Science.gov

Sample records for 5-ht1a receptor gene

  1. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  2. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  3. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    PubMed

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested. PMID:27150226

  4. The 5-HT1A receptor in Major Depressive Disorder.

    PubMed

    Kaufman, Joshua; DeLorenzo, Christine; Choudhury, Sunia; Parsey, Ramin V

    2016-03-01

    Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies. PMID:26851834

  5. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  6. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    SciTech Connect

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D.

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  7. 5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function

    PubMed Central

    Garcia-Garcia, Alvaro; Tancredi, Adrian Newman-; Leonardo, E. David

    2014-01-01

    Rationale Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT1A) subtype, in both disorders. Objectives In this review, we examine the function of 5-HT1A receptor sub-populations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor vs heteroreceptor) and the temporal (developmental vs adult) roles of the endogenous 5-HT1A receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. Results It is difficult to unambiguously distinguish the effects of different populations of the 5-HT1A receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for distinct roles of these populations in governing emotion related behavior are emerging. Conclusions There is strong and growing evidence for a functional dissociation between auto and heteroreceptor populations in mediating anxiety and depressive-like behaviors respectively. Furthermore, while it is well established that 5-HT1A receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT1A heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects. PMID:24337875

  8. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors.

    PubMed

    Campos, Alline Cristina; Ferreira, Frederico Rogério; Guimarães, Francisco Silveira

    2012-11-01

    Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder. PMID:22979992

  9. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    PubMed

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  10. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  11. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  12. Role of 5-HT(1A) receptors in fluoxetine-induced lordosis inhibition.

    PubMed

    Guptarak, Jutatip; Sarkar, Jhimly; Hiegel, Cindy; Uphouse, Lynda

    2010-07-01

    The selective serotonin reuptake inhibitor (SSRI), fluoxetine (Prozac(R)), is an effective antidepressant that is also prescribed for other disorders (e.g. anorexia, bulimia, and premenstrual dysphoria) that are prevalent in females. However, fluoxetine also produces sexual side effects that may lead patients to discontinue treatment. The current studies were designed to evaluate several predictions arising from the hypothesis that serotonin 1A (5-HT(1A)) receptors contribute to fluoxetine-induced sexual dysfunction. In rodent models, 5-HT(1A) receptors are potent negative modulators of female rat sexual behavior. Three distinct experiments were designed to evaluate the contribution of 5-HT(1A) receptors to the effects of fluoxetine. In the first experiment, the ability of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635), to prevent fluoxetine-induced lordosis inhibition was examined. In the second experiment, the effects of prior treatment with fluoxetine on the lordosis inhibitory effect of the 5-HT(1A) receptor agonist, (+/-)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), were studied. In the third experiment, the ability of progesterone to reduce the acute response to fluoxetine was evaluated. WAY100635 attenuated the effect of fluoxetine; prior treatment with fluoxetine decreased 8-OH-DPAT's potency in reducing lordosis behavior; and progesterone shifted fluoxetine's dose-response curve to the right. These findings are consistent with the hypothesis that 5-HT(1A) receptors contribute to fluoxetine-induced sexual side effects. PMID:20223238

  13. Anxiolytic effects of prelimbic 5-HT(1A) receptor activation in the hemiparkinsonian rat.

    PubMed

    Hui, Yan Ping; Wang, Tao; Han, Ling Na; Li, Li Bo; Sun, Yi Na; Liu, Jian; Qiao, Hong Fei; Zhang, Qiao Jun

    2015-01-15

    This study sought to assess whether unilateral lesions of the medial forebrain bundle (MFB) using 6-hydroxydopamine in rats are able to induce anxiety-like behaviors, the role of serotonin-1A (5-HT1A) receptors of the prelimbic (PrL) sub-region of ventral medial prefrontal cortex in the regulation of these behaviors, the density of 5-HT neurons in the dorsal raphe nucleus (DRN) and co-localization of 5-HT1A receptor and neuronal glutamate transporter EAAC1-immunoreactive (EAAC1-ir) cells in the PrL. Unilaterally lesioning the MFB induced anxiety-like behaviors as measured by the open-field and elevated plus maze tests when compared to sham-operated rats. Intra-PrL injection of 5-HT1A receptor agonist 8-OH-DPAT (50, 100, and 500 ng/rat) decreased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in sham-operated rats, indicating the induction of anxiogenic responses, and administration of 5-HT1A receptor antagonist WAY-100635 (60, 120, and 240 ng/rat) showed anxiolytic effects. However, 8-OH-DPAT, at the same doses, increased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in the lesioned rats, indicating the induction of anxiolytic effects, and WAY-100635 produced anxiogenic responses. Unilateral MFB lesion decreased the density of 5-HT neurons in the DRN, and percentage of EAAC1-ir cells expressing 5-HT1A receptors in the PrL. These results suggest that unilateral lesions of the MFB in rats may induce anxiety-like behaviors, and activation of 5-HT1A receptors in the PrL has anxiolytic effects in the rat model of Parkinson's disease. PMID:24906197

  14. Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors.

    PubMed

    Deliganis, A V; Pierce, P A; Peroutka, S J

    1991-06-01

    The interactions of the indolealkylamine N,N-dimethyltryptamine (DMT) with 5-hydroxytryptamine1A (5-HT1A) and 5-HT2 receptors in rat brain were analyzed using radioligand binding techniques and biochemical functional assays. The affinity of DMT for 5-HT1A sites labeled by [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT) was decreased in the presence of 10(-4) M GTP, suggesting agonist activity of DMT at this receptor. Adenylate cyclase studies in rat hippocampi showed that DMT inhibited forskolin-stimulated cyclase activity, a 5-HT1A agonist effect. DMT displayed full agonist activity with an EC50 of 4 x 10(-6) M in the cyclase assay. In contrast to the agonist actions of DMT at 5-HT1A receptors, DMT appeared to have antagonistic properties at 5-HT2 receptors. The ability of DMT to compete for [3H]-ketanserin-labeled 5-HT2 receptors was not affected by the presence of 10(-4) M GTP, suggesting antagonist activity of DMT at 5-HT2 receptors. In addition, DMT antagonized 5-HT2-receptor-mediated phosphatidylinositol (PI) turnover in rat cortex at concentrations above 10(-7) M, with 70% of the 5-HT-induced PI response inhibited at 10(-4) M DMT. Micromolar concentrations of DMT produced a slight PI stimulation that was not blocked by the 5-HT2 antagonist ketanserin. These studies suggest that DMT has opposing actions on 5-HT receptor subtypes, displaying agonist activity at 5-HT1A receptors and antagonist activity at 5-HT2 receptors. PMID:1828347

  15. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin. PMID:27312422

  16. Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats.

    PubMed

    Lakehayli, S; Said, N; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2016-08-25

    Early-life events have long-term effects on brain structures and cause behavioral alterations that persist into adulthood. The present experiments were designed to investigate the effects of prenatal stress on diazepam-induced withdrawal syndrome and serotonin-1A (5HT1A) receptor expression in the raphe nuclei of adult offspring. The results of the present study reveal that maternal exposure to chronic footshock stress increased the anxiety-like behavior in the prenatally stressed (PS) animals withdrawn from chronic diazepam (2.5mg/kg/day i.p for 1week). Moreover, prenatal stress induced a down-regulation of 5HT1A mRNA in the raphe nuclei of adult offspring. To our knowledge, this study is the first to demonstrate that maternal exposure to chronic footshock stress enhances diazepam withdrawal symptoms and alters 5HT1A receptor gene expression in the raphe nuclei of adult offspring. Thus, more studies are needed to clarify the mechanisms underlying the decrease of 5HT1A receptors expression in the raphe nuclei of PS rats. PMID:27235743

  17. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding.

    PubMed

    Pompeiano, M; Palacios, J M; Mengod, G

    1992-02-01

    In order to localize the cells expressing 5-HT1A receptors in the rat brain, we used in situ hybridization histochemistry to visualize the distribution of the mRNA coding for 5-HT1A receptors. Oligonucleotides derived from different parts of the coding region of the rat 5-HT1A receptor gene were used as hybridization probes. 5-HT1A binding sites were visualized on consecutive sections by receptor autoradiography using 3H-8-hydroxy-2-(di-n-propylamino)tetralin as ligand. The highest levels of hybridization were observed in the dorsal raphe nucleus, septum, hippocampus, entorhinal cortex, and interpeduncular nucleus. Positive hybridization signals were also present in other areas, such as the olfactory bulb; cerebral cortex; some thalamic and hypothalamic nuclei; several nuclei of the brainstem, including all the remaining raphe nuclei, nucleus of the solitary tract, and nucleus of the spinal tract of the trigeminus; and the dorsal horn of the spinal cord. The distribution and abundance of 5-HT1A receptor mRNA in different rat brain areas generally correlate with those of the binding sites, suggesting that 5-HT1A receptors are predominantly somatodendritic receptors. PMID:1531498

  18. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a

  19. Evidence for 5-HT1A receptor control of pineal melatonin concentrations in the rat.

    PubMed

    Nathan, P J; Burrows, G D; Norman, T R

    1998-08-01

    The effect of some serotonin agonists on day and night-time melatonin in the pineal gland was investigated in male rats. Dose dependent increases in nocturnal melatonin concentrations were observed for all serotonin agonists investigated. Statistically significant increases were observed only for D-fenfluramine (20 mg/kg) and the full 5-HT1A agonists S(+)-20499 (10 mg/kg, 20 mg/kg) and flesinoxan (20 mg/kg). Both paroxetine and D-fenfluramine dose dependently increased day-time pineal melatonin, but only for D-fenfluramine (20 mg/kg) was there a statistically significant increase. The data suggest that acute increases in synaptic serotonin concentrations can be used to manipulate day- or night-time melatonin. Data suggests an influence of the 5-HT1A receptor subtype in mediating nocturnal melatonin concentrations, perhaps through a functional coupling to beta1-adrenoceptors on the pineal gland. PMID:9716310

  20. PET imaging of the serotonin transporter and 5HT1A receptor in alcohol dependence

    PubMed Central

    Martinez, Diana; Slifstein, Mark; Gil, Roberto; Hwang, Dah-Ren; Huang, Yiyun; Perez, Audrey; Frankle, W. Gordon; Laruelle, Marc; Krystal, John; Abi-Dargham, Anissa

    2009-01-01

    Background Rodent models as well as studies in humans have suggested alterations in serotonin (5HT) innervation and transmission in early onset genetically determined or type II alcoholism. This study examines two indices of serotonergic transmission, 5HT transporter levels and 5-HT1A availability, in vivo, in type II alcoholism. This is the first report of combined tracers for pre and post-synaptic serotonergic transmission in the same alcoholic subjects and the first study of 5HT1A receptors in alcoholism. Method Fourteen alcohol dependent subjects were scanned (11 with both tracers, 1 with [11C]DASB only and two with [11C]WAY100635 only). Twelve healthy controls (HC) subjects were scanned with [11C]DASB and another 13 were scanned with [11C]WAY100635. Binding Potential (BPp, mL/cm3) and the specific to nonspecific partition coefficient (BPND, unitless) were derived for both tracers using 2 tissue compartment model and compared to HC across different brain regions. Relationships to severity of alcoholism were assessed. Results No significant differences were observed in regional BPp or BPND between patients and controls in any of the regions examined. No significant relationships were observed between regional 5HT transporter availability, 5-HT1A availability, and disease severity with the exception of a significant negative correlation between SERT and years of dependence in amygdala and insula. Conclusion This study did not find alterations in measures of 5-HT1A or 5HT transporter levels in patients with type II alcoholism. PMID:18962444

  1. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and

  2. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  3. Asymmetric Clustering Index in a Case Study of 5-HT1A Receptor Ligands

    PubMed Central

    Śmieja, Marek; Warszycki, Dawid; Tabor, Jacek; Bojarski, Andrzej J.

    2014-01-01

    The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric Clustering Index (Aci) is proposed to assess how well an automatically created partition reflects the reference. The asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity metric. PMID:25019251

  4. Drug-induced defaecation in rats: role of central 5-HT1A receptors.

    PubMed Central

    Croci, T.; Landi, M.; Bianchetti, A.; Manara, L.

    1995-01-01

    1. We investigated the acute effects of 5-hydroxytryptamine (5-HT), and of the 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone and SR 57746A, on rat faecal pellet output and water content. 2. 5-HT, 8-OH-DPAT, buspirone and SR 57746A, a new selective 5-HT1A receptor agonist, displaced [3H]-8-OH-DPAT from specific binding sites in rat hippocampus membranes (Ki, nM; 1.8, 1.2, 15, 3.1 respectively) and stimulated rat defaecation dose-dependently. SR 57746A and buspirone induced 1 g dry weight of faeces at 1.3 and 6.1 mg kg-1, p.o. (AD1) respectively. 8-OH-DPAT and 5-HT stimulated defaecation after s.c. injection (AD1, 0.07 and 7.5 mg kg-1, respectively). All these agents increased faecal water content. 3. The putative 5-HT1A receptor antagonist, pindolol, injected s.c. or i.c.v., significantly reduced the defaecation induced by systemically administered 8-OH-DPAT, buspirone or SR 57746A, but not 5-HT. 4. Pretreatment with p-chlorophenylalanine (i.p.) or 5,7-dihydroxytryptamine (i.c.v.), according to protocols designed to cause either generalized or CNS-limited 5-HT depletion respectively, also reduced the defaecation induced by buspirone or SR 57746A. 5. No specific 5-HT1A binding sites could be labelled by incubating rat colon membranes with [3H]-8-OH-DPAT, and in vitro preparations of rat colon segments showed no response to 8-OH-DPAT or SR 57746A up to 5 microM. 6. After eight days' repeated daily treatment, complete tolerance developed to the stimulant effects of SR 57746A and buspirone on faecal water content, but not on faecal pellet output.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647978

  5. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic

  6. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects

    PubMed Central

    Cascio, Maria Grazia; Zamberletti, Erica; Marini, Pietro; Parolaro, Daniela; Pertwee, Roger G

    2015-01-01

    Background and Purpose This study aimed to address the questions of whether Δ9-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1A receptors in vitro and (ii) induce any apparent 5-HT1A receptor-mediated antipsychotic effects in vivo. Experimental Approach In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT1A receptors in membranes obtained from rat brainstem or human 5-HT1A CHO cells, using [35S]-GTPγS and 8-[3H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT1A receptor-mediated antipsychotic effects in rats. Key Results THCV (i) potently, albeit partially, displaced 8-[3H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[3H]-OH-DPAT binding to specific sites in membranes of human 5-HT1A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT1A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT1A receptor antagonist, WAY100635, or could be reproduced by the CB1 antagonist, AM251. Conclusions and Implications Our findings suggest that THCV can enhance 5-HT1A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia. PMID:25363799

  7. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies. PMID:17553555

  8. A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome

    PubMed Central

    Levitt, Erica S.; Hunnicutt, Barbara J.; Knopp, Sharon J.; Williams, John T.

    2013-01-01

    Rett syndrome is a neurological disorder caused by loss of function mutations in the gene that encodes the DNA binding protein methyl-CpG-binding protein 2 (Mecp2). A prominent feature of the syndrome is disturbances in respiration characterized by frequent apnea and an irregular interbreath cycle. 8-Hydroxy-2-dipropylaminotetralin has been shown to positively modulate these disturbances (Abdala AP, Dutschmann M, Bissonnette JM, Paton JF, Proc Natl Acad Sci U S A 107: 18208–18213, 2010), but the mode of action is not understood. Here we show that the selective 5-HT1a biased agonist 3-chloro-4-fluorophenyl-(4-fluoro-4-{[(5-methylpyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone (F15599) decreases apnea and corrects irregularity in both heterozygous Mecp2-deficient female and in Mecp2 null male mice. In whole cell voltage-clamp recordings from dorsal raphe neurons, F15599 potently induced an outward current, which was blocked by barium, reversed at the potassium equilibrium potential, and was antagonized by the 5-HT1a antagonist WAY100135. This is consistent with somatodendritic 5-HT1a receptor-mediated activation of G protein-coupled inwardly rectifying potassium channels (GIRK). In contrast, F15599 did not activate 5-HT1b/d receptors that mediate inhibition of glutamate release from terminals in the nucleus accumbens by a presynaptic mechanism. Thus F15599 activated somatodendritic 5-HT1a autoreceptors, but not axonal 5-HT1b/d receptors. In unanesthetized Mecp2-deficient heterozygous female mice, F15599 reduced apnea in a dose-dependent manner with maximal effect of 74.5 ± 6.9% at 0.1 mg/kg and improved breath irrregularity. Similarly, in Mecp2 null male mice, apnea was reduced by 62 ± 6.6% at 0.25 mg/kg, and breathing became regular. The results indicate respiration is improved with a 5-HT1a agonist that activates GIRK channels without affecting neurotransmitter release. PMID:24092697

  9. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    PubMed

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine. PMID:19958758

  10. Oestradiol alters central 5HT1A receptor binding potential differences related to psychosocial stress but not differences related to 5HTTLPR genotype in female rhesus monkeys

    PubMed Central

    Michopoulos, Vasiliki; Diaz, Maylen Perez; Embree, Molly; Reding, Kathy; Votaw, John R.; Mun, Jiyoung; Voll, Ronald J.; Goodman, Mark M.; Wilson, Mark; Sanchez, Mar; Toufexis, Donna

    2014-01-01

    Social subordination in female macaques represents a well-described model of chronic psychosocial stress. Additionally, a length polymorphism (5HTTLPR) in the regulatory region of the serotonin (5HT) transporter (5HTT) gene (SLC6A4) is present in rhesus macaques, which has been linked to adverse outcomes similar to what has been described in humans with an analogous 5HTTLPR polymorphism. The present study determined the effects of social status and the 5HTTLPR genotype on 5HT1A receptor binding potential (5HT1A BPND) in brain regions implicated in emotional regulation and stress reactivity in ovariectomised female monkeys, and then assessed how these effects were altered by 17β-oestradiol (E2) treatment. Areas analyzed included the prefrontal cortex [anterior cingulate (ACC); medial prefrontal cortex (mPFC); dorsolateral prefrontal cortex; orbitofrontal prefrontal cortex], amygdala, hippocampus, hypothalamus and raphe nucleui. Positron emission tomography (PET) using p-[18F]MPPF was performed to determine the levels of 5HT1A BPND under a non-E2 and a 3-wk E2 treatment condition. The short variant (s-variant) 5HTTLPR genotype produced a significant reduction in 5HT1A BPND in the mPFC regardless of social status, and subordinate s-variant females showed a reduction in 5HT1A BPND within the ACC. Both these effects of 5HTTLPR were unaffected by E2. Additionally, E2 reduced 5HT1A BPND in the dorsal raphe of all females irrespective of psychosocial stress or 5HTTLPR genotype. Hippocampal 5HT1A BPND was attenuated in subordinate females regardless of 5HTTLPR genotype during the non-E2 condition, an effect that was normalised with E2. Similarly, 5HT1A BPND in the hypothalamus was significantly lower in subordinate females regardless of 5HTTLPR genotype, an effect reversed with E2. Together, the data indicate that the effect of E2 on modulation of central 5HT1A BPND may only occur in brain regions that show no 5HTTLPR genotype-linked control of 5HT1A binding. PMID:24382202

  11. Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

    PubMed

    Wang, Yunfei; Cao, Shu-e; Tian, Jianmin; Liu, Guozhe; Zhang, Xiaoran; Li, Pingfa

    2013-01-01

    Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain. PMID:24287473

  12. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  13. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    PubMed

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  14. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  15. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  16. 5-HT1a Receptor Antagonists Block Perforant Path-Dentate LTP Induced in Novel, but Not Familiar, Environments

    ERIC Educational Resources Information Center

    Sanberg, Cyndy Davis; Jones, Floretta L.; Do, Viet H.; Dieguez, Dario, Jr.; Derrick, Brian E.

    2006-01-01

    Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated…

  17. The association between romantic relationship status and 5-HT1A gene in young adults.

    PubMed

    Liu, Jinting; Gong, Pingyuan; Zhou, Xiaolin

    2014-01-01

    What factors determine whether or not a young adult will fall in love? Sociological surveys and psychological studies have shown that non-genetic factors, such as socioeconomic status, external appearance, and personality attributes, are crucial components in romantic relationship formation. Here we demonstrate that genetic variants also contribute to romantic relationship formation. As love-related behaviors are associated with serotonin levels in the brain, this study investigated to what extent a polymorphism (C-1019G, rs6295) of 5-HT1A gene is related to relationship status in 579 Chinese Han people. We found that 50.4% of individuals with the CC genotype and 39.0% with CG/GG genotype were in romantic relationship. Logistic regression analysis indicated that the C-1019G polymorphism was significantly associated with the odds of being single both before and after controlling for socioeconomic status, external appearance, religious beliefs, parenting style, and depressive symptoms. These findings provide, for the first time, direct evidence for the genetic contribution to romantic relationship formation. PMID:25412229

  18. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.

    PubMed

    Dhingra, R R; Dutschmann, M; Dick, T E

    2016-06-01

    The neurotransmitter serotonin (5HT) acting via 5HT1a receptors (5HT1aR) is a potent determinant of respiratory rhythm variability. Here, we address the 5HT1aR-dependent control of respiratory rhythm variability in C57BL6/J mice. Using the in situ perfused preparation, we compared the effects of systemic versus focal blockade of 5HT1aRs. Blocking 5HT1aRs in the Kölliker-Fuse nucleus (KFn) increased the occurrence of spontaneous apneas and accounted for the systemic effects of 5HT1aR antagonists. Further, 5HT1aRs of the KFn stabilized the respiratory rhythm's response to arterial chemoreflex perturbations; reducing the recovering time, e.g., the latency to return to the baseline pattern. Together, these results suggest that the KFn regulates both intrinsic and sensory determinants of respiratory rhythm variability. PMID:26840837

  19. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  20. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  1. The Role of 5-HT1A Receptors in Long-Term Adaptation of Newborn Rats to Hypoxia.

    PubMed

    Mikhailenko, V A; Butkevich, I P

    2016-08-01

    We studied the effects of neonatal hypoxia on adaptive behavior of rats during prepubertal and pubertal periods in the control and after repeated injections of 5-HT1A receptor agonist buspirone. Hypoxia enhanced the inflammatory nociceptive response and exacerbated the depressive-like behavior. Repeated injections of buspirone starting from the neonatal period produced a long-term normalizing effect on the inflammatory nociceptive response and psychoemotional behavior disturbed by hypoxia. The protective effect of buspirone can result from strengthening of the adaptive potencies of the serotoninergic system via activation of 5-HT1A receptors that up-regulate secretion of trophic factor S100β under conditions of serotonin deficiency typical of rats exposed to neonatal hypoxia. Buspirone promotes recovery of the afferent and efferent connections of the raphe nuclei with the prefrontal cortex and spinal cord involved in integration of the anti-nociceptive and psychoemotional systems. PMID:27591870

  2. The antipsychotic aripiprazole induces antinociceptive effects: Possible role of peripheral dopamine D2 and serotonin 5-HT1A receptors.

    PubMed

    Almeida-Santos, Ana F; Ferreira, Renata C M; Duarte, Igor D; Aguiar, Daniele C; Romero, Thiago R L; Moreira, Fabricio A

    2015-10-15

    Aripiprazole is an antipsychotic that acts by multiple mechanisms, including partial agonism at dopamine D2 and serotonin 5-HT1A receptors. Since these neurotransmitters also modulate pain and analgesia, we tested the hypothesis that systemic or local administration of aripiprazole induces antinociceptive responses. Systemic aripiprazole (0.1-10 mg/kg; i.p.) injection in mice inhibited formalin-induced paw licking and PGE2-induced hyperalgesia in the paw pressure test. This effect was mimicked by intra-plantar administration (12.5-100 µg/paw) in the ipsi, but not contralateral, paw. The peripheral action of aripiprazole (100 µg/paw) was reversed by haloperidol (0.1-10 µg/paw), suggesting the activation of dopamine receptors as a possible mechanism. Accordingly, quinpirole (25-100 µg/paw), a full agonist at D2/D3 receptors, also reduced nociceptive responses.. In line with the partial agoniztic activity of aripiprazole, low dose of this compound inhibited the effect of quinpirole (both at 25 µg/paw). Finally, peripheral administration of NAN-190 (0.1-10 μg/paw), a 5-HT1A antagonist, also prevented aripiprazole-induced antinociception. In conclusion, systemic or local administration of aripiprazole induces antinociceptive effects. Similar to its antipsychotic activity, the possible peripheral mechanism involves dopamine D2 and serotoninergic 5-HT1A receptors. Aripiprazole and other dopaminergic modulators should be further investigated as new treatments for certain types of pain. PMID:26325094

  3. Preclinical profile of the mixed 5-HT1A/5-HT2A receptor antagonist S 21,357.

    PubMed

    Griebel, G; Blanchard, D C; Rettori, M C; Guardiola-Lemaître, B; Blanchard, R J

    1996-06-01

    This study evaluated the pharmacological and behavioral effects of S 21,357, a drug with high affinity for both 5-HT1A and 5-HT2A receptors. The drug behaved as antagonist at both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors, as it prevented the inhibitory effect of lesopitron on the electrical discharge of the dorsal raphé nucleus (DRN) 5-HT neurons and the activity of forskolin-stimulated adenylate cyclase in hippocampal homogenates. In addition, S 21,357 (4 and 128 mg/kg, PO) inhibited 5-HTP-induced head-twitch responses in mice, indicating that it possesses 5-HT2A antagonistic properties. In a test battery designed to assess defensive behaviors of Swiss-Webster mice to the presence of, or situations associated with, a natural threat stimulus (i.e., rat), S 21,357 (0.12-2 mg/kg, IP) reduced contextual defense reactions after the rat was removed, risk assessment activities when the subject was chased, and finally, defensive attack behavior. These behavioral changes are consistent with fear/anxiety reduction. Furthermore, the drug strongly reduced flight reactions in response to the approaching rat. This last finding, taken together with recent results with panic-modulating drugs, suggest that S 21,357 may have potential efficacy against panic attack. Finally, our results suggest that compounds sharing high affinities for both 5-HT1A and 5-HT2A receptors may directly or synergistically increase the range of defensive behaviors affected. PMID:8743616

  4. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone.

    PubMed

    Hughes, Zoë A; Starr, Kathryn R; Langmead, Christopher J; Hill, Matthew; Bartoszyk, Gerd D; Hagan, James J; Middlemiss, Derek N; Dawson, Lee A

    2005-03-01

    Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine. PMID:15740724

  5. 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells.

    PubMed

    Kruk, Jeff S; Vasefi, Maryam S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2013-01-01

    In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. PMID:23006663

  6. Verbal memory and 5-HT1A receptors in healthy volunteers - A PET study with [carbonyl-(11)C]WAY-100635.

    PubMed

    Penttilä, Jani; Hirvonen, Jussi; Tuominen, Lauri; Lumme, Ville; Ilonen, Tuula; Någren, Kjell; Hietala, Jarmo

    2016-03-01

    The serotonin 5-HT1A receptor is a putative drug development target in disorders with cognitive and in particular memory deficits. However, previous human positron emission tomography (PET) studies on 5-HT1A receptor binding and memory functions have yielded discrepant results. We explored the association between verbal memory and 5-HT1A receptor binding in 24 healthy subjects (14 male, 10 female, aged 18-41 years). The cognitive tests included the Wechsler Memory Scale-Revised (WMS-R), Wechsler Adult Intelligence Scale-Revised (WAIS-R) and Wisconsin Card Sorting Test (WCST). 5-HT1A receptor binding was measured with PET and the radioligand [carbonyl-(11)C]WAY-100635, which was quantified with the gold standard method based on kinetic modeling using arterial blood samples. We found that global 5-HT1A receptor binding was positively correlated with measures of verbal memory, such that subjects who had higher receptor binding tended to have better verbal memory than subjects who had lower receptor binding. Regional analyses suggested significant correlations in multiple neocortical brain regions and the raphe nuclei. We did not find significant correlations between 5-HT1A receptor binding and executive functions as measured with WCST. We conclude that neocortical as well as raphe 5-HT1A receptors are involved in verbal memory function in man. PMID:26775837

  7. Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors.

    PubMed

    Sagarduy, A; Llorente, J; Miguelez, C; Morera-Herreras, T; Ruiz-Ortega, J A; Ugedo, L

    2016-03-01

    The most effective treatment for Parkinson's disease (PD), l-DOPA, induces dyskinesia after prolonged use. We have previously shown that in 6-hydroxydopamine (6-OHDA) lesioned rats rendered dyskinetic by prolonged l-DOPA administration, lesion of the subthalamic nucleus (STN) reduces not only dyskinesias but also buspirone antidyskinetic effect. This study examined the effect of buspirone on STN neuron activity. Cell-attached recordings in parasagittal slices from naïve rats showed that whilst serotonin excited the majority of STN neurons, buspirone showed an inhibitory main effect but only in 27% of the studied cells which was prevented by the 5-HT1A receptor selective antagonist WAY-100635. Conversely, single-unit extracellular recordings were performed in vivo on STN neurons from four different groups, i.e., control, chronically treated with l-DOPA, 6-OHDA lesioned and lesioned treated with l-DOPA (dyskinetic) rats. In control animals, systemic-buspirone administration decreased the firing rate in a dose-dependent manner in every cell studied. This effect, prevented by WAY-100635, was absent in 6-OHDA lesioned rats and was not modified by prolonged l-DOPA administration. Altogether, buspirone in vivo reduces consistently the firing rate of the STN neurons through 5-HT1A receptors whereas ex vivo buspirone seems to affect only a small population of STN neurons. Furthermore, the lack of effect of buspirone in 6-OHDA lesioned rats, suggests the requirement of not only the activation of 5-HT1A receptors but also an intact nigrostriatal pathway for buspirone to inhibit the STN activity. PMID:26687972

  8. The Functional Activity of the Human Serotonin 5-HT1A Receptor Is Controlled by Lipid Bilayer Composition.

    PubMed

    Gutierrez, M Gertrude; Mansfield, Kylee S; Malmstadt, Noah

    2016-06-01

    Although the properties of the cell plasma membrane lipid bilayer are broadly understood to affect integral membrane proteins, details of these interactions are poorly understood. This is particularly the case for the large family of G protein-coupled receptors (GPCRs). Here, we examine the lipid dependence of the human serotonin 5-HT1A receptor, a GPCR that is central to neuronal function. We incorporate the protein in synthetic bilayers of controlled composition together with a fluorescent reporting system that detects GPCR-catalyzed activation of G protein to measure receptor-catalyzed oligonucleotide exchange. Our results show that increased membrane order induced by sterols and sphingomyelin increases receptor-catalyzed oligonucleotide exchange. Increasing membrane elastic curvature stress also increases this exchange. These results reveal the broad dependence that the 5-HT1A receptor has on plasma membrane properties, demonstrating that membrane lipid composition is a biochemical control parameter and highlighting the possibility that compositional changes related to aging, diet, or disease could impact cell signaling functions. PMID:27276266

  9. Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors.

    PubMed

    Espejo-Porras, Francisco; Fernández-Ruiz, Javier; Pertwee, Roger G; Mechoulam, Raphael; García, Concepción

    2013-12-01

    The broad presence of CB1 receptors in the basal ganglia, mainly in GABA- or glutamate-containing neurons, as well as the presence of TRPV1 receptors in dopaminergic neurons and the identification of CB2 receptors in some neuronal subpopulations within the basal ganglia, explain the powerful motor effects exerted by those cannabinoids that can activate/block these receptors. By contrast, cannabidiol (CBD), a phytocannabinoid with a broad therapeutic profile, is generally presented as an example of a cannabinoid compound with no motor effects due to its poor affinity for the CB1 and the CB2 receptor, despite its activity at the TRPV1 receptor. However, recent evidence suggests that CBD may interact with the serotonin 5-HT1A receptor to produce some of its beneficial effects. This may enable CBD to directly influence motor activity through the well-demonstrated role of serotonergic transmission in the basal ganglia. We have investigated this issue in rats using three different pharmacological and neurochemical approaches. First, we compared the motor effects of various i.p. doses of CBD with the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; i.p.). Second, we investigated whether the motor effects of CBD are sensitive to 5-HT1A receptor blockade in comparison with CB1 receptor antagonism. Finally, we investigated whether CBD was able to potentiate the effect of a sub-effective dose of 8-OH-DPAT. Our results demonstrated that: (i) only high doses of CBD (>10 mg/kg) altered motor behavior measured in a computer-aided actimeter; (ii) these alterations were restricted to vertical activity (rearing) with only modest changes in other parameters; (iii) similar effects were produced by 8-OH-DPAT (1 mg/kg), although this agonist affected exclusively vertical activity, with no effects on other motor parameters, and it showed always more potency than CBD; (iv) the effects of 8-OH-DPAT (1 mg/kg) and CBD (20 mg/kg) on vertical activity

  10. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors

    PubMed Central

    Zhang, Jing; Cai, Cheng-Yun; Wu, Hai-Yin; Zhu, Li-Juan; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-01-01

    Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors. PMID:27404655

  11. Role of maternal 5-HT1A receptor in programming offspring emotional and physical development

    PubMed Central

    van Velzen, Annelies; Toth, Miklos

    2010-01-01

    Serotonin1A receptor (5-HT1AR) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5-HT1AR is not only a genetic but also a maternal “environmental” factor in the development of anxiety in Swiss-Webster mice. Here we tested if the emergence of maternal genotype dependent adult anxiety is preceded by early behavioral abnormalities or if it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization between postnatal day (P) 4 and 12 indicating an influence of the maternal genotype. The offspring’s own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers indicating that a complete maternal receptor deficiency compromises offspring physical development. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior which, with the early appearance of ultrasonic vocalization deficit, suggests a role for 5-HT1AR during pre/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5-HT1AR in regulating offspring emotional and physical development. Since reduced receptor binding has been reported in depression, including postpartum depression, reduced 5-HT1AR function in mothers may influence the emotional development of their offspring. PMID:20633050

  12. Layer II/III of the prefrontal cortex: inhibition by the serotonin 5-HT1A receptor in development and stress

    PubMed Central

    Goodfellow, Nathalie M.; Benekareddy, Madhurima; Vaidya, Vidita A.; Lambe, Evelyn K.

    2009-01-01

    The modulation of the prefrontal cortex by the neurotransmitter serotonin (5-HT) is thought to play a key role in determining adult anxiety levels. Layer II/III of the prefrontal cortex, which mediates communication across cortical regions, displays a of high level 5-HT1A receptor binding in normal individuals and a significantly lower level in patients with mood and anxiety disorders. Here, we examine how serotonin modulates pyramidal neurons in layer II/III of the rat prefrontal cortex throughout postnatal development and in adulthood. Using whole cell recordings in brain slices of the rat medial prefrontal cortex, we observed that serotonin directly inhibits layer II/III pyramidal neurons through 5-HT1A receptors across postnatal development (P6 to P96). In adulthood, a sex difference in these currents emerges, consistent with human imaging studies of 5-HT1A receptor binding. We examined the effects of early life stress on the 5-HT1A receptor currents in layer II/III. Surprisingly, animals subjected to early life stress displayed significantly larger 5-HT1A-mediated outward currents throughout the third and fourth postnatal weeks following elevated 5-HT1A expression during the second postnatal week. Subsequent exposure to social isolation in adulthood resulted in the almost-complete elimination of 5-HT1A currents in layer II/III neurons suggesting an interaction between early life events and adult experiences. These data represent the first examination of functional 5-HT1A receptors in layer II/III of the prefrontal cortex during normal development as well as after stress. PMID:19675243

  13. Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain.

    PubMed

    Verdurand, Mathieu; Chauveau, Fabien; Daoust, Alexia; Morel, Anne-Laure; Bonnefoi, Frédéric; Liger, François; Bérod, Anne; Zimmer, Luc

    2016-04-01

    Evidence accumulates suggesting a complex interplay between neurodegenerative processes and serotonergic neurotransmission. We have previously reported an overexpression of serotonin 5-HT1A receptors (5-HT(1A)R) after intrahippocampal injections of amyloid-beta 1-40 (Aβ40) fibrils in rats. This serotonergic reactivity paralleled results from clinical positron emission tomography studies with [(18)F]MPPF revealing an overexpression of 5-HT(1A)R in the hippocampus of patients with mild cognitive impairment. Because Aβ40 and Aβ42 isoforms are found in amyloid plaques, we tested in this study the hypothesis of a peptide- and region-specific 5-HT(1A)R reactivity by injecting them, separately, into the hippocampus or striatum of rats. [(18)F]MPPF in vitro autoradiography revealed that Aβ40 fibrils, but not Aβ42, were triggering an overexpression of 5-HT(1A)R in the hippocampus and striatum of rat brains after 7 days. Immunohistochemical approaches targeting neuronal precursor cells, mature neurons, and astrocytes showed that Aβ42 fibrils caused more pathophysiological damages than Aβ40 fibrils. The mechanisms of Aβ40 fibrils-induced 5-HT(1A)R expression remains unknown, but hypotheses including neurogenesis, glial expression, and axonal sprouting are discussed. PMID:26973100

  14. Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT(1A) receptors.

    PubMed

    Wang, L-E; Cui, X-Y; Cui, S-Y; Cao, J-X; Zhang, J; Zhang, Y-H; Zhang, Q-Y; Bai, Y-J; Zhao, Y-Y

    2010-05-01

    Previous results have suggested that spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, potentiates pentobarbital-induced sleep via the serotonergic system. The present study investigated whether spinosin potentiates pentobarbital-induced sleep via serotonin-1A (5-hydroxytryptamine, 5-HT(1A)) receptors. The results demonstrated that spinosin significantly augmented pentobarbital (35 mg/kg, i.p.)-induced sleep in rats, reflected by reduced sleep latency and increased total sleep time, non-rapid eye movement (NREM) sleep time, and REM sleep time. With regard to NREM sleep duration, spinosin mainly increased slow-wave sleep (SWS). Additionally, spinosin (15mg/kg, i.g.) significantly antagonized 5-HT(1A) agonist 8-OH-DPAT (0.1mg/kg, i.p.)-induced reductions in total sleep time, NREM sleep, REM sleep, and SWS in pentobarbital-treated rats. These results suggest that spinosin may be an antagonist at postsynaptic 5-HT(1A) receptors because these effects of 8-OH-DPAT were considered to be mediated via postsynaptic 5-HT(1A) receptors. Moreover, co-administration of spinosin and the 5-HT(1A) antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl]ethyl}-N-2-pyridinylbenzamide (p-MPPI), at doses that are ineffective when administered alone (spinosin 5mg/kg, p-MPPI 1mg/kg), had significant augmentative effects on pentobarbital-induced sleep, reflected by reduced sleep latency and increased total sleep time, NREM sleep, and REM sleep. In contrast to the attenuating effects of p-MPPI on REM sleep via presynaptic 5-HT(1A) autoreceptors, 15mg/kg spinosin significantly increased REM sleep. These results suggest that the effect of spinosin on REM sleep in pentobarbital-treated rats may be related to postsynaptic 5-HT(1A) receptors. PMID:20171860

  15. Evaluation of Serotonin 5-HT1A Receptors in Rodent Models using [18F]Mefway PET¶

    PubMed Central

    Saigal, Neil; Bajwa, Alisha K.; Faheem, Sara S.; Coleman, Robert A.; Pandey, Suresh K.; Constantinescu, Cristian C.; Fong, Vanessa; Mukherjee, Jogeshwar

    2013-01-01

    Introduction Serotonin 5-HT1A receptors have been investigated in various CNS disorders, including epilepsy, mood disorders and neurodegeneration. [18F]Mefway (N-{2-[4-(2'-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(cis/trans-4'-[18F]fluoromethylcyclohexane)-carboxamide) has been developed as a suitable positron emission tomography (PET) imaging agent for these receptors. We have now evaluated the suitability of [18F]trans-mefway in rat and mouse models using PET and computerized tomography (CT) imaging and corroborated with ex vivo and in vitro autoradiographic studies. Methods Normal Sprague-Dawley rats and Balb/C mice were used for PET/CT imaging using intravenously injected [18F]trans-mefway. Brain PET data were coregistered with rat and mouse magnetic resonance (MR) imaging template and regional distribution of radioactivity was quantitated. Select animals were used for ex vivo autoradiographic studies in order to confirm regional brain distribution and quantitative measures of binding, using brain region to cerebellum ratios. Binding affinity of trans-mefway and WAY-100635 was measured in rat brain homogenates. Distribution of [18F]trans-4-fluoromethylcyclohexane carboxylate ([18F]FMCHA), a major metabolite of [18F] trans-mefway, was assessed in the rat by PET/CT. Results The inhibition constant, Ki for trans-mefway was 0.84 nM and that for WAY-100635 was 1.07 nM. Rapid brain uptake of [18F]trans-mefway was observed in all rat brain regions and clearance from cerebellum was fast and was used as a reference region in all studies. Distribution of [18F]trans-mefway in various brain regions was consistent in PET and in vitro studies. The dorsal raphe was visualized and quantified in the rat PET but identification in the mouse was difficult. The rank order of binding to the various brain regions was hippocampus>frontal cortex>anterior cingulate cortex>lateral septal nuclei>dorsal raphe nuclei. Conclusion [18F]trans-Mefway appears to be an effective 5-HT1A

  16. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex. PMID:12423245

  17. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience.

    PubMed

    Fogaça, M V; Reis, F M C V; Campos, A C; Guimarães, F S

    2014-03-01

    The prelimbic medial prefrontal cortex (PL) is an important encephalic structure involved in the expression of emotional states. In a previous study, intra-PL injection of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, reduced the expression of fear conditioning response. Although its mechanism remains unclear, CBD can facilitate 5HT1A receptor-mediated neurotransmission when injected into several brain structures. This study was aimed at verifying if intra-PL CBD could also induce anxiolytic-like effect in a conceptually distinct animal model, the elevated plus maze (EPM). We also verified if CBD effects in the EPM and contextual fear conditioning test (CFC) depend on 5HT1A receptors and previous stressful experience. CBD induced opposite effects in the CFC and EPM, being anxiolytic and anxiogenic, respectively. Both responses were prevented by WAY100,635, a 5HT1A receptor antagonist. In animals that had been previously (24h) submitted to a stressful event (2h-restraint) CBD caused an anxiolytic, rather than anxiogenic, effect in the EPM. This anxiolytic response was abolished by previous injection of metyrapone, a glucocorticoid synthesis blocker. Moreover, restraint stress increased 5HT1A receptors expression in the dorsal raphe nucleus, an effect that was attenuated by injection of metyrapone before the restraint procedure. Taken together, these results suggest that CBD modulation of anxiety in the PL depend on 5HT1A-mediated neurotransmission and previous stressful experience. PMID:24321837

  18. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice.

    PubMed

    Günther, Lydia; Liebscher, Sabine; Jähkel, Monika; Oehler, Jochen

    2008-09-28

    Selective serotonin reuptake inhibitors (SSRI) are characterized by high clinical effectiveness and good tolerability. A 2-3 week delay in the onset of effects is caused by adaptive mechanisms, probably at the serotonergic (5-HT) receptor level. To analyze this in detail, we measured 5-HT(1A) and 5-HT(2A) receptor bindings in vitro after 3 weeks of citalopram treatment (20 mg/kg i.p. daily) in group-housed as well as isolation-housed mice, reflecting neurobiological aspects seen in psychiatric patients. Isolation housing increased somatodendritic (+52%) and postsynaptic (+30-95%) 5-HT(1A) as well as postsynaptic 5-HT(2A) receptor binding (+25-34%), which confirms previous findings. Chronic citalopram treatment did not induce alterations in raphe 5-HT(1A) autoreceptor binding, independent of housing conditions. Housing-dependent citalopram effects on postsynaptic 5-HT(1A) receptor binding were found with increases in group- (+11-42%) but decreases in isolation-housed (-11 to 35%) mice. Forebrain 5-HT(2A) receptor binding decreased between 11 and 38% after chronic citalopram administration, independent of housing conditions. Citalopram's long-term action comprises alterations at the postsynaptic 5-HT(1A) and 5-HT(2A) receptor binding levels. Housing conditions interact with citalopram effects, especially on 5-HT(1A) receptor binding, and should be more strongly considered in pharmacological studies. In general, SSRI-induced alterations were more pronounced and affected more brain regions in isolates, supporting the concept of a higher responsiveness in "stressed" animals. Isolation-induced receptor binding changes were partly normalized by chronic citalopram treatment, suggesting the isolation housing model for further analyses of SSRI effects, especially at the behavioral level. PMID:18657534

  19. 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems

    PubMed Central

    Watson, J; Collin, L; Ho, M; Riley, G; Scott, C; Selkirk, J V; Price, G W

    2000-01-01

    It has been reported that radiolabelled agonist : antagonist binding affinity ratios can predict functional efficacy at several different receptors. This study investigates whether this prediction is true for recombinant and native tissue 5-HT1A receptors. Saturation studies using [3H]-8-OH-DPAT and [3H]-MPPF revealed a single, high affinity site (KD∼1 nM) in HEK293 cells expressing human 5-HT1A receptors and rat cortex. In recombinant cells, [3H]-MPPF labelled 3–4 fold more sites than [3H]-8-OH-DPAT suggesting the presence of more than one affinity state of the receptor. [3H]-Spiperone labelled a single, lower affinity site in HEK293 cells expressing h5-HT1A receptors but did not bind to native tissue 5-HT1A receptors. These data suggest that, in transfected HEK293 cells, human 5-HT1A receptors exist in different affinity states but in native rat cortical tissue the majority of receptors appear to exist in the high agonist affinity state. Receptor agonists inhibited [3H]-MPPF binding from recombinant 5-HT1A receptors in a biphasic manner, whereas antagonists and partial agonists gave monophasic inhibition curves. All compounds displaced [3H]-8-OH-DPAT and [3H]-spiperone binding in a monophasic manner. In rat cortex, all compounds displaced [3H]-MPPF and [3H]-8-OH-DPAT in a monophasic manner. Functional evaluation of compounds, using [35S]-GTPγS binding, produced a range of intrinsic activities from full agonism, displayed by 5-HT and 5-CT to inverse agonism displayed by spiperone. [3H]-8-OH-DPAT : [3H]-MPPF pKi difference correlated well with functional intrinsic activity (r=0.86) as did [3H]-8-OH-DPAT : [3H]-spiperone pKi difference with functional intrinsic activity (r=0.96). Thus agonist : antagonist binding affinity differences may be used to predict functional efficacy at human 5-HT1A receptors expressed in HEK293 cells where both high and low agonist affinity states are present but not at native rat cortical 5-HT1A receptors in which

  20. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  1. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

    PubMed

    Le François, Brice; Soo, Jeremy; Millar, Anne M; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R

    2015-10-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  2. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site

    PubMed Central

    Le François, Brice; Soo, Jeremy; Millar, Anne M.; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R.

    2015-01-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of the conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  3. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  4. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies.

    PubMed

    Łukasiewicz, Sylwia; Błasiak, Ewa; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2016-05-01

    The serotonin 5-HT1A receptor (5-HT1 A R) and dopamine D2 receptor (D2 R) have been implicated as important sites of action in antipsychotics. Several lines of evidence indicate the key role of G protein-coupled receptors (GPCRs) heteromers in pathophysiology of schizophrenia and highlight these complexes as novel drug targets. Because heterodimers can form only on those cells co-expressing constituent receptors, they present a target of high pharmacological specificity in the context of biochemical effects induced by antipsychotic drugs. In studies conducted in the HEK 293 cell line, we demonstrated that 5-HT1 A R and D2 R are able to form constitutive heterodimers, and antipsychotic drugs (clozapine, olanzapine, aripiprazole, and lurasidone) enhanced this process, with clozapine being most effective. Various functional tests (cAMP and IP1 as well as ERK activation) indicated that the drugs had different effects on signal transduction by the heteromer. Interestingly, co-incubation of heterodimer-expressing HEK 293 cells with clozapine and the 5-HT1 A R agonist 8-OH DPAT potentiated post-synaptic effects, especially with respect to ERK activation. Our results indicate that the D2 -5-HT1A complex possesses biochemical, pharmacological, and functional properties distinct from those of mono- and homomers. This result has implications for the development of improved pharmacotherapy for schizophrenia or other disorders (activating the heteromer might be cognitive enhancing, since it is expressed in frontal cortex) through the specific targeting of heterodimers. We reported the constitutive formation of D2 -5-HT1A heteromers, which possess biochemical, pharmacological, and functional properties distinct from those of mono- and homomers, as revealed by antipsychotics action. We also showed that these two receptors are co-expressed in mouse cortical neurons; therefore their potential to heterodimerize may comprise an essential target for the development of novel strategies

  5. The Antidepressant-Like Effect of Fish Oil: Possible Role of Ventral Hippocampal 5-HT1A Post-synaptic Receptor.

    PubMed

    Carabelli, Bruno; Delattre, Ana Marcia; Pudell, Claudia; Mori, Marco Aurélio; Suchecki, Deborah; Machado, Ricardo B; Venancio, Daniel Paulino; Piazzetta, Sílvia Regina; Hammerschmidt, Ivilim; Zanata, Sílvio M; Lima, Marcelo M S; Zanoveli, Janaína Menezes; Ferraz, Anete Curte

    2015-08-01

    The pathophysiology of depression is not completely understood; nonetheless, numerous studies point to serotonergic dysfunction as a possible cause. Supplementation with fish oil rich docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) during critical periods of development produces antidepressant effects by increasing serotonergic neurotransmission, particularly in the hippocampus. In a previous study, the involvement of 5-HT1A receptors was demonstrated and we hypothesized that fish oil supplementation (from conception to weaning) alters the function of post-synaptic hippocampal 5-HT1A receptors. To test this hypothesis, female rats were supplemented with fish oil during habituation, mating, gestation, and lactation. The adult male offspring was maintained without supplementation until 3 months of age, when they were subjected to the modified forced swimming test (MFST) after infusion of vehicle or the selective 5-HT1A antagonist, WAY100635, and frequency of swimming, immobility, and climbing was recorded for 5 min. After the behavioral test, the hippocampi were obtained for quantification of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and for 5-HT1A receptor expression by Western blotting analysis. Fish oil-supplemented offspring displayed less depressive-like behaviors in the MFST reflected by decreased immobility and increased swimming and higher 5-HT hippocampal levels. Although there was no difference in the expression of hippocampal 5-HT1A receptors, intra-hippocampal infusion of a sub-effective dose of 8-OH-DPAT enhanced the antidepressant effect of fish oil in supplemented animals. In summary, the present findings suggest that the antidepressant-like effects of fish oil supplementation are likely related to increased hippocampal serotonergic neurotransmission and sensitization of hippocampal 5-HT1A receptors. PMID:25139282

  6. Interaction between μ-opioid and 5-HT1A receptors in the regulation of panic-related defensive responses in the rat dorsal periaqueductal grey.

    PubMed

    Rangel, Marcel P; Zangrossi, Hélio; Roncon, Camila M; Graeff, Frederico G; Audi, Elisabeth A

    2014-12-01

    A wealth of evidence indicates that the activation of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal grey matter (dPAG) inhibits escape, a panic-related defensive behaviour. Results that were previously obtained with the elevated T-maze test of anxiety/panic suggest that 5-HT1A and μ-opioid receptors in this midbrain area work together to regulate this response. To investigate the generality of this finding, we assessed whether the same cooperative mechanism is engaged when escape is evoked by a different aversive stimulus electrical stimulation of the dPAG. Administration of the μ-receptor blocker CTOP into the dPAG did not change the escape threshold, but microinjection of the μ-receptor agonist DAMGO (0.3 and 0.5 nmol) or the 5-HT1A receptor agonist 8-OHDPAT (1.6 nmol) increased this index, indicating a panicolytic-like effect. Pretreatment with CTOP antagonised the anti-escape effect of 8-OHDPAT. Additionally, combined administration of subeffective doses of DAMGO and 8-OHDPAT increased the escape threshold, indicating drug synergism. Therefore, regardless of the aversive nature of the stimulus, μ-opioid and 5-HT1A receptors cooperatively act to regulate escape behaviour. A better comprehension of this mechanism might allow for new therapeutic strategies for panic disorder. PMID:25315826

  7. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression

    PubMed Central

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  8. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression.

    PubMed

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  9. Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer's disease: A post-mortem study with PET radiopharmaceuticals.

    PubMed

    Vidal, Benjamin; Sebti, Johan; Verdurand, Mathieu; Fieux, Sylvain; Billard, Thierry; Streichenberger, Nathalie; Troakes, Claire; Newman-Tancredi, Adrian; Zimmer, Luc

    2016-10-01

    PET imaging studies using 5-HT1A receptor radiotracers show a decreased density of this receptor in hippocampi of patients with Alzheimer's disease (AD) at advanced stages. However, current 5-HT1A receptor radiopharmaceuticals used in neuroimaging are antagonists, thought to bind to 5-HT1A receptors in different functional states (i.e., both the one which displays high affinity for agonists and is thought to mediate receptor activation, as well as the state which has low affinity for agonists). Comparing the PET imaging obtained using an agonist radiotracer, which binds selectively to functional receptors, with the PET imaging obtained using an antagonist radiotracer would therefore provide original information on 5-HT1A receptor impairment during AD. Quantitative autoradiography using [(18)F]F13640 and [(18)F]MPPF, a 5-HT1A agonist and antagonist, respectively, was measured in hippocampi of patients with AD (n = 25, at different Braak stages) and control subjects (n = 9). The neuronal density was measured in the same tissues by NeuN immunohistochemistry. The specific binding of both radiotracers was determined by addition of WAY-100635, a selective 5-HT1A receptor antagonist. The autoradiography distribution of both 5-HT1A PET radiotracers varied across hippocampus regions. The highest binding density was in the pyramidal layer of CA1. Incubation with Gpp(NH)p, a non-hydrolysable analogue of GTP, reduced significantly [(18)F]F13640 binding in hippocampal regions, confirming its preferential interaction with G-coupled receptors, and slightly increased [(18)F]MPPF binding. In the CA1 subfield, [(18)F]F13640 binding was significantly decreased at Braak stages I/II (-19%), Braak stages III/IV (-23%), and Braak stages V/VI (-36%) versus control. In contrast, [(18)F]MPPF binding was statistically reduced only at the most advanced Braak stages V/VI compared to control (-33%). Since [(18)F]F13640 and [(18)F]MPPF can be used in vivo in humans, this

  10. Neuropsychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist.

    PubMed

    Simiand, J; Keane, P E; Barnouin, M C; Keane, M; Soubrié, P; Le Fur, G

    1993-01-01

    tone and locomotor activity, impairment of motor co-ordination, and potentiation of the effects of centrally-acting sedative-hypnotics. SR 57746A was also inactive as an analgesic in the PBQ writhing test. Thus, SR 57746A is active in a number of tests indicative of 5-HT1A receptor stimulation in vivo, and, more particularly, in a number of tests predictive of anxiolytic, anti-aggressive and antidepressant activities. SR 57746A is as potent as diazepam in anxiolytic tests, and more potent than imipramine in antidepressant tests, whereas it is devoid of neuroleptic potential. In view of this profile of activity, SR 57746A merits evaluation as a potential anxiolytic and antidepressant in humans. PMID:7904976

  11. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments.

    PubMed

    Connors, Kristin A; Valenti, Theodore W; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S; Brooks, Bryan W; Gould, Georgianna G

    2014-06-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitalizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [(3)H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of similarly Gαi/o-coupled cannabinoid receptors. [(3)H] 8-OH-DPAT specific binding was 176±8, 275±32, and 230±36fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [(3)H] WIN55,212-2 binding density was higher in those same brain regions at 6±0.3, 5.5±0.4 and 7.3±0.3pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50mg/L), or dietary exposure to WIN55,212-2 (7μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p<0.05). Acute exposure to WIN55,212-2 at 0.5-50mg/L reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165

  12. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments

    PubMed Central

    Connors, Kristin A.; Valenti, Theodore W.; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S.; Brooks, Bryan W.; Gould, Georgianna G.

    2014-01-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitolizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [3H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of simalarly Gαi/o-coupled cannabinoid receptors. [3H] 8-OH-DPAT specific binding was 176 ± 8, 275 ± 32, and 230 ± 36 fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [3H] WIN55,212-2 binding density was higher in those same brain regions at 6 ± 0.3, 5.5 ± 0.4 and 7.3 ± 0.3 pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50 mg/L), or dietary exposure to WIN55,212-2 (7 μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p < 0.05). Acute exposure to WIN55,212-2 at 0.5-50 mg/L, reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID

  13. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  14. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  15. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys.

    PubMed

    May, Jesse A; McLaughlin, Marsha A; Sharif, Najam A; Hellberg, Mark R; Dean, Thomas R

    2003-07-01

    Published investigations of serotonin-1A (5-hydroxytryptamine1A; 5-HT1A) receptor agonists and serotonin-2A (5-hydroxytryptamine2A; 5-HT2A) receptor antagonists in nonprimate species provide conflicting results with regard to their intraocular pressure-lowering efficacy. Thus, their therapeutic utility in the treatment of human glaucoma has been confusing. We evaluated the effect of selected 5-HT1A agonists and 5-HT2A receptor antagonists on intraocular pressure in a nonhuman primate model, the conscious cynomolgus monkey with laser-induced ocular hypertension. Neither selective 5-HT1A agonists [e.g., R-8-hydroxy-2-(di-n-propylamino)tetralin and flesinoxan] nor selective 5-HT2 receptor antagonists [e.g., R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M-100907) and 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxamide (SB-242084)] lowered intraocular pressure in the primate model following topical ocular administration. However, compounds that function as agonists at both the 5-HT1A and 5-HT2 receptors were found to effectively lower intraocular pressure in the model: 5-hydroxy-alpha-methyltryptamine, 5-methoxy-alpha-methyltryptamine, 5-hydroxy-N,N-dimethyltryptamine (bufotenine), and 5-methoxy-N,N-dimethyltryptamine. Furthermore, the selective 5-HT2 receptor agonist R-(-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane lowered intraocular pressure in the primate model, demonstrating a pharmacological response associated with activation of the 5-HT2 receptor. These observations suggest that compounds that function as efficient agonists at 5-HT2 receptors should be considered as potential agents for the control of intraocular pressure in the treatment of ocular hypertension and glaucoma in humans. PMID:12676887

  16. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780.

    PubMed

    Mize, A L; Young, L J; Alper, R H

    2003-04-01

    Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors. PMID:12668044

  17. Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT

    PubMed Central

    Descarries, Laurent; Riad, Mustaph

    2012-01-01

    Serotonin (5-HT) 5-HT1A autoreceptors (5-HT1AautoR) and the plasmalemmal 5-HT transporter (SERT) are key elements in the regulation of central 5-HT function and its responsiveness to antidepressant drugs. Previous immuno-electron microscopic studies in rats have demonstrated an internalization of 5-HT1AautoR upon acute administration of the selective agonist 8-OH-DPAT or the selective serotonin reuptake inhibitor antidepressant fluoxetine. Interestingly, it was subsequently shown in cats as well as in humans that this internalization is detectable by positron emission tomography (PET) imaging with the 5-HT1A radioligand [18F]MPPF. Further immunocytochemical studies also revealed that, after chronic fluoxetine treatment, the 5-HT1AautoR, although present in normal density on the plasma membrane of 5-HT cell bodies and dendrites, do not internalize when challenged with 8-OH-DPAT. Resensitization requires several weeks after discontinuation of the chronic fluoxetine treatment. In contrast, the SERT internalizes in both the cell bodies and axon terminals of 5-HT neurons after chronic but not acute fluoxetine treatment. Moreover, the total amount of SERT immunoreactivity is then reduced, suggesting that SERT is not only internalized, but also degraded in the course of the treatment. Ongoing and future investigations prompted by these finding are briefly outlined by way of conclusion. PMID:22826342

  18. Towards novel 5-HT7versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: design, synthesis, and antidepressant properties. Part II.

    PubMed

    Canale, Vittorio; Kurczab, Rafał; Partyka, Anna; Satała, Grzegorz; Witek, Jagna; Jastrzębska-Więsek, Magdalena; Pawłowski, Maciej; Bojarski, Andrzej J; Wesołowska, Anna; Zajdel, Paweł

    2015-03-01

    A 26-membered library of novel long-chain arylpiperazines, which contained primary and tertiary amides of cyclic amino acids (proline and 1,2,3,4-tetrahydroisoquinoline-3-carboxamide) in the terminal fragment was synthesized and biologically evaluated for binding affinity for 5-HT7 and 5-HT1A receptors. Docking studies confirmed advantages of Tic-amide over Pro-amide fragment for interaction with 5-HT7 receptors. Selected compounds 32 and 28, which behaved as 5-HT7Rs antagonist and 5-HT1A partial agonist, respectively, produced antidepressant-like effects in the forced swim test in mice after acute treatment in doses of 10 mg/kg (32) and 1.25 mg/kg (28). Compound 32 reduced immobility in a manner similar to the selective 5-HT7 antagonist SB-269970. PMID:25555143

  19. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. PMID:27131780

  20. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID

  1. Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT1A Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior

    PubMed Central

    Llamosas, Nerea; Bruzos-Cidón, Cristina; Rodríguez, José Julio; Ugedo, Luisa

    2015-01-01

    Background: Targeting dorsal raphe 5-HT1A receptors, which are coupled to G-protein inwardly rectifying potassium (GIRK) channels, has revealed their contribution not only to behavioral and functional aspects of depression but also to the clinical response to its treatment. Although GIRK channels containing GIRK2 subunits play an important role controlling excitability of several brain areas, their impact on the dorsal raphe activity is still unknown. Thus, the goal of the present study was to investigate the involvement of GIRK2 subunit-containing GIRK channels in depression-related behaviors and physiology of serotonergic neurotransmission. Methods: Behavioral, functional, including in vivo extracellular recordings of dorsal raphe neurons, and neurogenesis studies were carried out in wild-type and GIRK2 mutant mice. Results: Deletion of the GIRK2 subunit promoted a depression-resistant phenotype and determined the behavioral response to the antidepressant citalopram without altering hippocampal neurogenesis. In dorsal raphe neurons of GIRK2 knockout mice, and also using GIRK channel blocker tertiapin-Q, the basal firing rate was higher than that obtained in wild-type animals, although no differences were observed in other firing parameters. 5-HT1A receptors were desensitized in GIRK2 knockout mice, as demonstrated by a lower sensitivity of dorsal raphe neurons to the inhibitory effect of the 5-HT1A receptor agonist, 8-OH-DPAT, and the antidepressant citalopram. Conclusions: Our results indicate that GIRK channels formed by GIRK2 subunits determine depression-related behaviors as well as basal and 5-HT1A receptor-mediated dorsal raphe neuronal activity, becoming alternative therapeutic targets for psychiatric diseases underlying dysfunctional serotonin transmission. PMID:25956878

  2. Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats.

    PubMed Central

    Gariboldi, M.; Tutka, P.; Samanin, R.; Vezzani, A.

    1996-01-01

    1. We studied whether the stimulation of 5-HT1A receptors by 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a specific 5-HT1A receptor agonist, reduced electroencephalographic (EEG) seizures induced by intrahippocampal injection of 0.04 microgram in 0.5 microliter of the glutamate analogue kainic acid in freely-moving rats. 2. Pretreatment with 8-OH-DPAT 15 min earlier at the same site as kainic acid injection, caused a dose-dependent decrease of kainic acid-induced seizure activity. One and 10 micrograms significantly reduced the total time spent in seizures by 72% on average and the total number of seizures by 58% (P < 0.01) and 43% (P < 0.05) respectively. The latency to onset of the first seizure was increased 2.8 times (P < 0.01) only after 1 microgram 8-OH-DPAT; 0.1 microgram was ineffective on all seizure parameters. 3. Systemic administration of 25, 100 and 1000 micrograms kg-1 8-OH-DPAT significantly reduced the total number of seizures and the total time in seizures induced by intrahippocampal kainic acid by 52% and 74% on average. The latency to onset of the first seizure was delayed 1.8 times by 100 and 1000 micrograms kg-1 (P < 0.05). 4. The anticonvulsant action of 8-OH-DPAT given intrahippocampally or systemically was significantly blocked by 5 micrograms, but not 1 microgram WAY 100635, a selective 5-HT1A receptor antagonist, administered in the hippocampus before the agonist. 5. These results indicate that postsynaptic 5-HT1A receptors in the hippocampus mediate the anticonvulsant action of 8-OH-DPAT and that their stimulation has an inhibitory role in the generation of limbic seizures. PMID:8922726

  3. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors.

    PubMed

    Linge, Raquel; Jiménez-Sánchez, Laura; Campa, Leticia; Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Pazos, Angel; Adell, Albert; Díaz, Álvaro

    2016-04-01

    Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism. PMID:26711860

  4. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  5. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  6. Vilazodone does not inhibit sexual behavior in male rats in contrast to paroxetine: A role for 5-HT1A receptors?

    PubMed

    Oosting, Ronald S; Chan, Johnny S W; Olivier, Berend; Banerjee, Pradeep

    2016-08-01

    Vilazodone (VLZ) is a selective serotonin reuptake inhibitor (SSRI) and 5-HT1A receptor partial agonist approved for the treatment of major depressive disorder in adults. In preclinical studies, VLZ had significantly lower sexual side effects than SSRIs and reduced serotonin transporter (SERT) levels in forebrain regions. In the current study, once-daily paroxetine (PAR, 10 mg/kg), VLZ (10 mg/kg), PAR + buspirone (BUS, 3 mg/kg; a 5-HT1A partial agonist), or vehicle (VEH) was administered to male rats for 2 weeks then switched for 7 days (eg, PAR switched to VLZ, PAR + BUS, or VEH). Sexual behavior (eg, ejaculation frequency and latency) was evaluated 1-hr postdose on days 1, 7, 14, and 21. After 2 weeks, treatment with PAR but not VLZ resulted in a significant decrease in sexual behavior. In a 30-min test, the range of ejaculation frequency was 3.08-3.5 with VLZ and 1.00-1.92 with PAR (P < 0.05 vs VEH). After switching from PAR to VEH, PAR + BUS, or VEH, sexual behaviors were normalized to control levels. In contrast, the switch from VLZ to PAR resulted in reduced sexual behaviors. This preclinical study showed that unlike PAR, an SSRI with no 5-HT1A receptor activity, initial treatment with VLZ did not result in sexual side effects at therapeutically relevant doses. Results in male rats switched from PAR to VLZ or PAR + BUS strongly suggest that activation of 5-HT1A receptors may mitigate the sexual side effects associated with conventional SSRIs. PMID:27040795

  7. Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of GABAA Receptors and 5-HT1A Receptors.

    PubMed

    Hong, Sa-Ik; Kwon, Seung-Hwan; Kim, Min-Jung; Ma, Shi-Xun; Kwon, Je-Won; Choi, Seung-Min; Choi, Soo-Im; Kim, Sun-Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2012-07-01

    Chrysanthemum indicum Linne is an ancient herbal medicine used to treat bone and muscle deterioration, ocular infl ammation, headache, and anxiety in Korea, China, and Japan. Furthermore, tea derived from Chrysanthemum indicum Linne has been used to treat anxiety by facilitating relaxation and curing insomnia. However, no reports exist on the anxiolytic-like effects of Chrysanthemum indicum Linne water extract (CWE) in mice. In the present study, we investigated the anxiolytic-like effects of CWE using the elevated plus-maze (EPM) test in mice. CWE, at a dose of 500 mg/kg (p.o.), signifi cantly increased the time spent in the open arms of the EPM compared to a vehicle-injected control group. Moreover, the effect of CWE (500 mg/kg) was blocked by bicuculline (a selective GABAA receptor antagonist) and WAY 100635 (a selective 5-HT1A receptor antagonist). Taken together, these fi ndings suggest that the anxiolytic-like effects of CWE might be mediated by the GABAA receptor and the 5-HT1A receptor. PMID:24009829

  8. Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT(1A) receptor agonism.

    PubMed

    Ichikawa, Junji; Dai, Jin; Meltzer, Herbert Y

    2005-07-12

    Anticonvulsant mood stabilizers, e.g., valproic acid and carbamazepine, and atypical antipsychotic drugs (APDs), e.g., clozapine, quetiapine, olanzapine, risperidone, and ziprasidone, have been reported to preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect partially or fully inhibited by WAY100635, a selective 5-HT(1A) antagonist. These atypical APDs have themselves been reported to be effective mood stabilizers, although the importance of increased cortical DA release to mood stabilization has not been established. The purpose of the present study was to determine whether zonisamide, another anticonvulsant mood stabilizer, as well as lithium, a mood stabilizer without anticonvulsant properties, also increases prefrontal cortical DA release and, if so, whether this release is also inhibited by 5-HT(1A) antagonism. As with valproic acid and carbamazepine, zonisamide (12.5 and 25 mg/kg) increased DA release in the mPFC, but not the NAC, an increase abolished by WAY100635 (0.2 mg/kg). However, lithium (100 and 250 mg/kg) decreased DA release in the NAC, an effect also attenuated by WAY100635 (0.2 mg/kg). Lithium itself had no effect in the mPFC but the combination of WAY100635 (0.2 mg/kg) and lithium (100 and 250 mg/kg) markedly increased DA release in the mPFC. Furthermore, M100907 (0.1 mg/kg), a selective 5-HT(2A) antagonist, abolished this increase in DA release in the mPFC. These results indicate that not all mood-stabilizing agents but only those, which have anticonvulsant mood-stabilizing properties, increase DA release in the cortex, and that the effect is dependent upon 5-HT(1A) receptor stimulation. However, the combination of lithium and 5-HT(1A) blockade may result in excessive 5-HT(2A) receptor stimulation, relative to 5-HT(1A) receptor stimulation, both of which can increase prefrontal cortical DA release. PMID:15936730

  9. Autoradiography of serotonin 5-HT1A receptor-activated G proteins in guinea pig brain sections by agonist-stimulated [35S]GTPgammaS binding.

    PubMed

    Dupuis, D S; Palmier, C; Colpaert, F C; Pauwels, P J

    1998-03-01

    G protein activation mediated by serotonin 5-HT1A and 5-HT(1B/D) receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/5-HT(1B/D) agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 +/- 14%), dorsal raphe (+70 +/- 8%), lateral septum (+52 +/- 12%), cingulate (+36 +/- 8%), and entorhinal cortex (+34 +/- 5%). L694247 caused little or no stimulation of [35S]GTPgammaS binding in brain regions with high densities of 5-HT(1B/D) binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPgammaS binding response was antagonized by WAY100635 (10 microM) and methiothepin (10 microM). In contrast, the 5-HT1B inverse agonist SB224289 (10 microM) did not affect the L694247-mediated [35S]GTPgammaS binding response, and the mixed 5-HT(1B/D) antagonist GR127935 (10 microM) yielded a partial blockade. The distribution pattern of the [35S]GTPgammaS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPgammaS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 microM) stimulated [35S]GTPgammaS binding in the hippocampus by 20-50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPgammaS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT(1B/D) receptors can be measured in guinea pig brain sections. PMID:9489749

  10. NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat.

    PubMed

    Iderberg, H; McCreary, A C; Varney, M A; Kleven, M S; Koek, W; Bardin, L; Depoortère, R; Cenci, M A; Newman-Tancredi, A

    2015-09-01

    L-DOPA is the gold-standard treatment for Parkinson's disease (PD), but induces troublesome dyskinesia after prolonged treatment. This is associated with the 'false neurotransmitter' conversion of L-DOPA to dopamine by serotonin neurons projecting from the raphe to the dorsal striatum. Reducing their activity by targeting pre-synaptic 5-HT1A receptors should thus be an attractive therapeutic strategy, but previous 5-HT1A agonists have yielded disappointing results. Here, we describe the activity of a novel, highly selective and potent 5-HT1A agonist, NLX-112 (also known as befiradol or F13640) in rat models relevant to PD and its associated affective disorders. NLX-112 (0.16 mg/kg, i.p.) potently and completely reversed haloperidol-induced catalepsy in intact rats and abolished L-DOPA-induced Abnormal Involuntary Movements (AIMs) in hemiparkinsonian rats, an effect that was reversed by the selective 5-HT1A antagonist, WAY100635. In microdialysis experiments, NLX-112 profoundly decreased striatal 5-HT extracellular levels, indicative of inhibition of serotonergic function. NLX-112 also blunted the L-DOPA-induced surge in dopamine levels on the lesioned side of the brain, an action that likely underlies its anti-dyskinetic effects. NLX-112 (0.16 mg/kg, i.p.) robustly induced rotations in hemiparkinsonian rats, suggesting that it has a motor facilitatory effect. Rotations were abolished by WAY100635 and were ipsilateral to the lesioned side, suggesting a predominant stimulation of the dopamine system on the non-lesioned side of the brain. NLX-112 also efficaciously reduced immobility time in the forced swim test (75% reduction at 0.16 mg/kg, i.p.) and eliminated stress-induced ultrasonic vocalization at 0.08 mg/kg, i.p., effects consistent with potential antidepressant- and anxiolytic-like properties. In other tests, NLX-112 (0.01-0.16 mg/kg, i.p.) did not impair the ability of L-DOPA to rescue forepaw akinesia in the cylinder test but decreased rotarod performance

  11. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.

  12. Age-Dependent Switch of the Role of Serotonergic 5-HT1A Receptors in Gating Long-Term Potentiation in Rat Visual Cortex In Vivo

    PubMed Central

    Gagolewicz, Peter J.; Dringenberg, Hans C.

    2016-01-01

    The rodent primary visual cortex (V1) is densely innervated by serotonergic axons and previous in vitro work has shown that serotonin (5-HT) can modulate plasticity (e.g., long-term potentiation (LTP)) at V1 synapses. However, little work has examined the effects of 5-HT on LTP under in vivo conditions. We examined the role of 5-HT on LTP in V1 elicited by theta burst stimulation (TBS) of the lateral geniculate nucleus in urethane-anesthetized (adult and juvenile) rats. Thalamic TBS consistently induced potentiation of field postsynaptic potentials (fPSPs) recorded in V1. While 5-HT application (0.1–10 mM) itself did not alter LTP levels, the broad-acting 5-HT receptor antagonists methiothepin (1 mM) resulted in a clear facilitation of LTP in adult animals, an effect that was mimicked by the selective 5-HT1A receptor antagonist WAY 100635 (1 mM). Interestingly, in juvenile rats, WAY 100635 application inhibited LTP, indicative of an age-dependent switch in the role of 5-HT1A receptors in gating V1 plasticity. Analyses of spontaneous electrocorticographic (ECoG) activity in V1 indicated that the antagonist-induced LTP enhancement was not related to systematic changes in oscillatory activity in V1. Together, these data suggest a facilitating role of 5-HT1A receptor activation on LTP in the juvenile V1, which switches to a tonic, inhibitory influence in adulthood. PMID:27247804

  13. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation

    PubMed Central

    Bolognini, D; Rock, EM; Cluny, NL; Cascio, MG; Limebeer, CL; Duncan, M; Stott, CG; Javid, FA; Parker, LA; Pertwee, RG

    2013-01-01

    Background and Purpose To evaluate the ability of cannabidiolic acid (CBDA) to reduce nausea and vomiting and enhance 5-HT1A receptor activation in animal models. Experimental Approach We investigated the effect of CBDA on (i) lithium chloride (LiCl)-induced conditioned gaping to a flavour (nausea-induced behaviour) or a context (model of anticipatory nausea) in rats; (ii) saccharin palatability in rats; (iii) motion-, LiCl- or cisplatin-induced vomiting in house musk shrews (Suncus murinus); and (iv) rat brainstem 5-HT1A receptor activation by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and mouse whole brain CB1 receptor activation by CP55940, using [35S]GTPγS-binding assays. Key Results In shrews, CBDA (0.1 and/or 0.5 mg·kg−1 i.p.) reduced toxin- and motion-induced vomiting, and increased the onset latency of the first motion-induced emetic episode. In rats, CBDA (0.01 and 0.1 mg·kg−1 i.p.) suppressed LiCl- and context-induced conditioned gaping, effects that were blocked by the 5-HT1A receptor antagonist, WAY100635 (0.1 mg·kg−1 i.p.), and, at 0.01 mg·kg−1 i.p., enhanced saccharin palatability. CBDA-induced suppression of LiCl-induced conditioned gaping was unaffected by the CB1 receptor antagonist, SR141716A (1 mg·kg−1 i.p.). In vitro, CBDA (0.1–100 nM) increased the Emax of 8-OH-DPAT. Conclusions and Implications Compared with cannabidiol, CBDA displays significantly greater potency at inhibiting vomiting in shrews and nausea in rats, and at enhancing 5-HT1A receptor activation, an action that accounts for its ability to attenuate conditioned gaping in rats. Consequently, CBDA shows promise as a treatment for nausea and vomiting, including anticipatory nausea for which no specific therapy is currently available. PMID:23121618

  14. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats.

    PubMed

    Pham-Le, Nhut Minh; Cockburn, Chelsea; Nowell, Katherine; Brown, Justin

    2011-11-25

    Dysfunction in serotonin (5HT) neurotransmission in the brainstem of infants may disrupt protective responses to stress and increase the risk for Sudden Infant Death Syndrome (SIDS). The raphé pallidus (NRP) and other brainstem nuclei are rich in 5HT and are thought to mediate stress responses, including increases in blood pressure (BP) and heart rate (HR). Determining how 5HT neurotransmission in the brainstem mediates responses to stress will help to explain how dysfunction in neurotransmission could increase the risk of SIDS. It was hypothesized that alterations in neurotransmission in the NRP, specifically activation of the 5HT(1A) receptor subtype, would block cardiovascular responses to various types of exogenous stress. Using aseptic techniques, male Sprague-Dawley rats were instrumented with radiotelemetry probes which enabled non-invasive measurement of BP and HR. An indwelling microinjection cannula was also stereotaxically implanted into the NRP for injection of drugs that altered local 5HT neurotransmission. Following a one week recovery period, rats were microinjected with either muscimol (GABA(A) receptor agonist), 8-OH-DPAT (agonist to the inhibitory 5HT(1A) receptor), or a vehicle control (artificial cerebral spinal fluid; ACSF) immediately prior to exposure to one of three stressors: handling, air jet, or restraint. Physical handling and restraint of the animal were designed to elicit a mild and a maximal stress response respectively; while an air jet directed at the rat's face was used to provoke a psychological stress that did not require physical contact. All three stressors elicited similar and significant elevations in HR and BP following ACSF that persisted for at least 15 min with BP and HR elevated by ∼14.0 mmHg and ∼56.3 bpm respectively. The similarity in the stress responses suggest even mild handling of a rat elicits a maximal sympathoexcitatory response. The stress response was abolished following 8-OH-DPAT or muscimol

  15. 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses.

    PubMed

    Spiacci, Ailton; Pobbe, Roger Luis Henschel; Matthiesen, Melina; Zangrossi, Helio

    2016-08-01

    The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses. PMID:26145183

  16. Higher pretreatment 5-HT1A receptor binding potential in bipolar disorder depression is associated with treatment remission: a naturalistic treatment pilot PET study.

    PubMed

    Lan, Martin J; Hesselgrave, Natalie; Ciarleglio, Adam; Ogden, R Todd; Sullivan, Gregory M; Mann, J John; Parsey, Ramin V

    2013-11-01

    Bipolar disorder is a major cause of disability and a high risk for suicide. The pathophysiology of the disorder remains largely unknown. Medication choice for bipolar depression patients involves trial and error. Our group reported previously that brain serotonin 1A (5-HT(1A)) receptor binding measured by positron emission tomography (PET) is higher in bipolar depression. We now investigated whether pretreatment 5-HT(1A) levels correlates with antidepressant medication outcome. Forty-one medication-free DSM-IV diagnosed, bipolar patients in a major depressive episode had brain PET scans performed using [(11)C]WAY-100635 and a metabolite corrected arterial input function. The patients then received naturalistic psychopharmacologic treatment as outpatients and a follow up Hamilton Depression Rating Scale (HDRS) after 3 months of treatment. Patients with 24 item HDRS scores less than 10 were considered to have remitted. A linear mixed effects model was used to compare BP(F) (binding potential, proportional to the total number of available receptors) in 13 brain regions of interest between remitters and nonremitters. Thirty-four patients completed 3 months of treatment and ratings; 9 had remitted. Remitters and nonremitters did not differ in age, sex, or recent medication history with serotonergic medications. Remitters had higher [(11)C]WAY-100635 BP(F) across all brain regions compared with nonremitters (P = 0.02). Higher pretreatment brain 5-HT(1A) receptor binding was associated with remission after 3 months of pharmacological treatment in bipolar depression. Prospective treatment studies are warranted to determine whether this test predicts outcome of specific types of treatment. PMID:23720414

  17. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    PubMed

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action. PMID:25908624

  18. Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and μ-receptors.

    PubMed

    Roncon, Camila M; Biesdorf, Carla; Coimbra, Norberto C; Audi, Elisabeth A; Zangrossi, Hélio; Graeff, Frederico G

    2013-12-01

    Previous results with the elevated T-maze (ETM) test indicate that the antipanic action of serotonin (5-HT) in the dorsal periaqueductal grey (dPAG) depends on the activation endogenous opioid peptides. The aim of the present work was to investigate the interaction between opioid- and serotonin-mediated neurotransmission in the modulation of defensive responses in rats submitted to the ETM. The obtained results showed that intra-dPAG administration of morphine significantly increased escape latency, a panicolytic-like effect that was blocked by pre-treatment with intra-dPAG injection of either naloxone or the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl] ethyl] -N- 2- pyridinyl-ciclohexanecarboxamide maleate (WAY-100635). In addition, previous administration of naloxone antagonized both the anti-escape and the anti-avoidance (anxiolytic-like) effect of the 5-HT1A agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), but did not affect the anti-escape effect of the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). Moreover, the combination of sub-effective doses of locally administered 5-HT and morphine significantly impaired ETM escape performance. Finally, the µ-antagonist D-PHE-CYS-TYR-D-TRP-ORN-THR-PEN (CTOP) blocked the anti-avoidance as well as the anti-escape effect of 8-OHDPAT, and the association of sub-effective doses of the µ-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt (DAMGO) and of 8-OHDPAT had anti-escape and anti-avoidance effects in the ETM. These results suggest a synergic interaction between the 5-HT1A and the µ-opioid receptor at post-synaptic level on neurons of the dPAG that regulate proximal defense, theoretically related to panic attacks. PMID:23598399

  19. 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity.

    PubMed

    Qiu, Yimin; Huang, Xiaojing; Huang, Lina; Tang, Liang; Jiang, Jihong; Chen, Lianhua; Li, Shitong

    2016-04-01

    Postoperative delirium is a common complication that often results in poor outcomes in surgical and elderly patients. Accumulating evidences suggest that the pathophysiology of delirium results from multiple neurotransmitter system dysfunctions. To further clarify the effects of the selective serotonin (5-HT) (1A) antagonist WAY-100635 on the behaviors in scopolamine induced-delirium rats and to explore the molecular mechanism, in this study, we investigated the change of monoamine levels in the cerebrospinal fluid (CSF) and different brain regions using high-performance liquid chromatography and assessed the behavioral retrieval of delirium rats treated with WAY-100635. It was found that 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations in the CSF of scopolamine-induced delirium rats were significantly increased, among which 5-HIAA was also increased in hippocampus and basolateral amygdala (BLA), and 5-HT(1A) receptor was significantly higher in the hippocampuses and BLA than other brain regions. Furthermore, intrahippocampus and intra-BLA stereotactic injection of WAY-100635 improved the delirium-like behavior of rats. Mechanistically, after WAY-100635 treatment, significant reduction of IL-1β release into CSF and NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression, phosphorylated phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and S6K was observed. Altogether, these results suggest that delirium rats induced by scopolamine may be correlated with an increased cerebral concentration of 5-HT and dopamine neurotransmitters system; the selective 5-HT(1A) antagoniszts can reverse the delirium symptoms at some extent through tendering PI3K/Akt/mammalian target of rapamycin complex 1 (mTOR) activation-induced NLRP3 activity and then reducing IL-1β release. © 2016 IUBMB Life, 68(4):311-319, 2016. PMID:26946964

  20. 5-hydroxytryptamine1A (5-HT1A) receptor agonists: A decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma.

    PubMed

    Cheng, Jeffrey P; Leary, Jacob B; Sembhi, Aerin; Edwards, Clarice M; Bondi, Corina O; Kline, Anthony E

    2016-06-01

    Traumatic brain injury (TBI) is a significant and enduring health care issue with limited treatment options. While several pre-clinical therapeutic approaches have led to enhanced motor and/or cognitive performance, the benefits of these treatments have not translated to the clinic. One plausible explanation is that the therapies may not have been rigorously evaluated, thus rendering the bench-to-bedside leap premature and subsequently unsuccessful. An approach that has undergone considerable empirical research after TBI is pharmacological targeting of 5-HT1A receptors with agonists such as repinotan HCl, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), and buspirone. The goal of this review is to integrate and interpret the findings from a series of studies that evaluated the efficacy of 5-HT1A receptor agonists on functional, histological, and molecular outcome after acquired brain injury. The overwhelming consensus of this exhaustive review is that a decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26612522

  1. 5-HT1A Receptor Binding is Increased After Recovery from Bulimia Nervosa Compared to Control Women and is Associated with Behavioral Inhibition in Both Groups

    PubMed Central

    Bailer, Ursula F.; Bloss, Cinnamon S.; Frank, Guido K.; Price, Julie C.; Meltzer, Carolyn C.; Mathis, Chester A.; Geyer, Mark A.; Wagner, Angela; Becker, Carl R.; Schork, Nicholas J.; Kaye, Walter H.

    2014-01-01

    Objective Because altered serotonin (5-HT) function appears to persist after recovery from bulimia nervosa (RBN), we investigated the 5-HT1A receptor, which could contribute to regulation of appetite, mood, impulse control, or the response to antidepressants. Method Thirteen RBN individuals were compared to 21 healthy control women (CW) using positron emission tomography and [carbonyl-11C]WAY100635 ([11C]WAY). Results RBN had a 23–34% elevation of [11C]WAY binding potential (BP)P in subgenual cingulate, mesial temporal, and parietal regions after adjustments for multiple comparisons. For CW, [11C]WAY BPP was related negatively to novelty seeking, whereas for RBN, [11C]WAY BPP was related positively to harm avoidance and negatively related to sensation seeking. Discussion Alterations of 5-HT1A receptor function may provide new insight into efficacy of 5-HT medication in BN, as well as symptoms such as the ability to inhibit or self-control the expression of behaviors related to stimulus seeking, aggression, and impulsivity. PMID:20872754

  2. Agonist activity of a novel compound, 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554), at central 5-HT1A receptors.

    PubMed

    Matsuda, T; Seong, Y H; Aono, H; Kanda, T; Baba, A; Saito, K; Tobe, A; Iwata, H

    1989-10-24

    We used an in vitro radioligand receptor binding assay with rat cerebral cortex, hippocampus and striatum membrane preparations to show that 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554) had much higher affinity for 5-HT1A recognition sites than for 5-HT1-non-A, 5-HT2, benzodiazepine, dopamine D-2 and alpha 2-adrenergic recognition sites. The compound inhibited the activity of forskolin-stimulated adenylate cyclase in rat hippocampal membranes. Intraperitoneal injection of BP-554 to mice decreased the concentration of only 5-hydroxy-indoleacetic acid of the amines and their metabolites in the brain and decreased the accumulation of 5-hydroxytryptophan in the brain after decarboxylase inhibition by 3-hydroxybenzylhydrazine. Furthermore, the administration of BP-554 caused hypothermia and increased serum corticosterone levels in mice. The observed effects of BP-554 were similar to those of 8-hydroxy-2-(di-n-propylamino)tetralin. These results suggest that BP-554 acts as a selective 5-HT1A receptor agonist in vivo. PMID:2533078

  3. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  4. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  5. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

    PubMed

    Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A

    2000-01-01

    Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus

  6. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  7. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  8. Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5-HT1A and 5-HT6 Receptors.

    PubMed

    Gamo, Ana M; González-Vera, Juan A; Rueda-Zubiaurre, Ainoa; Alonso, Dulce; Vázquez-Villa, Henar; Martín-Couce, Lidia; Palomares, Óscar; López, Juan A; Martín-Fontecha, Mar; Benhamú, Bellinda; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2016-01-22

    Determination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein-coupled receptor (GPCR) ligands. In this work we have developed a chemoproteomic platform based on the use of chemical probes to explore the target profile of a compound in biological systems. As proof of concept, this methodology has been applied to selected ligands of the therapeutically relevant serotonin 5-HT1A and 5-HT6 receptors, and we have identified and validated some of their off-targets. This approach could be extended to other drugs of interest to study the targeted proteome in disease-relevant systems. PMID:26560738

  9. Involvement of 5-HT1A Receptors in the Anxiolytic-Like Effects of Quercitrin and Evidence of the Involvement of the Monoaminergic System

    PubMed Central

    Li, Jian; Liu, Qian-tong; Chen, Yi; Liu, Jie; Shi, Jin-li; Liu, Yong; Guo, Jian-you

    2016-01-01

    Quercitrin is a well-known flavonoid that is contained in Flos Albiziae, which has been used for the treatment of anxiety. The present study investigated the anxiolytic-like effects of quercitrin in experimental models of anxiety. Compared with the control group, repeated treatment with quercitrin (5.0 and 10.0 mg/kg/day, p.o.) for seven days significantly increased the percentage of entries into and time spent on the open arms of the elevated plus maze. In the light/dark box test, quercitrin exerted an anxiolytic-like effect at 5 and 10 mg/kg. In the marble-burying test, quercitrin (5.0 and 10.0 mg/kg) also exerted an anxiolytic-like effect. Furthermore, quercitrin did not affect spontaneous locomotor activity. The anxiolytic-like effects of quercitrin in the elevated plus maze and light/dark box test were blocked by the serotonin-1A (5-hydroxytryptamine-1A (5-HT1A)) receptor antagonist WAY-100635 (3.0 mg/kg, i.p.) but not by the γ-aminobutyric acid-A (GABAA) receptor antagonist flumazenil (0.5 mg/kg, i.p.). The levels of brain monoamines (5-HT and dopamine) and their metabolites (5-hydroxy-3-indoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid) were decreased after quercitrin treatment. These data suggest that the anxiolytic-like effects of quercitrin might be mediated by 5-HT1A receptors but not by benzodiazepine site of GABAA receptors. The results of the neurochemical studies suggest that these effects are mediated by modulation of the levels of monoamine neurotransmitters. PMID:27298626

  10. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin. PMID:26062718

  11. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders. PMID:26011730

  12. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    PubMed Central

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  13. Sex-specific and region-specific changes in BDNF-TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice.

    PubMed

    Wu, YeeWen Candace; Hill, Rachel A; Klug, Maren; van den Buuse, Maarten

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) and serotonin 5-HT1A receptors are implicated in the pathophysiology of depression and the mechanism of action of antidepressant drugs. Here, we explore possible reciprocal interactions of 5-HT1A receptor knockout and the expression of BDNF, its receptor TrkB and downstream mitogen-activated protein kinase (MAPK) in the ventral (VHP) and dorsal hippocampus (DHP). We compared female and male double mutant mice (5-HT1A(-/-)/BDNF(+/-)) with single mutant mice (5-HT1A(-/-), BDNF(+/-)) and wildtype (WT) controls. Protein expression of BDNF, TrkB, phosphorylation of TrkB (pTrkB) and MAPKs (ERK1, ERK2) was examined using Western blot analysis (n=5-7). As expected, the BDNF(+/-) mice showed ~50% BDNF reduction. Loss of 5-HT1A receptors induced a significant decrease in BDNF levels in the VHP in female mice. The pTrkB/TrkB ratio was also significantly decreased in female 5-HT1A(-/-) mice and 5-HT1A(-/-)/BDNF(+/-) mice but not in males. Despite markedly reduced BDNF levels in BDNF(+/-) mice and double mutants, ERK1 activation was unchanged in the female mice. In contrast, ERK2 activation was significantly elevated in the VHP of female BDNF(+/-) mice and double mutants. Given the greater vulnerability of women to develop depression and the role of the VHP in stress responses and anxiety-related behaviours, our results may shed more light on sex differences in depression and other psychiatric disorders with BDNF and 5-HT1A receptor dysfunction. PMID:22464183

  14. Stress sensitization of ethanol withdrawal-induced reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor antagonists and a 5-HT1A-receptor agonist.

    PubMed

    Breese, George R; Knapp, Darin J; Overstreet, David H

    2004-03-01

    Repeated withdrawals from chronic ethanol sensitize the withdrawal-induced reduction in social interaction behaviors. This study determined whether stress might substitute for repeated withdrawals to facilitate withdrawal-induced anxiety-like behavior. When two 1-h periods of restraint stress were applied at 1-week intervals to rats fed control diet, social interaction was reduced upon withdrawal from a subsequent 5-day exposure to ethanol diet. Neither this ethanol exposure alone nor exposure to three restraint stresses alone altered this measure of anxiety. Further, the repeatedly stressed singly withdrawn rats continued to exhibit a reduction in social interaction 16 days later, upon withdrawal from re-exposure to 5 days of chronic ethanol, consistent with a persistent adaptation by the multiple-stress/withdrawal protocol. Weekly administration of corticosterone in place of stress induced no significant change in social interaction upon withdrawal from the single chronic ethanol exposure, indicative that corticoid release is not responsible for the stress-induced reduction in anxiety-like behavior during withdrawal. In the multiple-withdrawal protocol, stress applied during withdrawal from voluntary ethanol drinking by P-rats facilitated ethanol drinking sufficiently, to induce a withdrawal-induced reduction in social interaction. Administration of a CRF-1 receptor antagonist, a benzodiazepine receptor antagonist, or a 5-HT(1A) receptor agonist prior to each stress minimized sensitization of the withdrawal-induced reduction in anxiety-like behavior. Since these pharmacological consequences on the induction of anxiety-like behavior following the stress/withdrawal protocol are like those previously seen when these drug treatments were given prior to multiple withdrawals, evidence is provided that repeated stresses and multiple withdrawals sensitize the withdrawal reduction in social interaction by similar central adaptive mechanisms. PMID:12955093

  15. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus

    PubMed Central

    Allee, Susan J.; Markham, Michael R.; Salazar, Vielka L.; Stoddard, Philip K.

    2008-01-01

    Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform “masculinity”, increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist α-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters. PMID:18206154

  16. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  17. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  18. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  19. Beneficial effect of the 5-HT1A receptor agonist buspirone on esophageal dysfunction associated with systemic sclerosis: A pilot study

    PubMed Central

    Panopoulos, Stylianos; Karlaftis, Anastasios; Denaxas, Konstantinos; Kamberoglou, Dimitrios; Sfikakis, Petros P; Ladas, Spiros D

    2015-01-01

    Background Esophageal involvement in systemic sclerosis (SSc) carries significant morbidity and is empirically managed with domperidone, albeit with questionable efficacy. The oral 5-HT1A receptor agonist buspirone may enhance esophageal peristalsis and lower esophageal sphincter (LES) function in healthy volunteers. Aim We aimed to test the hypothesis that buspirone may exert a beneficial acute effect on esophageal motor dysfunction in symptomatic patients with SSc. Methods Twenty consecutive patients with SSc reporting esophageal symptoms underwent high-resolution manometry before and 30 minutes after administration of buspirone (10 mg). Ten other patients received domperidone (10 mg) and served as control group. Changes in LES resting and residual pressure, amplitude, duration, and velocity of distal esophageal body contractions were examined. Results Esophageal hypomotility and hypotensive LES was found in 63% and 67% of patients, respectively. Demographic and clinical characteristics, including baseline manometric parameters, were comparable between groups. Resting pressure of LES increased after buspirone from 9.42 ± 2.6 to 11.53 ± 3.4 mmHg (p = 0.0002 by paired t-test), but not after domperidone; a trend for increase of amplitude of contractions was also observed after buspirone (p = 0.09). Comparison of the individual changes revealed that buspirone was superior to domperidone in enhancing LES pressure ( + 2.11 ± 2.0 versus –0.45 ± 2.3 mmHg, p = 0.006). No significant effects of either drug were noted on other examined parameters of esophageal function. Conclusion The beneficial acute effect of buspirone on impaired LES function associated with SSc suggests a role of 5-HT1A receptor-mediated interactions in these patients. Prospective studies to examine whether buspirone is of long-term therapeutic value for SSc-associated esophageal disease are warranted. PMID:26137301

  20. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    PubMed

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636. PMID:24972084

  1. Activation of 5-HT1A receptors in the preBötzinger region has little impact on the respiratory pattern.

    PubMed

    Radocaj, Tomislav; Mustapic, Sanda; Prkic, Ivana; Stucke, Astrid G; Hopp, Francis A; Stuth, Eckehard A E; Zuperku, Edward J

    2015-07-01

    The preBötzinger (preBötC) complex has been suggested as the primary site where systemically administered selective serotonin agonists have been shown to reduce or prevent opioid-induced depression of breathing. However, this hypothesis has not been tested pharmacologically in vivo. This study sought to determine whether 5-HT1A receptors within the preBötC and ventral respiratory column (VRC) mediate the tachypneic response induced by intravenous (IV) (±)-8-Hydroxy-2-diproplyaminotetralin hydrobromide (8-OH-DPAT) in a decerebrated dog model. IV 8-OH-DPAT (19 ± 2 μg/kg) reduced both inspiratory (I) and expiratory (E) durations by ∼ 40%, but had no effect on peak phrenic activity (PPA). Picoejection of 1, 10, and 100 μM 8-OH-DPAT on I and E preBötC neurons produced dose-dependent decreases up to ∼ 40% in peak discharge. Surprisingly, microinjections of 8-OH-DPAT and 5-HT within the VRC from the obex to 9 mm rostral had no effect on timing and PPA. These results suggest that the tachypneic effects of IV 8-OH-DPAT are due to receptors located outside of the areas we studied. PMID:25850079

  2. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  3. Occupancy of dopamine D2 and D3 and serotonin 5-HT1A receptors by the novel antipsychotic drug candidate, cariprazine (RGH-188), in monkey brain measured using positron emission tomography

    PubMed Central

    Seneca, Nicholas; Finnema, Sjoerd J.; Laszlovszky, István; Kiss, Béla; Horváth, Attila; Pásztor, Gabriella; Kapás, Margó; Gyertyán, István; Farkas, Sándor; Innis, Robert B.; Halldin, Christer

    2011-01-01

    Rationale Cariprazine is a novel antipsychotic drug candidate that exhibits high selectivity and affinity to dopamine D3 and D2 receptors and moderate affinity to serotonin 5-HT1A receptors. Targeting receptors other than D2 may provide a therapeutic benefit for both positive and negative symptoms associated with schizophrenia. Positron emission tomography (PET) can be used as a tool in drug development to assess the in vivo distribution and pharmacological properties of a drug. Objectives The objective of this study was to determine dopamine D2/D3 and serotonin 5-HT1A receptor occupancy in monkey brain after the administration of cariprazine. Methods We examined three monkeys using the following PET radioligands: [11C]MNPA (an agonist at D2 and D3 receptors), [11C]raclopride (an antagonist at D2 and D3 receptors), and [11C]WAY-100635 (an antagonist at 5-HT1A receptors). During each experimental day, the first PET measurement was a baseline study, the second after a low dose of cariprazine, and the third after the administration of a high dose. Results We found that cariprazine occupied D2/D3 receptors in a dose-dependent and saturable manner, with the lowest dose occupying ~5% of receptors and the highest dose showing more than 90% occupancy. 5-HT1A receptor occupancy was considerably lower compared with D2/D3 occupancy at the same doses, with a maximal value of ~30% for the raphe nuclei. Conclusions We conclude that cariprazine binds preferentially to dopamine D2/D3 rather than to serotonin 5-HT1A receptors in monkey brain. These findings can be used to guide the selection of cariprazine dosing in humans. PMID:21625907

  4. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model.

    PubMed

    Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See

    2013-10-01

    Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD. PMID:23823694

  5. The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: A chronic administration study with microdialysis measurements.

    PubMed

    McCreary, Andrew C; Varney, Mark A; Newman-Tancredi, Adrian

    2016-06-01

    Although l-DOPA alleviates the motor symptoms of Parkinson's disease (PD), it elicits troublesome l-DOPA-induced dyskinesia (LID) in a majority of PD patients after prolonged treatment. This is likely due to conversion of l-DOPA to dopamine as a 'false neurotransmitter' from serotoninergic neurons. The highly selective and efficacious 5-HT1A receptor agonist, NLX-112 (befiradol or F13640) shows potent activity in a rat model of LID (suppression of Abnormal Involuntary Movements, AIMs) but its anti-AIMs effects have not previously been investigated following repeated administration. Acute administration of NLX-112 (0.04 and 0.16 mg/kg i.p.) reversed l-DOPA (6 mg/kg)-induced AIMs in hemiparkinsonian rats with established dyskinesia. The activity of NLX-112 was maintained following repeated daily i.p. administration over 14 days and was accompanied by pronounced decrease of striatal 5-HT extracellular levels, as measured by in vivo microdialysis, indicative of the inhibition of serotonergic activity. A concurrent blunting of l-DOPA-induced surge in dopamine levels on the lesioned side of the brain was observed upon NLX-112 administration and these neurochemical responses were also seen after 14 days of treatment. NLX-112 also suppressed the expression of AIMs in rats that were being primed for dyskinesia by repeated l-DOPA administration. However, when treatment of these rats with NLX-112 was stopped, l-DOPA then induced AIMs with scores that resembled those of control rats. The present study shows that the potent anti-AIMs activity of NLX-112 is maintained upon repeated administration and supports the ongoing clinical development of NLX-112 as a novel antidyskinetic agent for PD patients receiving l-DOPA treatment. PMID:26777281

  6. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants

    PubMed Central

    Richardson-Jones, Jesse W; Craige, Caryne P; Guiard, Bruno P; Stephen, Alisson; Metzger, Kayla L; Kung, Hank F; Gardier, Alain M; Dranovsky, Alex; David, Denis J; Beck, Sheryl G; Hen, René; Leonardo, E David

    2010-01-01

    Summary Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT1A) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT1A autoreceptors in raphe nuclei without affecting 5-HT1A heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels. We show that this robustly affects raphe firing rates, but has no effect on either basal forebrain serotonin levels or conflict-anxiety measures. However, compared to 1A-Low mice, 1A-High mice show a blunted physiological response to acute stress, increased behavioral despair, and no behavioral response to antidepressant, modeling patients with the 5-HT1A risk allele. Furthermore, reducing 5-HT1A autoreceptor levels prior to antidepressant treatment is sufficient to convert non-responders into responders. These results establish a causal relationship between 5-HT1A autoreceptor levels, resilience under stress, and response to antidepressants. PMID:20152112

  7. Density and Function of Central Serotonin (5-HT) Transporters, 5-HT1A and 5-HT2A Receptors, and Effects of their Targeting on BTBR T+tf/J Mouse Social Behavior

    PubMed Central

    Gould, Georgianna G.; Hensler, Julie G.; Burke, Teresa F.; Benno, Robert H.; Onaivi, Emmanuel S.; Daws, Lynette C.

    2010-01-01

    BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT1A and 5-HT2A receptor densities among BTBR and C57 strains. Autoradiographic [3H] cyanoimipramine (1nM) binding to SERT was 20–30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates [3H] citalopram maximal binding (Bmax) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (KD) was 2 ± 0.3 nM vs. 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT1A and 5-HT2A receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [35S] GTPγS binding in the BTBR hippocampal CA1 region was 28% higher, indicating elevated 5-HT1A capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT1A receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D2/5-HT2 receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying but failed to improve sociability. Overall, altered SERT and/or 5-HT1A functionality in hippocampus could contribute to the relatively low sociability of BTBR mice. PMID:21070242

  8. 50-kHz calls in rats: effects of MDMA and the 5-HT(1A) receptor agonist 8-OH-DPAT.

    PubMed

    Sadananda, Monika; Natusch, Claudia; Karrenbauer, Britta; Schwarting, Rainer K W

    2012-04-01

    In recent years, 50-kHz ultrasonic vocalizations of laboratory rats have become increasingly important behavioral measures in research on emotion and motivation, since these calls may help to study appetitive subjective states, for example in relation to addiction. Among others, 50-kHz calls occur when rats experience or expect rewards, including drugs of abuse, and it is assumed that these calls depend on dopamine function, especially in the meso-limbic system. One established means to induce 50-kHz calls is to challenge rats with D-amphetamine, a psychomotor stimulant, which acts largely by boosting dopamine and noradrenaline function in the brain. In a 1st experiment, we studied whether another psycho-stimulatory amphetamine, namely the derivative 3,4-methylene-dioxymethamphetamine (MDMA, Ecstasy), could also enhance 50-kHz calls by using an activity box and testing conditions, which had previously been found to be appropriate in case of D-amphetamine. In support of previous work, we found that MDMA (2.5, 5, 10 mg/kg, ip) dose-dependently increased locomotion and center time, together with decreases in rearing activity, but the drug did not elicit 50-kHz calls. Assuming that this lack of effect is due to the drug's substantial pro-serotonergic effects in the brain, which may inhibit 50-kHz calls, we performed a 2nd experiment where we tested the serotonin 5-HT(1A) receptor agonist 8-hydroxy-2-tetralin (8-OH-DPAT; 0.05, 0.5, 2.5 mg/kg, ip). This drug dose-dependently stimulates serotonin autoreceptors and heteroreceptors, can act in a psycho-stimulatory way and can enhance dopamine function. In the activity box, 8-OH-DPAT increased locomotor activity (0.5, 2.5 mg/kg) and decreased rearing (2.5 mg/kg); that is, the drug seemed to share some psycho-stimulatory effects with MDMA. Unlike MDMA, 8-OH-DPAT enhanced 50-kHz calls in a dose-dependent way, namely only with the 0.5 mg/kg dose. These results are discussed with respect to their possible neurochemical

  9. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice.

    PubMed

    Ase, A R; Reader, T A; Hen, R; Riad, M; Descarries, L

    2000-12-01

    Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts. PMID:11080193

  10. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    PubMed

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  11. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  12. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia

    PubMed Central

    Uehara, Takashi; Matsuoka, Tadasu; Sumiyoshi, Tomiki

    2014-01-01

    Rationale: Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. Objectives and methods: The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Results: Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. Conclusions: These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders. PMID:25232308

  13. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  14. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking.

    PubMed

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-04-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction. PMID:26324408

  15. The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication.

    PubMed

    Darmani, N A

    1998-01-01

    The head-twitch response (HTR) in rodents is considered to be a functional index for the activation of 5-HT2A receptors. Intraperitoneal administration of the silent and selective 5-HT1A receptor antagonist, WAY 100635, produced the HTR in mice in a dose-dependent bell-shaped manner. The induced behaviour followed a diurnal pattern in that WAY 100635 only produced a robust HTR frequency during the light period of the 24h daily cycle. Pretreatment with the selective 5-HT2A/C receptor antagonist, SR 46349B, potently, and in a dose-dependent manner attenuated the induced behaviour. It appears that WAY 100635 produces the HTR indirectly via disinhibition of endogenous serotonergic inhibitory tone operating on the somatodenritic pulse-modulating 5-HT1A autoreceptors. The latter antagonism seems to potentiate endogenous 5-HT release in serotonergic terminal field synapses which subsequently stimulates postsynaptic 5-HT2A receptors to produce the head-twitch behaviour. PMID:9826108

  16. The role of 5-HT1A receptors in the anti-aversive effects of cannabidiol on panic attack-like behaviors evoked in the presence of the wild snake Epicrates cenchria crassus (Reptilia, Boidae).

    PubMed

    Twardowschy, André; Castiblanco-Urbina, Maria Angélica; Uribe-Mariño, Andres; Biagioni, Audrey Francisco; Salgado-Rohner, Carlos José; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-12-01

    The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors. PMID:23926240

  17. 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed.

    PubMed

    Pitychoutis, P M; Dalla, C; Sideris, A C; Tsonis, P A; Papadopoulou-Daifoti, Z

    2012-05-17

    It is well established that women experience major depression at roughly twice the rate of men. Interestingly, accumulating clinical and experimental evidence shows that the responsiveness of males and females to antidepressant pharmacotherapy, and particularly to tricyclic antidepressants (TCAs), is sex-differentiated. Herein, we investigated whether exposure of male and female rats to the chronic mild stress (CMS) model of depression, as well as treatment with the TCA clomipramine may affect serotonergic receptors' (5-HTRs) mRNA expression in a sex-dependent manner. Male and female rats were subjected to CMS for 4 weeks and during the next 4 weeks they concurrently received clomipramine treatment (10 mg/ml/kg). CMS and clomipramine's effects on 5-HT(1A)R, 5-HT(2A)R, and 5-HT(2C)R mRNA expression were assessed by in situ hybridization histochemistry in selected subfields of the hippocampus and in the lateral orbitofrontal cortex (OFC), two regions implicated in the pathophysiology of major depression. CMS and clomipramine treatment induced sex-differentiated effects on rats' hedonic status and enhanced 5-HT(1A)R mRNA expression in the cornu ammonis 1 (CA1) hippocampal region of male rats. Additionally, CMS attenuated 5-HT(1A)R mRNA expression in the OFC of male rats and clomipramine reversed this effect. Moreover, 5-HT(2A)R mRNA levels in the OFC were enhanced in females but decreased in males, while clomipramine reversed this effect only in females. CMS increased 5-HT2CR mRNA expression in the CA4 region of both sexes and this effect was attenuated by clomipramine. Present data exposed that both CMS and clomipramine treatment may induce sex-differentiated and region-distinctive effects on 5-HTRs mRNA expression and further implicate the serotonergic system in the manifestation of sexually dimorphic neurobehavioral responses to stress. PMID:22441040

  18. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei.

    PubMed

    Horikawa, K; Yokota, S; Fuji, K; Akiyama, M; Moriya, T; Okamura, H; Shibata, S

    2000-08-01

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT. PMID:10908630

  19. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  20. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex.

    PubMed

    Dickson, Eamonn J; Heredia, Dante J; Smith, Terence K

    2010-07-01

    The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 microM; 5-HT(3) antagonist) plus hexamethonium (100 microM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 microM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1-5 microM; 5-HT(7) antagonists). Both NAN-190 and (S)-WAY100135 (1-5 microM; 5-HT(1A) antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 microM), and 5-carboxamidotryptamine (5-CT) (5 microM; 5-HT(1/5/7) agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT(1A), 5-HT(3), and 5-HT(7) receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT(7

  1. New Multi-target Antagonists of α1A-, α1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure.

    PubMed

    Nascimento-Viana, Jéssica B; Carvalho, Aline R; Nasciutti, Luiz Eurico; Alcántara-Hernández, Rocío; Chagas-Silva, Fernanda; Souza, Pedro A R; Romeiro, Luiz Antonio S; García-Sáinz, J Adolfo; Noël, François; Silva, Claudia Lucia Martins

    2016-01-01

    Benign prostatic hyperplasia (BPH) is characterized by stromal cell proliferation and contraction of the periurethral smooth muscle, causing lower urinary tract symptoms. Current BPH treatment, based on monotherapy with α1A-adrenoceptor antagonists, is helpful for many patients, but insufficient for others, and recent reports suggest that stimulation of α1D-adrenoceptors and 5-hydroxytryptamine (serotonin) (5-HT)1A receptors contributes to cell proliferation. In this study, we investigated the potential of three N-phenylpiperazine derivatives (LDT3, LDT5, and LDT8) as multi-target antagonists of BPH-associated receptors. The affinity and efficacy of LDTs were estimated in isometric contraction and competition-binding assays using tissues (prostate and aorta) and brain membrane samples enriched in specific on- or off-target receptors. LDTs' potency was estimated in intracellular Ca(2+) elevation assays using cells overexpressing human α1-adrenoceptor subtypes. The antiproliferative effect of LDTs on prostate cells from BPH patients was evaluated by viable cell counting and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays. We also determined LDTs' effects on rat intraurethral and arterial pressure. LDT3 and LDT5 are potent antagonists of α1A-, α1D-adrenoceptors, and 5-HT1A receptors (Ki values in the nanomolar range), and fully inhibited phenylephrine- and 5-HT-induced proliferation of BPH cells. In vivo, LDT3 and LDT5 fully blocked the increase of intraurethral pressure (IUP) induced by phenylephrine at doses (ED50 of 0.15 and 0.09 μg.kg(-1), respectively) without effect on basal mean blood pressure. LDT3 and LDT5 are multi-target antagonists of key receptors in BPH, and are capable of triggering both prostate muscle relaxation and human hyperplastic prostate cell growth inhibition in vitro. Thus, LDT3 and LDT5 represent potential new lead compounds for BPH treatment. PMID:26493747

  2. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  3. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus

    PubMed Central

    McAllister, Carrie E; Mi, Zhen; Mure, Minae; Li, Qian; Muma, Nancy A

    2014-01-01

    Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling, and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone(ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and non-selective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High molecular weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced partial reduction in oxytocin and ACTH responses to 5-HT1AR-stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression. PMID:25402859

  4. Serotonergic 5-HT(1A) receptor agonist (8-OH-DPAT) ameliorates impaired micturition reflexes in a chronic ventral root avulsion model of incomplete cauda equina/conus medullaris injury.

    PubMed

    Chang, Huiyi H; Havton, Leif A

    2013-01-01

    Trauma to the thoracolumbar spine commonly results in injuries to the cauda equina and the lumbosacral portion of the spinal cord. Both complete and partial injury syndromes may follow. Here, we tested the hypothesis that serotonergic modulation may improve voiding function after an incomplete cauda equina/conus medullaris injury. For this purpose, we used a unilateral L5-S2 ventral root avulsion (VRA) injury model in the rat to mimic a partial lesion to the cauda equina and conus medullaris. Compared to a sham-operated series, comprehensive urodynamic studies demonstrated a markedly reduced voiding efficiency at 12 weeks after the VRA injury. Detailed cystometrogram studies showed injury-induced decreased peak bladder pressures indicative of reduced contractile properties. Concurrent external urethral sphincter (EUS) electromyography demonstrated shortened burst and prolonged silent periods associated with the elimination phase. Next, a 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), was administered intravenously at 12 weeks after the unilateral L5-S2 VRA injury. Both voiding efficiency and maximum intravesical pressure were significantly improved by 8-OH-DPAT (0.3-1.0 mg/kg). 8-OH-DPAT also enhanced the amplitude of EUS tonic and bursting activity as well as duration of EUS bursting and silent period during EUS bursting. The results indicate that 8-OH-DPAT improves voiding efficiency and enhances EUS bursting in rats with unilateral VRA injury. We conclude that serotonergic modulation of the 5-HT(1A) receptor may represent a new strategy to improve lower urinary tract function after incomplete cauda equina/conus medullaris injuries in experimental studies. PMID:23099413

  5. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  6. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation. PMID:26037417

  7. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis.

    PubMed

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M; Meng, Fantao; Wu, Qi; Wemmie, John A; Fisher, Rory A

    2014-04-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents. PMID:24421401

  8. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development. PMID:26477571

  9. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. PMID:26875114

  10. Structure-affinity/activity relationships of 1,4-dioxa-spiro[4.5]decane based ligands at α1 and 5-HT1A receptors.

    PubMed

    Franchini, Silvia; Battisti, Umberto M; Baraldi, Annamaria; Prandi, Adolfo; Fossa, Paola; Cichero, Elena; Tait, Annalisa; Sorbi, Claudia; Marucci, Gabriella; Cilia, Antonio; Pirona, Lorenza; Brasili, Livio

    2014-11-24

    Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a highly selective and potent 5-HT1AR ligand. In the present work we adopted an in-parallel synthetic strategy to rapidly explore a new set of arylpiperazine (7-32) that is structurally related to 1. The compounds were tested for binding affinity and functional activity at 5-HT1AR and α1-adrenoceptor subtypes and SAR studies were drawn. In particular, compounds 9, 27 and 30 emerged as promising α1 receptor antagonists, while compound 10 behaves as the most potent and efficacious 5-HT1AR agonist. All the compounds were docked into the 5HT1AR theoretical model and the results were in agreement with the biological experimental data. These findings may represent a new starting point for developing more selective α1 or 5-HT1AR ligands. PMID:25261823

  11. Disruption of 5-HT1A function in adolescence but not early adulthood leads to sustained increases of anxiety.

    PubMed

    Garcia-Garcia, A L; Meng, Q; Richardson-Jones, J; Dranovsky, A; Leonardo, E D

    2016-05-01

    Current evidence suggests that anxiety disorders have developmental origins. Early insults to the circuits that sub-serve emotional regulation are thought to cause disease later in life. Evidence from studies in mice demonstrate that the serotonergic system in general, and serotonin 1A (5-HT1A) receptors in particular, are critical during the early postnatal period for the normal development of circuits that subserve anxious behavior. However, little is known about the role of serotonin signaling through 5-HT1A receptors between the emergence of normal anxiety behavior after weaning, and the mature adult phenotype. Here, we use both transgenic and pharmacological approaches in male mice, to identify a sensitive period for 5-HT1A function in the stabilization of circuits mediating anxious behavior during adolescence. Using a transgenic approach we show that suppression of 5-HT1A receptor expression beginning in early adolescence results in an anxiety-like phenotype in the open field test. We further demonstrate that treatment with the 5-HT1A antagonist WAY 100,635 between postnatal day (P)35 and P50, but not at later timepoints, results in altered anxiety in ethologically based conflict tests like the open field test and elevated plus maze. This change in anxiety behavior occurs without impacting behavior in the more depression-related sucrose preference test or forced swim test. The treatment with WAY 100,635 does not affect adult 5-HT1A expression levels, but leads to increased expression of the serotonin transporter in the raphe, along with enhanced serotonin levels in both the prefrontal cortex and raphe that correlate with the behavioral changes observed in adult mice. This work demonstrates that signaling through 5-HT1A receptors during adolescence (a time when pathological anxiety emerges), but not early adulthood, is critical in regulating anxiety setpoints. These data suggest the possibility that brief interventions in the serotonergic system during

  12. Role of the 5-HT1A autoreceptor in the enhancement of fluvoxamine-induced increases in prefrontal dopamine release by adrenalectomy/castration in mice.

    PubMed

    Hasebe, Shigeru; Hiramatsu, Naoki; Ago, Yukio; Mori, Kazuya; Watabe, Yuji; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2015-02-01

    We have found that fluvoxamine-induced increases in prefrontal dopamine release are enhanced by adrenalectomy/castration and 5-HT1A receptors are involved in the enhancement. This study examined which 5-HT1A autoreceptors or postsynaptic receptor play a key role in the enhancement in mice. Adrenalectomy/castration-induced enhancement of fluvoxamine-induced increase in the dopamine release was not blocked by local perfusion with the 5-HT1A receptor antagonist WAY100635 (10 μM), while it was blocked by systemic administration of WAY100635 at low dose (0.1 mg/kg) which blocked preferentially autoreceptor-mediated responses. These finding suggests that 5-HT1A autoreceptors play a key role in the enhancement of prefrontal dopamine release. PMID:25727963

  13. The 5-HT1A agonists 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rats.

    PubMed

    Dourish, C T; Kennett, G A; Curzon, G

    1987-01-01

    The effects of 5-HT agonists and antagonists, benzodiazepine anxiolytics and tricyclic antidepressants on restraint stress-induced anorexia in rats were examined. The selective 5-HT(1A) agonists 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT), buspirone and ipsapirone, when injected 2 h after the termination of stress, attenuated stress-induced anor exia and body weight loss. The effects of 8-OH-DPAT on stress-induced anorexia were blocked by the 5-HT(1A) antagonist spiperone but not by the 5-HT(2) antagonist ketanserin. The preferential 5-HT(1B) agonists RU-24969 and quipazine induced anorexia in unstressed rats and tended to supplement the anorectic effects of stress. The benzodiazepines chlordiazepoxide and diazepam and the 5-HT antagonist cyproheptadine had no effect on stress-induced anorexia, when given (like the 5-HT(1A) agonists) 2 h after the stress. Similarly, daily injection for 2 weeks of the tricyclic antidepressants desipramine and sertraline had no beneficial effect. The data suggest that 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rodents by a hyperphagic action on 5-HT(1A) receptors. PMID:22158750

  14. Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg.

    PubMed

    Zaretsky, Dmitry V; Zaretskaia, Maria V; DiMicco, Joseph A; Rusyniak, Daniel E

    2015-10-01

    Yohimbine is a prototypical alpha2-adrenergic receptor antagonist. Due to its relatively high selectivity, yohimbine is often used in experiments whose purpose is to examine the role of these receptors. For example, yohimbine has been employed at doses of 1-5 mg/kg to reinstate drug-seeking behavior after extinction or to antagonize general anesthesia, an effects presumably being a consequence of blocking alpha2-adrenergic receptors. In this report we characterized dose-dependent autonomic and behavioral effects of yohimbine and its interaction with an antagonist of 5-HT1A receptors, WAY 100,635. In low doses (0.5-2 mg/kg i.p.) yohimbine induced locomotor activation which was accompanied by a tachycardia and mild hypertension. Increasing the dose to 3-4.5 mg/kg reversed the hypertension and locomotor activation and induced profound hypothermia. The hypothermia as well as the suppression of the locomotion and the hypertension could be reversed by the blockade of 5-HT1A receptors with WAY 100635. Our data confirm that yohimbine possesses 5-HT1A properties, and demonstrated that in doses above 1mg/kg significantly activate these receptors. PMID:26366943

  15. Testosterone and its metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression.

    PubMed

    Simon, N G; Cologer-Clifford, A; Lu, S F; McKenna, S E; Hu, S

    1998-01-01

    Our understanding of the neurochemical and neuroendocrine systems' regulating the display of offensive intermale aggression has progressed substantially over the past twenty years. Pharmacological studies have shown that serotonin, via its action at 5HT1A and/or 5HT1B receptor sites, modulates the display of intermale aggressive behavior and that its effects serve to decrease behavioral expression. Neuroendocrine investigations, in turn, have demonstrated that male-typical aggression is testosterone-dependent and studies of genetic effects, metabolic function and steroid receptor binding have shown that facilitation of behavioral displays can occur via independent androgen-sensitive or estrogen-sensitive pathways. Remarkably, there have been virtually no studies that examined the interrelationship between these facilitative and inhibitory systems. As an initial step toward characterizing the interaction between the systems, studies were conducted that assessed hormonal modulation of serotonin function at 5HT1A and 5HT1B receptor sites. They demonstrated: (1) that the androgenic and estrogenic metabolites of testosterone differentially modulate the ability of systemically administered 8-OH-DPAT (a 5HT1A agonist) and CGS12066B (a 5HT1B agonist) to decrease offensive aggression; and (2) when microinjected into the lateral septum (LS) or medial preoptic area (MPO), the aggression-attenuating effects of 1A and 1B agonists differ regionally and vary with the steroidal milieu. In general, the results suggest that estrogens establish a restrictive environment for attenuation of T-dependent aggression by 8-OH-DPAT and CGS 12066B, while androgens either do not inhibit, or perhaps even facilitate, the ability of 5HT1A and 5HT1B agonists to reduce aggression. Potential mechanisms involved in the production of these steroidal effects are discussed and emerging issues that may impact on efforts to develop an integrative neurobiological model of offensive, intermale aggression

  16. 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus.

    PubMed

    Gualda, L B; Martins, G G; Müller, B; Guimarães, F S; Oliveira, R M W

    2011-04-01

    The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT(1A) autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT(1A) receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT(1A) receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F(7,63) = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT(1A) receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN. PMID:21445531

  17. A Subpopulation of Serotonergic Neurons That Do Not Express the 5-HT1A Autoreceptor

    PubMed Central

    2012-01-01

    5-HT neurons are topographically organized in the hindbrain, and have been implicated in the etiology and treatment of psychiatric diseases such as depression and anxiety. Early studies suggested that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback inhibition mediated by 5-HT1A autoreceptors. We utilized histochemistry techniques in ePet1-eGFP and 5-HT1A-iCre/R26R mice to show that a subpopulation of 5-HT neurons do not express the somatodendritic 5-HT1A autoreceptor mRNA. In addition, we performed patch-clamp recordings followed by single-cell PCR in ePet1-eGFP mice. From 134 recorded 5-HT neurons located in the dorsal, lateral, and median raphe, we found lack of 5-HT1A mRNA expression in 22 cells, evenly distributed across raphe subfields. We compared the cellular characteristics of these neuronal types and found no difference in passive membrane properties and general excitability. However, when injected with large depolarizing current, 5-HT1A-negative neurons fired more action potentials, suggesting a lack of autoinhibitory action of local 5-HT release. Our results support the hypothesis that the 5-HT system is composed of subpopulations of serotonergic neurons with different capacity for adaptation. PMID:23336048

  18. Structural Insights into 5-HT1A/D4 Selectivity of WAY-100635 Analogues: Molecular Modeling, Synthesis, and in Vitro Binding.

    PubMed

    Dilly, Sébastien; Liégeois, Jean-François

    2016-07-25

    The resurgence of interest in 5-HT1A receptors as a therapeutic target requires the existence of highly selective 5-HT1A ligands. To date, WAY-100635 has been the prototypical antagonist of these receptors. However, this compound also has significant affinity for and activity at D4 dopamine receptors. In this context, this work was aimed at better understanding the 5-HT1A/D4 selectivity of WAY-100635 and analogues from a structural point of view. In silico investigations revealed two key interactions for the 5-HT1A/D4 selectivity of WAY-100635 and analogues. First, a hydrogen bond only found with the Ser 7.36 of D4 receptor appeared to be the key for a higher D4 affinity for newly synthesized aza analogues. The role of Ser 7.36 was confirmed as the affinity of aza analogues for the mutant D4 receptor S7.36A was reduced. Then, the formation of another hydrogen bond with the conserved Ser 5.42 residue appeared to be also critical for D4 binding. PMID:27331407

  19. The C(-1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients

    PubMed Central

    Koller, G; Bondy, B; Preuss, UW; Zill, P; Soyka, M

    2006-01-01

    The 5HT1A receptor is one of at least 14 different receptors for serotonin which has a role in moderating several brain functions and may be involved in the aetiology of several psychiatric disorders. The C(-1019)G 5-HT1A promoter polymorphism was reported to be associated with major depression, depression-related personality traits and suicidal behavior in various samples. The G(-1019) allele carriers are prone to depressive personality traits and suicidal behavior, because serotonergic neurotransmission is reduced. The aim of this study is to replicate previous findings in a sample of 185 Alcohol-dependent individuals. Personality traits were evaluated using the NEO FFI and TCI. History of suicidal behavior was assessed by a standardized semistructured interview (SSAGA). No significant differences across C(-1019)G 5-HT1A genotype groups were found for TCI temperament and character traits and for NEO FFI personality scales. No association was detected between this genetic variant and history of suicide attempts. These results neither support a role of C(-1019)G 5-HT1A promoter polymorphism in the disposition of personality traits like harm avoidance or neuroticism, nor confirm previous research reporting an involvement of the G allele in suicidal behavior in alcoholics. Significant associations, however, were detected between Babor's Type B with number of suicide attempts in history, high neuroticism and harm avoidance scores in alcoholics. PMID:16504134

  20. Effect of prenatal stress on memory, nicotine withdrawal and 5HT1A expression in raphe nuclei of adult rats.

    PubMed

    Said, N; Lakehayli, S; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2015-06-01

    Maternal distress has often been associated with cognitive deficiencies and drug abuse in rats. This study examined these behavioral effects in offspring of mothers stressed during gestation. To this end, pregnant dams were subjected to daily electric foot shocks during the last 10 days of pregnancy. We measured litter parameters and body weights of the descendants after weaning (21 days) and at adulthood (80 days). Afterwards, prenatally stressed and control rats' performances in the novel object recognition test were compared in order to evaluate their memory while others underwent the Water consumption test to assess the nicotine withdrawal intensity after perinatal manipulations. Meanwhile, another set of rats were sacrificed and 5HT1A receptors' mRNA expression was measured in the raphe nuclei by quantitative Real Time PCR. We noticed no significant influence of maternal stress on litter size and body weight right after weaning. However, control rats were heavier than the stressed rats in adulthood. The results also showed a significant decrease in the recognition score in rats stressed in utero compared to the controls. Moreover, a heightened anxiety symptom was observed in the prenatally stressed offspring following nicotine withdrawal. Additionally, the Real Time PCR method revealed that prenatal stress induced a significant decrease in 5HT1A receptors' levels in the raphe nuclei. Nicotine had a similar effect on these receptors' expression in both nicotine-treated control and prenatally stressed groups. Taken together, these findings suggest that the cognitive functions and drug dependence can be triggered by early adverse events in rats. PMID:25896010

  1. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats

    PubMed Central

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-01-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the Ki values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg−1, dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg−1) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg−1) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression. PMID:26171224

  2. Proopiomelanocortin but not vasopressin or renin-angiotensin system induces resuscitative effects of central 5-HT1A activation in haemorrhagic shock in rats.

    PubMed

    Sowa, P; Adamczyk-Sowa, M; Zwirska-Korczala, K; Pierzchala, K; Adamczyk, D; Paluch, Z; Misiolek, M

    2014-10-01

    The aim of this study was to determine the effectory mechanisms: vasopressin, renin-angiotensin system and proopiomelanocortin-derived peptides (POMC), partaking in the effects of serotonin through central serotonin 1A receptor (5-HT1A) receptors in haemorrhagic shock in rats. The study was conducted on male Wistar rats. All experimental procedures were carried out under full anaesthesia. The principal experiment included a 2 hour observation period in haemorrhagic shock. Drugs used - a selective 5-HT1A agonist 8-OH-DPAT (5 μg/5 μl); V1a receptor antagonist [β-mercapto-β, β-cyclo-pentamethylenepropionyl(1),O-me-Tyr(2),Arg(8)]AVP (10 μg/kg); angiotensin type I receptor antagonist (AT1) ZD7155 (0.5 mg/kg, i.v.); angiotensin-converting-enzyme inhibitor captopril (30 mg/kg, i.v.); melanocortin type 4 (MC4) receptor antagonist HS014 (5 μg, i.c.v.). There was no influence of ZD715, captopril or blocking of the V1a receptors on changes in the heart rate (HR), mean arterial pressure (MAP), peripheral blood flow or resistance caused by the central stimulation of 5-HT1A receptors (P≥0.05). However, selective blocking of central MC4 receptors caused a slight, but significant decrease in HR and MAP (P<0.05). POMC derivatives acting via the central MC4 receptor participate in the resuscitative effects of 8-OH-DPAT. The angiotensin and vasopressin systems do not participate in these actions. PMID:25371525

  3. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  4. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress.

    PubMed

    Biswal, Manas R; Ahmed, Chulbul M; Ildefonso, Cristhian J; Han, Pingyang; Li, Hong; Jivanji, Hiral; Mao, Haoyu; Lewin, Alfred S

    2015-11-01

    Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration. PMID:26315784

  5. Screening of medicinal plants from Suriname for 5-HT(1A) ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata.

    PubMed

    Hasrat, J A; Pieters, L; De Backer, J P; Vauquelin, G; Vlietinck, A J

    1997-06-01

    Plants from Suriname (South-America) and several Annona species, including A. muricata, A. ckerimolia, A. montana and A. glabra were screened for 5-HT(1A) receptor binding activity by ligand-binding-studies (LBS). Crude extracts of all Annona species and from Hibiscus bifurcatus, Irlbarchia purpurascens and Scoparia dulcis showed high activity. The isoquinoline alkaloids asimilobine (1), nornuciferine (2), and annonaine (3) were isolated as the active principles from the fruit of Annona muricata. These results may partially explain the use of Hibiscus bifurcatus and Annona muricata in traditional medicine in Suriname. PMID:23195401

  6. The synthesis and biological evaluation of quinolyl-piperazinyl piperidines as potent serotonin 5-HT1A antagonists.

    PubMed

    Childers, Wayne E; Havran, Lisa M; Asselin, Magda; Bicksler, James J; Chong, Dan C; Grosu, George T; Shen, Zhongqi; Abou-Gharbia, Magid A; Bach, Alvin C; Harrison, Boyd L; Kagan, Natasha; Kleintop, Teresa; Magolda, Ronald; Marathias, Vasilios; Robichaud, Albert J; Sabb, Annmarie L; Zhang, Mei-Yi; Andree, Terrance H; Aschmies, Susan H; Beyer, Chad; Comery, Thomas A; Day, Mark; Grauer, Steven M; Hughes, Zoe A; Rosenzweig-Lipson, Sharon; Platt, Brian; Pulicicchio, Claudine; Smith, Deborah E; Sukoff-Rizzo, Stacy J; Sullivan, Kelly M; Adedoyin, Adedayo; Huselton, Christine; Hirst, Warren D

    2010-05-27

    As part of an effort to identify 5-HT(1A) antagonists that did not possess typical arylalkylamine or keto/amido-alkyl aryl piperazine scaffolds, prototype compound 10a was identified from earlier work in a combined 5-HT(1A) antagonist/SSRI program. This quinolyl-piperazinyl piperidine analogue displayed potent, selective 5-HT(1A) antagonism but suffered from poor oxidative metabolic stability, resulting in low exposure following oral administration. SAR studies, driven primarily by in vitro liver microsomal stability assessment, identified compound 10b, which displayed improved oral bioavailability and lower intrinsic clearance. Further changes to the scaffold (e.g., 10r) resulted in a loss in potency. Compound 10b displayed cognitive enhancing effects in a number of animal models of learning and memory, enhanced the antidepressant-like effects of the SSRI fluoxetine, and reversed the sexual dysfunction induced by chronic fluoxetine treatment. PMID:20443629

  7. Differences among conventional, atypical and novel putative D(2)/5-HT(1A) antipsychotics on catalepsy-associated behaviour in cynomolgus monkeys.

    PubMed

    Auclair, Agnès L; Kleven, Mark S; Barret-Grévoz, Catherine; Barreto, Martine; Newman-Tancredi, Adrian; Depoortère, Ronan

    2009-11-01

    Typical antipsychotics such as haloperidol exert their therapeutic effects via blockade of dopamine (DA) D(2) receptors, leading to extrapyramidal symptoms (EPS) in humans and catalepsy in rodents. In contrast, atypical antipsychotics and new generation D(2)/5-HT(1A) antipsychotics have low cataleptogenic potential. However, there has been no systematic comparative study on the effects of these different classes of antipsychotics in non-human primates, a species displaying a more sophisticated repertoire of behavioural/motor activity than rats. Once weekly, six young adult female non-haloperidol-sensitised cynomolgus monkeys were treated i.m. with a test compound and videotaped to score catalepsy-associated behaviour (CAB: static postures, unusual positions and crouching). Haloperidol, risperidone, olanzapine, nemonapride and remoxipride induced, to different extents, an increase in unusual positions (a response akin to dystonia), some crouching and static postures. In contrast, clozapine, quetiapine, ziprasidone and aripiprazole produced much lower or no unusual positions; clozapine also produced marked increases in static postures and crouching. Among novel D(2)/5-HT(1A) antipsychotics, SLV313 and F15063 augmented the number of unusual positions, albeit at doses 16-63 times higher than those of haloperidol for approximately the same score. SSR181507 and bifeprunox produced moderate static postures, little crouching and negligible unusual positions. These data provide the first comparative analysis in cynomolgus monkeys of EPS liability of conventional, atypical and novel D(2)/5-HT(1A) antipsychotics. They indicate that the latter are less prone than haloperidol to produce CAB, and provide a basis for comparison with rodent catalepsy studies. PMID:19464324

  8. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  9. Effects of the serotonin 5-HT(2) antagonist, ritanserin, and the serotonin 5-HT(1A) antagonist, WAY 100635, on cocaine-seeking in rats.

    PubMed

    Schenk, S

    2000-10-01

    Manipulations of serotonergic systems have been shown to modify many of the behavioral effects of cocaine. It was recently demonstrated that serotonin (5-HT) depletions produced by inhibition of tryptophan hydroxylase reduced cocaine-seeking in an animal model. The present study was designed to determine whether pretreatment with specific 5-HT antagonists might also decrease cocaine-seeking. The effect of pretreatment with the 5-HT(2) antagonist, ritanserin (0.0, 1.0, or 10.0 mg/kg), or the 5-HT(1A) antagonist, WAY 100635 (0. 0, 0.1, 0.3, or 1.0 mg/kg), on cocaine (5.0, 10.0, or 20.0 mg/kg)-produced reinstatement of extinguished drug-taking behavior was measured. Although ritanserin was ineffective, WAY 100635 attenuated cocaine-produced reinstatement in a dose-dependent manner. These effects of WAY 100635 appeared to be specific since responding maintained by saccharin self-administration remained high following pretreatment with 0.3 or 1.0 mg/kg WAY 100635. These data suggest a role of 5-HT(1A), but not 5-HT(2), receptors in cocaine-seeking. PMID:11124402

  10. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  11. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem

    PubMed Central

    2014-01-01

    Background Despite the importance of 5-HT1A as a major target for the action of several anxiolytics/antidepressant drugs, little is known about its regulation in central serotonin (5-hydroxytryptamine, 5-HT) neurons. Results We report that expression of 5-HT1A and the transcription factor Pet1 was impaired in the rostral raphe nuclei of mice lacking tryptophan hydroxylase 2 (Tph2) after birth. The downregulation of Pet1 was recapitulated in 5-Ht1a -/- mice. Using an explant culture system, we show that reduction of Pet1 and 5-HT1A was rescued in Tph2 -/- brainstem by exogenous 5-HT. In contrast, 5-HT failed to rescue reduced expression of Pet1 in 5-Ht1a -/- brainstem explant culture. Conclusions These results suggest a causal relationship between 5-HT1A and Pet1, and reveal a potential mechanism by which 5-HT1A-Pet1 autoregulatory loop is maintained by 5-HT in a spatiotemporal-specific manner during postnatal development. Our results are relevant to understanding the pathophysiology of certain psychiatric and developmental disorders. PMID:24972638

  12. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists

    PubMed Central

    Abdala, Ana P.; Bissonnette, John M.; Newman-Tancredi, Adrian

    2014-01-01

    Rett syndrome is a neurological disorder caused by loss of function of methyl-CpG-binding protein 2 (MeCP2). Reduced function of this ubiquitous transcriptional regulator has a devastating effect on the central nervous system. One of the most severe and life-threatening presentations of this syndrome is brainstem dysfunction, which results in autonomic disturbances such as breathing deficits, typified by episodes of breathing cessation intercalated with episodes of hyperventilation or irregular breathing. Defects in numerous neurotransmitter systems have been observed in Rett syndrome both in animal models and patients. Here we dedicate special attention to serotonin due to its role in promoting regular breathing, increasing vagal tone, regulating mood, alleviating Parkinsonian-like symptoms and potential for therapeutic translation. A promising new symptomatic strategy currently focuses on regulation of serotonergic function using highly selective serotonin type 1A (5-HT1A) “biased agonists.” We address this newly emerging therapy for respiratory brainstem dysfunction and challenges for translation with a holistic perspective of Rett syndrome, considering potential mood and motor effects. PMID:24910619

  13. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction. PMID:26957055

  14. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  15. Synthesis and structure-activity relationships of a new model of arylpiperazines. Part 7: Study of the influence of lipophilic factors at the terminal amide fragment on 5-HT(1A) affinity/selectivity.

    PubMed

    López-Rodríguez, María L; Ayala, David; Viso, Alma; Benhamú, Bellinda; de La Pradilla, Roberto Fernández; Zarza, Fernando; Ramos, José A

    2004-03-15

    The influence of lipophilic factors at the amide fragment of a new series of (+/-)-7a-alkyl-2-[4-(4-arylpiperazin-1-yl)butyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 2 and of (+/-)-7a-alkyl-2-[(4-arylpiperazin-1-yl)methyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 3 has been studied. Variations of logP have been carried out by introducing different hydrocarbonated substituents (R(1)) at the position 7a of the bicyclohydantoin, namely the non-pharmacophoric part. All the new compounds exhibit high potency for the 5-HT(1A) receptor; however, affinities for the alpha(1) receptor are high for compounds 2a-l while compounds 3a-f are selective over this adrenergic receptor. On the other hand, differences in logP do not notably affect the K(i) values for the above receptors. PMID:15018929

  16. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  17. Characterization of MDL 73005EF as a 5-HT1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam.

    PubMed Central

    Moser, P. C.; Tricklebank, M. D.; Middlemiss, D. N.; Mir, A. K.; Hibert, M. F.; Fozard, J. R.

    1990-01-01

    1. With radioligand binding techniques, MDL 73005 EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8-az aspiro[4, 5]decane-7,9-dione methyl sulphonate) shows high affinity (pIC50 8.6) and selectivity (greater than 100 fold compared to other monoamine and benzodiazepine receptor sites) for the 5-hydroxytryptamine (5-HT)1A recognition site; it was both more potent and more selective than buspirone in this respect. 2. In rats pretreated with reserpine, 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) induced forepaw treading and flat body posture; in the same model, MDL 73005EF and buspirone showed minimal agonist activity and at high doses MDL 73005EF inhibited responses to 8-OH-DPAT. 3. In rats trained to discriminate 8-OH-DPAT from saline in a drug discrimination paradigm, both MDL 73005EF and buspirone generalized dose-dependently and completely to the 8-OH-DPAT cue. 4. To define the anxiolytic potential of MDL 73005EF, it was examined in the elevated plus-maze test and in the water-lick conflict test in comparison with diazepam and buspirone. In both tests MDL 73005EF induced effects similar to those seen following diazepam. Buspirone had similar effects to both MDL 73005EF and diazepam in the water-lick conflict test but opposite effects in the elevated plus-maze. 8-OH-DPAT also had opposite effects in the elevated plus-maze test to MDL 73005EF and diazepam. 5. The anti-conflict effects of MDL 73005EF were reversed by low doses of the 5-HT1A receptor agonist, 8-OH-DPAT; those of buspirone were neither antagonised nor mimicked by 8-OH-DPAT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1970269

  18. Genetic variation in brain-derived neurotrophic factor val66met allele is associated with altered serotonin-1A receptor binding in human brain.

    PubMed

    Lan, Martin J; Ogden, R Todd; Huang, Yung-yu; Oquendo, Maria A; Sullivan, Gregory M; Miller, Jeffrey; Milak, Matthew; Mann, J John; Parsey, Ramin V

    2014-07-01

    Brain Derived Neurotrophic Factor (BDNF) regulates brain synaptic plasticity. BDNF affects serotonin signaling, increases serotonin levels in brain tissue and prevents degeneration of serotonin neurons. These effects have hardly been studied in human brain. We examined the relationship of the functional val66met polymorphism of the BDNF gene to serotonin 1A (5-HT(1A)) receptor binding in vivo. 50 healthy volunteers (HV) and 50 acutely depressed, unmedicated patients with major depressive disorder (MDD) underwent PET scanning with the 5-HT(1A) receptor ligand, [(11)C]WAY-100635 and a metabolite corrected arterial input function. A linear mixed effects model compared 5-HT(1A) receptor binding potential (BP(F), proportional to the number of available receptors) in 13 brain regions of interest between met allele carriers (met/met and val/met) and noncarriers (val/val) using sex and C-1019G genotype of the 5-HT(1A) receptor promoter functional polymorphism as covariates. There was an interaction between diagnosis and allele (F=4.23, df=1, 94, p=0.042), such that met allele carriers had 17.4% lower BP(F) than non-met carriers in the HV group (t=2.6, df=96, p=0.010), but not in the MDD group (t=-0.4, df=96, p=0.58). These data are consistent with a model where the met allele of the val66met polymorphism causes less proliferation of serotonin synapses, and consequently fewer 5-HT(1A) receptors. In MDD, however, the effect of the val66met polymorphism is not detectable, possibly due to a ceiling effect of over-expression of 5-HT(1A) receptors in mood disorders. PMID:24607934

  19. The Relevance of the Functional 5-HT1A Receptor Polymorphism for Attention and Working Memory Processes during Mental Rotation of Characters

    ERIC Educational Resources Information Center

    Beste, Christian; Heil, Martin; Domschke, Katharina; Konrad, Carsten

    2010-01-01

    Numerous lines of research indicate that attentional processes, working memory and saccadic processes are highly interrelated. In the current study, we examine the relation between these processes with respect to their cognitive-neurophysiological and neurobiological background by means of event-related potentials (ERPs) in a sample of N = 72…

  20. The cardiovascular and renal functional responses to the 5-HT1A receptor agonist flesinoxan in two rat models of hypertension.

    PubMed Central

    Chamienia, A. L.; Johns, E. J.

    1996-01-01

    1. This study investigated the importance of renal sympathetic nerves in regulating sodium and water excretion from the kidneys of stroke prone spontaneously hypertensive and 2K1C Goldblatt hypertensive rats anaesthetized with chloralose/urethane (17.5/300 mg initially and supplemented at regular intervals), and prepared for measurement of renal function. 2. In stroke prone spontaneously hypertensive rats, flesinoxan, 30-1000 micrograms kg-1, i.v., caused graded reductions in blood pressure and heart rate of 74 +/- 5 mmHg and 63 +/- 9 beats min-1, respectively at the highest dose (P < 0.001). Renal blood flow did not change at any dose of drug while glomerular filtration rate fell by some 20% (P < 0.001) at the highest dose of drug, absolute and fractional sodium excretions, approximately doubled at 100 micrograms kg-1, and thereafter fell to below the baseline level at 1000 micrograms kg-1. 3. This pattern of excretory response was abolished following acute renal denervation when flesinoxan caused dose-related reductions in urine flow and sodium excretion, similar to that obtained by a mechanical reduction of renal perfusion pressure. 4. Flesinoxan administration (30-1000 micrograms kg-1, i.v.) into 2K1C Goldblatt hypertensive rats caused a maximum decrease in blood pressure and heart rate (both P < 0.001) of 34 +/- 3 mmHg and 20 +/- 6 beats min-1 and while renal blood flow and glomerular filtration rate were autoregulated, from 160 to 125 mmHg, there were dose-related decreases in urine volume and sodium excretion from the clipped and non-clipped kidneys of approximately 50-60% at the highest dose. 5. These findings suggest that in the stroke prone spontaneously hypertensive rat the renal nerves importantly control sodium and water reabsorption at the level of the tubules, whereas in 2K1C Goldblatt hypertensive rats, they play a minor role. PMID:8864520

  1. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    PubMed

    dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  2. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  3. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  4. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance. PMID:26832922

  5. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  6. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder

    PubMed Central

    Ramboz, Sylvie; Oosting, Ronald; Amara, Djamel Aït; Kung, Hank F.; Blier, Pierre; Mendelsohn, Monica; Mann, J. John; Brunner, Dani; Hen, René

    1998-01-01

    To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety. PMID:9826725

  7. A developmental characterization of mesolimbocortical serotonergic gene expression changes following early immune challenge.

    PubMed

    Sidor, M M; Amath, A; MacQueen, G; Foster, J A

    2010-12-15

    An immunogenic challenge during early postnatal development leads to long-term changes in behavioural and physiological measures reflecting enhanced emotionality and anxiety. Altered CNS serotonin (5-HT) signalling during the third postnatal week is thought to modify the developing neurocircuitry governing anxiety-like behaviour. Changes in 5-HT signalling during this time window may underlie increased emotionality reported in early immune challenge rodents. Here we examine both the spatial and temporal profile of 5-HT related gene expression, including 5HT1A, 2A, 2C receptors, the 5-HT transporter (5HTT), and tryptophan hydroxylase 2 (TPH2) during early development (postnatal day [P]14, P17, P21, P28) in mice challenged with lipopolysaccharide (LPS) during the first postnatal week. Expression levels were measured using in situ hybridization in regions associated with mediating emotive behaviours: the dorsal raphe (DR), hippocampus, amygdala, and prefrontal cortex (PFC). Increased TPH2 and 5HTT expression in the ventrolateral region of the DR of LPS-mice accompanied decreased expression of ventral DR 5HT1A and dorsal DR 5HTT. In the forebrain, 5HT1A and 2A receptors were increased, whereas 5HT2C receptors were decreased in the hippocampus. Decreased mRNA expression of 5HT2C was detected in the amygdala and PFC of LPS-treated pups; 5HT1A was increased in the PFC. The majority of these changes were restricted to P14-21. These transient changes in 5-HT expression coincide with the critical time window in which 5-HT disturbance leads to permanent modification of anxiety-related behaviours. This suggests that alterations in CNS 5-HT during development may underlie the enhanced emotionality associated with an early immune challenge. PMID:20816924

  8. [Antidepressants, stressors and the serotonin 1A receptor].

    PubMed

    Kirilly, Eszter; Gonda, Xénia; Bagdy, György

    2015-06-01

    5-HT(1A) receptor is a receptor of surprises. Buspirone, an anxiolytic drug with a then yet unidentified mechanism of action had been marketed for years when it was discovered that it is a 5-HT(1A) partial agonist. Several more years had to pass before it was accepted that this receptor plays the key role in the action mechanism of buspirone. This was followed by further surprises. It was discovered that in spite of its anxiolytic effect buspirone activates the hypothalamic-pituitary-adrenal (HPA) stress axis, furthermore, it increases peripheral noradrenaline and adrenaline concentration via a central mechanism. Thus activation of this receptor leads to ACTH/corticosterone and catecholamine release and also increases beta-endorphine, oxytocin and prolactin secretion while decreasing body temperature, increasing food uptake, eliciting characteristic behavioural responses in rodents and also playing a role in the development of certain types of epilepsy. Human genetic studies revealed the role of 5-HT(1A) receptors in cognitive processes playing a role in the development of depression such as impulsiveness or response to environmental stress. This exceptionally wide spectrum of effects is attributable to the presence of 5-HT1A receptors in serotonergic as well as other, for example glutamatergic, cholinergic, dopaminergic and noradrenergic neurons. The majority of the effects of 5-HT(1A) receptors is manifested via the mediation of Gi proteins through the hyperpolarisation or inhibition of the neuron carrying the receptor. 5-HT(1A) receptors on serotonergic neurons can be found in the somatodendritic area and play a significant role in delaying the effects of antidepressants which is an obvious disadvantage. Therefore the newest serotonergic antidepressants including vilazodone and vortioxetine have been designed to possess 5-HT(1A) receptor partial agonist properties. In the present paper we focus primarily on the role of 5-HT(1A) receptors in stress and

  9. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH. PMID:26749090

  10. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    PubMed Central

    Nakayama, Hiroto; Umeda, Sumiyo; Nibuya, Masashi; Terao, Takeshi; Nisijima, Koichi; Nomura, Soichiro

    2014-01-01

    We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists. PMID:24627634

  11. Spacer conformation in biologically active molecules. Part 2. Structure and conformation of 4-[2-(diphenylmethylamino)ethyl]-1-(2-methoxyphenyl) piperazine and its diphenylmethoxy analog—potential 5-HT 1A receptor ligands

    NASA Astrophysics Data System (ADS)

    Karolak-Wojciechowska, J.; Fruziński, A.; Czylkowski, R.; Paluchowska, M. H.; Mokrosz, M. J.

    2003-09-01

    As a part of studies on biologically active molecule structures with aliphatic linking chain, the structures of 4-[2-diphenylmethylamino)ethyl]-1-(2-methoxyphenyl)piperazine dihydrochloride ( 1) and 4-[2-diphenylmethoxy)ethyl]-1-(2-methoxyphenyl)piperazine fumarate ( 2) have been reported. In both compounds, four atomic non-all-carbons linking chains (N)C-C-X-C are present. The conformation of that linking spacer depends on the nature of the X-atom. The preferred conformation for chain with XNH has been found to be fully extended while for that with XO—the bend one. It was confirmed by conformational calculations (strain energy distribution and random search) and crystallographic data, including statistics from CCDC.

  12. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  13. Targeting of serotonin 1A receptors to dopaminergic neurons within the parabrachial subdivision of the ventral tegmental area in rat brain.

    PubMed

    Doherty, M D; Pickel, V M

    2001-05-01

    Serotonin (5-hydroxytryptamine [5-HT]) modulates dopamine-related cognitive functions and motor activity through activation of selective receptor subtypes including 5-HT1A. Potential targets for these 5-HT1A-mediated actions of 5-HT include mesocortical and mesolimbic dopaminergic neurons having partially segregated distribution in the parabrachial and paranigral subdivisions of the ventral tegmental area (VTA), respectively. We therefore examined the ultrastructural immunocytochemical localization of the 5-HT1A receptor in the parabrachial (VTApb) and paranigral (VTApn) subdivisions of rat VTA, to determine 1) the functional sites for receptor activation, and 2) the cellular associations between this receptor and dopaminergic neurons identified by their tyrosine hydroxylase (TH) content. In each region, 5-HT1A immunoreactivity was mainly observed in somatodendritic profiles, but it was also present in small unmyelinated axons and in a few axon terminals and glia, suggesting a role for 5-HT1A receptors in presynaptic and glial functions, as well as postsynaptic neuronal activation, in VTA. In somatodendritic profiles, 5-HT1A gold particles were mainly localized to tubulovesicles presumed to be smooth endoplasmic reticulum. In addition, however, in distal dendrites receiving multiple inputs the receptor was targeted to selective postsynaptic junctions, or more randomly distributed on nonsynaptic portions of the plasma membrane. Of the 5-HT1A-labeled dendrites, 64% in VTApb and 44% in VTApn contained TH. These findings suggest a reserve of cytoplasmic 5-HT1A receptors that are mobilized to functional postsynaptic sites on the plasma membrane by afferent input to distal dendrites in the VTA. They also indicate that 5-HT1A activation may affect a larger population of dopaminergic neurons in VTApb compared with VTApn, thus having a potentially greater impact on cognitive functions modulated by mesocortical dopaminergic neurons. PMID:11298363

  14. Age, Sex, and Reproductive Hormone Effects on Brain Serotonin-1A and Serotonin-2A Receptor Binding in a Healthy Population

    PubMed Central

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-01-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20–80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [11C]WAY100635 and [18F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (VT) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age2, sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004–0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05–0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03–0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  15. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population.

    PubMed

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-12-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20-80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [(11)C]WAY100635 and [(18)F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (V(T)) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age(2), sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004-0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05-0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03-0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  16. Efficacy of testosterone combined with a PDE5 inhibitor and testosterone combined with a serotonin (1A) receptor agonist in women with SSRI-induced sexual dysfunction. A preliminary study.

    PubMed

    van Rooij, Kim; Poels, Saskia; Worst, Petra; Bloemers, Jos; Koppeschaar, Hans; Goldstein, Andrew; Olivier, Berend; Tuiten, Adriaan

    2015-04-15

    Selective serotonin reuptake inhibitors (SSRIs) are known to cause sexual dysfunction, such as decreased sexual motivation, desire, arousal, and orgasm difficulties. These SSRI-induced sexual complaints have a high prevalence rate, while there is no approved pharmacological treatment for SSRI-induced sexual dysfunction. It is hypothesized that a polymorphisms in the androgen receptor gene, encoded by the nucleotides cysteine, adenine, and guanine (CAG), influence the effect of testosterone on sexual functioning. In an explorative, randomized, double-blind, placebo-controlled, crossover study we investigated the possible effects of sublingual testosterone combined with a serotonin (5-HT)1A receptor agonist, and of sublingual testosterone combined with a phosphodiesterase type 5 inhibitor (PDE5-i) on sexual functioning in women with SSRI-induced sexual dysfunction. Furthermore, we did an exploratory analysis to assess if the CAG polymorphism influences this effect. 21 pre- and postmenopausal women with SSRI-induced sexual dysfunction participated and underwent the following interventions: a combination of testosterone (0.5 mg) sublingually and the PDE5-i sildenafil (50 mg) and a combination of testosterone (0.5 mg) sublingually and the 5-HT1A receptor agonist buspirone (10 mg). The results show that women who use a low dose of SSRI and have relatively long CAG repeats report a marked improvement in sexual function in response to both treatments compared to placebo. This explorative study and preliminary results indicate that in women with SSRI-induced sexual dysfunction, a combination of testosterone sublingually and a PDE5-i or testosterone sublingually and a 5-HT1A receptor agonist might be promising treatments for certain subgroups of women with this condition. PMID:25460030

  17. Serotonin1A-receptor-dependent signaling proteins in mouse hippocampus

    PubMed Central

    Li, Lin; Whittle, Nigel; Klug, Stefanie; Chen, Wei-Qiang; Singewald, Nicolas; Toth, Miklos; Lubec, Gert

    2009-01-01

    The serotonin1A receptor (5-HT1A R) knock-out mouse (KO) is a widely used animal model for anxiety and cognitive function and regulation of signaling cascades by this receptor has been reported. We aimed to determine individual representatives of signaling cascades in order to screen 5-HT1A R-dependent signaling proteins (SPs). Hippocampal proteins from wild type and 5-HT1A R KO mice were extracted, run on two-dimensional gel electrophoresis, proteins were identified by MALDI and nano-ESI-LC-MS/MS and SPs were quantified by specific software. Nucleoside diphosphate kinase A (NDK A, synonym: nm23), Dual specificity mitogen-activated protein kinase kinase 1 (MAPKK1, synonym: MEK), Serine/threonine-protein phosphatase PP1-gamma catalytic subunit (PP-1G), Septin-5, were reduced in the KO mice. Novel phosphorylation sites at T386 on MAPKK1 and at S225 and Y265 on Septin-5 were observed. MAPKK1 and PP-1G are known 5-HT1A R-dependent signaling compounds and are in agreement with receptor knock-out and septin-5 is involved in serotonin transport, although regulation by 5-HT1A R has not been reported. 5-HT1A R – dependent levels for NDK A have not been demonstrated so far and we herewith propose a role for NDK A in 5-HT1A R signaling. Reduced SP levels along with findings of two novel phosphorylation sites may be relevant for interpretation of previous and the design of future studies on this receptor system. PMID:19607848

  18. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  19. Role of serotonin 1A receptors in the median raphe nucleus on the behavioral consequences of forced swim stress.

    PubMed

    Almeida, P V G; Trovo, M C; Tokumoto, A M; Pereira, A C; Padovan, C M

    2013-12-01

    Despite the intense research on the neurobiology of stress, the role of serotonin (5-HT)1A receptors still remains to be elucidated. In the hippocampus, post-synaptic 5-HT1A receptors activation induces anxiolytic effects in animals previously exposed to stressful situations. However, little is known about somatodendritic 5-HT1A receptors in the median raphe nucleus (MRN). Therefore, the aim of this study was to investigate the role of 5-HT1A receptors located in the MRN in rats exposed to forced swim stress. After recovering from surgery, rats were forced to swim for 15 min in a cylinder. Intra-MRN injections of saline, 8-OH-DPAT (3 nmol/0.2 µL) and/or WAY-100635 (0.3 nmol/0.2 µL) were performed immediately before or after pre-exposure or 24 h later (immediately before test). Non-stressed rats received the same treatment 24 h or 10 min before test. Our data showed that 8-OH-DPAT increased latency to display immobility while decreasing time spent immobile in almost all experimental conditions. These effects were not prevented by previous treatment with WAY-100635. No effects of different treatments were described in non-stressed animals. Taken together, our data suggest that in addition to activation of 5-HT1A, 5-HT7 receptors may also be involved in the behavioural consequences of exposure to swim stress. PMID:24162801

  20. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G. ); Lumeng, L.; Li, Ting-Kai )

    1990-01-01

    Saturable ({sup 3}H)-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B{sub max} values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K{sub D} values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats.

  1. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    NASA Astrophysics Data System (ADS)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  2. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  3. Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette's disorder--implications for psychopharmacology.

    PubMed

    Kasper, Siegfried; Tauscher, Johannes; Willeit, Matthäus; Stamenkovic, Mara; Neumeister, Alexander; Küfferle, Bernd; Barnas, Christian; Stastny, Jürgen; Praschak-Rieder, Nicole; Pezawas, Lukas; de Zwaan, Martina; Quiner, Sylvia; Pirker, Walter; Asenbaum, Susanne; Podreka, Ivo; Brücke, Thomas

    2002-07-01

    Considerable progress has been achieved over the past 15 years in uncovering the biological basis of major psychiatric disorders. To determine patterns of brain dysfunction and to uncover the mechanism of action of centrally active compounds we used single photon emission computerized tomography (SPECT) as well as positron emission tomography (PET) in patients diagnosed with schizophrenia, depression, bulimia and Tourette's disorder. Striatal D2 and 5-HT1A receptors were studied in schizophrenia and 5-HT transporters (5-HTT) in depression and bulimia. Patients were either drug-naïve or drug free, or we studied the influence of specifically acting compounds on receptor/transporter occupancy. We could demonstrate that atypical antipsychotics have a dose-dependent (with the exception of clozapine and quetiapine) lower striatal D2 receptor occupancy rate compared with typical neuroleptics, paralleling the more favourable extrapyramidal side effects of atypical antipsychotics. However, no association between striatal D2 receptor occupancy rates and antipsychotic efficacy has been found. The measurement of 5-HT1A receptors in drug-naïve schizophrenic patients using the in vivo PET methodology revealed an increase of cortical 5-HT1A receptor binding potential in schizophrenia. beta-CIT as a ligand for measurement of 5-HT transporter densities (5-HTT) revealed lower rates in depression compared to age- and sex-matching healthy controls, a measurement that has also been obtained for bulimia. We also documented seasonal variations in brain serotonergic function by our finding of reduced brain 5-HTT availability in winter (compared to summer) in healthy controls. Furthermore, displaceable [123I] beta-CIT binding in the area corresponding to the left striatum (representing predominantly the density of dopamine transporters) was significantly reduced in SAD patients compared to healthy controls. In depression as well as in bulimia, selective serotonin reuptake inhibitors

  4. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET

    PubMed Central

    Lanzenberger, R; Baldinger, P; Hahn, A; Ungersboeck, J; Mitterhauser, M; Winkler, D; Micskei, Z; Stein, P; Karanikas, G; Wadsak, W; Kasper, S; Frey, R

    2013-01-01

    Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice before (test–retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (∼83%) were responders to ECT. The voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical and subcortical regions (P<0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual part of the anterior cingulate cortex (−27.5%), the orbitofrontal cortex (−30.1%), the amygdala (−31.8%), the hippocampus (−30.6%) and the insula (−28.9%). No significant change was found in the raphe nuclei. There was no significant difference in receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT. PMID:22751491

  5. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors).

    PubMed

    Stahl, Stephen M

    2015-04-01

    Vortioxetine is an antidepressant that targets multiple pharmacologic modes of action at sites--or nodes--where serotonergic neurons connect to various brain circuits. These multimodal pharmacologic actions of vortioxetine lead to enhanced release of various neurotransmitters, including serotonin, at various nodes within neuronal networks. PMID:25831967

  6. Activation of the serotonin 1A receptor alters the temporal characteristics of auditory responses in the inferior colliculus.

    PubMed

    Hurley, Laura M

    2007-11-21

    Serotonin, like other neuromodulators, acts on a range of receptor types, but its effects also depend on the functional characteristics of the neurons responding to receptor activation. In the inferior colliculus (IC), an auditory midbrain nucleus, activation of a common serotonin (5-HT) receptor type, the 5-HT 1A receptor, depresses auditory-evoked responses in many neurons. Whether these effects occur differentially in different types of neurons is unknown. In the current study, the effects of iontophoretic application of the 5-HT 1A agonist 8-OH-DPAT on auditory responses were compared with the characteristic frequencies (CFs), recording depths, and control first-spike latencies of the same group of IC neurons. The 8-OH-DPAT-evoked change in response significantly correlated with first-spike latency across the population, so that response depressions were more prevalent in longer-latency neurons. The 8-OH-DPAT-evoked change in response did not correlate with CF or with recording depth. 8-OH-DPAT also altered the temporal characteristics of spike trains in a subset of neurons that fired multiple spikes in response to brief stimuli. For these neurons, activation of the 5-HT 1A receptor suppressed lagging spikes proportionally more than initial spikes. These results suggest that the 5-HT 1A receptor, by affecting the timing of the responses of both individual neurons and the neuron population, shifts the temporal profile of evoked activity within the IC. PMID:17916336

  7. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  8. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. PMID:25130282

  9. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  10. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  11. A Small-Animal Pharmacokinetic/Pharmacodynamic PET Study of Central Serotonin 1A Receptor Occupancy by a Potential Therapeutic Agent for Overactive Bladder

    PubMed Central

    Nakatani, Yosuke; Suzuki, Michiyuki; Tokunaga, Masaki; Maeda, Jun; Sakai, Miyuki; Ishihara, Hiroki; Yoshinaga, Takashi; Takenaka, Osamu; Zhang, Ming-Rong; Suhara, Tetsuya; Higuchi, Makoto

    2013-01-01

    Serotonin 1A (5-HT1A) receptors have been mechanistically implicated in micturition control, and there has been a need for an appropriate biomarker surrogating the potency of a provisional drug acting on this receptor system for developing a new therapeutic approach to overactive bladder (OAB). Here, we analyzed the occupancy of 5-HT1A receptors in living Sprague-Dawley rat brains by a novel candidate drug for OAB, E2110, using positron emission tomography (PET) imaging, and assessed the utility of a receptor occupancy (RO) assay to establish a pharmacodynamic index translatable between animals and humans. The plasma concentrations inducing 50% RO (EC50) estimated by both direct and effect compartment models were in good agreement. Dose-dependent therapeutic effects of E2110 on dysregulated micturition in different rat models of pollakiuria were also consistently explained by achievement of 5-HT1A RO by E2110 in a certain range (≥ 60%). Plasma drug concentrations inducing this RO range and EC50 would accordingly be objective indices in comparing pharmacokinetics-RO relationships between rats and humans. These findings support the utility of PET RO and plasma pharmacokinetic assays with the aid of adequate mathematical models in determining the in vivo characteristics of a drug acting on 5-HT1A receptors and thereby counteracting OAB. PMID:24086433

  12. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. PMID:27262111

  13. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  14. Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease.

    PubMed

    Sun, Yi-Na; Wang, Tao; Wang, Yong; Han, Ling-Na; Li, Li-Bo; Zhang, Yu-Ming; Liu, Jian

    2015-08-01

    Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions. PMID:25797491

  15. Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT₁A receptors and stressful experiences.

    PubMed

    Marinho, A L Z; Vila-Verde, C; Fogaça, M V; Guimarães, F S

    2015-06-01

    The infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex are involved in behavioral responses observed during defensive reactions. Intra-PL or IL injections of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, result in opposite behavioral effects in the contextual fear conditioning (CFC) paradigm. The intra-PL effects of CBD are mediated by 5HT1A receptors and depend on previous stressful experiences but the mechanisms and effects of intra-IL CBD injected are unknown. To this aim the present work verified the effects of intra-IL administration of CBD on two animal models of anxiety, the elevated plus maze (EPM) and CFC. We also investigated if these effects were mediated by 5HT1A receptors and depended on previous stressful experience. Male Wistar rats received bilateral microinjections of vehicle, WAY100635 (5HT1A receptor antagonist, 0.37 nmol) and/or CBD (15, 30 or 60 nmol) before being submitted to the behavioral tests. Intra-IL CBD induced anxiolytic and anxiogenic in the EPM and CFC, respectively. To verify if these effects are influenced by the previous stressful experience (footshocks) in the CFC model, we tested the animals in the EPM 24h after a 2-h restraint period. The anxiolytic-like effect of CBD in the EPM disappeared when the animals were previously stressed. Both responses, i.e., anxiolytic and anxiogenic, were prevented by WAY100635, indicating that they involve local 5HT1A-mediated neurotransmission. Together these results indicate that CBD effects in the IL depend on the nature of the animal model, being influenced by previous stressful experiences and mediated by facilitation of 5HT1A receptors-mediated neurotransmission. PMID:25701682

  16. Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males.

    PubMed

    Kaufman, Joshua; Sullivan, Gregory M; Yang, Jie; Ogden, R Todd; Miller, Jeffrey M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V; DeLorenzo, Christine

    2015-06-01

    Multiple lines of research have implicated the serotonin 1A (5-HT1A) receptor in major depressive disorder (MDD). Despite this, quantification of 5-HT1A is yet to yield a clinically relevant MDD biomarker. One reason may be that reported sex differences in the serotonergic system confound the comparison between diagnostic groups. Therefore, this study sought to determine whether differences in 5-HT1A binding between depressed and control subjects are affected by sex. Using positron emission tomography (PET), serotonin 1A binding was quantified in 50 patients with MDD (34 female, 16 male) and 57 healthy controls (32 female, 25 male). The subjects' 5-HT1A density (BPF, equal to the product of the density of available receptors and tracer affinity), was determined by using the PET tracer [carbonyl-C-11]-WAY-100635, a selective 5-HT1A antagonist. Results indicated that male MDD subjects had a 67.0% higher BPF across 13 brain regions compared with male controls (df=103, p<0.0001). The greatest difference between MDD subjects and controls was in the raphe (132%, p=0.000). Furthermore, by using a threshold, male controls can be distinguished from depressed males with high sensitivity and specificity (both >80%). In females, the separation between diagnostic groups yields much lower sensitivity and specificity. This data therefore suggests a specific biosignature for MDD in males. Identification of such a biosignature could provide a deeper understanding of depression pathology, help identify those at highest risk, and aid in the development of new therapies. Further, these findings suggest that combining male and female cohorts may not be optimal for some MDD studies. PMID:25578798

  17. Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males

    PubMed Central

    Kaufman, Joshua; Sullivan, Gregory M; Yang, Jie; Ogden, R Todd; Miller, Jeffrey M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V; DeLorenzo, Christine

    2015-01-01

    Multiple lines of research have implicated the serotonin 1A (5-HT1A) receptor in major depressive disorder (MDD). Despite this, quantification of 5-HT1A is yet to yield a clinically relevant MDD biomarker. One reason may be that reported sex differences in the serotonergic system confound the comparison between diagnostic groups. Therefore, this study sought to determine whether differences in 5-HT1A binding between depressed and control subjects are affected by sex. Using positron emission tomography (PET), serotonin 1A binding was quantified in 50 patients with MDD (34 female, 16 male) and 57 healthy controls (32 female, 25 male). The subjects' 5-HT1A density (BPF, equal to the product of the density of available receptors and tracer affinity), was determined by using the PET tracer [carbonyl-C-11]-WAY-100635, a selective 5-HT1A antagonist. Results indicated that male MDD subjects had a 67.0% higher BPF across 13 brain regions compared with male controls (df=103, p<0.0001). The greatest difference between MDD subjects and controls was in the raphe (132%, p=0.000). Furthermore, by using a threshold, male controls can be distinguished from depressed males with high sensitivity and specificity (both >80%). In females, the separation between diagnostic groups yields much lower sensitivity and specificity. This data therefore suggests a specific biosignature for MDD in males. Identification of such a biosignature could provide a deeper understanding of depression pathology, help identify those at highest risk, and aid in the development of new therapies. Further, these findings suggest that combining male and female cohorts may not be optimal for some MDD studies. PMID:25578798

  18. Androgen receptor gene polymorphism in zebra species

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  19. Associations between the serotonin-1A receptor C(-1019)G polymorphism and disordered eating symptoms in female adolescents.

    PubMed

    Lim, Se-Won; Ha, Juwon; Shin, Dong-Won; Woo, Hee-Yeon; Kim, Kye-Hyun

    2010-06-01

    The purpose of this study was to examine the relationship between the C(-1019)G polymorphism of the serotonin-1A receptor gene and eating behavior in female adolescents. A total of 204 post-menarche, adolescent women, aged 16-17 years, were recruited from two neighboring high schools in Seoul. Polymerase chain reaction (PCR) was used to isolate and examine the C(-1019)G polymorphism in the serotonin-1A receptor genes (rs6295) of all participants. The Bulimia Investigatory Test, Edinburgh (BITE) and the Eating Attitude Test-26 (EAT-26) were administered to all participants. The total score of the EAT-26 differed significantly among the three genotype groups [CC, CG, GG (F = 4.844, p = 0.009)]. Both the EAT-26 (F = 9.69, p = 0.002) and the BITE (F = 5.22, p = 0.023) scores were higher in the participants who were G allele carriers than in the non-carrier group. The dieting subscale of the EAT-26 was higher among the G allele carriers (F = 12.941, p < 0.001), and these results were maintained even after adjusting for depression and anxiety. These findings suggest that the C(-1019)G polymorphism in the 5-HT1A receptor gene is associated with disordered eating symptoms in Korean female adolescents. PMID:20454985

  20. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  1. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  2. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  3. Identification of chemosensory receptor genes from vertebrate genomes.

    PubMed

    Niimura, Yoshihito

    2013-01-01

    Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species' living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences. PMID:24014356

  4. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    PubMed

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system. PMID:18635693

  5. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  6. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  7. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  8. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  9. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  10. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    PubMed

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  11. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  12. Sex-dependent adaptive changes in serotonin-1A autoreceptor function and anxiety in Deaf1-deficient mice.

    PubMed

    Luckhart, Christine; Philippe, Tristan J; Le François, Brice; Vahid-Ansari, Faranak; Geddes, Sean D; Béïque, Jean-Claude; Lagace, Diane C; Daigle, Mireille; Albert, Paul R

    2016-01-01

    The C (-1019) G rs6295 promoter polymorphism of the serotonin-1A (5-HT1A) receptor gene is associated with major depression in several but not all studies, suggesting that compensatory mechanisms mediate resilience. The rs6295 risk allele prevents binding of the repressor Deaf1 increasing 5-HT1A receptor gene transcription, and the Deaf1-/- mouse model shows an increase in 5-HT1A autoreceptor expression. In this study, Deaf1-/- mice bred on a mixed C57BL6-BALB/c background were compared to wild-type littermates for 5-HT1A autoreceptor function and behavior in males and females. Despite a sustained increase in 5-HT1A autoreceptor binding levels, the amplitude of the 5-HT1A autoreceptor-mediated current in 5-HT neurons was unaltered in Deaf1-/- mice, suggesting compensatory changes in receptor function. Consistent with increased 5-HT1A autoreceptor function in vivo, hypothermia induced by the 5-HT1A agonist DPAT was augmented in early generation male but not female Deaf1-/- mice, but was reduced with succeeding generations. Loss of Deaf1 resulted in a mild anxiety phenotype that was sex-and test-dependent, with no change in depression-like behavior. Male Deaf1 knockout mice displayed anxiety-like behavior in the open field and light-dark tests, while female Deaf1-/- mice showed increased anxiety only in the elevated plus maze. These data show that altered 5-HT1A autoreceptor regulation in male Deaf1-/- mice can be compensated for by generational adaptation of receptor response that may help to normalize behavior. The sex dependence of Deaf1 function in mice is consistent with a greater role for 5-HT1A autoreceptors in sensitivity to depression in men. PMID:27488351

  13. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  14. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  15. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  16. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    PubMed

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs. PMID:26320545

  17. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  18. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    PubMed

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  19. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  20. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development

    PubMed Central

    Maciag, Dorota; Coppinger, David; Paul, Ian A.

    2006-01-01

    Neonatal (postnatal days 8-21) exposure of rats to the selective serotonin reuptake inhibitor (SSRI), citalopram, results in persistent changes in behavior including decreased sexual activity in adult animals. We hypothesized that this effect was a consequence of abnormal stimulation of serotonergic receptors 5- HT1A or/and 5-HT1B as a result of increased synaptic availability of serotonin during a critical period of development. We examined whether neonatal exposure to a 5-HT1A (8OH-DPAT) and/or a 5-HT1B (CGS 12066B) receptor agonist can mimic the effect of neonatal exposure to citalopram on adult sexual behavior. Results showed that neonatal treatment with 5-HT1B receptor agonist robustly impaired sexual behavior similar to the effect of citalopram whereas exposure to 5-HT1A receptor agonist only moderately influenced male sexual activity in adult animals. These data support the hypothesis that stimulation of serotonin autoreceptors during development contributes to the adult sexual deficit in rats neonatally exposed to citalopram. PMID:17101120

  1. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  2. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  3. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  4. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta.

    PubMed

    Xu, W; Papanicolaou, A; Liu, N-Y; Dong, S-L; Anderson, A

    2015-04-01

    The Oriental tobacco budworm (Helicoverpa assulta) is a specialist herbivore moth and its larvae feed on Solanaceous plants. (Z)-9-hexadecenal (Z9-16: Ald) is the major sex pheromone component in H. assulta but the specific pheromone receptor (PR) against Z9-16: Ald has not yet been identified. In the present study, we integrated transcriptomic, bioinformatic and functional characterization approaches to investigate the chemosensory receptor genes of H. assulta. We identified seven potential PRs with 44 olfactory receptors, 18 gustatory receptors and 24 ionotropic receptors, which were further studied by in silico gene expression profile, phylogenetic analysis, reverse transcription PCR and calcium imaging assays. The candidate PR, HassOR13, showed a strong response to the minor sex pheromone component, (Z)-11-hexadecenal, but not the major component, Z9-16: Ald, in calcium imaging assays. This study provides the molecular basis for comparative studies of chemosensory receptors between H. assulta and other Helicoverpa species and will advance our understanding of the evolution and function of Lepidoptera insect chemosensation. PMID:25430896

  5. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  6. Selection for genes encoding secreted proteins and receptors.

    PubMed Central

    Klein, R D; Gu, Q; Goddard, A; Rosenthal, A

    1996-01-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states. Images Fig. 1 PMID:8692953

  7. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  8. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. PMID:26657047

  9. Interleukin-1 receptor antagonist gene therapy for arthritis.

    PubMed

    Krishnan, B R

    1999-08-01

    Rheumtatoid arthritis (RA) is a crippling, autoimmune disease, and is characterized by inflammation and destruction of joint tissue. Interleukin-1 (IL-1) has been identified as a key pro-inflammatory cytokine responsible for inflammation. One of the mechanisms of regulation of activity of IL-1 is IL-1 receptor antagonist (IL-1ra)-mediated: IL-1RA competes with IL-1 for binding to the IL-1 receptor. Significant progress has been made in the potential application of IL-1ra gene therapyfor the treatment of arthritis. Various vectors have been tested for the delivery of the IL-1ra gene to the intra-articular region. Recent studies in humans have provided encouraging prospects for IL-1ra-mediated arthritis gene therapy. PMID:11713759

  10. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood

    PubMed Central

    Bombail, Vincent; Qing, Wei; Chapman, Karen E; Holmes, Megan C

    2014-01-01

    The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate ‘INI’ mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific. PMID:25257581