no significant decrease of the HPr level in the CSTR(control) was observed. Based on the experimental results, the up-scaling of EPAD system was evaluated and it would only account for about 2% of the volume of the full-scale digester, thus suggesting that the implementation of a mobile EPAD system in full-scale practice should be feasible. PMID:19515396

  20. P4 radiology of hepatobiliary diseases with gadoxetic acid-enhanced MRI as a biomarker.

    PubMed

    Ba-Ssalamah, Ahmed; Qayyum, Aliya; Bastati, Nina; Fakhrai, Negar; Herold, Christian J; Caseiro Alves, Filipe

    2014-02-01

    A recent paradigm shift in radiology has focused on the globalization of so-called P4 radiology. P4 radiology represents delivery of imaging results that are predictive, personalized, pre-emptive and participatory. The combination of the P4 approach and biomarkers is particularly pertinent to MRI, especially with technological advances such as diffusion-weighted imaging. The development of new liver-specific MRI contrast media, particularly gadoxetic acid, demonstrate specific pharmacokinetic properties, which provide combined morphologic and functional information in the same setting. The evaluation of hepatobiliary pathology beyond morphology gives rise to the possibilty of using gadoxetic acid-enhanced MRI as an imaging biomarker of hepatobiliary diseases. The integration of functional imaging with an understanding of complex disease mechanisms forms the basis for P4 radiology, which may ultimately lead to individualized, cost-effective, targeted therapy for patients. This will enable radiologists to determine the prognosis of the disease and estimate early response to treatment, with the participation of all the required medical disciplines. PMID:24417263

  1. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    NASA Astrophysics Data System (ADS)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, As<0.1 mg/L). As the contribution of the acidic stream increased, the concentration of Fe and Al in the solid phase reached a peak at different pHs. Although the optimal pH for As sorption was ~3, the overall maximum removal of As at the confluence, ocurred for pH~4. This is produced because optimal As sorption does not occur necessarily for the highest concentrations of particles being formed. We propose that fluvial confluences could be engineered to enhance the natural attenuation of contaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  2. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance. PMID:18563435

  3. Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior

    PubMed Central

    Potter, Michelle C; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert

    2010-01-01

    At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the α7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (−71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (−66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease. PMID:20336058

  4. Sustained, localized salicylic acid delivery enhances diabetic bone regeneration via prolonged mitigation of inflammation.

    PubMed

    Yu, Weiling; Bien-Aime, Stephan; Mattos, Marcelo; Alsadun, Sarah; Wada, Keisuke; Rogado, Sarah; Fiorellini, Joseph; Graves, Dana; Uhrich, Kathryn

    2016-10-01

    Diabetes is a metabolic disorder caused by insulin resistance and/or deficiency and impairs bone quality and bone healing due to altered gene expression, reduced vascularization, and prolonged inflammation. No effective treatments for diabetic bone healing are currently available, and most existing treatments do not directly address the diabetic complications that impair bone healing. We recently demonstrated that sustained and localized delivery of salicylic acid (SA) via an SA-based polymer provides a low-cost approach to enhance diabetic bone regeneration. Herein, we report mechanistic studies that delve into the biological action and local pharmacokinetics of SA-releasing polymers shown to enhance diabetic bone regeneration. The results suggest that low SA concentrations were locally maintained at the bone defect site for more than 1 month. As a result of the sustained SA release, a significantly reduced inflammation was observed in diabetic animals, which in turn, yielded reduced osteoclast density and activity, as well as increased osteoblastogenesis. Based upon these results, localized and sustained SA delivery from the SA-based polymer effectively improved bone regeneration in diabetic animals by affecting both osteoclasts and osteoblasts, thereby providing a positive basis for clinical treatments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2595-2603, 2016. PMID:27194511

  5. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin.

    PubMed

    Osaki, Tomohiro; Ono, Misato; Uto, Yoshihiro; Ishizuka, Masahiro; Tanaka, Tohru; Yamanaka, Nobuyasu; Kurahashi, Tsukasa; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-04-01

    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound and a sonosensitizer agent. We examined whether 5-aminolevulinic acid (5-ALA)-based SDT at 1 or 3 MHz could enhance the cytotoxicity of bleomycin (BLM) toward mouse mammary tumor cells both in vitro and in vivo. At 1 MHz, cell viability in the 5-ALA-based SDT group at 1, 2, and 3 W/cm(2) was 34.30%, 50.90%, and 60.16%, respectively. Cell viability in the 5-ALA-based SDT+BLM group at 1, 2, and 3 W/cm(2) was 0.09%, 0.32%, and 0.17%, respectively. In contrast, at 3 MHz, 5-ALA-based SDT+BLM did not show pronounced cytotoxicity. In the in vivo study, 5-ALA-based SDT+BLM was significantly more cytotoxic than 5-ALA-based SDT at 1 MHz and 3 MHz. These findings suggest that the mechanism of tumor shrinkage induced by 5-ALA-based SDT+BLM might involve not only direct cell killing, but also vascular shutdown. Thus, we show here that 5-ALA-based SDT enhances the efficacy of BLM both in vitro and in vivo. PMID:26799128

  6. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  7. Sildenafil enhances the peripheral antinociceptive effect of ellagic acid in the rat formalin test

    PubMed Central

    Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam

    2014-01-01

    Objective: Ellagic acid (EA), a major polyphenolic compound of pomegranate juice, produces antinociceptive effects, which are mediated through opioidergic and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways. The present study was conducted to elucidate the peripheral antinociceptive effect of EA alone and in combination with sildenafil in the rat formalin test. Materials and Methods: Pain was produced by intraplantar injection of formalin (2.5%) in rats and nociceptive behavior was measured as the number of flinches every 5 min in 60 min after injection. Results: Local administration of EA and sildenafil dose-dependently increased the nociception threshold in both phases of the test. Moreover, sub-effective doses of sildenafil (25 or 50 mcg/paw, i.p.) significantly and dose-dependently enhanced the antinociception induced by a sub-effective dose of EA (60 mcg/paw, i.pl.) in both phases of the test. The antinociception produced by these drugs alone, or in combination, was due to a peripheral site of action, since the administration in the contralateral paw was ineffective. Conclusion: Our results suggest that EA has local peripheral antinociceptive activity, and enhancement of this effect with sildenafil probably occurs through the inhibition of cGMP metabolism. PMID:25097278

  8. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation. PMID:26139877

  9. Hypoxia enhances the antiglioma cytotoxicity of B10, a glycosylated derivative of betulinic acid.

    PubMed

    Fischer, Sebastian; Ronellenfitsch, Michael W; Thiepold, Anna-Luisa; Harter, Patrick N; Reichert, Sebastian; Kögel, Donat; Paschke, Reinhard; Mittelbronn, Michel; Weller, Michael; Steinbach, Joachim P; Fulda, Simone; Bähr, Oliver

    2014-01-01

    B10 is a glycosylated derivative of betulinic acid with promising activity against glioma cells. Lysosomal cell death pathways appear to be essential for its cytotoxicity. We investigated the influence of hypoxia, nutrient deprivation and current standard therapies on B10 cytotoxicity. The human glioma cell lines LN-308 and LNT-229 were exposed to B10 alone or together with irradiation, temozolomide, nutrient deprivation or hypoxia. Cell growth and viability were evaluated by crystal violet staining, clonogenicity assays, propidium iodide uptake and LDH release assays. Cell death was examined using an inhibitor of lysosomal acidification (bafilomycin A1), a cathepsin inhibitor (CA074-Me) and a short-hairpin RNA targeting cathepsin B. Hypoxia substantially enhanced B10-induced cell death. This effect was sensitive to bafilomycin A1 and thus dependent on hypoxia-induced lysosomal acidification. Cathepsin B appeared to mediate cell death because either the inhibitor CA074-Me or cathepsin B gene silencing rescued glioma cells from B10 toxicity under hypoxia. B10 is a novel antitumor agent with substantially enhanced cytotoxicity under hypoxia conferred by increased lysosomal cell death pathway activation. Given the importance of hypoxia for therapy resistance, malignant progression, and as a result of antiangiogenic therapies, B10 might be a promising strategy for hypoxic tumors like malignant glioma. PMID:24743710

  10. Hypoxia Enhances the Antiglioma Cytotoxicity of B10, a Glycosylated Derivative of Betulinic Acid

    PubMed Central

    Thiepold, Anna-Luisa; Harter, Patrick N.; Reichert, Sebastian; Kögel, Donat; Paschke, Reinhard; Mittelbronn, Michel; Weller, Michael; Steinbach, Joachim P.; Fulda, Simone; Bähr, Oliver

    2014-01-01

    B10 is a glycosylated derivative of betulinic acid with promising activity against glioma cells. Lysosomal cell death pathways appear to be essential for its cytotoxicity. We investigated the influence of hypoxia, nutrient deprivation and current standard therapies on B10 cytotoxicity. The human glioma cell lines LN-308 and LNT-229 were exposed to B10 alone or together with irradiation, temozolomide, nutrient deprivation or hypoxia. Cell growth and viability were evaluated by crystal violet staining, clonogenicity assays, propidium iodide uptake and LDH release assays. Cell death was examined using an inhibitor of lysosomal acidification (bafilomycin A1), a cathepsin inhibitor (CA074-Me) and a short-hairpin RNA targeting cathepsin B. Hypoxia substantially enhanced B10-induced cell death. This effect was sensitive to bafilomycin A1 and thus dependent on hypoxia-induced lysosomal acidification. Cathepsin B appeared to mediate cell death because either the inhibitor CA074-Me or cathepsin B gene silencing rescued glioma cells from B10 toxicity under hypoxia. B10 is a novel antitumor agent with substantially enhanced cytotoxicity under hypoxia conferred by increased lysosomal cell death pathway activation. Given the importance of hypoxia for therapy resistance, malignant progression, and as a result of antiangiogenic therapies, B10 might be a promising strategy for hypoxic tumors like malignant glioma. PMID:24743710

  11. Enhanced topical delivery of hyaluronic acid encapsulated in liposomes: A surface-dependent phenomenon.

    PubMed

    Vázquez-González, Martha L; Calpena, Ana C; Domènech, Òscar; Montero, M Teresa; Borrell, Jordi H

    2015-10-01

    In the present study, we investigated the release and permeation of hyaluronic acid (HA) encapsulated in liposomes when deposited onto two surfaces: cellulose, a model widely used for investigating transport of drugs; and human skin, a natural biointerface used for transdermal drug delivery. We prepared and characterised liposomes loaded with HA and liposomes incorporating two penetration enhancers (PEs): the non-ionic surfactant Tween 80, and Transcutol P, a solubilising agent able to mix with polar and non-polar solvents. In vitro and ex vivo permeation assays showed that PEs indeed enhance HA-release from liposomes. Since one of the possible mechanisms postulated for the action of liposomes on skin is related to its adsorption onto the stratum corneum (SC), we used atomic force microscopy (AFM) topography and force volume (FV) analysis to investigate the structures formed after deposition of liposome formulations onto the investigated surfaces. We explored the possible relationship between the formation of planar lipid structures on the surfaces and the permeation of HA. PMID:26142626

  12. Suberoylanilide hydroxamic acid synergistically enhances the antitumor activity of etoposide in Ewing sarcoma cell lines.

    PubMed

    Unland, Rebekka; Clemens, Dagmar; Heinicke, Ulrike; Potratz, Jenny C; Hotfilder, Marc; Fulda, Simone; Wardelmann, Eva; Frühwald, Michael C; Dirksen, Uta

    2015-09-01

    Ewing sarcomas (ES) are highly malignant tumors arising in bone and soft tissues. Given the poor outcome of affected patients with primary disseminated disease or at relapse, there is a clear need for new targeted therapies. The HDAC inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat) inhibits ES tumor growth and induces apoptosis in vitro and in vivo. Thus, SAHA may be considered a novel treatment. However, it is most likely that not a single agent but a combination of agents with synergistic mechanisms will help improve the prognosis in high-risk ES patients. Therefore, the aim of the present study was to assess a putative synergistic effect of SAHA in combination with conventional chemotherapeutic agents. The antitumor activity of SAHA in combination with conventional chemotherapeutics (doxorubicin, etoposide, rapamycin, topotecan) was assessed using an MTT cell proliferation assay on five well-characterized ES cell lines (CADO-ES-1, RD-ES, TC-71, SK-ES-1, SK-N-MC) and a newly established ES cell line (DC-ES-15). SAHA antagonistically affected the antiproliferative effect of doxorubicin and topotecan in the majority of the ES cell lines, but synergistically enhanced the antiproliferative activity of etoposide. In functional analyses, pretreatment with SAHA significantly increased the effects of etoposide on apoptosis and clonogenicity. The in-vitro analyses presented in this work show that SAHA synergistically enhances the antitumor activity of etoposide in ES cells. Sequential treatment with etoposide combined with SAHA may represent a new therapeutic approach in ES. PMID:26053276

  13. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure.

    PubMed

    Li, Zhengqiu; Ye, Lin; Zhao, Xiaowen; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2016-05-01

    Highly oriented poly (lactic acid) (PLA) with bionic microgrooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Microgrooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction. PMID:26743130

  14. Potential use of ascorbic acid-based surfactants as skin penetration enhancers.

    PubMed

    Palma, S D; Maletto, B; Lo Nostro, P; Manzo, R H; Pistoresi-Palencia, M C; Allemandi, D A

    2006-08-01

    6-O-Ascorbic acid alkanoates (ASCn) are amphiphilic molecules having physical-chemical properties that depend on the alkyl chain length. The derivatives of low molecular weight (n < 11) have enough aqueous solubility to produce self-assemblies at room temperature ( approximately 25 degrees C), while those with longer alkyl chains possess a critical micellar temperature (CMT) higher than 30 degrees C. At higher temperatures (T degrees > CMT), ASCn aqueous suspensions turn into either micellar solutions or gel phases, depending on the length of the hydrophobic chain. On cooling, coagels are produced, which possess a lamellar structure that exhibit sharp X-ray diffraction patterns and optical birefringence. The semisolid consistency of such coagels is an interesting property to formulate dermatological pharmaceutical dosage forms able to solubilize and stabilize different drugs. The objective of the present study was the evaluation of the enhancing permeation effect of ASCn with different chain lengths and to correlate permeability changes with histological effects. With this purpose, ASCn coagels containing anthralin (antipsoriasic drug) or fluorescein isothiocyanate (FITC, hydrophobic fluorescent marker) were assayed on rat skin (ex vivo) and mice skin (in vivo), respectively. Also, histological studies were performed aimed at detecting some possible side effects of ASCn. No inflammatory cellular response was observed in the skin when ASCn coagels were applied, suggesting non-irritating properties. Light microscopy indicated slight disruption and fragmentation of stratum corneum. The penetration of ASCn through rat skin epidermis was very fast and quantitatively significant. The permeation of anthralin was significantly increased when the drug was vehiculized in ASCn coagels, compared to other pharmaceutical systems. The results indicated that ASC12 seems to have the highest enhancing effect on FITC permeation. ASC12 appears to be the compound that possesses the

  15. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1997-06-01

    Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria, plants, and plant-bacteria associations to remediate 2-chlorobenzoic acid (2CBA) contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated with 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginosa strain R75, a proven plant growth-promoting rhizobacterium, increased seed germination by 80% and disappearance of 2CBA by 20% relative to noninoculated plants. Inoculation of E. dauricus with a mixture of P. savastanoi strain CB35, a 2CBA-degrading bacterium, and P. aeruginosa strain R75 increased disappearance of 2CBA by 112% relative to noninoculated plants. No clear relationship between enhanced 2CBA disappearance and increased plant biomass was found. These results suggest that specific plant-microbial systems can be developed to enhance remediation of pollutants in soil.

  16. Clusterin inhibition using OGX-011 synergistically enhances zoledronic acid activity in osteosarcoma

    PubMed Central

    Lamoureux, Francois; Baud'huin, Marc; Ory, Benjamin; Guiho, Romain; Zoubeidi, Amina; Gleave, Martin; Heymann, Dominique; Rédini, Françoise

    2014-01-01

    Purpose Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants new strategies still needed to improve overall patient survival. Among new therapeutic approaches, zoledronic acid (ZOL) represents a promising adjuvant molecule to chemotherapy to limit the osteolytic component of bone tumors. However, ZOL triggers the elevation of heat shock proteins (Hsp), including Hsp27 and clusterin (CLU), which could enhance tumor cell survival and treatment resistance. We hypothesized that targeting CLU using siRNA or the antisense drug, OGX-011, will suppress treatment-induced CLU induction and enhance ZOL-induced cell death in osteosarcoma (OS) cells. Methods The combined effects of OGX-011 and ZOL were investigated in vitro on cell growth, viability, apoptosis and cell cycle repartition of ZOL-sensitive or -resistant human OS cell lines (SaOS2, U2OS, MG63 and MNNG/HOS). Results In OS cell lines, ZOL increased levels of HSPs, especially CLU, in a dose- and time-dependent manner by mechanism including increased HSF1 transcription activity. The OS resistant cells to ZOL exhibited higher CLU expression level than the sensitive cells. Moreover, CLU overexpression protects OS sensitive cells to ZOL-induced cell death by modulating the MDR1 and farnesyl diphosphate synthase expression. OGX-011 suppressed treatment-induced increases in CLU and synergistically enhanced the activity of ZOL on cell growth and apoptosis. These biologic events were accompanied by decreased expression of HSPs, MDR1 and HSF1 transcriptional activity. In vivo, OGX-011, administered 3 times a week (IP, 20mg/kg), potentiated the effect of ZOL (s.c; 50μg/kg), significantly inhibiting tumor growth by 50% and prolonging survival in MNNG/HOS xenograft model compared to ZOL alone. Conclusion These results indicate that ZOL-mediated induction of CLU can be attenuated by OGX-011, with synergistic effects on delaying progression of

  17. Safety and Efficacy of Stabilized Hyaluronic Acid Gel for Breast Enhancement

    PubMed Central

    Sarfati, Isabelle; Clough, Krishna; Olenius, Michael; Sellman, Gabriella; Trevidic, Patrick

    2015-01-01

    Summary: Long-term follow-up data following 2 breast enhancement treatments with stabilized hyaluronic acid (HA) gel are limited. Although HA gel is no longer marketed for breast enhancement, there is a clinical need for information about follow-up of previously treated women. A multicenter, noncomparative study was conducted in women seeking breast enhancement. Subjects received 1 treatment of HA gel (maximum, 100 mL/breast); a subgroup underwent retreatment 9 months later. Follow-up was conducted for 24 months after last treatment; endpoints included magnetic resonance imaging for estimation of gel degradation, adverse events, breast examinations, Global Esthetic Improvement Scale, and satisfaction ratings. Seventy-one subjects received 1 treatment, with 22 (31%) receiving retreatment after 9 months. Twenty-four months after last treatment, the mean percentage of remaining gel was 17% in the single-treatment group and 21% in the retreatment group; complete degradation had not occurred in any subject. The most commonly reported treatment-related adverse events were implant-site nodules, medical device implantation events, capsular contracture associated with breast implant, and injection-site nodules; most were mild to moderate and required no intervention. Based on subject Global Esthetic Improvement Scale ratings, 36% of breasts in the single- treatment group and 50% of breasts in the retreatment group were improved 24 months after last treatment, but subject satisfaction had returned to baseline levels. Some gel remained in all subjects 24 months after last treatment. Although single treatment and retreatment were generally well tolerated, physicians need to be aware of common treatment-related complications to manage them adequately. PMID:26894000

  18. Gintonin enhances performance of mice in rotarod test: Involvement of lysophosphatidic acid receptors and catecholamine release.

    PubMed

    Lee, Byung-Hwan; Kim, Jisu; Lee, Ra Mi; Choi, Sun-Hye; Kim, Hyeon-Joong; Hwang, Sung-Hee; Lee, Myung Koo; Bae, Chun-Sik; Kim, Hyoung-Chun; Rhim, Hyewon; Lim, Kiwon; Nah, Seung-Yeol

    2016-01-26

    Ginseng has a long history of use as a tonic for restoration of vigor. One example of ginseng-derived tonic effect is that it can improve physical stamina under conditions of stress. However, the active ingredient and the underlying molecular mechanism responsible for the ergogenic effect are unknown. Recent studies show that ginseng contains a novel ingredient, gintonin, which consists of a unique class of herbal-medicine lysophosphatidic acids (LPAs). Gintonin activates G protein-coupled LPA receptors to produce a transient [Ca(2+)]i signal, which is coupled to diverse intra- and inter-cellular signal transduction pathways that stimulate hormone or neurotransmitter release. However, relatively little is known about how gintonin-mediated cellular modulation is linked to physical endurance. In the present study, systemic administration of gintonin, but not ginsenosides, in fasted mice increased blood glucose concentrations in a dose-dependent manner. Gintonin treatment elevated blood glucose to a maximum level after 30min. This elevation in blood glucose level could be abrogated by the LPA1/3 receptor antagonist, Ki16425, or the β-adrenergic receptor antagonist, propranolol. Furthermore, gintonin-dependent enhanced performance of fasted mice in rotarod test was likewise abrogated by Ki16425. Gintonin also elevated plasma epinephrine and norepinephrine concentrations. The present study shows that gintonin mediates catecholamine release through activation of the LPA receptor and that activation of the β-adrenergic receptor is coupled to liver glycogenolysis, thereby increasing the supply of glucose and enhancing performance in the rotarod test. Thus, gintonin acts via the LPA-catecholamine-glycogenolysis axis, representing a candidate mechanism that can explain how ginseng treatment enhances physical stamina. PMID:26706688

  19. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    PubMed Central

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2006-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Gαi, Gαq and Gα12/13 signaling pathways, and a PKCα inhibitor, Gö6976 blocked potentiation while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a non-selective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the N-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus, PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  20. Overexpression of G-Protein-Coupled Receptor 40 Enhances the Mitogenic Response to Epoxyeicosatrienoic Acids

    PubMed Central

    Ma, Seong Kwon; Wang, Yinqiu; Chen, Jianchun; Zhang, Ming-Zhi; Harris, Raymond C.; Chen, Jian-Kang

    2015-01-01

    The cytochrome P450 epoxygenase-dependent arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), are potent survival factors and mitogens for renal epithelial cells, but the molecular identity in the cells that initiates the mitogenic signaling of EETs has remained elusive. We screened kidney cell lines for the expression of G-protein-coupled receptor 40 (GPR40) and found that the porcine renal tubular epithelial cell line LLCPKcl4, which has been previously demonstrated to be sensitive to the mitogenic effect of EETs, expresses higher levels of GPR40 mRNA and protein than the human embryonic kidney cell line HEK293. EETs induced only a weak mitogenic EGFR signaling and mild cell proliferation in HEK293 cells. To determine whether GPR40 expression level is what mediates the mitogenic sensitivity of cells to EETs, we created a human GPR40 (hGPR40) cDNA construct and transfected it into HEK293 cells and picked up a number of stable transfectants. We found that GPR40 overexpression in HEK293 cells indeed significantly enhanced EET-induced cell proliferation and markedly augmented EGFR phosphorylation ERK activation, which were inhibited by the EGFR tyrosine kinase inhibitor, AG1478, or the HB-EGF inhibitor, CRM197. EETs significantly enhanced release of soluble HB-EGF, a natural ligand of EGFR, into the culture medium of hGPR40-transfected HEK293 cells, compared to empty vector-transfected cells. In mouse kidneys, markedly higher level of GPR40 protein was found in the cortex and outer stripe of outer medulla compared to the inner stripe of outer medulla and inner medulla. In situ hybridization confirmed that GPR40 mRNA was localized to a subset of renal tubules in the kidney, including the cortical collecting duct. Thus, this study provides the first demonstration that upregulation of GPR40 expression enhances the mitogenic response to EETs and a relatively high expression level of GPR40 is detected in a subset of tubules including cortical collecting ducts

  1. The clinical availability of oleic acid as an enhancer in optical clearing of skin tissue in vitro

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Wang, Ruikang K.

    2005-03-01

    Currently, tissue optical clearing technique has shown a great potential in enhancing the capabilities of non-invasive light-based diagnostic and imaging techniques due to the increased light penetration into tissue. In order to facilitate the clinical availability of tissue optical clearing technique by the use of hyperosmotic agents, this study introduces oleic acid, a mono-unsaturated fatty acid which is generally believed to be safe, as enhancer and investigates the synergistic effect of oleic acid and propylene glycol (PG) on optical clearing of skin tissue in vitro. Experimental results from near infrared spectroscopy, mass loss measurement and transdermal skin resistance (TSR) assessment showed that, compared with dimethyl sulfoxide (DMSO) as enhancer, oleic acid obtained the similar clearing effect. However, due to its potential toxicity, DMSO has been controversial in clinical application. Therefore, in terms of optical application and clinic safety, the results presented revealed that oleic acid could be an optimum choice as enhancer for optical clearing of skin tissue.

  2. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation.

    PubMed

    Kang, Jun-Won; Kang, Dong-Hyun

    2016-01-18

    This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of

  3. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  4. Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp

    PubMed Central

    2013-01-01

    Background Extracts and products (roots and/or aerial parts) from Echinacea ssp. represent a profitable market sector for herbal medicines thanks to different functional features. Alkamides and polyacetylenes, phenols like caffeic acid and its derivatives, polysaccharides and glycoproteins are the main bioactive compounds of Echinacea spp. This study aimed at investigating the capacity of selected lactic acid bacteria to enhance the antimicrobial, antioxidant and immune-modulatory features of E. purpurea with the prospect of its application as functional food, dietary supplement or pharmaceutical preparation. Results Echinacea purpurea suspension (5%, wt/vol) in distilled water, containing 0.4% (wt/vol) yeast extract, was fermented with Lactobacillus plantarum POM1, 1MR20 or C2, previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum, was used as the control to investigate functional features. Echinacea suspension fermented with Lb. plantarum C2 exhibited a marked antimicrobial activity towards Gram-positive and -negative bacteria. Compared to control, the water-soluble extract from Echinacea suspension fermented with Lactobacillus plantarum 1MR20 showed twice time higher radical scavenging activity on DPPH. Almost the same was found for the inhibition of oleic acid peroxidation. The methanol extract from Echinacea suspension had inherent antioxidant features but the activity of extract from the sample fermented with strain 1MR20 was the highest. The antioxidant activities were confirmed on Balb 3T3 mouse fibroblasts. Lactobacillus plantarum C2 and 1MR20 were used in association to ferment Echinacea suspension, and the water-soluble extract was subjected to ultra-filtration and purification through RP-FPLC. The antioxidant activity was distributed in a large number of fractions and proportional to the peptide concentration. The antimicrobial activity was detected only in one fraction, further subjected to nano

  5. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. PMID:25697695

  6. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  7. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: Enhanced membrane permeability and enzymatic stability

    PubMed Central

    Tsume, Yasuhiro; Incecayir, Tuba; Song, Xueqin; Hilfinger, John M.; Amidon, Gordon L.

    2014-01-01

    Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3–17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2–10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of D-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gem-citabine prodrugs. In general, the 5′-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5′-D-valyl-gemcitabine and 5′-D-phenylalanyl-gem-citabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients. PMID:24361461

  8. Growth Hormone Enhances Arachidonic Acid Metabolites in a Growth Hormone Transgenic Mouse

    PubMed Central

    Oberbauer, A. M.; German, J. B.; Murray, J. D.

    2016-01-01

    In a transgenic growth hormone (GH) mouse model, highly elevated GH increases overall growth and decreases adipose depots while low or moderate circulating GH enhances adipose deposition with differential effects on body growth. Using this model, the effects of low, moderate, and high chronic GH on fatty acid composition were determined for adipose and hepatic tissue and the metabolites of 20:4n-6 (arachidonic acid) were characterized to identify metabolic targets of action of elevated GH. The products of Δ-9 desaturase in hepatic, but not adipose, tissue were reduced in response to elevated GH. Proportional to the level of circulating GH, the products of Δ-5 and Δ-6 were increased in both adipose and hepatic tissue for the omega-6 lipids (e.g., 20:4n-6), while only the hepatic tissues showed an increase for omega-3 lipids (e.g., 22:6n-3). The eicosanoids, PGE2 and 12-HETE, were elevated with high GH but circulating thromboxane was not. Hepatic PTGS1 and 2 (COX1 and COX 2), SOD1, and FADS2 (Δ-6 desaturase) mRNAs were increased with elevated GH while FAS mRNA was reduced; SCD1 (ste-aroyl-coenzyme A desaturase) and SCD2 mRNA did not significantly differ. The present study showed that GH influences the net flux through various aspects of lipid metabolism and especially the desaturase metabolic processes. The combination of altered metabolism and tissue specificity suggest that the regulation of membrane composition and its effects on signaling pathways, including the production and actions of eicosanoids, can be mediated by the GH regulatory axis. PMID:21442273

  9. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    PubMed

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species. PMID:22159611

  10. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  11. Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta.

    PubMed

    Zhao, Jian; Suyama, Aki; Tanaka, Mitsuru; Matsui, Toshiro

    2014-07-01

    Previously, we demonstrated synergistic enhancement of vasorelaxation by combination treatment with Trp-His and epigallocatechin gallate (EGCg) in intact rat aorta. The aim of the present study was to determine whether this vasorelaxant synergy could be recapitulated in tumor necrosis factor-alpha (TNF-α)-induced inflammatory rat aorta, and to determine the extent of its modulation by anti-inflammatory phenolic acids. Synergistic enhancement of vasorelaxation in rat aorta by Trp-His and EGCg was significantly attenuated in the presence of TNF-α, an effect that was reversed by the addition of ferulic acid (FA, 250 μM). Moreover, FA markedly enhanced EGCg-induced vasorelaxation, but not Trp-His-induced vasorelaxation, in TNF-α-treated aorta. Structure-activity analysis showed that the unsaturated 2-propenoic moiety and the methoxy group of FA were important for the enhancement of vasorelaxation by EGCg. The stimulation of EGCg-induced vasorelaxation by FA was antagonized by the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate, while FA enhanced vasorelaxant properties of the endothelial nitric oxide (NO) synthase activator acetylcholine in TNF-α-treated inflammatory aorta. Moreover, the EGCg-stimulated NO production was also enhanced by FA in TNF-α-treated aorta. These data indicate that stimulation of NO production by FA enhances the vasorelaxant properties of EGCg in TNF-α-induced inflammatory aorta. PMID:24794014

  12. Gibberellic Acid Enhancement of DNA Turnover in Barley Aleurone Cells 1

    PubMed Central

    Taiz, Lincoln; Starks, Jayum E.

    1977-01-01

    When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [3H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile. The buoyant density on CsCl density gradients of hormone-treated aleurone DNA is identical with that of DNA extracted from whole seedlings. After density-labeling halfseed DNA with 5-bromodeoxyuridine, a bimodal absorption profile is obtained in neutral CsCl. The light band (1.70 g/ml) corresponds to unsubstituted DNA, while the heavy band (1.725-1.74 g/ml) corresponds to a hybrid density-labeled species. GA increases the relative amount of the heavy (hybrid) peak in halfseed aleurone layer DNA, further suggesting that the hormone enhances semiconservative replication in halfseeds. DNA methylation was also demonstrated. Over 60% of the radioactivity from [3H-Me]methionine is incorporated into 5-methylcytosine. GA has no effect on the percentage distribution of label among the bases. It was concluded that GA enhances the rate of DNA degradation and DNA synthesis (turnover) in halfseeds, but primarily DNA degradation in isolated aleurone layers. Incorporation by isolated aleurone layers is due to DNA repair. Semiconservative replication apparently plays no physiological role in the hormone response, since both isolated aleurone layers and gamma-irradiated halfseeds respond normally. The hypothesis was advanced that endoreduplication and DNA degradation are means by which the seed stores and mobilizes deoxyribonucleotides for the embryo during

  13. Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level.

    PubMed

    Bahrami, Soroush Alaghehband; Bakhtiari, Nuredin

    2016-08-01

    We previously reported that Ursolic Acid (UA) ameliorates skeletal muscle performance through satellite cells proliferation and cellular energy status. In studying the potential role of the hypothalamus in aging, we developed a strategy to pursue UA effects on the hypothalamus anti-aging proteins such as; SIRT1, SIRT6, PGC-1β and α-Klotho. In this study, we used a model of aging animals (C57BL/6). UA dissolved in Corn oil (20mg/ml) and then administrated (200mg/Kg i.p injection) to mice, twice daily for 7days. After treatment times, the mice perfused and the hypothalamus isolated for preparing of tissue to Immunofluorescence microscopy. The data illustrated that UA significantly increased SIRT1 (∼3.5±0.3 folds) and SIRT-6 (∼1.5±0.2 folds) proteins overexpression (P<0.001). In addition, our results showed that UA enhanced α-Klotho (∼3.3±0.3) and PGC-1β (∼2.6±0.2 folds) proteins levels (P<0. 01). In this study, data were analyzed using SPSS 16 (ANOVA test). To the best of our knowledge, it seems that UA through enhancing of anti-aging biomarkers (SIRT1 and SIRT6) and PGC-1β in hypothalamus regulates aging-process and attenuates mitochondrial-related diseases. In regard to the key role of α-Klotho in aging, our data indicate that UA may be on the horizon to forestall diseases of aging. PMID:27470332

  14. Short-duration intermittent hypoxia enhances endurance capacity by improving muscle fatty acid metabolism in mice.

    PubMed

    Suzuki, Junichi

    2016-04-01

    This study was designed to (1) investigate the effects of acute short-duration intermittent hypoxia on musclemRNAand microRNAexpression levels; and (2) clarify the mechanisms by which short-duration intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute 1-h hypoxia (12% O2), acute short-duration intermittent hypoxia (12% O2for 15 min, room air for 10 min, 4 times, Int-Hypo), or acute endurance exercise (Ex). The expression of vascular endothelial growth factor-AmRNAwas significantly greater than the control at 0 h post Ex and 6 h post Int-Hypo in the deep red region of the gastrocnemius muscle. miR-16 expression levels were significantly lower at 6 and 10 h post Int-Hypo. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)mRNAlevels were significantly greater than the control at 3 h post Ex and 6 h post Int-Hypo. miR-23a expression levels were lower than the control at 6-24 h post Int-Hypo. Experiment-2: Mice were subjected to normoxic exercise training with or without intermittent hypoxia for 3 weeks. Increases in maximal exercise capacity were significantly greater by training with short-duration intermittent hypoxia (IntTr) than without hypoxia. Both 3-Hydroxyacyl-CoA-dehydrogenase and total carnitine palmitoyl transferase activities were significantly enhanced in IntTr. Peroxisome proliferator-activated receptor delta andPGC-1α mRNAlevels were both significantly greater in IntTr than in the sedentary controls. These results suggest that exercise training under normoxic conditions with exposure to short-duration intermittent hypoxia represents a beneficial strategy for increasing endurance performance by enhancing fatty acid metabolism in skeletal muscle. PMID:27044851

  15. Secreted protein acidic and rich in cysteine enhances the chemosensitivity of pancreatic cancer cells to gemcitabine.

    PubMed

    Fan, Xin; Mao, Zhengfa; Ma, Xiaoyan; Cui, Lei; Qu, Jianguo; Lv, Lihui; Dang, ShengChun; Wang, Xuqing; Zhang, Jianxin

    2016-02-01

    It has been previously shown that the simultaneous exposure of colon cancer cells MIP to irinotecan and secreted protein acidic and rich in cysteine (SPARC) enhances anticancer activity. However, whether there is same effect of SPARC in pancreatic cancer remains largely unknown. Therefore in this study, we aimed to investigate the role of SPARC played in the sensitivity of pancreatic cancer to gemcitabine. We first treated MIAPaCa2 and MIAPaCa2/SPARC69 cells with different concentrations of gemcitabine (2, 5, 10, and 20 μM) for 24, 48, and 72 h and selected the appropriated concentration for further study. Then we analyzed cell viability, cell cycle, and apoptosis and the levels of apoptosis-related proteins by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, fluorescence-activated cell sorting and Western blot were used, respectively. In this study, we found that gemcitabine inhibited the proliferation of pancreatic cancer cells in a time- and dose-dependent manner. Overexpression of SPARC increased the inhibiting effect of gemcitabine on pancreatic cancer cells. The colony size of MIAPaCa2/SPARC69 was much smaller than that of MIAPaCa2/V. There was a G0/G1 arrest with significant increase of apoptosis after gemcitabine treatment in MIAPaCa2/SPARC69 cells. Furthermore, our results demonstrated that overexpression of SPARC markedly increased the levels of pro-apoptotic proteins in gemcitabine-treated pancreatic cancer cells. The SPARC can enhance the chemosensitivity of pancreatic cancer cells to gemcitabine via regulating the expression of apoptosis-related proteins. These results have shown that the SPARC/ gemcitabine combination treatment may be a potentially useful therapeutic option for individuals diagnosed with pancreatic cancer. PMID:26358255

  16. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. PMID:27139585

  17. The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis.

    PubMed

    Zhang, Jian-Feng; Yuan, Li-Jie; Shao, Yi; Du, Wei; Yan, Da-Wei; Lu, Ying-Tang

    2008-04-01

    The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. To gain more insights into ABA signalling, a population of chemical-inducible activation-tagged Arabidopsis mutants was screened on the basis of the ABA effect on the inhibition of seed germination. Two novel ABA supersensitive mutants ABA supersensitive during germination1 (absg1) and absg2 were characterized as alleles of Dicer-like1 (DCL1) and HEN1, respectively, as microRNA biogenesis genes, and accordingly, these two mutants were renamed dcl1-11 and hen1-16. The dcl1-11 mutant was an ABA hypersensitive mutant for seed germination and root growth. Reverse transcriptase polymerase chain reaction assays revealed that the expression of ABA- and stress-responsive genes was increased in dcl1-11, as compared with the wild type (WT). Furthermore, the germination assay showed that dcl1-11 was also more sensitive to salt and osmotic stress. The hen1-16 mutant also showed supersensitive to ABA during seed germination. Further analysis showed that, among the microRNA biogenesis genes, all the other mutants were not only enhanced in sensitivity to ABA, salt and osmotic stress, but also enhanced the expression of ABA-responsive genes. In addition to the mutants in the microRNA biogenesis, the interruption of the production of crucial components of other small RNA pathways such as dcl2, dcl3 and dcl4 also caused ABA supersensitive during germination. PMID:18208512

  18. COMPARISON OF OXALIC ACID CLEANING RESULTS AT SRS AND HANFORD AND THE IMPACT ON ENHANCED CHEMICAL CLEANING DEPLOYMENT

    SciTech Connect

    Spires, R.; Ketusky, E.

    2010-01-05

    Waste tanks must be rendered clean enough to satisfy very rigorous tank closure requirements. During bulk waste removal, most of the radioactive sludge and salt waste is removed from the waste tank. The waste residue on the tank walls and interior components and the waste heel at the bottom of the tank must be removed prior to tank closure to render the tank clean enough to meet the regulatory requirement for tank closure. Oxalic acid has been used within the DOE complex to clean residual materials from carbon steel tanks with varying degrees of success. Oxalic acid cleaning will be implemented at both the Savannah River Site and Hanford to clean tanks and serves as the core cleaning technology in the process known as Enhanced Chemical Cleaning. Enhanced Chemical Cleaning also employs a process that decomposes the spent oxalic acid solutions. The oxalic acid cleaning campaigns that have been performed at the two sites dating back to the 1980's are compared. The differences in the waste characteristics, oxalic acid concentrations, flushing, available infrastructure and execution of the campaigns are discussed along with the impact on the effectiveness of the process. The lessons learned from these campaigns that are being incorporated into the project for Enhanced Chemical Cleaning are also explored.

  19. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.

    PubMed

    Samjeské, Gabor; Miki, Atsushi; Ye, Shen; Osawa, Masatoshi

    2006-08-24

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account. PMID:16913790

  20. Qualitative and Quantitative Gadoxetic Acid-enhanced MR Imaging Helps Subtype Hepatocellular Adenomas.

    PubMed

    Tse, Justin R; Naini, Bita V; Lu, David S K; Raman, Steven S

    2016-04-01

    Purpose To determine which clinical variables and gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging features are associated with histologically proved hepatocellular adenoma (HCA) genotypic subtypes. Materials and Methods In this institutional review board-approved and Health Insurance Portability and Accountability Act-compliant study, clinical information and MR images of 49 histologically proved HCAs from January 2002 to December 2013 (21 patients; mean age, 39 years; age range, 15-59 years) were retrospectively reviewed by two radiologists. Qualitative and quantitative imaging features, including the signal intensity ratio relative to liver in each phase, were studied. HCA tissues were stained with subtype-specific markers and subclassified by a pathologist. Clinical and imaging data were correlated with pathologic findings and compared by using Fisher exact or t test, with a Bonferroni correction for multiple comparisons. Results Forty-nine HCAs were subclassified into 14 inflammatory, 20 hepatocyte nuclear factor (HNF)-1α-mutated, one β-catenin-activated, and 14 unclassified lesions. Intralesional steatosis was exclusively seen in HNF-1α-mutated lesions. Marked hyperintensity on T2-weighted images was seen in 12 of 14 (86%) inflammatory lesions compared with four of 21 (19%) HNF-1α-mutated, seven of 14 (50%) unclassified, and zero of one (0%) β-catenin-activated lesion. Two large lesions (one β-catenin-activated and one unclassified) transformed into hepatocellular carcinomas and were the only lesions to enhance with marked heterogeneity. In the hepatobiliary phase, all HCA subtypes were hypoenhancing compared with surrounding liver parenchyma, and they reached their nadir signal intensity by 10 minutes after the administration of contrast material before plateauing. HNF-1α-mutated lesions had the lowest lesion signal intensity ratio of 0.47 ± 0.09, compared with 0.73 ± 0.18 for inflammatory lesions (P = .0004), 0.82 for

  1. Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor.

    PubMed

    Liang, Ze-Xin; Li, Lin; Li, Shuang; Cai, You-Hua; Yang, Shang-Tian; Wang, Ju-Fang

    2012-08-01

    Propionic acid is an important chemical that is widely used in the food and chemical industries. To enhance propionic acid production, a fibrous-bed bioreactor (FBB) was constructed and Jerusalem artichoke hydrolysate was used as a low-cost renewable feedstock for immobilized fermentation. Comparison of the kinetics of immobilized-cell fermentation using the FBB with those of fed-batch free-cell fermentation showed that immobilized-cell fermentation gave a much higher propionic acid concentration (68.5 vs. 40.6 g/L), propionic acid yield (0.434 vs. 0.379 g/g) and propionic acid productivity (1.55 vs. 0.190 g/L/h) at pH 6.5. Furthermore, repeated batch fermentation, carried out to evaluate the stability of the FBB system, showed that long-term operation with a high average propionic acid yield of 0.483 g/g, high productivity of 3.69 g/L/h and propionic acid concentration of 26.2 g/L were achieved in all eight repeated batches during fermentation for more than 200 h. It is thus concluded that the FBB culture system can be utilized to realize the economical production of propionic acid from Jerusalem artichoke hydrolysate during long-term operation. PMID:22228298

  2. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid production from glycerol.

    PubMed

    Mienda, Bashir Sajo; Shamsir, Mohd Shahir; Md Illias, Rosli

    2016-08-01

    Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli. PMID:26513379

  3. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    SciTech Connect

    Sagee, O.; Riov, J.; Goren, J. )

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  4. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis.

    PubMed

    Holubova, Lucie; Knotek, Petr; Palarcik, Jiri; Cadkova, Michaela; Belina, Petr; Vlcek, Milan; Korecka, Lucie; Bilkova, Zuzana

    2014-11-01

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were -50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were -38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed. PMID:25280714

  5. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy?

    PubMed Central

    Heaton, Alexandra E.; Meldrum, Suzanne J.; Foster, Jonathan K.; Prescott, Susan L.; Simmer, Karen

    2013-01-01

    The proposal that dietary docosahexaenoic acid (DHA) enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs) of DHA supplementation in human term-born infants have been inconsistent. This article will (i) discuss the role of DHA in the human diet, (ii) explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity, and (iii) seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia). The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned. PMID:24312040

  6. Enhanced cellular uptake of protoporphyrine IX/linolenic acid-conjugated spherical nanohybrids for photodynamic therapy.

    PubMed

    Lee, Hye-In; Kim, Young-Jin

    2016-06-01

    Protoporphyrin IX (PpIX) has wide applications in photodynamic diagnosis and photodynamic therapy (PDT) in many human diseases. However, poor water solubility and cancer cell localization limit its direct application for PDT. We improved the water-solubility and cellular internalization of PpIX to enhance PDT efficacy by developing biocompatible PpIX/linolenic acid-conjugated polyhedral oligomeric silsesquioxane (PPLA) nanohybrids. The resulting PPLA nanohybrids exhibited a quasi-spherical shape with a size of <200nm. (1)H NMR analysis confirmed the synthesis of PPLA. The singlet oxygen formation of PPLA nanohybrids on laser irradiation was detected by photoluminescence emission. Fluorescence-activated cell sorting (FACS) analysis displayed higher cellular internalization of PPLA compared with free PpIX. In addition, PPLA nanohybrids exhibited significantly reduced dark-toxicity and a high phototoxicity mostly because of apoptotic cell death against human gastric cancer cells. These results imply that the PPLA nanohybrid system may be applicable in PDT. PMID:26954084

  7. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  8. Supplementation with iron and folic acid enhances growth in adolescent Indian girls.

    PubMed

    Kanani, S J; Poojara, R H

    2000-02-01

    The prevalence of anemia is high in adolescent girls in India, with over 70% anemic. Iron-folic acid (IFA) supplements have been shown to enhance adolescent growth elsewhere in the world. To confirm these results in India, a study was conducted in urban areas of Vadodora, India to investigate the effect of IFA supplements on hemoglobin, hunger and growth in adolescent girls 10-18 y of age. Results show that there was a high demand for IFA supplements and >90% of the girls consumed 85 out of 90 tablets provided. There was an increment of 17.3 g/L hemoglobin in the group of girls receiving IFA supplements, whereas hemoglobin decreased slightly in girls in the control group. Girls and parents reported that girls increased their food intake. A significant weight gain of 0.83 kg was seen in the intervention group, whereas girls in the control group showed little weight gain. The growth increment was greater in the 10- to 14-y-old age group than in the 15- to 18-y-old group, as expected, due to rapid growth during the adolescent spurt. IFA supplementation is recommended for growth promotion among adolescents who are underweight. PMID:10721926

  9. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum.

    PubMed

    Li, Huan-Jun; He, Yi-Long; Zhang, De-Huai; Yue, Tong-Hui; Jiang, Lu-Xi; Li, Na; Xu, Jun-Wei

    2016-06-10

    The Vitreoscilla hemoglobin (VHb) gene was expressed in Ganoderma lucidum to enhance antitumor ganoderic acid (GA) production. The effects of VHb expression on the accumulation of GAs and lanosterol (intermediate) and the transcription of GA biosynthesis genes were also investigated. In VHb-expressing G. lucidum, the maximum concentrations of four individual GAs (GA-S, GA-T, GA-Mk and GA-Me) were 19.1±1.8, 34.6±2.1, 191.5±13.1 and 45.2±2.8μg/100mg dry weight, respectively, which were 1.4-, 2.2, 1.9- and 2.0-fold higher than those obtained in the wild-type strain. Moreover, the maximum lanosterol concentration in the strain expressing VHb was 1.28-fold lower than that in the wild-type strain. The transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, squalene synthase, and lanosterol synthase genes were up-regulated by 1.6-, 1.5-, and 1.6-fold, respectively, in the strain expressing VHb. This work is beneficial in developing an efficient fermentation process for the hyperproduction of GAs. PMID:27080449

  10. Poly(propylacrylic acid) enhances cationic lipid mediated delivery of antisense oligonucleotides

    PubMed Central

    Lee, Li Kim; Williams, Charity L.; Devore, David; Roth, Charles M.

    2008-01-01

    The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved two- to threefold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides. PMID:16677032

  11. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid.

    PubMed

    Ahmadian Chashmi, Najmeh; Sharifi, Mohsen; Behmanesh, Mehrdad

    2016-07-01

    Feeding experiments with hairy root cultures of Linum album have established that the extracellular coniferaldehyde is a good precursor for production of two lignans: lariciresinol (LARI) and pinoresinol (PINO). The accumulation of the LARI, PINO, and podophyllotoxin (PTOX) in hairy roots were enhanced about 14.8-, 8.7-, and 1.5-fold (107.61, 8.7 and 6.42 µg g(-1) Fresh Wight), respectively, by the addition of coniferaldehyde (2 mM) to the culture media (after 24 hr). This result was correlated with an increase pinoresinol/lariciresinol reductase (PLR) expression gene and cinnamyl alcohol dehydrogenase (CAD) activity in the fed hairy roots. Adding 3,4-(methylendioxy)cinnamic acid (MDCA) precursor did not influence on the lignans accumulation, but the lignin content of the hairy roots was increased. Moreover, the expression genes of phenylalanine ammonialyase (PAL), CAD, and cinnamoyl-CoA reductase (CCR) were influenced after feeding hairy roots with MDCA. PMID:26444150

  12. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.

    PubMed

    Su, Gaoqiang; Wang, Shuying; Yuan, Zhiguo; Peng, Yongzhen

    2016-03-01

    Volatile fatty acids (VFAs) are essential for removing biological nitrogen and phosphorus in wastewater treatment plants. The purpose of this work was to investigate whether and how the addition of NaCl could improve the production of VFAs from waste activated sludge (WAS). Sludge solubilization was efficiently improved by the addition of NaCl. Both protein and carbohydrate in the fermentation liquid increased with the dosage of NaCl, and it provided a larger amount of organic compounds for the production of the VFAs. NaCl had inhibitory effects on the production of methane and a high dosage of NaCl could severely suppress the growth of methanogens, which decreased the consumption of the VFAs. Consequently, the production of VFAs was significantly enhanced by the addition of NaCl. The maximum production of VFAs was achieved with the highest dosage of NaCl (3316 mg (COD)/L at the NaCl dosage 0.5 mol/L; 783 mg (COD)/L without the addition of NaCl). Therefore, this study indicates that using NaCl could be an efficient method for improving the production of VFAs from WAS. PMID:26320405

  13. Enhanced Fluorescence Turn-on Imaging of Hypochlorous Acid in Living Immune and Cancer Cells.

    PubMed

    Mulay, Sandip V; Choi, Minsuk; Jang, Yoon Jeong; Kim, Youngsam; Jon, Sangyong; Churchill, David G

    2016-07-01

    Two closely related phenyl selenyl based boron-dipyrromethene (BODIPY) turn-on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron-transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ∼18 and ∼50-fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF-7 cells. PMID:27243475

  14. Enhanced formic acid electro-oxidation reaction on ternary Pd-Ir-Cu/C catalyst

    NASA Astrophysics Data System (ADS)

    Chen, Jinwei; Zhang, Jie; Jiang, Yiwu; Yang, Liu; Zhong, Jing; Wang, Gang; Wang, Ruilin

    2015-12-01

    Aim to further reduce the cost of Pd-Ir for formic acid electro-oxidation (FAEO), the Cu was used to construct a ternary metallic alloy catalyst. The prepared catalysts are characterized using XRD, TGA, EDX, TEM, XPS, CO-stripping, cyclic voltammetry and chronoamperometry. It is found that the Pd18Ir1Cu6 nanoparticles with a mean size of 3.3 nm are highly dispersed on carbon support. Componential distributions on catalyst are consistent with initial contents. Electrochemical measurements show that the PdIrCu/C catalyst exhibits the highest activity for FAEO. The mass activity of Pd in Pd18Ir1Cu6/C at 0.16 V (vs. SCE) is about 1.47, 1.62 and 2.08 times as high as that of Pd18Cu6/C, Pd18Ir1/C and Pd/C, respectively. The activity enhancement of PdIrCu/C should be attributed to the weakened CO adsorption strength and the removal of adsorbed intermediates at lower potential with the addition of Cu and Ir.

  15. Enhanced Epimerization of Glycosylated Amino Acids During Solid Phase Peptide Synthesis

    PubMed Central

    Zhang, Yalong; Muthana, Saddam M.; Farnsworth, David; Ludek, Olaf; Adams, Kristie; Barchi, Joseph J.; Gildersleeve, Jeffrey C.

    2012-01-01

    Glycopeptides are extremely useful for basic research and clinical applications, but access to structurally-defined glycopeptides is limited by the difficulties in synthesizing this class of compounds. In this study, we demonstrate that many common peptide coupling conditions used to prepare O-linked glycopeptides result in substantial amounts of epimerization at the alpha position. In fact, epimerization resulted in up to 80% of the non-natural epimer, indicating that it can be the major product in some reactions. Through a series of mechanistic studies, we demonstrate that the enhanced epimerization relative to non-glycosylated amino acids is due to a combination of factors, including a faster rate of epimerization, an energetic preference for the unnatural epimer over the natural epimer, and a slower overall rate of peptide coupling. In addition, we demonstrate that use of 2,4,6-trimethylpyridine (TMP) as the base in peptide couplings produces glycopeptides with high efficiency and low epimerization. The information and improved reaction conditions will facilitate the preparation of glycopeptides as therapeutic compounds and vaccine antigens. PMID:22390544

  16. Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4.

    PubMed

    Tagliaferri, Daniela; De Angelis, Maria Teresa; Russo, Nicola Antonino; Marotta, Maria; Ceccarelli, Michele; Del Vecchio, Luigi; De Felice, Mario; Falco, Geppino

    2016-01-01

    Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation. PMID:26840068

  17. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis.

    PubMed

    Sun, Xiao-Man; Ren, Lu-Jing; Ji, Xiao-Jun; Chen, Sheng-Lan; Guo, Dong-Sheng; Huang, He

    2016-07-01

    Adaptive laboratory evolution (ALE) is an effective method in changing the strain characteristics. Here, ALE with high oxygen as a selection pressure was applied to improve the production capacity of Schizochytrium sp. Results showed that cell dry weight (CDW) of endpoint strain was 32.4% higher than that of starting strain. But slight lipid accumulation impairment was observed. These major performance changes were accompanied with enhanced isocitrate dehydrogenase enzyme activity and reduced ATP:citrate lyase enzyme activity. And a serious decrease of 62.6% in SDHA 140rpm→170rpm was observed in the endpoint strain. To further study the docosahexaenoic acid (DHA) production ability of evolved strain, fed-batch strategy was applied and 84.34g/L of cell dry weight and 26.40g/L of DHA yield were observed. In addition, endpoint strain produced greatly less squalene than starting strain. This work demonstrated that ALE may be a promising tool in modifying microalga strains. PMID:27030957

  18. Enhancement of Polyribosome Formation and RNA Synthesis of Gibberellic Acid in Wounded Potato Tuber Tissue 1

    PubMed Central

    Wielgat, Bernard; Kahl, Günter

    1979-01-01

    As part of a more detailed study on plant tumorigenesis, the action of gibberellic acid (GA3) in wounded potato tuber tissues as a model system has been evaluated. GA3 stimulates total RNA synthesis in wounded tissues, the optimal concentration being 0.1 micromolar. The responsiveness of the tissue toward the hormone develops with time after wounding. Whereas freshly wounded tissue does not respond at all to the hormone, it becomes competent after about 6 hours, the competence being maximal after 1 day of wound healing. GA3 enhances the formation of polyribosomes in wounded tissues and stimulates the synthesis of both ribosomal RNAs, transfer RNAs, 5S RNA, and a fraction, which in sucrose density gradients sediments between 18S rRNA and 5S RNA. This fraction contains presumptive mRNA. The hormone, then, is somehow recognized by wounded potato tissue in a time-specific way; the signal is transferred to the genome and triggers the synthesis of various RNA species. PMID:16661070

  19. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment.

    PubMed

    Han, Hau-Vei; Lu, Ang-Yu; Lu, Li-Syuan; Huang, Jing-Kai; Li, Henan; Hsu, Chang-Lung; Lin, Yung-Chang; Chiu, Ming-Hui; Suenaga, Kazu; Chu, Chih-Wei; Kuo, Hao-Chung; Chang, Wen-Hao; Li, Lain-Jong; Shi, Yumeng

    2016-01-26

    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs. PMID:26716765

  20. Alpha-lipoic acid enhances DMSO-induced cardiomyogenic differentiation of P19 cells.

    PubMed

    Shen, Xinghua; Yang, Qinghui; Jin, Peng; Li, Xueqi

    2014-09-01

    Alpha-lipoic acid (α-LA) is a potent antioxidant that acts as an essential cofactor in mitochondrial dehydrogenase reactions. α-LA has been shown to possess anti-inflammatory and cytoprotective properties, and is used to improve symptoms of diabetic neuropathy. However, the role of α-LA in stem cell differentiation and the underlying molecular mechanisms remain unknown. In the present study, we showed that α-LA significantly promoted dimethyl sulfoxide (DMSO)-induced cardiomyogenic differentiation of mouse embryonic carcinoma P19 cells. α-LA dose dependently increased beating embryonic body (EB) percentages of DMSO-differentiated P19 cells. The expressions of cardiac specific genes TNNT2, Nkx2.5, GATA4, MEF2C, and MLC2V and cardiac isoform of troponin T (cTnT)-positively stained cell population were significantly up-regulated by the addition of α-LA. We also demonstrated that the differentiation time after EB formation was critical for α-LA to take effect. Interestingly, without DMSO treatment, α-LA did not stimulate the cardiomyogenic differentiation of P19 cells. Further investigation indicated that collagen synthesis-enhancing activity, instead of the antioxidative property, plays a significant role in the cardiomyogenic differentiation-promoting function of α-LA. These findings highlight the potential use of α-LA for regenerative therapies in heart diseases. PMID:25112287

  1. Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4

    PubMed Central

    Tagliaferri, Daniela; De Angelis, Maria Teresa; Russo, Nicola Antonino; Marotta, Maria; Ceccarelli, Michele; Del Vecchio, Luigi; De Felice, Mario; Falco, Geppino

    2016-01-01

    Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation. PMID:26840068

  2. Enhanced Long-Term Microcircuit Plasticity in the Valproic Acid Animal Model of Autism

    PubMed Central

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12–15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism. PMID:21423407

  3. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells

    PubMed Central

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44+) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44-) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44+ cells in vitro. In the B16F10-CD44+ lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy. PMID:25897340

  4. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    PubMed

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. PMID:26901471

  5. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells

    PubMed Central

    Chen, Feng; Zhang, Xiao Hong; Hu, Xiao Dan; Zhang, Wei; Lou, Zhi Chao; Xie, Li Hua; Liu, Pei Dang; Zhang, Hai Qian

    2015-01-01

    Radiotherapy is one of the main strategies for cancer treatment but has significant challenges, such as cancer cell resistance and radiation damage to normal tissue. Radiosensitizers that selectively increase the susceptibility of cancer cells to radiation can enhance the effectiveness of radiotherapy. We report here the development of a novel radiosensitizer consisting of monodispersed ceria nanoparticles (CNPs) covered with the anticancer drug neogambogic acid (NGA-CNPs). These were used in conjunction with radiation in MCF-7 breast cancer cells, and the efficacy and mechanisms of action of this combined treatment approach were evaluated. NGA-CNPs potentiated the toxic effects of radiation, leading to a higher rate of cell death than either treatment used alone and inducing the activation of autophagy and cell cycle arrest at the G2/M phase, while pretreatment with NGA or CNPs did not improve the rate of radiation-induced cancer cells death. However, NGA-CNPs decreased both endogenous and radiation-induced reactive oxygen species formation, unlike other nanomaterials. These results suggest that the adjunctive use of NGA-CNPs can increase the effectiveness of radiotherapy in breast cancer treatment by lowering the radiation doses required to kill cancer cells and thereby minimizing collateral damage to healthy adjacent tissue. PMID:26316742

  6. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  7. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  8. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    SciTech Connect

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.; Wang, C.-J.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.

  9. Saccharomyces cerevisiae EC-1118 enhances the survivability of probiotic Lactobacillus rhamnosus HN001 in an acidic environment.

    PubMed

    Lim, Phebe Lixuan; Toh, Mingzhan; Liu, Shao Quan

    2015-08-01

    The present study attempted to partially characterize and elucidate the viability-enhancing effect of a yeast strain Saccharomyces cerevisiae EC-1118 on a probiotic strain Lactobacillus rhamnosus HN001 under acidic conditions using a model system (non-growing cells). The yeast was found to significantly enhance (P < 0.05) the viability of the probiotic strain under acidic conditions (pH 2.5 to 4.0) by 2 to 4 log cycles, and the viability-enhancing effects were observed to be influenced by pH, and probiotic and yeast concentrations. Microscopic observation and co-aggregation assay revealed that the viability-enhancing effect of the yeast could be attributed to direct cell-cell contact co-aggregation mediated by yeast cell surface and/or cell wall components or metabolites. Furthermore, non-viable yeast cells killed by thermal means were observed to enhance the viability of the probiotic strain as well, suggesting that the surface and/or cell wall component(s) of the yeast contributing to co-aggregation was heat-stable. Cell-free yeast supernatant was also found to enhance the viability of the probiotic strain, indicating the presence of protective yeast metabolite(s) in the supernatant. These findings laid the foundation for further understanding of the mechanism(s) involved and for developing novel microbial starter cultures possibly without the use of live yeast for ambient-stable high-moisture probiotic foods. PMID:25846337

  10. Interaction of anthranilic acid with silver nanoparticles: A Raman, surface-enhanced Raman scattering and density functional theoretical study

    NASA Astrophysics Data System (ADS)

    Chadha, Ridhima; Maiti, Nandita; Kapoor, Sudhir

    2014-11-01

    Raman and surface-enhanced Raman scattering (SERS) studies of anthranilic acid have been investigated in solid, aqueous solution and on silver colloid. Anthranilic acid plays a key role in the brain in the production of quinolinic acid which is a powerful excitant and convulsant substance. Due to its medicinal importance, the surface adsorption properties of anthranilic acid have been studied. The experimental Raman and SERS data is supported with DFT calculations using B3LYP functional with aug-cc-pvdz and LANL2DZ basis sets. The comparison of experimental and theoretical results infers that anthranilate is chemisorbed to the silver surface directly through the carboxylate group with a perpendicular orientation. The time-dependent SERS spectrum of anthranilate showed no observable change indicating no structural transformation with time. The SERS spectrum recorded at different excitation wavelengths helped in understanding the origin of the SERS mechanism.

  11. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    PubMed

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells. PMID:27068057

  12. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease.

    PubMed

    Dhaneshwar, Suneela S

    2014-04-01

    Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD. PMID:24707139

  13. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease

    PubMed Central

    Dhaneshwar, Suneela S

    2014-01-01

    Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD. PMID:24707139

  14. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    PubMed

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented. PMID:20220244

  15. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  16. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures

  17. Novel 14,21-dihydroxy-docosahexaenoic acids: structures, formation pathways, and enhancement of wound healing

    PubMed Central

    Lu, Yan; Tian, Haibin; Hong, Song

    2010-01-01

    Chronic wounds remain a medical challenge, where well-coordinated cellular and molecular processes required by optimal healing are impaired by diabetes, aging, or other diseases. In determining mechanisms that regulate wound healing, we found that wounding induced formation of novel endogenous 14S,21S-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids (14S,21S-diHDHA);14R,21R-diHDHA; 14S,21R-diHDHA; and/or 14R,21S-diHDHA. 12-lipoxygenase and cytochrome P450 catalysis in tandem converted docosahexaenoic acid to 14S,21R-diHDHA and 14S,21S-diHDHA through the intermediacy of 14S-HDHA; P450 also converted 14R-HDHA to novel 14R,21R-diHDHA and 14R,21S-diHDHA. Macrophages function as the combination of 12-lipoxgenase and P450 to generate these 14,21-diHDHA stereoisomers, as well as their intermediates 14S-HDHA, 14R-HDHA, and 21-HDHA. The structure and formation pathways of 14,21-diHDHA stereoisomers were further confirmed by macrophage biosynthesis of 14,21-diHDHA-21,22,22,22-d4 stereoisomers, 14S-HDHA-d5, 14R-HDHA-d5, and 21-HDHA-d4 from DHA-21,21,22,22,22-d5. We found that 14S,21-diHDHA and 14R,21-diHDHA enhanced wound closure, reepithelialization, granulation tissue growth, and capillary vasculature formation of murine wounds. 14S,21-diHDHA and 14R,21-diHDHA produced by macrophages may partially represent the molecular mechanisms for macrophage pro-healing function. Taken together, 14,21-dihydroxy-DHA stereoisomers and their formation pathways may represent a novel mechanism in the orchestration of wound healing processes, which may provide new insight for developing novel therapeutic modalities that counteract impairments to wound healing. PMID:19965612

  18. Novel 14,21-dihydroxy-docosahexaenoic acids: structures, formation pathways, and enhancement of wound healing.

    PubMed

    Lu, Yan; Tian, Haibin; Hong, Song

    2010-05-01

    Chronic wounds remain a medical challenge, where well-coordinated cellular and molecular processes required by optimal healing are impaired by diabetes, aging, or other diseases. In determining mechanisms that regulate wound healing, we found that wounding induced formation of novel endogenous 14S,21S-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids (14S,21S-diHDHA);14R,21R-diHDHA; 14S,21R-diHDHA; and/or 14R,21S-diHDHA. 12-lipoxygenase and cytochrome P450 catalysis in tandem converted docosahexaenoic acid to 14S,21R-diHDHA and 14S,21S-diHDHA through the intermediacy of 14S-HDHA; P450 also converted 14R-HDHA to novel 14R,21R-diHDHA and 14R,21S-diHDHA. Macrophages function as the combination of 12-lipoxgenase and P450 to generate these 14,21-diHDHA stereoisomers, as well as their intermediates 14S-HDHA, 14R-HDHA, and 21-HDHA. The structure and formation pathways of 14,21-diHDHA stereoisomers were further confirmed by macrophage biosynthesis of 14,21-diHDHA-21,22,22,22-d(4) stereoisomers, 14S-HDHA-d(5), 14R-HDHA-d(5), and 21-HDHA-d(4) from DHA-21,21,22,22,22-d(5). We found that 14S,21-diHDHA and 14R,21-diHDHA enhanced wound closure, reepithelialization, granulation tissue growth, and capillary vasculature formation of murine wounds. 14S,21-diHDHA and 14R,21-diHDHA produced by macrophages may partially represent the molecular mechanisms for macrophage pro-healing function. Taken together, 14,21-dihydroxy-DHA stereoisomers and their formation pathways may represent a novel mechanism in the orchestration of wound healing processes, which may provide new insight for developing novel therapeutic modalities that counteract impairments to wound healing. PMID:19965612

  19. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression.

    PubMed

    Abdel-Rahman, Mohamed Ali; Xiao, Yaotian; Tashiro, Yukihiro; Wang, Ying; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-02-01

    There has been tremendous growth in the production of optically pure l-lactic acid from lignocellulose-derived sugars. In this study, Enterococcus mundtii QU 25 was used to ferment a glucose/xylose mixture to l-lactic acid. Maintenance of the xylose concentration at greater than 10 g/L achieved homo-lactic acid fermentation and reduced the formation of byproducts. Furthermore, carbon catabolite repression (CCR) was avoided by maintaining the glucose concentration below 25 g/L; therefore, initial concentrations of 25 g/L glucose and 50 g/L xylose were selected. Supplementation with 5 g/L yeast extract enhanced the maximum xylose consumption rate and consequently increased lactic acid production and productivity. Finally, a 129 g/L lactic acid without byproducts was obtained with a maximum lactic acid productivity of 5.60 g/(L·h) in fed-batch fermentation with feeding a glucose/xylose mixture using ammonium hydroxide as the neutralizing agent. These results indicate a potential for lactic acid production from glucose and xylose as the main components of lignocellulosic biomasses. PMID:25280397

  20. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    PubMed

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa. PMID:25976880

  1. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion. PMID:26408932

  2. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    PubMed Central

    Cutuli, Debora; De Bartolo, Paola; Caporali, Paola; Laricchiuta, Daniela; Foti, Francesca; Ronci, Maurizio; Rossi, Claudia; Neri, Cristina; Spalletta, Gianfranco; Caltagirone, Carlo; Farioli-Vecchioli, Stefano; Petrosini, Laura

    2014-01-01

    As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging. PMID:25202271

  3. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  4. Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches.

    PubMed

    Schilrreff, Priscila; Cervini, Gabriela; Romero, Eder Lilia; Morilla, Maria Jose

    2014-10-01

    New therapies are urgently needed against melanoma, one of the most aggressive tumors. Melanoma cells are resistant to the antifolate methotrexate (MTX), since MTX is taken up by the folate receptor-α (FRα), sequestered in melanosomes and exported out of the cell. The bisphosphonate zoledronic acid (ZOL) is active in several non-skeletal tumors; however, its antitumoral activity is hampered by its long-term accumulation in bones and low cellular permeability. Recently, we showed that core-shell tecto-dendrimers made of amine-terminated polyamidoamine generation 5 dendrimer (G5) as core and carboxyl-terminated G2.5 dendrimer as shell (G5G2.5) had selective cytotoxicity to melanoma cells. We hypothesized here that the activity of MTX and ZOL on melanoma cells could be enhanced when loaded within G5G2.5. MTX and ZOL were loaded within G5 cores, which were coated by a covalently bound shell of G2.5 dendrimers (drug-sandwiches). 12nm mean diameter and -12mV Z potential drug-sandwiches incorporating 6 and 31 molecules of MTX and ZOL, respectively, per G5G2.5, showed higher cytotoxicity (by MTT and apoptosis/necrosis assays) to melanoma (Sk-Mel-28) cells than free drugs and G5G2.5. Only MTX-sandwich was cytotoxic to Sk-Mel-28 cells and harmless to keratinocytes (HaCaT cells). The intracellular pathway of G5G2.5 was followed using chemical inhibitors of endocytosis. The increased cytotoxicity of MTX-sandwich could be due to its uptake by macropinocytosis instead of by FRα, avoiding MTX exocytosis. The increased cytotoxicity of ZOL-sandwich could be due to an increased intracellular accumulation of ZOL, owed by its endocytic uptake instead of diffusing as free drug. PMID:25016541

  5. Biomineralization of Arsenate to Arsenic Sulfides is Greatly Enhanced at Mildly Acidic Conditions

    PubMed Central

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A.

    2014-01-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (AsV) and sulfate (SO42−). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO42− and AsV by an anaerobic biofilm mixed culture in a range of pH conditions (6.1–7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  6. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions.

    PubMed

    Li, Bin; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Structurally varied, carboxyl-containing cellulose derivatives were evaluated for their ability to form amorphous solid dispersions (ASD) with ellagic acid (EA), in order to improve the solubility of this high-melting, poorly bioavailable, but highly bioactive natural flavonoid compound. ASDs of EA with carboxymethylcellulose acetate butyrate (CMCAB), cellulose acetate adipate propionate (CAAdP), and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were prepared, and EA dissolution from these ASDs was compared with that from pure crystalline EA and from EA/poly(vinylpyrrolidinone) (PVP) solid dispersions (SD). Polymer/drug mixtures were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). The XRPD and FT-IR results indicated that EA was amorphous in solid dispersions with EA concentration up to 25 wt%. The stability against crystallization and solution concentrations of EA from these solid dispersions were significantly higher than those observed for physical mixtures and pure crystalline EA. HPMCAS stabilized EA most effectively, among the polymers tested, against both chemical degradation and recrystallization. The relative ability to solubilize EA from ASDs at pH 6.8 was PVP>HPMCAS>CMCAB. EA dissolves from ASD in PVP quickly and completely (maximum 92%) at pH 6.8, but EA is also released from PVP at pH 1.2, and then crystallizes rapidly. Therefore PVP is not a practical candidate for EA ASD. In contrast, the cellulose derivative ASDs show very slow EA release at pH 1.2 (<4%) and faster but still incomplete drug release at pH 6.8 (maximum 35% for HPMCAS SD). The pH-triggered drug release from HPMCAS ASD makes HPMCAS a practical choice for EA solubility enhancement. PMID:23399175

  7. Suberoylanilide Hydroxamic Acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer

    PubMed Central

    Konstantinopoulos, Panagiotis A.; Wilson, Andrew J.; Saskowski, Jeanette; Wass, Erica; Khabele, Dineo

    2015-01-01

    Objectives Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). Methods Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289 + BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. Results In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. Conclusions These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer. PMID:24631446

  8. Synthesis and in vitro stability of amino acid prodrugs of 6-β-naltrexol for microneedle-enhanced transdermal delivery.

    PubMed

    Eldridge, Joshua A; Milewski, Mikolaj; Stinchcomb, Audra L; Crooks, Peter A

    2014-11-15

    A small library of amino acid ester prodrugs of 6-β-naltrexol (NTXOL, 1) was prepared in order to investigate the candidacy of these prodrugs for microneedle-enhanced transdermal delivery. Six amino acid ester prodrugs were synthesized (6a-f). 6b, 6d, and 6 e were stable enough at skin pH (pH 5.0) to move forward to studies in 50% human plasma. The lead compound (6 e) exhibited the most rapid bioconversion to NTXOL in human plasma (t1/2 = 2.2 ± 0.1h). PMID:25442314

  9. Synthesis and in vitro stability of amino acid prodrugs of 6-β-naltrexol for microneedle-enhanced transdermal delivery

    PubMed Central

    Eldridge, Joshua A.; Milewski, Mikolaj; Stinchcomb, Audra L.; Crooks, Peter A.

    2014-01-01

    A small library of amino acid ester prodrugs of 6-β-naltrexol (NTXOL, 1) was prepared in order to investigate the candidacy of these prodrugs for microneedle-enhanced transdermal delivery. Six amino acid ester prodrugs were synthesized (6a-f). 6b, 6d, and 6e were stable enough at skin pH (pH 5.0) to move forward to studies in 50% human plasma. The lead compound (6e) exhibited the most rapid bioconversion to NTXOL in human plasma (t½ = 2.2 ± 0.1 h). PMID:25442314

  10. Enhanced ethylene emissions from red and Norway spruce exposed to acidic mists

    SciTech Connect

    Chen, Yimin; Wellburn, A.R. )

    1989-09-01

    Acidic cloudwater is believed to cause needle injury and to decrease winter hardiness in conifers. During simulations of these adverse conditions, rates of ethylene emissions from and levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in both red and Norway spruce needles increased as a result of treatment with acidic mists but amounts of 1-malonyl(amino)cyclopropane-1-carboxylic acid remained unchanged. However, release of significant quantities of ethylene by another mechanism independent of ACC was also detected from brown needles. Application of exogenous plant growth regulators such as auxin, kinetic, abscisic acid and gibberellic acid (each 0.1 millimolar) had no obvious effects on the rates of basal or stress ethylene production from Norway spruce needles. The kinetics of ethylene formation by acidic mist-stressed needles suggest that there is no active inhibitive mechanism in spruce to prevent stress ethylene being released once ACC has been formed.

  11. Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng

    2013-01-01

    There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. PMID:24076979

  12. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Tsai, Tsung-Hua; Chen, Yang-Fang; Dong, Chen-Yuan

    2014-10-01

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  13. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    SciTech Connect

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang; Tsai, Tsung-Hua; Dong, Chen-Yuan

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  14. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment.

    PubMed

    Oulhaj, Abderrahim; Jernerén, Fredrik; Refsum, Helga; Smith, A David; de Jager, Celeste A

    2015-01-01

    A randomized trial (VITACOG) in people with mild cognitive impairment (MCI) found that B vitamin treatment to lower homocysteine slowed the rate of cognitive and clinical decline. We have used data from this trial to see whether baseline omega-3 fatty acid status interacts with the effects of B vitamin treatment. 266 participants with MCI aged ≥70 years were randomized to B vitamins (folic acid, vitamins B6 and B12) or placebo for 2 years. Baseline cognitive test performance, clinical dementia rating (CDR) scale, and plasma concentrations of total homocysteine, total docosahexaenoic and eicosapentaenoic acids (omega-3 fatty acids) were measured. Final scores for verbal delayed recall, global cognition, and CDR sum-of-boxes were better in the B vitamin-treated group according to increasing baseline concentrations of omega-3 fatty acids, whereas scores in the placebo group were similar across these concentrations. Among those with good omega-3 status, 33% of those on B vitamin treatment had global CDR scores >0 compared with 59% among those on placebo. For all three outcome measures, higher concentrations of docosahexaenoic acid alone significantly enhanced the cognitive effects of B vitamins, while eicosapentaenoic acid appeared less effective. When omega-3 fatty acid concentrations are low, B vitamin treatment has no effect on cognitive decline in MCI, but when omega-3 levels are in the upper normal range, B vitamins interact to slow cognitive decline. A clinical trial of B vitamins combined with omega-3 fatty acids is needed to see whether it is possible to slow the conversion from MCI to AD. PMID:26757190

  15. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  16. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  17. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma. PMID:25847597

  18. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics. PMID:26556526

  19. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  20. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2015-03-01

    Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed. PMID:25306882

  1. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism.

    PubMed

    Ge, Xiang-Yang; Qian, He; Zhang, Wei-Guo

    2010-01-01

    Efficient L-lactic acid production from Jerusalem artichoke tubers by Lactobacillus casei G-02 using simultaneous saccharification and fermentation (SSF) in fed-batch culture is demonstrated. The kinetic analysis in the SSF signified that the inulinase activity was subjected to product inhibition, while the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellularly NOX activity was enhanced by the citrate metabolism, which increased the carbon flux of Embden-Meyerhof-Parnas (EMP) pathway dramatically, and resulted more ATP production. As a result, when the SSF was carried out at 40 degrees after the initial hydrolysis of 1 h with supplemented sodium citrate of 10g/L, L-lactic acid concentration of 141.5 g/L was obtained in 30 h with a volumetric productivity of 4.7 g/L/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/100 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with high productivity from Jerusalem artichoke has not been reported previously, and hence G-02 could be a potential candidate for economical production of L-lactic acid from Jerusalem artichoke at a commercial scale. PMID:20134240

  2. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2016-01-01

    Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production. PMID:25569523

  3. Selective enhancement of scopadulcic acid B production in the cultured tissues of Scoparia dulcis by methyl jasmonate.

    PubMed

    Nkembo, Kasidimoko Marguerite; Lee, Jung-Bum; Hayashi, Toshimitsu

    2005-07-01

    The effects of methyl jasmonate (MeJA) on isoprenoid production were evaluated in cultured tissues of Scoparia dulcis. It was found that MeJA suppressed the accumulation of chlorophylls, carotenoids, phytol and beta-sitosterol in the tissues. MeJA, however, remarkably enhanced the production of scopadulcic acid B (SDB), with 10 microM being optimal observed concentration for stimulation of SDB production. The maximum concentration of SDB was observed 6 d after MeJA treatment. PMID:15997134

  4. Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance.

    PubMed

    Marks, Robert M; Ryan, Andrew; Heba, Elhamy R; Tang, An; Wolfson, Tanya J; Gamst, Anthony C; Sirlin, Claude B; Bashir, Mustafa R

    2015-03-01

    OBJECTIVE. The purpose of this study is to evaluate the per-patient diagnostic performance of an abbreviated gadoxetic acid-enhanced MRI protocol for hepatocellular carcinoma (HCC) surveillance. MATERIALS AND METHODS. A retrospective review identified 298 consecutive patients at risk for HCC enrolled in a gadoxetic acid-enhanced MRI-based HCC surveillance program. For each patient, the first gadoxetic acid-enhanced MRI was analyzed. To simulate an abbreviated protocol, two readers independently read two image sets per patient: set 1 consisted of T1-weighted 20-minute hepatobiliary phase and T2-weighted single-shot fast spin-echo (SSFSE) images; set 2 included diffusion-weighted imaging (DWI) and images from set 1. Image sets were scored as positive or negative according to the presence of at least one nodule 10 mm or larger that met the predetermined criteria. Agreement was assessed using Cohen kappa statistics. A composite reference standard was used to determine the diagnostic performance of each image set for each reader. RESULTS. Interreader agreement was substantial for both image sets (κ = 0.72 for both) and intrareader agreement was excellent (κ = 0.97-0.99). Reader performance for image set 1 was sensitivity of 85.7% for reader A and 79.6% for reader B, specificity of 91.2% for reader A and 95.2% for reader B, and negative predictive value of 97.0% for reader A and 96.0% for reader B. Reader performance for image set 2 was nearly identical, with only one of 298 examinations scored differently on image set 2 compared with set 1. CONCLUSION. An abbreviated MRI protocol consisting of T2-weighted SSFSE and gadoxetic acid-enhanced hepatobiliary phase has high negative predictive value and may be an acceptable method for HCC surveillance. The inclusion of a DWI sequence did not significantly alter the diagnostic performance of the abbreviated protocol. PMID:25714281

  5. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    PubMed

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  6. Determination of the strong acidity of atmospheric fine-particles (<2. 5 mum) using annular denuder technology. Standard method, enhanced method

    SciTech Connect

    Purdue, L.J.

    1992-11-01

    The report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 micrometers) in ambient air using annular denuder technology. The methodology description includes two parts: Part A - Standard Method and Part B - Enhanced Method. The Standard Method utilizes a denuder for removing ammonia and a filter assembly for determination of atmospheric strong acidity fine particle aerosols in ambient air, but does not account for potential interferences from nitric acid, ammonium nitrate aerosol or other ammonium salts which might bias the acidity measurement. The Enhanced Method adds an additional denuder upstream of the filter assembly to selectively remove acid gases (nitric acid vapors, nitrous acid and sulfur dioxide) from the gas stream prior to filtration. In addition, backup nylon and citric acid impregnated filters are used to correct for biases due to the dissociation of ammonium nitrate aerosol.

  7. Synthesis, colon-targeted studies and pharmacological evaluation of an anti-ulcerative colitis drug 4-Aminosalicylic acid-β-O-glucoside.

    PubMed

    Li, Feifei; Wu, Guoli; Zheng, Huixia; Wang, Li; Zhao, Zhengbao

    2016-01-27

    A glycoside prodrug of 4-aminosalicylic acid (4-ASA) with d-glucose was synthesized for targeted drug delivery to inflammatory bowel. The in vitro assessment of 4-aminosalicylic acid-β-O-glucoside (4-ASA-Glu) as a colon-specific prodrug was studied using colitis rat with the healthy one as control. The stability studies in aqueous buffers (pH 1.2, 6.8 and 7.4) indicated that 4-ASA-Glu was stable over a period of 12 h. The incubation of 4-ASA-Glu with cecal or colonic contents of healthy rats at 37 °C released 4-ASA in 77 or 80% of the dose in 12 h, respectively. The amount of 4-ASA liberated from the incubation of 4-ASA-Glu in cecal or colonic contents of colitis rats at 37 °C was 69 or 79% in 12 h respectively, while less than 9% 4-ASA was detected from the incubation of 4-ASA-Glu with the homogenates of stomach or small intestine. The curative effect of 4-ASA-Glu was evaluated in 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) induced experimental colitis model in male Sprague-Dawley (SD) rats. It was found that 4-ASA-Glu possess significantly ameliorate effect than sulfasalazine, oral 4- and 5-aminosalicylic acid. PMID:26717200

  8. Modulation of fatty acid metabolism and tricarboxylic acid cycle to enhance the lipstatin production through medium engineering in Streptomyces toxytricini.

    PubMed

    Kumar, Punit; Dubey, Kashyap Kumar

    2016-08-01

    This work investigated the potential of medium engineering to obtain maximum biomass, non-conventional carbon sources for lipstatin production and modulation of tricarboxylic acid (TCA) cycle to promote lipstatin synthesis. It was found that 2:3 carbon and nitrogen ratio, produced maximum biomass of 7.9g/L in growth medium and 6.6g/L in pre-seed medium. Among the studied non-conventional carbon sources i.e., soya flour 40g/L and sesame oil 30mL/L were found producing 1109.37mg/L (1.24-fold of control) and 1196.75mg/L (1.34-fold of control) lipstatin respectively. Supplementation of TCA cycle intermediates revealed that NADH and succinic acid showed lipstatin production to 1132.99mg/L and 1171.10mg/L respectively. Experimental outcome was validated in 7L bioreactor and produced 2242.63mg/L lipstatin which was ∼14% higher than shake flask. PMID:26897471

  9. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  10. The vitamin-like dietary supplement para-aminobenzoic acid enhances the antitumor activity of ionizing radiation

    SciTech Connect

    Xavier, Sandhya; MacDonald, Shannon; Roth, Jennifer; Caunt, Maresa; Akalu, Abebe; Morais, Danielle; Buckley, Michael T.; Liebes, Leonard; Formenti, Silvia C.; Brooks, Peter C. . E-mail: peter.brooks@med.nyu.edu

    2006-06-01

    Purpose: To determine whether para-aminobenzoic acid (PABA) alters the sensitivity of tumor cells to ionizing radiation in vitro and in vivo. Methods and Materials: Cellular proliferation was assessed by WST-1 assays. The effects of PABA and radiation on tumor growth were examined with chick embryo and murine models. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to quantify p21{sup CIP1} and CDC25A levels. Results: Para-aminobenzoic acid enhanced (by 50%) the growth inhibitory activity of radiation on B16F10 cells, whereas it had no effect on melanocytes. Para-aminobenzoic acid enhanced (50-80%) the antitumor activity of radiation on B16F10 and 4T1 tumors in vivo. The combination of PABA and radiation therapy increased tumor apoptosis. Treatment of tumor cells with PABA increased expression of CDC25A and decreased levels of p21{sup CIP1}. Conclusions: Our findings suggest that PABA might represent a compound capable of enhancing the antitumor activity of ionizing radiation by a mechanism involving altered expression of proteins known to regulate cell cycle arrest.

  11. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  12. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Chung, Byung Yeoup; Lee, Jae Taek; Bai, Hyoung-Woo; Kim, Ung-Jin; Bae, Hyeun-Jong; Gon Wi, Seung; Cho, Jae-Young

    2012-08-01

    Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0-1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.

  13. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    PubMed

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  14. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain.

    PubMed

    Lewis, Susannah S; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K; Maier, Steven F; Rice, Kenner C; Watkins, Linda R

    2013-05-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  15. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  16. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects.

    PubMed

    Altincicek, Boran; Stötzel, Sabine; Wygrecka, Malgorzata; Preissner, Klaus T; Vilcinskas, Andreas

    2008-08-15

    Extracellular nucleic acids play important roles in human immunity and hemostasis by inducing IFN production, entrapping pathogens in neutrophil extracellular traps, and providing procoagulant cofactor templates for induced contact activation during mammalian blood clotting. In this study, we investigated the functions of extracellular RNA and DNA in innate immunity and hemolymph coagulation in insects using the greater wax moth Galleria mellonella a reliable model host for many insect and human pathogens. We determined that coinjection of purified Galleria-derived nucleic acids with heat-killed bacteria synergistically increases systemic expression of antimicrobial peptides and leads to the depletion of immune-competent hemocytes indicating cellular immune stimulation. These activities were abolished when nucleic acids had been degraded by nucleic acid hydrolyzing enzymes prior to injection. Furthermore, we found that nucleic acids induce insect hemolymph coagulation in a similar way as LPS. Proteomic analyses revealed specific RNA-binding proteins in the hemolymph, including apolipoproteins, as potential mediators of the immune response and hemolymph clotting. Microscopic ex vivo analyses of Galleria hemolymph clotting reactions revealed that oenocytoids (5-10% of total hemocytes) represent a source of endogenously derived extracellular nucleic acids. Finally, using the entomopathogenic bacterium Photorhabdus luminescens as an infective agent and Galleria caterpillars as hosts, we demonstrated that injection of purified nucleic acids along with P. luminescens significantly prolongs survival of infected larvae. Our results lend some credit to our hypothesis that host-derived nucleic acids have independently been co-opted in innate immunity of both mammals and insects, but exert comparable roles in entrapping pathogens and enhancing innate immune responses. PMID:18684961

  17. Fucoxanthin Enhances Chain Elongation and Desaturation of Alpha-Linolenic Acid in HepG2 Cells.

    PubMed

    Wu, Meng-Ting; Su, Hui-Min; Cui, Yi; Windust, Anthony; Chou, Hong-Nong; Huang, Ching-Jang

    2015-10-01

    Dietary fucoxanthin (FX), a carotenoid compound from brown algae, was found to increase docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) in the liver of mice. DHA and ARA are known to be biosynthesized from the respective precursor α-linolenic acid (ALA, 18:3n-3) and linoleic acid (LNA, 18:2n-6), through desaturation and chain elongation. We examined the effect of FX on the fatty acid metabolism in HepG2 cells (Hepatocellular carcinoma, human). In the first experiment, cells were co-treated with ALA (100 μM) and FX (0-100 μM) or vehicle for 48 h. FX increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3), DHA at concentrations of ≥ 50 μM. To clarify the change in the metabolism of polyunsaturated fatty acid (PUFA), in the second experiment, cells were co-treated with universally-[(13)C]-labeled (U-[(13)C]-) ALA (100 μM) and FX (100 μM) for 0.5, 3, 6, 24 and 48 h. [(13)C] labeled-EPA, DPA and DHA content in HepG2 cells were all increased by FX after 48 h treatment. Furthermore, estimated delta-5 desaturase (D5D) but not delta-6 desaturase (D6D) activity index was increased at 48 h. These results suggested that FX may enhance the conversion of ALA to longer chain n-3 PUFA through increasing D5D activity in the liver. PMID:26271617

  18. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization

    PubMed Central

    2012-01-01

    Background Aspergillus niger was selected as a host for producing itaconic acid due to its versatile and tolerant character in various growth environments, and its extremely high capacity of accumulating the precursor of itaconic acid: citric acid. Expressing the CAD gene from Aspergillus terreus opened the metabolic pathway towards itaconic acid in A. niger. In order to increase the production level, we continued by modifying its genome and optimizing cultivation media. Results Based on the results of previous transcriptomics studies and research from other groups, two genes : gpdA encoding the glyceraldehyde −3-dehydrogenase (GPD) and hbd1 encoding a flavohemoglobin domain (HBD) were overexpressed in A. niger. Besides, new media were designed based on a reference medium for A. terreus. To analyze large numbers of cultures, we developed an approach for screening both fungal transformants and various media in 96-well micro-titer plates. The hbd1 transformants (HBD 2.2/2.5) did not improve itaconic acid titer while the gpdA transformant (GPD 4.3) decreased the itaconic acid production. Using 20 different media, copper was discovered to have a positive influence on itaconic acid production. Effects observed in the micro-titer plate screening were confirmed in controlled batch fermentation. Conclusions The performance of gpdA and hbd1 transformants was found not to be beneficial for itaconic acid production using the tested cultivation conditions. Medium optimization showed that, copper was positively correlated with improved itaconic acid production. Interestingly, the optimal conditions for itaconic acid clearly differ from conditions optimal for citric- and oxalic acid production. PMID:22925689

  19. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  20. A low fat diet enhances polyunsaturated fatty acid desaturation and elongation independent of n3 enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low fat diets are associated with risk reduction for chronic metabolic diseases compared to high fat diets. To evaluate effects of varied fat and fatty acid intake on lipid metabolism, phospholipid fatty acids (PLFA) were measured and delta 5 and 6 desaturase activities (D5D, D6D) were calculated in...

  1. Enhanced antimicrobial activity of monoglyceride of 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural modification of lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids can lead to formation of oxylipin such as hydroxy fatty acids. One of the multi-hydroxy fatty acids, 7,10-dihydroxy-8(E)-...

  2. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  3. Effects of permeation enhancers on flufenamic acid delivery in Ex vivo human skin by confocal Raman microscopy.

    PubMed

    Pyatski, Yelena; Zhang, Qihong; Mendelsohn, Richard; Flach, Carol R

    2016-05-30

    For effective topical delivery, a drug must cross the stratum corneum (SC) barrier into viable tissue. The use of permeation enhancers is a widespread approach for barrier modification. In the current study, flufenamic acid (FluA), a non-steroidal anti-inflammatory drug, is a model agent for investigating the influence of hydrophobic versus hydrophilic enhancers. In separate experiments, FluA in octanol or propylene glycol/ethanol (75/25) is applied to the SC for varying times followed by confocal Raman microscopic mapping of drug and enhancer penetration and spatial distribution. Deuterated versions of the enhancers permit us to spectroscopically distinguish the exogenous chemicals from the endogenous SC lipids without affecting penetration parameters. The FluA pathway is tracked by the CC stretching mode at ∼1618cm(-1). Discrete, small inclusions of both enhancers are observed throughout the SC. High concentrations of FluA are co-localized with octanol domains which appear to provide a pathway to the viable epidermis for the drug. In contrast, FluA concentrates in the upper SC when using the hydrophilic agent and endogenous lipids appear unperturbed in regions outside the enhancer pockets. The ability to examine perturbations to endogenous ultrastructure and molecular structure in skin while tracking penetration pathways provides insight into delivery mechanisms. PMID:27063850

  4. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. PMID:17323349

  5. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    PubMed

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. PMID:25682224

  6. The Utility of Gadoxetic Acid-Enhanced MR Imaging to Characterize Atypical Cirrhotic Nodules Detected on Dynamic CT Images

    PubMed Central

    Chou, Chen-Te; Wu, Wen-Pei; Chen, Chia-Bang; Su, Wei-Wen; Chen, Ran-Chou; Chen, Yao-Li

    2014-01-01

    Purpose To evaluate whether gadoxetic acid (Gd-EOB-DTPA)-enhanced MR images of tumors taken during the hepatocyte-specific phase can aid in the differentiation between hepatocellular carcinoma (HCC) and dysplastic nodules (DNs) in patients with atypical cirrhotic nodules detected on dynamic CT images. Materials and Methods Seventy-one patients with 112 nodules showing atypical dynamic enhancement on CT images underwent gadoxetic acid-enhanced MR imaging (MRI) studies. Using a reference standard, we determined that 33 of the nodules were DNs and that 79 were true HCCs. Tumor size, signal intensity on precontrast T1-weighted images (T1WI) and T2WI, and the pattern of dynamic enhancement on MR images taken in the hepatocyte-phase were determined. Results There were significant differences in tumor size, hyperintensity on T2WI, hypointensity on T1WI, typical HCC enhancement pattern on dynamic MR images, or hypointensity on hepatocyte-phase images between DNs and HCC. The sensitivity and specificity were 60.8% and 87.9% for T2WI, 38.0% and 87.9% for T1WI, 17.7% and 100% for dynamic MR imaging, 83.5% and 84.9% for hepatocyte-phase imaging, and 60.8% and 87.9% for tumor size (threshold of 1.7 cm). Conclusion Gd-EOB-DTPA-enhanced hepatocyte-phase imaging is recommended for patients at high risk of HCC who present with atypical lesions on dynamic CT images. PMID:25310817

  7. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis.

    PubMed

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-03-01

    This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, L-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing L-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production. PMID:26658821

  8. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate.

    PubMed

    Zhao, Lili; Blackburn, Jonathan; Brosseau, Christa L

    2015-01-01

    Uric acid is a potential important biomarker in urine and serum samples for early diagnosis of preeclampsia, a life-threatening hypertensive disorder that occurs during pregnancy. Preeclampsia is a leading cause of maternal death, especially in developing nation settings. Quantitative detection of uric acid for rapid and routine diagnosis of early preeclampsia using electrochemical-surface enhanced Raman spectroscopy (EC-SERS) is presented herein. A uniform EC-SERS active Au/Ag substrate was developed by depositing nearly monodisperse gold and silver nanoparticles on the carbon working electrode surface of screen printed electrodes. The multilayered Au/Ag substrates were characterized by electron microscopy and used for quantitative detection of uric acid in 0.1 M NaF and synthetic urine at clinically relevant concentrations. These results showed a linear relationship between the EC-SERS signal intensity and the uric acid concentration. Relative errors calculated for selected concentrations were all within the Clinical Laboratory Improvement Amendments (CLIA) criterion for uric acid analysis (±17%). It is believed that routine and early diagnosis of disease could be possible through such quantitative detection of biomarkers in patient samples using this EC-SERS method. PMID:25483146

  9. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    SciTech Connect

    Arpino, James A. J.; Rizkallah, Pierre J.; Jones, D. Dafydd

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  10. Synergistic transcriptional enhancement does not depend on the number of acidic activation domains bound to the promoter.

    PubMed Central

    Oliviero, S; Struhl, K

    1991-01-01

    Many eukaryotic transcriptional activator proteins contain a DNA-binding domain that interacts with specific promoter sequences and an acidic activation region that is required to stimulate transcription. Transcriptional enhancement by such activator proteins is often synergistic and promiscuous; promoters containing multiple binding sites for an individual protein or even for unrelated proteins can be 10-100 times more active than promoters with single sites. It has been suggested that such synergy reflects a nonlinear response of the basic transcription machinery to the number and/or quality of acidic activation regions. Here, we determine the transcriptional activity of Jun-Fos heterodimers containing one or two GCN4 acidic activation regions on promoters containing one or two Ap-1 target sites. Surprisingly, heterodimers with one or two acidic regions activate transcription with similar efficiency and are equally synergistic (10- to 15-fold) on promoters containing two target sites. Thus, transcriptional synergy does not depend on the number of acidic activation regions but rather on the number of proteins bound to the promoter. This suggests that synergy is mediated either by cooperative DNA binding or by alternative mechanisms in which the DNA-binding domain plays a more direct role in transcription (e.g., changes in DNA structure, nucleosome displacement, or direct interactions with the transcriptional machinery). Images PMID:1898773

  11. Knockout of mouse Cyp3a gene enhances synthesis of cholesterol and bile acid in the liver[S

    PubMed Central

    Hashimoto, Mari; Kobayashi, Kaoru; Watanabe, Mio; Kazuki, Yasuhiro; Takehara, Shoko; Inaba, Asumi; Nitta, Shin-ichiro; Senda, Naoto; Oshimura, Mitsuo; Chiba, Kan

    2013-01-01

    Here, we studied the effects of cytochrome P450 (CYP)3A deficiency on the mRNA expression of genes encoding regulators of hepatic cholesterol levels using Cyp3a-knockout (Cyp3a−/−) mice. The mRNA expression levels of genes encoding enzymes involved in cholesterol biosynthesis in the livers of Cyp3a−/− mice were higher than those of wild-type (WT) mice. Nuclear levels of sterol regulatory element-binding protein-2 (SREBP-2), which enhances cholesterol biosynthesis, were also higher in the livers of Cyp3a−/− mice. Binding of SREBP-2 to the Hmgcs1 gene promoter was more abundant in the livers of Cyp3a−/− mice. These results suggest that deficiency of CYP3A enzymes enhances transcription of genes encoding enzymes involved in cholesterol biosynthesis via activation of SREBP-2. On the other hand, hepatic cholesterol levels in Cyp3a−/− mice were 20% lower than those in WT mice. The mRNA expression levels of genes encoding enzymes involved in bile acid synthesis, plasma levels of 7α-hydroxy-4-cholesten-3-one and hepatic levels of total bile acid were significantly higher in Cyp3a−/− mice than in WT mice. These findings suggest that reduction of hepatic total cholesterol in Cyp3a−/− mice would be the consequence of enhanced bile acid synthesis. Therefore, CYP3A enzymes appear to play roles in the synthesis of cholesterol and bile acid in vivo. PMID:23709690

  12. Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli

    PubMed Central

    Radian, Adi; Aukema, Kelly G.; Aksan, Alptekin

    2015-01-01

    ABSTRACT Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. PMID:26530383

  13. Electrokinetic remediation. II. Amphoteric metals and enhancement with a weak acid

    SciTech Connect

    Wilson, D.J.; Rodriguez-Maroto, J.M.; Gomez-Lahoz, C.

    1995-09-01

    A one-dimensional model is developed for the electrokinetic treatment of aquifers contaminated with an ionic salt. Electrokinetic removal of amphoteric metals such as zinc and lead is simulated. The use of a weak acid (acetic acid) to neutralize a portion of the OH{sup {minus}} generated electrolytically in the cathode compartment is explored in connection with the electrokinetic removal of nonamphoteric metals such as copper and cadmium.

  14. Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13.

    PubMed

    McGrath, Rachel T; McKinnon, Thomas A J; Byrne, Barry; O'Kennedy, Richard; Terraube, Virginie; McRae, Emily; Preston, Roger J S; Laffan, Mike A; O'Donnell, James S

    2010-04-01

    von Willebrand factor (VWF) multimeric composition is regulated in plasma by ADAMTS13. VWF deglycosylation enhances proteolysis by ADAMTS13. In this study, the role of terminal sialic acid residues on VWF glycans in mediating proteolysis by ADAMTS13 was investigated. Quantification and distribution of VWF sialylation was examined by sequential digestion and high-performance liquid chromatography analysis. Total sialic acid expression on VWF was 167nmol/mg, of which the majority (80.1%) was present on N-linked glycan chains. Enzymatic desialylation of VWF by alpha2-3,6,8,9 neuraminidase (Neu-VWF) markedly impaired ADAMTS13-mediated VWF proteolysis. Neu-VWF collagen binding activity was reduced to 50% (+/- 14%) by ADAMTS13, compared with 11% (+/- 7%) for untreated VWF. Despite this, Neu-VWF exhibited increased susceptibility to other proteases, including trypsin, chymotrypsin, and cathepsin B. VWF expressing different blood groups exhibit altered ADAMTS13 proteolysis rates (O > or = B > A > or = AB). However, ABO blood group regulation of ADAMTS13 proteolysis was ablated on VWF desialylation, as both Neu-O-VWF and Neu-AB-VWF were cleaved by ADAMTS13 at identical rates. These novel data show that sialic acid protects VWF against proteolysis by serine and cysteine proteases but specifically enhances susceptibility to ADAMTS13 proteolysis. Quantitative variation in VWF sialylation therefore represents a key determinant of VWF multimeric composition and, as such, may be of pathophysiologic significance. PMID:19965639

  15. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    PubMed Central

    Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867

  16. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  17. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Theobald, P.K., Jr.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  18. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  19. Hepatic Gluconeogenesis Is Enhanced by Phosphatidic Acid Which Remains Uninhibited by Insulin in Lipodystrophic Agpat2−/− Mice*

    PubMed Central

    Sankella, Shireesha; Garg, Abhimanyu; Horton, Jay D.; Agarwal, Anil K.

    2014-01-01

    In this study we examined the role of phosphatidic acid (PA) in hepatic glucose production (HGP) and development of hepatic insulin resistance in mice that lack 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2). Liver lysophosphatidic acid and PA levels were increased ∼2- and ∼5-fold, respectively, in male Agpat2−/− mice compared with wild type mice. In the absence of AGPAT2, the liver can synthesize PAs by activating diacylglycerol kinase or phospholipase D, both of which were elevated in the livers of Agpat2−/− mice. We found that PAs C16:0/18:1 and C18:1/20:4 enhanced HGP in primary WT hepatocytes, an effect that was further enhanced in primary hepatocytes from Agpat2−/− mice. Lysophosphatidic acids C16:0 and C18:1 failed to increase HGP in primary hepatocytes. The activation of HGP was accompanied by an up-regulation of the key gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This activation was suppressed by insulin in the WT primary hepatocytes but not in the Agpat2−/− primary hepatocytes. Thus, the lack of normal insulin signaling in Agpat2−/− livers allows unrestricted PA-induced gluconeogenesis significantly contributing to the development of hyperglycemia in these mice. PMID:24425876

  20. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars.

    PubMed

    Atsumi, Go; Kagaya, Uiko; Kitazawa, Hiroaki; Nakahara, Kenji Suto; Uyeda, Ichiro

    2009-02-01

    The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination. PMID:19132869

  1. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome(®)) of Boswellia extract.

    PubMed

    Hüsch, Jan; Bohnet, Janine; Fricker, Gert; Skarke, Carsten; Artaria, Christian; Appendino, Giovanni; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2013-01-01

    The anti-inflammatory potential of Boswellia serrata gum resin extracts has been demonstrated in vitro and in animal studies as well as in pilot clinical trials. However, pharmacokinetic studies have evidenced low systemic absorption of boswellic acids (BAs), especially of KBA and AKBA, in rodents and humans. This observation has provided a rationale to improve the formulation of Boswellia extract. We present here the results of a murine comparative bioavailability study of Casperome™, a soy lecithin formulation of standardized B. serrata gum resin extract (BE), and its corresponding non-formulated extract. The concentration of the six major BAs [11-keto-β-boswellic acid (KBA), acetyl-11-keto-β-boswellic acid (AKBA), β-boswellic acid (βBA), acetyl-β-boswellic acid (AβBA), α-boswellic acid (αBA), and acetyl-α-boswellic acid (AαBA)] was evaluated in the plasma and in a series of tissues (brain, muscle, eye, liver and kidney), providing the first data on tissue distribution of BAs. Weight equivalent and equimolar oral administration of Casperome™ provided significantly higher plasma levels (up to 7-fold for KBA, and 3-fold for βBA quantified as area under the plasma concentration time curve, AUC(last)) compared to the non-formulated extract. This was accompanied by remarkably higher tissue levels. Of particular relevance was the marked increase in brain concentration of KBA and AKBA (35-fold) as well as βBA (3-fold) following Casperome™ administration. Notably, up to 17 times higher BA levels were observed in poorly vascularized organs such as the eye. The increased systemic availability of BAs and the improved tissue distribution, qualify Casperome™ for further clinical development to fully exploit the clinical potential of BE. PMID:23092618

  2. Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced D-Rdf by Ion Chromatography.

    NASA Astrophysics Data System (ADS)

    Jen, Jen-Fon

    1988-12-01

    Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur -rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur -rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent the back-flushing of trapping reagents between impingers when leak-checking, a design for the sampling train is suggested, which can be adopted in sample collections. Several reducing agents are studied for pretreating the sample collected in alkali -permanganate media. Besides the recommendation of the hydrogen peroxide solution in EPA method, methanol and formic acid are worth considering as alternate reducing agents in the pretreatment of alkaline-permanganate media prior to IC analysis. The first derivative conductivity detection mode is developed and used in IC system. It is efficient for the detection and quantification of overlapping peaks as well as being

  3. Enhanced bioethanol production from yellow poplar by deacetylation and oxalic acid pretreatment without detoxification.

    PubMed

    Kundu, Chandan; Lee, Hong-Joo; Lee, Jae-Won

    2015-02-01

    In order to produce ethanol from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH). Optimal deacetylation conditions were determined by a response surface methodology. The highest acetic acid concentration obtained was 7.06 g/L when deacetylation was performed at 60 °C for 80 min with 0.8% NaOH. Acetic acid was recovered by electrodialysis from the deacetylated hydrolysate. The oxalic acid pretreatment of deacetylated biomass was carried out and the hydrolysate directly used for ethanol production without detoxification. Ethanol yields ranged from 0.34 to 0.47 g/g and the highest ethanol yield was obtained when pretreatment was carried out at 150 °C with 50 mM oxalic acid. The highest ethanol concentration obtained from pretreated biomass was 27.21 g/L at 170 °C, using a 50 mM of oxalic acid for the simultaneous saccharification and fermentation (SSF). Overall, 20.31 g of ethanol was obtained by hydrolysate and SSF from 100 g of deacetylated yellow poplar. PMID:25205056

  4. Selectivity enhancement of Arsenazo(III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Matharu, Komal; Mittal, Susheel K.; Ashok Kumar, S. K.; Sahoo, Suban K.

    2015-06-01

    A new study has been conducted to quantify lanthanide(III) ions using Arsenazo III-polyaminocarboxylic acid (PACA) system. The study disclosed two different analytically important information: (i) λmax of lanthanide-Arsenazo III complexes for lighter lanthanides like Ce(III) and Nd(III) did not shift from its original position on addition of PACA and (ii) for heavier lanthanides like Dy(III), Tm(III) and Lu(III) a new λmax at 538 nm was observed, while wavelengths at 610 nm and 654 nm were disappeared in presence of ethylenediaminetertracetic acid (EDTA) and trans-1,2-Diaminocyclohexane-N,N,N‧,N‧-tetraacetic acid (DCTA), further the intensity of peak decreased with increase in lanthanide(III) ion concentration. Effect of ethylene glycol-bis(2-aminoethylether)-N,N,N‧,N‧-tetraacetic acid (EGTA) and N-(2-hydroxyethyl) ethylenediamine-N,N‧,N‧-triacetic acid (EDTA-OH) on Arsenzo(III)-Ln(III) complex is very weak and there is no analytically importance of such interaction. Moreover, this work confirms that Nd(III) and heavy lanthanides can be successfully determined with high accuracy in the working range of concentration of these metal ions.

  5. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production. PMID:26450510

  6. Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Yao, Shikui; Li, Guoqiang; Liu, Changpeng; Xing, Wei

    2015-06-01

    The development of facile, surfactant-free strategy for the scale-up production of catalysts with superior performance for energy science is an interesting challenge. Pd/C is synthesized using an in-situ method from PdO/C for formic acid electrooxidation based on the reducibility of formic acid. The morphology, composition and electrocatalytic properties are investigated using transmission electronmicroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, linear scan voltammograms (LSV) and chronoamperometry. The in-situ synthesized Pd nanoparticles show better distribution and smaller average particle size than the normally synthesized Pd/C, which indicates that the well-known Ostwald ripening is most limited in the synthesis process. The electrochemical measurements show that the Pd/C catalyst exhibits enhanced performance towards formic acid electrooxidation. For example, the peak current of the Pd/C catalyst is approximately three times that of the homemade Pd/C catalyst and twice as high as that of the commercial Pd/C catalyst in the LSV test. The in-situ synthesized Pd/C catalyst has potential application for direct formic acid fuel cells, and the in-situ route should be an effective strategy to synthesize high performance catalysts.

  7. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury

    PubMed Central

    Novitskaya, Tatiana; McDermott, Lee; Zhang, Ke Xin; Chiba, Takuto; Paueksakon, Paisit; Hukriede, Neil A.

    2013-01-01

    Phenylthiobutanoic acids (PTBAs) are a new class of histone deacetylase (HDAC) inhibitors that accelerate recovery and reduce postinjury fibrosis after ischemia-reperfusion-induced acute kidney injury. However, unlike the more common scenario in which patients present with protracted and less clearly defined onset of renal injury, this model of acute kidney injury gives rise to a clearly defined injury that begins to resolve over a short period of time. In these studies, we show for the first time that treatment with the PTBA analog methyl-4-(phenylthio)butanoate (M4PTB) accelerates recovery and reduces postinjury fibrosis in a progressive model of acute kidney injury and renal fibrosis that occurs after aristolochic acid injection in mice. These effects are apparent when M4PTB treatment is delayed 4 days after the initiating injury and are associated with increased proliferation and decreased G2/M arrest of regenerating renal tubular epithelial cells. In addition, there is reduced peritubular macrophage infiltration and decreased expression of the macrophage chemokines CX3Cl1 and CCL2. Since macrophage infiltration plays a role in promoting kidney injury, and since renal tubular epithelial cells show defective repair and a marked increase in maladaptive G2/M arrest after aristolochic acid injury, these findings suggest M4PTB may be particularly beneficial in reducing injury and enhancing intrinsic cellular repair even when administered days after aristolochic acid ingestion. PMID:24370591

  8. Enhanced Photocatalytic Performance of ZnS for Reversible Amination of α-oxo Acids by Hydrothermal Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Qiliang; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2012-08-01

    To understand how life could have originated on early Earth, it is essential to know what biomolecules and metabolic pathways are shared by extant organisms and what organic compounds and their chemical reaction channels were likely to have been primordially available during the initial phase of the formation of prebiotic metabolism. In a previous study, we demonstrated for the first time the reversible amination of α-oxo acids on the surface of photo-illuminated ZnS. The sulfide mineral is a typical component at the periphery of submarine hydrothermal vents which has been frequently argued as a very attractive venue for the origin of life. In this work, in order to simulate more closely the precipitation environments of ZnS in the vent systems, we treated newly-precipitated ZnS with hydrothermal conditions and found that its photocatalytic power was significantly enhanced because the relative crystallinity of the treated sample was markedly increased with increasing temperature. Since the reported experimental conditions are believed to have been prevalent in shallow-water hydrothermal vents of early Earth and the reversible amination of α-oxo acids is a key metabolic pathway in all extant life forms, the results of this work provide a prototypical model of the prebiotic amino acid redox metabolism. The amino acid dehydrogenase-like chemistry on photo-irradiated ZnS surfaces may advance our understanding of the establishment of archaic non-enzymatic metabolic systems.

  9. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Cappellari, Paula S.; García, Gonzalo; Florez-Montaño, Jonathan; Barbero, Cesar A.; Pastor, Elena; Planes, Gabriel A.

    2015-11-01

    Formic acid and adsorbed carbon monoxide electrooxidation on polycrystalline Pt and Au-modified Pt surfaces were studied by cyclic voltammetry, lineal sweep voltammetry and in-situ Fourier transform infrared spectroscopy techniques. With this purpose, a polycrystalline Pt electrode was modified by spontaneous deposition of gold atoms, achieving a gold surface coverage (θ) in the range of 0 ≤ θ ≤ 0.47. Results indicate the existence of two main pathways during the formic acid oxidation reaction, i.e. dehydration and dehydrogenation routes. At higher potentials than 0.5 V the dehydrogenation pathway appears to be the operative at both Pt and Au electrodes. Meanwhile, the dehydration reaction is the main pathway for Pt at lower potentials than 0.5 V. It was found that reaction routes are easily tuned by Au deposition on the Pt sites responsible for the formic acid dehydration reaction, and hence for the catalytic formation of adsorbed carbon monoxide. Gold deposition on these Pt open sites produces an enhanced activity toward the HCOOH oxidation reaction. In general terms, the surface inhibition of the reaction by adsorbed intermediates (indirect pathway) is almost absent at gold-modified Pt electrodes, and therefore the direct pathway appears as the main route during the formic acid electrooxidation reaction.

  10. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao; Zhu, Jianbing; Liang, Liang; Liu, Changpeng; Liao, Jianhui; Xing, Wei

    2012-07-01

    The preparation of highly dispersed precious metal catalysts is an important subject for fuel cell applications. Here, using a phosphomolybdic acid (PMo12)-assisted method, a Pd-PMo12/C catalyst with uniform Pd nanoparticles is prepared. The TEM results show that the presence of PMo12 facilitates the formation of uniform Pd particles with an average particle size of 3.2 nm. More importantly, the Pd-PMo12/C catalyst displays an enhanced activity and stability for formic acid electro-oxidation and a better tolerance toward CO poisoning than Pd nanocatalysts prepared with sodium citrate as a stabilizer. A combination of the composition and structure analyses show that the reasons for the improved electro-catalytic activity of the Pd-PMo12/C catalyst involve the metal-support interaction, the richer Pd oxide/hydrous oxide content and the inherent properties of PMo12.

  11. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    do Nascimento, Clístenes Williams A; Amarasiriwardena, Dula; Xing, Baoshan

    2006-03-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. PMID:16125291

  12. Microwell array-mediated delivery of lipoplexes containing nucleic acids for enhanced therapeutic efficacy.

    PubMed

    Wu, Yun; Gallego-Perez, Daniel; Lee, L James

    2015-01-01

    Many delivery methods have been developed to improve the therapeutic efficacy and facilitate the clinical translation of nucleic acids-based therapeutics. We present a facile microwell array to mediate the delivery of nucleic acids carried by lipoplexes, which combines the advantages of lipoplexes as an efficient carrier system, the surface mediated delivery, and the control of surface topography. This method shows much higher transfection efficiency than conventional transfection method for oligodeoxynucleotides and microRNAs, and thus significantly reduces the effective therapeutic dosages. Microwell array is also a very flexible platform. Multifunctional lipoplexes containing both nucleic acid therapeutics and imaging reagents can be easily prepared in the microwell array and efficiently delivered to cells, demonstrating its potential applications in theranostic medicine. PMID:25319649

  13. Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment.

    PubMed

    Park, Gwon Woo; Kim, Ilgook; Jung, Kwonsu; Seo, Charles; Han, Jong-In; Chang, Ho Nam; Kim, Yeu-Chun

    2015-08-01

    Rice straw is one of the most abundant renewable biomass sources and was selected as the feedstock for the production of volatile fatty acids (VFAs) from which microbial biodiesel can be produced. Two kinds of chemical pretreatments involving nitric acid and sodium hydroxide were investigated at 150 °C with 20 min of reaction time. The nitric acid pretreatment generated the most hemicellulose hydrolyzate, while significant reduction of the lignin occurred with sodium hydroxide pretreatment. Anaerobic digestion of 20 g/L rice straw yielded 6.00 and 7.09 g VFAs/L with 0.5% HNO3 and 2% NaOH, respectively. The VFAs yield with 2% NaOH was 0.35 g/g. PMID:25764527

  14. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.

    PubMed

    Meek, Kirsten N; Rangel, Alexandra E; Heemstra, Jennifer M

    2016-08-15

    Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids. PMID:27012179

  15. Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia

    SciTech Connect

    Liu, S.C.; Webster, D.A.; Wei, M.L.; Stark, B.C.

    1996-01-05

    Xanthomonas maltophilia was transformed with the gene encoding Vitreoscilla (bacterial) hemoglobin, vgb, and the growth of the engineered strain was compared with that of the untransformed strain using benzoic acid as the sole carbon source. In general, growth of the engineered strain was greater than that of the untransformed strain; this was true for experiments using both overnight cultures and log phase cells as inocula, but particularly for the latter. In both cases the engineered strain was also more efficiency than the untransformed strain in converting benzoic acid into biomass.

  16. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  17. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion

    PubMed Central

    Chen, Liang; Xu, Changqi; Wang, Yong; Shi, Jian; Yu, Qingsong

    2012-01-01

    The purpose of this research was to investigate the influence of the glyoxylic acid (GA) modification of hydroxyapatite (HAP) nanofibers on their dispersion in bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental composites and also investigate the mechanical properties, water absorption, and water solubility of the resulting dental resins and composites. Scanning/Transmission electron microscopy (STEM) images showed that microsized HAP nanofiber bundles could be effectively broken down to individual HAP nanofibers with an average length of ~15 μm after the surface modification process. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) characterization confirmed glyoxylic acid was chemically grafted on the HAP nanofiber surface, hypothetically by reacting with the amine group on HAP nanofiber surface. The enhanced dispersion of HAP nanofibers in dental matrix led to increased biaxial flexural strength (BFS) compared with the corresponding dental resins and composites filled with untreated HAP nanofibers. In addition, impregnation of small mass fractions of the glyoxylic acid modified HAP nanofibers into the BisGMA/TEGDMA dental resins (5wt%, 10wt%) or composites (2wt%, 3wt%) could also substantially improve the BFS in comparison with the controls(pure resins or dental composites filled with silica particles alone). Larger mass fractions could not further increase the mechanical property or even degrade the BFS values. Water behavior testing results indicated that the addition of glyoxylic acid modified HAP nanofibers resulted in higher water absorption and water solubility values which is not preferred for clinical application. In summary, well dispersed HAP nanofibers and their dental composites with enhanced mechanical property have been successfully fabricated but the water absorption and water solubility of such dental composites need to be

  18. Portal Vein Thrombosis in Patients with Hepatocellular Carcinoma: Diagnostic Accuracy of Gadoxetic Acid-enhanced MR Imaging.

    PubMed

    Kim, Jae Hyun; Lee, Jeong Min; Yoon, Jeong Hee; Lee, Dong Ho; Lee, Kyung Bun; Han, Joon Koo; Choi, Byung Ihn

    2016-06-01

    Purpose To assess the diagnostic performance of gadoxetic acid-enhanced magnetic resonance (MR) imaging in the evaluation of portal vein thrombosis (PVT) in patients with hepatocellular carcinoma (HCC). Materials and Methods This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. A total of 366 patients with HCC who underwent gadoxetic acid-enhanced MR imaging between January 2007 and May 2013, including 134 with malignant PVT, 49 with benign PVT, and 183 without PVT matched for age and sex, comprised our study population. PVTs were complete in 125 patients and partial in 58 and were located in a major portal vein (n = 159) or segmental portal vein (n = 24). Two radiologists independently reviewed the MR images and assessed the sensitivity, specificity, and accuracy in the detection and characterization of PVT according to location (major vs segmental) and type (complete vs partial). The Fisher exact or χ(2) test was used to evaluate sensitivity difference between the subsets. Results Gadoxetic acid-enhanced MR imaging showed good sensitivity (reviewer 1, 84% [154 of 183 patients]; reviewer 2, 70% [129 of 183 patients]) and high specificity (reviewer 1, 89% [163 of 183 patients]; reviewer 2, 96% [176 of 183 patients]) in the detection of PVT. Diagnostic accuracy for differentiating malignant PVT from benign PVT was high (reviewer 1, 92% [141 of 154 patients]; reviewer 2, 95% [122 of 129 patients]). However, there was slightly lower sensitivity for detecting segmental PVT compared with that of major PVT in the malignant PVT group (reviewer 1, 95% [104 of 110 patients] vs 88% [21 of 24 patients]; reviewer 2, 82% [90 of 110 patients] vs 79% [19 of 24 patients]; P = .203 and .775 for reviewers 1 and 2, respectively). Conclusion Gadoxetic acid-enhanced MR imaging provided good diagnostic performance in the detection of PVT and the differentiation of malignant from benign PVT in patients with HCC

  19. Study on the fluorescence enhancement in Lanthanum(III)-carminic acid-cetyltrimethylammonium bromide system and its analytical application.

    PubMed

    Wang, Feng; Huang, Wei; Li, Kexiang; Li, Aihua; Gao, Wei; Tang, Bo

    2011-09-01

    A fluorescent enhancement system carminic acid (CA)-La3+-CTAB is found and based on this finding a new fluorimetric method for the determination of CA is developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of CA in the range of 0.01231-12.31 μg mL(-1). The detection limit is 10.92 ng mL(-1). Compared with other methods that have been reported to determine CA, this method has high sensitivity, stability and wide linear range. In addition, the luminescence mechanism indicates that the complex of La3+-CA (1:2) forms and solubilizes in CTAB micelle. PMID:21703912

  20. Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca2+ current in sympathetic neurons

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R.

    2003-01-01

    N-type Ca2+ channels participate in acute activity-dependent processes such as regulation of Ca2+-activated K+ channels and in more prolonged events such as gene transcription and long-term depression. A slow postsynaptic M1 muscarinic receptor-mediated modulation of N-type current in superior cervical ganglion neurons may be important in regulating these processes. This slow pathway inhibits N-type current by using a diffusible second messenger that has remained unidentified for more than a decade. Using whole-cell patch–clamp techniques, which isolate the slow pathway, we found that the muscarinic agonist oxotremorine methiodide not only inhibits currents at positive potentials but enhances N-type current at negative potentials. Enhancement was also observed in cell-attached patches. These findings provide evidence for N-type Ca2+-current enhancement by a classical neurotransmitter. Moreover, enhancement and inhibition of current by oxotremorine methiodide mimics modulation observed with direct application of a low concentration of arachidonic acid (AA). Although no transmitter has been reported to use AA as a second messenger to modulate any Ca2+ current in either neuronal or nonneuronal cells, we nevertheless tested whether a fatty acid signaling cascade was involved. Blocking phospholipase C, phospholipase A2, or AA but not AA metabolism minimized muscarinic modulation of N-type current, supporting the participation of these molecules in the slow pathway. A role for the G protein Gq was also confirmed by blocking muscarinic modulation of Ca2+ currents with anti-Gqα antibody. Our finding that AA participates in the slow pathway strongly suggests that it may be the previously unknown diffusible second messenger. PMID:12496347

  1. [The use of hydroxamic acids and sodium nitrate to enhance the antitumor effect of cyclophosphamide].

    PubMed

    Bogatyrenko, T N; Kuropteva, Z V; Sashenkova, T E; Baĭder, L M; Konovalova, N P

    2013-01-01

    It has been showed that the introduction of nitrocompounds (as nitic oxide donors) in to the compositions of cyclophosphamide and hydroxamic acids for curing animals having leukemia P-388 increased duration of life by 290%. Thereby 40% of animals have recovered. The therapeutic dose cyclophosphamide have been reduced by 6 times. PMID:23814833

  2. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids

    PubMed Central

    Grangette, Corinne; Nutten, Sophie; Palumbo, Emmanuelle; Morath, Siegfried; Hermann, Corinna; Dewulf, Joelle; Pot, Bruno; Hartung, Thomas; Hols, Pascal; Mercenier, Annick

    2005-01-01

    Teichoic acids (TAs), and especially lipoteichoic acids (LTAs), are one of the main immunostimulatory components of pathogenic Gram-positive bacteria. Their contribution to the immunomodulatory properties of commensal bacteria and especially of lactic acid bacteria has not yet been investigated in detail. To evaluate the role of TAs in the interaction between lactic acid bacteria and the immune system, we analyzed the antiinflammatory properties of a mutant of Lactobacillus plantarum NCIMB8826 affected in the TA biosynthesis pathway both in vitro (mononuclear cells stimulation) and in vivo (murine model of colitis). This Dlt- mutant was found to incorporate much less d-Ala in its TAs than the WT strain. This defect significantly impacted the immunomodulation reactions induced by the bacterium, as shown by a dramatically reduced secretion of proinflammatory cytokines by peripheral blood mononuclear cells and monocytes stimulated by the Dlt- mutant as compared with the parental strain. Concomitantly, a significant increase in IL-10 production was stimulated by the Dlt- mutant in comparison with the WT strain. Moreover, the proinflammatory capacity of L. plantarum-purified LTA was found to be Toll-like receptor 2-dependent. Consistent with the in vitro results, the Dlt- mutant was significantly more protective in a murine colitis model than its WT counterpart. The results indicated that composition of LTA within the whole-cell context of L. plantarum can modulate proinflammatory or antiinflammatory immune responses. PMID:15985548

  3. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  4. Chlorogenic Acid Enhances Abdominal Skin Flap Survival Based on Epigastric Artery in Nondiabetic and Diabetic Rats.

    PubMed

    Bagdas, Deniz; Etoz, Betul Cam; Gul, Zulfiye; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Inan, Sevda; Buyukcoskun, Naciye Isbil; Ozluk, Kasim; Gurun, Mine Sibel

    2016-08-01

    Previous studies showed that chlorogenic acid (CGA) accelerates wound healing via its antioxidant activity. We aimed to investigate the effect of CGA in an experimental epigastric abdominal skin flap model in nondiabetic and diabetic rats. Rats were firstly divided into 2 groups: nondiabetic and diabetic. Diabetes was induced by streptozotocin. Then, 4 subgroups were created for each group: vehicle as well as 0.2 mg/0.5 mL, 1 mg/0.5 mL, and 5 mg/0.5 mL CGA treatments. Right epigastric artery-based abdominal skin flaps were elevated and sutured back into their original position. Chlorogenic acid or vehicle was injected once into the femoral arteries by leaving the epigastric artery as the single artery feeding the flaps during the injection. On postoperative day 7, flap survivals were evaluated, and the rats were killed. Distal flap tissues were collected for histopathological and biochemical assays. Chlorogenic acid showed greater flap survival in both nondiabetic and diabetic rats. Capillary density was increased, and necrosis was reduced in the CGA-treated rats. Chlorogenic acid decreased malondialdehyde levels as well as increased reduced glutathione and superoxide dismutase levels in the flap tissues. This study showed that CGA significantly improved flap survival by its antioxidant activities with intra-arterial local injections. PMID:25356637

  5. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    PubMed Central

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  6. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 1. FIELD TEST RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of the effect of adding adipic acid on the SO2 removal of a wet limestone flue gas desulfurization (FGD) system on a coal-fired industrial boiler at Rickenbacker Air National Guard Base near Columbus, OH. Emission data were collected in a...

  7. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...

  8. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  9. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. PMID:27164255

  10. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44.

    PubMed

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  11. Sulfuric acid and hot water treatments enhance ex vitro and in vitro germination of Hibiscus seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of Hibiscus dasycalyx S. F. Blake & Shiller, a federally listed candidate endangered species and native to North America, and two variants of Hibiscus acetosella Welw. ex. Hiern were scarified using sulfuric acid and hot water. The effects of the scarification methods on in vitro and ex vitro ...

  12. Bacterial fatty acids enhance recovery from the dauer larva in Caenorhabditis elegans.

    PubMed

    Kaul, Tiffany K; Reis Rodrigues, Pedro; Ogungbe, Ifedayo V; Kapahi, Pankaj; Gill, Matthew S

    2014-01-01

    The dauer larva is a specialized dispersal stage in the nematode Caenorhabditis elegans that allows the animal to survive starvation for an extended period of time. The dauer does not feed, but uses chemosensation to identify new food sources and to determine whether to resume reproductive growth. Bacteria produce food signals that promote recovery of the dauer larva, but the chemical identities of these signals remain poorly defined. We find that bacterial fatty acids in the environment augment recovery from the dauer stage under permissive conditions. The effect of increased fatty acids on different dauer constitutive mutants indicates a role for insulin peptide secretion in coordinating recovery from the dauer stage in response to fatty acids. These data suggest that worms can sense the presence of fatty acids in the environment and that elevated levels can promote recovery from dauer arrest. This may be important in the natural environment where the dauer larva needs to determine whether the environment is appropriate to support reproductive growth following dauer exit. PMID:24475206

  13. Elevated carbon dioxide levels enhance rosmarinic acid production in spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C20 diterpene rosmarinic acid (RA) is synthesized in the phenylpropanoid pathway and is constitutively expressed in spearmint (Mentha spicata L.) plantlets grown in vitro. RA levels within plantlet leaves were found to be readily manipulated by the nutritional and physical environments. Higher...

  14. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  15. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    SciTech Connect

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  16. Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2013-04-01

    High-level production of lactobionic acid from whey by Pseudomonas taetrolens under fed-batch fermentation was achieved in this study. Different feeding strategies were evaluated according to the physiological status and fermentation performance of P. taetrolens. A lactobionic acid titer of 164 g/L was obtained under co-feeding conditions affording specific and volumetric productivities of 1.4 g/g h and 2.05 g/L h, respectively. Flow cytometry assessment revealed that P. taetrolens cells exhibited a robust physiological status, which makes them particularly well-suited for employing concentrated nutrient solutions to further prolong the growth and production phases. Such detailed knowledge of the physiological status has been revealed to be a key issue to further support the development of high-yield lactobionic acid production processes under feeding strategies. The present study has demonstrated the feasibility of P. taetrolens to achieve high-level bio-production of lactobionic acid from whey through fed-batch cultivation, suggesting its major potential for industrial-scale implementation. PMID:23500570

  17. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    SciTech Connect

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  18. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  19. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  20. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.

    PubMed

    Chen, Liwei; Zhang, Jianhua; Lee, Jaslyn; Chen, Wei Ning

    2014-08-01

    Production of biofuels derived from microbial fatty acids has attracted great attention in recent years owing to their potential to replace petroleum-derived fuels. To be cost competitive with current petroleum fuel, flux toward the direct precursor fatty acids needs to be enhanced to approach high yields. Herein, fatty acyl-CoA metabolism in Saccharomyces cerevisiae was engineered to accumulate more free fatty acids (FFA). For this purpose, firstly, haploid S. cerevisiae double deletion strain △faa1△faa4 was constructed, in which the genes FAA1 and FAA4 encoding two acyl-CoA synthetases were deleted. Then the truncated version of acyl-CoA thioesterase ACOT5 (Acot5s) encoding Mus musculus peroxisomal acyl-CoA thioesterase 5 was expressed in the cytoplasm of the strain △faa1△faa4. The resulting strain △faa1△faa4 [Acot5s] accumulated more extracellular FFA with higher unsaturated fatty acid (UFA) ratio as compared to the wild-type strain and double deletion strain △faa1△faa4. The extracellular total fatty acids (TFA) in the strain △faa1△faa4 [Acot5s] increased to 6.43-fold as compared to the wild-type strain during the stationary phase. UFA accounted for 42 % of TFA in the strain △faa1△faa4 [Acot5s], while no UFA was detected in the wild-type strain. In addition, the expression of Acot5s in △faa1△faa4 restored the growth, which indicates that FFA may not be the reason for growth inhibition in the strain △faa1△faa4. RT-PCR results demonstrated that the de-repression of fatty acid synthesis genes led to the increase of extracellular fatty acids. The study presented here showed that through control of the acyl-CoA metabolism by deleting acyl-CoA synthetase and expressing thioesterase, more FFA could be produced in S. cerevisiae, demonstrating great potential for exploitation in the platform of microbial fatty acid-derived biofuels. PMID:24769906

  1. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-01

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles. PMID:25860315

  2. Enhanced Enzymatic Preparation of Biodiesel Using Ricinoleic Acid as Acyl Donor: Optimization Using Response Surface Methodology.

    PubMed

    Wang, Ping; Sun, Shangde

    2016-09-01

    Castor oil methyl ester is a kind of biodiesel from castor oil. However, in those previous methods for biodiesel preparation using castor oil as feedstock, glycerol was the main by-product, which had a strong blocking effect on the immobilized enzyme activity and affected the mass transfer of reaction system. For avoiding the negative effect of glycerol on the enzymatic esterification, biodiesel was prepared using ricinoleic acid (RA) as acyl donor. Enzyme screening was also studied, and the effects of reaction temperature, molar ratio of ricinoleic acid and methanol, enzyme load, and reaction time, on the preparation of castor methyl ester were also evaluated. Response surface methodology (RSM) was used to optimize the interaction effect of reaction variables (reaction temperature (30-70°C), enzyme load (2-7%; relative to the weight of total substrates), molar ratio of methanol to ricinoleic acid (2:1-10:1), and reaction time (0.5-2.5 h)) on the acid value (AV) and the degree of esterification (DE). Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of AV and DE. The optimum preparation conditions were as follows: reaction temperature, 48.2°C; enzyme load, 5.8%; molar ratio of methanol to ricinoleic acid, 5.56:1; reaction time, 2.36 h. Under these conditions, the AV and DE of the esterification reaction are 10.36±1.05 mgKOH/g and 94.03±0.60%, respectively. The relationship between initial reaction rate and temperature was also established, and the activation energy (Ea) of the enzymatic esterification is 33.87 KJ/mol. PMID:27477073

  3. Linoelaidic acid enhances adipogenic differentiation in adipose tissue-derived stromal cells through suppression of Wnt/β-catenin signaling pathway in vitro.

    PubMed

    Wang, Jihui; Liang, Yuan; Jian, Luyang; Zhang, Jingwei; Liang, Shuai; Xiao, Shan; Liu, Bingnan; Wang, Han

    2016-07-01

    Obesity has become a major health problem which is related with high-trans fatty acids diet. Adipogenic differentiation of adipose tissue-derived stromal cells (ADSCs) plays an important role in the development of adipose tissue. In order to determine the effect of trans fatty acids on adipogenic differentiation in ADSCs, cells were treated with linoelaidic acid, as well as linoleic acid and linolenic acid. We found that linoelaidic acid significantly increased the lipid droplet formation and triglyceride content compared with linoleic acid and linolenic acid. Linoelaidic acid also down-regulated the levels of β-catenin in cells and inhibited the accumulation of β-catenin in cell nuclei. Lithium chloride, an activator of Wnt/β-catenin pathway, antagonized the enhancement of linoelaidic acid on adipogenesis and up-regulated the levels of β-catenin in ADSCs. These results indicated that linoelaidic acid could enhance the adipogenic differentiation in ADSCs in vitro, which is partly due to the suppression of Wnt/β-catenin pathway. PMID:27255637

  4. Enhancement of differentiation induction and upregulation of CCAAT/enhancer-binding proteins and PU.1 in NB4 cells treated with combination of ATRA and valproic acid.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Yoshino, Yuta; Hatta, Yoshihiro; Horikoshi, Akira; Aizawa, Shin; Takei, Masami; Takeuchi, Jin; Takagi, Norio; Toyoda, Hiroo

    2014-03-01

    The effects of all-trans retinoic acid (ATRA) and valproic acid (VPA), alone and in combination, on the human acute promyelocytic leukemia (APL) cell line NB4 were investigated in view of differentiation induction and growth inhibition. After 48 h of treatment, not only ATRA but also VPA induced differentiation in NB4 cells, and their combination further augmented the differentiation activity. Furthermore, the upregulation of transcription factors including CCAAT/enhancer-binding proteins (CEBPα, β, ε) and PU.1, which are known to be critical factors for normal myelopoiesis, granulocytic maturation and being repressed in APL, concurred with the differentiation induction. A significant cell growth inhibition was observed after the treatment with VPA, which was further strengthened by the addition of ATRA. Given the importance of C/EBPs and PU.1 in myeloid development, these results, thus, suggest that restoration of the normal function of the myeloid cell transcriptional machinery is a major molecular mechanism underlying the differentiation induction in NB4. Therefore, these results may provide novel insights into a possible combinational therapeutic approach for APL patients. PMID:24379003

  5. Salicylic acid derivatives as potential anti asthmatic agents using disease responsive drug delivery system for prophylactic therapy of allergic asthma.

    PubMed

    Raju, Kalidhindi Rama Satyanarayana; Ambhore, Nilesh S; Mulukutla, Shashank; Gupta, Saurabh; Murthy, Vishakantha; Kumar, M N Kiran; Madhunapantula, Subba Rao V; Kuppuswamy, Gowthamarajan; Elango, Kannan

    2016-02-01

    Asthma is a multi-factorial and complicated lung disorder of the immune system which has expanded to a wider ambit unveiling its etiology to be omnipresent at both ends of the spectrum involving basic pharmacology and in-depth immunology. As asthma occurs through triggered activation of various immune cells due to different stimuli, it poses a great challenge to uncover specific targets for therapeutic interventions. Recent pharmacotherapeutic approaches for asthma have been focused on molecular targeting of transcription factors and their signaling pathways; mainly nucleus factor kappa B (NFκB) and its associated pathways which orchestrate the synthesis of pro-inflammatory cytokines (IL-1β, TNF-α, GM-CSF), chemokines (RANTES, MIP-1a, eotaxin), adhesion molecules (ICAM-1, VCAM-1) and inflammatory enzymes (cyclooxygenase-2 and iNOS). 5-aminosalicylic acid (5-ASA) and sodium salicylate are known to suppress NFκB activation by inhibiting inhibitor of kappa B kinase (IKκB). In order to target the transcription factor, a suitable carrier system for delivering the drug to the intracellular space is essential. 5-ASA and sodium salicylate loaded liposomes incorporated into PEG-4-acrylate and CCRGGC microgels (a polymer formed by crosslinking of trypsin sensitive peptide and PEG-4-acrylate) could probably suit the needs for developing a disease responsive drug delivery system which will serve as a prophylactic therapy for asthmatic patients. PMID:26643666

  6. 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules.

    PubMed

    Mank, Marko; Stahl, Bernd; Boehm, Günther

    2004-05-15

    The performance of the new ionic liquid MALDI-MS matrix 2,5-dihydroxybenzoic acid butylamine (DHBB) was assessed and compared to results obtained with the ionic liquid MALDI-MS matrixes alpha-cyano-4-hydroxycinnamic acid butylamine (CHCAB), 3,5-dimethoxycinnamic acid triethylamine (SinTri), and the frequently used solid MALDI matrixes 2,5-dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA). The vacuum-stable, liquid consistency of ionic liquid matrix sample preparations considerably enhanced MALDI-MS analysis in terms of shot-to-shot reproducibility. Consequently, relative standard deviations serving as a measure for reproducibility of intensity-values acquired from 90 different spots on one MALDI-MS preparation were approximately one-half as high when solid DHB was replaced by the ionic liquid DHBB and eight times lower after exchange of solid CHCA by ionic liquid CHCAB. Interestingly, the ionic liquid MALDI matrix DHBB conserved the broad applicability of its solid analogue DHB, reduced MALDI induced fragmentation of monosialylated glycans and gangliosides, and was the superior ionic liquid matrix for MALDI-MS analysis of oligosaccharides and polymers, such as poly(ethylene glycol). It also worked well with glycoconjugates, peptides, and proteins; however, the tendency of DHBB to form multiple alkali adduct ions with peptides and proteins made CHCAB the ionic liquid matrix of choice for peptides. SinTri was the best ionic liquid matrix for proteins of high molecular weight, such as IgG. Furthermore, it was demonstrated for the first time that solvent properties and MALDI matrix properties of ionic liquids, such as DHBB, can be combined to enable fast, direct screening of an enzymatic reaction. This was proven by the desialylation of sialylactose with sialidase from Clostridium perfringens in the presence of diluted aqueous DHBB and subsequent direct MALDI-MS analysis of the reaction mixture. PMID:15144208

  7. A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity.

    PubMed

    Ko, Byoung-Seob; Kang, Suna; Moon, Bo Reum; Ryuk, Jin Ah; Park, Sunmin

    2016-01-01

    We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W. PMID:26884795

  8. A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity

    PubMed Central

    Ko, Byoung-Seob; Kang, Suna; Moon, Bo Reum; Ryuk, Jin Ah; Park, Sunmin

    2016-01-01

    We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W. PMID:26884795

  9. Preoperative Estimation of Future Remnant Liver Function Following Portal Vein Embolization Using Relative Enhancement on Gadoxetic Acid Disodium-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Matsushima, Shigeru; Inaba, Yoshitaka; Sano, Tsuyoshi; Yamaura, Hidekazu; Kato, Mina; Shimizu, Yasuhiro; Senda, Yoshiki; Ishiguchi, Tsuneo

    2015-01-01

    Objective To retrospectively evaluate relative enhancement (RE) in the hepatobiliary phase of gadoxetic acid disodium-enhanced magnetic resonance (MR) imaging as a preoperative estimation of future remnant liver (FRL) function in a patients who underwent portal vein embolization (PVE). Materials and Methods In 53 patients, the correlation between the indocyanine green clearance (ICG-K) and RE imaging was analyzed before hepatectomy (first analysis). Twenty-three of the 53 patients underwent PVE followed by a repeat RE imaging and ICG test before an extended hepatectomy and their results were further analyzed (second analysis). Whole liver function and FRL function were calculated on the MR imaging as follows: RE x total liver volume (RE Index) and FRL-RE x FRL volume (Rem RE Index), respectively. Regarding clinical outcome, posthepatectomy liver failure (PHLF) was evaluated in patients undergoing PVE. Results Indocyanine green clearance correlated with the RE Index (r = 0.365, p = 0.007), and ICG-K of FRL (ICG-Krem) strongly correlated with the Rem RE Index (r = 0.738, p < 0.001) in the first analysis. Both the ICG-Krem and the Rem RE Index were significantly correlated after PVE (r = 0.508, p = 0.013) at the second analysis. The rate of improvement of the Rem RE Index from before PVE to after PVE was significantly higher than that of ICG-Krem (p = 0.014). Patients with PHLF had a significantly lower Rem RE Index than patients without PHLF (p = 0.023). Conclusion Relative enhancement imaging can be used to estimate FRL function after PVE. PMID:25995681

  10. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The organo-Lewis acids are novel triarylboranes which are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  11. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The organo-Lewis acids are novel triarylboranes which are are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  12. An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells.

    PubMed

    An, Jinxia; Dai, Xiaomei; Wu, Zhongming; Zhao, Yu; Lu, Zhentan; Guo, Qianqian; Zhang, Xinge; Li, Chaoxing

    2015-08-10

    To reduce side-effects of anticancer drugs, development of nanocarriers with precise biological functions is a critical requirement. In this study, the multifunctional nanoparticles combining imaging and therapy for tumor-targeted delivery of hydrophobic anticancer drugs were prepared via self-assembly of amphiphilic copolymers obtained using RAFT polymerization, specifically, acid-labile ortho ester and galactose. First, boron-dipyrromethene dye-conjugated chain transfer agent provides fluorescent imaging capability for diagnostic application. Second, nanoparticles were stable under physiological conditions but degraded in acidic tumor microenvironment, leading to enhanced anticancer efficacy. Third, the application of biocompatible glycopolymers efficiently increased the target-to-background ratio through carbohydrate-protein interactions. Data from cell viability, cellular internalization, flow cytometry, biodistribution and anticancer efficacy tests showed that the drug-loaded nanoparticles were capable of inhibiting cancer cell proliferation with significantly enhanced capacity. Our newly developed multifunctional nanoparticles may thus facilitate the development of effective drug delivery systems for application in diagnosis and therapy of cancer. PMID:26213802

  13. A Novel Paramagnetic Relaxation Enhancement Tag for Nucleic Acids: A Tool to Study Structure and Dynamics of RNA

    PubMed Central

    2013-01-01

    In this work, we present a novel 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radical phosphoramidite building block, which can be attached to the 5′-terminus of nucleic acids. To investigate the paramagnetic relaxation enhancement (PRE) emanating from this radical center, we incorporated the TEMPO label into various types of RNAs. We measured proton PREs for selectively 13C-isotope labeled nucleotides to derive long-range distance restraints in a short 15 nucleotide stem–loop model system, underscoring the potential of the 5′-TEMPO tag to determine long-range distance restraints for solution structure determination. We subsequently applied the distance-dependent relaxation enhancement induced by the nitroxide radical to discern two folding states in a bistable RNA. Finally, we investigated the fast conformational sampling of the HIV-1 TAR RNA, a paradigm for structural flexibility in nucleic acids. With PRE NMR in combination with molecular dynamics simulations, the structural plasticity of this RNA was analyzed in the absence and presence of the ligand l-argininamide. PMID:24053726

  14. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process.

    PubMed

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Li, Guowei; Luu, Doan-Trung; Martínez-Ballesta, Maria del Carmen; Carvajal, Micaela; Zamarreño, Angel María; García-Mina, Jose María; Maurel, Christophe; Aroca, Ricardo

    2014-04-01

    The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation. We found that exogenous methyl jasmonate (MeJA) increased L of Phaseolus vulgaris, Solanum lycopersicum and Arabidopsis thaliana roots. Tomato plants defective in JA biosynthesis had lower values of L than wild-type plants, and that L was restored by addition of MeJA. The increase of L by MeJA was accompanied by an increase of the phosphorylation state of the aquaporin PIP2. We observed that MeJA addition increased the concentration of cytosolic calcium and that calcium channel blockers inhibited the rise of L caused by MeJA. Treatment with fluoridone, an inhibitor of ABA biosynthesis, partially inhibited the increase of L caused by MeJA, and tomato plants defective in ABA biosynthesis increased their L after application of MeJA. It is concluded that JA enhances L and that this enhancement is linked to calcium and ABA dependent and independent signalling pathways. PMID:24131347

  15. Aminolevulinic Acid-Photodynamic Therapy Combined with Topically Applied Vascular Disrupting Agent Vadimezan Led to Enhanced Antitumor Responses

    PubMed Central

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor-vascular disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a non-invasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. Additionally, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA assays to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared to ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. PMID:21575001

  16. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  17. Dietary histidine increases mouse skin urocanic acid levels and enhances UVB-induced immune suppression of contact hypersensitivity.

    PubMed

    Reilly, S K; De Fabo, E C

    1991-04-01

    Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine. PMID:1857737

  18. Enhancing the performance of lead-acid batteries with carbon - In pursuit of an understanding

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.; Rand, David A. J.; Peters, Ken

    2015-11-01

    The inherently poor dynamic charge-acceptance of the lead-acid battery can be greatly improved by the incorporation of additional carbon to the negative plate. An analysis is undertaken of the various ways by which the carbon may be introduced, and of the proposed mechanisms whereby its presence proves to be beneficial. It is intended that such an investigation should provide a guide to the selection of the optimum carbon inventory.

  19. Production of 5,8,11-Eicosatrienoic Acid (Mead Acid) by a (Delta)6 Desaturation Activity-Enhanced Mutant Derived from a (Delta)12 Desaturase-Defective Mutant of an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4

    PubMed Central

    Kawashima, H.; Nishihara, M.; Hirano, Y.; Kamada, N.; Akimoto, K.; Konishi, K.; Shimizu, S.

    1997-01-01

    Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter). PMID:16535598

  20. Production of 5,8,11-Eicosatrienoic Acid (Mead Acid) by a (Delta)6 Desaturation Activity-Enhanced Mutant Derived from a (Delta)12 Desaturase-Defective Mutant of an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4.

    PubMed

    Kawashima, H; Nishihara, M; Hirano, Y; Kamada, N; Akimoto, K; Konishi, K; Shimizu, S

    1997-05-01

    Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter). PMID:16535598

  1. Focal liver lesions detection and characterization: The advantages of gadoxetic acid-enhanced liver MRI

    PubMed Central

    Palmucci, Stefano

    2014-01-01

    Since its clinical introduction, several studies in literature have investigated gadolinium ethoxybenzhyl diethylenetriaminepentaacetic acid or gadoxetic acid (Gd-EOB-DTPA) properties. Following contrast injection, it provides dynamic vascular phases (arterial, portal and equilibrium phases) and hepatobiliary phase, the latter due to its uptake by functional hepatocytes. The main advantages of Gd-EOB-DTPA of focal liver lesion detection and characterization are discussed in this paper. Namely, we focus on the possibility of distinguishing focal nodular hyperplasia (FNH) from hepatic adenoma (HA), the identification of early hepatocellular carcinoma (HCC) and the pre-operative assessment of metastasis in liver parenchyma. Regarding the differentiation between FNH and HA, adenoma typically appears hypointense in hepatobiliary phase, whereas FNH is isointense or hyperintense to the surrounding hepatic parenchyma. As for the identification of early HCCs, many papers recently published in literature have emphasized the contribution of hepatobiliary phase in the characterization of nodules without a typical hallmark of HCC. Atypical nodules (no hypervascularizaton observed on arterial phase and/or no hypovascular appearance on portal phase) with low signal intensity in the hepatobiliary phase, have a high probability of malignancy. Finally, regarding the evaluation of focal hepatic metastases, magnetic resonance pre-operative assessment using gadoxetic acid allows for more accurate diagnosis. PMID:25067999

  2. Nanosheet-enhanced asymmetric induction of chiral α-amino acids in catalytic aldol reaction.

    PubMed

    Zhao, Li-Wei; Shi, Hui-Min; Wang, Jiu-Zhao; He, Jing

    2012-11-26

    An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α-amino acids and has been demonstrated to be effective in vanadium-catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc-catalyzed asymmetric aldol reaction, a versatile bottom-up route to make complex functional compounds. Zinc, the second-most abundant transition metal in humans, is an environment-friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal-free asymmetric catalysis, that is, α-amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet-attached α-amino acids were applied as chiral ligands together with catalytic Zn(II) centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H-bonding effects; this resembles the role of a huge and rigid substituent. PMID:23074138

  3. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  4. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test.

    PubMed

    Kawaura, Kazuaki; Miki, Risa; Urashima, Yuri; Honda, Sokichi; Shehata, Ahmed M; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2011-01-25

    Several antidepressants have been used to treat severe pain in clinics. Recently, we reported that the centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test, although the mechanism of action appears to be quite different from that of known antidepressants. In the present study, we investigated whether a combination of tipepidine and carbamazepine acts synergistically to induce an antinociceptive effect in the acetic acid-induced writhing test in mice. Prior to studying the combination of tipepidine and carbamazepine, the analgesic action of tipepidine alone was also examined in mice. Tipepidine at 5-40mg/kg i.p. significantly reduced the number of writhes induced by acetic acid in mice. Carbamazepine at 20mg/kg i.p. also significantly reduced the writhing reaction. Furthermore, co-administration of carbamazepine (5 and 10mg/kg, i.p.) and tipepidine (2.5mg/kg i.p.) significantly decreased the number of writhes induced by acetic acid. This finding suggests that a combination of carbamazepine and tipepidine may be a new strategy for the treatment of neuropathic pain such as what occurs in trigeminal neuralgia, because the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic efficacy by microsomal enzyme induction. PMID:21114989

  5. Alpha-lipoic acid loaded in chitosan conduit enhances sciatic nerve regeneration in rat

    PubMed Central

    Azizi, Saeed; Heshmatian, Behnam; Amini, Keyvan; Raisi, Abbas; Azimzadeh, Mohammad

    2015-01-01

    Objective(s): To investigate the effect of topical administration of alpha-lipoic acid into chitosan conduit on peripheral nerve regeneration using a rat sciatic nerve transection model. Materials and Methods: Forty five Wistar rats were divided into three experimental groups randomly. A 10-mm gap of sciatic nerve was bridged with a chitosan conduit following surgical preparation and anesthesia. In treatment group, the conduit was filled with 30 µl alpha-lipoic acid (10 mg/kg/bw).It was filled with 30 µl phosphate buffered saline solution in control group. In Sham group sciatic nerve was just exposed. Results: The recovery of nerve function was faster in treatment group than in control, at 4 and 8 weeks after surgery (P-value<0.05). Conduction velocity was better in treatment group than in control group at 4 and 12 weeks (P-value<0.05). Recovery index was higher in treatment group than the control group, 8 weeks after surgery (P-value <0.05). Greater nerve fiber diameter, axon diameter, and myelin sheath thickness were observed in treatment group compared to control group at 8 and 12 weeks after surgery (P-value<0.05). The immunoreactivity of regenerated axons and myelin sheath in treatment group were far more similar to sham group. Conclusion: Alpha-lipoic acid when loaded in a chitosan conduit could improve transected sciatic nerve regeneration in rat. PMID:25945234

  6. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement.

    PubMed

    Nasoohi, Nikoo; Khajeh, Khosro; Mohammadian, Mahdi; Ranjbar, Bijan

    2013-09-01

    Structure-function relationships underlying laccases properties are very limited that makes these enzymes interesting for protein engineering approaches. Therefore in the current study, a thermostable laccase that was isolated from Bacillus sp. HR03 with the ability of bilirubin oxidation besides its laccase and tyrosinase activity is used. The extensive application of this enzyme is limited by its low expression level in Escherichia coli. Based on sequence alignments and structural studies, three single amino acid substitutions, D500G, D500E, D500S and a glycine insertion, are introduced using site-directed mutagenesis to evaluate the role of Asp(500) located in the C-terminal segment close to the T1 copper center. Substitution of aspartic acid with less sterically hindered, conserved residue such as glycine increase kcat (2.3 fold) and total activity (7.3 fold) which is accompanied by a significant increase in the expression level up to 3 fold. Biochemical characterization and structural studies using far-UV CD and fluorescence spectroscopy reveal the importance of C-terminal copper-binding loop in the laccase functional expression and catalytic efficiency. Kinetic characterization of the purified mutants toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ) and bilirubin, shows that substrate specificity is left unchanged. PMID:23707861

  7. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    PubMed

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  8. Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis.

    PubMed

    Tan, Hooi Teng; Dykes, Gary A; Wu, Ta Yeong; Siow, Lee Fong

    2013-08-01

    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4. PMID:23709290

  9. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol

    PubMed Central

    2014-01-01

    Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051

  10. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  11. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  12. Enhancement of fludarabine sensitivity by all-trans-retinoic acid in chronic lymphocytic leukemia cells

    PubMed Central

    Fernández-Calotti, Paula X.; Lopez-Guerra, Mónica; Colomer, Dolors; Pastor-Anglada, Marçal

    2012-01-01

    Background A subset of patients with fludarabine-resistant chronic lymphocytic leukemia has previously been shown to express elevated intracellular levels of the concentrative high-affinity fludarabine transporter hCNT3, without any detectable related activity. We have recently shown that all-trans-retinoic acid is capable of inducing hCNT3 trafficking to plasma membrane in the MEC1 cell line. We, therefore, evaluated the effect of all-trans-retinoic acid on hCNT3 in primary chronic lymphocytic leukemia cells as a suitable mechanism to improve fludarabine-based therapy of chronic lymphocytic leukemia. Design and Methods Cells from 23 chronic lymphocytic leukemia patients wild-type for P53 were analyzed for ex vivo sensitivity to fludarabine. hCNT3 activity in chronic lymphocytic leukemia cell samples was evaluated by measuring the uptake of [8-3H]-fludarabine. The amounts of transforming growth factor-β1 and hCNT3 messenger RNA were analyzed by real-time polymerase chain reaction. The effect of all-trans-retinoic acid on hCNT3 subcellular localization was analyzed by confocal microscopy and its effect on fludarabine-induced apoptosis was evaluated by flow cytometry analysis using annexin V staining. Results Chronic lymphocytic leukemia cases showing higher ex vivo basal sensitivity to fludarabine also had a greater basal hCNT3-associated fludarabine uptake capacity compared to the subset of patients showing ex vivo resistance to the drug. hCNT3 transporter activity in chronic lymphocytic leukemia cells from the latter patients was either negligible or absent. Treatment of the fludarabine-resistant subset of chronic lymphocytic leukemia cells with all-trans-retinoic acid induced increased fludarabine transport via hCNT3 which was associated with a significant increase in fludarabine sensitivity. Conclusions Improvement of ex vivo fludarabine sensitivity in chronic lymphocytic leukemia cells is associated with increased hCNT3 activity after all-trans-retinoic acid

  13. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  14. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    SciTech Connect

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  15. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    PubMed

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. PMID:25907574

  16. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation.

    PubMed

    Rettig, I; Koeneke, E; Trippel, F; Mueller, W C; Burhenne, J; Kopp-Schneider, A; Fabian, J; Schober, A; Fernekorn, U; von Deimling, A; Deubzer, H E; Milde, T; Witt, O; Oehme, I

    2015-01-01

    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents. PMID:25695609

  17. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system.

    PubMed

    Tripathy, Nirmalya; Ahmad, Rafiq; Ko, Hyun Ah; Khang, Gilson; Hahn, Yoon-Bong

    2015-03-01

    The development of stimuli-responsive nanocarriers is becoming important in chemotherapy. Liposomes, with an appropriate triggering mechanism, can efficiently deliver their encapsulated cargo in a controlled manner. We explored the use of acid-sensitive zinc oxide nanoparticles (ZNPs) as modulators of the responsive properties of liposomes. Nanocomplexes formed by the incorporation of ZNPs in liposomes (ZNP-liposomes) were designed to demonstrate the pH-responsive release of a drug (daunorubicin) without premature drug leakage and with the maintenance of the relevant therapeutic concentrations. The nanocomplexes were spherical in shape with a narrow size distribution and showed a high drug-encapsulating efficiency. Under acidic conditions, the ZNP-liposome nanocomplexes released the loaded drug more rapidly than bare liposomes. Using flow cytometry, confocal microscopy and an MTT assay, we demonstrated that these nanocomplexes were readily taken up by cancer cells, resulting in significantly enhanced cytotoxicity. On exposure to the acidic conditions inside cancer cells, the ZNPs rapidly decomposed, releasing the entrapped drug molecules from the ZNP-liposome nanocomplexes, producing widespread cytotoxic effects. The incorporated ZNPs were multimodal in that they not only resulted in a pH-responsive drug-delivery system, but they also had a synergistic chemo-photodynamic anticancer action. This design provides a significant step towards the development of multimodal liposome structures. PMID:25660501

  18. Citric Acid Induced Synthesis of a Series of Morphology-Controllable Ag Microspheres and Their Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Hu, J.; Wang, F.; Li, Y.; Li, Q.

    2015-11-01

    A facile route has been used to synthesize a series of morphology-controllable 3D hierarchical Ag microspheres (AgMS) by using citric acid as a morphology directing-reagent. The AgMS are self-assembled by Ag nanosheets which can be controlled, including the thickness of the nanosheets and the distance between two nanosheets by varying the concentration of citric acid. The average thickness of the Ag nanosheets decreased from ~107 to ~22 nm with increasing citric acid concentration. The distance between two of Ag nanosheets is at a range of 15 to 35 nm. The SERS activity of the products has been investigated in detail by using rhodamine 6G (R6G). The results show that R6G can be detected in a concentration as low as 10-7 M. The appropriate interstitial sites of interlaced Ag nanosheets assembled on AgMS provide "hot spots" which result in a strong SERS response, and the electromagnetic enhancement may play the main role in SERS. The SERS activity of a sample has been studied by using melamine, and the limit of detection is found to be 0.6 ppm.

  19. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    PubMed Central

    Rettig, I; Koeneke, E; Trippel, F; Mueller, W C; Burhenne, J; Kopp-Schneider, A; Fabian, J; Schober, A; Fernekorn, U; von Deimling, A; Deubzer, H E; Milde, T; Witt, O; Oehme, I

    2015-01-01

    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents. PMID:25695609

  20. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery.

    PubMed

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J; Prieto, Maria J; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M; de Castro-Faria-Neto, Hugo C; Rocco, Patricia R M; Alonso, Silvia Del Valle; Morales, Marcelo M

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  1. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery

    PubMed Central

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J.; Prieto, Maria J.; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M.; de Castro-Faria-Neto, Hugo C.; Rocco, Patricia R. M.; Alonso, Silvia del Valle; Morales, Marcelo M.

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  2. Resolution-enhanced native acidic gel electrophoresis: a method for resolving, sizing, and quantifying prion protein oligomers.

    PubMed

    Ladner, Carol L; Wishart, David S

    2012-07-01

    The formation of β-sheet-rich prion protein (PrP(β)) oligomers from native or cellular PrP(c) is thought to be a key step in the development of prion diseases. To assist in this characterization process we have developed a rapid and remarkably high resolution gel electrophoresis technique called RENAGE (resolution-enhanced native acidic gel electrophoresis) for separating, sizing, and quantifying oligomeric PrP(β) complexes. PrP(β) oligomers formed via either urea/salt or acid conversion can be resolved by RENAGE into a clear set of oligomeric bands differing by just one subunit. Calibration of the size of the PrP(β) oligomer bands was made possible with a cross-linked mouse PrP(90-232) ladder (1- to 11-mer) generated using ruthenium bipyridyl-based photoinduced cross-linking of unmodified proteins (PICUP). This PrP PICUP ladder allowed the size and abundance of PrP(β) oligomers formed from urea/salt and acid conversion to be determined. This distribution consists of 7-, 8-, 9-, 10-, and 11-mers, with the most abundant species being the 8-mer. The high-resolution separation afforded by RENAGE has allowed us to investigate distinctive size and population changes in PrP(β) oligomers formed under various conversion conditions, with various construct lengths, from various species or in the presence of anti-prion compounds. PMID:22490465

  3. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGESBeta

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  4. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons.

    PubMed

    Ren, Cuixia; Gan, Xiong; Wu, Jing; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-03-01

    Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons. PMID:26538146

  5. Metal-enhanced intrinsic fluorescence of nucleic acids using platinum nanostructured substrates

    NASA Astrophysics Data System (ADS)

    Akbay, Nuriye; Mahdavi, Farhad; Lakowicz, Joseph R.; Ray, Krishanu

    2012-10-01

    We investigated the feasibility of using platinum nanostructures to accomplish the metal-enhanced fluorescence (MEF) in the UV spectral region. We examine the possibility for detection of the intrinsic fluorescence from nucleotides and G-quadruplex DNA on platinum nanoparticles. Guanosine monophosphate (GMP) showed significant increases (˜20-fold) in fluorescence intensities in the presence of platinum nanostructures when compared to quartz controls. G-quadruplex DNA demonstrated ˜5-fold increase in fluorescence intensity and higher photostability in the presence of Pt nanostructures. We performed Finite Element Method simulations to explore how Pt nanoparticles interact with plane waves and conformed that the Pt nanostructures are promising for enhancing the fluorescence emission in the UV region.

  6. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Dong, Yongping; Gao, Tingting; Zhou, Ying; Chu, Xiangfeng; Wang, Chengming

    2015-01-01

    Gold nanoparticle/graphene (GNP/GR) nanocomposite was one-pot synthesized from water soluble graphene and HAuCl4 by hydrothermal method and characterized by TEM, Raman spectroscopy, XRD, XPS, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS). Electrogenerated chemiluminescence (ECL) of luminol was investigated at the GNP/GR modified glassy carbon electrode (GNP/GR/GCE) and the GNP modified glassy carbon electrode (GNP/GCE) in aqueous solution respectively. The results revealed that one strong anodic ECL peak could be observed at ∼0.8 V at two modified electrodes compared with that at the bare electrode. The intensity of the anodic ECL at the GNP/GR/GCE is weaker than that at the GNP/GCE, which should be due to the synergic effect of the enhancing effect of gold nanoparticles and the inhibiting effect of graphene on anodic luminol ECL. One strong cathodic ECL peak located at ∼-0.8 V could be observed at the GNP/GR/GCE but not at the GNP/GCE, which should be result from the adsorbed oxygen at the graphene film. In the presence of ascorbic acid, the anodic ECL at the GNP/GR/GCE was enhanced more than 8-times, which is more apparent than that at the GNP/GCE. Whereas, the cathodic ECL peak was seriously inhibited at the GNP/GR/GCE. The enhanced ECL intensity at the GNP/GR/GCE varied linearly with the logarithm of ascorbic acid concentration in the range of 1.0 × 10-8 to 1.0 × 10-6 mol L-1 with a detection limit of 1.0 × 10-9 mol L-1. The possible ECL mechanism was also discussed.

  7. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode.

    PubMed

    Dong, Yongping; Gao, Tingting; Zhou, Ying; Chu, Xiangfeng; Wang, Chengming

    2015-01-01

    Gold nanoparticle/graphene (GNP/GR) nanocomposite was one-pot synthesized from water soluble graphene and HAuCl₄ by hydrothermal method and characterized by TEM, Raman spectroscopy, XRD, XPS, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS). Electrogenerated chemiluminescence (ECL) of luminol was investigated at the GNP/GR modified glassy carbon electrode (GNP/GR/GCE) and the GNP modified glassy carbon electrode (GNP/GCE) in aqueous solution respectively. The results revealed that one strong anodic ECL peak could be observed at ∼0.8 V at two modified electrodes compared with that at the bare electrode. The intensity of the anodic ECL at the GNP/GR/GCE is weaker than that at the GNP/GCE, which should be due to the synergic effect of the enhancing effect of gold nanoparticles and the inhibiting effect of graphene on anodic luminol ECL. One strong cathodic ECL peak located at ∼-0.8 V could be observed at the GNP/GR/GCE but not at the GNP/GCE, which should be result from the adsorbed oxygen at the graphene film. In the presence of ascorbic acid, the anodic ECL at the GNP/GR/GCE was enhanced more than 8-times, which is more apparent than that at the GNP/GCE. Whereas, the cathodic ECL peak was seriously inhibited at the GNP/GR/GCE. The enhanced ECL intensity at the GNP/GR/GCE varied linearly with the logarithm of ascorbic acid concentration in the range of 1.0 × 10(-8) to 1.0 × 10(-6)mol L(-1) with a detection limit of 1.0 × 10(-9) mol L(-1). The possible ECL mechanism was also discussed. PMID:25022493

  8. Added value of hepatobiliary phase gadoxetic acid-enhanced MRI for diagnosing hepatocellular carcinoma in high-risk patients

    PubMed Central

    Phongkitkarun, Sith; Limsamutpetch, Kuruwin; Tannaphai, Penampai; Jatchavala, Janjira

    2013-01-01

    AIM: To determine the added value of hepatobiliary phase (HBP) gadoxetic acid-enhanced magnetic resonance imaging (MRI) in evaluating hepatic nodules in high-risk patients. METHODS: The institutional review board approved this retrospective study and waived the requirement for informed consent. This study included 100 patients at high risk for hepatocellular carcinoma (HCC) and 105 hepatic nodules that were larger than 1 cm. A blind review of two MR image sets was performed in a random order: set 1, unenhanced (T1- and T2-weighted) and dynamic images; and set 2, unenhanced, dynamic 20-min and HBP images. The diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were compared for the two image sets. Univariate and multivariate analyses were performed on the MR characteristics utilized to diagnose HCC. RESULTS: A total of 105 hepatic nodules were identified in 100 patients. Fifty-nine nodules were confirmed to be HCC. The diameter of the 59 HCCs ranged from 1 to 12 cm (mean: 1.9 cm). The remaining 46 nodules were benign (28 were of hepatocyte origin, nine were hepatic cysts, seven were hemangiomas, one was chronic inflammation, and one was focal fat infiltration). The diagnostic accuracy significantly increased with the addition of HBP images, from 88.7% in set 1 to 95.5% in set 2 (P = 0.002). In set 1 vs set 2, the sensitivity and NPV increased from 79.7% to 93.2% and from 78.9% to 91.8%, respectively, whereas the specificity and PPV were not significantly different. The hypointensity on the HBP images was the most sensitive (93.2%), and typical arterial enhancement followed by washout was the most specific (97.8%). The multivariate analysis revealed that typical arterial enhancement followed by washout, hyperintensity on T2-weighted images, and hypointensity on HBP images were statistically significant MRI findings that could diagnose HCC (P < 0.05). CONCLUSION: The addition of HBP gadoxetic acid-enhanced

  9. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle.

    PubMed Central

    Biolo, G; Declan Fleming, R Y; Wolfe, R R

    1995-01-01

    We have investigated the mechanisms of the anabolic effect of insulin on muscle protein metabolism in healthy volunteers, using stable isotopic tracers of amino acids. Calculations of muscle protein synthesis, breakdown, and amino acid transport were based on data obtained with the leg arteriovenous catheterization and muscle biopsy. Insulin was infused (0.15 mU/min per 100 ml leg) into the femoral artery to increase femoral venous insulin concentration (from 10 +/- 2 to 77 +/- 9 microU/ml) with minimal systemic perturbations. Tissue concentrations of free essential amino acids decreased (P < 0.05) after insulin. The fractional synthesis rate of muscle protein (precursor-product approach) increased (P < 0.01) after insulin from 0.0401 +/- 0.0072 to 0.0677 +/- 0.0101%/h. Consistent with this observation, rates of utilization for protein synthesis of intracellular phenylalanine and lysine (arteriovenous balance approach) also increased from 40 +/- 8 to 59 +/- 8 (P < 0.05) and from 219 +/- 21 to 298 +/- 37 (P < 0.08) nmol/min per 100 ml leg, respectively. Release from protein breakdown of phenylalanine, leucine, and lysine was not significantly modified by insulin. Local hyperinsulinemia increased (P < 0.05) the rates of inward transport of leucine, lysine, and alanine, from 164 +/- 22 to 200 +/- 25, from 126 +/- 11 to 221 +/- 30, and from 403 +/- 64 to 595 +/- 106 nmol/min per 100 ml leg, respectively. Transport of phenylalanine did not change significantly. We conclude that insulin promoted muscle anabolism, primarily by stimulating protein synthesis independently of any effect on transmembrane transport. Images PMID:7860765

  10. Influence of Chitosan Nanoparticles as the Absorption Enhancers on Salvianolic acid B In vitro and In vivo Evaluation

    PubMed Central

    Jin, Xin; Zhang, Shi-bing; Li, Shi-meng; Liang, Ke; Jia, Zeng-yong

    2016-01-01

    Background: Salvianolic acid B (SalB) represents the most abundant and bio-active phenolic constituent among the water-soluble compounds of Salvia miltiorrhiza. But the therapeutic potential of SalB has been significantly restricted by its poor absorption. Methods: In this study, chitosans (CS) and CS nanoparticles (NPs) with different molecular weights (MWs), which have influence on the absorption of SalB, was also investigated. Results: As a preliminary study, water-soluble CS with various MWs (3, 30, 50, and 100 kDa) was chosen. We investigated the MW-dependent Caco-2 cell layer transport phenomena in vitro of CS and NPs at concentrations (4 μg/ml, w/v). SalB, in presence CS or NPs has no significant toxic effect on Caco-2 cell. As the MW increases, the absorption enhancing effect of CS increases. However, as the MW decreases, the absorption enhancing effect of NPs increases. The AUC0–∞ of the SalB-100 kDa CS was 4.25 times greater than that of free SalB. And the AUC0–∞ of the SalB-3 kDa NPs was 16.03 times greater than that of free SalB. Conclusion: CS and NPs with different MWs as the absorption enhancers can promote the absorption of SalB. And the effect on NPs is better than CS. SUMMARY Formation mechanism for NPs PMID:27019562

  11. Possible enhancing mechanism of the cutaneous permeation of 4-biphenylylacetic acid by beta-cyclodextrin derivatives in hydrophilic ointment.

    PubMed

    Arima, H; Miyaji, T; Irie, T; Hirayama, F; Uekama, K

    1996-03-01

    The enhancing effects of heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CyD) and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) on the percutaneous absorption of 4-biphenylylacetic acid (BPAA), a nonsteroidal anti-inflammatory drug, in hydrophilic ointment were studied and compared with the parent beta-cyclodextrin (beta-CyD). 13C-NMR measurements suggested that the biphenyl group of BPAA is preferably included within the cavity of three beta-CyDs. The three beta-CyDs remarkably enhanced the release of BPAA from the hydrophilic ointment base and the in vitro cutaneous permeation, depending on the increase in solubility of BPAA in the ointment base. Pretreatment of the ointment containing DM-beta-CyD or HP-beta-CyD onto the isolated skin of hairless mice, however, provided no effects on the skin permeation of BPAA. When propylene glycol was used as a vehicle, both the release rate and cutaneous permeation parameters showed no appreciable difference between BPAA alone and its HP-beta-CyD complex, because the solubilities of BPAA and its HP-beta-CyD complex were almost comparable in the vehicle. The present results suggested that the enhancing effect of beta-CyDs on the percutaneous absorption of BPAA can be mainly ascribed to an increase in the solubility of BPAA in the hydrophilic ointment. PMID:8882455

  12. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products.

    PubMed

    Qi, Meihui; Huang, Xiaoyan; Zhou, Yujie; Zhang, Liying; Jin, Yang; Peng, Yan; Jiang, Huijun; Du, Shuhu

    2016-04-15

    A label-free surface-enhanced Raman scattering (SERS) strategy based on silver-coated gold nanoparticles (Au@Ag NPs) was developed for rapid detection of penicilloic acid (PA) in milk products. It has been demonstrated that core size and shell thickness of Au@Ag NPs are two critical variants affecting enhancement of Raman signals by coupling of two plasma resonance absorption. The Au@Ag NPs with 26-nm core and 9-nm Ag shell exhibit excellent Raman enhancement, in particular, upon the formation of hot spots through NPs aggregation induced by interaction between target molecules and Au@Ag NPs. Compared to the early studies limited to laboratory settings, our analytical approach is simple (without sample pretreatment), less time-consuming (within ∼3 min) and inexpensive. The limit of detection of PA is 3.00 ppm, 3.00 ppm and 4.00 ppm in liquid milk, yogurt and milk powder, respectively. The label-free SERS technique offers a potential for the on-site monitoring of chemical contaminants in milk products. PMID:26617009

  13. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26.

    PubMed

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang

    2016-01-01

    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production. PMID:26531749

  14. Colour stabilities of sour cherry juice concentrates enhanced with gallic acid and various plant extracts during storage.

    PubMed

    Navruz, Ayşe; Türkyılmaz, Meltem; Özkan, Mehmet

    2016-04-15

    Gallic acid (GA) and pomegranate rind extract (PRE), cherry stem extract (CSE) and green tea extract (GTE) were added to sour cherry juice concentrates (SCJCs) to enhance the colour. Effects of these copigment sources on anthocyanins, colour and turbidity were investigated during storage at -20, 4 and 20°C for 110 days. Cyanidin-3-glucosylrutinoside (cyd-3-glu-rut, 75%) was the major anthocyanin, followed by cyanidin-3-rutinoside (cyd-3-rut, 23%) and cyanidin-3-sophoroside (cyd-3-soph, 2%). While GA (37-53%), PRE (27-77%) and GTE (44-119%) increased the stabilities of cyd-3-rut and cyd-3-glu-rut, CSE reduced (12-24%) the stabilities of all anthocyanins. Polymeric colour and turbidity values increased after the addition of all extracts and GA. The lowest turbidity value after 110 days of storage at 20°C was determined in the SCJC enhanced with PRE. We recommend the addition of PRE to SCJC for the enhancement of anthocyanin stability and colour intensity, and the reduction in turbidity. PMID:26616935

  15. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    PubMed

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  16. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    PubMed

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX. PMID:26543027

  17. Enhancement of Colorimetric Response of Enzymatic Reactions by Thermally Evaporated Plasmonic Thin Films: Application to Glial Fibrillary Acidic Protein

    PubMed Central

    Abel, Biebele; Kabir, Tabassum S.; Odukoya, Babatunde; Mohammed, Muzaffer; Aslan, Kadir

    2015-01-01

    We report the enhancement of the colorimetric response of horseradish peroxidase (HRP) and alkaline phosphatase (AP) in bioassays by thermally evaporated silver, gold, copper and nickel thin films. In this regard, a model bioassay based on biotin-avidin interactions was employed. Biotin groups and enzymes were introduced to all surfaces using a biotinylated linker molecule and avidin, respectively. The colorimetric response of HRP in the model bioassay carried out on the plasmonic thin films were up to 4.4-fold larger as compared to control samples (i.e., no plasmonic thin films), where the largest enhancement of colorimetric response was observed on silver thin films. The colorimetric response of AP on plasmonic thin films was found to be similar to those observed on control samples, which was attributed to the loss of enzymes from the surface during the bioassay steps. The extent of enzymes immobilized on to plasmonic thin films was found to affect the colorimetric response of the model bioassay. These findings allowed us to demonstrate the use of silver thin films for the detection of glial fibrillary acidic protein (GFAP), where the colorimetric response of the standard bioassays for GFAP was enhanced up to 67% as compared to bioassays on glass slides. PMID:25663850

  18. Evaluation of the Oral Bioavailability of Low Molecular Weight Heparin Formulated With Glycyrrhetinic Acid as Permeation Enhancer.

    PubMed

    Motlekar, Nusrat A; Srivenugopal, Kalkunte S; Wachtel, Mitchell S; Youan, Bi-Botti C

    2006-02-01

    Low molecular weight heparin (LMWH) is the agent of choice for anticoagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, its therapeutic use is limited due to poor oral bioavailability. The aim of this study was to investigate the oral delivery of LMWH, ardeparin formulated with 18-beta glycyrrhetinic acid (GA), as an alternative to currently used subcutaneous (sc) delivery. Drug transport through Caco-2 cell monolayers was monitored in the presence and absence of GA by scintillation counting and transepithelial electrical resistance. Regional permeability studies using rat intestine were performed using a modified Ussing chamber. Cell viability in the presence of various concentrations of enhancer was determined by MTT assay. The absorption of ardeparin after oral administration in rats was measured by an anti-factor Xa assay. Furthermore, the eventual mucosal epithelial damage was histologically evaluated. Higher ardeparin permeability (~7-fold) compared to control was observed in the presence of 0.02 % GA. Regional permeability studies indicated predominant absorption in the duodenal segment. Cell viability studies showed no significant cytotoxicity below 0.01 % GA. Ardeparin oral bioavailability was significantly increased (F(relative)/(S.C). = 13.3%) without causing any damage to the intestinal tissues. GA enhanced the oral absorption of ardeparin both in vitro and in vivo. The oral formulation of ardeparin with GA could be absorbed in the intestine. These results suggest that GA may be used as an absorption enhancer for the oral delivery of LMWH. PMID:17710191

  19. Enhance Cancer Cell Recognition and Overcome Drug Resistance Using Hyaluronic Acid and α-Tocopheryl Succinate Based Multifunctional Nanoparticles.

    PubMed

    Liang, Desheng; Wang, Ai-Ting; Yang, Zhen-Zhen; Liu, Yu-Jie; Qi, Xian-Rong

    2015-06-01

    Multidrug resistance (MDR) presents a clinical obstacle to cancer chemotherapy. The main purpose of this study was to evaluate the potential of a hyaluronic acid (HA) and α-tocopheryl succinate (α-TOS) based nanoparticle to enhance cancer cell recognition and overcome MDR, and to explore the underlying mechanisms. A multifunctional nanoparticle, HTTP-50 NP, consisted of HA-α-TOS (HT) conjugate and d-α-tocopheryl polyethylene glycol succinate (TPGS) with docetaxel loaded in its hydrophobic core. The promoted tumor cell recognition and accumulation, cytotoxicity, and mitochondria-specific apoptotic pathways for the HTTP-50 NP were confirmed in MCF-7/Adr cells (P-gp-overexpressing cancer model), indicating that the formulated DTX and the conjugated α-TOS in the HTTP-50 NP could synergistically circumvent the acquired and intrinsic MDR in MCF-7/Adr cells. In vivo investigation on the MCF-7/Adr xenografted nude mice models confirmed that HTTP-50 NP possessed much higher tumor tissue accumulation and exhibited pronouncedly enhanced antiresistance tumor efficacy with reduced systemic toxicity compared with HTTP-0 NP and Taxotere. The mechanisms of the multifunctional HTTP-50 NP to overcome MDR and enhance antiresistance efficacy may be contributed by CD44 receptor-targeted delivery and P-gp efflux inhibition, and meanwhile to maximize antitumor efficacy by synergism of DTX and mitocan of α-TOS killing tumor cells. PMID:25945733

  20. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions

    PubMed Central

    Hwang, Helen

    2014-01-01

    Single molecule studies of protein–nucleic acid interactions shed light on molecular mechanisms and kinetics involved in protein binding, translocation, and unwinding of DNA and RNA substrates. In this review, we provide an overview of a single molecule fluorescence method, termed “protein induced fluorescence enhancement” (PIFE). Unlike FRET where two dyes are required, PIFE employs a single dye attached to DNA or RNA to which an unlabeled protein is applied. We discuss both ensemble and single molecule studies in which PIFE was utilized. PMID:24056732

  1. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM)

    PubMed Central

    Harshman, Dustin K.; Reyes, Roberto; Park, Tu San; You, David J.; Song, Jae-Young; Yoon, Jeong-Yeol

    2013-01-01

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 sec/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/µL or 105 genomes/µL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity. PMID:24140832

  2. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    PubMed

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR