Science.gov

Sample records for 5-ht2a receptor density

  1. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  2. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7.

    PubMed

    Xu, Chang; Ma, Xin-Ming; Chen, Hui-Bin; Zhou, Meng-He; Qiao, Hui; An, Shu-Cheng

    2016-10-01

    Neuroimaging studies show that patients with major depression have reduced volume of the orbitofrontal cortex (OFC). Although the serotonin (5-HT) 2A receptor, which is abundant in the OFC, has been implicated in depression, the underlying mechanisms in the development of stress-induced depression remain unclear. Kalirin-7 (Kal7) is an essential component of mature excitatory synapses for maintaining dendritic spines density, size and synaptic functions. The aim of this study was to investigate the role of orbitofrontal 5-HT and 5-HT2A receptors in depressive-like behaviors and their associations with Kal7 and dendritic spines using chronic unpredictable mild stress (CUMS), an established animal model of depression. CUMS had no effect on the levels of 5-HT or the 5-HT2A receptor in the OFC. However, CUMS or microinjection of the 5-HT2A/2C receptor agonist (±)-1-(2, 5-Dimethoxy-4-iodophenyl)- 2-aminopropane hydrochloride (DOI, 5 μg/0.5 μL) into the OFC induced depressive-like behaviors, including anhedonia in the sucrose preference test and behavioral despair in the tail suspension test, a significant reduction in body weight gain and locomotor activity in the open field test, which were accompanied by decreased expression of Kal7 and PSD95 as well as decreased density of dendritic spines in the OFC. These alterations induced by CUMS were reversed by pretreatment with the 5-HT2A receptor antagonist Ketanserin (Ket, 5 μg/0.5 μL into the OFC). These results suggest that CUMS alters structural plasticity through activation of the orbital 5-HT2A receptor and is associated with decreased expression of Kal7, thereby resulting in depressive-like behaviors in rats, suggesting an important role of Kal7 in the OFC in depression. PMID:26921771

  3. Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

    PubMed

    Fuller, David D; Baker-Herman, Tracy L; Golder, Francis J; Doperalski, Nicholas J; Watters, Jyoti J; Mitchell, Gordon S

    2005-02-01

    Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS. PMID:15716627

  4. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-01

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions. PMID:23994047

  5. 5-HT2A/2C receptor and 5-HT transporter densities in mice prone or resistant to chronic high-fat diet-induced obesity: a quantitative autoradiography study.

    PubMed

    Huang, Xu-Feng; Huang, Xin; Han, Mei; Chen, Feng; Storlien, Len; Lawrence, Andrew J

    2004-08-27

    The present study examined the density of 5-HT2A/2C receptors and 5-HT transporters in the brains of chronic high-fat diet-induced obese (cDIO) and obese-resistant (cDR) mice. Thirty-five male mice were used in this study. Twenty-eight mice were fed with a high-fat diet (40% of calories from fat) for 6 weeks and then classified as the cDIO (n=8) or cDR (n=8) mice according to the highest and lowest body weight gainers. Seven mice were placed on a low-fat diet (LF: 10% of calories from fat) and were used as controls. After 20 weeks of feeding, the sum of epididymal, perirenal, omental and inguinal fat masses was 9.3+/-0.3 g in the cDIO group versus 3.1+/-0.5 g in the cDR (p<0.005) and 1.5+/-0.1 g in the LF (p<0.001) groups. Using quantitative autoradiography techniques, the binding site densities of 5-HT2A/2C receptors and 5-HT transporters were measured in multiple brain sections of mice from the three groups. Most regions did not differ between groups but, importantly, the cDIO mice had a significantly higher 5-HT2A/2C binding density in the anterior olfactory nucleus and ventromedial hypothalamic nucleus (VMH) compared to the cDR and LF mice (+39% and +47%, p=0.003 and 0.045, respectively), whereas the latter two groups did not differ. The density of 5-HT2A/2C receptors in the VMH was associated with total amount of fat mass (r=0.617, p=0.032). On the other hand, the cDR mice had significantly lower 5-HT transporter binding than the cDIO and LF mice, respectively, in the nucleus accumbens (-44%, -38%, both p<0.02), central nucleus of the amygdaloid nucleus (-40%, -44%, p=0.003 and 0.009), and olfactory tubercle nucleus (-42%, -42%, both p=0.03). In conclusion, this study has demonstrated differentially regulated levels of the 5-HT2A/2C receptor and 5-HT transporter in specific brain regions of the cDIO and cDR mice. It provides neural anatomical bases by which genetic variability in 5-HT2A/2C receptors and 5-HT transporter may influence satiety and sensory

  6. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    PubMed Central

    Allen, John A.; Yadav, Prem N.

    2008-01-01

    SUMMARY 5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-HT2A receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT2A receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT2A trafficking, targeting and signaling. PMID:18640136

  7. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  8. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC. PMID:25914158

  9. 5-HT2A Receptors are Concentrated in Regions of the Human Infant Medulla Involved in Respiratory and Autonomic Control

    PubMed Central

    Paterson, David S.; Darnall, Ryan

    2009-01-01

    The serotonergic (5-HT) system in the human medulla oblongata is well-recognized to play an important role in the regulation of respiratory and autonomic function. In this study, using both immunocytochemistry (n=5) and tissue section autoradiography with the radioligand 125I-1-(2,5-dimethoxy-4-iodo-phenyl)2-aminopropane (n=7), we examine the normative development and distribution of the 5-HT2A receptor in the human medulla during the last part of gestation and first postnatal year when dramatic changes are known to occur in respiratory and autonomic control, in part mediated by the 5-HT2A receptor. High 5-HT2A receptor binding was observed in the dorsal motor nucleus of the vagus (preganglionic parasympathetic output) and hypoglossal nucleus (airway patency); intermediate binding was present in the nucleus of the solitary tract (visceral sensory input), gigantocellularis, intermediate reticular zone, and paragigantocellularis lateralis. Negligible binding was present in the raphé obscurus and arcuate nucleus. The pattern of 5-HT2A immunoreactivity paralleled that of binding density. By 15 gestational weeks, the relative distribution of the 5-HT2A receptor was similar to that in infancy. In all nuclei sampled, 5-HT2A receptor binding increased with age, with significant increases in the hypoglossal nucleus (p=0.027), principal inferior olive (p=0.044), and medial accessory olive (0.038). Thus, 5-HT2A receptors are concentrated in regions involved in autonomic and respiratory control in the human infant medulla, and their developmental profile changes over the first year of life in the hypoglossal nucleus critical to airway patency and the inferior olivary complex essential to cerebellar function. PMID:19213611

  10. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  11. Density and Function of Central Serotonin (5-HT) Transporters, 5-HT1A and 5-HT2A Receptors, and Effects of their Targeting on BTBR T+tf/J Mouse Social Behavior

    PubMed Central

    Gould, Georgianna G.; Hensler, Julie G.; Burke, Teresa F.; Benno, Robert H.; Onaivi, Emmanuel S.; Daws, Lynette C.

    2010-01-01

    BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT1A and 5-HT2A receptor densities among BTBR and C57 strains. Autoradiographic [3H] cyanoimipramine (1nM) binding to SERT was 20–30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates [3H] citalopram maximal binding (Bmax) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (KD) was 2 ± 0.3 nM vs. 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT1A and 5-HT2A receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [35S] GTPγS binding in the BTBR hippocampal CA1 region was 28% higher, indicating elevated 5-HT1A capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT1A receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D2/5-HT2 receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying but failed to improve sociability. Overall, altered SERT and/or 5-HT1A functionality in hippocampus could contribute to the relatively low sociability of BTBR mice. PMID:21070242

  12. Decreased frontal serotonin 5-HT 2a receptor binding index in deliberate self-harm patients.

    PubMed

    Audenaert, K; Van Laere, K; Dumont, F; Slegers, G; Mertens, J; van Heeringen, C; Dierckx, R A

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy) propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors

  13. 5-HT2A receptor activation is necessary for CO2-induced arousal.

    PubMed

    Buchanan, Gordon F; Smith, Haleigh R; MacAskill, Amanda; Richerson, George B

    2015-07-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  14. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  15. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists.

    PubMed

    Hayat, Faisal; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Rhim, Hyewhon; Park, Woo-Kyu; Choo, Hea-Young Park

    2015-03-15

    A novel series of 4-nitroindole sulfonamides containing a methyleneamino-N,N-dimethylformamidine were prepared. The binding of these compounds to 5-HT2A and 5-HT2C was evaluated, and most of the compounds showed IC50 values of less than 1μM, and exhibited high selectivity for the 5-HT2C receptor. However, little selectivity was observed in the functional assay for 5-HT6 receptors. The computational modeling studies further validated the biological results and also demonstrated a reasonable correlation between the activity of compounds and the mode of superimposition with specified pharmacophoric features. PMID:25684421

  16. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  17. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  18. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  19. Methodological considerations for the human platelet 5-HT2A receptor binding kinetic assay.

    PubMed

    Khait, V D; Huang, Y Y; Mann, J J

    1999-01-01

    Analysis of an extensive database of human platelet 5-HT2A receptor binding assays has been conducted in order to identify factors that may affect the assay results. Despite anecdotal reports that storage of frozen platelet pellets may affect 5-HT2A binding affinity and capacity, no quantitative study has been reported in the literature. Analysis of binding data for 373 frozen samples with a storage time up to three years is presented in this paper. It is shown that prolonged storage significantly decreases binding. The loss of binding capacity begins in the first six month of storage. Bmax declines by half after 17 month. The impact of storage time on the binding affinity is much smaller. There is only about 20% increase in the value of affinity K(D) during the half-life of Bmax. Differences in sample storage time may partly explain discrepancies in results between different research groups. Nonspecific binding due to binding to filter material diminishes accuracy and reliability of the binding assays as a result of a decrease in the ratio of specific to nonspecific ratio. A data analysis based on our suggested mathematical model shows that this effect depends on tissue concentration in test tube and becomes pronounced when the concentration is below 0.1 mg protein/ml (at 0.2 nM of ligand). Above 0.1 mg protein/ml, percentage of specific to total binding exceeds 65%, which is an acceptable level for the ratio. The majority of the binding studies reported in the literature employed a tissue concentration more than 0.5 mg/ml, well above the minimal limit sufficient for a reliable assay. However, development of microassays to conserve precious tissue must take the limit into consideration. PMID:10619369

  20. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  1. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs. PMID:23195622

  2. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  3. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior.

    PubMed

    González-Maeso, Javier; Weisstaub, Noelia V; Zhou, Mingming; Chan, Pokman; Ivic, Lidija; Ang, Rosalind; Lira, Alena; Bradley-Moore, Maria; Ge, Yongchao; Zhou, Qiang; Sealfon, Stuart C; Gingrich, Jay A

    2007-02-01

    Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens. PMID:17270739

  4. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  5. Reelin influences the expression and function of dopamine D2 and serotonin 5-HT2A receptors: a comparative study.

    PubMed

    Varela, M J; Lage, S; Caruncho, H J; Cadavid, M I; Loza, M I; Brea, J

    2015-04-01

    Reelin is an extracellular matrix protein that plays a critical role in neuronal guidance during brain neurodevelopment and in synaptic plasticity in adults and has been associated with schizophrenia. Reelin mRNA and protein levels are reduced in various structures of post-mortem schizophrenic brains, in a similar way to those found in heterozygous reeler mice (HRM). Reelin is involved in protein expression in dendritic spines that are the major location where synaptic connections are established. Thus, we hypothesized that a genetic deficit in reelin would affect the expression and function of dopamine D2 and serotonin 5-HT2A receptors that are associated with the action of current antipsychotic drugs. In this study, D2 and 5-HT2A receptor expression and function were quantitated by using radioligand binding studies in the frontal cortex and striatum of HRM and wild-type mice (WTM). We observed increased expression (p<0.05) in striatum membranes and decreased expression (p<0.05) in frontal cortex membranes for both dopamine D2 and serotonin 5-HT2A receptors from HRM compared to WTM. Our results show parallel alterations of D2 and 5-HT2A receptors that are compatible with a possible hetero-oligomeric nature of these receptors. These changes are similar to changes described in schizophrenic patients and provide further support for the suitability of using HRM as a model for studying this disease and the effects of antipsychotic drugs. PMID:25637489

  6. Sarpogrelate, a 5-HT2A Receptor Antagonist, Protects the Retina From Light-Induced Retinopathy

    PubMed Central

    Tullis, Brandon E.; Ryals, Renee C.; Coyner, Aaron S.; Gale, Michael J.; Nicholson, Alex,; Ku, Cristy,; Regis, Dain,; Sinha, Wrik,; Datta, Shreya,; Wen, Yuquan,; Yang, Paul,; Pennesi, Mark E.

    2015-01-01

    Purpose To determine if sarpogrelate, a selective 5-HT2A receptor antagonist, is protective against light-induced retinopathy in BALB/c mice. Methods BALB/c mice were dosed intraperitoneally with 5, 15, 30, 40, or 50 mg/kg sarpogrelate 48, 24, and 0 hours prior to bright light exposure (10,000 lux) as well as 24 and 48 hours after exposure. Additionally, a single injection regimen was evaluated by injecting mice with 50 mg/kg sarpogrelate once immediately prior to light exposure. To investigate the potential for additive effects of serotonin receptor agents, a combination therapy consisting of sarpogrelate (15 mg/kg) and 8-OH-DPAT (1 mg/kg) was evaluated with the 5-day treatment regimen. Neuroprotection was characterized by the preservation of retinal thickness and function, measured by spectral-domain optical coherence tomography (SD-OCT) and electroretinography (ERG), respectively. Results Mice that were light damaged and injected with saline had significantly reduced outer retinal thickness, total retinal thickness, and ERG amplitudes compared with naïve mice. A 5-day administration of 15, 30, or 40 mg/kg of sarpogrelate was able to partially protect retinal morphology and full protection of retinal morphology was achieved with a 50 mg/kg dose. Both 15 and 30 mg/kg doses of sarpogrelate partially preserved retinal function measured by ERG, whereas 40 and 50 mg/kg doses fully preserved retinal function. Additionally, a single administration of 50 mg/kg sarpogrelate was able to fully preserve both retinal morphology and function. Administration of 15 mg/kg of sarpogrelate and 1 mg/kg of 8-OH-DPAT together demonstrated an additive effect and fully preserved retinal morphology. Conclusions A 5- or 1-day treatment with 50 mg/kg sarpogrelate can completely protect the retina of BALB/c mice from light-induced retinopathy. Partial protection can be achieved with lower doses starting at 15 mg/kg and protection increases in a dose-dependent manner. Treatment with low

  7. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia. PMID:25661038

  8. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  9. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD. PMID:23333599

  10. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link?

    PubMed Central

    2015-01-01

    5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses. PMID:25852551

  11. Affinity of Aporphines for the Human 5-HT2A Receptor: Insights from Homology Modeling and Molecular Docking Studies

    PubMed Central

    Pecic, Stevan; Makkar, Pooja; Chaudhary, Sandeep; Reddy, Boojala V.; Navarro, Hernan A.; Harding, Wayne W.

    2010-01-01

    Analogs of nantenine were docked into a modeled structure of the human 5-HT2A receptor using ICM Pro, GLIDE and GOLD docking methods. The resultant docking scores were used to correlate with observed in vitro apparent affinity (Ke) data. The GOLD docking algorithm when used with a homology model of 5-HT2A, based on a bovine rhodopsin template and built by the program MODELLER, gives results which are most in agreement with the in vitro results. Further analysis of the docking poses among members of a C1 alkyl series of nantenine analogs, indicate that they bind to the receptor in a similar orientation, but differently than nantenine. Besides an important interaction between the protonated nitrogen of the C1 alkyl analogs and residue Asp155, we identified Ser242, Phe234 and Gly238 as key residues responsible for the affinity of these compounds for the 5-HT2A receptor. Specifically, the ability of some of these analogs to establish a H-bond with Ser242 and hydrophobic interactions with Phe234 and Gly238 appears to explain their enhanced affinity as compared to nantenine. PMID:20621490

  12. Preclinical profile of the mixed 5-HT1A/5-HT2A receptor antagonist S 21,357.

    PubMed

    Griebel, G; Blanchard, D C; Rettori, M C; Guardiola-Lemaître, B; Blanchard, R J

    1996-06-01

    This study evaluated the pharmacological and behavioral effects of S 21,357, a drug with high affinity for both 5-HT1A and 5-HT2A receptors. The drug behaved as antagonist at both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors, as it prevented the inhibitory effect of lesopitron on the electrical discharge of the dorsal raphé nucleus (DRN) 5-HT neurons and the activity of forskolin-stimulated adenylate cyclase in hippocampal homogenates. In addition, S 21,357 (4 and 128 mg/kg, PO) inhibited 5-HTP-induced head-twitch responses in mice, indicating that it possesses 5-HT2A antagonistic properties. In a test battery designed to assess defensive behaviors of Swiss-Webster mice to the presence of, or situations associated with, a natural threat stimulus (i.e., rat), S 21,357 (0.12-2 mg/kg, IP) reduced contextual defense reactions after the rat was removed, risk assessment activities when the subject was chased, and finally, defensive attack behavior. These behavioral changes are consistent with fear/anxiety reduction. Furthermore, the drug strongly reduced flight reactions in response to the approaching rat. This last finding, taken together with recent results with panic-modulating drugs, suggest that S 21,357 may have potential efficacy against panic attack. Finally, our results suggest that compounds sharing high affinities for both 5-HT1A and 5-HT2A receptors may directly or synergistically increase the range of defensive behaviors affected. PMID:8743616

  13. Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice.

    PubMed

    Halberstadt, Adam L; Sindhunata, Ivan S; Scheffers, Kees; Flynn, Aaron D; Sharp, Richard F; Geyer, Mark A; Young, Jared W

    2016-08-01

    Timing deficits are observed in patients with schizophrenia. Serotonergic hallucinogens can also alter the subjective experience of time. Characterizing the mechanism through which the serotonergic system regulates timing will increase our understanding of the linkage between serotonin (5-HT) and schizophrenia, and will provide insight into the mechanism of action of hallucinogens. We investigated whether interval timing in mice is altered by hallucinogens and other 5-HT2 receptor ligands. C57BL/6J mice were trained to perform a discrete-trials temporal discrimination task. In the discrete-trials task, mice were presented with two levers after a variable interval. Responding on lever A was reinforced if the interval was <6.5 s, and responding on lever B was reinforced if the interval was >6.5 s. A 2-parameter logistic function was fitted to the proportional choice for lever B (%B responding), yielding estimates of the indifference point (T50) and the Weber fraction (a measure of timing precision). The 5-HT2A antagonist M100907 increased T50, whereas the 5-HT2C antagonist SB-242,084 reduced T50. The results indicate that 5-HT2A and 5-HT2C receptors have countervailing effects on the speed of the internal pacemaker. The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI; 3 mg/kg IP), a 5-HT2 agonist, flattened the response curve at long stimulus intervals and shifted it to the right, causing both T50 and the Weber fraction to increase. The effect of DOI was antagonized by M100907 (0.03 mg/kg SC) but was unaffected by SB-242,084 (0.1 mg/kg SC). Similar to DOI, the selective 5-HT2A agonist 25CN-NBOH (6 mg/kg SC) reduced %B responding at long stimulus intervals, and increased T50 and the Weber fraction. These results demonstrate that hallucinogens alter temporal perception in mice, effects that are mediated by the 5-HT2A receptor. It appears that 5-HT regulates temporal perception, suggesting that altered serotonergic signaling may contribute to the timing deficits

  14. Clozapine, but not olanzapine disrupts conditioned avoidance response in rats by antagonizing 5-HT2A receptors

    PubMed Central

    Li, Ming; Sun, Tao; Mead, Alexa

    2011-01-01

    The present study was designed to assess the role of 5-HT2A/2C receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model (CAR), a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT2A/2C agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine acts on through 5-HT2A/2C receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT2A/2C receptors. PMID:21986871

  15. C-(4,5,6-trimethoxyindan-1-yl)methanamine: a mescaline analogue designed using a homology model of the 5-HT2A receptor.

    PubMed

    McLean, Thomas H; Chambers, James J; Parrish, Jason C; Braden, Michael R; Marona-Lewicka, Danuta; Kurrasch-Orbaugh, Deborah; Nichols, David E

    2006-07-13

    A conformationally restricted analogue of mescaline, C-(4,5,6-trimethoxyindan-1-yl)-methanamine, was designed using a 5-HT(2A) receptor homology model. The compound possessed 3-fold higher affinity and potency than and efficacy equal to that of mescaline at the 5-HT(2A) receptor. The new analogue substituted fully for LSD in drug discrimination studies and was 5-fold more potent than mescaline. Resolution of this analogue into its enantiomers corroborated the docking experiments, showing the R-(+) isomer to have higher affinity and potency and to have efficacy similar to that of mescaline at the 5-HT(2A) receptor. PMID:16821786

  16. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  17. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  18. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  19. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target

    PubMed Central

    Gasque, Gabriel; Conway, Stephen; Huang, Juan; Rao, Yi; Vosshall, Leslie B.

    2013-01-01

    Dysregulation of eating behavior can lead to obesity, which affects 10% of the adult population worldwide and accounts for nearly 3 million deaths every year. Despite this burden on society, we currently lack effective pharmacological treatment options to regulate appetite. We used Drosophila melanogaster larvae to develop a high-throughput whole organism screen for drugs that modulate food intake. In a screen of 3630 small molecules, we identified the serotonin (5-hydroxytryptamine or 5-HT) receptor antagonist metitepine as a potent anorectic drug. Using cell-based assays we show that metitepine is an antagonist of all five Drosophila 5-HT receptors. We screened fly mutants for each of these receptors and found that serotonin receptor 5-HT2A is the sole molecular target for feeding inhibition by metitepine. These results highlight the conservation of molecular mechanisms controlling appetite and provide a method for unbiased whole-organism drug screens to identify novel drugs and molecular pathways modulating food intake. PMID:23817146

  20. Melatonin reversal of DOI-induced hypophagia in rats; possible mechanism by suppressing 5-HT(2A) receptor-mediated activation of HPA axis.

    PubMed

    Raghavendra, V; Kulkarni, S K

    2000-03-31

    Serotonin type 2A (5-HT(2A)) receptor-mediated neurotransmitter is known to activate hypothalamic-pituitary-adrenal (HPA) axis, regulate sleep-awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT(2A) receptors in the regulation of the sleep-awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT(2A) receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (+/-)-1-(2, 5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT(2A/2C) agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT(2A/2C) antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 microgram, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel(1) receptor subtype antagonist luzindole (5 microgram, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT(2A) agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT(2A) mediated activation of HPA axis. PMID:10727629

  1. Maternal lipopolysaccharide treatment differentially affects 5-HT(2A) and mGlu2/3 receptor function in the adult male and female rat offspring.

    PubMed

    Wischhof, Lena; Irrsack, Ellen; Dietz, Frank; Koch, Michael

    2015-10-01

    Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. However, it is still not fully understood which biochemical mechanisms are responsible for the emergence of neuropsychiatric symptoms following prenatal immune activation. The serotonin (5-hydroxytryptamine, 5-HT) and glutamate system have prominently been associated with the schizophrenia pathophysiology but also with the mechanism of antipsychotic drug actions. Here, we investigated the behavioral and cellular response to 5-HT2A and metabotropic glutamate (mGlu)2/3 receptor stimulation in male and female offspring born to lipopolysaccharide (LPS)-treated mothers. Additionally, we assessed protein expression levels of prefrontal 5-HT2A and mGlu2 receptors. Prenatally LPS-exposed male and female offspring showed locomotor hyperactivity and increased head-twitch behavior in response to the 5-HT2A receptor agonist DOI. In LPS-exposed male offspring, the mGlu2/3 receptor agonist LY379268 failed to reduce DOI-induced prepulse inhibition deficits. In LPS-males, the behavioral changes were further accompanied by enhanced DOI-induced c-Fos protein expression and an up-regulation of prefrontal 5-HT2A receptors. No changes in either 5-HT2A or mGlu2 receptor protein levels were found in female offspring. Our data support the hypothesis of an involvement of maternal infection during pregnancy contributing, at least partially, to the pathology of schizophrenia. Identifying biochemical alterations that parallel the behavioral deficits may help to improve therapeutic strategies in the treatment of this mental illness. Since most studies in rodents almost exclusively include male subjects, our data further contribute to elucidating possible gender differences in the effects of prenatal infection on 5-HT2A and mGlu2/3 receptor function. PMID:26051401

  2. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  3. Reverse microdialysis of a 5-HT2A receptor antagonist alters extracellular glutamate levels in the striatum of the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Ansah, Twum A.

    2014-01-01

    Clinical observations have suggested that antagonism of 5-HT2A receptors may benefit patients with parkinsonian symptomatology. The mechanism of the antiparkinsonian effects of 5-HT2A receptor antagonists has not been fully elucidated. We have shown that the selective 5-HT2A receptor antagonist M100907 [R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenethyl)]-4-piperidinemethanol] improved motor impairments in mice treated with the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In Parkinson's disease (PD) patients and animal models of parkinsonism dopamine denervation is associated with increased cortico-striatal glutamatergic transmission. We hypothesized that 5-HT2A receptor antagonists may exert their antiparkinsonian effects by decreasing striatal glutamate. Here, using in vivo microdialysis, we have shown an increased basal level of extracellular striatal glutamate when measured three weeks after MPTP administration. The local administration of M100907 to the striatum significantly decreased striatal extracellular glutamate levels in MPTP-treated and saline treated mice. Basal extracellular serotonin (5-HT) levels were also elevated, whereas dopamine (DA) levels were significantly reduced in the striatum of MPTP-treated mice. Infusion of M100907 into the striatum produced no effect on dopamine or 5-HT levels. Local application of tetrodotoxin suppressed glutamate, 5-HT and DA concentrations in striatal dialysates in the presence or absence of M100907. The striatal expression of the glutamate transporter GLT1 was unchanged. However, there was an upregulation of the expression of 5-HT2A receptors in the striatum in MPTP-treated animals. Our data provide further evidence of enhanced glutamatergic neurotransmission in parkinsonism and demonstrate that blocking 5-HT2A receptors in the striatum will normalize glutamatergic neurotransmission. PMID:24704796

  4. Activation of 5-HT2a Receptors in the Basolateral Amygdala Promotes Defeat-Induced Anxiety and the Acquisition of Conditioned Defeat in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Bader, Lauren R.; Sullivan, Molly A.; Cooper, Matthew A.

    2014-01-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  5. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  6. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  7. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  8. Disruption of 5-HT2A Receptor-PDZ Protein Interactions Alleviates Mechanical Hypersensitivity in Carrageenan-Induced Inflammation in Rats

    PubMed Central

    Wattiez, Anne-Sophie; Pichon, Xavier; Dupuis, Amandine; Hernández, Alejandro; Privat, Anne-Marie; Aissouni, Youssef; Chalus, Maryse; Pelissier, Teresa; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2013-01-01

    Despite common pathophysiological mechanisms, inflammatory and neuropathic pain do not respond equally to the analgesic effect of antidepressants, except for selective serotonin reuptake inhibitors (SSRIs), which show a limited efficacy in both conditions. We previously demonstrated that an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and its associated PDZ proteins (e.g. PSD-95) reveals a 5-HT2A receptor-mediated anti-hyperalgesic effect and enhances the efficacy of fluoxetine (a SSRI) in diabetic neuropathic pain conditions in rats. Here, we have examined whether the same strategy would be useful to treat inflammatory pain. Sub-chronic inflammatory pain was induced by injecting λ-carrageenan (100 µl, 2%) into the left hind paw of the rat. Mechanical hyperalgesia was assessed after acute treatment with TAT-2ASCV or/and fluoxetine (SSRI) 2.5 h after λ-carrageenan injection. Possible changes in the level of 5-HT2A receptors and its associated PDZ protein PSD-95 upon inflammation induction were quantified by Western blotting in dorsal horn spinal cord. Administration of TAT-2ASCV peptide (100 ng/rat, intrathecally) but not fluoxetine (10 mg/kg, intraperitoneally) relieves mechanical hyperalgesia (paw pressure test) in inflamed rats. This anti-hyperalgesic effect involves spinal 5-HT2A receptors and GABAergic interneurons as it is abolished by a 5-HT2A antagonist (M100907, 150 ng/rat, intrathecally) and a GABAA antagonist, (bicuculline, 3 µg/rat, intrathecally). We also found a decreased expression of 5-HT2A receptors in the dorsal spinal cord of inflamed animals which could not be rescued by TAT-2ASCV injection, while the amount of PSD-95 was not affected by inflammatory pain. Finally, the coadministration of fluoxetine does not further enhance the anti-hyperalgesic effect of TAT-2ASCV peptide. This study reveals a role of the interactions between 5-HT2A receptors and PDZ proteins in the pathophysiological pathways of

  9. In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    PubMed

    Dumas, Noé; Moulin-Sallanon, Marcelle; Fender, Pascal; Tournier, Benjamin B; Ginovart, Nathalie; Charnay, Yves; Millet, Philippe

    2015-01-01

    Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density. PMID:26105563

  10. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    PubMed Central

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x2 = 0.72, P>0.05) or the 5HT2A polymorphism (x2 = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  11. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays.

    PubMed

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-09-01

    An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x(2) = 0.72, P>0.05) or the 5HT2A polymorphism (x(2) = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  12. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile. PMID:17337633

  13. 3,4-methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5HT2A receptor-induced PGE2 signaling.

    PubMed

    Collins, Stuart A; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A; Yamamoto, Bryan K

    2016-03-01

    3,4-methylenedioxymethamphetamine (MDMA) is a widely abused psychostimulant, which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA-treated rats, which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA-treated rats. We hypothesized that the widely abused psychostimulant MDMA causes a loss of parvalbumin (PV) cells and increases excitability in the dentate gyrus. MDMA increases serotonin (5HT) release and activates 5HT2A

  14. APD125, a Selective Serotonin 5-HT2A Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia

    PubMed Central

    Rosenberg, Russell; Seiden, David J.; Hull, Steven G.; Erman, Milton; Schwartz, Howard; Anderson, Christen; Prosser, Warren; Shanahan, William; Sanchez, Matilde; Chuang, Emil; Roth, Thomas

    2008-01-01

    Introduction: Insomnia is a condition affecting 10% to 15% of the adult population and is characterized by difficulty falling asleep, difficulty staying asleep, or nonrestorative sleep, accompanied by daytime impairment or distress. This study evaluates APD125, a selective inverse agonist of the 5-HT2A receptor, for treatment of chronic insomnia, with particular emphasis on sleep maintenance. In phase 1 studies, APD125 improved sleep maintenance and was well tolerated. Methodology: Adult subjects (n = 173) with DSM-IV defined primary insomnia were randomized into a multicenter, double-blind, placebo-controlled, 3-way crossover study to compare 2 doses of APD125 (10 mg and 40 mg) with placebo. Each treatment period was 7 days with a 7- to 9-day washout period between treatments. Polysomnographic recordings were performed at the initial 2 screening nights and at nights (N) 1/2 and N 6/7 of each treatment period. Results: APD125 was associated with significant improvements in key sleep maintenance parameters measured by PSG. Wake time after sleep onset decreased (SEM) by 52.5 (3.2) min (10 mg) and 53.5 (3.5) min (40 mg) from baseline to N 1/2 vs. 37.8 (3.4) min for placebo, (P < 0.0001 for both doses vs placebo), and by 51.7 (3.4) min (P = 0.01) and 48.0 (3.6) min (P = 0.2) at N 6/7 vs. 44.0 (3.8) min for placebo. Significant APD125 effects on wake time during sleep were also seen (P < 0.0001 N 1/2, P < 0.001 N 6/7). The number of arousals and number of awakenings decreased significantly with APD125 treatment compared to placebo. Slow wave sleep showed a statistically significant dose-dependent increase. There was no significant decrease in latency to persistent sleep. No serious adverse events were reported, and no meaningful differences in adverse event profiles were observed between either dose of APD125 and placebo. APD125 was not associated with next-day psychomotor impairment as measured by Digit Span, Digit Symbol Copy, and Digit Symbol Coding Tests

  15. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. PMID:25513973

  16. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction.

    PubMed

    Cunningham, Kathryn A; Anastasio, Noelle C; Fox, Robert G; Stutz, Sonja J; Bubar, Marcy J; Swinford, Sarah E; Watson, Cheryl S; Gilbertson, Scott R; Rice, Kenner C; Rosenzweig-Lipson, Sharon; Moeller, F Gerard

    2013-01-16

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  17. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules.

    PubMed

    Gandhimathi, A; Sowdhamini, R

    2016-05-01

    The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor. PMID:26327576

  18. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen.

    PubMed

    Pockros, Lara A; Pentkowski, Nathan S; Conway, Sineadh M; Ullman, Teresa E; Zwick, Kimberly R; Neisewander, Janet L

    2012-12-01

    Both the 5-HT(2A) receptor (R) antagonist M100907 and the 5-HT(2C) R agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently, we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT(2A)/5-HT(2C) R interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: (1) saline + saline, (2) saline + cocaine, (3) 0.025 mg/kg M100907 + cocaine, (4) 0.125 mg/kg MK212 + cocaine, or (5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT(2A) Rs and 5-HT(2C) Rs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT(2) R subtypes on behavior. Further research investigating combined 5-HT(2A) R antagonism and 5-HT(2C) R agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  19. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice.

    PubMed

    Günther, Lydia; Liebscher, Sabine; Jähkel, Monika; Oehler, Jochen

    2008-09-28

    Selective serotonin reuptake inhibitors (SSRI) are characterized by high clinical effectiveness and good tolerability. A 2-3 week delay in the onset of effects is caused by adaptive mechanisms, probably at the serotonergic (5-HT) receptor level. To analyze this in detail, we measured 5-HT(1A) and 5-HT(2A) receptor bindings in vitro after 3 weeks of citalopram treatment (20 mg/kg i.p. daily) in group-housed as well as isolation-housed mice, reflecting neurobiological aspects seen in psychiatric patients. Isolation housing increased somatodendritic (+52%) and postsynaptic (+30-95%) 5-HT(1A) as well as postsynaptic 5-HT(2A) receptor binding (+25-34%), which confirms previous findings. Chronic citalopram treatment did not induce alterations in raphe 5-HT(1A) autoreceptor binding, independent of housing conditions. Housing-dependent citalopram effects on postsynaptic 5-HT(1A) receptor binding were found with increases in group- (+11-42%) but decreases in isolation-housed (-11 to 35%) mice. Forebrain 5-HT(2A) receptor binding decreased between 11 and 38% after chronic citalopram administration, independent of housing conditions. Citalopram's long-term action comprises alterations at the postsynaptic 5-HT(1A) and 5-HT(2A) receptor binding levels. Housing conditions interact with citalopram effects, especially on 5-HT(1A) receptor binding, and should be more strongly considered in pharmacological studies. In general, SSRI-induced alterations were more pronounced and affected more brain regions in isolates, supporting the concept of a higher responsiveness in "stressed" animals. Isolation-induced receptor binding changes were partly normalized by chronic citalopram treatment, suggesting the isolation housing model for further analyses of SSRI effects, especially at the behavioral level. PMID:18657534

  20. Increased expression of 5-HT(2A) and 5-HT(2B) receptors in detrusor muscle after partial bladder outlet obstruction in rats.

    PubMed

    Michishita, Mai; Yano, Kazuo; Kasahara, Ken-ichi; Tomita, Ken-ichi; Matsuzaki, Osamu

    2015-01-01

    Serotonin (5-hydroxytryptamine; 5-HT)-induced bladder contraction is enhanced after partial bladder outlet obstruction (pBOO) in rats. We investigated time-dependent changes in bladder contraction and expression of 5-HT(2A) and 5-HT(2B) receptor mRNA in bladder tissue to elucidate the mechanism of this enhancement. On day 3 and 7 after pBOO, contractile responses of isolated rat bladder strips to 5-HT were increased compared with that in sham-operated rats; on day 14, the response had decreased to the same level as that in sham rat bladders. In contrast, carbacholinduced contraction was not enhanced by pBOO at any time point. In sham rats, 5-HT(2A) receptor mRNA was expressed in the urothelium, and 5-HT(2B) receptor mRNA was expressed in the detrusor muscle layer. In pBOO rats, both receptor mRNAs were increased in the detrusor muscle and subserosal layers, but not in the urothelium. The increase of 5-HT(2A) receptor mRNA was maintained from day 3 to day 14 after pBOO, and 5-HT(2B) receptor mRNA was increased on day 7 after pBOO. These results suggested that pBOO induced up-regulation of the 5-HT(2A) and 5-HT(2B) receptors in the detrusor muscle and subserosal layers of the bladder, and such up-regulation may be related to the enhanced bladder contractile response to 5-HT. PMID:26106048

  1. Risperidone and the 5-HT2A receptor antagonist, M100907 improve probabilistic reversal learning in BTBR T+ tf/J mice

    PubMed Central

    Amodeo, Dionisio A.; Jones, Joshua H.; Sweeney, John A.; Ragozzino, Michael E.

    2014-01-01

    Lay Abstract Restricted interests and repetitive behaviors in autism can lead to an ‘insistence on sameness’ for routines and decision-making. The ability to adapt choice patterns when external contingencies change is commonly referred to as cognitive flexibility. To date, there are limited options for treating cognitive inflexibility in autism. Risperidone, an atypical antipsychotic, is approved to treat irritability in autism, but less is known of whether it is effective in treating cognitive inflexibility. Risperidone acts at multiple receptors although only actions at a subset of these receptors may be beneficial for cognitive flexibility. 5HT2A receptor blockade represents one pharmacological action of risperidone. Rodent studies have shown that 5HT2A receptor antagonists improve attention and cognitive flexibility. The present studies investigated whether risperidone and/or M100907, a 5HT2A receptor antagonist, improved cognitive flexibility in the BTBR mouse model of autism. The BTBR mouse compared to C57BL/6J (B6) mice exhibit a deficit in reversing learned choice patterns comparable to that in individuals with autism. The present experiments used a two-choice probabilistic reversal learning test in which the ‘correct’ choice was reinforced on 80% of trials and the ‘incorrect’ choice reinforced on 20% of trials. After initial acquisition, the contingencies were reversed. Both risperidone and M100907 improved probabilistic reversal learning performance in BTBR mice. The same treatments did not improve reversal learning in B6 mice. Because risperidone can often lead to unwanted side effects, treatment with a 5HT2A receptor antagonist may offer an alternative for improving cognitive flexibility in individuals with autism. Scientific Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions with restricted interests and repetitive behaviors (RRBs). RRBs can severely limit daily living and

  2. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  3. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. PMID:25936514

  4. 5-HT2A-receptors in the orbitofrontal cortex facilitate reversal learning and contribute to the beneficial cognitive effects of chronic citalopram treatment in rats

    PubMed Central

    Furr, Ashley; Lapiz-Bluhm, M. Danet; Morilak, David A.

    2012-01-01

    Chronic stress is a risk factor for depression, and chronic stress can induce cognitive impairments associated with prefrontal cortical dysfunction, which are also major components of depression. We have previously shown that 5-weeks of chronic intermittent cold (CIC) stress induced a reversal learning deficit in rats, associated with reduced serotonergic transmission in the orbitofrontal cortex (OFC), that was restored by chronic treatment with a selective serotonin reuptake inhibitor (SSRI). However, the mechanisms underlying the beneficial cognitive effects of chronic SSRI treatment are currently unknown. Thus, the purpose of the present study was to investigate the potential modulatory influence specifically of 5-HT2A-receptors in the OFC on reversal learning, and their potential contribution to the beneficial cognitive effects of chronic SSRI treatment. Bilateral microinjections of the selective 5-HT2A-receptor antagonist, MDL 100,907 into OFC (0.02–2.0 nmoles) had a dose-dependent detrimental effect on a reversal learning task, suggesting a facilitatory influence of 5-HT2A-receptors in the OFC. In the next experiment, rats were exposed to 5-weeks of CIC stress, which compromised reversal learning, and treated chronically with the SSRI, citalopram (20 mg/kg/day) during the final 3 weeks of chronic stress. Chronic CIT treatment improved reversal learning in the CIC-stressed rats, and bilateral microinjection of MDL 100,907 (0.20 nmoles, the optimal dose from the preceding experiment) into OFC once again had a detrimental effect on reversal learning, opposing the beneficial effect of citalopram. We conclude that 5-HT2A-receptors in the OFC facilitate reversal learning, and potentially contribute to the beneficial cognitive effects of chronic SSRI treatment. PMID:22008191

  5. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.

    PubMed Central

    Verheggen, R.; Freudenthaler, S.; Meyer-Dulheuer, F.; Kaumann, A. J.

    1996-01-01

    1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000

  6. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice.

    PubMed

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  7. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  8. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    PubMed Central

    Chemineau, Philippe; Daveau, Agnès; Pelletier, Jean; Malpaux, Benoît; Karsch, Fred J; Viguié, Catherine

    2003-01-01

    Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization) was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and 3H-Ketanserin binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes, density of 5HT2A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissu-equivalent; P < 0.05, respectively). Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm. PMID:12553884

  9. Validation of a tracer kinetic model for the quantification of 5-HT(2A) receptors in human brain with [(11)C]MDL 100,907.

    PubMed

    Hinz, Rainer; Bhagwagar, Zubin; Cowen, Philip J; Cunningham, Vincent J; Grasby, Paul M

    2007-01-01

    The positron emission tomography (PET) ligand [(11)C]MDL 100,907 has previously been introduced to image the serotonin 2A (5-HT(2A)) receptor in human brain. The aim of this work was to contribute to the verification of the tracer kinetic modelling in human studies. Five healthy volunteers were scanned twice after intravenous bolus injection of approximately 370 MBq [(11)C]MDL 100,907 using dynamic PET. One scan was performed under baseline condition, the other scan commenced 90 mins after a single oral dose of 30 mg of the antidepressant mirtazapine, which binds to the 5-HT(2A) receptor. There did not appear to be radiolabelled metabolites of [(11)C]MDL 100,907 in human plasma, which are likely to cross the blood-brain barrier. Total volumes of distribution VD in 11 different brain regions were estimated using a reversible, two tissue, four rate constants compartment model with a variable fractional blood volume term and the metabolite-corrected plasma input function. There were no significant changes of the VD in the cerebellum between the baseline and the blocked scans confirming the cerebellum as a region devoid of displaceable binding. Regional estimates of binding potential were then obtained indirectly using the cerebellar VD and occupancies calculated. The mean occupancy with this clinically effective dose of mirtazapine was 60% without significant regional differences. This study confirmed the use of an arterial input kinetic model for the quantification of 5-HT(2A) receptor binding with [(11)C]MDL 100,907 and the use of the cerebellum as a reference region for the free and nonspecific binding. PMID:16685260

  10. Blockade of 5-HT2A receptors in the medial prefrontal cortex attenuates reinstatement of cue-elicited cocaine-seeking behavior in rats

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Swinford, Sarah E.

    2011-01-01

    Rationale The action of serotonin (5-HT) at the 5-HT2A receptor subtype is thought to be involved in cocaine-seeking behavior that is motivated by exposure to drug-associated cues and drug priming. 5-HT2A receptors are densely clustered in the ventromedial prefrontal cortex (vmPFC), an area that plays a role in mediating cocaine-seeking behavior. Objectives This study examined the hypothesis that M100907, a 5-HT2A receptor antagonist, infused directly in the vmPFC attenuates cue- and cocaine-primed reinstatement of cocaine-seeking behavior. Methods Rats trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues underwent extinction training during which operant responses produced no consequences. Once behavior extinguished, rats were tested for reinstatement of responding elicited by either response-contingent presentations of the cocaine-paired light/tone cues or by cocaine-priming injections (10 mg/kg, i.p.) within 1 min after pretreatment with microinfusions of M100907 (0.1, 0.3, 1.0, or 1.5 μg/0.2 μl/side) into the vmPFC. Results Intra-vmPFC M100907 decreased cue-elicited reinstatement at the two highest doses (1.0 and 1.5 μg) but produced only a slight decrease in cocaine-primed reinstatement that was not dose dependent. The decrease in cue reinstatement was not likely due to impaired ability to respond since intra-vmPFC M100907 infusions had minimal effect on cocaine self-administration and no effect on cue-elicited sucrose-seeking behavior, or spontaneous or cocaine-induced locomotion. M100907 infusions into the adjacent anterior cingulate cortex had no effect on cue reinstatement. Conclusions The results suggest that the blockade of 5-HT2A receptors in the vmPFC selectively attenuates the incentive motivational effects of cocaine-paired cues. PMID:21079923

  11. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated. PMID:20148408

  12. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  13. 5-HT2A receptor blockade and 5-HT2C receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Conway, Sineadh M.; Ullman, Teresa E.; Zwick, Kimberly R.; Neisewander, Janet L.

    2012-01-01

    Both the 5-HT2A receptor (R) antagonist M100907 and the 5-HT2CR agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT2A/5-HT2CR interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: 1) saline + saline, 2) saline + cocaine, 3) 0.025 mg/kg M100907 + cocaine, 4) 0.125 mg/kg MK212 + cocaine, or 5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT2R subtypes on behavior. Further research investigating combined 5-HT2AR antagonism and 5-HT2CR agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  14. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder. PMID:22079057

  15. The Secret Ingredient for Social Success of Young Males: A Functional Polymorphism in the 5HT2A Serotonin Receptor Gene

    PubMed Central

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an “enhancer” effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no “popularity gene”, as the G-allele by itself had no effect on popularity. PMID:23457454

  16. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  17. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System.

    PubMed

    Fink, Latham H L; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([(3)H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  18. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice.

    PubMed

    Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-02-01

    The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features. PMID:26476141

  19. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  20. Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioral impulsiveness and serotonin function in women with bulimia nervosa.

    PubMed

    Bruce, Kenneth R; Steiger, Howard; Joober, Ridha; Ng Ying Kin, N M K; Israel, Mimi; Young, Simon N

    2005-08-01

    Separate lines of research suggest that the functional alterations in the serotonin (5-HT) 2A receptor are associated with 5-HT tone, behavioral impulsiveness, and bulimia nervosa (BN). We explored the effect of allelic variations within the 5-HT2A receptor gene promoter polymorphism -1438G/A on trait impulsiveness and serotonin function in women with BN. Participants included women with BN having the A allele (i.e., AA homozygotes and AG heterozygotes, BNA+, N = 21); women with BN but without the A allele (i.e., GG homozygotes, BNGG, N = 12), and normal eater control women having the A allele (NEA+, N = 19) or without the A allele (NEGG; N = 9). The women were assessed for psychopathological tendencies and eating disorder symptoms, and provided blood samples for measurement of serial prolactin responses following oral administration of the post-synaptic partial 5-HT agonist meta-chlorophenylpiperazine (m-CPP). The BNGG group had higher scores than the other groups on self-report measures of non-planning and overall impulsiveness and had blunted prolactin response following m-CPP. The bulimic groups did not differ from each other on current eating symptoms or on frequencies of other Axis I mental disorders. Findings indicate that women with BN who are GG homozygotes on the -1438G/A promoter polymorphism are characterized by increased impulsiveness and lower sensitivity to post-synaptic serotonin activation. These findings implicate the GG genotype in the co-aggregation of impulsive behaviors and alterations of post-synaptic 5-HT functioning in women with BN. PMID:15999344

  1. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  2. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  3. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    PubMed

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  4. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  5. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists.

    PubMed

    Moreno, José L; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C; González-Maeso, Javier

    2011-04-15

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type and mGluR2-KO mice. [(3)H]Ketanserin binding displacement curves by DOI were performed in mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens. PMID:21276828

  6. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  7. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  8. (1R, 3S)-(−)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through Gαq to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(−)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (−)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (−)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (−)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (−)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (−)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (−)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  9. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  10. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin. PMID:26062718

  11. Synergism Between a Serotonin 5-HT2A Receptor (5-HT2AR) Antagonist and 5-HT2CR Agonist Suggests New Pharmacotherapeutics for Cocaine Addiction

    PubMed Central

    2012-01-01

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT2A receptor (5-HT2AR) and 5-HT2CR; either a selective 5-HT2AR antagonist or a 5-HT2CR agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT2AR antagonist plus 5-HT2CR agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT2AR antagonist M100907 plus the 5-HT2CR agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT2AR antagonist plus a 5-HT2CR agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  12. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation. PMID:27114257

  13. The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication.

    PubMed

    Darmani, N A

    1998-01-01

    The head-twitch response (HTR) in rodents is considered to be a functional index for the activation of 5-HT2A receptors. Intraperitoneal administration of the silent and selective 5-HT1A receptor antagonist, WAY 100635, produced the HTR in mice in a dose-dependent bell-shaped manner. The induced behaviour followed a diurnal pattern in that WAY 100635 only produced a robust HTR frequency during the light period of the 24h daily cycle. Pretreatment with the selective 5-HT2A/C receptor antagonist, SR 46349B, potently, and in a dose-dependent manner attenuated the induced behaviour. It appears that WAY 100635 produces the HTR indirectly via disinhibition of endogenous serotonergic inhibitory tone operating on the somatodenritic pulse-modulating 5-HT1A autoreceptors. The latter antagonism seems to potentiate endogenous 5-HT release in serotonergic terminal field synapses which subsequently stimulates postsynaptic 5-HT2A receptors to produce the head-twitch behaviour. PMID:9826108

  14. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  15. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  16. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43. PMID:17715398

  17. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  18. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    PubMed

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  19. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  20. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  1. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  2. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  3. Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties

    PubMed Central

    Shan, Jufang; Khelashvili, George; Mondal, Sayan; Mehler, Ernest L.; Weinstein, Harel

    2012-01-01

    From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization. PMID:22532793

  4. 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed.

    PubMed

    Pitychoutis, P M; Dalla, C; Sideris, A C; Tsonis, P A; Papadopoulou-Daifoti, Z

    2012-05-17

    It is well established that women experience major depression at roughly twice the rate of men. Interestingly, accumulating clinical and experimental evidence shows that the responsiveness of males and females to antidepressant pharmacotherapy, and particularly to tricyclic antidepressants (TCAs), is sex-differentiated. Herein, we investigated whether exposure of male and female rats to the chronic mild stress (CMS) model of depression, as well as treatment with the TCA clomipramine may affect serotonergic receptors' (5-HTRs) mRNA expression in a sex-dependent manner. Male and female rats were subjected to CMS for 4 weeks and during the next 4 weeks they concurrently received clomipramine treatment (10 mg/ml/kg). CMS and clomipramine's effects on 5-HT(1A)R, 5-HT(2A)R, and 5-HT(2C)R mRNA expression were assessed by in situ hybridization histochemistry in selected subfields of the hippocampus and in the lateral orbitofrontal cortex (OFC), two regions implicated in the pathophysiology of major depression. CMS and clomipramine treatment induced sex-differentiated effects on rats' hedonic status and enhanced 5-HT(1A)R mRNA expression in the cornu ammonis 1 (CA1) hippocampal region of male rats. Additionally, CMS attenuated 5-HT(1A)R mRNA expression in the OFC of male rats and clomipramine reversed this effect. Moreover, 5-HT(2A)R mRNA levels in the OFC were enhanced in females but decreased in males, while clomipramine reversed this effect only in females. CMS increased 5-HT2CR mRNA expression in the CA4 region of both sexes and this effect was attenuated by clomipramine. Present data exposed that both CMS and clomipramine treatment may induce sex-differentiated and region-distinctive effects on 5-HTRs mRNA expression and further implicate the serotonergic system in the manifestation of sexually dimorphic neurobehavioral responses to stress. PMID:22441040

  5. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  6. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development. PMID:26477571

  7. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  8. 2-Alkyl-4-aryl-pyrimidine fused heterocycles as selective 5-HT2A antagonists.

    PubMed

    Shireman, Brock T; Dvorak, Curt A; Rudolph, Dale A; Bonaventure, Pascal; Nepomuceno, Diane; Dvorak, Lisa; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    The synthesis and SAR for a novel series of 2-alkyl-4-aryl-tetrahydro-pyrido-pyrimidines and 2-alkyl-4-aryl-tetrahydro-pyrimido-azepines is described. Representative compounds were shown to be subtype selective 5-HT(2A) antagonists. Optimal placement of a basic nitrogen relative to the pyrimidine and the presence of a 4-fluorophenyl group in the pyrimidine 4-position was found to have a profound effect on affinity and selectivity. PMID:18282705

  9. 1,4-Disubstituted aromatic piperazines with high 5-HT2A/D2 selectivity: Quantitative structure-selectivity investigations, docking, synthesis and biological evaluation.

    PubMed

    Möller, Dorothee; Salama, Ismail; Kling, Ralf C; Hübner, Harald; Gmeiner, Peter

    2015-09-15

    Simultaneous targeting of dopamine D2 and 5-HT2A receptors for the treatment of schizophrenia is one key feature of typical and atypical antipsychotics. In most of the top-selling antipsychotic drugs like aripiprazole and risperidone, high affinity to both receptors can be attributed to the presence of 1,4-disubstituted aromatic piperazines or piperidines as primary receptor recognition elements. Taking advantage of our in-house library of phenylpiperazine-derived dopamine receptor ligands and experimental data, we established highly significant CoMFA and CoMSIA models for the prediction of 5-HT2A over D2 selectivity. Subsequently, the models were applied to identify the selective candidates 55-57 from our newly synthesized library of GPCR ligands comprising a pyrazolo[1,5-a]pyridine head group and a 1,2,3-triazole based linker unit. The test compound 57 showed subnanomolar a Ki value (0.64 nM) for 5-HT2A and more than 10- and 30-fold selectivity over the dopamine receptor isoforms D2S and D2L, respectively. PMID:26299826

  10. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  11. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-01

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain. PMID:25149912

  12. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  13. Pharmacogenetic Study of Serotonin Transporter and 5HT2A Genotypes in Autism

    PubMed Central

    Najjar, Fedra; Owley, Thomas; Mosconi, Matthew W.; Jacob, Suma; Hur, Kwan; Guter, Stephen J.; Sweeney, John A.; Gibbons, Robert D; Bishop, Jeffrey R.

    2015-01-01

    Abstract Objective: The purpose of this study was to determine whether polymorphisms in the serotonin transporter (SLC6A4) and serotonin-2A receptor (HTR2A) genes are associated with response to escitalopram in patients with autism spectrum disorder (ASD). Methods: Forty-four participants with ASD were enrolled in a 6 week, forced titration, open label examination of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Doses increased at weekly intervals starting at 2.5mg daily with a maximum possible dose of 20 mg daily achieved by the end of the study. If adverse events were experienced, participants subsequently received the previously tolerated dose for the duration of study. SLC6A4 (5-HTTLPR) and HTR2A (rs7997012) genotype groups were assessed in relation to treatment outcomes and drug doses. Results: Insistence on sameness and irritability symptoms significantly improved over the course of the 6 week treatment period (p<0.0001) in this open-label trial. There were no significant differences observed in the rate of symptom improvement over time across genotype groups. Similarly, dosing trajectory was not significantly associated with genotype groups. Conclusions: Previous studies have identified SLC6A4 and HTR2A associations with SSRI response in patients with depression and 5-HTTLPR (SLC6A4) associations with escitalopram response in ASD. We did not observe evidence for similar relationships in this ASD study. PMID:26262902

  14. Effects of the 5-HT2A Antagonist Sarpogrelate on Walking Ability in Patients with Intermittent Claudication as Measured Using the Walking Impairment Questionnaire

    PubMed Central

    2008-01-01

    Background: The Walking Impairment Questionnaire (WIQ) measures walking ability in daily life in patients with peripheral arterial disease causing intermittent claudication. We investigated the efficacy of sarpogrelate, a 5-HT2A receptor antagonist, in improving walking ability, as measured using new Japanese version of the WIQ. Patients and Methods: A nationwide multicenter study was conducted at 80 institutions in Japan involving 586 patients with stable symptoms of intermittent claudication. Patients received open-label sarpogrelate 300 mg/day. A total of 419 patients were evaluated in the full analysis set (FAS) following the intention to treat principle, and 354 patients were evaluated in the per-protocol set (PPS). The FAS data are emphasized here. Results: The mean follow-up was 27.7 ± 10.1 weeks. Each subscale of the WIQ score showed improvement after sarpogrelate treatment (p < 0.0001), and the resting ankle-brachial index increased significantly (p < 0.0001). The incidence of adverse reactions of the entire series of 559 patients was 4.83% (27 patients), but there were no clinically significant safety concerns. Conclusions: We have for the first time demonstrated that sarpogrelate may improve walking ability in daily life in Japanese patients with intermittent claudication. The drug had a good safety profile. PMID:23555346

  15. PSD-95 is Essential for Hallucinogen and Atypical Antipsychotic Drug Actions at Serotonin Receptors

    PubMed Central

    Abbas, Atheir I.; Yadav, Prem N.; Yao, Wei-Dong; Arbuckle, Margaret I.; Grant, Seth G.; Caron, Marc G.; Roth, Bryan L.

    2009-01-01

    Here we report that PSD-95, a postsynaptic density scaffolding protein classically conceptualized as being essential for the regulation of ionotropic glutamatergic signaling at the post-synaptic membrane, plays an unanticipated and essential role in mediating the actions of hallucinogens and atypical antipsychotic drugs at 5-HT2A and 5-HT2C serotonergic G protein-coupled receptors (GPCRs). We show that PSD-95 is crucial for normal 5-HT2A and 5- HT2C expression in vivo, and that PSD-95 maintains normal receptor expression by promoting apical dendritic targeting and stabilizing receptor turnover in vivo. Significantly, 5-HT2A and 5-HT2C-mediated downstream signaling is impaired in PSD-95null mice, and the 5-HT2A-mediated head twitch response is abnormal. Furthermore, the ability of 5-HT2A inverse agonists to normalize behavioral changes induced by glutamate receptor antagonists is abolished in the absence of PSD-95 in vivo. These results demonstrate that PSD-95, in addition to the well known role it plays in scaffolding macromolecular glutamatergic signaling complexes, profoundly modulates metabotropic 5-HT2A and 5-HT2C receptor function. PMID:19494135

  16. Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice.

    PubMed

    Dougherty, John P; Oristaglio, Jeff

    2013-07-01

    Animal studies have established that drugs activating the serotonin 2A (5-HT2A) receptor can enhance learning and memory in a variety of classical and operant conditioning tasks. Unfortunately, long-term agonism typically results in receptor downregulation, which can negate such nootropic effects. Conversely, chronic antagonism can act to increase receptor density, an adaptation which, in principle, should enhance cognition in a manner similar to acute agonism. In this study, we questioned whether chronic treatment with the 5-HT2A receptor antagonist, SR 46349B, a drug known to increase 5-HT2A receptor density in vivo, would improve cognitive performance in normal mice. To address this question, we administered SR 46349B to mice for 4 days following initial training on a simple rule-based reward acquisition task. We subsequently tested their recall of this task and, finally, their ability to adapt to a reversal in reward contingency (reversal learning). For comparison, two additional groups were treated with the 5-HT2A/2C receptor agonist, DOI, which downregulates the 5-HT2A receptor. SR 46349B improved retention of the previously-learned task but did not affect reversal learning. Subjects treated with SR 46349B also completed trials faster and with greater motor efficiency than vehicle- or DOI-treated subjects. We hypothesize that long-term drug treatments resulting in 5-HT2A receptor up-regulation may be useful in enhancing recall of learned behaviors and, thus, may have potential for treating cognitive impairment associated with neurodegenerative disorders. PMID:23587729

  17. The Relationship Between Single Nucleotide Polymorphisms in 5-HT2A Signal Transduction-Related Genes and the Response Efficacy to Selective Serotonin Reuptake Inhibitor Treatments in Chinese Patients with Major Depressive Disorder

    PubMed Central

    Li, Heng-Fen; Yu, Xue; He, Cha-Ye; Kou, Shao-Jie; Cao, Su-Xia

    2012-01-01

    Objective: To explore the possible relationship between six single nucleotide polymorphisms (SNPs) (rs6311 and rs6305 of 5-HT2A, rs5443 of Gβ3, rs2230739 of ACDY9, rs1549870 of PDE1A and rs255163 of CREB1, which are all related with 5-HT2A the signal transduction pathway) and the response efficacy to selective serotonin reuptake inhibitor (SSRI) treatments in major depressive disorder (MDD) Chinese. Methods: This study included 194 depressed patients to investigate the influence of 6 polymorphisms in 5-HT2A signal transduction-related genes on the efficacy of SSRIs assessed over 1 year. The efficacies of SSRIs on 194 MDD patients were evaluated in an 8-week open-trial study. Over 1 year, a follow-up study was completed for 174 of them to observe the long-term efficacy of SSRIs. The optimal-scaling regression analysis was used for testing the relationship between the different genotypes of five SNPs and the efficacy in MDD. Results: It showed that the patients with rs5443TT and rs2230739GG have a relatively good efficacy in response to short-term SSRIs. We also found that good efficacy appeared in depressed patients with rs2230739GG in response to long-term SSRIs. Conclusions: It suggested that different genotypes of rs5443 and rs2230739 might influence the signal transduction pathways of second message and affect therapeutic efficacy. PMID:22480177

  18. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC. PMID:25486618

  19. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans. PMID:27039035

  20. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  1. Regulation of rat cortical 5-hydroxytryptamine2A-receptor mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine

    PubMed Central

    Marek, Gerard J.

    2008-01-01

    Down-regulation of 5-hydroxytryptamine2A (5-HT2A) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT2A receptor binding sites. However, the effects of antidepressants on 5-HT2A receptor-mediated responses on identified cells of the cerebral cortex has not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT2A receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT2A receptors was consistent with 5-HT2A receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT2A receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex. PMID:18294819

  2. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice.

    PubMed

    Morici, Juan F; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  3. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. PMID:26657047

  4. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  5. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    PubMed

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  6. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    PubMed Central

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina; Elliott, Rebecca; Paulson, Olaf B; Knudsen, Gitte M; Siebner, Hartwig R

    2013-01-01

    Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were balanced in terms of expected utility and potential loss. Acute blockade of the 5-HT2A receptors with ketanserin made participants more risk-averse. Ketanserin selectively reduced the neural response of the frontopolar cortex to negative outcomes that were caused by low-risk choices and were associated with large missed rewards. In the context of normal 5-HT2A receptor function, ventral striatum displayed a stronger response to low-risk negative outcomes in risk-taking as opposed to risk-averse individuals. This (negative) correlation between the striatal response to low-risk negative outcomes and risk-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome evaluation of “missed” reward. These results have implications for understanding the neural basis of abnormal risk-taking behavior, for instance in pathological gamblers. PMID:23810974

  7. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease. PMID:23785166

  8. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  9. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  10. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  11. Antidepressant, Antipsychotic, and Hallucinogen Drugs for the Treatment of Psychiatric Disorders: A Convergence at the Serotonin-2A Receptor.

    PubMed

    Howland, Robert H

    2016-07-01

    Antidepressant, atypical antipsychotic, and hallucinogen drugs mediate their actions in part by interactions with the serotonin-2A (5HT2A) receptor. Serotonergic hallucinogen drugs, such as psilocybin, bind most potently as agonists at the 5HT2A receptor, producing profound changes in perception, mood, and cognition. Some of these drugs have been or are currently being investigated in small Phase 2 studies for depression, alcoholism, smoking cessation, anxiety, and posttraumatic stress disorder. However, unlike the synergistic effects of combining antidepressant and atypical antipsychotic drugs, the potential therapeutic effects of hallucinogen drugs may be attenuated by the concurrent use of these medications because antidepressant and atypical antipsychotic drugs desensitize and/or down-regulate 5HT2A receptors. This finding has important implications for optimizing the potential therapeutic use of hallucinogen drugs in psychiatry. [Journal of Psychosocial Nursing and Mental Health Services, 54(7), 21-24.]. PMID:27362381

  12. Sequential onset of three 5-HT receptors during the 5-hydroxytryptaminergic differentiation of the murine 1C11 cell line.

    PubMed Central

    Kellermann, O.; Loric, S.; Maroteaux, L.; Launay, J. M.

    1996-01-01

    1. The murine 1C11 clone, which derives from a multipotential embryonal carcinoma cell line, has the features of a neuroectodermal precursor. When cultured in the presence of dibutyryl cyclic AMP, the 1C11 cells extend bipolar extensions and express neurone-associated markers. After 4 days, the resulting cells have acquired the ability to synthesize, take up, store and catabolize 5-hydroxytryptamine (5-HT). We have thus investigated the presence of 5-HT receptors during the 5-hydroxytryptaminergic differentiation of this inducible 1C11 cell line. 2. As shown by the binding of [125I]-GTI and the CGS 12066-dependent inhibition of the forskolin-induced cyclic AMP production, functional 5-HT1B/1D receptors become expressed on day 2 of 1C11 cell differentiation. The density of these receptors remained unchanged until day 4. 3. The same holds true for the 5-HT2B receptor, also identified by its pharmacological profile and its positive coupling to the phosphoinositide cascade. 4. On day 4 of 1C11 cell differentiation, a third 5-HT receptor, pharmacologically and functionally similar to 5-HT2A, had become induced. 5. Strikingly, the amounts of each transcript encoding 5-HT1B, 5-HT2A and 5-HT2B receptor did not very significantly during the time course of the 1C11 5-hydroxytryptaminergic differentiation. 6. The clone 1C11 may thus provide a useful in vitro model for studying regulation(s) between multiple G-linked receptors as well as the possible role of 5-HT upon the expression of a complete 5-hydroxytryptamine phenotype. Images Figure 5 PMID:8818339

  13. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  14. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression.

    PubMed

    Visser, Anniek K D; Ettrup, Anders; Klein, Anders B; van Waarde, Aren; Bosker, Fokko J; Meerlo, Peter; Knudsen, Gitte M; de Boer, Sietse F

    2015-04-01

    Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with different coping styles. We compared proactive and reactive males of two rat strains, Wild-type Groningen (WTG) and Roman high- and low avoidance (RHA, RLA). 5-HT2A R binding in (pre)frontal cortex (FC) and hippocampus was investigated using a radiolabeled antagonist ([(3) H]MDL-100907) and agonist ([(3) H]Cimbi-36) in binding assays. No differences in 5-HT2A R binding were observed in male animals with different coping styles. [(3) H]MDL-100907 displayed a higher specific-to-nonspecific binding ratio than [(3) H]Cimbi-36. Our findings suggest that in these particular rat strains, 5-HT2A R binding is not an important molecular marker for coping style. Because neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA. PMID:25684736

  15. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  16. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach.

    PubMed

    Qesseveur, Gaël; Petit, Anne Cécile; Nguyen, Hai Thanh; Dahan, Lionel; Colle, Romain; Rotenberg, Samuel; Seif, Isabelle; Robert, Pauline; David, Denis; Guilloux, Jean-Philippe; Gardier, Alain M; Verstuyft, Céline; Becquemont, Laurent; Corruble, Emmanuelle; Guiard, Bruno P

    2016-06-01

    Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response. PMID:26764241

  17. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties. PMID:27216487

  18. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  19. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  20. Endotoxin suppresses rat hepatic low-density lipoprotein receptor expression.

    PubMed Central

    Liao, W; Rudling, M; Angelin, B

    1996-01-01

    Endotoxin induces hyperlipidaemia in experimental animals. In the current study, we investigated whether endotoxin alters hepatic low-density lipoprotein (LDL) receptor expression in rats. Endotoxin treatment suppressed hepatic LDL receptor expression in a dose- and time-dependent manner. Eighteen hours after intraperitoneal injection of increasing amounts of endotoxin, LDL receptor and its mRNA levels were determined by ligand blot and solution hybridization respectively. LDL receptor expression was inhibited by about 70% at a dose of 500 micrograms/100 g body weight. However, LDL receptor mRNA levels were markedly increased in all endotoxin-treated groups at this time point (by 83-136%; P < 0.001). Time-course experiments showed that LDL receptor expression was already reduced by 48% 4 h after endotoxin injection and was maximally reduced (by 63-65%) between 8 and 18 h. Changes in hepatic LDL receptor mRNA showed a different pattern. By 4 h after endotoxin injection, LDL receptor mRNA had decreased by 78% (P < 0.001). However, by 8 h after endotoxin injection, LDL receptor mRNA had returned to levels similar to controls, and 18 and 24 h after endotoxin injection, they were increased by about 60% (P < 0.05). Separation of plasma lipoproteins by FPLC demonstrated that endotoxin-induced changes in plasma triacylglycerols and cholesterol were due to accumulation of plasma apolipoprotein B-containing lipoproteins among very-low-density lipoprotein, intermediate-density lipoprotein and LDL. It is concluded that endotoxin suppresses hepatic LDL receptor expression in vivo in rats. PMID:8611169

  1. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders. PMID:24412555

  2. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  3. Dot-blot assay for the low density lipoprotein receptor

    SciTech Connect

    Maggi, F.M.; Catapano, A.L.

    1987-01-01

    We describe a new method for detecting the interaction of low density lipoprotein with its receptor using unmodified nitrocellulose as support for membrane protein. The method is specific and sensitive down to 3 micrograms of membrane protein. Unlabeled LDL, but not HDL, competes with /sup 125/I-labeled LDL for binding, and binding is abolished by pretreatment of the membranes with pronase and is dependent upon the presence of Ca2+. Furthermore, modification of arginine or lysine residues on LDL abolishes the lipoprotein interaction with the receptor protein supported on the nitrocellulose. When the membranes are solubilized with octyl glucoside, purification steps of the receptor can be directly followed with no interference of the detergent, therefore eliminating the need for its removal. The increased expression of LDL receptors on liver membranes from estradiol-treated rats was also demonstrated. We suggest, therefore, that this method can be used to detect the presence of LDL receptors on minute amounts of membrane protein.

  4. Antagonism of 5-hydroxytryptamine2A Receptor Results in Decreased Contractile Response of Bovine Lateral Saphenous Vein to Tall Fescue Alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  5. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  6. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  7. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  8. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes.

    PubMed

    Derangeon, Mickaël; Bozon, Véronique; Defamie, Norah; Peineau, Nicolas; Bourmeyster, Nicolas; Sarrouilhe, Denis; Argibay, Jorge A; Hervé, Jean-Claude

    2010-01-01

    5-hydroxytryptamine-4 (5-HT(4)) receptors have been proposed to contribute to the generation of atrial fibrillation in human atrial myocytes, but it is unclear if these receptors are present in the hearts of small laboratory animals (e.g. rat). In this study, we examined presence and functionality of 5-HT(4) receptors in auricular myocytes of newborn rats and their possible involvement in regulation of gap junctional intercellular communication (GJIC, responsible for the cell-to-cell propagation of the cardiac excitation). Western-blotting assays showed that 5-HT(4) receptors were present and real-time RT-PCR analysis revealed that 5-HT(4b) was the predominant isoform. Serotonin (1 microM) significantly reduced cAMP concentration unless a selective 5-HT(4) inhibitor (GR113808 or ML10375, both 1 microM) was present. Serotonin also reduced the amplitude of L-type calcium currents and influenced the strength of GJIC without modifying the phosphorylation profiles of the different channel-forming proteins or connexins (Cxs), namely Cx40, Cx43 and Cx45. GJIC was markedly increased when serotonin exposure occurred in presence of a 5-HT(4) inhibitor but strongly reduced when 5-HT(2A) and 5-HT(2B) receptors were inhibited, showing that activation of these receptors antagonistically regulated GJIC. The serotoninergic response was completely abolished when 5-HT(4), 5-HT(2A) and 5-HT(2B) were simultaneously inhibited. A 24 h serotonin exposure strongly reduced Cx40 expression whereas Cx45 was less affected and Cx43 still less. In conclusion, this study revealed that 5-HT(4) (mainly 5-HT(4b)), 5-HT(2A) and 5-HT(2B) receptors coexisted in auricular myocytes of newborn rat, that 5-HT(4) activation reduced cAMP concentration, I(Ca)(L) and intercellular coupling whereas 5-HT(2A) or 5-HT(2B) activation conversely enhanced GJIC. PMID:19615378

  9. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  10. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  11. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family.

    PubMed

    Nilsson, Stefan K; Lookene, Aivar; Beckstead, Jennifer A; Gliemann, Jørgen; Ryan, Robert O; Olivecrona, Gunilla

    2007-03-27

    Apolipoprotein A-V is a potent modulator of plasma triacylglycerol levels. To investigate the molecular basis for this phenomenon we explored the ability of apolipoprotein A-V, in most experiments complexed to disks of dimyristoylphosphatidylcholine, to interact with two members of the low density lipoprotein receptor family, the low density lipoprotein receptor-related protein and the mosaic type-1 receptor, SorLA. Experiments using surface plasmon resonance showed specific binding of both free and lipid-bound apolipoprotein A-V to both receptors. The binding was calcium dependent and was inhibited by the receptor associated protein, a known ligand for members of the low density lipoprotein receptor family. Preincubation with heparin decreased the receptor binding of apolipoprotein A-V, indicating that overlap exists between the recognition sites for these receptors and for heparin. A double mutant, apolipoprotein A-V (Arg210Glu/Lys211Gln), showed decreased binding to heparin and decreased ability to bind the low density lipoprotein receptor-related protein. Association of apolipoprotein A-V with the low density lipoprotein receptor-related protein or SorLA resulted in enhanced binding of human chylomicrons to receptor-covered sensor chips. Our results indicate that apolipoprotein A-V may influence plasma lipid homeostasis by enhancing receptor-mediated endocytosis of triacylglycerol-rich lipoproteins. PMID:17326667

  12. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells.

    PubMed

    Baki, Lia; Fribourg, Miguel; Younkin, Jason; Eltit, Jose Miguel; Moreno, Jose L; Park, Gyu; Vysotskaya, Zhanna; Narahari, Adishesh; Sealfon, Stuart C; Gonzalez-Maeso, Javier; Logothetis, Diomedes E

    2016-05-01

    We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011-1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca(2+) responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25-30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex. PMID:26780666

  13. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  14. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-01

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia. PMID:21289196

  15. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  16. Selective glucocorticoid receptor modulation maintains bone mineral density in mice.

    PubMed

    Thiele, Sylvia; Ziegler, Nicole; Tsourdi, Elena; De Bosscher, Karolien; Tuckermann, Jan P; Hofbauer, Lorenz C; Rauner, Martina

    2012-11-01

    Glucocorticoids (GCs) are potent anti-inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC-induced bone loss. Bone loss was induced in FVB/N mice by implanting slow-release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte-like cells (MLO-Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N-terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf-1 (DKK-1). In addition, serum CTX-1 and the skeletal receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO-Y4 cells or the expression of DKK-1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK-1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone-sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK-1 in osteoblast lineage cells, GC

  17. 5-HT2 receptor affinity, docking studies and pharmacological evaluation of a series of 1,3-disubstituted thiourea derivatives.

    PubMed

    Bielenica, Anna; Kędzierska, Ewa; Koliński, Michał; Kmiecik, Sebastian; Koliński, Andrzej; Fiorino, Ferdinando; Severino, Beatrice; Magli, Elisa; Corvino, Angela; Rossi, Ilaria; Massarelli, Paola; Kozioł, Anna E; Sawczenko, Aleksandra; Struga, Marta

    2016-06-30

    A series of 10 thiourea derivatives have been synthesized by the reaction of aromatic amine with a substituted aryl (compounds 1-3, 6-8) and alkylphenyl (4, 5, 9, 10) isothiocyanates. Their in vitro and in vivo pharmacological properties were studied. Among the evaluated compounds, two displayed very high affinity for the 5-HT2A receptor (1-0.043 nM and 5-0.6 nM), being selective over the 5-HT2C receptor. Derivatives 3, 5, 9, 10 by 70-89% diminished L-5-HTP-induced head twitch episodes. Compounds 1 and 5 as the 5-HT2A receptor antagonists produced a dose-dependent decrease in the number of DOI-elicited HTR. Compounds 1-5 strongly reduced amphetamine-evoked hyperactivity in rodents. In another test, 1 and 2 caused hyperthermia in mice, whereas 9 and 10 led to hypothermia. Antinociceptive and anticonvulsant properties of selected derivatives were demonstrated. Molecular docking studies using a homology model of 5-HT2A revealed a significant role of hydrogen bonds between both thiourea NH groups and Asp155/Tyr370 residues, as well as π-π interaction with Phe339. PMID:27061981

  18. Whole-hemisphere autoradiography of 5-HT₁B receptor densities in postmortem alcoholic brains.

    PubMed

    Storvik, Markus; Häkkinen, Merja; Tupala, Erkki; Tiihonen, Jari

    2012-06-30

    The 5-HT(1B) receptor has been associated with alcohol dependence, impulsive or alcohol-related aggressive behavior, and anxiety. The aim of this study was to determine whether or not the 5-HT(1B) receptor density differs in brain samples from anxiety-prone Cloninger type 1 alcoholics and socially hostile, predominantly male, type 2 alcoholics, and controls. Whole-hemispheric 5-HT(1B) receptor density was measured in eight regions of postmortem brains from 17 alcoholics and 10 nonalcoholic controls by autoradiography with tritiated GR-125743 and unlabeled ketanserin to prevent 5-HT(1D) binding. The 5-HT(1B) receptor density was not altered significantly in any of the studied regions. However, some correlations were observed in types 1 and 2 alcoholics only. The 5-HT(1B) receptor density decreased with age in type 1 alcoholics only. There was a significant positive correlation between 5-HT(1B) receptor and serotonin transporter densities in the head of caudate of type 1 alcoholics only. There was a significant positive correlation between 5-HT(1B) receptor density and dopaminergic terminal density, as estimated by vesicular monoamine transporter 2 measurement in the nucleus accumbens of type 2 alcoholics only. There were no significant correlations between 5-HT(1B) receptor and dopamine transporter or dopamine D2/D3 receptor densities in any of the subject groups. In conclusion, these results do not indicate primary changes in 5-HT(1B) receptor densities among these alcoholics, although the data must be considered as preliminary. PMID:22804971

  19. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  20. Life Beyond Kinases: Structure-based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors

    PubMed Central

    Lin, Xingyu; Huang, Xi-Ping; Chen, Gang; Whaley, Ryan; Peng, Shiming; Wang, Yanli; Zhang, Guoliang; Wang, Simon X.; Wang, Shaohui; Roth, Bryan L.; Huang, Niu

    2012-01-01

    Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of 5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT2A models, and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib has shown unexpected promiscuous 5-HTRs binding affinities, Ki = 1959, 56 and 417 nM against 5-HT2A, 5-HT2B and 5-HT2C, respectively. Our preliminary SAR exploration supports the predicted binding mode, and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects. PMID:22694093

  1. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  2. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  3. Neurotransmitter receptor density changes in Pitx3ak mice--a model relevant to Parkinson's disease.

    PubMed

    Cremer, J N; Amunts, K; Graw, J; Piel, M; Rösch, F; Zilles, K

    2015-01-29

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by alterations of nigrostriatal dopaminergic neurotransmission. Compared to the wealth of data on the impairment of the dopamine system, relatively limited evidence is available concerning the role of major non-dopaminergic neurotransmitter systems in PD. Therefore, we comprehensively investigated the density and distribution of neurotransmitter receptors for glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine in brains of homozygous aphakia mice being characterized by mutations affecting the Pitx3 gene. This genetic model exhibits crucial hallmarks of PD on the neuropathological, symptomatic and pharmacological level. Quantitative receptor autoradiography was used to characterize 19 different receptor binding sites in eleven brain regions in order to understand receptor changes on a systemic level. We demonstrated striking differential changes of neurotransmitter receptor densities for numerous receptor types and brain regions, respectively. Most prominent, a strong up-regulation of GABA receptors and associated benzodiazepine binding sites in different brain regions and concomitant down-regulations of striatal nicotinic acetylcholine and serotonergic receptor densities were found. Furthermore, the densities of glutamatergic kainate, muscarinic acetylcholine, adrenergic α1 and dopaminergic D2/D3 receptors were differentially altered. These results present novel insights into the expression of neurotransmitter receptors in Pitx3(ak) mice supporting findings on PD pathology in patients and indicating on the possible underlying mechanisms. The data suggest Pitx3(ak) mice as an appropriate new model to investigate the role of neurotransmitter receptors in PD. Our study highlights the relevance of non-dopaminergic systems in PD and for the understanding of its molecular pathology. PMID:25451278

  4. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    SciTech Connect

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki; Shirai, Kohji; Tatsuno, Ichiro

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  5. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  6. Inhibitors of cholesterol biosynthesis increase hepatic low-density lipoprotein receptor protein degradation.

    PubMed

    Ness, G C; Zhao, Z; Lopez, D

    1996-01-15

    Inhibitors of cholesterol biosynthesis are believed to lower serum cholesterol levels by enhancing the removal of serum low-density lipoprotein (LDL) by increasing hepatic LDL receptor function. Thus, the effects of several different inhibitors of cholesterol biosynthesis were examined for their effects on the expression of the hepatic LDL receptor in rats. We found that administration of inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase such as lovastatin, pravastatin, fluvastatin, and rivastatin resulted in increased hepatic LDL receptor mRNA levels. Surprisingly, these agents failed to increase levels of immunoreactive LDL receptor protein in rat liver even when the dose and length of treatment were increased. Treatment of rats with zaragozic acid A, an inhibitor of squalene synthase, caused even greater increases in hepatic LDL receptor mRNA levels, but did not increase levels of immunoreactive protein. Further investigation revealed that the rate of degradation of the hepatic LDL receptor was increased in rats given inhibitors of cholesterol biosynthesis. The greatest increase in the rate of degradation was seen in animals treated with zaragozic acid A which caused the largest increase in hepatic LDL receptor mRNA levels. In contrast, hepatic LDL receptor protein was stabilized in cholesterol-fed rats. It appears that increased potential for LDL receptor protein synthesis, reflected in increased mRNA levels, is offset by a corresponding increase in the rate of receptor protein degradation resulting in constant steady-state levels of hepatic LDL receptor protein. These findings are suggestive of increased cycling of the hepatic LDL receptor. This postulated mechanism can provide for enhanced hepatic uptake of lipoproteins without increasing steady-state levels of LDL receptor protein. PMID:8561503

  7. Distinct Hepatic Receptors for Low Density Lipoprotein and Apolipoprotein E in Humans

    NASA Astrophysics Data System (ADS)

    Hoeg, Jeffrey M.; Demosky, Stephen J.; Gregg, Richard E.; Schaefer, Ernst J.; Brewer, H. Bryan

    1985-02-01

    Since the liver is a central organ for lipid and lipoprotein synthesis and catabolism, hepatic receptors for specific apolipoproteins on plasma lipoproteins would be expected to modulate lipid and lipoprotein metabolism. The role of hepatic receptors for low density lipoproteins and apolipoprotein E-containing lipoproteins was evaluated in patients with complementary disorders in lipoprotein metabolism: abetalipoproteinemia and homozygous familial hypercholesterolemia. In addition, hepatic membranes from a patient with familial hypercholesterolemia were studied and compared before and after portacaval shunt surgery. The results establish that the human liver has receptors for apolipoproteins B and E. Furthermore, in the human, hepatic receptors for low density lipoproteins and apolipoprotein E are genetically distinct and can undergo independent control.

  8. Expression density of receptors to IL-1β in atopic dermatitis.

    PubMed

    Alshevskaya, Alina A; Lopatnikova, Julia A; Krugleeva, Olga L; Nepomnyschih, Vera M; Lukinov, Vitaliy L; Karaulov, Aleksander V; Sennikov, Sergey V

    2016-07-01

    Interleukin 1 (IL-1 β) and the system for regulation of its biological effects play an important role in the development and behavior of inflammatory processes in atopic dermatitis. Notably, cells that are actively involved in the pathological process have altered expression of cytokine receptors. However, standard evaluation of cells by flow cytometry measures only the percentage of cells expressing the appropriate marker, which is not enough for a full assessment of these changes. The aim of this study was to investigate changes in the expression of IL-1β cytokine receptors in patients with atopic dermatitis by both percentage of cells with receptors in various subsets and the absolute number of membrane-bound receptors themselves. It was found that an increase or decrease in the percentage of cells expressing the receptors in subsets of immune cells in patients with atopic dermatitis was not associated with a change in the number of receptors on the cell surface. Moreover, the changes in the percentage of cells and the number of receptors may occur in different directions, as shown for IL-1R2 expression on B cells and IL-1R1 expression for monocytes. Changes in the parameters of IL-1β receptor expressions are associated with disease severity index SCORAD in atopic dermatitis. These findings underline the importance of studying the density of cytokine receptor expression in the pathology. PMID:27267269

  9. Catabolism of low density lipoproteins by perfused rabbit livers: cholestyramine promotes receptor-dependent hepatic catabolism of low density lipoproteins.

    PubMed

    Chao, Y S; Yamin, T T; Alberts, A W

    1982-07-01

    Rabbits fed a wheat starch/casein diet develop a marked hypercholesterolemia accompanied by a decrease in the number of EDTA-sensitive binding sites on plasma membrane fractions of the liver for low density lipoproteins (LDL) and beta-migrating very low density lipoproteins [Chao, Y.-S., Yamin, T.-T. & Alberts, A. W. (1982) J. Biol. Chem., in press]. Inclusion of 1% cholestyramine resin in this diet prevents the increase in plasma cholesterol, increases the removal of LDL from plasma, and increases the number of hepatic plasma membrane LDL-binding sites. To determine the functional role of hepatic LDL-binding sites in the catabolism of LDL, we studied the catabolism of (125)I-labeled LDL ((125)I-LDL) by in situ perfused rabbit livers in a recirculating system. The rate of catabolism was measured from the increment of nonprotein-bound radioiodine in the perfusate. The receptor-dependent catabolism of LDL by the liver was calculated from the difference of hepatic catabolism of (125)I-LDL and catabolism of (125)I-labeled cyclohexanedione-modified LDL, which does not bind to LDL receptors. The data show that about 74% of LDL catabolized by perfused livers from chow-fed rabbits is through the receptor-dependent pathway and 26% is through the receptor-independent pathway. In rabbits fed a cholesterol diet, the hepatic catabolism of (125)I-LDL is reduced, and the receptor-dependent catabolism of (125)I-LDL is abolished. In rabbits fed the wheat starch/casein diet, the receptor-dependent catabolism of (125)I-LDL is reduced by 40% when compared with hepatic catabolism in chow-fed rabbits. Perfused livers from rabbits fed the wheat starch/casein diet supplemented with 1% cholestyramine show a 5,4-fold increase of receptor-dependent catabolism of (125)I-LDL when compared with that of livers from rabbits fed the wheat starch/casein diet alone. Thus, these studies demonstrate that the change in the number of rabbit hepatic membrane LDL receptors induced by dietary manipulation

  10. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.

    PubMed Central

    Spady, D K; Dietschy, J M

    1985-01-01

    The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver. Images PMID:2989830

  11. Upregulation of 5-Hydroxytryptamine Receptor Signaling in Coronary Arteries after Organ Culture

    PubMed Central

    Rao, Fang; Xue, Yu-Mei; Zhou, Zhi-Ling; Liu, Xiao-Ying; Shan, Zhi-Xin; Li, Xiao-Hong; Lin, Qiu-Xiong; Wu, Shu-Lin; Yu, Xi-Yong

    2014-01-01

    Background 5-Hydroxytryptamine (5-HT) is a powerful constrictor of coronary arteries and is considered to be involved in the pathophysiological mechanisms of coronary-artery spasm. However, the mechanism of enhancement of coronary-artery constriction to 5-HT during the development of coronary artery disease remains to be elucidated. Organ culture of intact blood-vessel segments has been suggested as a model for the phenotypic changes of smooth muscle cells in cardiovascular disease. Methodology/Principal Findings We wished to characterize 5-HT receptor-induced vasoconstriction and quantify expression of 5-HT receptor signaling in cultured rat coronary arteries. Cumulative application of 5-HT produced a concentration-dependent vasoconstriction in fresh and 24 h-cultured rat coronary arteries without endothelia. 5-HT induced greater constriction in cultured coronary arteries than in fresh coronary arteries. U46619- and CaCl2-induced constriction in the two groups was comparable. 5-HT stimulates the 5-HT2A receptor and cascade of phospholipase C to induce coronary vasoconstriction. Calcium influx through L-type calcium channels and non-L-type calcium channels contributed to the coronary-artery constrictions induced by 5-HT. The contractions mediated by non-L-type calcium channels were significantly enhanced in cultured coronary arteries compared with fresh coronary arteries. The vasoconstriction induced by thapsigargin was also augmented in cultured coronary arteries. The decrease in Orai1 expression significantly inhibited 5-HT-evoked entry of Ca2+ in coronary artery cells. Expression of the 5-HT2A receptor, Orai1 and STIM1 were augmented in cultured coronary arteries compared with fresh coronary arteries. Conclusions An increased contraction in response to 5-HT was mediated by the upregulation of 5-HT2A receptors and downstream signaling in cultured coronary arteries. PMID:25202989

  12. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    PubMed Central

    Nakayama, Hiroto; Umeda, Sumiyo; Nibuya, Masashi; Terao, Takeshi; Nisijima, Koichi; Nomura, Soichiro

    2014-01-01

    We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists. PMID:24627634

  13. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  14. Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo

    PubMed Central

    Davis, Scott C.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Sexton, Kristian J.; Gunn, Jason R.; Deharvengt, Sophie J.; Hasan, Tayyaba; Pogue, Brian W.

    2013-01-01

    The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model to estimate the density of receptors available for binding in the tissue. Applying this approach to mice with deep-seated gliomas that overexpress the EGF receptor produced an estimate of available receptor density of 2.3 ± 0.5 nM (n = 5), consistent with values estimated in comparative invasive imaging and ex vivo studies. PMID:23671066

  15. Imaging of hepatic low density lipoprotein receptors by radionuclide scintiscanning in vivo.

    PubMed

    Huettinger, M; Corbett, J R; Schneider, W J; Willerson, J T; Brown, M S; Goldstein, J L

    1984-12-01

    The low density lipoprotein (LDL) receptor mediates the cellular uptake of plasma lipoproteins that are derived from very low density lipoproteins (VLDL). Most of the functional LDL receptors in the body are located in the liver. Here, we describe a radionuclide scintiscanning technique that permits the measurement of LDL receptors in the livers of intact rabbits. 123I-labeled VLDL were administered intravenously, and scintigraphic images of the liver and heart were obtained at intervals thereafter. In seven normal rabbits, radioactivity in the liver increased progressively between 1 and 20 min after injection, while radioactivity in the heart (reflecting that in plasma) decreased concomitantly. In Watanabe-heritable hyperlipidemic rabbits, which lack LDL receptors on a genetic basis, there was little uptake of 123I-labeled VLDL into the liver and little decrease in cardiac radioactivity during this interval. These findings demonstrate that the LDL receptor is necessary for the hepatic uptake of VLDL-derived lipoproteins in the rabbit. Two conditions that diminish hepatic LDL receptor activity, cholesterol-feeding and prolonged fasting, also reduced the uptake of 123I-labeled VLDL in the liver as measured by scintiscanning. The data suggest that radionuclide scintiscanning can be used as a noninvasive method to quantify the number of LDL receptors expressed in the liver in vivo. PMID:6594702

  16. Interaction of the apolipoprotein E receptors low density lipoprotein receptor-related protein and sorLA/LR11.

    PubMed

    Spoelgen, R; Adams, K W; Koker, M; Thomas, A V; Andersen, O M; Hallett, P J; Bercury, K K; Joyner, D F; Deng, M; Stoothoff, W H; Strickland, D K; Willnow, T E; Hyman, B T

    2009-02-18

    In this study, we examined protein-protein interactions between two neuronal receptors, low density lipoprotein receptor-related protein (LRP) and sorLA/LR11, and found that these receptors interact, as indicated by three independent lines of evidence: co-immunoprecipitation experiments on mouse brain extracts and mouse neuronal cells, surface plasmon resonance analysis with purified human LRP and sorLA, and fluorescence lifetime imaging microscopy (FLIM) on rat primary cortical neurons. Immunocytochemistry experiments revealed widespread co-localization of LRP and sorLA within perinuclear compartments of rat primary neurons, while FLIM analysis showed that LRP-sorLA interactions take place within a subset of these compartments. PMID:19047013

  17. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    SciTech Connect

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-06-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)) and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms.

  18. Evidence that receptors mediating central synaptic potentials extend beyond the postsynaptic density.

    PubMed Central

    Faber, D S; Funch, P G; Korn, H

    1985-01-01

    Physiological recordings and computer simulations of unitary inhibitory postsynaptic potentials in the Mauthner cell of the goldfish central nervous system have been used to estimate the expected size of the postsynaptic receptor matrix at individual junctions. Simultaneous pre- and postsynaptic recordings were used to determine the kinetic parameters of the quantal responses under normal conditions and in the presence of strychnine, a competitive antagonist of glycine, which is the putative transmitter at these synapses. Calculations indicate that if the postsynaptic density, which has a radius of 0.1 micron, were to accommodate the population of channels estimated to be opened during a quantal response, the glycine binding site density in that region would be unrealistically high. Computer simulation of the quantal responses included transmitter diffusion, transmitter-receptor interactions, and channel activation under conditions including both normal and lowered binding site densities, the latter corresponding to the experimental data obtained with strychnine. The data indicate that the synaptic receptors involved in generating unitary responses are widely distributed to include regions located outside the junctional area, which directly faces the presynaptic release sites. We further suggest that the receptor matrix is surrounded by a restricted diffusional space; this geometrical organization may underlie the finding that response rise times are relatively independent of receptor binding site densities. PMID:2582417

  19. Density functional theory and conductivity studies of boron-based anion receptors

    SciTech Connect

    Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan

    2015-07-10

    Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F for boron-site binding, and specific solvent effects must be considered when predicting its F affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F and organic solvent molecules. After accounting for specific solvent effects, however, its net F affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F ions.

  20. Density functional theory and conductivity studies of boron-based anion receptors

    DOE PAGESBeta

    Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan

    2015-07-10

    Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F– for boron-site binding, and specific solvent effects must be considered when predicting its F– affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F– and organic solvent molecules. After accounting for specific solvent effects, however, its net F– affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F– ions.« less

  1. Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET.

    PubMed

    Olsson, Hans; Halldin, Christer; Farde, Lars

    2004-06-01

    Dopaminergic neurotransmission in extrastriatal regions may play a crucial role in the pathophysiology and treatment of neuropsychiatric disorders. The high-affinity radioligands [(11)C]FLB 457, [(123)I]epidepride, and [(18)F]fallypride are now used in clinical studies to measure these low-density receptor populations in vivo. However, a single determination of the regional binding potential (BP) does not differentiate receptor density (B(max)) from the apparent affinity (K(D)). In this positron emission tomography (PET) study, we measured extrastriatal dopamine D2 receptor density (B(max)) and apparent affinity (K(D)) in 10 healthy subjects using an in vivo saturation approach. Each subject participated in two to three PET measurements with different specific radioactivity of [(11)C]FLB 457. The commonly used simplified reference tissue model (SRTM) was used in a comparison of BP values with the B(max) values obtained from the saturation analysis. The calculated regional receptor density values were of the same magnitude (0.33-1.68 nM) and showed the same rank order as reported from postmortem studies, that is, in descending order thalamus, lateral temporal cortex, anterior cinguli, and frontal cortex. The affinity ranged from 0.27 to 0.43 nM, that is, approximately 10-20 times the value found in vitro (20 pM). The area under the cerebellar time activity curve (TAC) was slightly lower (11 +/- 8%, mean +/- SD, P = 0.004, n = 10) after injection of low as compared with high specific radioactivity, indicating sensitivity to the minute density of dopamine D2 receptors in the this region. The results of the present study support that dopamine D2 receptor density and affinity can be differentiated in low-density regions using a saturation approach. There was a significant (P < 0.001) correlation between the binding potential calculated with SRTM and the receptor density (B(max)), which supports the use of BP in clinical studies where differentiation of B(max) and K

  2. Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2015-01-01

    In Parkinson's disease (PD) and l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs), overactivity of brain glutamate neurotransmission is documented and antiglutamatergic drugs decrease LID. Serotonin (5-HT) receptors and transporter (SERT) are also implicated in LID and we hypothesize that antiglutamatergic drugs can also regulate brain serotoninergic activity. Our aim was to investigate the long-term effect of the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) with L-DOPA on basal ganglia SERT, 5-HT(1A) and 5-HT(2A) receptor levels in monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP monkeys were treated for one month with L-DOPA and developed LID while those treated with L-DOPA and MPEP (10 mg/kg) developed significantly less LID. Normal controls and saline-treated MPTP monkeys were included for biochemical analysis. The MPTP lesion and experimental treatments left unchanged striatal 5-HT concentrations. MPTP lesion induced an increase of striatal 5-HIAA concentrations similar in all MPTP monkeys as compared to controls. [(3)H]-8-OH-DPAT and [(3)H]-citalopram specific binding levels to 5-HT(1A) receptors and SERT respectively remained unchanged in the striatum and globus pallidus of all MPTP monkeys compared to controls and no difference was observed between groups of MPTP monkeys. [(3)H]-ketanserin specific binding to striatal and pallidal 5-HT2A receptors was increased in L-DOPA-treated MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys and no difference between the latter groups was observed; dyskinesia scores correlated positively with this binding. In conclusion, reduction of development of LID with MPEP was associated with lower striatal and pallidal 5-HT2A receptors showing that glutamate activity also affects serotoninergic markers. PMID:25046277

  3. Evaluation of the serotonin receptor blockers ketanserin and methiothepin on the pulmonary hypertensive responses of broilers to intravenously infused serotonin.

    PubMed

    Chapman, M E; Wideman, R F

    2006-04-01

    The pathogenesis of pulmonary hypertension remains incompletely understood. Many factors have been implicated; however, there has been great interest in the potent pulmonary vasoconstrictor serotonin (5-HT) due to episodes of primary pulmonary hypertension in humans triggered by serotoninergic appetite-suppressant drugs. Pulmonary hypertensive patients have elevated blood 5-HT levels and pulmonary vasoconstriction induced by 5-HT is believed to be mediated through 5-HT1B/1D and 5-HT2A receptors that are expressed by pulmonary smooth muscle cells. The vascular remodeling associated with pulmonary hypertension also appears to require the serotonin transporter. We investigated the roles of 5-HT receptor blockers on the development of pulmonary hypertension induced by infusing 5-HT i.v. in broilers. For this purpose, we treated broilers with the selective 5-HT2A receptor antagonist ketanserin (5 mg/ kg of BW) or with the nonselective 5-HT1/2 receptor antagonist methiothepin (3 mg/kg of BW). Receptor blockade was followed by infusion of 5-HT while recording pulmonary arterial pressure and pulmonary arterial blood flow. The results demonstrate that methiothepin, but not ketanserin, eliminated the 5-HT-induced pulmonary hypertensive responses in broilers. The 5-HT2A receptor does not, therefore, appear to play a role in the 5-HT-induced pulmonary hypertensive responses in broilers. Methiothepin did not inhibit pulmonary vascular contractility per se, because the pulmonary hypertensive response to the thromboxane A2 mimetic U44069 remained intact in methiothepin-treated broilers. Methiothepin will be a useful tool for evaluating the role of 5-HT in the pathogenesis of pulmonary hypertension syndrome (ascites) as well as the onset of pulmonary hypertension triggered by inflammatory stimuli such as bacterial lipolysaccharide. PMID:16615363

  4. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling.

    PubMed

    Lam, H R; Plenge, P; Jørgensen, O S

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, and subcellular levels. This study investigates the effects of two types of white spirit on 5-hydroxytryptamine (5-HT) transporters (5-HTT), 5-HT(2A) and 5-HT(4) receptor expression in forebrain, and on neural cell adhesion molecule (NCAM) and 25-kDa synaptosomal associated protein (SNAP-25) concentrations when applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days/week for 3 weeks. The 5-HTT B(max) and K(d) were not affected. Both types of white spirit at 800 ppm decreased B(max) for the 5-HT(2A) receptor. The aromatic type decreased the K(d) of the 5-HT(2A) and 5-HT(4) receptors at 800 ppm. Aromatic white spirit did not affect NCAM or SNAP-25 concentrations or NCAM/SNAP-25 ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate that inhalation exposure to high concentrations of white spirit may be neurotoxic to rats, especially the aromatic white spirit type. PMID:11792528

  5. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release.

    PubMed

    Pehek, E A; Hernan, A E

    2015-04-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex (PFC) is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a "long-loop" feedback system from the PFC to the ventral tegmental area (VTA) and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA of the rat. Infusions of a combination of a N-methyl-d-aspartic acid (NMDA) (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-dimethoxy-4-iodoamphetamine] (2.5mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  6. SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients.

    PubMed

    Silver, Henry; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Goldin, Vladimir; Weinreb, Orly

    2011-06-01

    Clinical studies have shown that negative symptoms of schizophrenia unresponsive to antipsychotic given alone can improve after augmentation with SSRI antidepressant. Laboratory investigations into the mechanism of this synergism showed that co-administration of SSRI and antipsychotic produces changes in GABA(A) receptor and related systems, which differ from the effects of each drug alone. To examine the clinical relevance of these findings, the current study examined the effects of SSRI augmentation treatment on GABA(A) receptor and related systems in schizophrenia patients. Schizophrenia patients with high levels of negative symptoms unresponsive to antipsychotic treatment received add-on fluvoxamine (100 mg/d). Blood was taken before and 1, 3 and 6 wk after adding fluvoxamine and peripheral mononuclear cells (PMC) isolated. RNA encoding for GABA(A)β3, 5-HT2A, and 5-HT7 receptors, PKCβ2, and brain-derived neurotrophic factor (BDNF) was assayed with real-time RT-PCR. Plasma BDNF protein was assayed using ELISA. Clinical symptoms were assessed with validated rating scales. We found significant increase in mRNA encoding for GABA(A)β3 and 5-HT2A, 5-HT7 receptors and BDNF and a reduction in PKCβ2 mRNA. Plasma BDNF protein concentrations were increased. There were significant correlations among the genes. Clinical symptoms improved significantly. mRNA expression of PKCβ2, 5-HT2A and 5-HT7 showed significant associations with clinical symptoms. Combined SSRI+antipsychotic treatment is associated with changes in GABA(A) receptor and in related signalling systems in patients. These changes may be part of the mechanism of clinically effective drug action and may prove to be biomarkers of pharmacological response. PMID:21208484

  7. Functional balance between T cell chimeric receptor density and tumor associated antigen density: CTL mediated cytolysis and lymphokine production.

    PubMed

    Weijtens, M E; Hart, E H; Bolhuis, R L

    2000-01-01

    Genetically engineered expression of tumor-specific single chain antibody chimeric receptors (ch-Rec) on human T lymphocytes endow these cells with the parental monoclonal antibody (mAb) dictated tumor specificity and may be useful for clinical immuno-genetherapy. Therefore it was of importance to assess how the densities of tumor-specific receptors and tumor associated antigens (TAA), respectively, affect primary human T lymphocyte functions in relation to target cell susceptibilities to lysis. We therefore studied the functional balance between ch-Rec densities on human T lymphocytes and TAA on tumor cells. The gene construct encoding a ch-Rec derived from (1) a renal carcinoma cell (RCC) specific mouse mAb (G250), and (2) the human signal transducing Fc(epsilon)RI gamma-chain was used. To obtain ch-RecHIGH-POS and ch-RecLOW-POS T lymphocytes, two distinct retroviral vectors were used to introduce the gene constructs into primary human T lymphocytes. Levels of ch-Rec-redirected T lymphocyte mediated tumor cell lysis, as well as lymphokine production were determined using RCC lines as target/stimulator cells, which express either no or increasing densities of the TAA. A functional and dynamic balance between ch-Rec densities on cytotoxic T lymphocytes (CTLs) on the one hand and TAA densities on RCCs on the other, was found. In short, ch-RecHIGH-POS CTLs are triggered by TAAHIGH-POS as well as TAALOW-POS RCCs to lyse tumor cells and produce (IFN-gamma and TNF-alpha) lymphokine. In contrast, ch-RecLOW-POS T lymphocytes are only triggered for cytolysis and lymphokine production by relatively TAAHIGH-POS RCCs. In conclusion, (1) the activation of T lymphocyte responses is co-determined by the expression levels of the ch-Rec on T lymphocytes and the TAA on tumor cells and (2) at relatively high T lymphocyte ch-Rec expression levels the CTLs lyse tumor cells with a wide range of TAA densities. Gene Therapy (2000) 7, 35-42. PMID:10680014

  8. Subsynaptic AMPA Receptor Distribution Is Acutely Regulated by Actin-Driven Reorganization of the Postsynaptic Density

    PubMed Central

    Kerr, Justin M.; Blanpied, Thomas A.

    2012-01-01

    AMPA receptors (AMPARs) mediate synaptic transmission and plasticity during learning, development, and disease. Mechanisms determining subsynaptic receptor position are poorly understood but are key determinants of quantal size. We used a series of live-cell, high-resolution imaging approaches to measure protein organization within single postsynaptic densities in rat hippocampal neurons. By photobleaching receptors in synapse subdomains, we found that most AMPARs do not freely diffuse within the synapse, indicating they are embedded in a matrix that determines their subsynaptic position. However, time lapse analysis revealed that synaptic AMPARs are continuously repositioned in concert with plasticity of this scaffold matrix rather than simply by free diffusion. Using a fluorescence correlation analysis, we found that across the lateral extent of single PSDs, component proteins were differentially distributed, and this distribution was continually adjusted by actin treadmilling. The C-terminal PDZ ligand of GluA1 did not regulate its mobility or distribution in the synapse. However, glutamate receptor activation promoted subsynaptic mobility. Strikingly, subsynaptic immobility of both AMPARs and scaffold molecules remained essentially intact even after loss of actin filaments. We conclude that receptors are actively repositioned at the synapse by treadmilling of the actin cytoskeleton, an influence which is transmitted only indirectly to receptors via the pliable and surprisingly dynamic internal structure of the PSD. PMID:22238102

  9. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density

    PubMed Central

    Lee, Kit M; Danuser, Renzo; Stein, Jens V; Graham, Delyth; Nibbs, Robert JB; Graham, Gerard J

    2014-01-01

    Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine-scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC-chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro-lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2-deficient mice and reduced in CCR2-deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro-lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels. PMID:25271254

  10. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.

    PubMed

    Kornau, H C; Schenker, L T; Kennedy, M B; Seeburg, P H

    1995-09-22

    The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses. PMID:7569905

  11. The low density lipoprotein receptor-related protein (LRP) 1 and its function in lung diseases.

    PubMed

    Wujak, L; Markart, P; Wygrecka, M

    2016-07-01

    The low density lipoprotein receptor-related protein (LRP) 1 is a ubiquitously expressed, versatile cell surface transmembrane receptor involved in embryonic development and adult tissue homeostasis. LRP1 binds and endocytoses a broad spectrum of over 40 ligands identified thus far, including lipoproteins, extracellular matrix proteins, proteases and protease/inhibitor complexes and growth factors. Interactions with other membrane receptors and intracellular adaptors/scaffolding proteins allow LRP1 to modulate cell migration, survival, proliferation and (trans) differentiation. Because LRP1 displays a wide-range of interactions and activities, its expression and function is temporally and spatially tightly controlled. It is not, therefore, surprising that deregulation of LRP1 production and/or activity is observed in several diseases. In this review, we will systematically examine the evidence for the role of LRP1 in human pathologies placing special emphasis on LRP1-mediated pathogenesis of the lung. PMID:26926950

  12. Content of low density lipoprotein receptors in breast cancer tissue related to survival of patients.

    PubMed Central

    Rudling, M J; Ståhle, L; Peterson, C O; Skoog, L

    1986-01-01

    The content of low density lipoprotein (LDL) receptors in tissue from primary breast cancers was determined and its prognostic information compared with that of variables of established prognostic importance. Frozen tumour specimens were selected, and tissue from 72 patients (32 of whom had died) were studied. The LDL receptor content showed an inverse correlation with the survival time. Analysis by a multivariate statistical method showed that the presence of axillary metastasis, content of receptors for oestrogen and LDL, diameter of the tumour, and DNA pattern were all of prognostic value with regard to patient survival. Improved methods of predicting survival time in patients with breast cancer may be of value in the choice of treatment for individual patients. PMID:3081176

  13. Distribution and density of substance P receptors in the feline gastrointestinal tract using autoradiography

    SciTech Connect

    Rothstein, R.D.; Johnson, E.; Ouyang, A. )

    1991-06-01

    Autoradiography was used to localize and quantify substance P receptors in the feline gastrointestinal tract. The specific binding of {sup 125}I-Bolton Hunter substance P was determined in the esophagus, lower esophageal sphincter, antrum, pylorus, duodenum, jejunum, ileum, ileocecal sphincter, and colon. Competitive binding studies indicated that substance P binding sites or NK-1 receptor sites were demonstrated. The concentration of NK-1 receptors was greatest in the distal half of the gastrointestinal tract, with the highest concentrations in the proximal colon. The circular muscle layer contained the greatest amount of substance P binding. The location and density of binding sites for substance P may be important in understanding the relative importance of both the pharmacological responses to this neuropeptide and the immunohistochemical evidence of the peptide at different sites in the intestine.

  14. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy.

    PubMed

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2016-09-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  15. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation. PMID:8663249

  16. Apolipoprotein E on Hepatitis C Virion Facilitates Infection through Interaction with Low Density Lipoprotein Receptor

    PubMed Central

    Owen, David M.; Huang, Hua; Ye, Jin; Gale, Michael

    2009-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. HCV associates with host apolipoproteins and enters hepatocytes through complex processes involving some combination of CD81, claudin-I, occludin, and scavenger receptor BI. Here we show that infectious HCV resembles very low density lipoprotein (VLDL) and that entry involves co-receptor function of the low density lipoprotein receptor (LDL-R). Blocking experiments demonstrate that β-VLDL itself or anti-apolipoprotein E (apoE) antibody can block HCV entry. Knockdown of the LDL-R by treatment with 25-hydroxycholesterol or siRNA ablated ligand uptake and reduced HCV infection of cells, whereas infection was rescued upon cell ectopic LDL-R expression. Analyses of gradient-fractionated HCV demonstrate that apoE is associated with HCV virions exhibiting peak infectivity and dependence upon the LDL-R for cell entry. Our results define the LDL-R as a cooperative HCV co-receptor that supports viral entry and infectivity through interaction with apoE ligand present in an infectious HCV/lipoprotein complex comprising the virion. Disruption of HCV/LDL-R interactions by altering lipoprotein metabolism may therefore represent a focus for future therapy. PMID:19751943

  17. Packing Density of the Erythropoietin Receptor Transmembrane Domain Correlates with Amplification of Biological Responses

    SciTech Connect

    Becker, Verena; Sengupta, D; Ketteler, Robin; Ullmann, G. Matthias; Smith, Jeremy C; Klingmuller, Ursula

    2008-10-01

    The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TM dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions.

  18. Autonomous bacterial localization and gene expression based on nearby cell receptor density

    PubMed Central

    Wu, Hsuan-Chen; Tsao, Chen-Yu; Quan, David N; Cheng, Yi; Servinsky, Matthew D; Carter, Karen K; Jee, Kathleen J; Terrell, Jessica L; Zargar, Amin; Rubloff, Gary W; Payne, Gregory F; Valdes, James J; Bentley, William E

    2013-01-01

    Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here. PMID:23340842

  19. In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy.

    PubMed Central

    Savic, I; Pauli, S; Thorell, J O; Blomqvist, G

    1994-01-01

    Electrophysiological data suggest that an abnormal oscillatory pattern of discharge in cortical and thalamic neurons may be the major mechanism underlying primary generalised epilepsy. No neurochemical or anatomical substrate for this theory has hitherto been demonstrated in humans and the pathophysiology of primary generalised epilepsy remains unknown. By means of PET and the benzodiazepine (BZ) ligand [11C]flumazenil it has been previously shown that the BZ receptor density is reduced in the epileptic foci of patients with partial epilepsy. In the present study the method was further developed and used in a comparative analysis of cortical, cerebellar, and subcortical BZ receptor binding in patients with primary generalised tonic and clonic seizures (n = 8), and healthy controls (n = 8). Patients with generalised seizures had an increased BZ receptor density in the cerebellar nuclei (p = 0.006) and decreased density in the thalamus (p = 0.003). No significant changes were seen in the cerebral and cerebellar cortex or in the basal ganglia. The observed alterations suggest that the gamma-amino-butyric acid (GABA)-BZ system may be affected in the cerebello-thalamocortical loop of patients with generalised epilepsy and indicate possible targets for selective pharmacological treatment. Images PMID:8021664

  20. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative.

    PubMed Central

    Allison, B. A.; Pritchard, P. H.; Levy, J. G.

    1994-01-01

    Plasma lipoproteins, such as low-density lipoprotein (LDL), have been proposed to enhance the delivery of hydrophobic photosensitisers to malignant tissue since tumour cells have been shown to have increased numbers of LDL receptors. We have investigated the role of this receptor in the cellular accumulation of the photosensitiser benzoporphyrin derivative (BPD). We observed that: (1) [14C]BPD-LDL accumulation by LDL receptor-negative fibroblast cell lines was insignificant compared with normal cell lines; (2) there was no evidence that BPD dissociated from LDL during incubation with the cells; and (3) chemical acetylation of LDL markedly decreased the uptake of [14C]BPD-LDL. We conclude, therefore, that virtually all of the photosensitiser accumulated by the cells was due to specific binding and internalisation via the LDL receptor. Subsequent in vivo studies in M-1 (methylcholanthrene-induced rhabdomyosarcoma) tumour-bearing DBA/2J mice showed that tumour accumulation of BPD associated with native LDL was significantly (P < 0.01) enhanced over that of acetyl-LDL-associated BPD. These results indicate that the LDL receptor is responsible for the accumulation of LDL-associated BPD both in vitro and in vivo. Thus, utilisation of this delivery system may provide for improvements in photodynamic therapy in clinical practice. PMID:8180011

  1. Compartmentation and turnover of the low density lipoprotein receptor in skin fibroblasts.

    PubMed

    Hare, J F

    1990-12-15

    The low density lipoprotein receptor (LDLR) was immunoprecipitated from [35S]methionine-labeled skin fibroblasts derivatized at 4 or 18 degrees C with an impermeant biotinylating reagent. Separation of derivatized and underivatized receptor from immunoprecipitates by selective binding to streptavidin-agarose allowed assessment of receptor protein cellular compartmentation and rates of intercompartmental transfer. At both 4 and 18 degrees C the amount of LDLR that is derivatized in cells labeled to near steady state saturates after 1-2 h of reaction at, respectively, 47 and 70% of total immunoprecipitable receptor protein. On the basis of temperature titration experiments, protein exposed only to the cell surface reacts at 4 degrees C; raising the temperature of biotinylation to 18 degrees C provides access to an additional pool of receptor protein. Remaining LDLR is derivatized at 37 degrees C. LDLR unreactive at 18 degrees C largely resides in membrane compartment(s) devoid of plasma membrane on the basis of its fractionation on Percoll gradients. While total cellular LDLR and 4 degrees C-derivatized LDLR labeled to steady state turn over in a first order manner (t1/2 = 12-13 h), the specific activity of pulse-labeled, 4 degrees C-accessible protein peaks after 1-2 h of chase and reaches a reduced level by 3 h of chase. These latter results show that the newly synthesized LDLR is transiently enriched at the cell surface prior to achieving equilibrium distribution between the cell surface and intracellular pools. PMID:2254328

  2. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  3. Olfactory deprivation increases dopamine D2 receptor density in the rat olfactory bulb

    SciTech Connect

    Guthrie, K.M.; Pullara, J.M.; Marshall, J.F.; Leon, M. )

    1991-05-01

    Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. The authors describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.

  4. A discrepancy between platelet alpha 2-receptor density and functional circulatory changes in hypertensives

    SciTech Connect

    Mores, N.; Martire, M.; Pistritto, G.; Cardillo, C.; Folli, G. )

    1990-09-01

    To investigate whether differences exist in peripheral alpha 2-adrenoceptors between normotensive and hypertensive subjects, we determined platelet alpha 2-adrenoceptor density in 10 (7 males) untreated essential hypertensives (mean age of 51.1 years, range of 44-59 years) and in 10 age- and sex-matched normotensive controls. Moreover, in hypertensive patients, we examined the relationship between receptor density and cardiovascular reactivity to mental arithmetic, static handgrip, and bicycle exercise, to verify the hypothesis that alpha 2-adrenoceptors might play a role in modulation of hemodynamic response to sympathetic stimuli. alpha 2-Adrenoceptor density, as calculated by binding of (3H)yohimbine to platelets, was significantly higher in essential hypertensives (314.8 +/- 38.7 fmol/mg) than in normotensive subjects (213.6 +/- 34.7 fmol/mg) (p less than 0.05), whereas receptor affinity was similar in both groups (4.0 +/- 0.5 nM hypertensives, 4.3 +/- 0.5 nM normotensives; p greater than 0.05). Mental arithmetic increased mean arterial pressure (MAP) by 21.5% from basal values and heart rate (HR) by 13.2%. During isometric exercise, MAP increased by 38.1% and HR by 24.7%, while during bicycle ergometry, mean increases in MAP and HR from baseline were of 27.2 and 54.3%, respectively. No correlation was found between platelet alpha 2-adrenoceptor density and percent changes in MAP induced by all tests, or between adrenoceptors and absolute basal and peak MAP values. Our findings suggest that in hypertensive patients, peripheral alpha 2-adrenoceptors are increased with respect to matched normotensives, but these receptors seem not to be involved in the modulation of cardiovascular adaptation to enhanced sympathetic activity.

  5. Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients.

    PubMed

    Tuppurainen, H; Kuikka, J; Viinamäki, H; Husso-Saastamoinen, M; Bergström, K; Tiihonen, J

    2003-04-01

    Several lines of studies have suggested the importance of cortical dopamine (DA) transmission in the pathophysiology of schizophrenia. The putative alteration of striatal D(2) receptor density in schizophrenia has been studied intensely, although extrastriatal DA activity may be more relevant for behavioral symptoms. The aim of this study was to explore extrastriatal D(2/3) density in drug-naive schizophrenic patients. We studied the extrastriatal D(2/3) receptor binding with a novel high-affinity single-photon emission tomography ligand epidepride in seven drug-naive schizophrenic patients and seven matched controls. The symptoms were rated with Positive and Negative Syndrome Scale for Schizophrenia. The findings indicated an extremely low D(2/3) receptor binding among patients in temporal cortex in both hemispheres when compared with controls (effect size 2.0-2.3), and the D(2/3) levels had negative correlations with general psychopathological (r from -0.86 to -0.90) and negative (r from -0.37 to -0.55) schizophrenic symptoms. These results support the previous hypothesis on dysfunction of mesocortical DA function behind the cognitive and negative symptoms in schizophrenia. PMID:12740603

  6. Brain α2-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA

    PubMed Central

    Ribas, Catalina; Miralles, Antonio; Busquets, Xavier; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the molecular and cellular events involved in the up-regulation (and receptor supersensitivity) of brain α2-adrenoceptors as a result of chronic depletion of noradrenaline (and other monoamines) by reserpine. Chronic reserpine (0.25 mg kg−1 s.c., every 48 h for 6 – 14 days) increased significantly the density (Bmax values) of cortical α2-adrenoceptor agonist sites (34 – 48% for [3H]-UK14304, 22 – 32% for [3H]-clonidine) but not that of antagonist sites (11 – 18% for [3H]-RX821002). Competition of [3H]-RX821002 binding by (−)-adrenaline further indicated that chronic reserpine was associated with up-regulation of the high-affinity state of α2-adrenoceptors. In cortical membranes of reserpine-treated rats (0.25 mg kg−1 s.c., every 48 h for 20 days), the immunoreactivities of various G proteins (Gαi1/2, Gαi3, Gαo and Gαs) were increased (25 – 34%). Because the high-affinity conformation of the α2-adrenoceptor is most probably related to the complex with Gαi2 proteins, these results suggested an increase in signal transduction through α2-adrenoceptors (and other monoamine receptors) induced by chronic reserpine. After α2-adrenoceptor alkylation, the analysis of receptor recovery (Bmax for [3H]-UK14304) indicated that the increased density of cortical α2-adrenoceptors in reserpine-treated rats was probably due to a higher appearance rate constant of the receptor (Δr=57%) and not to a decreased disappearance rate constant (Δk=7%). Northern- and dot-blot analyses of RNA extracted from the cerebral cortex of saline- and reserpine-treated rats (0.25 mg kg−1, s.c., every 48 h for 20 days) revealed that reserpine markedly increased the expression of α2a-adrenoceptor mRNA in the brain (125%). This transcriptional activation of the receptor gene expression appears to be the cellular mechanism by which reserpine induces up-regulation in the density of brain α2-adrenoceptors

  7. Colloidal gold--low density lipoprotein conjugates as membrane receptor probes.

    PubMed Central

    Handley, D A; Arbeeny, C M; Witte, L D; Chien, S

    1981-01-01

    We have developed a method for conjugating low density lipoproteins (LDL) with colloidal gold. Conjugation, complete after 1 min, occurs by electrostatic adsorption of the LDL to the negatively charged gold particle. Each conjugate consists of approximately eight biologically active LDL molecules clustered around a central 19-nm gold granule. Acidic (pH 4), alkaline (pH 9), or high ionic (600 milliosmolar NaCl) environments do not dissociate the conjugate. Colloidal gold is an electron-dense, nondegradable marker that is easily identified within the cell and serves as a valuable probe for studying receptor binding and endocytosis. By using a modified method of ruthenium red staining, the LDL molecules of the conjugate can be directly visualized when they are bound to the cell surface receptor. Receptor binding (4 degrees C) of the conjugate by cultured human fibroblasts reveals that the gold granule is positioned 18-21 nm from the coated pit region of the membrane. This distance, similar to the diameter of LDL, suggests concomitant internalization of the receptor during vesicular endocytosis and early lysosomal incorporation (10 min at 37 degrees C). Continued internalization (30-60 min at 37 degrees C) results in the formation of free pools of gold within the lysosome. Images PMID:6264440

  8. The myeloperoxidase product hypochlorous acid generates irreversible high-density lipoprotein receptor inhibitors

    PubMed Central

    Binder, Veronika; Ljubojevic, Senka; Haybaeck, Johannes; Holzer, Michael; El-Gamal, Dalia; Schicho, Rudolf; Pieske, Burkert; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    Objective Elevated levels of advanced oxidation protein products (AOPPs) have been described in several chronic inflammatory diseases, like chronic renal insufficiency, rheumatoid arthritis and atherosclerosis. Recent findings revealed that AOPPs are inhibitors of the major high-density lipoprotein (HDL) receptor, scavenger receptor class B, type 1 (SR-BI). Here we investigated what oxidation induced structural alterations convert plasma albumin into an HDL-receptor inhibitor. Approach and Results Exposure of albumin to the physiological oxidant, hypochlorous acid, generated high affinity SR-BI ligands. Protection of albumin lysine-residues prior exposure to hypochlorous acid as well as regeneration of N-chloramines after oxidation of albumin completely prevented binding of oxidized albumin to SR-BI, indicating that modification of albumin lysine-residues is required to generate SR-BI ligands. Of particular interest, N-chloramines within oxidized albumin promoted irreversible binding to SR-BI, resulting in permanent receptor blockade. We observed that the SR-BI inhibitory activity of albumin isolated from chronic kidney disease patients correlated with the content of the myeloperoxidase-specific oxidation product 3-chlorotyrosine and was associated with alterations in the composition of HDL. Conclusion Given that several potential atheroprotective activities of HDL are mediated by SR-BI, the present results raise the possibility that oxidized plasma albumin, through permanent SR-BI blockade, contributes to the pathophysiology of cardiovascular disease. PMID:23493288

  9. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    PubMed Central

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2014-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those observed in human schizophrenia. We show in th(tk-)/th(tk-) mice that hypoplastic development of DA systems induces serotonergic hyperinnervation of midbrain DA nuclei, demonstrating the co-developmental relationship between DA and 5-HT systems. Behaviorally, th(tk-)/th(tk-) mice displayed impaired sensory gaiting and reduced social interactions correctable by atypical antipsychotics (AAPD) and a specific 5-HT2A antagonist, M100907. The adult onset of neurochemical and behavioral deficits was consistent with the postpubertal time course of psychotic symptoms in schizophrenia and related disorders. The spectrum of abnormalities observed in th(tk-)/th(tk-) mice and the ability of AAPD to correct the behavioral deficits consistent with human psychosis suggests that midbrain 5-HT2A-controlling systems are important loci of therapeutic action. These results may provide further insight into the complex multi-neurotransmitter etiology of neurodevelopmental diseases such autism, bipolar disorder, Asperger’s Syndrome and schizophrenia. PMID:19570652

  10. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  11. Molecular studies of pH dependent ligand interactions with the low-density lipoprotein receptor*

    PubMed Central

    Yamamoto, Taichi; Chen, Hsuan-Chih; Guigard, Emmanuel; Kay, Cyril M.; Ryan, Robert O.

    2009-01-01

    Ligand release from the low-density lipoprotein receptor (LDLR) has been postulated to involve a “histidine switch” induced intra-molecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescent-tagged variant apolipoprotein E-N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp null apoE3-NT. In binding experiments with wild type (WT) sLDLR, FRET-dependent AEDANS fluorescence decreased as the pH was lowered. To investigate the role of His190, His562 and His586 in sLDLR on pH dependent ligand binding and discharge, site directed mutagenesis studies were performed. Compared to WT sLDLR, triple His→Ala mutant sLDLR displayed attenuated pH-dependent ligand binding and decreased ligand release as a function of low pH. When these His residues were substituted for Lys, whose positively charged side chain does not ionize over this pH range, ligand binding was nearly abolished at all pH values. When sequential His to Lys mutants were examined, evidence obtained suggested that His562 and His586 function cooperatively. Whereas the sedimentation coefficient for WT sLDLR increased upon lowering the pH from 7 to 5, no such change occurred in the case of the triple Lys mutant receptor or a His562Lys / His586Lys double mutant receptor. The data support the existence of a cryptic, histidine side chain ionization-dependent alternative ligand that modulates ligand discharge via conformational reorganization. PMID:18847225

  12. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyan; Zhang, Sulin

    2010-01-01

    We elucidate, from thermodynamic arguments, the governing factors of receptor-mediated endocytosis of nanoparticles (NPs). We show that the endocytic energetics specifies a minimal particle size and a minimal ligand density below which endocytosis is not possible. Due to the entropic penalty involved in ligand-receptor binding, endocytosis may occur with a large fraction of ligands unbound with receptors. Our analyses suggest that the endocytic time depends interrelatedly on the particle size and ligand density. There exists an optimal condition at which the endocytic time minimizes. These findings may provide valuable guidance to the rational designs of NP-based biomarkers and anticancer bioagents.

  13. Association of estrogen receptor β and estrogen-related receptor α gene polymorphisms with bone mineral density in postmenopausal women.

    PubMed

    Shoukry, Amira; Shalaby, Sally M; Etewa, Rasha L; Ahmed, Hanan S; Abdelrahman, Hossam M

    2015-07-01

    The aim of the study was to investigate the possible association of AluI and RsaI polymorphisms of estrogen receptor β (ER-β) gene and 23-bp nucleotide repeat polymorphism of estrogen-related receptor α (ERRα) gene with bone mineral density (BMD) in postmenopausal Egyptian women. Two-hundred postmenopausal osteoporotic women as cases and 180 healthy age-matched postmenopausal women as controls were genotyped by PCR fragment length polymorphism for AluI, allele-specific PCR for RsaI, and by sizing of PCR products on agarose gels for ERRα repeats. sRANKL levels were estimated by ELISA. BMD measurements for spine and femoral neck were performed by dual energy X-ray absorptiometry. A significant difference between women with osteoporosis and controls regarding allele and genotype distributions of AluI G/A (OR 2.37, 95 % CI 1.77-3.18 and p < 0.001 for A allele) and ERRα polymorphisms (for the two repeats allele OR 2.08, 95 % CI 1.09-4.00, and p = 0.02). Osteoporotic women with the AluI AA + GA genotype or with the EERα 2,2 genotype had significantly lower BMD than did women with the other genotypes. Moreover, there was a significant increase of the mean values of sRANKL in carriers of AluI A, RsaI A alleles and in patients having 2,2 genotypes of ERRα (p < 0.001, p < 0.001, p = 0.02, respectively). We demonstrated an association of ER-β AluI G/A and ERRα 23-repeats polymorphisms with BMD in postmenopausal Egyptian women. A possible effect of ER-β and ERRα polymorphisms on the levels of sRANKL was estimated. PMID:25903400

  14. Serotonin 2A receptors differentially contribute to abuse-related effects of cocaine and cocaine-induced nigrostriatal and mesolimbic dopamine overflow in nonhuman primates.

    PubMed

    Murnane, Kevin S; Winschel, Jake; Schmidt, Karl T; Stewart, LaShaya M; Rose, Samuel J; Cheng, Kejun; Rice, Kenner C; Howell, Leonard L

    2013-08-14

    Two of the most commonly used procedures to study the abuse-related effects of drugs in laboratory animals are intravenous drug self-administration and reinstatement of extinguished behavior previously maintained by drug delivery. Intravenous self-administration is widely accepted to model ongoing drug-taking behavior, whereas reinstatement procedures are accepted to model relapse to drug taking following abstinence. Previous studies indicate that 5-HT2A receptor antagonists attenuate the reinstatement of cocaine-maintained behavior but not cocaine self-administration in rodents. Although the abuse-related effects of cocaine have been closely linked to brain dopamine systems, no previous study has determined whether this dissociation is related to differential regulation of dopamine neurotransmission. To elucidate the neuropharmacological and neuroanatomical mechanisms underlying this phenomenon, we evaluated the effects of the selective 5-HT2A receptor antagonist M100907 on intravenous cocaine self-administration and drug- and cue-primed reinstatement in rhesus macaques (Macaca mulatta). In separate subjects, we evaluated the role of 5-HT2A receptors in cocaine-induced dopamine overflow in the nucleus accumbens (n = 4) and the caudate nucleus (n = 5) using in vivo microdialysis. Consistent with previous studies, M100907 (0.3 mg/kg, i.m.) significantly attenuated drug- and cue-induced reinstatement but had no significant effects on cocaine self-administration across a range of maintenance doses. Importantly, M100907 (0.3 mg/kg, i.m.) attenuated cocaine-induced (1.0 mg/kg, i.v.) dopamine overflow in the caudate nucleus but not in the nucleus accumbens. These data suggest that important abuse-related effects of cocaine are mediated by distinct striatal dopamine projection pathways. PMID:23946394

  15. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

    PubMed Central

    Brunner, Patrick M.; Heier, Patricia C.; Mihaly-Bison, Judit; Priglinger, Ute; Binder, Bernd R.

    2011-01-01

    VEGF165, the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro. PMID:21304107

  16. Purification and Characterization of a Bovine Acetyl Low Density Lipoprotein Receptor

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Reddy, Pranhitha; Kishimoto, Chiharu; Krieger, Monty

    1988-12-01

    The acetyl low density lipoprotein (LDL) receptor is expressed on macrophages and some endothelial cells and mediates macrophage--foam cell formation in culture. A 220-kDa acetyl LDL binding protein was partially purified from bovine liver membranes and was used to make a specific monoclonal antibody. The 220-kDa protein immunoprecipitated by this antibody retained binding activity, and the antibody was used to detect this protein in cells lining bovine liver sinusoids and on the surface of cultured bovine alveolar macrophages. In the human monocytic cell line THP-1, the expression of both acetyl LDL receptor activity and a 220-kDa acetyl LDL binding protein were dramatically induced in parallel after differentiation to a macrophage-like state induced by phorbol ester. The ligand specificity, tissue and cell-type specificity, and coinduction data indicated that this 220-kDa cell-surface binding protein is probably a receptor that mediates acetyl LDL endocytosis. The 220-kDa protein, which was purified 238,000-fold from bovine lung membranes to near homogeneity using monoclonal antibody affinity chromatography, is a trimer of 77-kDa subunits that contain asparagine-linked carbohydrate chains.

  17. Autoantibodies to the low density lipoprotein receptor in a subject affected by severe hypercholesterolemia.

    PubMed Central

    Corsini, A; Roma, P; Sommariva, D; Fumagalli, R; Catapano, A L

    1986-01-01

    We studied a 32-yr-old man with a benign paraproteinemia (IgA) affected by severe nonfamilial hypercholesterolemia. In vitro experiments demonstrated that lipoprotein-deficient serum (LPDS) from the patient inhibited the binding of low density lipoprotein (LDL) to human skin fibroblasts cultured in vitro (up to 70%) whereas LPDS from controls had no effect. Removal of IgA from the patient's serum by immunoprecipitation with mono-specific antisera abolished the inhibition of LDL binding. IgA isolated from the serum of the patient by affinity chromatography inhibited, in a dose-dependent manner, the binding of LDL to human skin fibroblasts in vitro, thus showing an IgA-mediated effect. Ligand-blotting experiments demonstrated that the paraprotein directly interacts with the LDL receptor, thus inhibiting the binding of the lipoprotein. Treatment of the receptor protein with reducing agents blocked the interaction of the antibody with the LDL receptor. From these data we speculate that this autoantibody may be responsible for the severe nonfamilial hypercholesterolemia of the patient. Images PMID:3760193

  18. Nucleolin Acts as a Scavenger Receptor for Acetylated Low-Density Lipoprotein on Macrophages.

    PubMed

    Miki, Yuichi; Tachibana, Yoshihiro; Ohminato, Yukari; Fujiwara, Yasuyuki

    2015-01-01

    Although macrophage phagocytoses modified low-density lipoprotein (LDL), excessive accumulation of modified LDL induces macrophage foam cell formation, which is a feature of atherosclerotic plaque. Thus, the identification of scavenger receptor for modified LDL will provide better understanding of an atherosclerotic event. We recently showed that nucleolin expressed on macrophages acts as a scavenger receptor for various endogenous discarded products. Here, we investigated whether or not nucleolin is involved in the uptake of acetylated LDL (AcLDL). In contrast to normal LDL, AcLDL directly bound to immobilized nucleolin. AcLDL exhibited a higher affinity for macrophages than normal LDL. This binding of AcLDL was inhibited by anti-nucleolin antibody and antineoplastic guanine-rich oligonucleotide (AGRO), a nucleolin-specific oligonucleotide aptamer. In addition, AcLDL exhibited a higher affinity for HEK cells transfected with nucleolin than those without. Further, intracellular accumulation of AcLDL was also inhibited by anti-nucleolin antibody. The results of this study suggest that nucleolin expressed on macrophages is a receptor for AcLDL. PMID:26328500

  19. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis.

    PubMed

    Shen, Chengyong; Lu, Yisheng; Zhang, Bin; Figueiredo, Dwight; Bean, Jonathan; Jung, Jiung; Wu, Haitao; Barik, Arnab; Yin, Dong-Min; Xiong, Wen-Cheng; Mei, Lin

    2013-12-01

    Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood. PMID:24200689

  20. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice

    SciTech Connect

    Jarvis, M.F.; Williams, M.

    1988-07-01

    Two strains of inbred mice, CBA/J and SWR/J, have been identified which are, respectively, sensitive and insensitive to the behavioral and toxic effects of methylxanthines. Autoradiographic analyses of brain adenosine receptors were conducted with (/sup 3/H)CHA to label adenosine A-1 receptors and (/sup 3/H)NECA, in the presence of 50 nM CPA, to label adenosine A-2 receptors. For both mouse strains, adenosine A-1 receptors were most highly concentrated in the hippocampus and cerebellum whereas adenosine A-2 receptors were selectively localized in the striatum. CBA/J mice displayed a 30% greater density of adenosine A-1 receptors in the hippocampal CA-1 and CA-3 regions and in the cerebellum as compared to the SWR/J mice. The number of A-2 receptors (Bmax) was 40% greater in the striatum and olfactory tubercle of CBA/J as compared to SWR/J mice. No significant regional differences in A-1 or A-2 receptor affinities were observed between these inbred strains of mice. These results indicate that the differential sensitivity to methylxanthines between these mouse strains may reflect a genetically mediated difference in regional adenosine receptor densities.

  1. Aging and long-term caloric restriction regulate neuropeptide Y receptor subtype densities in the rat brain.

    PubMed

    Veyrat-Durebex, Christelle; Quirion, Rémi; Ferland, Guylaine; Dumont, Yvan; Gaudreau, Pierrette

    2013-06-01

    The effects of aging and long-term caloric restriction (LTCR), on the regulation of neuropeptide Y (NPY) Y1, Y2 and Y5 receptors subtypes, was studied in 20-month-old male rats fed ad libitum (AL) or submitted to a 40% caloric restriction for 12 months. [(125)I]GR231118, a Y1 antagonist was used as Y1 receptor radioligand. [(125)I][Leu(31), Pro(34)]PYY, a high affinity agonist of Y1 and Y5 subtypes was used in the absence or presence of 100 nM BIBO3304 (a highly selective Y1 receptor antagonist) to assess the apparent levels of [(125)I][Leu(31), Pro(34)]PYY/BIBO3304 insensitive sites (Y5-like) from [(125)I][Leu(31), Pro(34)]PYY/BIBO3304 sensitive sites (Y1). [(125)I]PYY(3-36) was used to label the Y2 receptor. In the brain of 3-month-old AL rats, the distribution and densities of Y1, Y2 and Y5 receptors were in agreement with previous reports. In the brain of 20AL rats, a decrease of NPY receptor subtype densities in regions having important physiological functions such as the cingulate cortex, hippocampus and dentate gyrus, thalamus and hypothalamus was observed. In contrast, LTCR had multiple effects. It induced specific decreases of Y1-receptor densities in the dentate gyrus, thalamic and hypothalamic nuclei and lateral hypothalamic area and Y2-receptor densities in the suprachiasmatic nucleus of hypothalamus. Moreover, it prevented the age-induced increase in Y1-receptor densities in the ventromedial hypothalamic nucleus and decrease in the mediodorsal thalamic nucleus, and increased Y2-receptor densities in the CA2 subfield of the hippocampus. These results indicate that LTCR not only counteracts some of the deleterious effects of aging on NPY receptor subtype densities but exerts specific effects of its own. The overall impact of the regulation of NPY receptor subtypes in the brain of old calorie-restricted rats may protect the neural circuits involved in pain, emotions, feeding and memory functions. PMID:23410741

  2. Lipopolysaccharide Is Cleared from the Circulation by Hepatocytes via the Low Density Lipoprotein Receptor

    PubMed Central

    Topchiy, Elena; Cirstea, Mihai; Kong, HyeJin Julia; Boyd, John H.; Wang, Yingjin; Russell, James A.; Walley, Keith R.

    2016-01-01

    Sepsis is the leading cause of death in critically ill patients. While decreased Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) function improves clinical outcomes in murine and human sepsis, the mechanisms involved have not been fully elucidated. We tested the hypothesis that lipopolysaccharide (LPS), the major Gram-negative bacteria endotoxin, is cleared from the circulation by hepatocyte Low Density Lipoprotein Receptors (LDLR)—receptors downregulated by PCSK9. We directly visualized LPS uptake and found that LPS is rapidly taken up by hepatocytes into the cell periphery. Over the course of 4 hours LPS is transported towards the cell center. We next found that clearance of injected LPS from the blood was reduced substantially in Ldlr knockout (Ldlr-/-) mice compared to wild type controls and, simultaneously, hepatic uptake of LPS was also reduced in Ldlr-/- mice. Specifically examining the role of hepatocytes, we further found that primary hepatocytes isolated from Ldlr-/- mice had greatly decreased LPS uptake. In the HepG2 immortalized human hepatocyte cell line, LDLR silencing similarly resulted in decreased LPS uptake. PCSK9 treatment reduces LDLR density on hepatocytes and, therefore, was another independent strategy to test our hypothesis. Incubation with PCSK9 reduced LPS uptake by hepatocytes. Taken together, these findings demonstrate that hepatocytes clear LPS from the circulation via the LDLR and PCSK9 regulates LPS clearance from the circulation during sepsis by downregulation of hepatic LDLR. PMID:27171436

  3. Studies of activated GPIIb/IIIa receptors on the luminal surface of adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high density fibrinogen.

    PubMed Central

    Coller, B S; Kutok, J L; Scudder, L E; Galanakis, D K; West, S M; Rudomen, G S; Springer, K T

    1993-01-01

    The accessibility of activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to damaged blood vessels or atherosclerotic plaques is likely to play a crucial role in subsequent platelet recruitment. To define better the factors involved in this process, we developed a functional assay to assess the presence of activated, luminal GPIIb/IIIa receptors, based on their ability to bind erythrocytes containing a high density of covalently coupled RGD-containing peptides (thromboerythrocytes). Platelets readily adhered to wells coated with purified type I rat skin collagen and the adherent platelets bound a dense lawn of thromboerythrocytes. With fibrinogen-coated wells, platelet adhesion increased as the fibrinogen-coating concentration increased, reaching a plateau at about 11 micrograms/ml. Thromboerythrocyte binding to the platelets adherent to fibrinogen showed a paradoxical response, increasing at fibrinogen coating concentrations up to approximately 4-6 micrograms/ml and then dramatically decreasing at higher fibrinogen-coating concentrations. Scanning electron microscopy demonstrated that the morphology of platelets adherent to collagen was similar to that of platelets adherent to low density fibrinogen, with extensive filopodia formation and ruffling. In contrast, platelets adherent to high density fibrinogen showed a bland, flattened appearance. Immunogold staining of GPIIb/IIIa receptors demonstrated concentration of the receptors on the filopodia, and depletion of receptors on the flattened portion of the platelets. Thus, there is a paradoxical loss of accessible, activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to high density fibrinogen. Two factors may contribute to this result: engagement of GPIIb/IIIa receptors with fibrinogen on the abluminal surface leading to the loss of luminal receptors, and loss of luminal filopodia that interact with thromboerythrocytes. These data provide insight into the differences

  4. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  5. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  6. The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation*

    PubMed Central

    Kong, Roy C. K.; Petrie, Emma J.; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C. Y.; Gooley, Paul R.; Bathgate, Ross A. D.

    2013-01-01

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  7. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.

    PubMed

    Kong, Roy C K; Petrie, Emma J; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C Y; Gooley, Paul R; Bathgate, Ross A D

    2013-09-27

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  8. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.

    PubMed

    Wang, Jing; Boriskina, Svetlana V; Wang, Hongyun; Reinhard, Björn M

    2011-08-23

    Filopodia have been hypothesized to act as remote sensors of the cell environment, but many details of the sensor function remain unclear. We investigated the distribution of the epidermal growth factor (EGF) receptor (EGFR) density on filopodia and on the dorsal cell membrane of A431 human epidermoid carcinoma cells using a nanoplasmonic enabled imaging tool. We targeted cell surface EGFR with 40 nm diameter Au nanoparticles (NPs) using a high affinity multivalent labeling strategy and determined relative NP binding affinities spatially resolved through plasmon coupling. Distance-dependent near-field interactions between the labels generated a NP density (ρ)-dependent spectral response that facilitated a spatial mapping of the EGFR density distribution on subcellular length scales in an optical microscope in solution. The measured ρ values were significantly higher on filopodia than on the cellular surface, which is indicative of an enrichment of EGFR on filopodia. A detailed characterization of the spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the findings of the all-optical plasmon coupling studies and provided additional structural details. The NPs exhibited a preferential association with the sides of the filopodia. We calibrated the ρ-dependent spectral response of the Au immunolabels through correlation of optical spectroscopy and SEM. The experimental dependence of the measured plasmon resonance wavelength (λ(res)) of the interacting immunolabels on ρ was well described by the fit λ(res) = 595.0 nm - 46.36 nm exp(-ρ/51.48) for ρ ≤ 476 NPs/μm(2). The performed correlated spectroscopic/SEM studies pave the way toward quantitative immunolabeling studies of EGFR and other important cell surface receptors in an optical microscope. PMID:21761914

  9. Glucocorticoid receptor density correlates with health risk factors and insulin resistance in Caucasian and African American subjects.

    PubMed

    Islam, A; Chen, Y; Poth, M; Smith, Z P; Deuster, P A

    2012-09-01

    Activation of the hypothalamic-pituitary-adrenal axis leads to secretion of cortisol, which binds to peripheral glucocorticoid receptor and mediates a complex series of metabolic and immune effects. Cortisol also binds to receptors in the hypothalamus and pituitary, and inhibits further secretion of adrenocorticotropic hormone thus preventing an excessive response. Excess glucocorticoid effect is seen in Cushings disease, adrenal adenomas/carcinomas and in glucocorticoid resistance. Within such pathology there are health consequences of excessive glucocorticoid action, including obesity, hypertension, and glucose intolerance or diabetes. We hypothesized that increased glucocorticoid receptor in peripheral tissue might mediate an excess glucocorticoid effect in the absence of increased cortisol secretion. The objective of the study was to investigate the relationship between glucocorticoid receptor density in leukocytes and health risk indices relevant to obesity and diabetes in a sample of Caucasian and African American subjects. Comparison of glucocorticoid receptor concentration with subject body mass index, percentage body fat, waist circumference, insulin resistance, plasma cortisol levels, gender, and lipid profiles were conducted. Increased glucocorticoid receptor density significantly correlated with body mass index, percentage body fat, waist circumference, and insulin resistance. No significant correlation was observed for glucocorticoid receptor density with lipid profiles. Furthermore, no significant differences were observed in glucocorticoid receptor density between Caucasian and African American subjects or male and female participants. Our results show that high risk health conditions, such as obesity and type-2 diabetes, may be associated with a form of hypothalamic-pituitary-adrenal axis dysfunction, characterized by localized leukocyte glucocorticoid receptor over-expression. PMID:22851186

  10. Inhibition of transferrin receptor 1 transcription by a cell density response element

    PubMed Central

    2005-01-01

    TfR1 (transferrin receptor 1) mediates the uptake of transferrin-bound iron and thereby plays a critical role in cellular iron metabolism. Its expression is coupled to cell proliferation/differentiation and controlled in response to iron levels and other signals by transcriptional and post-transcriptional mechanisms. It is well established that TfR1 levels decline when cultured cells reach a high density and in the present study we have investigated the underlying mechanisms. Consistent with previous findings, we demonstrate that TfR1 expression is attenuated in a cell-density-dependent manner in human lung cancer H1299 cells and in murine B6 fibroblasts as the result of a marked decrease in mRNA content. This response is not associated with alterations in the RNA-binding activity of iron regulatory proteins that are indicative of a transcriptional mechanism. Reporter assays reveal that the human TfR1 promoters contains sequences mediating cell-density-dependent transcriptional inhibition. Mapping of the human and mouse TfR1 promoters identified a conserved hexa-nucleotide 5′-GAGGGC-3′ motif with notable sequence similarity to a previously described element within the IGF-2 (insulin-like growth factor-2) promoter. We show that this motif is necessary for the formation of specific complexes with nuclear extracts and for cell-density-dependent regulation in reporter gene assays. Thus the TfR1 promoter contains a functional ‘cell density response element’ (CDRE). PMID:16092918

  11. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. PMID:27397487

  12. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory.

    PubMed

    Hausrat, Torben J; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K; Smart, Trevor G; Triller, Antoine; Kneussel, Matthias

    2015-01-01

    Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999

  13. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory

    PubMed Central

    Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias

    2015-01-01

    Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999

  14. Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery.

    PubMed Central

    MacLean, M. R.; Clayton, R. A.; Templeton, A. G.; Morecroft, I.

    1996-01-01

    1. The 5-hydroxytryptamine (5-HT) receptors mediating contraction of human isolated pulmonary artery rings were investigated. Responses to the agonists 5-carboximidotryptamine (5-CT, non-selective 5-HT1 agonist), sumatriptan (5-HT1D-like receptor agonist), 5-HT and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 5-HT1A receptor agonist) were studied. Responses to 5-HT and sumatriptan in the presence of the antagonists, methiothepin (non-selective 5-HT1+2-receptor antagonist), ketanserin (5-HT2A receptor antagonist) and the novel antagonist, GR55562 (5-HT1D receptor antagonist) were also studied. 2. All agonists contracted human pulmonary artery ring preparations in the following order of potency 5-CT > 5-HT = sumatriptan > 8-OH-DPAT. Maximum responses to 5-HT, 5-CT and sumatriptan were not significantly different. 3. Methiothepin 1 nM and 10 nM, but not 0.1 nM reduced the maximum contractile responses to 5-HT but did not alter tissue sensitivity to 5-HT. Methiothepin 0.1 nM, 1 nM and 10 nM had a similar effect on responses to sumatriptan. 4. The 5-HT2A receptor antagonist ketanserin (10 nM, 100 nM and 1 microM) also reduced the maximum contractile response to both 5-HT and sumatriptan without affecting tissue sensitivity to these agonists. 5. The novel 5-HT1D receptor antagonist, GR55562, inhibited responses to 5-HT and sumatriptan in a true competitive fashion. 6. The results suggest that the human pulmonary artery has a functional population of 5-HT1D-like receptors which are involved in the contractile response to 5-HT. PMID:8886409

  15. Pituitary and brain D2 receptor density measured in vitro and in vivo in EEDQ treated male rats

    SciTech Connect

    Ekman, A.; Eriksson, E. )

    1991-01-01

    The effect of the alkylating compound N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on dopamine D2 receptor density in rat pituitary and brain was measured using in vitro and in vivo radioligand binding techniques. In the in vitro radioligand binding experiments EEDQ was found to reduce the density (B{sub max}) of ({sup 3}H)-spiperone binding sites in the striatum by 86% while in the pituitary the corresponding decrease was only 37%. The affinity (K{sub D}) of the remaining striatal and pituitary D2 receptors was not different in EEDQ treated animals as compared to controls. When D2 receptor density was measured in vivo the effect of EEDQ was less pronounced. Thus, in rats given EEDQ the specific binding of either of the two D2 ligands ({sup 3}H)-raclopride or ({sup 3}H)-spiperone in striatum and in the limbic forebrain was reduced by 45-62%; moreover, no significant decrease in pituitary D2 receptor density was observed. The data are discussed in relation to the finding that the same dose of EEDQ that failed to influence pituitary D2 receptor density as measured in vivo effectively antagonizes the prolactin decreasing effect of the partial D2 agonist (-)-3-(3-hydroxyphenyl)-N-n-propyl-piperidine ((-)-3-PPP).

  16. Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues.

    PubMed

    Gabrielson, Marike; Chiesa, Flaminia; Paulsson, Janna; Strell, Carina; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Östman, Arne; Hall, Per

    2016-07-01

    Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012-2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement

  17. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions*

    PubMed Central

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki; Yang, Zhang; Halim, Adnan; Schjoldager, Katrine Ter-Borch Gram; Madsen, Thomas Daugbjerg; Seidah, Nabil G.; Bennett, Eric Paul; Levery, Steven B.; Clausen, Henrik

    2014-01-01

    The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region. Recently we identified O-glycosylation sites in the linker regions between the characteristic LDLR class A repeats in several LDLR-related receptors using the “SimpleCell” O-glycoproteome shotgun strategy. Herein, we have systematically characterized O-glycosylation sites on recombinant LDLR shed from HEK293 SimpleCells and CHO wild-type cells. We find that the short linker regions between LDLR class A repeats contain an evolutionarily conserved O-glycosylation site at position −1 of the first cysteine residue of most repeats, which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss of glycosylation of three of four linker regions. PMID:24798328

  18. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules.

    PubMed

    Ghosh, R N; Webb, W W

    1994-05-01

    We have developed a technique to detect, recognize, and track each individual low density lipoprotein receptor (LDL-R) molecule and small receptor clusters on the surface of human skin fibroblasts. Molecular recognition and high precision (30 nm) simultaneous automatic tracking of all of the individual receptors in the cell surface population utilize quantitative time-lapse low light level digital video fluorescence microscopy analyzed by purpose-designed algorithms executed on an image processing work station. The LDL-Rs are labeled with the biologically active, fluorescent LDL derivative dil-LDL. Individual LDL-Rs and unresolved small clusters are identified by measuring the fluorescence power radiated by the sub-resolution fluorescent spots in the image; identification of single particles is ascertained by four independent techniques. An automated tracking routine was developed to track simultaneously, and without user intervention, a multitude of fluorescent particles through a sequence of hundreds of time-lapse image frames. The limitations on tracking precision were found to depend on the signal-to-noise ratio of the tracked particle image and mechanical drift of the microscope system. We describe the methods involved in (i) time-lapse acquisition of the low-light level images, (ii) simultaneous automated tracking of the fluorescent diffraction limited punctate images, (iii) localizing particles with high precision and limitations, and (iv) detecting and identifying single and clustered LDL-Rs. These methods are generally applicable and provide a powerful tool to visualize and measure dynamics and interactions of individual integral membrane proteins on living cell surfaces. PMID:8061186

  19. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules.

    PubMed Central

    Ghosh, R N; Webb, W W

    1994-01-01

    We have developed a technique to detect, recognize, and track each individual low density lipoprotein receptor (LDL-R) molecule and small receptor clusters on the surface of human skin fibroblasts. Molecular recognition and high precision (30 nm) simultaneous automatic tracking of all of the individual receptors in the cell surface population utilize quantitative time-lapse low light level digital video fluorescence microscopy analyzed by purpose-designed algorithms executed on an image processing work station. The LDL-Rs are labeled with the biologically active, fluorescent LDL derivative dil-LDL. Individual LDL-Rs and unresolved small clusters are identified by measuring the fluorescence power radiated by the sub-resolution fluorescent spots in the image; identification of single particles is ascertained by four independent techniques. An automated tracking routine was developed to track simultaneously, and without user intervention, a multitude of fluorescent particles through a sequence of hundreds of time-lapse image frames. The limitations on tracking precision were found to depend on the signal-to-noise ratio of the tracked particle image and mechanical drift of the microscope system. We describe the methods involved in (i) time-lapse acquisition of the low-light level images, (ii) simultaneous automated tracking of the fluorescent diffraction limited punctate images, (iii) localizing particles with high precision and limitations, and (iv) detecting and identifying single and clustered LDL-Rs. These methods are generally applicable and provide a powerful tool to visualize and measure dynamics and interactions of individual integral membrane proteins on living cell surfaces. Images FIGURE 1 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:8061186

  20. Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9

    PubMed Central

    Gu, Hong-mei; Zhang, Da-wei

    2015-01-01

    Abstract Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation of foam cells, consequently initiating atherosclerosis. Plasma LDL is mainly cleared through the LDL receptor (LDLR) pathway. Mutations in the LDLR cause familiar hypercholesterolemia and increase the risk of premature coronary heart disease. The expression of LDLR is regulated at the transcriptional level via the sterol regulatory element binding protein 2 (SREBP-2) and at the posttranslational levels mainly through proprotein convertase subtilisin/kexin-type 9 (PCSK9) and inducible degrader of the LDLR (IDOL). In this review, we summarize the latest advances in the studies of PCSK9. PMID:26445568

  1. mRNA for low density lipoprotein receptor in brain and spinal cord of immature and mature rabbits

    SciTech Connect

    Hofmann, S.L.; Russell, D.W.; Goldstein, J.L.; Brown, M.S.

    1987-09-01

    Hybridization studies with (/sup 32/P)cDNA probes revealed detectable amounts of mRNA for the low density lipoprotein (LDL) receptor in the central nervous system (CNS) of rabbits. mRNA levels were highest in the medulla/pons and spinal cord, which were the most heavily myelinated regions that were studied. Lower, but detectable levels were present in cerebral cortex, hypothalamus, thalamus, midbrain, and cerebellum. In the medulla/pons and spinal cord, the levels of receptor mRNA were in a range comparable to that detected in the liver. The levels of receptor mRNA in whole brain were constant from 3 days of age to adulthood and, thus, did not vary in proportion to the rate of myelin synthesis. LDL receptor mRNA in the CNS was produced by the same gene that produced the liver and adrenal mRNA as revealed by the demonstration of a deletion in the neural mRNA of Watanabe-heritable hyperlipidemic (WHHL) rabbits identical to the deletion in the LDL receptor gene of these mutant animals. Using antibodies directed against the bovine LDL receptor, the authors showed that LDL receptor protein is present in the medulla/pons of adult cows. The cell types that express LDL receptors in the CNS and the functions of these receptors are unknown.

  2. Serotonin Receptors in Rat Jugular Vein: Presence and Involvement in the Contraction

    PubMed Central

    Gaskell, Geri L.; Szasz, Theodora; Thompson, Janice M.; Watts, Stephanie W.

    2010-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is released during platelet aggregation, a phenomenon commonly observed in blood clot formation and venous diseases. Once released, 5-HT can interact with its receptors in the peripheral vasculature to modify vascular tone. The goal of this study was to perform a detailed pharmacological characterization of the 5-HT receptors involved in the contractile response of the rat jugular vein (RJV) using recently developed drugs with greater selectivity toward 5-HT receptor subtypes. We hypothesized that, as for other blood vessels, the 5-HT1B/1D and 5-HT2B receptor subtypes mediate contraction in RJV alongside the 5-HT2A receptor subtype. Endothelium-intact RJV rings were set up in an isolated organ bath for isometric tension recordings, and contractile concentration-effect curves were obtained for 13 distinct serotonergic receptor agonists. Surprisingly, the 5-HT1A and the mixed 5-HT1A/1B receptor agonists (±)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and 5-methoxy-3 (1,2,3,6-tetrahydropyridin-4-yl) (1H indole) (RU24969) caused contractions that were antagonized by the 5-HT1A receptor antagonist [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100135). The contractile curve to 5-HT was shifted to the right by WAY100135, 3-[2-[4-(4-fluoro benzoyl)-piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione (ketanserin; 5-HT2A/C receptor antagonist), and 1-(2-chloro-3,4-dimethoxybenzyl)-6-methyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole hydrochloride (LY266097; 5-HT2B receptor antagonist). Ketanserin also caused rightward shifts of the contractile curves to 8-OH-DPAT, RU24969, and the 5-HT2B receptor agonist (α-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine) (BW723C86). Agonists for 5-HT1B/1D/1F, 5-HT3, 5-HT6, and 5-HT7 receptors were inactive. In real-time polymerase chain reaction experiments that have never been performed in this tissue previously, we

  3. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.

    PubMed

    Praticò, D; Tillmann, C; Zhang, Z B; Li, H; FitzGerald, G A

    2001-03-13

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely. PMID:11248083

  4. Involvement of second messengers in regulation of the low-density lipoprotein receptor gene.

    PubMed Central

    Auwerx, J H; Chait, A; Wolfbauer, G; Deeb, S S

    1989-01-01

    Transcription of the low-density lipoprotein receptor (LDL-R) gene in the human monocytic leukemic cell line THP-1 and in the human hepatocarcinoma cell line Hep-G2 is regulated by second messengers of the diacylglycerol-protein kinase C (DAG-PKC), inositol 1,4,5-triphosphate-Ca2+, and cyclic AMP pathways. Exogenous phospholipase C (which releases DAG and inositol 1,4,5-triphosphate), PKC activators (phorbol esters and DAG), Ca2+ ionophores, and a cyclic AMP analog all transiently induced accumulation of LDL-R mRNA. The effects of these three signal-transducing pathways were to a large extent additive. Furthermore, PKC stimulation effected an increase in LDL binding, which suggested that the increase in LDL-R mRNA resulted in an increase in functional cell surface receptor activity. These results suggest that uptake of cholesterol by these cells is under control of both intracellular cholesterol levels and external signals. Images PMID:2548077

  5. Tissue specific regulation of peripheral-type benzodiazepine receptor density after chemical sympathectomy

    SciTech Connect

    Basile, A.S.; Skolnick, P.

    1988-01-01

    The characteristics of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of (/sup 3/H)Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50% respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of (/sup 3/H)Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the B/sub max/ of (/sup 3/H)Ro 5-4684 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for (/sup 3/H)Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion. 33 references, 4 tables.

  6. Novel mutations of low-density lipoprotein receptor gene in China patients with familial hypercholesterolemia.

    PubMed

    Fan, Liang-liang; Lin, Min-jie; Chen, Ya-qin; Huang, Hao; Peng, Dao-quan; Xia, Kun; Zhao, Shui-ping; Xiang, Rong

    2015-05-01

    Familial hypercholesterolaemia (FH) is an autosomal dominant genetic disorder, associated with elevated level of serum low-density lipoprotein-cholesterol (LDL-C), which can lead to premature cardiovascular disease (CVD). Mutations in low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) have been identified to be the underlying cause of this disease. Genetic research of FH has already been extensively studied all over the world. However, reports of FH mutations in the Chinese population are still limited. In this paper, 20 unrelated FH families were enrolled to detect the candidate gene variants in Chinese FH population by DNA direct sequencing. We identified 12 LDLR variants in 13 FH probands. Importantly, we first reported two unique mutations (c.2000_2000 delG/p.C667LfsX6 and c.605T>C/p.F202S) in LDLR gene. Our discoveries expand the spectrum of LDLR mutations and contribute to the genetic diagnosis and counseling for FH patients. PMID:25846081

  7. Involvement of Descending Serotonergic and Noradrenergic Systems and their Spinal Receptor Subtypes in the Antinociceptive Effect of Dipyrone.

    PubMed

    Gencer, A; Gunduz, O; Ulugol, A

    2015-12-01

    The antinociceptive effect of dipyrone is partly due to its action upon pain-related central nervous system structures. Despite intensive research, the precise mechanisms mediating its analgesic effects remain unclear. Here, we aimed to determine whether neurotoxic destruction of descending inhibitory pathways affect dipyrone-induced antinociception and whether various spinal serotonergic and adrenergic receptors are involved in this antinociception. The nociceptive response was assessed by the tail-flick test. Mice injected with dipyrone (150, 300, 600 mg/kg, i.p.) elicited dose-related antinociception. The neurotoxins 5,7-dihydroxytryptamine (50 μg/mouse) and 6-hydroxydopamine (20 μg/mouse) are applied intrathecally to deplete serotonin and noradrenaline in the spinal cord. 3 days after neurotoxin injections, a significant reduction in the antinociceptive effect of dipyrone was observed. Intrathecal administration of monoaminergic antagonists (10 μg/mouse), the 5-HT2a antagonist ketanserin, the 5-HT3 antagonist ondansetron, the 5-HT7 antagonist SB-258719, α1-adrenoceptor antagonist prazosin, α2-adrenoceptor antagonist yohimbine, and the β-adrenoceptor antagonist propranolol also attenuated dipyrone antinociception. We propose that descending serotonergic and noradrenergic pathways play pivotal role in dipyrone-induced antinociception and spinal 5-HT2a, 5-HT3, and 5-HT7-serotonergic and α1, α2, and β-adrenergic receptors mediate this effect. PMID:25647230

  8. α7 Nicotinic Acetylcholine Receptors Occur at Postsynaptic Densities of AMPA Receptor-Positive and -Negative Excitatory Synapses in Rat Sensory Cortex

    PubMed Central

    Levy, Robert B.; Aoki, Chiye

    2010-01-01

    NMDA receptor (NMDAR) activation requires concurrent membrane depolarization, and glutamatergic synapses lacking AMPA receptors (AMPARs) are often considered “silent” in the absence of another source of membrane depolarization. During the second postnatal week, NMDA currents can be enhanced in rat auditory cortex through activation of the α7 nicotinic acetylcholine receptor (α7nAChR). Electrophysiological results support a mainly presynaptic role for α7nAChR at these synapses. However, immunocytochemical evidence that α7nAChR is prevalent at postsynaptic sites of glutamatergic synapses in hippocampus and neocortex, along with emerging electrophysiological evidence for postsynaptic nicotinic currents in neocortex and hippocampus, has prompted speculation that α7nAChR allows for activation of NMDAR postsynaptically at synapses lacking AMPAR. Here we used dual immunolabeling and electron microscopy to examine the distribution of α7nAChR relative to AMPAR (GluR1, GluR2, and GluR3 subunits combined) at excitatory synapses in somatosensory cortex of adult and 1-week-old rats. α7nAChR occurred discretely over most of the thick postsynaptic densities in all cortical layers of both age groups. AMPAR immunoreactivity was also detectable at most synapses; its distribution was independent of that of α7nAChR. In both age groups, approximately one-quarter of asymmetrical synapses were α7nAChR positive and AMPAR negative. The variability of postsynaptic α7nAChR labeling density was greater at postnatal day (PD) 7 than in adulthood, and PD 7 neuropil contained a subset of small AMPA receptor-negative synapses with a high density of α7nAChR immunoreactivity. These observations support the idea that acetylcholine receptors can aid in activating glutamatergic synapses and work together with AMPA receptors to mediate postsynaptic excitation throughout life. PMID:12077196

  9. Breast density and parenchymal texture measures as potential risk factors for estrogen-receptor positive breast cancer

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2014-03-01

    Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.

  10. Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD).

    PubMed

    Medin, T; Rinholm, J E; Owe, S G; Sagvolden, T; Gjedde, A; Storm-Mathisen, J; Bergersen, L H

    2013-07-01

    A state of low dopaminergic activity has been implicated in attention-deficit/hyperactivity disorder (ADHD). The clinical symptoms of ADHD include inattention, impulsivity and hyperactivity, as well as impaired learning; dopaminergic modulation of the functions in the hippocampus is important to both learning and memory. To determine dopamine receptor (DR) density in a well-established animal model for ADHD, we quantified the dopamine D5 receptors in the hippocampus in the spontaneously hypertensive rat. We used immunofluorescence microscopy and immunogold electron microscopy to quantify the dopamine D5 receptor density on CA1 pyramidal cell somas and dendrites and dendritic spines in the stratum radiatum and stratum oriens. The density of the dopamine D5 receptors was significantly lower in the cytoplasm of pyramidal cell somas in the spontaneously hypertensive rat compared to the control, indicating a reduced reservoir for insertion of receptors into the plasma membrane. DRs are important for long-term potentiation and long-term depression, hence the deficit may contribute to the learning difficulties in individuals with the diagnosis of ADHD. PMID:23541742

  11. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis.

    PubMed

    Ding, Yinyuan; Xian, Xunde; Holland, William L; Tsai, Shirling; Herz, Joachim

    2016-05-01

    Low-density lipoprotein receptor-related protein-1 (LRP1) is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β) trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO) predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2) translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL) triglyceride secretion. PMID:27322467

  12. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    PubMed Central

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  13. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease

    PubMed Central

    Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Accumulation and aggregation of amyloid-β (Aβ) peptides in the brain trigger the development of progressive neurodegeneration and dementia associated with Alzheimer’s disease (AD). Perturbation in Aβ clearance, rather than Aβ production, is likely the cause of sporadic, late-onset AD, which accounts for the majority of AD cases. Since cellular uptake and subsequent degradation constitute a major Aβ clearance pathway, the receptor-mediated endocytosis of Aβ has been intensely investigated. Among Aβ receptors, the low-density lipoprotein receptor-related protein 1 (LRP1) is one of the most studied receptors. LRP1 is a large endocytic receptor for more than 40 ligands, including apolipoprotein E, α2-macroglobulin and Aβ. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in brain Aβ clearance. LRP1 is highly expressed in a variety of cell types in the brain including neurons, vascular cells and glial cells, where LRP1 functions to maintain brain homeostasis and control Aβ metabolism. LRP1-mediated endocytosis regulates cellular Aβ uptake by binding to Aβ either directly or indirectly through its co-receptors or ligands. Furthermore, LRP1 regulates several signaling pathways, which also likely influences Aβ endocytic pathways. In this review, we discuss how LRP1 regulates the brain Aβ clearance and how this unique endocytic receptor participates in AD pathogenesis. Understanding of the mechanisms underlying LRP1-mediated Aβ clearance should enable the rational design of novel diagnostic and therapeutic strategies for AD. PMID:24904407

  14. Genetic influences on bone density: Physiological correlates of vitamin D receptor gene alleles in premonopausal women

    SciTech Connect

    Howard, G.; Nguyen, T.; Morrison, N.

    1995-09-01

    Common vitamin D receptor (VDR) gene alleles have recently been shown to contribute to the genetic variability in bone mass and bone turnover; however, the physiological mechanisms involved are unknown. To examine this, the response to 7 days of 2 {mu}g oral 1,25-dihydroxyvitamin D[1,25-(OH){sub 2}D] (calcitrol) stimulation was assessed in 21 premenopausal women, homozygous for one or other of the common VDR alleles (bb, N = 11; BB, n = 10). Indices of bone turnover and calcium homeostasis were measured during 2 weeks. Baseline osteocalcin, 1,25-(OH){sub 2}D, type I collagen carboxyterminal telopeptide, and inorganic phosphate levels were significantly higher and spinal bone mineral density was significantly lower in the BB allelic group. After calcitrol administration, similar levels of 1,25-(OH){sub 2}D were attained throughout the study in both genotypic groups. The increase in serum osteocalcin levels in the BB group was significantly less than that in the bb group (11% vs. 32%, P = 0.01). The genotype-related baseline difference in osteocalcin levels was not apparent at the similar serum 1,25-(OH){sub 2}D levels. By contrast, the baseline differences in phosphate and type I collagen carboxyterminal telopeptide persisted throughout the study. Serum ionized calcium levels did not differ between genotypes, nor did it move out of normal range values. However, parathyroid hormone was less suppressed in the low bone density group (38% vs. 11%, P = 0.01). These data indicate that the VDR alleles are associated with differences in the vitamin D endocrine system and may have important implications in relation to the pathophysiology of osteoporosis. 35 refs., 2 figs., 1 tab.

  15. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase.

    PubMed Central

    Shimada, M; Ishibashi, S; Inaba, T; Yagyu, H; Harada, K; Osuga, J I; Ohashi, K; Yazaki, Y; Yamada, N

    1996-01-01

    Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis. Images Fig. 1 Fig. 3 PMID:8692976

  16. Modeling of Corticosteroid Effects on Hepatic Low-Density Lipoprotein Receptors and Plasma Lipid Dynamics in Rats

    PubMed Central

    Hazra, Anasuya; Pyszczynski, Nancy A.; DuBois, Debra C.; Almon, Richard R.

    2014-01-01

    Purpose This study examines methylprednisolone (MPL) effects on the dynamics of hepatic low-density lipoprotein receptor (LDLR) mRNA and plasma lipids associated with increased risks for atherosclerosis. Materials and methods Normal male Wistar rats were given 50 mg/kg MPL intramuscularly (IM) and sacrificed at various times. Measurements included plasma MPL and CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density and hepatic LDLR mRNA, and plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), high density lipoprotein cholesterol (HDLC), and triglycerides (TG). Results MPL showed bi-exponential disposition with two first-order absorption components. Hepatic GR and LDLR mRNA exhibited circadian patterns which were disrupted by MPL. Down-regulation in GR mRNA (40–50%) was followed by a delayed rebound phase. LDLR mRNA exhibited transient down-regulation (60–70%). Cytosolic GR density was significantly suppressed but returned to baseline by 72 h. Plasma TC and LDLC showed increases (55 and 142%) at 12 h. A mechanistic receptor/gene pharmacokinetic/pharmacodynamic model was developed to describe CS effects on hepatic LDLR mRNA and plasma cholesterols. Conclusions Our PK/PD model was able to satisfactorily capture the MPL effects on hepatic LDLR, its relationship to various plasma cholesterols, and builds the foundation to explore this area in the future. PMID:17674160

  17. Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer`s disease

    SciTech Connect

    Christie, R.H.; Chung, Haeyong; Rebeck, G.W.; Hyman, B.T.

    1996-04-01

    The very low density lipoprotein receptor (VLDL-r) is a cell-surface molecule specialized for the internalization of multiple diverse ligands, including apolipoprotein E (apoE)-containing lipoprotein particles, via clathrin-coated pits. Its structure is similar to the low-density lipoprotein receptor (LDL-r), although the two have substantially different systemic distributions and regulatory pathways. The present work examines the distribution of VLDL-r in the central nervous system (CNS) and in relation to senile plaques in Alzheimer disease (AD). VLDL-r is present on resting and activated microglia, particularly those associated with senile plaques (SPs). VLDL-r immunoreactivity is also found in cortical neurons. Two exons of VLDL-r mRNA are differentially spliced in the mature receptor mRNA. One set of splice forms gives rise to receptors containing (or lacking) an extracellular O-linked glycosylation domain near the transmembrane portion of the molecule. The other set of splice forms appears to be brain-specific, and is responsible for the presence or absence of one of the cysteine-rich repeat regions in the binding region of the molecule. Ratios of the receptor variants generated from these splice forms do not differ substantially across different cortical areas or in AD. We hypothesize that VLDL-r might contribute to metabolism of apoE and apoE/A{beta} complexes in the brain. Further characterization of apoE receptors in Alzheimer brain may help lay the groundwork for understanding the role of apoE in the CNS and in the pathophysiology of AD. 43 refs., 5 figs.

  18. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-01-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential. PMID:26578342

  19. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    PubMed Central

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-01-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential. PMID:26578342

  20. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-11-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  1. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities

    PubMed Central

    Beck, Michael E; Gutbrod, Oliver; Matthiesen, Svend

    2015-01-01

    Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands. PMID:26175091

  2. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G. ); Lumeng, L.; Li, Ting-Kai )

    1990-01-01

    Saturable ({sup 3}H)-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B{sub max} values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K{sub D} values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats.

  3. Low density lipoprotein receptor-binding activity in human tissues: quantitative importance of hepatic receptors and evidence for regulation of their expression in vivo.

    PubMed Central

    Rudling, M J; Reihnér, E; Einarsson, K; Ewerth, S; Angelin, B

    1990-01-01

    The heparin-sensitive binding of 125I-labeled low-density lipoprotein (LDL) to homogenates from 18 different normal human tissues and some solid tumors was determined. The binding to adrenal and liver homogenates fulfilled criteria established for the binding of LDL to its receptor--namely, (i) saturability, (ii) sensitivity to proteolytic destruction, (iii) inhibition by EDTA, and (iv) heat sensitivity. When the binding of 125I-labeled LDL was assayed at a constant concentration (50 micrograms/ml), the adrenal gland and the ovary had the highest binding of normal tissues. The highest binding per g of tissue overall was obtained in homogenates of a gastric carcinoma and a parotid adenoma. When the weights of the parenchymatous organs were considered, the major amount of LDL receptors was contained in the liver. To study the possible regulation of hepatic LDL-receptor expression, 11 patients were pretreated with cholestyramine (8 g twice a day for 3 weeks). Increased binding activity (+105%, P less than 0.001) was obtained in homogenates from liver biopsies from the cholestyramine-treated patients as compared with 12 untreated controls. It is concluded that the liver is the most important organ for LDL catabolism in humans and that the receptor activity in this organ can be regulated upon pharmacologic intervention. Further studies are needed to confirm the possibility that certain solid tumors can exhibit high numbers of LDL receptors. PMID:2110363

  4. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity?

    PubMed Central

    Mailman, Richard B.; Murthy, Vishakantha

    2010-01-01

    Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D2 receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D2 and 5-HT2A antagonists, and those that also bind with modest affinity to D2, 5-HT2A, and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D2 partial agonism or D2 functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D2 functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D2 antagonists. PMID:19909227

  5. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    PubMed Central

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  6. Assessment of dopamine receptor densities in the human brain with carbon-11-labeled N-methylspiperone

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstroem, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1984-01-01

    We describe the use of carbon-11-labeled 3-N-methylspiperone, a ligand that preferentially binds to dopamine receptors in vivo, to image the receptors by positron emission tomography scanning in baboons and, for the first time, in a human. The method has now been used in 58 humans for noninvasive assessment of the state of brain dopamine receptors under normal and pathological conditions.

  7. Association of the vitamin D receptor genotype BB with low bone density in hyperthyroidism.

    PubMed

    Obermayer-Pietsch, B M; Frühauf, G E; Chararas, K; Mikhail-Reinisch, S; Renner, W; Berghold, A; Kenner, L; Lackner, C

    2000-10-01

    Bone mineral density (BMD) is modulated by genetic and environmental factors or certain diseases. In several conditions such as low calcium intake, an influence of vitamin D receptor (VDR) polymorphisms on BMD has been suggested. In the present study, we investigated the relationship of Bsm I and Fok I polymorphisms of the VDR gene and BMD in patients with hyperthyroidism, a disease that often results in low BMD. Bsm I and Fok I genotypes were determined in 76 postmenopausal hyperthyroid patients and 62 healthy postmenopausal women as controls. Patients and controls were matched for age, time since menopause, and lifestyle factors and were free of estrogen medication. BMD evaluation included axial dual X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (PQCT). Low BMD was defined as -2.5 STD below the young adult mean value. Biochemical parameters investigated were thyroid hormones, osteocalcin, and 25-(OH)-vitamin D3 as well as routine laboratory data. Low BMD was found in 61% of hyperthyroid patients and in only 23% of euthyroid controls. In the group of hyperthyroid patients with low bone density, the BB genotype (VDR Bsm I polymorphisms) was significantly more frequent (39%) than in controls (13%; p = 0.003) and hyperthyroid patients with normal BMD (6%; p = 0.013). The odds ratio (OR) for low BMD in patients with BB genotype was 5.7 (95% CI, 1.7-19.1; p < 0.005) as compared with the Bb and bb genotypes and 5.5 (95% CI, 2.3-13.2; p < 0.0001) for hyperthyroidism alone. The cumulative risk for low BMD in patients with hyperthyroidism and BB genotype was 31.4 (95% CI, 3.9-256; p < 0.0003). VDR Fok I genotypes showed no significant relationship with BMD or other general or bone-specific parameters. Thus, hyperthyroidism and the genetic background of a BB genotype may promote synergistically the development of low BMD in hyperthyroid patients. Screening for the BB genotype in these patients therefore could help to identify those with

  8. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods.

    PubMed

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J; Hansson, Eva; Granberg, Kenneth L; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures. PMID:26572910

  9. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice.

    PubMed

    Song, Guohua; Zong, Chuanlong; Zhang, Zhaoqiang; Yu, Yang; Yao, Shutong; Jiao, Peng; Tian, Hua; Zhai, Lei; Zhao, Hui; Tian, Shuyan; Zhang, Xiangjian; Wu, Yun; Sun, Xuejun; Qin, Shucun

    2015-10-01

    Hydrogen (H(2)) attenuates the development of atherosclerosis in mouse models. We aimed to examine the effects of H(2) on atherosclerotic plaque stability. Low-density lipoprotein receptor-knockout (LDLR(-/-)) mice fed an atherogenic diet were dosed daily with H(2) and/or simvastatin. In vitro studies were carried out in an oxidized-LDL (ox-LDL)-stimulated macrophage-derived foam cell model treated with or without H(2). H(2) or simvastatin significantly enhanced plaque stability by increasing levels of collagen, as well as reducing macrophage and lipid levels in plaques. The decreased numbers of dendritic cells and increased numbers of regulatory T cells in plaques further supported the stabilizing effect of H(2) or simvastatin. Moreover, H(2) treatment decreased serum ox-LDL level and apoptosis in plaques with concomitant inhibition of endoplasmic reticulum stress (ERS) and reduction of reactive oxygen species (ROS) accumulation in the aorta. In vitro, like the ERS inhibitor 4-phenylbutyric acid, H(2) inhibited ox-LDL- or tunicamycin (an ERS inducer)-induced ERS response and cell apoptosis. In addition, like the ROS scavenger N-acetylcysteine, H(2) inhibited ox-LDL- or Cu(2+) (an ROS inducer)-induced reduction in cell viability and increase in cellular ROS. Also, H(2) increased Nrf2 (NF-E2-related factor-2, an important factor in antioxidant signaling) activation and Nrf2 small interfering RNA abolished the protective effect of H(2) on ox-LDL-induced cellular ROS production. The inhibitory effects of H(2) on the apoptosis of macrophage-derived foam cells, which take effect by suppressing the activation of the ERS pathway and by activating the Nrf2 antioxidant pathway, might lead to an improvement in atherosclerotic plaque stability. PMID:26117323

  10. Vitamin D receptor alleles and bone mineral density in a normal premenopausal Brazilian female population.

    PubMed

    Lazaretti-Castro, M; Duarte-de-Oliveira, M A; Russo, E M; Vieira, J G

    1997-08-01

    Studies on the association between vitamin D receptor (VDR) polymorphism and bone mineral density (BMD) in different populations have produced conflicting results probably due to ethnic differences in the populations studied. The Brazilian population is characterized by a very broad genetic background and a high degree of miscegenation. Of an initial group of 164, we studied 127 women from the city of São Paulo, aged 20 to 47 years (median, 31 years), with normal menses, a normal diet and no history of diseases or use of any medication that could alter BMD. VDR genotype was assessed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. BMD was measured using dual energy X-ray absorptiometry (Lunar DPX) at the lumbar site (L2-L4) and femoral neck. Most of the women (77.6%) were considered to be of predominantly European ancestry (20.6% of them reported also native American ancestry), 12.8% were of African-Brazilian ancestry and 9.6% of Asian ancestry, 41.0% (52) were classified as bb, 48.8% (62) as Bb and 10.2% (13) as BB. The BB, Bb and bb groups did not differ in age, height, weight, body mass index or age at menarche. Lumbar spine BMD was significantly higher in the bb group (1.22 +/- 0.16 g/cm2) than in the BB group (1.08 +/- 0.14; P < 0.05), and the Bb group presented an intermediate value (1.17 +/- 0.15). Femoral neck BMD was higher in the bb group (0.99 +/- 0.11 g/cm2) compared to Bb (0.93 +/- 0.12) and BB (0.90 +/- 0.09) (P < 0.05). These data indicate that there is a significant correlation between the VDR BsmI genotype and BMD in healthy Brazilian premenopausal females. PMID:9361720

  11. Complement C1q Reduces Early Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

    PubMed Central

    Bhatia, Vinay K.; Yun, Sheng; Leung, Viola; Grimsditch, David C.; Benson, G. Martin; Botto, Marina B.; Boyle, Joseph J.; Haskard, Dorian O.

    2007-01-01

    We explored the role of the classic complement pathway in atherogenesis by intercrossing C1q-deficient mice (C1qa−/−) with low-density lipoprotein receptor knockout mice (Ldlr−/−). Mice were fed a normal rodent diet until 22 weeks of age. Aortic root lesions were threefold larger in C1qa−/−/Ldlr−/− mice compared with Ldlr−/− mice (3.72 ± 1.0% aortic root versus 1.1 ± 0.4%; mean ± SEM, P < 0.001). Furthermore, the cellular composition of lesions in C1qa−/−/Ldlr−/− was more complex, with an increase in vascular smooth muscle cells. The greater aortic root lesion size in C1qa−/−/Ldlr−/− mice occurred despite a significant reduction in C5b-9 deposition per lesion unit area, suggesting the critical importance of proximal pathway activity. Apoptotic cells were readily detectable by cleaved caspase-3 staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and electron microscopy in C1qa−/−/Ldlr−/−, whereas apoptotic cells were not detected in Ldlr−/− mice. This is the first direct demonstration of a role for the classic complement pathway in atherogenesis. The greater lesion size in C1qa−/−/Ldlr−/− mice is consistent with the emerging homeostatic role for C1q in the disposal of dying cells. This study suggests the importance of effective apoptotic cell removal for containing the size and complexity of early lesions in atherosclerosis. PMID:17200212

  12. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families.

    PubMed

    Nilsson, Stefan K; Christensen, Stine; Raarup, Merete K; Ryan, Robert O; Nielsen, Morten S; Olivecrona, Gunilla

    2008-09-19

    Apolipoprotein A-V (apoA-V) is present in low amounts in plasma and has been found to modulate triacylglycerol levels in humans and in animal models. ApoA-V displays affinity for members of the low density lipoprotein receptor (LDL-R) gene family, known as the classical lipoprotein receptors, including LRP1 and SorLA/LR11. In addition to LDL-A binding repeats, the mosaic receptor SorLA/LR11 also possesses a Vps10p domain. Here we show that apoA-V also binds to sortilin, a receptor from the Vsp10p domain gene family that lacks LDL-A repeats. Binding of apoA-V to sortilin was competed by neurotensin, a ligand that binds specifically to the Vps10p domain. To investigate the biological fate of receptor-bound apoA-V, binding experiments were conducted with cultured human embryonic kidney cells transfected with either SorLA/LR11 or sortilin. Compared with nontransfected cells, apoA-V binding to SorLA/LR11- and sortilin-expressing cells was markedly enhanced. Internalization experiments, live imaging studies, and fluorescence resonance energy transfer analyses demonstrated that labeled apoA-V was rapidly internalized, co-localized with receptors in early endosomes, and followed the receptors through endosomes to the trans-Golgi network. The observed decrease of fluorescence signal intensity as a function of time during live imaging experiments suggested ligand uncoupling in endosomes with subsequent delivery to lysosomes for degradation. This interpretation was supported by experiments with (125)I-labeled apoA-V, demonstrating clear differences in degradation between transfected and nontransfected cells. We conclude that apoA-V binds to receptors possessing LDL-A repeats and Vsp10p domains and that apoA-V is internalized into cells via these receptors. This could be a mechanism by which apoA-V modulates lipoprotein metabolism in vivo. PMID:18603531

  13. Lectin-like Oxidized Low-Density Lipoprotein (LDL) Receptor (LOX-1): A Chameleon Receptor for Oxidized LDL.

    PubMed

    Zeya, Bushra; Arjuman, Albina; Chandra, Nimai Chand

    2016-08-16

    LOX-1, one of the main receptors for oxLDL, is found mainly on the surface of endothelial cells. It is a multifacet 52 kDa type II transmembrane protein that structurally belongs to the C-type lectin family. It exists with short intracellular N-terminal and long extracellular C-terminal hydrophilic domains separated by a hydrophobic domain of 26 amino acids. LOX-1 acts like a bifunctional receptor either showing pro-atherogenicity by activating the NFκB-mediated down signaling cascade for gene activation of pro-inflammatory molecules or playing an atheroprotective agent by receptor-mediated uptake of oxLDL in the presence of an anti-inflammatory molecule like IL-10. Mildly, moderately, and highly oxidized LDL show their characteristic features upon LOX-1 activation and its ligand binding indenture. The polymorphic LOX-1 genes are intensively associated with increased susceptibility to myocardial diseases. The splicing variant LOX IN dimerizes with the native form of LOX-1 and protects cells from damage by oxidized LDL. In the developing field of regenerating medicine, LOX-1 is a potential target for therapeutic intervention. PMID:27419271

  14. Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity.

    PubMed

    Miller, Keith J

    2005-10-01

    Obesity continues to be a burgeoning health problem worldwide. Before their removal from the market, fenfluramine and the more active enantiomer dexfenfluramine were considered to be among the most effective of weight loss agents. Much of the weight loss produced by fenfluramine was attributed to the direct activation of serotonin 5-HT(2C) receptors in the central nervous system via the desmethyl-metabolite of fenfluramine, norfenfluramine. Norfenfluramine, however, is non-selective, activating additional serotonin receptors, such as 5-HT(2A) and 5-HT(2B), which likely mediated the heart valve hypertrophy seen in many patients. Development of highly selective 5-HT(2C) agonists may recapitulate the clinical anti-obesity properties observed with fenfluramine while avoiding the significant cardiovascular and pulmonary side effects. PMID:16249524

  15. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    PubMed

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  16. Regulation of macrophage alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein by lipopolysaccharide and interferon-gamma.

    PubMed Central

    LaMarre, J; Wolf, B B; Kittler, E L; Quesenberry, P J; Gonias, S L

    1993-01-01

    alpha 2-Macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2M-R/LRP) is a broad specificity receptor that may function in lipoprotein metabolism, proteinase regulation, and growth factor regulation. In this study, we demonstrated that alpha 2M-R/LRP expression in macrophages can be markedly decreased by LPS and by IFN-gamma. Regulation of alpha 2M-R/LRP in RAW 264.7 cells was demonstrated at the mRNA, antigen, and receptor-function levels. In receptor-function studies, the decrease in alpha 2M-R/LRP expression was detected as a 90% decrease in the Bmax or maximum receptor binding capacity for activated alpha 2M after treatment with LPS or IFN-gamma. Western blot analysis of whole cell lysates demonstrated significant loss of alpha 2M-R/LRP heavy-chain. Northern blot analysis of poly(A)+ RNA revealed a marked decrease in alpha 2M-R/LRP mRNA after treatment with LPS (79% decrease) or IFN-gamma (70% decrease). Other cytokines, including tumor necrosis factor-alpha, transforming growth factor-beta-1, and interleukin-6 did not regulate alpha 2M-R/LRP. The ability of LPS and IFN-gamma to regulate alpha 2M-R/LRP was confirmed in experiments with primary cultures of murine bone marrow macrophages. These studies demonstrate that macrophage alpha 2M-R/LRP is subject to significant downregulation by physiologically significant cytokines and signaling macromolecules. Images PMID:7680664

  17. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    SciTech Connect

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  18. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines

    PubMed Central

    Zha, Xiang-ming; Wemmie, John A.; Green, Steven H.; Welsh, Michael J.

    2006-01-01

    Extracellular proton concentrations in the brain may be an important signal for neuron function. Proton concentrations change both acutely when synaptic vesicles release their acidic contents into the synaptic cleft and chronically during ischemia and seizures. However, the brain receptors that detect protons and their physiologic importance remain uncertain. Using organotypic hippocampal slices and biolistic transfection, we found the acid-sensing ion channel 1a (ASIC1a), localized in dendritic spines where it functioned as a proton receptor. ASIC1a also affected the density of spines, the postsynaptic site of most excitatory synapses. Decreasing ASIC1a reduced the number of spines, whereas overexpressing ASIC1a had the opposite effect. Ca2+-mediated Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling was probably responsible, because acid evoked an ASIC1a-dependent elevation of spine intracellular Ca2+ concentration, and reducing or increasing ASIC1a levels caused parallel changes in CaMKII phosphorylation in vivo. Moreover, inhibiting CaMKII prevented ASIC1a from increasing spine density. These data indicate that ASIC1a functions as a postsynaptic proton receptor that influences intracellular Ca2+ concentration and CaMKII phosphorylation and thereby the density of dendritic spines. The results provide insight into how protons influence brain function and how they may contribute to pathophysiology. PMID:17060608

  19. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  20. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys.

    PubMed

    May, Jesse A; McLaughlin, Marsha A; Sharif, Najam A; Hellberg, Mark R; Dean, Thomas R

    2003-07-01

    Published investigations of serotonin-1A (5-hydroxytryptamine1A; 5-HT1A) receptor agonists and serotonin-2A (5-hydroxytryptamine2A; 5-HT2A) receptor antagonists in nonprimate species provide conflicting results with regard to their intraocular pressure-lowering efficacy. Thus, their therapeutic utility in the treatment of human glaucoma has been confusing. We evaluated the effect of selected 5-HT1A agonists and 5-HT2A receptor antagonists on intraocular pressure in a nonhuman primate model, the conscious cynomolgus monkey with laser-induced ocular hypertension. Neither selective 5-HT1A agonists [e.g., R-8-hydroxy-2-(di-n-propylamino)tetralin and flesinoxan] nor selective 5-HT2 receptor antagonists [e.g., R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M-100907) and 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxamide (SB-242084)] lowered intraocular pressure in the primate model following topical ocular administration. However, compounds that function as agonists at both the 5-HT1A and 5-HT2 receptors were found to effectively lower intraocular pressure in the model: 5-hydroxy-alpha-methyltryptamine, 5-methoxy-alpha-methyltryptamine, 5-hydroxy-N,N-dimethyltryptamine (bufotenine), and 5-methoxy-N,N-dimethyltryptamine. Furthermore, the selective 5-HT2 receptor agonist R-(-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane lowered intraocular pressure in the primate model, demonstrating a pharmacological response associated with activation of the 5-HT2 receptor. These observations suggest that compounds that function as efficient agonists at 5-HT2 receptors should be considered as potential agents for the control of intraocular pressure in the treatment of ocular hypertension and glaucoma in humans. PMID:12676887

  1. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins.

    PubMed Central

    Ishibashi, S; Herz, J; Maeda, N; Goldstein, J L; Brown, M S

    1994-01-01

    Apolipoprotein E (apoE) is hypothesized to mediate lipoprotein clearance by binding to two receptors: (i) the low density lipoprotein receptor (LDLR) and (ii) a chylomicron remnant receptor. To test this hypothesis, we have compared plasma lipoproteins in mice that are homozygous for targeted disruptions of the genes for apoE [apoE(-/-)], the LDLR [LDLR(-/-)], and both molecules [poE(-/-); LDLR(-/-)]. On a normal chow diet, apoE(-/-) mice had higher mean plasma cholesterol levels than LDLR(-/-) mice (579 vs. 268 mg/dl). Cholesterol levels in the apoE(-/-); LDLR(-/-) mice were not significantly different from those in the apoE(-/-) mice. LDLR(-/-) mice had a relatively isolated elevation in plasma LDL, whereas apoE(-/-) mice had a marked increase in larger lipoproteins corresponding to very low density lipoproteins and chylomicron remnants. The lipoprotein pattern in apoE(-/-); LDLR(-/-) mice resembled that of apoE(-/-) mice. The LDLR(-/-) mice had a marked elevation in apoB-100 and a modest increase in apoB-48. In contrast, the apoE(-/-) mice had a marked elevation in apoB-48 but not in apoB-100. The LDLR(-/-); apoE(-/-) double homozygotes had marked elevations of both apolipoproteins. The observation that apoB-48 increases more dramatically with apoE deficiency than with LDLR deficiency supports the notion that apoE binds to a second receptor in addition to the LDLR. This conclusion is also supported by the observation that superimposition of a LDLR deficiency onto an apoE deficiency [apoE(-/-); LDLR(-/-) double homozygotes] does not increase hypercholesterolemia beyond the level observed with apoE deficiency alone. Images PMID:8183926

  2. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells.

    PubMed

    Zhang, J C; Sakthivel, R; Kniss, D; Graham, C H; Strickland, D K; McCrae, K R

    1998-11-27

    The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) mediates the internalization of numerous ligands, including prourokinase (pro-UK) and complexes between two-chain urokinase (tc-u-PA) and plasminogen activator inhibitor type-1 (PAI-1). It has been suggested that through its ability to internalize these ligands, LRP/alpha2MR may regulate the expression of plasminogen activator activity on cell surfaces; this hypothesis, however, has not been experimentally confirmed. To address this issue, we assessed the ability of LRP/alpha2MR to regulate plasminogen activator activity on human trophoblast cells, which express both LRP/alpha2MR and the urokinase receptor (uPAR). Trophoblasts internalized and degraded exogenous 125I-pro-UK (primarily following its conversion to tc-u-PA and incorporation into tc-u-PA.PAI complexes) in an LRP/alpha2MR-dependent manner, which was inhibited by the LRP/alpha2MR receptor-associated protein. Receptor-associated protein also caused a approximately 50% reduction in cell surface plasminogen activator activity and delayed the regeneration of unoccupied uPAR by cells on which uPAR were initially saturated with pro-UK. Identical effects were caused by anti-LRP/alpha2MR antibodies. These results demonstrate that LRP/alpha2MR promotes the expression of cell surface plasminogen activator activity on trophoblasts by facilitating the clearance of tc-u-PA.PAI complexes and regeneration of unoccupied cell surface uPAR. PMID:9822706

  3. Targeting of Tumor Necrosis Factor Receptor 1 to Low Density Plasma Membrane Domains in Human Endothelial Cells*

    PubMed Central

    D'Alessio, Alessio; Kluger, Martin S.; Li, Jie H.; Al-Lamki, Rafia; Bradley, John R.; Pober, Jordan S.

    2010-01-01

    TNFR1 (tumor necrosis factor receptor 1) localizes to caveolae of human endothelial-derived EA.hy926 cells. Transduced TNFR1 molecules lacking amino acid residues 229–244 (spanning the transmembrane/intercellular boundary) are expressed on the cell surface equivalently to full-length TNFR1 molecules but incompletely localize to caveolae. A peptide containing this sequence pulls down CAV-1 (caveolin-1) and TNFR1 from cell lysates but fails to do so following disruption of caveolae with methyl-β-cyclodextrin. We previously reported that methyl-β-cyclodextrin eliminates caveolae and blocks tumor necrosis factor (TNF)-induced internalization of TNFR1 but not TNF-induced activation of NF-κB in EA.hy926 cells. Both CAV-1 and FLOT-2 (flotillin-2), organizing proteins of caveolae and lipid rafts, respectively, associate with caveolae in EA.hy926 cells. Small interfering RNA-mediated knockdown of CAV-1 but not FLOT-2 strikingly reduces caveolae number. Both knockdowns reduce total TNFR1 protein expression, but neither prevents TNFR1 localization to low density membrane domains, TNF-induced internalization of TNFR1, or NF-κB activation by TNF. Both CAV-1 and FLOT-2 knockdowns reduce TNF-mediated activation of stress-activated protein kinase (SAPK). However, both knockdowns reduce expression of TRAF2 (TNF receptor-associated factor-2) protein, and small interfering RNA targeting of TRAF2 also selectively inhibits SAPK activation. We conclude that TNFR1 contains a membrane-proximal sequence that targets the receptor to caveolae/lipid rafts. Neither TNFR1 targeting to nor internalization from these low density membrane domains depends upon CAV-1 or FLOT-2. Furthermore, both NF-κB and SAPK activation appear independent of both TNFR1 localization to low density membrane domains and to TNF-induced receptor internalization. PMID:20511226

  4. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice.

    PubMed

    Ou, Hailong; Zhang, Qinghai; Zeng, Jia

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr(-/-)) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers.We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr(-/-) mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia. PMID:27350674

  5. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density

    PubMed Central

    Chen, Xiaobing; Levy, Jonathan M.; Hou, Austin; Winters, Christine; Azzam, Rita; Sousa, Alioscka A.; Leapman, Richard D.; Nicoll, Roger A.; Reese, Thomas S.

    2015-01-01

    The postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases (MAGUKs) are major scaffolding proteins at the PSD in glutamatergic excitatory synapses, where they maintain and modulate synaptic strength. How MAGUKs underlie synaptic strength at the molecular level is still not well understood. Here, we explore the structural and functional roles of MAGUKs at hippocampal excitatory synapses by simultaneous knocking down PSD-95, PSD-93, and synapse-associated protein (SAP)102 and combining electrophysiology and transmission electron microscopic (TEM) tomography imaging to analyze the resulting changes. Acute MAGUK knockdown greatly reduces synaptic transmission mediated by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs). This knockdown leads to a significant rise in the number of silent synapses, diminishes the size of PSDs without changes in pre- or postsynaptic membrane, and depletes the number of membrane-associated PSD-95–like vertical filaments and transmembrane structures, identified as AMPARs and NMDARs by EM tomography. The differential distribution of these receptor-like structures and dependence of their abundance on PSD size matches that of AMPARs and NMDARs in the hippocampal synapses. The loss of these structures following MAGUK knockdown tracks the reduction in postsynaptic AMPAR and NMDAR transmission, confirming the structural identities of these two types of receptors. These results demonstrate that MAGUKs are required for anchoring both types of glutamate receptors at the PSD and are consistent with a structural model where MAGUKs, corresponding to membrane-associated vertical filaments, are the essential structural proteins that anchor and organize both types of glutamate receptors and govern the overall molecular organization of the PSD. PMID:26604311

  6. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    PubMed Central

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  7. Selective uptake of a toxic lipophilic anthracycline derivative by the low-density lipoprotein receptor pathway in cultured fibroblasts

    SciTech Connect

    Vitols, S.G.; Masquelier, M.; Peterson, C.O.

    1985-04-01

    N-(N-Retinoyl)-L-leucyldoxorubicin 14-linoleate (r11-DOX), a new lipophilic derivative of doxorubicin, was synthesized and incorporated into low-density lipoprotein (LDL). The drug-LDL complex contained 100- 200 drug molecules/LDL particle. When cultured normal human fibroblasts were incubated with /sup 125/I-LDL-incorporated drug, there was a perfect correlation between the cellular uptake plus degradation of /sup 125/I-LDL and the cellular drug accumulation. The presence of excess native LDL inhibited the cellular uptake and degradation of /sup 125/I-LDL and the drug accumulation to the same extent. In contrast, methylated LDL, which does not bind to the LDL receptor, did not alter the cellular uptake and degradation of /sup 125/I-LDL nor did it alter the drug accumulation. When LDL receptor negative fibroblasts from a patient with the homozygous form of familial hypercholesterolemia were incubated with the drug-/sup 125/I-LDL complex, cellular drug accumulation was very low. The drug-LDL complex inhibited the growth of cultured normal human fibroblasts. The drug incorporated into methylated LDL was much less toxic. These findings suggest that r11-DOX incorporated into LDL is delivered to cells selectively by the LDL receptor pathway. This might be of value in the treatment of leukemia, since it has been previously found that leukemic cells exhibit higher LDL receptor activity than white blood cells and bone marrow cells from healthy subjects.

  8. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor.

    PubMed Central

    Herz, J; Qiu, S Q; Oesterle, A; DeSilva, H V; Shafi, S; Havel, R J

    1995-01-01

    Two endocytic receptors, the low density lipoprotein (LDL) receptor (LDLR) and the LDLR-related protein (LRP), are thought to act in concert in the hepatic uptake of partially metabolized dietary lipoproteins, the chylomicron remnants. We have evaluated the role of these two receptors in the hepatic metabolism of chylomicron remnants in normal mice and in LDLR-deficient [LDLR (-/-)] mice. The rate of chylomicron remnant removal by the liver was normal up to 30 min after intravenous injection of chylomicrons into LDLR (-/-) mice and was unaffected by receptor-associated protein (RAP), a potent inhibitor of ligand binding to LRP. In contrast, endocytosis of the remnants by the hepatocytes, measured by their accumulation in the endosomal fraction and by the rate of hydrolysis of component cholesteryl esters, was dramatically reduced in the absence of the LDLR. Coadministration of RAP prevented the continuing hepatic removal of chylomicron remnants in LDL (-/-) mice after 30 min, consistent with blockade of the slow endocytosis by a RAP-sensitive process. Taken together with previous studies, our results are consistent with a model in which the initial hepatic removal of chylomicron remnants is primarily mediated by mechanisms that do not include LDLR or LRP, possibly involving glycosaminoglycan-bound hepatic lipase and apolipoprotein E. After the remnants bind to these alternative sites on the hepatocyte surface, endocytosis is predominantly mediated by the LDLR and also by a slower and less efficient backup process that is RAP sensitive and therefore most likely involves LRP. PMID:7753850

  9. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  10. Mitochondrial Ultrastructural Alterations and Declined M2 Receptor Density Were Involved in Cardiac Dysfunction in Rats after Long Term Treatment with Autoantibodies against M2 Muscarinic Receptor

    PubMed Central

    Wang, Jin; Wang, Li; Wu, Ye; Wang, Jie; Lv, Tingting; Liu, Huirong

    2015-01-01

    . Mitochondrial damage and the down-regulation of M2 receptor density and affinity may be involved in the process. PMID:26086781

  11. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  12. A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction.

    PubMed Central

    Tensen, C P; Van Kesteren, E R; Planta, R J; Cox, K J; Burke, J F; van Heerikhuizen, H; Vreugdenhil, E

    1994-01-01

    We have isolated and analyzed a cDNA from the central nervous system of the mollusc Lymnaea stagnalis encoding a putative receptor, which might be a natural hybrid between two different classes of receptor proteins. Preceded by a signal peptide, two types of repeated sequences are present in the N-terminal part of the protein. The first repeat displays a high sequence similarity to the extracellular binding domains of the low density lipoprotein receptor, which binds and internalizes cholesterol-containing apolipoproteins. The second repeat and the C-terminal part of the Lymnaea receptor are very similar to regions of a specific class of guanine nucleotide-binding protein-coupled receptors, the mammalian glycoprotein hormone receptors. The mRNA encoding the receptor is predominantly expressed in a small number of neurons within the central nervous system and to a lesser extent in the heart. Images PMID:8197140

  13. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  14. Discriminative stimulus properties of 1.25mg/kg clozapine in rats: Mediation by serotonin 5-HT2 and dopamine D4 receptors.

    PubMed

    Prus, Adam J; Wise, Laura E; Pehrson, Alan L; Philibin, Scott D; Bang-Andersen, Benny; Arnt, Jørn; Porter, Joseph H

    2016-10-01

    The atypical antipsychotic drug clozapine remains one of most effective treatments for schizophrenia, given a lack of extrapyramidal side effects, improvements in negative symptoms, cognitive impairment, and in symptoms in treatment-resistant schizophrenia. The adverse effects of clozapine, including agranulocytosis, make finding a safe clozapine-like a drug a goal for drug developers. The drug discrimination paradigm is a model of interoceptive stimulus that has been used in an effort to screen experimental drugs for clozapine-like atypical antipsychotic effects. The present study was conducted to elucidate the receptor-mediated stimulus properties that form this clozapine discriminative cue by testing selective receptor ligands in rats trained to discriminate a 1.25mg/kg dose of clozapine from vehicle in a two choice drug discrimination task. Full substitution occurred with the 5-HT2A inverse agonist M100907 and the two preferential D4/5-HT2/α1 receptor antagonists Lu 37-114 ((S)-1-(3-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)indolin-1-yl)ethan-1-one) and Lu 37-254 (1-(3-(4-(1H-indol-5-yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one). Partial substitution occurred with the D4 receptor antagonist Lu 38-012 and the α1 adrenoceptor antagonist prazosin. Drugs selective for 5-HT2C, 5-HT6 muscarinic, histamine H1, and benzodiazepine receptors did not substitute for clozapine. The present findings suggest that 5-HT2A inverse agonism and D4 receptor antagonism mediate the discriminative stimulus properties of 1.25mg/kg clozapine in rats, and further confirm that clozapine produces a complex compound discriminative stimulus. PMID:27502027

  15. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  16. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging.

    PubMed

    Tichauer, K M; Diop, M; Elliott, J T; Samkoe, K S; Hasan, T; St Lawrence, K; Pogue, B W

    2014-05-21

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured. PMID:24743262

  17. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging

    NASA Astrophysics Data System (ADS)

    Tichauer, K. M.; Diop, M.; Elliott, J. T.; Samkoe, K. S.; Hasan, T.; St. Lawrence, K.; Pogue, B. W.

    2014-05-01

    Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured.

  18. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    PubMed

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  19. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  20. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice

    PubMed Central

    Willecke, Florian; Yuan, Chujun; Oka, Kazuhiro; Chan, Lawrence; Hu, Yunying; Barnhart, Shelley; Bornfeldt, Karin E.; Goldberg, Ira J.; Fisher, Edward A.

    2015-01-01

    We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ)-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states. PMID:26046657

  1. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis

    SciTech Connect

    Williams, K.J.; Vallabhajosula, S.; Rahman, I.U.; Donnelly, T.M.; Parker, T.S.; Weinrauch, M.; Goldsmith, S.J.

    1988-01-01

    The metabolism of infused /sup 111/In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t/sub 1/2/) for clearance of /sup 111/In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits. By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue sores. Disappearance of excess plasma cholesterol was > 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative ..gamma.. camera imaging, hepatic trapping of /sup 111/In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance. Aortic uptake of /sup 111/In was < 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, the results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia.

  2. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens

    PubMed Central

    Halberstadt, Adam L.; Geyer, Mark A.

    2011-01-01

    Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT2 receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT2A receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT2 and non-5-HT2 receptors. PMID:21256140

  3. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2011-09-01

    Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT(2) receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT(2A) receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT(2) and non-5-HT(2) receptors. PMID:21256140

  4. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men.

    PubMed

    Ahnaou, A; de Boer, P; Lavreysen, H; Huysmans, H; Sinha, V; Raeymaekers, L; Van De Casteele, T; Cid, J M; Van Nueten, L; Macdonald, G J; Kemp, J A; Drinkenburg, W H I M

    2016-04-01

    Alterations in rapid eye movement sleep (REM) have been suggested as valid translational efficacy markers: activation of the metabotropic glutamate receptor 2 (mGluR2) was shown to increase REM latency and to decrease REM duration. The present paper addresses the effects on vigilance states of the mGluR2 positive allosteric modulator (PAM) JNJ-40411813 at different circadian times in rats and after afternoon dosing in humans. Due to its dual mGluR2 PAM/serotonin 2A (5-HT2A) receptor antagonism in rodents, mGlu2R specificity of effects was studied in wild-type (WT) and mGluR2 (-/-) mice. 5-HT2A receptor occupancy was determined in humans using positron emission tomography (PET). Tolerance development was examined in rats after chronic dosing. EEG oscillations and network connectivity were assessed using multi-channel EEG. In rats, JNJ-40411813 increased deep sleep time and latency of REM onset but reduced REM time when administered 2 h after 'lights on' (CT2): this was sustained after chronic dosing. At CT5 similar effects were elicited, at CT10 only deep sleep was enhanced. Withdrawal resulted in baseline values, while re-administration reinstated drug effects. Parieto-occipital cortical slow theta and gamma oscillations were correlated with low locomotion. The specificity of functional response was confirmed in WT but not mGluR2 (-/-) mice. A double-blind, placebo-controlled polysomnographic study in healthy, elderly subjects showed that 500 mg of JNJ-40411813 consistently increased deep sleep time, but had no effect on REM parameters. This deep sleep effect was not explained by 5-HT2A receptor binding, as in the PET study even 700 mg only marginally displaced the tracer. JNJ-40411813 elicited comparable functional responses in rodents and men if circadian time of dosing was taken into account. These findings underscore the translational potential of sleep mechanisms in evaluating mGluR2 therapeutics when administered at the appropriate circadian time. PMID

  5. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue.

    PubMed

    Klotz, J L; Aiken, G E; Johnson, J M; Brown, K R; Bush, L P; Strickland, J R

    2013-09-01

    Pharmacologic profiling of serotonin (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline, 5HT, 5HT2A, and 5HT7 agonists. To determine if 5HT receptor activity of tall fescue alkaloids is affected by grazing endophyte-free (EF), wild-type [Kentucky-31 (KY31)], novel endophyte AR542-infected (MAXQ), or novel endophyte AR584-infected (AR584) tall fescue, contractile responses of lateral saphenous veins biopsied from cattle grazing these different fescue-endophyte combinations were evaluated in presence or absence of antagonists for 5HT2A (ketanserin) or 5HT7 (SB-269970) receptors. Biopsies were conducted over 2 yr on 35 mixed-breed steers (361.5 ± 6.3 kg) grazing EF (n = 12), KY31 (n = 12), MAXQ (n = 6), or AR584 (n = 5) pasture treatments (3 ha) between 84 and 98 d (Yr 1) or 108 to 124 d (Yr 2). Segments (2 to 3 cm) of vein were surgically biopsied, sliced into 2- to 3-mm cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O2/5% CO2; pH = 7.4; 37°C). Veins were exposed to increasing concentrations of 5HT, ergovaline, and ergovaline + 1 × 10(-5) M ketanserin or + 1 × 10(-6) M SB-269970 in Yr 1. In Yr 2, ergotamine and ergocornine were evaluated in presence or absence of 1 × 10(-5) M ketanserin. Contractile response data were normalized to a reference addition of 1 × 10(-4) M norepinephrine. In Yr 1, contractile response to 5HT and ergovaline were least (P < 0.05) in KY31 pastures and the presence of ketanserin greatly reduced (P < 0.05) the response to ergovaline in all pastures. However, presence of SB-269970 did not (P = 0.91) alter contractile response to ergovaline. In Yr 2, there was no difference in contractile response to ergotamine (P = 0.13) or ergocornine (P = 0.99) across pasture treatments, but ketanserin reduced (P < 0.05) the contractile response to

  6. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task

    PubMed Central

    Carli, Mirjana; Invernizzi, Roberto W.

    2014-01-01

    Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders. PMID:24966814

  7. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase.

    PubMed

    Montastruc, François; Palmaro, Aurore; Bagheri, Haleh; Schmitt, Laurent; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse

    2015-10-01

    Pharmacodynamic mechanisms of diabetes induced by antipsychotic drugs remain unclear, while numerous receptors have been suspected to be involved in the genesis of this Adverse Drug Reaction (ADR). We investigated potential relationships between antipsychotics׳ receptor occupancy (serotonin 5-HT1A, 5-HT2A, 5-HT2C, histamine H1, muscarinic M3, adrenergic α1, α2 or dopaminergic D2 D3 occupancies) and reports of diabetes using VigiBase(®), the World Health Organization (WHO) global Individual Case Safety Report (ICSR) database. All ADR reports from 15 first and second generation antipsychotic drugs recorded in VigiBase(®) were extracted. Logistic regression models, completed by disproportionality analysis, were used to determine the associations between antipsychotics׳ receptor occupancy and ICSRs of diabetes on VigiBase(®). During the study period, 94,460 ICSRs involved at least one of the 15 antipsychotics of interest. Diabetes was reported in 1799 (1.9%) patients. Clozapine was the most frequently suspected drug (n=953; 53.0%). A significant and positive association was found between histamine H1, muscarinic M3 and serotonin 5-HT2C, 5-HT2A receptor occupancies and reports of diabetes. A multivariable stepwise regression model showed that only serotonin 5-HT2c (AOR=2.13, CI 95% 1.72-2.64) and histamine H1 (AOR=1.91, CI 95% 1.38-2.64) predicted the risk for diabetes mellitus (p<0.001). Using an original pharmacoepidemiology-pharmacodynamic (PE-PD) approach, our study supports that antipsychotic drugs blocking simultaneously histamine H1 and serotonin 5-HT2C receptors are more frequently associated with diabetes reports in VigiBase(®) than other antipsychotics. These findings should encourage investigation of histamine H1 and serotonin 5-HT2C properties for predicting the risk of glycemic effects in candidate antipsychotics. PMID:26256010

  8. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport.

    PubMed

    Wittmaack, F M; Gåfvels, M E; Bronner, M; Matsuo, H; McCrae, K R; Tomaszewski, J E; Robinson, S L; Strickland, D K; Strauss, J F

    1995-01-01

    The very low density lipoprotein/apolipoprotein-E receptor (VLDLR) is the newest member of the low density lipoprotein receptor (LDLR) family. Very little is known about VLDLR localization and regulation. Immunohistochemical analysis of human placenta with a specific polyclonal antibody detected VLDLR in syncytiotrophoblast and intermediate trophoblast cells. VLDLR transcripts were also localized in these cells by in situ hybridization histochemistry. In addition, VLDLR messenger RNA (mRNA) was detected in villous core endothelial cells and cells appearing to be Hofbauer cells. Northern blot analysis of placenta revealed a 2.6-fold increase in VLDLR mRNA at term compared to that in the first trimester. The regulation of VLDLR expression was studied in JEG-3 and BeWo choriocarcinoma cells, two trophoblast-derived cell lines. Treatment of these cells with 8-bromo-cAMP caused a profound suppression of VLDLR message, whereas LDLR transcripts were increased. Incubation of JEG-3 cells with 25-hydroxycholesterol did not lead to sterol negative feedback on VLDLR gene expression, unlike LDLR mRNA, which declined markedly. Insulin (200 mg/L) up-regulated VLDLR message in JEG-3 cells 2-fold, as did the fibrate hypolipidemic drug, clofibric acid. We conclude that 1) VLDLR is expressed in human placental trophoblast cells in a pattern consistent with a role in placental lipid transport; 2) VLDLR expression is high at term relative to that in the first trimester; and 3) the trophoblast VLDLR is subject to down-regulation by cAMP and up-regulation by insulin and fibrate hypolipidemic drugs. PMID:7828550

  9. Modified Low Density Lipoprotein Stimulates Complement C3 Expression and Secretion via Liver X Receptor and Toll-like Receptor 4 Activation in Human Macrophages*

    PubMed Central

    Mogilenko, Denis A.; Kudriavtsev, Igor V.; Trulioff, Andrey S.; Shavva, Vladimir S.; Dizhe, Ella B.; Missyul, Boris V.; Zhakhov, Alexander V.; Ischenko, Alexander M.; Perevozchikov, Andrej P.; Orlov, Sergey V.

    2012-01-01

    Complement C3 is a pivotal component of three cascades of complement activation. C3 is expressed in human atherosclerotic lesions and is involved in atherogenesis. However, the mechanism of C3 accumulation in atherosclerotic lesions is not well elucidated. We show that acetylated low density lipoprotein and oxidized low density lipoprotein (oxLDL) increase C3 gene expression and protein secretion by human macrophages. Modified LDL (mLDL)-mediated activation of C3 expression mainly depends on liver X receptor (LXR) and partly on Toll-like receptor 4 (TLR4), whereas C3 secretion is increased due to TLR4 activation by mLDL. LXR agonist TO901317 stimulates C3 gene expression in human monocyte-macrophage cells but not in human hepatoma (HepG2) cells. We find LXR-responsive element inside of the promoter region of the human C3 gene, which binds to LXRβ in macrophages but not in HepG2 cells. We show that C3 expression and secretion is decreased in IL-4-treated (M2) and increased in IFNγ/LPS-stimulated (M1) human macrophages as compared with resting macrophages. LXR agonist TO901317 potentiates LPS-induced C3 gene expression and protein secretion in macrophages, whereas oxLDL differently modulates LPS-mediated regulation of C3 in M1 or M2 macrophages. Treatment of human macrophages with anaphylatoxin C3a results in stimulation of C3 transcription and secretion as well as increased oxLDL accumulation and augmented oxLDL-mediated up-regulation of the C3 gene. These data provide a novel mechanism of C3 gene regulation in macrophages and suggest new aspects of cross-talk between mLDL, C3, C3a, and TLR4 during development of atherosclerotic lesions. PMID:22194611

  10. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1

    PubMed Central

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836

  11. Low pH-Triggered Beta-Propeller Switch of the Low-Density Lipoprotein Receptor Assists Rhinovirus Infection ▿

    PubMed Central

    Konecsni, Tuende; Berka, Ursula; Pickl-Herk, Angela; Bilek, Gerhard; Khan, Abdul Ghafoor; Gajdzig, Leszek; Fuchs, Renate; Blaas, Dieter

    2009-01-01

    Minor group human rhinoviruses (HRVs) bind three members of the low-density lipoprotein receptor (LDLR) family: LDLR proper, very-LDLR (VLDLR) and LDLR-related protein (LRP). Whereas ICAM-1, the receptor of major group HRVs actively contributes to viral uncoating, LDLRs are rather considered passive vehicles for cargo delivery to the low-pH environment of endosomes. Since the Tyr-Trp-Thr-Asp β-propeller domain of LDLR has been shown to be involved in the dissociation of bound LDL via intramolecular competition at low pH, we studied whether it also plays a role in HRV infection. Human cell lines deficient in LDLR family proteins are not available. Therefore, we used CHO-ldla7 cells that lack endogenous LDLR. These were stably transfected to express either wild-type (wt) human LDLR or a mutant with a deletion of the β-propeller. When HRV2 was attached to the propeller-negative LDLR, a lower pH was required for conversion to subviral particles than when attached to wt LDLR. This indicates that high-avidity receptor binding maintains the virus in its native conformation. HRV2 internalization directed the mutant LDLR but not wt LDLR to lysosomes, resulting in reduced plasma membrane expression of propeller-negative LDLR. Infection assays using a CHO-adapted HRV2 variant showed a delay in intracellular viral conversion and de novo viral synthesis in cells expressing the truncated LDLR. Our data indicate that the β-propeller attenuates the virus-stabilizing effect of LDLR binding and thereby facilitates RNA release from endosomes, resulting in the enhancement of infection. This is a nice example of a virus exploiting high-avidity multimodule receptor binding with an intrinsic release mechanism. PMID:19706701

  12. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    PubMed

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system. PMID:26598525

  13. Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity.

    PubMed

    Huang, Xu-Feng; Zavitsanou, Katerina; Huang, Xin; Yu, Yinghua; Wang, HongQin; Chen, Feng; Lawrence, Andrew J; Deng, Chao

    2006-12-15

    This study examined the density of dopamine transporter (DAT) and D2 receptors in the brains of chronic high-fat diet-induced obese (cDIO), obese-resistant (cDR) and low-fat-fed (LF) control mice. Significantly decreased DAT densities were observed in cDR mice compared to cDIO and LF mice, primarily in the nucleus accumbens, striatal and hypothalamic regions. D2 receptor density was significantly lower in the rostral part of caudate putamen in cDIO mice compared to cDR and LF mice. PMID:17000016

  14. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    PubMed

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release. PMID:15266551

  15. Low-density lipoprotein receptor genetic polymorphism in chronic hepatitis C virus Egyptian patients affects treatment response

    PubMed Central

    Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal

    2015-01-01

    AIM: To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. METHODS: Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. RESULTS: There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30

  16. Measurement in vivo of dopamine receptor density II: Effect of d-amphetamine on spiroperidol binding

    SciTech Connect

    Friedman, A.M.; De Jesus, O.T.; Woolverton, W.; Dinerstein, R.J.

    1984-01-01

    In the authors continuing studies to measure dopamine (DA) receptors in vivo using the DA antagonist bromospiroperidol (BrSP) and positron emission tomography (PET). The authors have examined the effect of d-amphetamine (d-AMP) on BrSP distribution in primate brain. Using the University of Chicago PETT VI scanner, /sup 76/Br-BrSP was found to localize in the caudate and putamen of anesthetized rhesus monkeys. The maximum level of this drug in these regions was reached at 100 minutes post-injection and remained constant for the next 200 minutes. Levels in the cerebellum, on the other hand, decline steadily after an hour post-injection. This is consistent with the presence of high level of DA receptors in the basal ganglia and low levels in the cerebellum. Preliminary studies showed that the administration of d-AMP (0.5 mg/kg i.v.) resulted in a small but statistically significant decrease in caudate /sup 76/Br-BrSP levels. Since d-AMP is known to release DA in the caudate, these findings are consistent with the competition of released DA for BrSP binding at caudate DA binding sites.

  17. LRP6 Protein Regulates Low Density Lipoprotein (LDL) Receptor-mediated LDL Uptake*

    PubMed Central

    Ye, Zhi-jia; Go, Gwang-Woong; Singh, Rajvir; Liu, Wenzhong; Keramati, Ali Reza; Mani, Arya

    2012-01-01

    Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6R611C mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6WT) and LRP6R611C in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6WT was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6WT forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6R611C. These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels. PMID:22128165

  18. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry.

    PubMed Central

    Multhaupt, H. A.; Gåfvels, M. E.; Kariko, K.; Jin, H.; Arenas-Elliot, C.; Goldman, B. I.; Strauss, J. F.; Angelin, B.; Warhol, M. J.; McCrae, K. R.

    1996-01-01

    The recently cloned very low density lipoprotein (VLDL) receptor binds triglyceride-rich, apolipoprotein-E-containing lipoproteins with high affinity. The observation that VLDL receptor mRNA is abundantly expressed in extracts of tissues such as skeletal muscle and heart, but not liver, has led to the hypothesis that this receptor may facilitate the peripheral uptake of triglyceride-rich lipoproteins. However, little information is available concerning the types of cells that express this receptor in vivo. As expression of the VLDL receptor in the vascular wall might have important implications for the uptake and transport of triglyceride-rich lipoproteins, and perhaps facilitate the development of atherosclerosis in hypertriglyceridemic individuals, we used in situ hybridization and immunohistochemistry to determine whether VLDL receptor mRNA and protein was expressed in human vascular tissue. We observed expression of the receptor by both endothelial and smooth muscle cells within normal arteries and veins, as well as within atherosclerotic plaques. In the latter, the VLDL receptor was also expressed by macrophage-derived foam cells. The widespread distribution of the VLDL receptor in vascular tissue suggests a potentially important role for this receptor in normal and pathophysiological vascular processes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8669483

  19. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  20. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    PubMed

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-01

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6 % success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μm. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. PMID:26990027

  1. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis.

    PubMed Central

    Williams, K J; Vallabhajosula, S; Rahman, I U; Donnelly, T M; Parker, T S; Weinrauch, M; Goldsmith, S J

    1988-01-01

    The metabolism of infused 111In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t1/2) for clearance of 111In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits (means +/- SEM; n = 4). By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue stores. Disappearance of excess plasma cholesterol was greater than 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative gamma camera imaging, hepatic trapping of 111In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance, acquiring 22.0% +/- 1.7% (WHHL) and 16.8% +/- 1.0% (normal of total 111In. Aortic uptake of 111In was less than 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, our results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia. PMID:3422421

  2. Chronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat

    PubMed Central

    Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Ababzadeh, Shima

    2016-01-01

    Background: Overexpression of lectin-like low density lipoprotein (LOX-1) receptor plays an important role in hyperglycemia-induced vascular complications such as atherosclerosis. Based on the beneficial effects of exercise on preventing cardiovascular complications of diabetes, we aimed to examine the protective effects of aerobic exercise on expression of LOX-1 receptor and production of free radicals in the heart of diabetic rats. Methods: Four groups of rats were used: (n = 5 per group): sedentary normal, trained normal, sedentary diabetes and trained diabetes. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg). The exercise protocol was consisted of swimming 30 min/day, 5 days/week for eight weeks. Plasma glucose was evaluated at initiation, weeks 4 and 8 of experiment. At the end of experiment, rats were sacrificed and the heart was removed for determination of nitrate, malondialdehyde, and LOX-1 gene expression. Results: In normal non-diabetic rats, the blood glucose level was <150 mg/dl; however, the induction of diabetes resulted in levels more than >400 mg/dl. Gene expression of LOX-1 was increased in the heart of diabetic rats. Exercise reduced the gene expression of this protein in diabetic states without reducing the blood glucose. Finally, swimming exercise decreased the malondialdehyde and nitrate levels in heart tissue both in control and diabetic rats. Conclusion: Swimming exercise reduces heart expression of the LOX-1 receptor in accompany with reduction of free radicals production. Since these parameters are important in generation of diabetic complications, swimming exercise is a good candidate for reducing these complications. PMID:26432573

  3. FcgammaRIIB inhibits the development of atherosclerosis in low-density lipoprotein receptor-deficient mice.

    PubMed

    Zhao, Ming; Wigren, Maria; Dunér, Pontus; Kolbus, Daniel; Olofsson, Katarina E; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla Nordin

    2010-03-01

    The immune processes associated with atherogenesis have received considerable attention during recent years. IgG FcRs (FcgammaR) are involved in activating the immune system and in maintaining peripheral tolerance. However, the role of the inhibitory IgG receptor FcgammaRIIB in atherosclerosis has not been defined. Bone marrow cells from FcgammaRIIB-deficient mice and C57BL/6 control mice were transplanted to low-density lipoprotein receptor-deficient mice. Atherosclerosis was induced by feeding the recipient mice a high-fat diet for 8 wk and evaluated using Oil Red O staining of the descending aorta at sacrifice. The molecular mechanisms triggering atherosclerosis was studied by examining splenic B and T cells, as well as Th1 and Th2 immune responses using flow cytometry and ELISA. The atherosclerotic lesion area in the descending aorta was ~5-fold larger in mice lacking FcgammaRIIB than in control mice (2.75 +/- 2.57 versus 0.44 +/- 0.42%; p < 0.01). Moreover, the FcgammaRIIB deficiency resulted in an amplified splenocyte proliferative response to Con A stimulation (proliferation index 30.26 +/- 8.81 versus 2.96 +/- 0.81%, p < 0.0001) and an enhanced expression of MHC class II on the B cells (6.65 +/- 0.64 versus 2.33 +/- 0.25%; p < 0.001). In accordance, an enlarged amount of CD25-positive CD4 T cells was found in the spleen (42.74 +/- 4.05 versus 2.45 +/- 0.31%; p < 0.0001). The plasma Ab and cytokine pattern suggested increased Th1 and Th2 immune responses, respectively. These results show that FcgammaRIIB inhibits the development of atherosclerosis in mice. In addition, they indicate that absence of the inhibiting IgG receptor cause disease, depending on an imbalance of activating and inhibiting immune cells. PMID:20097865

  4. Expression of low density lipoprotein receptor-related protein 4 (Lrp4) gene in the mouse germ cells.

    PubMed

    Yamaguchi, Yasuka L; Tanaka, Satomi S; Kasa, Miyuki; Yasuda, Kunio; Tam, Patrick P L; Matsui, Yasuhisa

    2006-08-01

    The low density lipoprotein receptor-related protein 4 gene (Lrp4) was identified by subtractive screening of cDNAs of the migratory primordial germ cells (PGCs) of E8.5-9.5 embryo and E3.5 blastocysts. Lrp4 is expressed in PGCs in the hindgut and the dorsal mesentery of E9.5 embryos, and in germ cells in the genital ridges of male and female E10.5-13.5 embryos. Lrp4 is also expressed in spermatogonia of the neonatal and adult testes and in the immature oocytes and follicular cells of the adult ovary. The absence of Lrp4 expression in the blastocyst, embryonic stem cells and embryonic germ cells suggests the Lrp4 is a molecular marker that distinguishes the germ cells from embryo-derived pluripotent stem cells. PMID:16434236

  5. beta-Hydroxyaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin.

    PubMed

    Stenflo, J; Ohlin, A K; Owen, W G; Schneider, W J

    1988-01-01

    All of the vitamin K-dependent plasma proteins with domains that are homologous to the epidermal growth factor (EGF) precursor have 1 hydroxylated aspartic acid residue in the NH2-terminal EGF-homology region. In addition, protein S has 1 hydroxylated asparagine residue in each of the three COOH-terminal EGF-homology regions. All of these proteins have been found to have the amino acid sequence, CX(D or N)XXXX(F or Y)XCXC (corresponding to residues 20 to 33 in EGF), where the Asp or Asn residue is hydroxylated. This sequence also appears in two of the three EGF-homology regions of the human low density lipoprotein receptor and in two of the six EGF-homology regions of bovine thrombomodulin so far identified, suggesting that they may have the modified amino acid. We have now identified beta-hydroxyaspartic acid in acid hydrolysates of both these proteins. PMID:2826439

  6. Elucidating the structures and cooperative binding mechanism of cesium salts to the multitopic ion-pair receptor through density functional theory calculations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Velmurugan, Gunasekaran; Venuvanalingam, Ponnambalam

    2015-09-21

    Designing new and innovative receptors for the selective binding of radionuclides is central to nuclear waste management processes. Recently, a new multi-topic ion-pair receptor was reported which binds a variety of cesium salts. Due to the large size of the receptor, quantum chemical calculations on the full ion-pair receptors are restricted, thus the binding mechanisms are not well understood at the molecular level. We have assessed the binding strengths of various cesium salts to the recently synthesized multi-topic ion-pair receptor molecule using density functional theory based calculations. Our calculations predict that the binding of cesium salts to the receptor predominantly occurs via the cooperative binding mechanism. Cesium and the anion synergistically assist each other to bind favorably inside the receptor. Energy decomposition analysis on the ion-pair complexes shows that the Cs salts are bound to the receptor mainly through electrostatic interactions with small contribution from covalent interactions for large ionic radius anions. Further, QTAIM analysis characterizes the importance of different inter-molecular interactions between the ions and the receptor inside the ion-pair complexes. The role of the crystallographic solvent molecule contributes significantly by ~10 kcal mol(-1) to the overall binding affinities which is quite significant. Further, unlike the recent molecular mechanics (MM) calculations, our calculated binding affinity trends for various Cs ion-pair complexes (CsF, CsCl and CsNO3) are now in excellent agreement with the experimental binding affinity trends. PMID:26227949

  7. Endogenous Androgen Deficiency Enhances Diet-Induced Hypercholesterolemia and Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

    PubMed Central

    Hatch, Nicholas W.; Srodulski, Sarah J.; Chan, Huei-Wei; Zhang, Xuan; Tannock, Lisa R.; King, Victoria L.

    2012-01-01

    Background Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. Objective We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. Methods Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. Results Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. Conclusions These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in lowdensity lipoprotein receptor-deficient mice in response to a low-fat diet. PMID:22981166

  8. Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake.

    PubMed

    Dong, Du-Juan; Liu, Wen; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2013-04-01

    During the metamorphic stage of holometabolous insects, the biosynthetic precursors needed for the synthesis of a large number of adult proteins are acquired from the selective absorption of storage proteins. The very-high-density lipoprotein (VHDL), a non-hexameric storage protein, is consumed by the fat body from the hemolymph through VHDL receptor (VHDL-R)-mediated endocytosis. However, the mechanism of the uptake of VHDL by a VHDL-R remains unclear. In this study, a VHDL-R from Helicoverpa armigera was found to be involved in 20E-regulated VHDL uptake through the regulation of steroid hormone 20-hydroxyecdysone (20E). The transcripts of VHDL-R were detected mainly in the fat body and integument during the wandering stage. The transcription of VHDL-R was upregulated by 20E through the ecdysteroid receptor (EcRB1) and Ultraspiracle (USP1). In addition, 20E stimulates the phosphorylation of VHDL-R through protein kinase C for ligand binding. VHDL-R knockdown in larvae results the inhibition of development to adulthood. These data imply that 20E regulates VHDL-R on both transcriptional and posttranslational levels for VHDL absorption. PMID:23416133

  9. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver.

    PubMed Central

    Lund, H; Takahashi, K; Hamilton, R L; Havel, R J

    1989-01-01

    The high affinity of 45Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellular distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. Weaker ligand-blotting properties and an extraordinary susceptibility to proteolysis most likely contribute to the difficulty of detecting LRP in conventional assays for lipoprotein receptors. Our data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism. Images PMID:2594771

  10. Effect of alcohol on hepatic receptor of high density lipoproteins (HDL)

    SciTech Connect

    Lin, R.C.; Miller, B.M. V.A. Medical Center, Indianapolis, IN )

    1991-03-11

    Moderate alcohol intake has been shown to increase HDL cholesterol and proteins. The seemingly protective effect' of moderate alcohol drinking against cardiovascular diseases has been attributed to an increase in serum HDL. In this study, the authors show that a receptor for HDL is present in rat liver. Rat liver membrane was prepared by stepwise ultracentrifugation. Apo Al was iodinated using {sup 125}I-NaI and IODO-beads. HDL was labeled by incubating with {sup 125}I-apo Al then refloated be centrifugation. Binding of {sup 125}I-HDL to rat liver membrane reached equilibrium by 2-3 h and was saturable at 37C. The binding was inhibited 80% by excess unlabeled HDL, but was inhibited only 25% by excess LDL. It could also be inhibited by preincubating HDL with anti-apo Al or anti-apo E antisera but not with anti-apo AIV or control sera. The binding affinity of HDL to the liver membrane of rats fed alcohol for 5 wk was 50% that of their pair-fed controls. Thus a decrease in the binding of HDL to liver membrane due to alcohol-drinking may result in a slower clearance of HDL by the liver and consequently a higher HDL concentration in the serum.

  11. Quantitative autoradiographic analysis of /sup 125/I-pindolol binding in Fischer 344 rat brain: changes in beta-adrenergic receptor density with aging

    SciTech Connect

    Miller, J.A.; Zahniser, N.R.

    1988-05-01

    Age-related changes in beta-adrenergic receptor density in Fischer 344 rat brain were examined using in vitro /sup 125/I-pindolol (IPIN) binding and quantitative autoradiographic analysis. Localized protein concentrations were determined using a new quantitative histological technique, and these were used to normalize the densities of receptors. Saturation binding studies in brain sections revealed 40-50% decreases in beta-adrenergic receptor density in the thalamus of 23-25-month-old and the cerebellum and brainstem of both 18-19-month-old and 23-25-month-old compared to 4-6-month-old rats. The loss of cerebellar beta-adrenergic receptors may be correlated with reports of deficits in sensitivity to beta-adrenergic-mediated transmission in the cerebellum of aged rats. No changes in specific IPIN binding with age were observed in rat cortex or hippocampus. In all areas examined no age-related differences were observed in receptor affinity. No changes in protein concentration were found in any of the areas examined in the different aged animals. These results demonstrate a region-specific loss of beta-adrenergic receptors with age in the brain of Fischer 344 rats.

  12. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation.

    PubMed

    Lilly, Jacob L; Berron, Brad J

    2016-06-01

    Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies. PMID:27206735

  13. Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia

    PubMed Central

    Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon

    2015-01-01

    Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient. PMID:27336043

  14. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  15. The negative correlation between thyrotropin receptor-stimulating antibodies and bone mineral density in postmenopausal patients with Graves' disease.

    PubMed

    Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen

    2013-06-01

    Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment. PMID:23612147

  16. Characterization of the 5-hydroxytryptamine receptors mediating contraction in the pig isolated intravesical ureter

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Simonsen, Ulf; Recio, Paz; Rivera, Luis; Martínez, Ana Cristina; García-Sacristán, Albino; Orensanz, Luis M; Prieto, Dolores

    2003-01-01

    This study was designed to investigate the effect of 5-hydroxytryptamine (5-HT) and to characterize the 5-HT receptors involved in 5-HT responses in the pig intravesical ureter. 5-HT (0.01–10 μM) concentration-dependently increased the tone of intravesical ureteral strips, whereas the increases in phasic contractions were concentration-independent. The 5-HT2 receptor agonist α-methyl 5-HT, mimicked the effect on tone whereas weak or no response was obtained with 5-CT, 8-OH-DPAT, m-chlorophenylbiguanide and RS 67333, 5-HT1, 5-HT1A, 5-HT3 and 5-HT4 receptor agonists, respectively. 5-HT did not induce relaxation of U46619-contracted ureteral preparations. Pargyline (100 μM), a monoaminooxidase A/B activity inhibitor, produced leftward displacements of the concentration-response curves for 5-HT. 5-HT-induced tone was reduced by the 5-HT2 and 5-HT2A receptor antagonists ritanserine (0.1 μM) and spiperone (0.2 μM), respectively. However, 5-HT contraction was not antagonized by cyanopindolol (2 μM), SDZ–SER 082 (1 μM), Y-25130 (1 μM) and GR 113808 (0.1 μM), which are respectively, 5-HT1A/1B, 5-HT2B/2C, 5-HT3, and 5-HT4 selective receptor antagonists. Removal of the urothelium did not modify 5-HT-induced contractions. Blockade of neuronal voltage-activated sodium channels, α-adrenergic receptors and adrenergic neurotransmission with tetrodotoxin (1 μM), phentolamine (0.3 μM) and guanethidine (10 μM), respectively, reduced the contractions to 5-HT. However, physostigmine (1 μM), atropine (0.1 μM) and suramin (30 μM), inhibitors of cholinesterase activity, muscarinic- and purinergic P2-receptors, respectively, failed to modify the contractions to 5-HT. These results suggest that 5-HT increases the tone of the pig intravesical ureter through 5-HT2A receptors located at the smooth muscle. Part of the 5-HT contraction is indirectly mediated via noradrenaline release from sympathetic nerves. PMID:12522083

  17. Electroencephalographic Power Spectral Density Profile of the Orexin Receptor Antagonist Suvorexant in Patients with Primary Insomnia and Healthy Subjects

    PubMed Central

    Ma, Junshui; Svetnik, Vladimir; Snyder, Ellen; Lines, Christopher; Roth, Thomas; Herring, W. Joseph

    2014-01-01

    Study Objectives: Suvorexant, an orexin receptor antagonist, improves sleep in healthy subjects (HS) and patients with insomnia. We compared the electroencephalographic (EEG) power spectral density (PSD) profile of suvorexant with placebo using data from a phase 2 trial in patients with insomnia. We also compared suvorexant's PSD profile with the profiles of other insomnia treatments using data from 3 HS studies Design: Phase 2 trial—randomized, double-blind, two-period (4 w per period) crossover. HS studies—randomized, double-blind, crossover. Setting: Sleep laboratories. Participants: Insomnia patients (n = 229) or HS (n = 124). Interventions: Phase 2 trial—suvorexant 10 mg, 20 mg, 40 mg, 80 mg, placebo; HS study 1—suvorexant 10 mg, 50 mg, placebo; HS study 2— gaboxadol 15 mg, zolpidem 10 mg, placebo; HS study 3—trazodone 150 mg, placebo. Measurements and Results: The PSD of the EEG signal at 1–32 Hz of each PSG recording during nonrapid eye movement (NREM) and rapid eye movement (REM) sleep were calculated. The day 1 and day 28 PSD profiles of suvorexant at all four doses during NREM and REM sleep in patients with insomnia were generally flat and close to 1.0 (placebo) at all frequencies. The day 1 PSD profile of suvorexant in HS was similar to that in insomnia patients. In contrast, the other three drugs had distinct PSD profiles in HS that differed from each other. Conclusions: Suvorexant at clinically effective doses had limited effects on power spectral density compared with placebo in healthy subjects and in patients with insomnia, in contrast to the three comparison insomnia treatments. These findings suggest the possibility that antagonism of the orexin pathway might lead to improvements in sleep without major changes in the patient's neurophysiology as assessed by electroencephalographic. Citation: Ma J, Svetnik V, Snyder E, Lines C, Roth T, Herring WJ. Electroencephalographic power spectral density profile of the orexin receptor antagonist

  18. ANTIDEPRESSANT-LIKE EFFECTS OF LOW KETAMINE DOSE IS ASSOCIATED WITH INCREASED HIPPOCAMPAL AMPA/NMDA RECEPTOR DENSITY RATIO IN FEMALE WISTAR-KYOTO RATS

    PubMed Central

    Tizabi, Yousef; Bhatti, Babur H; Manaye, Kebreten F; Das, Jharna R; Akinfiresoye, Luli

    2012-01-01

    Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate NMDA receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of AMPA receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. Adult female WKY rats and their control Wistar rats were subjected to acute and chronic ketamine doses and their locomotor activity (LMA) and immobility in the forced swim test (FST) were evaluated. Hippocampal AMPA and NMDA receptor densities were also measured following a chronic ketamine dose. Ketamine, both acutely (0.5–5.0 mg/kg ip) and chronically (0.5–2.5 mg/kg daily for 10 days) resulted in a dose-dependent and prolonged decrease in immobility in the FST in WKY rats only, suggesting an antidepressant-like effect in this model. Chronic treatment with an effective dose of ketamine also resulted in an increase in AMPA/NMDA receptor density ratio in the hippocampus of WKY rats. LMA was not affected by any ketamine treatment in either strain. These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression. PMID:22521815

  19. Lipoprotein receptors in copper-deficient rats: high density lipoprotein binding to liver membranes

    SciTech Connect

    Hassel, C.A.; Lei, K.Y.; Marchello, J.A.

    1986-03-05

    In copper-deficient rats, the observed hyperlipoproteinemia was mainly due to the elevation in high density lipoproteins (HDL). This study was designed to determine whether an impairment in the binding of HDL to liver membrane is responsible for the hyperlipoproteinemia. Sixty male Sprague-Dawley rats were randomly divided into 2 treatments, namely copper (Cu) deficient and adequate (less than 1 and 8 mg Cu/kg of diet). After 8 weeks, plasma, heart and liver tissues were obtained. Reduction in liver Cu content and elevation in heart to body weight ratio and plasma cholesterol confirmed that rats fed the test diet were Cu-deficient. Plasma HDL isolated from both Cu-deficient and control rats were iodinated and bound to liver membranes prepared from rats of each treatment. Binding of /sup 125/I-HDL was competitively inhibited by unlabelled rat HDL from both treatments, but not by human LDL. Scatchard analysis of specific binding data showed that maximal /sup 125/I-HDL binding (per mg membrane protein) to membranes prepared from Cu-deficient rats was not lower than controls. Furthermore, the amount of /sup 125/I-HDL from deficient rats specifically bound to liver membranes prepared from either treatment was not less than the amount of /sup 125/I-HDL from control rats bound to the same membranes. The data suggest that the hyperlipoproteinemia in Cu-deficient rats may not have resulted from a decrease in the number of hepatic HDL binding sites.

  20. Gamma oscillations in V1 are correlated with GABAA receptor density: A multi-modal MEG and Flumazenil-PET study

    PubMed Central

    Kujala, Jan; Jung, Julien; Bouvard, Sandrine; Lecaignard, Françoise; Lothe, Amélie; Bouet, Romain; Ciumas, Carolina; Ryvlin, Philippe; Jerbi, Karim

    2015-01-01

    High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic inhibition. In humans, search for evidence linking total GABA concentration to gamma oscillations has led to promising -but also to partly diverging- observations. Here, we provide the first evidence of a direct relationship between the density of GABAA receptors and gamma oscillatory gamma responses in human primary visual cortex (V1). By combining Flumazenil-PET (to measure resting-levels of GABAA receptor density) and MEG (to measure visually-induced gamma oscillations), we found that GABAA receptor densities correlated positively with the frequency and negatively with amplitude of visually-induced gamma oscillations in V1. Our findings demonstrate that gamma-band response profiles of primary visual cortex across healthy individuals are shaped by GABAA-receptor-mediated inhibitory neurotransmission. These results bridge the gap with in-vitro and animal studies and may have future clinical implications given that altered GABAergic function, including dysregulation of GABAA receptors, has been related to psychiatric disorders including schizophrenia and depression. PMID:26572733

  1. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice

    PubMed Central

    2012-01-01

    Background Periodontal disease is suggested to increase the risk of atherothrombotic disease by inducing dyslipidemia. Recently, we demonstrated that proprotein convertase subtilisin/kexin type 9 (PCSK9), which is known to play a critical role in the regulation of circulating low-density lipoprotein (LDL) cholesterol levels, is elevated in periodontitis patients. However, the underlying mechanisms of elevation of PCSK9 in periodontitis patients are largely unknown. Here, we explored whether Porphyromonas gingivalis, a representative periodontopathic bacterium, -induced inflammatory response regulates serum PCSK9 and cholesterol levels using animal models. Methods We infected C57BL/6 mice intraperitoneally with Porphyromonas gingivalis, a representative strain of periodontopathic bacteria, and evaluated serum PCSK9 levels and the serum lipid profile. PCSK9 and LDL receptor (LDLR) gene and protein expression, as well as liver X receptors (Lxrs), inducible degrader of the LDLR (Idol), and sterol regulatory element binding transcription factor (Srebf)2 gene expression, were examined in the liver. Results P. gingivalis infection induced a significant elevation of serum PCSK9 levels and a concomitant elevation of total and LDL cholesterol compared with sham-infected mice. The LDL cholesterol levels were significantly correlated with PCSK9 levels. Expression of the Pcsk9, Ldlr, and Srebf2 genes was upregulated in the livers of the P. gingivalis-infected mice compared with the sham-infected mice. Although Pcsk9 gene expression is known to be positively regulated by sterol regulatory element binding protein (SREBP)2 (human homologue of Srebf2), whereas Srebf2 is negatively regulated by cholesterol, the elevated expression of Srebf2 found in the infected mice is thought to be mediated by P. gingivalis infection. Conclusions P. gingivalis infection upregulates PCSK9 production via upregulation of Srebf2, independent of cholesterol levels. Further studies are required to

  2. Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice.

    PubMed

    Lips, Katrin Susanne; Kneffel, Mathias; Willscheid, Fee; Mathies, Frank Martin; Kampschulte, Marian; Hartmann, Sonja; Panzer, Imke; Dürselen, Lutz; Heiss, Christian; Kauschke, Vivien

    2015-11-01

    High frequency of osteoporosis is found in postmenopausal women where several molecular components were identified to be involved in bone loss that subsequently leads to an increased fracture risk. Bone loss has already been determined in male mice with gene deficiency of muscarinic acetylcholine receptor M3 (M3R-KO). Here we asked whether bone properties of female 16-week old M3R-KO present similarities to osteoporotic bone loss by means of biomechanical, radiological, electron microscopic, cell- and molecular biological methods. Reduced biomechanical strength of M3R-KO correlated with cortical thickness and decreased bone mineral density (BMD). Femur and vertebrae of M3R-KO demonstrated a declined trabecular bone volume, surface, and a higher trabecular pattern factor and structure model index (SMI) compared to wild type (WT) mice. In M3R-KO, the number of osteoclasts as well as the cathepsin K mRNA expression was increased. Osteoclasts of M3R-KO showed an estimated increase in cytoplasmic vesicles. Further, histomorphometrical analysis revealed up-regulation of alkaline phosphatase. Osteoblasts and osteocytes showed a swollen cytoplasm with an estimated increase in the amount of rough endoplasmatic reticulum and in case of osteocytes a reduced pericellular space. Thus, current results on bone properties of 16-week old female M3R-KO are related to postmenopausal osteoporotic phenotype. Stimulation and up-regulation of muscarinic acetylcholine receptor subtype M3 expression in osteoblasts might be a possible new option for prevention and therapy of osteoporotic fractures. Pharmacological interventions and the risk of side effects have to be determined in upcoming studies. PMID:26002583

  3. Age, Sex, and Reproductive Hormone Effects on Brain Serotonin-1A and Serotonin-2A Receptor Binding in a Healthy Population

    PubMed Central

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-01-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20–80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [11C]WAY100635 and [18F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (VT) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age2, sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004–0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05–0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03–0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  4. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population.

    PubMed

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-12-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20-80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [(11)C]WAY100635 and [(18)F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (V(T)) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age(2), sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004-0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05-0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03-0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  5. Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice

    PubMed Central

    Wang, Jing; Sjöberg, Sara; Tia, Viviane; Secco, Blandine; Chen, Han; Yang, Min; Sukhova, Galina K.; Shi, Guo-Ping

    2013-01-01

    Mast cells (MCs) contribute to atherogenesis by releasing pro-inflammatory mediators to activate vascular cells and other inflammatory cells. This study examined whether MC activation or stabilization affects diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr−/−) mice. When Ldlr−/− mice consumed an atherogenic diet for 3 or 6 months, MC activation with compound 48/80 (C48/80) increased aortic arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels, whereas MC stabilization with cromolyn reduced these parameters. There were significant differences in arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels between C48/80-treated and cromolyn-treated mice. To examine a therapeutic application of cromolyn in atherosclerosis, we fed Ldlr−/− mice an atherogenic diet for 3 months followed by giving mice cromolyn for additional 3 months. Cromolyn did not affect aortic arch intima area, but significantly reduced lipid deposition in the thoracic-abdominal aortas. In aortic arches, however, cromolyn treatment significantly reduced lesion contents of Mac-3+ macrophages, CD4+ T cells, activated MCs, and lesion cell proliferation. While plasma total cholesterol and LDL levels increased and high-density lipoprotein (HDL) levels decreased from 3 months to 6 months of an atherogenic diet, cromolyn treatment decreased significantly plasma total cholesterol, LDL, and triglyceride levels and increased HDL levels above those of 3-month time point. These observations demonstrate that MC stabilization reduces lesion inflammation, ameliorates plasma lipid profiles, and may serve as a potential therapy for this cardiovascular disease. PMID:23880180

  6. Association between estrogen receptor alpha gene polymorphisms and bone mineral density in Polish female patients with Graves' disease.

    PubMed

    Ignaszak-Szczepaniak, Magdalena; Horst-Sikorska, Wanda; Dytfeld, Joanna; Gowin, Ewelina; Słomski, Ryszard; Stajgis, Marek

    2011-01-01

    Graves' (GD) hyperthyroidism leads to reduced bone mineral density (BMD) accompanied by accelerated bone turnover. Ample studies have identified association between estrogen receptor (ESR1) gene polymorphism and decreased BMD and osteoporosis. In contrast, number of publications that link ESR1, BMD and Graves' disease is limited. The purpose of this study was to identify the association between ESR1 polymorphisms and BMD in premenopausal women with GD and to determine whether ESR1 polymorphic variants can predispose to GD. The study included 75 women aged 23-46 years with GD and 163 healthy controls. BMD was measured at lumbar spine and femoral neck. We investigated two SNPs in the ESR1 gene and analyzed genetic variants in the form of haplotypes reconstructed by statistical method. Three out of four possible haplotypes of the PvuII and XbaI restriction fragment length polymorphisms were found in GD patients: px (55.3 %), PX (33.3 %) and Px (11.4 %). Women homozygous for xx of XbaI and for pp of PvuII had the lowest BMD at lumbar spine. Moreover, the px haplotype predisposed to reduced lumbar BMD. No associations were observed for femoral neck BMD. No statistically significant relationship were found between ESR1 polymorphisms or their haplotypes and GD. These results indicate that the PvuII and the XbaI polymorphisms of ESR1 gene are associated with bone mineral density in premenopausal women with GD and may help to estimate the risk of bone loss particularly at lumbar spine. However, none of the ESR1 gene alleles predict the risk of GD in Polish female patients. PMID:21423915

  7. Substituted methcathinones differ in transporter and receptor interactions.

    PubMed

    Eshleman, Amy J; Wolfrum, Katherine M; Hatfield, Meagan G; Johnson, Robert A; Murphy, Kevin V; Janowsky, Aaron

    2013-06-15

    The use of synthetic methcathinones, components of "bath salts," is a world-wide health concern. These compounds, structurally similar to methamphetamine (METH) and 3,4-methylendioxymethamphetamine (MDMA), cause tachycardia, hallucinations and psychosis. We hypothesized that these potentially neurotoxic and abused compounds display differences in their transporter and receptor interactions as compared to amphetamine counterparts. 3,4-Methylenedioxypyrovalerone and naphyrone had high affinity for radioligand binding sites on recombinant human dopamine (hDAT), serotonin (hSERT) and norepinephrine (hNET) transporters, potently inhibited [³H]neurotransmitter uptake, and, like cocaine, did not induce transporter-mediated release. Butylone was a lower affinity uptake inhibitor. In contrast, 4-fluoromethcathinone, mephedrone and methylone had higher inhibitory potency at uptake compared to binding and generally induced release of preloaded [³H]neurotransmitter from hDAT, hSERT and hNET (highest potency at hNET), and thus are transporter substrates, similar to METH and MDMA. At hNET, 4-fluoromethcathinone was a more efficacious releaser than METH. These substituted methcathinones had low uptake inhibitory potency and low efficacy at inducing release via human vesicular monoamine transporters (hVMAT2). These compounds were low potency (1) h5-HT(1A) receptor partial agonists, (2) h5-HT(2A) receptor antagonists, (3) weak h5-HT(2C) receptor antagonists. This is the first report on aspects of substituted methcathinone efficacies at serotonin (5-HT) receptors and in superfusion release assays. Additionally, the drugs had no affinity for dopamine receptors, and high-nanomolar to mid-micromolar affinity for hSigma1 receptors. Thus, direct interactions with hVMAT2 and serotonin, dopamine, and hSigma1 receptors may not explain psychoactive effects. The primary mechanisms of action may be as inhibitors or substrates of DAT, SERT and NET. PMID:23583454

  8. Substituted methcathinones differ in transporter and receptor interactions

    PubMed Central

    Eshleman, Amy J; Wolfrum, Katherine M; Hatfield, Meagan G; Johnson, Robert A; Murphy, Kevin V; Janowsky, Aaron

    2013-01-01

    The use of synthetic methcathinones, components of “bath salts,” is a world-wide health concern. These compounds, structurally similar to methamphetamine (METH) and 3,4-methylendioxymethamphetamine (MDMA), cause tachycardia, hallucinations and psychosis. We hypothesized that these potentially neurotoxic and abused compounds display differences in their transporter and receptor interactions as compared to amphetamine counterparts. 3,4-Methylenedioxypyrovalerone and naphyrone had high affinity for radioligand binding sites on recombinant human dopamine (hDAT), serotonin (hSERT) and norepinephrine (hNET) transporters, potently inhibited [3H]neurotransmitter uptake, and, like cocaine, did not induce transporter-mediated release. Butylone was a lower affinity uptake inhibitor. In contrast, 4-fluoromethcathinone, mephedrone and methylone had higher inhibitory potency at uptake compared to binding and generally induced release of preloaded [3H]neurotransmitter from hDAT, hSERT and hNET (highest potency at hNET), and thus are transporter substrates, similar to METH and MDMA. At hNET, 4-fluoromethcathinone was a more efficacious releaser than METH. These substituted methcathinones had low uptake inhibitory potency and low efficacy at inducing release via human vesicular monoamine transporters (hVMAT2). These compounds were low potency 1) h5-HT1A receptor partial agonists, 2) h5-HT2A receptor antagonists, 3) weak h5-HT2C receptor antagonists. This is the first report on aspects of substituted methcathinone efficacies at serotonin (5-HT) receptors and in superfusion release assays. Additionally, the drugs had no affinity for dopamine receptors, and high- mid-micromolar affinity for hSigma1 receptors. Thus, direct interactions with hVMAT2 and serotonin, dopamine, and hSigma1 receptors may not explain psychoactive effects. The primary mechanisms of action may be as inhibitors or substrates of DAT, SERT and NET. PMID:23583454

  9. Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury

    PubMed Central

    Zhang, Yang; Ma, Kun Ling; Ruan, Xiong Zhong; Liu, Bi Cheng

    2016-01-01

    The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprotein convertase subtilisin/kexin type 9 (PCSK9) in posttranscriptional level. The dysregulation of LDLR expression results in abnormal lipid accumulation in cells and tissues, such as vascular smooth muscle cells, hepatic cells, renal mesangial cells, renal tubular cells and podocytes. It has been demonstrated that inflammation, renin-angiotensin system (RAS) activation, and hyperglycemia induce the disruption of LDLR pathway, which might contribute to lipid disorder-mediated organ injury (atherosclerosis, non-alcoholic fatty liver disease, kidney fibrosis, etc). The mammalian target of rapamycin (mTOR) pathway is a critical mediator in the disruption of LDLR pathway caused by pathogenic factors. The mTOR complex1 activation upregulates LDLR expression at the transcriptional and posttranscriptional levels, consequently resulting in lipid deposition. This paper mainly reviews the mechanisms for the dysregulation of LDLR pathway and its roles in lipid disorder-mediated organ injury under various pathogenic conditions. Understanding these mechanisms leading to the abnormality of LDLR expression contributes to find potential new drug targets in lipid disorder-mediated diseases. PMID:27019638

  10. Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2.

    PubMed

    Chen, Y; Hughes-Fulford, M

    2001-01-01

    The low-density lipoprotein receptor (LDLR) pathway provides cells with essential fatty acids for prostaglandin E2 (PGE2) synthesis. Regulation of LDLR expression by LDL was compared between the human normal and cancer prostate cells using semi-quantitative RT-PCR and LDL uptake assays. LDLR mRNA expression and LDL uptake by LDLR were down-regulated in the presence of exogenous LDL or whole serum in the normal prostate cells, but not in the prostate cancer cells. Addition of exogenous cholesterol down-regulated both LDLR and a potent regulator of the ldlr promoter, sterol regulatory element binding protein 2 (SREBP2), in normal cells but not in cancer cells. PGE2 synthesis in prostate cancer cells was significantly increased in response to LDL. Our study suggests that over-production of LDLR is an important mechanism in cancer cells for obtaining more essential fatty acids through LDLR endocytosis, allowing increased synthesis of prostaglandins, which subsequently stimulate cell growth. The data also suggest that the sterol regulatory element and SREBP2 play a role in the loss of sterol feedback regulation in cancer cells. PMID:11149418

  11. Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans

    PubMed Central

    Ozcelik, Tayfun; Akarsu, Nurten; Uz, Elif; Caglayan, Safak; Gulsuner, Suleyman; Onat, Onur Emre; Tan, Meliha; Tan, Uner

    2008-01-01

    Quadrupedal gait in humans, also known as Unertan syndrome, is a rare phenotype associated with dysarthric speech, mental retardation, and varying degrees of cerebrocerebellar hypoplasia. Four large consanguineous kindreds from Turkey manifest this phenotype. In two families (A and D), shared homozygosity among affected relatives mapped the trait to a 1.3-Mb region of chromosome 9p24. This genomic region includes the VLDLR gene, which encodes the very low-density lipoprotein receptor, a component of the reelin signaling pathway involved in neuroblast migration in the cerebral cortex and cerebellum. Sequence analysis of VLDLR revealed nonsense mutation R257X in family A and single-nucleotide deletion c2339delT in family D. Both these mutations are predicted to lead to truncated proteins lacking transmembrane and signaling domains. In two other families (B and C), the phenotype is not linked to chromosome 9p. Our data indicate that mutations in VLDLR impair cerebrocerebellar function, conferring in these families a dramatic influence on gait, and that hereditary disorders associated with quadrupedal gait in humans are genetically heterogeneous. PMID:18326629

  12. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women

    PubMed Central

    Rodriguez-Velasco, Francisco J.; Vera, Vicente; Lavado-Garcia, Jesus M.; Fernandez, Pilar

    2015-01-01

    Osteoporosis is a polygenic disorder that is determined by the effects of several genes, each with relatively modest effects on bone mass. The aim of this study was to determine whether the vitamin D receptor single nucleotide polymorphism BsmI is associated with bone mineral density (BMD) in Spanish postmenopausal women. A total of 210 unrelated healthy postmenopausal women aged 60 ± 8 years were genotyped using TaqMan® SNP Genotyping Assays. Lumbar and femoral BMD were determined by dual-energy X-ray absorptiometry (DEXA). Daily calcium and vitamin D intake were determined by a food questionnaire. No differences were found in the femoral neck, trochanter, Ward’s Triangle, L2, L3, L4, L2-L4, or between the femoral neck and total hip BMD after further adjustment for potential confounding factors (P > 0.05) (age, BMI, years since menopause and daily calcium intake). The BsmI polymorphism in the VDR gene was not associated with BMD in Spanish postmenopausal women. PMID:26157644

  13. Impairment of Nitrergic System and Delayed Gastric Emptying in Low Density Lipoprotein Receptor (LDLR) Deficient Female Mice

    PubMed Central

    Gangula, Pandu R.; Chinnathambi, Vijayakumar; Hale, Ashley B.; Mukhopadhyay, Sutapa; Channon, Keith M.; Ravella, Kalpana

    2011-01-01

    Background In the current study, we have investigated whether low density lipoprotein receptor knockout mice (LDLR-KO), moderate oxidative stress model and cholesteremia burden display gastroparesis and if so whether nitrergic system is involved in this setting. In addition, we have investigated if sepiapterin (SEP) supplementation attenuated impaired nitrergic system and delayed gastric emptying. Methods Gastric emptying and nitrergic relaxation were measured in overnight fasting mice. nNOSα dimerization, anti-oxidant markers such as Nrf2, GCLM, GCLC, HO-1, catalase (CAT) and superoxide dismutase (SOD1) were measured using standard methods. Biopterin levels and intestinal transit time were measured using HPLC and dye migration assay, respectively. Wild type (WT) and LDLR-KO were supplemented with SEP. Key Results In LDLR null stomachs, 1) significant reduction in rate of gastric emptying, gastric pyloric and fundus nitrergic relaxation & nNOSα dimerization, 2) elevated oxidized biopterins and reduced ratio of BH4/BH2+B, 3) reduced Nrf2 and GCLC protein expression & no change in GCLM, HO-1, Cat, Sod1 and 4) accelerated small intestinal motility were noticed. Supplementation of SEP restored delayed gastric emptying, impaired pyloric and fundus nitrergic relaxation with restoration of nNOS dimerization and nNOS expression. Conclusions and Inferences This novel data suggests that hyperlipidemia and/or suppression of selective antioxidants may be a potential cause of developing gastroparesis in diabetic patients. PMID:21414103

  14. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    PubMed

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism. PMID:26921684

  15. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    PubMed Central

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  16. Characterization and purification of proteins which bind high-density lipoprotein. A putative cell-surface receptor.

    PubMed Central

    Bond, H M; Morrone, G; Venuta, S; Howell, K E

    1991-01-01

    High-density lipoprotein (HDL) is shown by ligand blotting to bind membrane-associated polypeptides with sizes of 60, 100 and 210 kDa. Binding was concentration-dependent and competed by excess unlabelled HDL. All the major apolipoproteins of HDL, apoA-I, apoA-II and apoA-IV, bound independently. The 100 kDa and 210 kDa HDL-binding activities were purified from membranes of Hep3B tumour cells by ion-exchange chromatography and gel filtration. The binding activities at 100 kDa and 210 kDa co-purified. After treatment with disulphide-reducing reagent, the 210 kDa band was no longer present and an increase was observed in the amount and binding ability of the 100 kDa polypeptide. The 100 kDa binding protein labelled at the cell surface with 125I could be immunoprecipitated after cross-linking to cell-surface-bound HDL. It is proposed that this HDL-binding activity, a putative cell-surface receptor for HDL, exists totally or in part as a high-molecular-mass complex composed of 100 kDa subunits. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1659384

  17. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women.

    PubMed

    Moran, Jose M; Pedrera-Canal, Maria; Rodriguez-Velasco, Francisco J; Vera, Vicente; Lavado-Garcia, Jesus M; Fernandez, Pilar; Pedrera-Zamorano, Juan D

    2015-01-01

    Osteoporosis is a polygenic disorder that is determined by the effects of several genes, each with relatively modest effects on bone mass. The aim of this study was to determine whether the vitamin D receptor single nucleotide polymorphism BsmI is associated with bone mineral density (BMD) in Spanish postmenopausal women. A total of 210 unrelated healthy postmenopausal women aged 60 ± 8 years were genotyped using TaqMan(®) SNP Genotyping Assays. Lumbar and femoral BMD were determined by dual-energy X-ray absorptiometry (DEXA). Daily calcium and vitamin D intake were determined by a food questionnaire. No differences were found in the femoral neck, trochanter, Ward's Triangle, L2, L3, L4, L2-L4, or between the femoral neck and total hip BMD after further adjustment for potential confounding factors (P > 0.05) (age, BMI, years since menopause and daily calcium intake). The BsmI polymorphism in the VDR gene was not associated with BMD in Spanish postmenopausal women. PMID:26157644

  18. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG{sub 2} cells

    SciTech Connect

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming . E-mail: lmfan@njmu.edu.cn; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-05-05

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG{sub 2} cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG{sub 2} cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases.

  19. Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction.

    PubMed

    Nguyen, Andrew; Tao, Huan; Metrione, Michael; Hajri, Tahar

    2014-01-17

    Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages. PMID:24293365

  20. Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers

    PubMed Central

    Corbin, Ian R; Ng, Kenneth K; Ding, Lili; Jurisicova, Andrea; Zheng, Gang

    2013-01-01

    Aim The targeting efficiency of folate receptor-α (FR-α)-targeted high-density lipoprotein nanoparticles (HDL NPs) was evaluated in a syngeneic mouse model of ovarian cancer. Materials & methods Folic acid was conjugated to the surface of fluorescent-labeled HDL NPs. In vivo tumor targeting of folic acid-HDL NPs and HDL NPs were evaluated in mice with metastatic ovarian cancer following intravenous or intraperitoneal (ip.) administration. Results & discussion Intravenous FR-α-targeted HDL resulted in high uptake of the fluorescent nanoparticle in host liver and spleen. The ip. injection of fluorescent HDL produced moderate fluorescence throughout the abdomen. Conversely, animals receiving the ip. FR-α-targeted HDL showed a high fluorescence signal in ovarian tumors, surpassing that seen in all of the host tissues. Conclusion The authors' findings demonstrate that the combination of local–regional ip. administration and FR-α-directed nanoparticles provides an enhanced approach to selectively targeting ovarian cancer cells for drug treatment. PMID:23067398

  1. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein.

    PubMed

    Yang, Ke; Zhang, Xiao Jie; Cao, Li Juan; Liu, Xin He; Liu, Zhu Hui; Wang, Xiao Qun; Chen, Qiu Jin; Lu, Lin; Shen, Wei Feng; Liu, Yan

    2014-01-01

    Oxidized low-density lipoprotein (oxLDL)-regulated secretion of inflammatory cytokines in smooth muscle cells (SMCs) is regarded as an important step in the progression of atherosclerosis; however, its underlying mechanism remains unclear. This study investigated the role of toll-like receptor 4 (TLR4) in oxLDL-induced expression of inflammatory cytokines in SMCs both in vivo and in vitro. We found that the levels of TLR4, interleukin 1-β (IL1-β), tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1 (MCP-1) and matrix metalloproteinase-2 (MMP-2) expression were increased in the SMCs of atherosclerotic plaques in patients with femoral artery stenosis. In cultured primary arterial SMCs from wild type mice, oxLDL caused dose- and time-dependent increase in the expression levels of TLR4 and cytokines. These effects were significantly weakened in arterial SMCs derived from TLR4 knockout mice (TLR4-/-). Moreover, the secretion of inflammatory cytokines was blocked by TLR4-specific antibodies in primary SMCs. Ox-LDL induced activation of p38 and NFκB was also inhibited in TLR4-/- primary SMCs or when treated with TLR4-specific antibodies. These results demonstrated that TLR4 is a crucial mediator in oxLDL-induced inflammatory cytokine expression and secretion, and p38 and NFκB activation. PMID:24755612

  2. Piperine Induces Hepatic Low-Density Lipoprotein Receptor Expression through Proteolytic Activation of Sterol Regulatory Element-Binding Proteins

    PubMed Central

    Ochiai, Ayasa; Miyata, Shingo; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity. PMID:26431033

  3. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  4. Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo.

    PubMed Central

    Rudling, M; Angelin, B

    1993-01-01

    We studied the influence of glucagon on hepatic LDL receptors and plasma lipoproteins in rats. A dose-dependent (maximum, threefold) increase in LDL-receptor binding was evident already at a dose of 2 x 4 micrograms, and detectable 3 h after injection; concomitantly, cholesterol and apolipoprotein (apo) B and apoE within LDL and large HDL decreased in plasma. LDL receptor mRNA levels were however unaltered or reduced. Hepatic microsomal cholesterol was increased and the enzymatic activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in hepatic microsomes were reduced. Insulin alone increased receptor binding and receptor mRNA levels twofold, but plasma cholesterol was unchanged and plasma apoE and apoB increased. Administration of insulin to glucagon-treated animals reduced the LDL-receptor binding to control levels and apoB appeared in LDL particles. Estrogen treatment increased LDL-receptor binding and mRNA levels five- and eightfold, respectively. Combined treatment with glucagon and estrogen reduced the stimulation of LDL-receptor mRNA levels by 80% although LDL-receptor binding was unchanged. Immunoblot analysis showed that glucagon increased the number of hepatic LDL receptors. We conclude that glucagon induces the number of hepatic LDL receptors by a mechanism not related to increased mRNA levels, suggesting the presence of a posttranscriptional regulatory mechanism present in the liver in vivo. Images PMID:8514887

  5. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  6. Dopamine D2/3 receptor antagonism reduces activity-based anorexia.

    PubMed

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT(2A/2C), 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  7. Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    PubMed Central

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  8. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis

    PubMed Central

    Go, Gwang-woong

    2015-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR) pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention. PMID:26046396

  9. Thinking Outside a Less Intact Box: Thalamic Dopamine D2 Receptor Densities Are Negatively Related to Psychometric Creativity in Healthy Individuals

    PubMed Central

    de Manzano, Örjan; Cervenka, Simon; Karabanov, Anke; Farde, Lars; Ullén, Fredrik

    2010-01-01

    Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [11C]raclopride and [11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity. PMID:20498850

  10. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor

    PubMed Central

    Lavreysen, Hilde; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Langlois, Xavier; Mackie, Claire; Pype, Stefan; Lütjens, Robert; Le Poul, Emmanuel; Trabanco, Andrés A; Nuñez, José María Cid

    2015-01-01

    Compounds modulating metabotropic glutamate type 2 (mGlu2) receptor activity may have therapeutic benefits in treating psychiatric disorders like schizophrenia and anxiety. The pharmacological and pharmacokinetic properties of a novel mGlu2 receptor-positive allosteric modulator (PAM), 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-2(1H)-pyridinone (JNJ-40411813/ADX71149) are described here. JNJ-40411813 acts as a PAM at the cloned mGlu2 receptor: EC50 = 147 ± 42 nmol/L in a [35S]GTPγS binding assay with human metabotropic glutamate type 2 (hmGlu2) CHO cells and EC50 = 64 ± 29 nmol/L in a Ca2+ mobilization assay with hmGlu2 Gα16 cotransfected HEK293 cells. [35S]GTPγS autoradiography on rat brain slices confirmed PAM activity of JNJ-40411813 on native mGlu2 receptor. JNJ-40411813 displaced [3H]JNJ-40068782 and [3H]JNJ-46281222 (mGlu2 receptor PAMs), while it failed to displace [3H]LY341495 (a competitive mGlu2/3 receptor antagonist). In rats, JNJ-40411813 showed ex vivo mGlu2 receptor occupancy using [3H]JNJ-46281222 with ED50 of 16 mg/kg (p.o.). PK-PD modeling using the same radioligand resulted in an EC50 of 1032 ng/mL. While JNJ-40411813 demonstrated moderate affinity for human 5HT2A receptor in vitro (Kb = 1.1 μmol/L), higher than expected 5HT2A occupancy was observed in vivo (in rats, ED50 = 17 mg/kg p.o.) due to a metabolite. JNJ-40411813 dose dependently suppressed REM sleep (LAD, 3 mg/kg p.o.), and promoted and consolidated deep sleep. In fed rats, JNJ-40411813 (10 mg/kg p.o.) was rapidly absorbed (Cmax 938 ng/mL at 0.5 h) with an absolute oral bioavailability of 31%. Collectively, our data show that JNJ-40411813 is an interesting candidate to explore the therapeutic potential of mGlu2 PAMs, in in vivo rodents experiments as well as in clinical studies. PMID:25692015

  11. Association between soluble lectin-like oxidized low-density lipoprotein receptor 1 levels and coronary slow flow phenomenon

    PubMed Central

    Caglar, Ilker Murat; Ozde, Cem; Caglar, Fatma Nihan Turhan; Akturk, Ibrahim Faruk; Ugurlucan, Murat; Karakaya, Osman

    2016-01-01

    Introduction The coronary slow flow phenomenon (CSFP) has been associated with myocardial ischemia, myocardial infarction, life-threatening arrhythmias, sudden cardiac death and increased cardiovascular mortality similar to coronary artery disease (CAD). Possible underlying mechanisms of CSFP are endothelial dysfunction, chronic inflammation, microvascular dysfunction and diffuse atherosclerosis. Soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) seems to play an important role in the pathogenesis of atherosclerosis. We hypothesized that sLOX-1 might be associated with CSFP, and aimed to research the relationship between sLOX-1 and CSFP. Material and methods Forty patients with angiographically proven CSFP and 43 patients with a normal coronary flow pattern (NCFP) were included in this study. Coronary blood flow was measured according to the Thrombolysis In Myocardial Infarction (TIMI) frame count method. sLOX-1 levels were measured in all study subjects. Results Serum levels of sLOX-1 were significantly higher in the CSFP group than the NCFP group (1061.80 ±422.20 ng/ml vs. 500.043 ±282.97 ng/ml, p < 0.001, respectively). Multivariate logistic regression analysis including sLOX-1, MPV, GGT and uric acid levels revealed a significant association between sLOX-1 levels and CSFP (Exp (B)/OR: 1.006, 95% CI: 1.002–1.010, p = 0.001). Conclusions The present study demonstrated that serum sLOX-1 levels were significantly higher in patients with CSFP and there was a strong association between high sLOX-1 levels and CSFP. High serum sLOX-1 levels may have an important role in the pathogenesis of CSFP. Future studies are needed to confirm these results. PMID:26925116

  12. Relationship Between Breast Density and Selective Estrogen-Receptor Modulators, Aromatase Inhibitors, Physical Activity, and Diet: A Systematic Review.

    PubMed

    Ekpo, Ernest U; Brennan, Patrick C; Mello-Thoms, Claudia; McEntee, Mark F

    2016-06-01

    Background Lower breast density (BD) is associated with lower risk of breast cancer and may serve as a biomarker for the efficacy of chemopreventive strategies. This review explores parameters that are thought to be associated with lower BD. We conducted a systematic review of articles published to date using the PRISMA strategy. Articles that assessed change in BD with estrogen-receptor modulators (tamoxifene [TAM], raloxifene [RLX], and tibolone) and aromatase inhibitors (AIs), as well as cross-sectional and longitudinal studies (LSs) that assessed association between BD and physical activity (PA) or diet were reviewed. Results Ten studies assessed change in BD with TAM; all reported TAM-mediated BD decreases. Change in BD with RLX was assessed by 11 studies; 3 reported a reduction in BD. Effect of tibolone was assessed by 5 RCTs; only 1 reported change in BD. AI-mediated BD reduction was reported by 3 out of 10 studies. The association between PA and BD was assessed by 21 studies; 4 reported an inverse association. The relationship between diet and BD was assessed in 34 studies. All studies on calcium and vitamin D as well as vegetable intake reported an inverse association with BD in premenopausal women. Two RCTs demonstrated BD reduction with a low-fat, high-carbohydrate intervention. Conclusion TAM induces BD reduction; however, the effect of RLX, tibolone, and AIs on BD is unclear. Although data on association between diet and BD in adulthood are contradictory, intake of vegetables, vitamin D, and calcium appear to be associated with lower BD in premenopausal women. PMID:27130722

  13. Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells.

    PubMed

    Ramakrishnan, Venkat M; Yang, Jeong-Yeh; Tien, Kevin T; McKinley, Thomas R; Bocard, Braden R; Maijub, John G; Burchell, Patrick O; Williams, Stuart K; Morris, Marvin E; Hoying, James B; Wade-Martins, Richard; West, Franklin D; Boyd, Nolan L

    2015-01-01

    Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes. PMID:26307169

  14. Bone Mineral Density Changes Among Women Initiating Proton Pump Inhibitors or H2 Receptor Antagonists: A SWAN Cohort Study

    PubMed Central

    Solomon, Daniel H; Diem, Susan J; Ruppert, Kristine; Juan Lian, Yin; Liu, Chih-Chin; Wohlfart, Alyssa; Greendale, Gail A; Finkelstein, Joel S

    2015-01-01

    Proton pump inhibitors (PPIs) have been associated with diminished bone mineral density (BMD) and an increased risk of fracture; however, prior studies have not yielded consistent results, and many have suboptimal ascertainment of both PPI use and BMD. We used data from the Study of Women’s Health Across the Nation (SWAN), a multicenter, multi-ethnic, community-based longitudinal cohort study of women across the menopause transition to examine the association between annualized BMD changes and new use of PPIs. We compared changes in BMD in new PPI users with changes in BMD in new users of histamine 2 receptor antagonists (H2RAs) and with changes in BMD in subjects who did not use either class of medications. Mixed linear regression models included recognized risk factors for osteoporosis, including demographics, menopausal transition stage, body mass index (BMI), lifestyle factors, as well as comorbidities and concomitant medications. To provide further evidence for the validity of our analytic approach, we also examined the effects of hormone-replacement therapy (HT), a class of medications that should reduce bone loss, on changes in BMD as an internal positive control group. We identified 207 new users of PPIs, 185 new users of H2RAs, and 1,676 non-users. Study subjects had a mean age of 50 years and were followed for a median of 9.9 years. Adjusted models found no difference in the annualized BMD change at the lumbar spine, femoral neck, or total hip in PPI users compared with H2RA users or non-users. These results were robust to sensitivity analyses. BMD increased as expected in HT users, supporting the validity of our study design. These longitudinal analyses plus similar prior studies argue against an association between PPI use and BMD loss. PMID:25156141

  15. Genetic variation in peroxisome proliferator-activated receptor gamma, soy, and mammographic density in Singapore Chinese women

    PubMed Central

    Lee, Eunjung; Hsu, Chris; Van den Berg, David; Ursin, Giske; Koh, Woon-Puay; Yuan, Jian-Min; Stram, Daniel O.; Yu, Mimi C.; Wu, Anna H.

    2012-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor important for adipogenesis and adipocyte differentiation. Data from animal studies suggest that PPARγ may be involved in breast tumorigenesis, but results from epidemiologic studies on the association between PPARγ variation and breast cancer risk have been mixed. Recent data suggest that soy isoflavones can activate PPARγ. We investigated the inter-relations of soy, PPARγ, and mammographic density (MD), a biomarker of breast cancer risk in a cross-sectional study of 2,038 women who were members of the population-based Singapore Chinese Health Study Cohort. Methods We assessed MD using a computer-assisted method. We used linear regression to examine the association between 26 tagging SNPs of PPARγ and their interaction with soy intake and MD. To correct for multiple testing, we calculated P-values adjusted for multiple correlated tests (PACT). Results Out of the 26 tested SNPs in the PPARγ, 6 SNPs were individually shown to be statistically significantly associated with MD (PACT=0.004∼0.049). A stepwise regression procedure identified that only rs880663 was independently associated with MD which decreased by 1.89% per minor allele (PACT=0.008).This association was significantly stronger in high soy consumers as MD decreased by 3.97% per minor allele of rs880663 in high soy consumers (PACT=0.006; P for interaction with lower soy intake=0.017). Conclusions Our data support that PPARγ genetic variation may be important in determining MD, particularly in high soy consumers. Impact Our findings may help to identify molecular targets and lifestyle intervention for future prevention research. PMID:22301832

  16. Lipoprotein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor*

    PubMed Central

    Romagnuolo, Rocco; Scipione, Corey A.; Boffa, Michael B.; Marcovina, Santica M.; Seidah, Nabil G.; Koschinsky, Marlys L.

    2015-01-01

    Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels. PMID:25778403

  17. Minimally modified low-density lipoprotein induces macrophage endoplasmic reticulum stress via toll-like receptor 4.

    PubMed

    Yao, Shutong; Yang, Nana; Song, Guohua; Sang, Hui; Tian, Hua; Miao, Cheng; Zhang, Ying; Qin, Shucun

    2012-07-01

    Minimally modified low-density lipoprotein (mm-LDL) induces intimal foam cell formation, which is promoted by endoplasmic reticulum stress (ERS), a cross-point to link cellular processes with multiple risk factors that exist in all stages of atherosclerosis. However, it remains unclear whether mm-LDL-induced lipid accumulation in macrophages involves ERS and its underlying mechanisms. We showed that mm-LDL induced the accumulation of lipid droplets in RAW264.7 macrophages with increased free cholesterol in the endoplasmic reticulum, which was markedly attenuated by pretreatment with an antibody against toll-like receptor 4 (TLR4). Additionally, mm-LDL stimulated the transport of Cy3-labeled activating transcription factor 6 (ATF6), a key sensor to the unfolded protein response (UPR), from cytoplasm into nucleus. The expression of phosphorylated inositol-requiring enzyme 1 (p-IRE1), another sensor to the UPR, and its two downstream molecules, X box binding protein 1 and glucose-regulated protein 78 (GRP78), were significantly upregulated by mm-LDL. The alterations induced by mm-LDL were all significantly inhibited by antibodies against TLR4 or CD36. In addition, the upregulation of p-IRE1 and GRP78 and the nuclear translocation of ATF6 induced by mm-LDL were significantly attenuated by TLR4 siRNA. These results suggest that mm-LDL may induce free cholesterol accumulation in the endoplasmic reticulum and subsequently stimulate ERS and activate the UPR signaling pathway mediated by ATF6 and IRE1 in macrophages, a process that is potentially mediated by TLR4. PMID:22480542

  18. Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells

    PubMed Central

    Ramakrishnan, Venkat M.; Yang, Jeong-Yeh; Tien, Kevin T.; McKinley, Thomas R.; Bocard, Braden R.; Maijub, John G.; Burchell, Patrick O.; Williams, Stuart K.; Morris, Marvin E.; Hoying, James B.; Wade-Martins, Richard; West, Franklin D.; Boyd, Nolan L.

    2015-01-01

    Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes. PMID:26307169

  19. Spinal 5-HT-receptors and tonic modulation of transmission through a withdrawal reflex pathway in the decerebrated rabbit.

    PubMed Central

    Clarke, R. W.; Harris, J.; Houghton, A. K.

    1996-01-01

    1. In decerebrated, non-spinalized rabbits, intrathecal administration of either of the selective 5-HT1A-receptor antagonists (S)WAY-100135 or WAY-100635 resulted in dose-dependent enhancement of the reflex responses of gastrocnemius motoneurones evoked by electrical stimulation of all myelinated afferents of the sural nerve. The approximate ED50 for WAY-100635 was 0.9 nmol and that for (S)WAY-100135 13 nmol. Intrathecal doses of the antagonists which caused maximal facilitation of reflexes in non-spinalized rabbits had no effect in spinalized preparations. 2. In non-spinalized animals, intravenous administration of (S)WAY-100135 was significantly less effective in enhancing reflexes than when it was given by the intrathecal route. 3. When given intrathecally, the selective 5-HT 2A/2C-receptor antagonist, ICI 170,809, produced a bellshaped dose-effect curve, augmenting reflexes at low doses (< or = 44 nmol), but reducing them at higher doses (982 nmol). Idazoxan, the selective alpha 2-adrenoceptor antagonist, was less effective in enhancing reflex responses when given intrathecally after ICI 170,809 compared to when it was given alone. Intravenous ICI 170,809 resulted only in enhancement of reflexes and the facilitatory effects of subsequent intrathecal administration of idazoxan were not compromised. 4. The selective 5-HT3-receptor blocker ondansetron faciliated gastrocnemius medialis reflex responses in a dose-related manner when given by either intrathecal or intravenous routes. This drug was slightly more potent when given i.v. and it did not alter the efficacy of subsequent intrathecal administration of idazoxan. 5. None of the antagonists had any consistent effects on arterial blood pressure or heart rate. 6. These data are consistent with the idea that, in the decrebrated rabbit, 5-HT released from descending axons has multiple roles in controlling transmission through the sural-gastrocnemius medialis reflex pathway. Thus, it appears 5-HT tonically inhibits

  20. Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules.

    PubMed

    Bruell, Shoni; Kong, Roy C K; Petrie, Emma J; Hoare, Brad; Wade, John D; Scott, Daniel J; Gooley, Paul R; Bathgate, Ross A D

    2013-01-01

    Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP-based signaling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand-mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a similar mechanism. PMID

  1. Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules

    PubMed Central

    Bruell, Shoni; Kong, Roy C. K.; Petrie, Emma J.; Hoare, Brad; Wade, John D.; Scott, Daniel J.; Gooley, Paul R.; Bathgate, Ross A. D.

    2013-01-01

    Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP-based signaling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand-mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a similar mechanism. PMID

  2. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    PubMed

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  3. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats.

    PubMed

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-02-15

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  4. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats

    PubMed Central

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6 mg/kg BU224 or 32 mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned > 80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned > 80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT) 2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  5. Six DNA polymorphisms in the low density lipoprotein receptor gene: their genetic relationship and an example of their use for identifying affected relatives of patients with familial hypercholesterolaemia.

    PubMed Central

    Humphries, S; King-Underwood, L; Gudnason, V; Seed, M; Delattre, S; Clavey, V; Fruchart, J C

    1993-01-01

    We have determined the relative allele frequency and estimated linkage disequilibrium between six DNA polymorphisms of the low density lipoprotein (LDL) receptor gene. Polymorphisms were detected using the enzymes SfaNI, TaqI, StuI, HincII, AvaII, and NcoI after DNA amplification by the polymerase chain reaction. Strong linkage disequilibrium was detected between many of the pair wise comparisons in a sample of 60 patients heterozygous for familial hypercholesterolaemia (FH). Using the enzymes HincII, NcoI, and SfaNI, 85% of patients were heterozygous for at least one polymorphism and thus potentially informative for cosegregation studies. The polymorphisms were used to follow the inheritance of the defective allele of the LDL receptor gene in the relatives of a patient with FH. Assays of LDL receptor activity on lymphoblastoid cell lines from two members of the family was used to confirm that the proband, but not the hypercholesterolaemic brother, had a defect in the LDL receptor. In the family, none of the children had inherited the allele of the LDL receptor gene inferred to be defective. The problems associated with this cosegregation approach to identify relatives of patients with a clinical diagnosis of FH are discussed. PMID:8098067

  6. Long-term administration of fluvoxamine attenuates neuropathic pain and involvement of spinal serotonin receptors in diabetic model rats.

    PubMed

    Kato, Takahiro; Kajiyama, Seiji; Hamada, Hiroshi; Kawamoto, Masashi

    2013-12-01

    Diabetic neuropathic pain management is difficult even with non-steroidal anti-inflammatory drugs and narcotic analgesics such as morphine. Fluvoxamine, a class of selective serotonin reuptake inhibitors (SSRIs), is widely used to treat depression. Its analgesic effects are also documented for diabetic neuropathic pain, but they are limited because it is administered as a single-dose. In this study, we examined the time course of the antiallodynic effect of fluvoxamine in a rat model of diabetic neuropathic pain, which was induced by a single intraperitoneal administration of streptozotocin (75 mg/kg). In addition, the involvement of spinal serotonin (5-HT) receptors in long-term fluvoxamine treatment was studied by intrathecal administration of 5-HT receptor antagonists. In this study the development of mechanical hyperalgesia was assessed by measuring the hind paw withdrawal threshold using von Frey filaments. The results demonstrated that daily oral administration of fluvoxamine (10, 30, and 100 mg/kg) to diabetic rats from 3 to 8 weeks after streptozotocin administration resulted in a dose-dependent antiallodynic effect. The antiallodynic effect was sustained from 2 to 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine in the diabetic rats was attenuated by WAY-100635 (a 5-HT(1A) receptor antagonist) intrathecally administered 1 week after the onset of daily administration of fluvoxamine, whereas no significant attenuation was seen when the antagonist was administered 3 and 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine was also attenuated by ketanserin (a 5-HT(2A/2C) receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist) intrathecally administered 1 and 3 weeks after the onset of daily fluvoxamine administration. However, no significant attenuation was observed when the antagonist was administered 5 weeks after fluvoxamine administration. This study demonstrated that daily oral

  7. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

    PubMed Central

    Lee, Ji Hwan; Go, Donghyun; Kim, Woojin; Lee, Giseog; Bae, Hyojeong; Quan, Fu Shi

    2016-01-01

    This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors. PMID:27382357

  8. Identification of a common low density lipoprotein receptor mutation (C163Y) in the west of Scotland.

    PubMed Central

    Lee, W K; Haddad, L; Macleod, M J; Dorrance, A M; Wilson, D J; Gaffney, D; Dominiczak, M H; Packard, C J; Day, I N; Humphries, S E; Dominiczak, A F

    1998-01-01

    Familial hypercholesterolaemia (FH) is an autosomal codominant disorder characterised by high levels of LDL cholesterol and a high incidence of coronary artery disease. Our aims were to track the low density lipoprotein receptor (LDLR) gene in individual families with phenotypic FH and to identify and characterise any mutations of the LDLR gene that may be common in the west of Scotland FH population using single strand conformational polymorphism analysis (SSCP). Patient samples consisted of 80 heterozygous probands with FH, 200 subjects who were related to the probands, and a further 50 normal, unrelated control subjects. Tracking of the LDLR gene was accomplished by amplification of a 19 allele tetranucleotide microsatellite that is tightly linked to the LDLR gene locus. Primers specific for exon 4 of the LDLR gene were used to amplify genomic DNA and used for SSCP analysis. Any PCR products with different migration patterns as assessed by SSCP were then sequenced directly. In addition to identifying probands with a common mutation, family members were screened using a forced restriction site assay and analysed using microplate array diagonal gel electrophoresis (MADGE). Microsatellite D19S394 analysis was informative in 20 of 23 families studied. In these families there was no inconsistency with segregation of the FH phenotype with the LDLR locus. Of the FH probands, 15/80 had a mutant allele as assessed by SSCP using three pairs of primers covering the whole of exon 4 of the LDLR gene. Direct DNA sequencing showed that 7/15 of the probands had a C163Y mutation. Using a PCR induced restriction site assay for the enzyme RsaI and MADGE, it was determined that the C163Y mutation cosegregated with the FH phenotype in family members of the FH probands. This mutant allele was not present in any of the control subjects. Microsatellite analysis has proven useful in tracking the LDLR gene and could be used in conjunction with LDL cholesterol levels to diagnose FH

  9. Clinical expression in heterozygotes of two frequent low density lipoprotein receptor gene mutations in the French Canadian population

    SciTech Connect

    Roy, M.; Minnich, A.; Davignon, J.

    1994-09-01

    Five mutations in the low density lipoprotein (LDL) receptor (R) gene account for approximately 83% of cases of heterozygous familial hypercholesterolemia (hFH) in French Canadians in Quebec. The two most prevalent mutations are a >10kb deletion (10kb) of the promoter region resulting in a null allele (60.5% of cases) and a trp{sub 66}{r_arrow}gly missense mutation in exon 3 (ex3) resulting in a binding-defective R (11.7%). We have compared the phenotypic expression of these two mutations in 427 10kb hFH patients, 239 women (age 37.5 {plus_minus} 14.2 years) and 188 men (33.7 {plus_minus} 11.7) and 69 ex3 hFH patients, 42 women (40.6 {plus_minus} 14.3) and 27 men (36.8 {plus_minus}13.2). All data were analyzed separately for women and men. Tendon xanthomas were more prevalent in the 10kb (women 63%, men 68%) than in the ex3 patients (48%,48%). Total and LDL cholesterol were significantly higher in the 10kb patients with than without xanthomas but similar in ex3 patients. There were no significant differences in plasma lipoprotein concentrations between 10kb and ex3 patients with coronary artery disease (CAD) or between 10kb and ex3 patients without CAD. Among men with CAD, those with 10kb were significantly younger than those with ex3 (39.6 {plus_minus} 9.8, n=93 and 46.4 {plus_minus} 7.0, n=9, respectively). In both sexes, high plasma lipoprotein concentrations conferred an increased risk of CAD in 10kb but not in ex3 patients. Thus, as in homozygotes (previous study), the >10kb deletion is associated with more severe expression of FH than is the exon 3 mutation, although the plasma lipoprotein concentrations are not significantly different between the 10kb and ex3 heterozygotes. Since in homozygotes plasma cholesterol levels in 10kb are 60% higher than in ex3 patients, these observations suggest that the expression of the normal LDL-R allele compensates for the lack of a second allele in 10kb heterozygotes.

  10. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    -HT2A, h5-HT2B and h5-HT2C receptors with potencies similar to its affinity at these receptors.These studies indicate that xanomeline is a potent agonist at 5-HT1A and 5-HT1B receptors and an antagonist at 5-HT2 receptor subtypes. PMID:9884068

  11. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25838122

  12. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  13. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes.

    PubMed Central

    Versluis, A. J.; Rensen, P. C.; Rump, E. T.; Van Berkel, T. J.; Bijsterbosch, M. K.

    1998-01-01

    Many tumours express relatively high levels of low-density lipoprotein (LDL) receptors on their membranes. The LDL receptor is, therefore, an attractive target for the selective delivery of antineoplastic drugs to tumour cells. We reported previously on the synthesis of small apolipoprotein E (apoE)-containing liposomes that behave in vivo in a very similar way to native LDL. In this study, we examined the interaction of this liposomal carrier with cultured B16 melanoma cells. Binding of apoE liposomes to the cells is saturable, with a maximum binding of approximately 90000 particles per cell. Cross-competition studies indicated that apoE liposomes are bound by the LDL receptor. Association of apoE liposomes to B16 cells is strictly Ca2+ dependent, which forms additional evidence for a role of the LDL receptor. The affinity of apoE liposomes for the LDL receptor on B16 cells is 15-fold higher than that of LDL (0.77 vs 11.5 nM respectively). ApoE is essential for the LDL receptor recognition because liposomes lacking apoE were, in competition studies, 20- to 50-fold less effective than apoE-containing liposomes. We examined in B16 tumour-bearing mice the tumour-localizing properties of apoE liposomes and the disposition of an incorporated lipophilic derivative of daunorubicin (LAD). Tissue distribution studies showed that LAD-loaded apoE liposomes were taken up and processed by the major LDL receptor-expressing organs (i.e. adrenals, liver and spleen). Of all other tissues, the tumour showed the highest uptake. The distribution patterns of LAD-loaded apoE liposomes and native LDL in the tumour-bearing mice were very similar, which supports the role of the LDL receptor in the disposition of the prodrug-loaded particles. The disposition of LAD followed the pattern of the liposomal carrier. We conclude that apoE liposomes enable LDL receptor-mediated specific delivery of antineoplastic (pro)drugs to tumours, and, therefore, constitute an attractive novel option for

  14. Deletion in the first cysteine-rich repeat of low density lipoprotein receptor impairs its transport but not lipoprotein binding in fibroblasts from a subject with familial hypercholesterolemia

    SciTech Connect

    Leitersdorf, E.; Hobbs, H.H.; Fourie, A.M.; Jacobs, M.; Van Der Westhuyzen, D.R.; Coetzee, G.A. )

    1988-11-01

    The ligand-binding domain of the low density lipoprotein (LDL) receptor is composed of seven cysteine-rich repeats, each {approx} 40 amino acids long. Previous studies showed that if the first repeat of the ligand-binding domain (encoded by exon 2) is deleted, the receptor fails to bind an anti-LDL receptor monoclonal antibody (IgG-C7) but continues to bind LDL with high affinity. Cultured fibroblasts from a Black South African Xhosa patient (TT) with the clinical syndrome of homozygous familial hypercholesterolemia demonstrated high-affinity cell-surface binding of {sup 125}I-labeled LDL but not {sup 125}I-labeled IgG-C7. previous haplotype analysis, using 10 restriction fragment length polymorphic sites, suggested that the patient inherited two identical LDL receptor alleles. The polymerase chain reaction technique was used to selectively amplify exon 2 of the LDL receptor gene from this patient. Sequence analysis of the amplified fragment disclosed a deletion of six base pairs that removes two amino acids, aspartic acid and glycine, from the first cysteine-rich ligand binding repeat. The mutation creates a new Pst I restriction site that can be used to detect the deletion. The existence of this mutant allele confirms that the epitope of IgG-C7 is located in the first cysteine-rich repeat and that this repeat is not necessary for LDL binding. The mutant gene produced a normally sized 120-kilodalton LDL receptor precursor protein that matured to the 160-kilodalton form at less than one-fourth the normal rate.

  15. Angiotensin II type 1 receptor antagonists inhibit basal as well as low-density lipoprotein and platelet-activating factor-stimulated human monocyte chemoattractant protein-1.

    PubMed

    Proudfoot, Julie M; Croft, Kevin D; Puddey, Ian B; Beilin, Lawrence J

    2003-06-01

    Monocyte chemoattractant protein-1 (MCP-1) is a potent chemotactic agent for monocytes and other cells and is thought to be involved in atherosclerosis, recruiting monocytes to the subendothelial space or to the site of inflammation. Angiotensin II has been demonstrated, at least in animal models, to stimulate MCP-1 expression. We investigated the effect of the angiotensin II type 1 (AT1) receptor antagonists irbesartan and losartan on MCP-1 production by freshly isolated human monocytes. Irbesartan and losartan inhibited basal MCP-1 production in a dose-dependent manner. Low-density lipoprotein (LDL) stimulated MCP-1 in a concentration-dependent manner, with 200 microg/ml LDL protein giving a 2-fold increase in MCP-1. Irbesartan and losartan dose dependently blocked LDL-stimulated MCP-1. An angiotensin II type 2 receptor antagonist, S-(+)-1-([4-(dimethylamino)-3-methylphenyl]methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5-c)pyridine-6-carboxylic acid (PD123319), had no significant effect on basal MCP-1 levels or LDL-stimulated MCP-1. After noting homology between the AT1 receptor and the platelet-activating factor (PAF) receptor, we showed that irbesartan inhibited both [3H]PAF binding to human monocytes and carbamyl-PAF stimulation of MCP-1. However, irbesartan affinity for the PAF receptor was 700 times less than PAF, suggesting that there may be another mechanism for irbesartan inhibition of PAF-stimulated MCP-1. This is the first report showing that AT1 receptor antagonists inhibit basal as well as LDL- and PAF-stimulated MCP-1 production in freshly isolated human monocytes. PMID:12626661

  16. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF.

    PubMed

    Loukinova, Elena; Ranganathan, Sripriya; Kuznetsov, Sergey; Gorlatova, Natalia; Migliorini, Mary M; Loukinov, Dmitri; Ulery, Paula G; Mikhailenko, Irina; Lawrence, Daniel A; Strickland, Dudley K

    2002-05-01

    The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor. PMID:11854294

  17. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  18. Purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of human lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1)

    SciTech Connect

    Ishigaki, Tomoko; Ohki, Izuru; Oyama, Takuji; Machida, Sachiko; Morikawa, Kousuke; Tate, Shin-ichi

    2005-05-01

    Two different fragments of the ligand-binding domain of LOX-1, the major receptor for oxidized low-density lipoprotein (LDL) on endothelial cells, have been crystallized in different forms. Two different fragments of the ligand-binding domain of LOX-1, the major receptor for oxidized low-density lipoprotein (LDL) on endothelial cells, have been crystallized in different forms. One crystal form contains the disulfide-linked dimer, which is the form of the molecule present on the cell surface; the other contains a monomeric form of the receptor that lacks the cysteine residue necessary to form disulfide-linked homodimers. The crystal of the monomeric ligand-binding domain belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.79, b = 67.57, c = 79.02 Å. The crystal of the dimeric form belongs to space group C2, with unit-cell parameters a = 70.86, b = 49.56, c = 76.73 Å, β = 98.59°. Data for the dimeric form of the LOX-1 ligand-binding domain have been collected to 2.4 Å. For the monomeric form of the ligand-binding domain, native, heavy-atom derivative and SeMet-derivative crystals have been obtained; their diffraction data have been measured to 3.0, 2.4 and 1.8 Å resolution, respectively.

  19. Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization.