Science.gov

Sample records for 5-hydroxytryptamine 5-ht reuptake

  1. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 ?m, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 ?m, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  2. GENERAL BACKGROUND OF 5-HYDROXYTRYPTAMINE AND 5Hydroxytryptamine (5-HT, serotonin) is a common biogenic

    E-print Network

    Cooper, Robin L.

    ) is a common biogenic amine found in both vertebrates and invertebrates as well as in plants [1, 2 with the development of a nervous system [2]. 5-HT acts as both a neurotransmitter and neurohormone and as a potent

  3. Pharmacological characterization of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist

    PubMed Central

    Doble, A.; Girdlestone, D.; Piot, O.; Allam, D.; Betschart, J.; Boireau, A.; Dupuy, A.; Guérémy, C.; Ménager, J.; Zundel, J.L.; Blanchard, J.C.

    1992-01-01

    1 RP 62203 (2-[3-(4-(4-fluorophenyl)-piperazinyl)propyl]naphto[1,8-cd]isothiazole-1, 1-dioxide) is a novel naphtosultam derivative which shows very high affinity for 5-HT2 receptors in the rat cerebral cortex (Ki = 50.0 pM). 2 RP 62203 is relatively selective for this sub-type of 5-hydroxytryptamine (5-HT) receptor, having lower affinity for the 5-HT1A receptor and very low affinity for the 5-HT3 receptor. RP 62203 displayed low to moderate affinity for ?1-adrenoceptors, dopamine D2 receptors and histamine H1 receptors. 3 In vivo binding experiments demonstrated that oral administration of low doses of RP 62203 led to a long-lasting (>6h) occupation of cortical 5-HT2 receptors (ID50 = 0.39 mg kg-1). 4 In cortical slices from the neonatal rat, RP 62203 potently inhibited inositol phosphate formation evoked by 5-HT, with an IC50 of 7.76 nM. 5 The activity of neurones in the raphé and their responses to microiontophoretically applied 5-HT were studied with extracellular recording electrodes in the anaesthetized rat. RP 62203 potently and dose-dependently blocked excitations evoked by 5-HT when administered at doses of 0.5–4.0 mg kg-1, i.p. In contrast, neither 5-HT-evoked depressions nor glutamate-evoked excitations of raphé neuronal firing were blocked by RP 62203 at doses as high as 8.0 mg kg-1, i.p. 6 Head twitches induced by 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) could be abolished by low doses of RP 62203 in mice (ED50 = 0.44 mg kg-1, p.o.) and in rats (ED50 = 1.54 p.o.). Similar results were obtained with mescaline and 5-hydroxytryptophan (5-HTP). 7 The potency of RP 62203 was compared with that of three other 5-HT2 receptor antagonists, ritanserin, ICI 169,369 and ICI 170,809. In all models, RP 62203 showed similar activity to ritanserin, whilst either ICI 169,369 or ICI 170,809 was several fold less active. 8 It is concluded that RP 62203 is a potent and selective antagonist at 5-HT2 receptors in the rodent central nervous system. PMID:1596688

  4. Regulation of 5-hydroxytryptamine2 (5-HT2) receptor expression in cultured rat aortic smooth muscle cells by SR 46349B, a selective 5-HT2 receptor antagonist.

    PubMed

    Rinaldi-Carmona, M; Prabonnaud, V; Bouaboula, M; Poinot-Chazel, C; Casellas, P; Le Fur, G; Herbert, J M

    1994-01-01

    Regulation of 5-hydroxytryptamine (5-HT2) receptor expression by SR 46349B, a potent and selective 5-HT2 receptor antagonist, was investigated in cultured rat aortic smooth muscle cells. Binding of [3H]SR 46349B to rat vascular smooth muscle cells was time-dependent, reversible, and saturable. [3H]SR 46349B bound to one class of specific binding sites with high affinity (KD = 1.3 +/- 0.3 nM; Bmax = 176 +/- 42 fmol/10(5) cells). Exposure of cells to a 1 microM concentration of the 5-HT2 agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI) or the antagonist ketanserin led to a significant decrease in 5-HT2 receptor density as measured by [3H]SR 46349B binding. In contrast, exposure of cells to 1 microM SR 46349B caused a marked increase in the maximal binding capacity of [3H]SR 46349B, with a maximal effect at 24 h (73% increase). The affinity constant was not affected by prior exposure to (+/-)-DOI, ketanserin, or SR 46349B. Furthermore, exposure of cells to 1 microM (+/-)-DOI or ketanserin produced, 48 h later, a decrease in the ability of (+/-)-DOI to stimulate phosphoinositide turnover in the cells, whereas treatment with SR 46349B induced a significant stimulation of the 5-HT2 receptor-linked signal transduction. This effect occurred with no changes in the amount of 5-HT2 receptor mRNAs as measured by quantitative polymerase chain reaction. These results indicate that SR 46349B increases 5-HT2 receptor binding and functions without altering steady-state 5-HT2 mRNA levels in cultured rat aortic smooth muscle cells. PMID:8276825

  5. Effect of vilazodone on 5-HT efflux and re-uptake in the guinea-pig dorsal raphe nucleus.

    PubMed

    Roberts, Claire; Hagan, Jim J; Bartoszyk, Gerd D; Kew, James N C

    2005-07-01

    The effect of vilazodone, a putative selective serotonin re-uptake inhibitor (SSRI) with 5-HT (5-hydroxytryptamine)(1A) receptor partial agonist activity, was investigated on 5-HT efflux and 5-HT re-uptake half life in the guinea-pig dorsal raphe nucleus, using in vitro fast cyclic voltammetry. The SSRI, fluoxetine, significantly increased 5-HT efflux. In contrast, vilazodone had no effect on 5-HT efflux at 100 nM but significantly decreased 5-HT efflux at 1 microM. Co-perfusion of 8-OH-DPAT (+/-8-hydroxy-2-(di-n-propylamino)tetralin) with fluoxetine significantly attenuated the fluoxetine-induced increase in 5-HT efflux. Co-perfusion of WAY 100635 with vilazodone did not attenuate the effect of vilazodone alone. In addition, the re-uptake half life for 5-HT was significantly increased by both fluoxetine and vilazodone. In conclusion, we have demonstrated that vilazodone (100 nM, 1 microM), in the guinea-pig dorsal raphe nucleus, blocks the serotonin transporter but does not display 5-HT(1A) receptor agonism. PMID:15978574

  6. Enhanced 5-hydroxytryptamine (5-HT) release from vascular adrenergic nerves in spontaneously hypertensive rats

    SciTech Connect

    Kawasaki, H.; Urabe, M.; Takasaki, K.

    1986-03-01

    The release of 5-HT from vascular adrenergic nerves was compared between normotensive Wistar Kyoto rats (WKY) and SHR. The mesenteric vascular bed isolated from WKY and SHR was perfused with Krebs solution at a constant flow rate of 5 ml/min. Periarterial nerve stimulation (PNS) was delivered at 4 to 16 Hz for 30 sec. In the SHR preparation, the pressor response to PNS, previously decreased by prazonsin (50 nM), was greatly potentiated after treatment with 5-HT(1 ..mu..M) for 15 min and a frequency-dependent pressor response to PNS reappeared, whereas the 5-HT treatment did not alter the pressor response to exogenous norepinephrine (1 nmol) previously reduced by prazonsin. The potentiation of pressor response to PNS after 5-HT treatment was small in the WKY preparation. This potentiation in both WKY and SHR did not occur in the presence of ketanserin (10 nM). In the preparation labeled with (/sup 3/H)-5-HT, PNS (4-16 Hz) evoked a frequency-dependent increase of (/sup 3/H)-efflux, which was abolished by treatment with tetrodotoxin (100 nM) or 6-hydroxydopamine (50 mg/kg i.p. x 2) and in calcium-free Krebs solution. The PNS evoked-(/sup 3/H)-efflux was much greater in SHR than WKY. These results suggest that the release of 5-HT from vascular adrenergic nerves by PNS is enhanced in the SHR preparation.

  7. 5-Hydroxytryptamine 1A (5HT1A) receptors mediate increases in plasma glucose independent of corticosterone.

    PubMed

    Gehlert, Donald R; Shaw, Janice

    2014-12-15

    Hypothalamic 5HT1A receptors play an important role in the regulation of satiety, glycemia and endocrine status. In the present study, 8-OH-DP administered centrally and peripherally to C57/Bl6 mice and plasma glucose insulin and corticosterone were evaluated. In these studies, dose and time dependent increases in glucose and corticosterone were observed while no alterations in insulin were seen. The increases in plasma corticosterone were prevented by prior central or peripheral administration of LY426965, a specific 5HT1A antagonist. Intracerebroventricular coadministration of a 5HT1A antagonist with 8-OH-DPAT prevented the increase in plasma glucose establishing this response as a centrally mediated response in mice. Given that increases in plasma corticosterone are associated with increases in plasma glucose, we conducted experiments to determine if increased plasma corticosterone was the mechanism by which 8-OH-DPAT increased plasma glucose. Prior administration of the glucocorticoid antagonist mifepristone did not affect the increase in plasma glucose produced by 8-OH-DPAT. Prior administration of the glucocorticoid synthesis inhibitor, metyrapone, reduced basal corticosterone and the concentrations of corticosterone associated with 8-OH-DPAT administration. However, metyrapone administration did not affect the increases in plasma glucose. Therefore, 5HT1A receptors regulate glucose through brain mechanisms, but not through regulation of the hypophyseal-pituitary axis. Antagonism of brain 5HT1A receptors may enable discovery of novel antidiabetic agents. PMID:25446927

  8. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  9. Electrophysiological evidence for rapid 5-HT?A autoreceptor inhibition by vilazodone, a 5-HT?A receptor partial agonist and 5-HT reuptake inhibitor.

    PubMed

    Ashby, Charles R; Kehne, John H; Bartoszyk, Gerd D; Renda, Matthew J; Athanasiou, Maria; Pierz, Kerri A; Seyfried, Christoph A

    2013-08-15

    This study examined the effect of vilazodone, a combined serotonin (5-HT) reuptake inhibitor and 5-HT(1A) receptor partial agonist, paroxetine and fluoxetine on the sensitivity of 5-HT(1A) autoreceptors of serotonergic dorsal raphe nucleus neurons in rats. These effects were assessed by determining the intravenous dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) required to suppress the basal firing rate of these neurons by 50% (ID??) in anesthetized rats using in vivo electrophysiology. 5-HT uptake inhibition was determined by the ability of the compounds to reverse (±)-p-chloroamphetamine (PCA)-induced rat hypothalamic 5-HT depletion ex vivo. Acute vilazodone administration (0.63 and 2.1 µmol/kg, s.c.), compared with vehicle, significantly increased (2-3-fold) the ID?? of 8-OH-DPAT at 4 h, but not 24h after administration. Subchronic administration (3 days) significantly increased the ID?? value at 4 h (3-4-fold) and at 24 h (~2-fold). In contrast, paroxetine and fluoxetine at doses that were supramaximal for 5-HT uptake inhibition did not significantly alter the ID?? value of 8-OH-DPAT after acute or subchronic administration. Vilazodone antagonized the action of PCA 3.5 h and 5 h after a single dose (ID?? 1.49 and 0.46 µmol/kg, s.c., respectively), but was inactive 18 h post-administration, corroborating the electrophysiological results at 24 h following acute administration. The results are consistent with the concept of rapid and, following repeated treatment, prolonged inhibition of 5-HT(1A) autoreceptors by vilazodone. This effect could occur by either direct interaction with, or desensitization of, these receptors, an effect which cannot be ascribed to vilazodone's 5-HT reuptake inhibiting properties. PMID:23872377

  10. Regulation of Oligomeric Organization of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Observed by Spatial Intensity Distribution Analysis*

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme

    2015-01-01

    The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490

  11. Behavioral and neurochemical effects of 5-(4-[4-(5-Cyano-3-indolyl)-butyl)-butyl]-1-piperazinyl)-benzofuran-2-carboxamide (EMD 68843): a combined selective inhibitor of serotonin reuptake and 5-hydroxytryptamine(1A) receptor partial agonist.

    PubMed

    Page, Michelle E; Cryan, John F; Sullivan, Arthur; Dalvi, Ashutosh; Saucy, Berangere; Manning, David R; Lucki, Irwin

    2002-09-01

    5-(4-[4-(5-Cyano-3-indolyl)-butyl)-butyl]-1-piperazinyl)-benzofuran-2-carboxamide (EMD 68843; vilazodone) is a novel compound with combined high affinity and selectivity for the 5-hydroxytryptamine (5-HT) transporter and 5-HT(1A) receptors. EMD 68843 was tested as a prototype compound, which benefits from dual pharmacological effects that could increase extracellular 5-HT to levels higher than those produced by conventional selective serotonin reuptake inhibitors (SSRIs). In Sf9 cells, EMD 68843 increased guanosine 5'-O-(3-[(35)S]thiotriphosphate) binding to 69% of the magnitude of the full 5-HT(1A) receptor agonist R-(1)-trans-8-hydroxy-2-[N-n-propyl-N-(39-iodo-29-propenyl)] aminotetralin (8-OH-PIPAT), indicating that it is a partial agonist at 5-HT(1A) receptors. Acute, systemic administration of EMD 68843 produced a larger maximal increase of extracellular 5-HT than the SSRI fluoxetine in both the ventral hippocampus (HPv) (558 versus 274%) and the frontal cortex (FC) (527 versus 165%). Regional differences in the response to the two drugs were also observed. These effects may be attributed to the differential regulation of 5-HT release in the HPv and FC by 5-HT(1A) autoreceptors. When challenged with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), EMD 68843-induced increases in extracellular 5-HT were greatly reduced in the HPv but to a lesser extent in the FC. In behavioral studies, EMD 68843 produced antidepressant-like effects in the forced swimming test in both rats and mice but only within a narrow dosage range. Like fluoxetine, EMD 68843 did not produce the symptoms of the 5-HT behavioral syndrome in rats but, unlike fluoxetine, pretreatment with EMD 68843 blocked expression of the 5-HT behavioral syndrome induced by 8-OH-DPAT. Taken together, the results show that EMD 68843 augments extracellular 5-HT levels in forebrain regions to a greater extent than fluoxetine. At higher doses, however, weak efficacy of EMD 68843 at postsynaptic 5-HT(1A) receptors may inhibit the expression of rodent antidepressant-like behaviors. PMID:12183683

  12. Identification of Three Residues Essential for 5-Hydroxytryptamine 2A-Metabotropic Glutamate 2 (5-HT2A·mGlu2) Receptor Heteromerization and Its Psychoactive Behavioral Function*

    PubMed Central

    Moreno, José L.; Muguruza, Carolina; Umali, Adrienne; Mortillo, Steven; Holloway, Terrell; Pilar-Cuéllar, Fuencisla; Mocci, Giuseppe; Seto, Jeremy; Callado, Luis F.; Neve, Rachael L.; Milligan, Graeme; Sealfon, Stuart C.; López-Giménez, Juan F.; Meana, J. Javier; Benson, Deanna L.; González-Maeso, Javier

    2012-01-01

    Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor in the mouse frontal cortex. Substitution of these residues (Ala-6774.40, Ala-6814.44, and Ala-6854.48) leads to absence of 5-HT2A·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT2A agonists. Furthermore, the ligand binding interaction between the components of the 5-HT2A·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer. PMID:23129762

  13. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    SciTech Connect

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/ (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.

  14. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone.

    PubMed

    Hughes, Zoë A; Starr, Kathryn R; Langmead, Christopher J; Hill, Matthew; Bartoszyk, Gerd D; Hagan, James J; Middlemiss, Derek N; Dawson, Lee A

    2005-03-01

    Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine. PMID:15740724

  15. The effect of altered 5-hydroxytryptamine levels on beta-endorphin

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.

    1986-01-01

    The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.

  16. Dual 5-HT1A agonists and 5-HT re-uptake inhibitors by combination of indole-butyl-amine and chromenonyl-piperazine structural elements in a single molecular entity.

    PubMed

    Heinrich, Timo; Böttcher, Henning; Schiemann, Kai; Hölzemann, Günter; Schwarz, Michael; Bartoszyk, Gerd D; van Amsterdam, Christoph; Greiner, Hartmut E; Seyfried, Christoph A

    2004-09-15

    The dual serotonin (5-HT) re-uptake inhibitor and 5-HT(1A) receptor agonist vilazodone was found to increase central serotonin levels in rat brain. In the course of structural modifications of vilazodone 3-[4-[4-(2-oxo-2H-1-benzopyran-6-yl)-1-piperazinyl]-butyl]-1H-indole-5-carbonitrile 8i and its fluorine analogue 6-[4-[4-(5-fluor-3-indolyl)-butyl]-1-piperazinyl]-2H-1-benzopyran-2-one have been identified. These unsubstituted chromenones are equally potent at the 5-HT(1A) receptor and 5-HT transporter. The implementation of nitrogen functionalities in position 3 of the chromenones resulted in compounds acting as agonists at the 5-HT(1A) receptor and as 5-HT re-uptake inhibitors like vilazodone. Ex vivo 5-HT re-uptake inhibition and in vitro 5-HT agonism were determined in the PCA- and GTPgammaS-assay, respectively. The potential of these chromenones to increase central 5-HT levels was measured in microdialysis studies and especially the derivatives 3-[4-[4-(3-amino-2-oxo-2H-chromen-6-yl)-piperazin-1-yl]-butyl]-1H-indole-5-carbonitrile 8f, ethyl (6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-carbamate 8h and N-(6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-acetamide 8k give rise to rapid development of increased serotonin levels in rat brain cortex, lasting longer than 3h. PMID:15336263

  17. Dual, hyperalgesic, and analgesic effects of the high-efficacy 5-hydroxytryptamine 1A (5-HT1A) agonist F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5-methyl-pyridin-2-ylmethyl)-amino]-methyl}piperidin-1-yl]methanone, fumaric acid salt]: relationship with 5-HT1A receptor occupancy and kinetic parameters.

    PubMed

    Bardin, Laurent; Assié, Marie-Bernadette; Pélissou, Martine; Royer-Urios, Isabelle; Newman-Tancredi, Adrian; Ribet, Jean-Paul; Sautel, François; Koek, Wouter; Colpaert, Francis C

    2005-03-01

    The aim of the present study was to establish the relationship between the plasma and brain concentration-time profiles of F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5-methyl-pyridin-2-ylmethyl)-amino]-methyl}piperidin-1-yl]methanone, fumaric acid salt] after acute administration and both its hyper- and hypoanalgesic effects in rats. The maximal plasma concentration (C(max)) of F 13640 after i.p. administration of 0.63 mg/kg was obtained at 15 min and decreased to half its maximal value after about 1 h. The amount of F 13640 collected by means of in vivo microdialysis in hippocampal dialysates could be measured reliably after 0.63 and 2.5 mg/kg, reached its maximum at about 1 h, and fell to half of its maximal value at about 3 h. 5-Hydroxytryptamine 1A (5-HT(1A)) receptor occupancy was estimated by ex vivo binding in rat brain sections. F 13640 inhibited [(3)H]8-hydroxy-2-[di-n-propylamino] tetralin binding ex vivo in rat hippocampus, entorhinal cortex, and frontal cortex (ED(50), 0.34 mg/kg i.p.). Maximal inhibition was reached at approximately 30 min after 0.63 mg/kg F 13640 and fell to half of its value after about 4 to 8 h. After injection (15 min) in the paw pressure test, F 13640 (0.63 mg/kg i.p.) induced an initial hyperalgesia that was followed 4 h later by a paradoxical analgesia that lasted until 8 h. In contrast, in the formalin test, F 13640 inhibited pain behaviors until 4 h after drug administration. F 13640 also produced elements of the 5-HT syndrome that lasted up to 4 h after administration. These results demonstrate that F 13640 induces hyperalgesia and/or analgesia with a time course that parallels the occupancy of 5-HT(1A) receptors and the presence of the compound in blood and brain. PMID:15528450

  18. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    PubMed Central

    Nakayama, Hiroto; Umeda, Sumiyo; Nibuya, Masashi; Terao, Takeshi; Nisijima, Koichi; Nomura, Soichiro

    2014-01-01

    We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists. PMID:24627634

  19. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    PubMed Central

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT?/?) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT?/? mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  20. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract

    PubMed Central

    Gershon, Michael D.

    2013-01-01

    Purpose of review Although the gut contains most of the body’s 5-hydroxytryptamine (5-HT), many of its most important functions have recently been discovered. This review summarizes and directs attention to this new burst of knowledge. Recent findings Enteroendocrine cells have classically been regarded as pressure sensors, which secrete 5-HT to initiate peristaltic reflexes; nevertheless, recent data obtained from studies of mice that selectively lack 5-HT either in enterochromaffin cells (deletion of tryptophan hydroxylase 1 knockout; TPH1KO) or neurons (TPH2KO) imply that neuronal 5-HT is more important for constitutive gastrointestinal transit than that of enteroendocrine cells. The enteric nervous system of TPH2KO mice, however, also lacks a full complement of neurons; therefore, it is not clear whether slow transit in TPH2KO animals is due to their neuronal deficiency or absence of serotonergic neurotransmission. Neuronal 5-HT promotes the growth/maintenance of the mucosa as well as neurogenesis. Enteroendocrine cell derived 5-HT is an essential component of the gastrointestinal inflammatory response; thus, deletion of the serotonin transporter increases, whereas TPH1KO decreases the severity of intestinal inflammation. Enteroendocrine cell derived 5-HT, moreover, is also a hormone, which inhibits osteoblast proliferation and promotes hepatic regeneration. Summary New studies show that enteric 5-HT is a polyfunctional signalling molecule, acting both in developing and mature animals as a neurotransmitter paracrine factor, endocrine hormone and growth factor. PMID:23222853

  1. Synthesis and structure--activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors.

    PubMed

    Heinrich, Timo; Böttcher, Henning; Gericke, Rolf; Bartoszyk, Gerd D; Anzali, Soheila; Seyfried, Christoph A; Greiner, Hartmut E; Van Amsterdam, Christoph

    2004-09-01

    Systematic structural modifications of indolealkylphenylpiperazines led to improved selectivity and affinity within this class of 5-HT(1A) receptor agonists. Introduction of electron-withdrawing groups in position 5 on the indole raises serotonin transporter affinity, and the cyano group proved to be the best substituent here. 5-Fluoro and 5-cyano substituted indoles show comparable results in in vitro and in vivo tests, and bioisosterism between these substituents was supported by calculation of the molecular electrostatic potentials and dipole moments. Compounds showing promising in vitro data were further examined in ex vivo (p-chloroamphetamine assay) and in vivo (ultrasonic vocalization) tests. Optimization of the arylpiperazine moiety indicated that the 5-benzofuranyl-2-carboxamide was best suited to increase 5-HT transporter and 5-HT(1A) receptor affinity and to suppress D(2) receptor binding. 5-[4-[4-(5-Cyano-3-indolyl)butyl]-1-piperazinyl]benzofuran-2-carboxamide 29 (vilazodone, EMD 68843) was identified as a highly selective 5-HT(1A) receptor agonist [GTPgammaS, ED(50) = 1.1 nM] with subnanomolar 5-HT(1A) affinity [IC(50) = 0.2 nM] and as a subnanomolar 5-HT reuptake inhibitor [RUI = 0.5 nM] showing a great selectivity to other GPCRs (e.g., D(2), IC(50) = 666 nM). PMID:15341484

  2. Antidepressant-Like Activity of YL-0919: A Novel Combined Selective Serotonin Reuptake Inhibitor and 5-HT1A Receptor Agonist

    PubMed Central

    Zhang, Li-ming; Xue, Rui; Xu, Xiao-dan; Zhao, Nan; Qiu, Zhi-kun; Wang, Xian-wang; Zhang, You-zhi; Yang, Ri-fang; Li, Yun-feng

    2013-01-01

    It has been suggested that drugs combining activities of selective serotonin reuptake inhibitor and 5-HT1A receptor agonist may form a novel strategy for higher therapeutic efficacy of antidepressant. The present study aimed to examine the pharmacology of YL-0919, a novel synthetic compound with combined high affinity and selectivity for serotonin transporter and 5-HT1A receptors. We performed in vitro binding and function assays and in vivo behavioral tests to assess the pharmacological properties and antidepressant-like efficacy of YL-0919. YL-0919 displayed high affinity in vitro to both 5-HT1A receptor and 5-HT transporter prepared from rat cortical tissue. It exerted an inhibitory effect on forskolin-stimulated cAMP formation and potently inhibited 5-HT uptake in both rat cortical synaptosomes and recombinant cells. After acute p.o. administration, very low doses of YL-0919 reduced the immobility time in tail suspension test and forced swimming test in mice and rats, with no significant effect on locomotor activity in open field test. Furthermore, WAY-100635 (a selective 5-HT1A receptor antagonist, 0.3 mg/kg) significantly blocked the effect of YL-0919 in tail suspension test and forced swimming test. In addition, chronic YL-0919 treatment significantly reversed the depressive-like behaviors in chronically stressed rats. These findings suggest that YL-0919, a novel structure compound, exerts dual effect on the serotonergic system, as both 5-HT1A receptor agonist and 5-HT uptake blocker, showing remarkable antidepressant effects in animal models. Therefore, YL-0919 may be used as a new option for the treatment of major depressive disorder. PMID:24367588

  3. Investigation of the SSRI augmentation properties of 5-HT(2) receptor antagonists using in vivo microdialysis.

    PubMed

    Boothman, Laura J; Mitchell, Stephen N; Sharp, Trevor

    2006-05-01

    Recent evidence that 5-HT(2) receptors exert a negative influence on central 5-hydroxytryptamine (5-HT) neurones suggests that 5-HT(2) receptor antagonists may augment the effects of serotonin selective reuptake inhibitors (SSRIs). The present study investigated whether pre-treatment with 5-HT(2) receptor antagonists enhances the effect of SSRI administration on hippocampal extracellular 5-HT of freely moving rats. Administration of the SSRI citalopram at a low (2mg kg(-1)) and higher (4 mg kg(-1)) dose, increased dialysate 5-HT by 5- and 8-fold, respectively. Pre-treatment with the 5-HT(2) receptor antagonist ketanserin (4 mg kg(-1)) augmented the effect of 4 mg kg(-1) but not 2mg kg(-1) citalopram. The effect of 4 mg kg(-1) citalopram was also augmented by pre-treatment with either the 5-HT(2C) receptor antagonist SB 242084 (0.5mg kg(-1)) or the 5-HT(2A) receptor antagonist MDL 100907 (0.5mg kg(-1)). As with citalopram, fluoxetine elevated dialysate 5-HT at both a low (5mg kg(-1)) and higher (20mg kg(-1)) dose. However, neither dose of fluoxetine was augmented by ketanserin (4 mg kg(-1)). These results confirm recent findings that 5-HT(2) receptor antagonists augment the effect of citalopram on extracellular 5-HT, and indicate the involvement of 5-HT(2C) and possibly 5-HT(2A) receptors. The lack of augmentation of fluoxetine might reflect the intrinsic 5-HT(2) receptor antagonist properties of this drug. PMID:16434063

  4. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats

    PubMed Central

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-01-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the Ki values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg?1, dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg?1) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg?1) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression. PMID:26171224

  5. Antagonism of 5-hydroxytryptamine2A Receptor Results in Decreased Contractile Response of Bovine Lateral Saphenous Vein to Tall Fescue Alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  6. Systemic Modulation of Serotonergic Synapses via Reuptake Blockade or 5HT1A Receptor Antagonism Does Not Alter Perithreshold Taste Sensitivity in Rats

    PubMed Central

    Spector, Alan C.

    2014-01-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration–response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. PMID:25056731

  7. DETECTION OF MICROWAVE HEATING IN 5-HYDROXYTRYPTAMINE-INDUCED HYPOTHERMIC MICE

    EPA Science Inventory

    The intraperitoneal injection of 5-hydroxytryptamine (5-HT) in unrestrained and unanesthetized mice held at 22C causes a hypothermia which is maximal after approximately 15 minutes. When mice injected with 5-HT were held in a controlled environment of 22C and 50% relative humidit...

  8. 5-HT receptor regulation of neurotransmitter release.

    PubMed

    Fink, Klaus B; Göthert, Manfred

    2007-12-01

    Serotoninergic neurons in the central nervous system impinge on many other neurons and modulate their neurotransmitter release. This review focuses on 1) the function of presynaptic 5-hydroxytryptamine (5-HT) heteroreceptors on axon terminals of central cholinergic, dopaminergic, noradrenergic, or GABAergic neurons and 2) the role of GABAergic interneurons expressing 5-HT heteroreceptors in the regulation of acetylcholine, dopamine, or noradrenaline release. In vitro studies on slices or synaptosomes and in vivo microdialysis experiments have shown that 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3), and/or 5-HT(4) heteroreceptors mediate this modulation. 5-HT(1B) receptors on neocortical cholinergic, striatal dopaminergic, or hippocampal GABAergic axon terminals are examples for release-inhibiting 5-HT heteroreceptors; 5-HT(3) receptors on hippocampal GABAergic or 5-HT(4) receptors on hippocampal cholinergic axon terminals are examples for release-facilitating 5-HT heteroreceptors. GABA released from GABAergic interneurons upon activation of facilitatory 5-HT receptors, e.g., 5-HT(2A) or 5-HT(3) receptors, mediates inhibition of the release of other neurotransmitters such as prefrontal neocortical dopamine or neocortical acetylcholine release, respectively. Conversely, attenuated GABA release in response to activation of inhibitory 5-HT heteroreceptors, e.g., 5-HT(1A) or 5-HT(1B) receptors on GABAergic interneurons is involved in paradoxical facilitation of hippocampal acetylcholine and striatal dopamine release, respectively. Such 5-HT heteroreceptors are considered potential targets for appropriate 5-HT receptor ligands which, by enhancing the release of a relevant neurotransmitter, can compensate for its hypothesized deficiency in distinct brain areas. Examples for such deficiencies are the impaired release of hippocampal or neocortical acetylcholine, striatal dopamine, and hippocampal or neocortical noradrenaline in disorders such as Alzheimer's disease, Parkinson's disease, and major depression, respectively. PMID:18160701

  9. Release of ( sup 14 C)5-hydroxytryptamine from human platelets by red wine

    SciTech Connect

    Jarman, J.; Glover, V.; Sandler, M. )

    1991-01-01

    Red wine, at a final dilution of 1/50, caused released of ({sup 14}C)5-hydroxytryptamine (5-HT) from preloaded platelets, an effect which was not observed with any white wines or beers tested. Since 5-HT, is probably released from body stores during migraine attacks and red wine is known to provoke migraine episodes in susceptible individuals, release of 5-HT, possibly from central stores, could represent a plausible mechanism for its mode of action.

  10. 5-Hydroxytryptamine lowers blood pressure in normotensive and hypertensive rats.

    PubMed

    Diaz, Jessica; Ni, Wei; Thompson, Janice; King, Andrew; Fink, Gregory D; Watts, Stephanie W

    2008-06-01

    Arterial hyper-responsiveness to 5-hydroxytryptamine (5-HT) is a hallmark of hypertension, and plasma levels of free 5-HT are elevated in hypertension. We hypothesized that chronic administration of 5-HT would cause blood pressure to 1) rise in normotensive rats and 2) rise significantly more in hypertensive rats. The deoxycorticosterone acetate (DOCA)-salt hypertensive and sham normotensive rat were used. Animals were implanted with minipumps that delivered 5-HT (or vehicle) at a rate of 25 microg/kg/min for 7 days. Free plasma 5-HT was elevated significantly by this protocol. Within 48 h, mean arterial blood pressure measured telemetrically decreased in sham (106 +/- 2 to 83 +/- 2 mm Hg) and in DOCA-salt hypertensive (166 +/- 9 to 112 +/- 3 mm Hg) rats; vehicle did not change blood pressure in either group. Ganglionic blockade (hexamethonium) reduced blood pressure to a greater magnitude in DOCA vehicle-administered rats (peak fall arterial pressure, 91 +/- 14 mm Hg) compared with DOCA 5-HT-administered rats (40 +/- 6 mm Hg). Maximal acetylcholine-induced (NO-dependent) relaxation in phenylephrine-contracted aortic strips was greater in 5-HT-administered (69.2 +/- 9.1% relaxation) versus vehicle-administered (39.7 +/- 14.2%) DOCA rats; aortic endothelial cell nitric oxide synthase expression was higher in the 5-HT- versus vehicle-administered DOCA-salt rats. In normotensive and DOCA-salt hypertensive rats, the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine (0.5 g/l in water) prevented the fall in blood pressure to 5-HT. We conclude that chronic exogenous 5-HT reduces blood pressure in normotensive and hypertensive rats through mechanisms critically dependent on NOS. PMID:18305011

  11. The 5-HT{sub 2A} serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin

    SciTech Connect

    Sonier, Brigitte; Arseneault, Madeleine; Lavigne, Carole; Ouellette, Rodney J.; Vaillancourt, Cathy . E-mail: cathy.vaillancourt@iaf.inrs.ca

    2006-05-19

    Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT{sub 2A} serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTT proliferation assay. We have demonstrated that the 5-HT{sub 2A} receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT{sub 2A} receptor present in this cell line is identical to the 5-HT{sub 2A} receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT{sub 2A} receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT{sub 2A} receptor subtype, which is fully expressed in this cell line.

  12. Pharmacological characterization of 5-hydroxytryptamine-induced excitation of afferent cervical vagus nerve in anaesthetized rats.

    PubMed Central

    Yoshioka, M.; Ikeda, T.; Abe, M.; Togashi, H.; Minami, M.; Saito, H.

    1992-01-01

    1. An excitatory response to 5-hydroxytryptamine (5-HT) was measured from the afferent vagus nerve of anaesthetized rats. Measurements were determined by an extracellular recording from the whole nerve. 2. Intravenous bolus injection of 5-HT (1.56-100 micrograms kg-1) evoked a dose-dependent excitation of afferent vagus nerve activity. This response was blocked not only by a selective 5-HT3 receptor antagonist, GR38032F (10 and 100 micrograms kg-1), but also by a 5-HT2 receptor antagonist, ketanserin (10 and 100 micrograms kg-1). 3. Both a 5-HT3 receptor agonist, 2-methyl-5-HT (3.12-100 micrograms kg-1), and a 5-HT2 receptor agonist, alpha-methyl-5-HT (3.12-50 micrograms kg-1), produced a dose-dependent excitation of afferent vagus nerve activity. These excitatory effects were antagonized by GR38032F (10 micrograms kg-1) and ketanserin (10 micrograms kg-1), respectively. 4. A 5-HT1 like receptor agonist, 5-carboxamidotryptamine (50 micrograms kg-1), and a putative 5-HT4 receptor agonist, 5-methoxytryptamine (100 micrograms kg-1), failed to produce excitatory effects on the afferent vagus nerve. 5. These results suggest that the 5-HT-induced excitatory response of the afferent vagus nerve might be mediated not only via 5-HT3 receptors but also via 5-HT2 receptors in anaesthetized rats. It is unlikely, however, that either 5-HT1-like or putative 5-HT4 receptors are involved in the excitatory response of the afferent vagus nerve to 5-HT. PMID:1387026

  13. Radioisotopic studies of the binding, exchange, and distribution of 5-hydroxytryptamine synthesized from its radioactivity precursor

    PubMed Central

    Gershon, M. D.; Ross, L. L.

    1966-01-01

    1. The synthesis, distribution, storage, and subsequent metabolism of 5-hydroxytryptamine (5-HT) produced in mice from the administration of its radioactive precursor, 5-hydroxytryptophan, has been investigated to form the basis for a similar study to be conducted by radioautography. 2. Intravenous injection of the radioactive material was found to be essential for significant uptake of radioactivity by tissue. The duration of the period during which radioactive material was available for uptake by the tissue was 2 hr. 3. The relative distribution of radioactivity in individual organs was studied and the radioactive compounds present in each were identified and quantitatively assayed. No unrelated routes of metabolism of the labelled material were found and radioautographic results may be interpreted in terms of the metabolic picture which emerged. 4. Radioactive 5-HT was bound in tissues in preference to both its precursor, and metabolite, 5-hydroxytryptamine-O-glucuronide, and the radioactive 5-HT produced in vivo after the injection of labelled 5-hydroxytryptophan probably entered and labelled the endogenous 5-HT pool. 5. Fixatives prepared with buffer solutions made hypertonic by the addition of sucrose could rapidly and effectively halt the movement of radioactive 5-HT out of tissues and prevent its subsequent extraction during histological processing. 6. It is concluded that localization of sites concerned with 5-HT metabolism by means of radioautography is feasible and the 5-HT so localized will probably reflect the physiological compartmentalization of the amine. PMID:5298336

  14. Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors.

    PubMed

    Muramatsu, M; Lapiz, M D; Tanaka, E; Grenhoff, J

    1998-07-01

    Neurons in the nucleus accumbens septi in brain slices from adult male rats were studied with patch clamp recording in the whole-cell conformation. Cells filled with Lucifer Yellow were identified as medium spiny neurons. Electrical stimulation close to the recorded cell evoked excitatory and inhibitory synaptic currents. In the presence of picrotoxin or bicuculline, stimulation at a holding potential of -90 mV evoked an inward excitatory current that was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), identifying it as an excitatory postsynaptic current (EPSC) mediated by glutamate acting at AMPA/kainate receptors. Serotonin (5-hydroxytryptamine, 5-HT; 3-100 microM in the bath) decreased the EPSC in about 90% of the cells. The action of 5-HT was mimicked by N-(3-trifluoromethylphenyl)-piperazine HCl (TFMPP), but not by (+/-)-8-hydroxydipropylaminotetralin (8-OH-DPAT) or (+/-)-2,5-dimethoxy-4-iodoamphetamine HCl (DOI). The 5-HT effect was antagonized by pindolol or cyanopindolol, but not by spiperone, ketanserin or tropisetron. Taken together, these results indicate that 5-HT acts at 5-HT1B receptors. The effect of 5-HT was potentiated by cocaine (0.3-3 microM) or the selective serotonin reuptake inhibitor citalopram. Miniature synaptic currents recorded in the presence of tetrodotoxin were inhibited by CNQX, identifying them as spontaneous miniature EPSCs. 5-HT reduced the frequency of these miniature EPSCs without affecting their amplitude, which indicates a presynaptic site of action. This presynaptic inhibition by 5-HT might be involved in the behavioural effects of cocaine. PMID:9749765

  15. Heterogeneity of 5-hydroxytryptamine receptors in the rat uterus and stomach strip.

    PubMed Central

    Wrigglesworth, S. J.

    1983-01-01

    Experiments were performed using the rat isolated uterus and the rat stomach strip to investigate the effects of 5-hydroxytryptamine (5-HT) on 5-HT receptors in the presence of different antagonists. Amitriptyline, methysergide and trazodone were used to antagonize the response to 5-HT in these tissues. The pA2 value for amitriptyline with 5-HT as the agonist was estimated from the Schild plot analysis and found to differ significantly (P less than 0.05) in the stomach strip (6.36) from that in the isolated uterus (9.06). A similar difference was found using trazodone; here the pA2 value was 6.74 in the stomach strip and 8.49 in the isolated uterus. These results indicate a difference between the two tissues. This difference is discussed in terms of heterogeneity of 5-HT receptors. PMID:6571226

  16. Characterization of a novel /sup 3/H-5-hydroxytryptamine binding site subtype in bovine brain membranes

    SciTech Connect

    Heuring, R.E.; Peroutka, S.J.

    1987-03-01

    /sup 3/H-5-Hydroxytryptamine (5-HT) binding sites were analyzed in bovine brain membranes. The addition of either the 5-HT1A-selective drug 8-OH-DPAT (100 nM) or the 5-HT1C-selective drug mesulergine (100 nM) to the assay resulted in a 5-10% decrease in specific /sup 3/H-5-HT binding. Scatchard analysis revealed that the simultaneous addition of both drugs decreased the Bmax of /sup 3/H-5-HT binding by 10-15% without affecting the KD value (1.8 +/- 0.3 nM). Competition studies using a series of pharmacologic agents revealed that the sites labeled by /sup 3/H-5-HT in bovine caudate in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine appear to be homogeneous. 5-HT1A selective agents such as 8-OH-DPAT, ipsapirone, and buspirone display micromolar affinities for these sites. RU 24969 and (-)pindolol are approximately 2 orders of magnitude less potent at these sites than at 5-HT1B sites which have been identified in rat brain. Agents displaying nanomolar potencies for 5-HT1C sites such as mianserin and mesulergine are 2-3 orders of magnitude less potent at the /sup 3/H-5-HT binding sites in bovine caudate. In addition, both 5-HT2- and 5-HT3-selective agents are essentially inactive at these binding sites. These /sup 3/H-5-HT sites display nanomolar affinity for 5-carboxyamidotryptamine, 5-methoxytryptamine, metergoline, and 5-HT. Apparent Ki values of 10-100 nM are obtained for d-LSD, RU 24969, methiothepin, tryptamine, methysergide, and yohimbine, whereas I-LSD and corynanthine are significantly less potent. In addition, these /sup 3/H-5-HT labeled sites are regulated by guanine nucleotides and calcium. Regional studies indicate that this class of sites is most dense in the basal ganglia but exists in all regions of bovine brain. These data therefore demonstrate the presence of a homogeneous class of 5-HT1 binding sites in bovine caudate that is pharmacologically distinct from previously defined 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 receptor subtypes. (Abstract Truncated)

  17. Serotonin augments gut pacemaker activity via 5-HT3 receptors.

    PubMed

    Liu, Hong-Nian; Ohya, Susumu; Nishizawa, Yuji; Sawamura, Kenta; Iino, Satoshi; Syed, Mohsin Md; Goto, Kazunori; Imaizumi, Yuji; Nakayama, Shinsuke

    2011-01-01

    Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome. PMID:21949791

  18. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter?

    PubMed Central

    Spencer, Nick J.

    2015-01-01

    Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility.

  19. Studies of Platelet 5-Hydroxytryptamine (Serotonin) in Storage Pool Disease and Albinism

    PubMed Central

    Weiss, Harvey J.; Tschopp, Thomas B.; Rogers, John; Brand, Harvey

    1974-01-01

    Platelets in patients with storage pool disease are markedly deficient in a nonmetabolic (storage) pool of ADP that is important in platelet aggregation. They are also deficient in ATP, although to a lesser degree. In seven patients with this disorder, including one with albinism, platelet 5-hydroxytryptamine (5-HT) levels were reduced in proportion to the reduction in ATP (r = 0.94). Their platelets show diminished capacity to absorb [14C]5-HT, and the type of defect was similar to that produced in normal platelets by reserpine, a drug known to inhibit the uptake of 5-HT by the platelet dense granules. Storage pool-deficient platelets also converted more [3H]5-HT to [3H]5-hydroxyindoleacetic acid than did normal platelets, and the platelets in one of two patients studied contained increased amounts of 5-HT metabolites. The above findings, together with those reported previously, support the conclusion that the capacity of the dense granules (which may be either diminished or functionally abnormal) for storing 5-HT is decreased in storage pool disease; as a result, the 5-HT that enters the platelet may be more exposed to monoamine oxidases present on mitochondrial membranes. This diminished storage capacity (for 5-HT) may also explain why preincubating platelet-rich plasma with 5-HT for 45 min without stirring inhibits subsequent platelet aggregation by 5-HT to a greater degree in patients with storage pool disease than in normal subjects. The latter finding is also consistent with the theory that the aggregation of platelets by 5-HT is mediated by the same receptors on the plasma membrane that are involved in its uptake. The diminished release of platelet-bound [14C]5-HT by collagen that we found in these patients, as well as findings in previous studies, suggests that the release reaction may also be abnormal in storage pool disease. Images PMID:4847252

  20. Metabolic kinetics of 5-hydroxytryptamine and the research targets of functional gastrointestinal disorders.

    PubMed

    Jing, Fuchun; Zhang, Jun

    2014-11-01

    5-Hydroxytryptamine (5-HT) is an important neurotransmitter in both the central and enteric nervous systems. It has diverse functions in regulating gastrointestinal motility and visceral sensitivity, emotion, appetite, pain and sensory perception, cognition, sexual activity and sleep. These functions are mainly associated with the metabolic kinetics of 5-HT in different tissues. Tryptophan hydroxylase is the rate-limiting enzyme and modulates serotonin synthesis. Vesicular monoamine transporter 1 plays a role in 5-HT storage and release. Degradation of 5-HT is mediated by monoamine oxidase-A. All these factors influence the action of 5-HT in vivo. Functional gastrointestinal disorders (FGIDs) are characterized by a series of symptoms including abdominal pain, diarrhea, constipation, anxiety and depression, in the absence of identifiable structural or biochemical abnormalities. They are frequently accompanied by changed gut motility or visceral sensitivity. An increasing body of research has found FGIDs to be closely associated with 5-HT, and drugs such as citalopram, paroxetine, venlafaxine, alosetron, tegaserod, prucalopride and mosapride have all been developed or discovered from the perspective of the metabolic kinetics of 5-HT. This review discusses the relationship between the metabolic kinetics of 5-HT and research targets in the field of FGIDs and suggests areas of future study that may be useful for understanding these disorders and identification of potential therapeutic targets. PMID:24916714

  1. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation. PMID:26037417

  2. Responses to 5-hydroxytryptamine evoked in the hemisected spinal cord of the neonate rat.

    PubMed Central

    Connell, L. A.; Wallis, D. I.

    1988-01-01

    1. Superfusion of isolated hemisected spinal cord from neonate rats with 5-hydroxytryptamine (5-HT) (10(-6) to 10(-3) M) evoked concentration-related depolarizations. The maximal depolarization elicited by a concentration of 10(-4) M was 1.0 +/- 0.1 mV (mean +/- s.e.mean, n = 30). Noradrenaline in a similar range of concentrations also elicited depolarizations. 2. The depolarizations probably originate in motoneurones as a result of direct interaction of the amines with these cells, since responses were unaltered by tetrodotoxin (10(-7) M) or Ca2+-free/Mg2+-rich medium. 3. 5-Carboxamidotryptamine (5-CT), S(+)-alpha-methyl-5-hydroxytryptamine (alpha-Me5-HT) and 5-methoxytryptamine (5-MeOT) evoked similar depolarizations to 5-HT. Tryptamine evoked depolarizations of smaller maximal amplitude. 5-Hydroxytryptophan, 2-methyl-5-hydroxytryptamine, 8-hydroxy-2-(di-N-propylamino) tetralin hydrobromide (8-OH-DPAT) and 5-methoxy-3-[1,2,3,6-tetrahydro-4-pyridinyl]-1-H-indole succinate (RU 24969) had no depolarizing action. 4. Concentration-response (CR) curves were determined for 5-HT, 5-CT, alpha-Me5-HT, 5-MeOT and tryptamine. The ED50 value for 5-HT was 20.5 +/- 1.2 microM. The equipotent molar ratios (EPMRs) for 5-CT and alpha-Me5-HT were close to unity, while 5-MeOT was approximately 3 times and tryptamine 13 to 14 times less potent than 5-HT. 5. The relative agonist potency of 5-HT with respect to other tryptamine analogues capable of depolarizing motoneurones was increased when 5-HT uptake was blocked by citalopram (10(-7) M). In the presence of citalopram, 5-HT was 2.7 times more potent than alpha-Me5-HT and 16.9 times more potent than 5-CT. The apparent order of potency was 5-HT greater than alpha-Me5-HT greater than 5-CT (greater than 5-MeOT much greater than tryptamine). 6. The monoamine oxidase inhibitor, pargyline (5 x 10(-4) M), had no effect on depolarizations to 5-HT, 5-CT or alpha-Me5-HT. 7. Methiothepin, 1 alpha H, 3 alpha, 5H-tropan-3-yl-3,5-dichlorobenzoate methanesulphonate (MDL 72222) and [3 alpha-tropanyl]-1H-indole-3-carboxylic acid ester hydrochloride (ICS 205-930) had no effect on 5-HT depolarizations elicited in motoneurones. Ketanserin (0.75 x 10(-7) M to 10(-6) M) showed modest antagonistic action and depressed maximal response amplitude; the pIC50 was 6.5.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3207976

  3. The central vasomotor effects of 5-hydroxytryptamine

    PubMed Central

    Bhargava, K. P.; Tangri, K. K.

    1959-01-01

    In the dog, injection of 5-hydroxytryptamine into the cerebral ventricles caused hypotension, inhibition of the pressor response to occlusion of the carotid artery and inhibition of the pressor or depressor response evoked by electrical stimulation of the central end of the cut vagus. Hypotension and inhibition of the vagal vasomotor response also occurred in dogs in which the carotid sinuses had been denervated and the vagi cut. The site of action was central. Local cerebral vascular changes could not have been responsible for the action. The central vasomotor effects of 5-hydroxytryptamine are mediated through the sympathetic outflow. Implications of these findings are discussed in relation to the effects of intravenous 5-hydroxytryptamine and the mechanism of action of reserpine. PMID:13800344

  4. Comparison of monoamine reuptake inhibitors for the immobility time and serotonin levels in the hippocampus and plasma of sub-chronically forced swim stressed rats.

    PubMed

    Abbas, Ghulam; Naqvi, Sabira; Dar, Ahsana

    2012-04-01

    The current study was aimed at comparing the behavioral and biochemical (5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels) effects of monoamine reuptake inhibitors (fluoxetine, venlafaxine and imipramine) in sub-chronically forced swim stressed rats. At the given doses of 10, 20 and 30 mg/kg, among aforesaid antidepressants, the imipramine treatment alone caused significant decline in the immobility time of rats (IC(50) 20 mg/kg). In the hippocampus of rats, the imipramine treatment caused significant elevation of 5-hydroxytryptamine (5-HT) whereas, the fluoxetine and venlafaxine elicited significant increase in 5-hydroxyindoleacetic acid (5-HIAA) levels. Likewise, in the plasma of rats, the imipramine treatment significantly increased the 5-HIAA levels whereas, the fluoxetine and venlafaxine treatment significantly elevate the 5-HT levels. It can therefore be inferred that the imipramine did not act like other monoamine reuptake inhibitors in biochemical study, which could possibly underlie its ability to be detected in forced swim test (behavioral study). Moreover, the re-uptake inhibition of 5-HT is not accountable for the antidepressant action exhibited in forced swim test. PMID:22459475

  5. Indirect action of 5-hydroxytryptamine on the isolated muscularis mucosae of the guinea-pig oesophagus

    PubMed Central

    Kamikawa, Yuichiro; Shimo, Yasuo

    1983-01-01

    1 The site of action of 5-hydroxytryptamine (5-HT) was examined on the isolated muscularis mucosae attached to the submucous plexus of the guinea-pig oesophagus. Isotonic responses of the longitudinal muscularis mucosae were recorded. 2 5-HT produced a transient contraction of the muscularis mucosae at concentrations higher than 3 ?M. The contraction was rapid in onset, reaching a peak in about 15 s or less, and was restored to the basal level after 20 to 30 s without washing out 5-HT. When the 5-HT-induced contraction faded to the basal tone, successive applications of 5-HT no longer produced any contracture. 3 Nicotine (Nic), at concentrations higher than 10 ?M, also produced a transient contraction which had a very similar pattern to that induced by 5-HT. Again, the successive application of Nic no longer produced any contracture following prior treatment with Nic itself. However, the 5-HT-induced contraction was not modified by the presence of Nic. 4 Exogenously applied acetylcholine (ACh) produced a concentration-dependent contraction of the muscularis mucoase, the 50% effective concentration (EC50) was 69 ± 5.6 nM. The contraction was sustained during incubation with ACh, and was not modified by prior treatment with 5-HT or Nic. 5 The 5-HT (100 ?M)-induced contraction was completely abolished by tetrodotoxin (0.2 ?M) and atropine (0.2 ?M). This means that the action is mediated by stimulating cholinergic nerves in the submucous plexus attached to muscularis mucosae. Moreover, the stimulating action of 5-HT does not involve nicotinic receptors, since the action was not blocked by hexamethonium (100 ?M). 6 Among several 5-MT antagonists examined, methysergide (1 ?M), ketanserin (1 ?M) and morphine (100 ?M) failed to modify the 5-HT (100 ?M)-induced contraction significantly. Cinanserin (0.1-3 ?M), cyproheptadine (3-100 nM) and phenoxybenzamine (0.1-3 ?M) inhibited the 5-HT-induced contraction, in a concentration-dependent manner, and each highest concentration abolished the response. However, none of these antagonists was specific for 5-HT, but the Nic (100 ?M) or ACh (0.1 ?M)-induced contractions were also inhibited by them. 7 The present results indicate that 5-HT contracts the muscularis mucosae of the guinea-pig oesophagus indirectly by stimulating cholinergic nerves in the submucous plexus, and has no direct action on the muscularis mucosae. In addition, the type of 5-HT receptors responsible for the stimulant action may be different from those in other parts of the gastrointestinal tract, blood vessels or brain, because of the different effects of 5-HT antagonists. PMID:6824809

  6. The action of 5-hydroxytryptamine on chemoreceptor discharges of the cat's carotid body.

    PubMed Central

    Nishi, K

    1975-01-01

    1 Chemoreceptor discharges were recorded in vivo from fine filaments of the carotid sinus nerve containing a single or several active units; their frequency was used as an index of receptor activity. The effects of 5-hydroxytryptamine (5-HT) on chemoreceptors were studied in 26 adult cats. At times, sinus baroreceptor discharges were recorded from the carotid nerve and the effect of 5-HT on the discharges was examined. 2 Intra-carotid injections of 5-HT (2-20 mug) induced a sharp and brief increase in chemoreceptor discharges, followed by depression or block which lasted for several seconds. Repeated injections at short intervals, and a small dose after a large dose of 5-HT resulted in depressed or blocked response to 5-HT. 3 5-HT in high doses (10-20 mug, i.a.) slightly depressed the chemoreceptor discharges induced by either acetylcholine (ACh) or NaCN, when these substances were applied within 20 s after 5-HT. 5-HT (5-20 mug, i.a.) applied during asphyxia induced a further increase in chemoreceptor discharges, soon followed by block of the discharges lasting for several seconds. 4 Atropine or hexamethonium in high doses did not change the chemoreceptor response to 5-HT, while that to ACh was markedly depressed. 5 (+)-Lysergic diethylamide (LSD), methysergide or gramine did not alter the response to 5-HT, while LSD in low doses produced a marked increase in chemoreceptor discharges. 6 Acute and chronic treatment with reserpine (5-10 mg/kg, i.v.) of the animals did not change the sensitivity and the reactivity of the chemoreceptor to ACh and NaCN, while the chemoreceptor response to 5-HT was augmented, indicating an increase in the sensitivity of chemoreceptors to 5-HT. 7 5-HT in small doses (2-10 mug, i.a.) induced a marked increase in sinus baroreceptor discharges; subsequently discharges were depressed or blocked for several seconds. 8 The results are discussed in relation to possible mechanism of action of 5-HT on the chemoreceptors. It is concluded that the exogenous 5-HT probably acts directly on the chemosensory nerve endings and depolarizes them, but 5-HT contained in the carotid body does not play a significant role in the generation of chemoreceptor discharges. PMID:1182345

  7. Effects of 5-hydroxytryptamine agonists and antagonists on the responses of rat spinal motoneurones to raphe obscurus stimulation.

    PubMed Central

    Roberts, M. H.; Davies, M.; Girdlestone, D.; Foster, G. A.

    1988-01-01

    1. The excitability of lumbar spinal motoneurones was studied in halothane-anaesthetized rats by recording with microelectrodes the amplitude of the population spike evoked antidromically by stimulation of the cut ventral roots. 2. Electrical stimulation of the nucleus raphe obscurus for 1 min at 20 Hz increased the population spike amplitude and, as shown by intracellular recording, depolarized motoneurones. This response could be mimicked by microinjection of DL-homocysteic acid into raphe obscurus but the response was not present in animals pretreated with the 5-hydroxytryptamine (5-HT) neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). 3. Microiontophoretically applied 5-HT had very similar effects on the extracellularly recorded population spike to those caused by stimulation of the raphe obscurus. These responses to 5-HT were larger in 5,7-DHT-pretreated animals. 4. The effects of 5-HT were potently mimicked by iontophoretically applied 5-carboxamidotryptamine but 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) was without effect. 5. Antagonists were applied by microiontophoresis and also by intravenous injection. Ketanserin, the selective 5-HT2 antagonist, did not antagonize the effects of 5-HT. Neither did the 5-HT3-receptor antagonist MDL 72222 or the selective 5-HT1 binding ligand cyanopindolol. 6. The non-selective 5-HT1/5-HT2-receptor antagonist methysergide was an effective antagonist of both the effects of 5-HT and the response to raphe obscurus stimulation. Methysergide did not reduce the excitatory effects of noradrenaline. 7. It is concluded that 5-HT application and stimulation of raphe obscurus increase the excitability of motoneurones by an action on a 5-HT1-like receptor which appears to be different from the 5-HT1A-and the 5-HT1B-binding sites characterized by others. PMID:3228671

  8. Mepacrine, a tool for investigating the 5-hydroxytryptamine organelles of blood platelets by fluorescence microscopy.

    PubMed

    Lorez, H P; Da Prada, M; Rendu, F; Pletscher, A

    1977-01-01

    In the blood platelets of various species exposed to mepacrine, the average number of green-yellow fluorescent granules (probably identical with the 5-hydroxytryptamine [5-HT] storage organelles) corresponded to that of flashes emitted by the platelets on prolonged irradiation with violet-blue light. In platelets of fawn-hooded rats the number of granules did not markedly differ from that of normal rat platelets, but the fluorescence intensity and the uptake of mepacrine in vitro showed a marked decrease and the flashes were less numerous. The heavy population of human platelets exhibited considerably more granular structures than the light population. The data suggest that (1) in normal, mepacrine-loaded platelets one flash corresponds to one 5-HT organelle and (2) mepacrine is a useful tool for investigating the number and function of the 5-HT organelles in live platelets and possibly for studying platelet age. PMID:556622

  9. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence.

    PubMed Central

    Williams, R M; Shear, J B; Zipfel, W R; Maiti, S; Webb, W W

    1999-01-01

    The secretion process of the mucosal mast cell line RBL-2H3 was imaged using infrared three photon excitation (3PE) of serotonin (5-hydroxytryptamine, 5-HT) autofluorescence, a measurement previously difficult because of the technical intractability of deep UV optics. Images of prestimulation 5-HT distributions were analyzed in loaded cell populations (those incubated in a 5-HT-rich medium overnight) and in unloaded populations and were found to be strictly quantifiable by comparison with bulk population high-performance liquid chromatography measurements. Antigenically stimulated cells were observed to characteristically ruffle and spread as granular 5-HT disappeared with no detectable granule movement. Individual cells exhibited highly heterogeneous release kinetics, often with quasi-periodic bursts. Neighboring granule disappearances were correlated, indicative of either spatially localized signaling or granule-granule interactions. In one-half of the granule release events, weak residual fluorescence was visible suggestive of leftover 5-HT still bound to the granule matrix. The terminal stages of secretion (>300 s) consisted primarily of unresolved granules and remainder 5-HT leakage from already released granules. PMID:10096882

  10. Effects of p-chlorophenylalanine on the sensitivity of rat intestine to agonists and on intestinal 5-hydroxytryptamine levels during Nippostrongylus brasiliensis infection.

    PubMed Central

    Farmer, S. G.; Laniyonu, A. A.

    1984-01-01

    Infection of rats with the nematode N. brasiliensis caused non-specific increases in maximum response of isolated intestine to acetylcholine and 5-hydroxytryptamine (5-HT), and a specific subsensitivity to 5-HT. Intestinal levels of 5-HT, measured fluorimetrically, increased approximately 2 fold during infection. Treatment of infected rats with parachlorophenylalanine (PCPA) depleted the gut of 5-HT, and prevented the specific subsensitivity to the amine but not the increases in maximum response. Depletion of intestinal 5-HT did not prevent the immune expulsion of the parasites. It is concluded that the specific subsensitivity of the gut is due to the elevated levels of 5-HT during infection, but that the increased maximum responses are due to some other factor. Further, the lack of effect of PCPA on parasite rejection casts doubt on the proposed role of 5-HT in this process. PMID:6236863

  11. 5-HT1A/1B Receptors as Targets for Optimizing Pigmentary Responses in C57BL/6 Mouse Skin to Stress

    PubMed Central

    Wu, Hua-Li; Pang, Si-Lin; Liu, Qiong-Zhen; Wang, Qian; Cai, Min-Xuan; Shang, Jing

    2014-01-01

    Stress has been reported to induce alterations of skin pigmentary response. Acute stress is associated with increased turnover of serotonin (5-hydroxytryptamine; 5-HT) whereas chronic stress causes a decrease. 5-HT receptors have been detected in pigment cells, indicating their role in skin pigmentation. To ascertain the precise role of 5-HT in stress-induced pigmentary responses, C57BL/6 mice were subjected to chronic restraint stress and chronic unpredictable mild stress (CRS and CUMS, two models of chronic stress) for 21 days, finally resulting in abnormal pigmentary responses. Subsequently, stressed mice were characterized by the absence of a black pigment in dorsal coat. The down-regulation of tyrosinase (TYR) and tyrosinase-related proteins (TRP1 and TRP2) expression in stressed skin was accompanied by reduced levels of 5-HT and decreased expression of 5-HT receptor (5-HTR) system. In both murine B16F10 melanoma cells and normal human melanocytes (NHMCs), 5-HT had a stimulatory effect on melanin production, dendricity and migration. When treated with 5-HT in cultured hair follicles (HFs), the increased expression of melanogenesis-related genes and the activation of 5-HT1A, 1B and 7 receptors also occurred. The serum obtained from stressed mice showed significantly decreased tyrosinase activity in NHMCs compared to that from nonstressed mice. The decrease in tyrosinase activity was further augmented in the presence of 5-HTR1A, 1B and 7 antagonists, WAY100635, SB216641 and SB269970. In vivo, stressed mice received 5-HT precursor 5-hydroxy-l-tryptophan (5-HTP), a member of the class of selective serotonin reuptake inhibitors (fluoxetine; FX) and 5-HTR1A/1B agonists (8-OH-DPAT/CP94253), finally contributing to the normalization of pigmentary responses. Taken together, these data strongly suggest that the serotoninergic system plays an important role in the regulation of stress-induced depigmentation, which can be mediated by 5-HT1A/1B receptors. 5-HT and 5-HTR1A/1B may constitute novel targets for therapy of skin hypopigmentation disorders, especially those worsened with stress. PMID:24586946

  12. 5-HT1A/1B receptors as targets for optimizing pigmentary responses in C57BL/6 mouse skin to stress.

    PubMed

    Wu, Hua-Li; Pang, Si-Lin; Liu, Qiong-Zhen; Wang, Qian; Cai, Min-Xuan; Shang, Jing

    2014-01-01

    Stress has been reported to induce alterations of skin pigmentary response. Acute stress is associated with increased turnover of serotonin (5-hydroxytryptamine; 5-HT) whereas chronic stress causes a decrease. 5-HT receptors have been detected in pigment cells, indicating their role in skin pigmentation. To ascertain the precise role of 5-HT in stress-induced pigmentary responses, C57BL/6 mice were subjected to chronic restraint stress and chronic unpredictable mild stress (CRS and CUMS, two models of chronic stress) for 21 days, finally resulting in abnormal pigmentary responses. Subsequently, stressed mice were characterized by the absence of a black pigment in dorsal coat. The down-regulation of tyrosinase (TYR) and tyrosinase-related proteins (TRP1 and TRP2) expression in stressed skin was accompanied by reduced levels of 5-HT and decreased expression of 5-HT receptor (5-HTR) system. In both murine B16F10 melanoma cells and normal human melanocytes (NHMCs), 5-HT had a stimulatory effect on melanin production, dendricity and migration. When treated with 5-HT in cultured hair follicles (HFs), the increased expression of melanogenesis-related genes and the activation of 5-HT1A, 1B and 7 receptors also occurred. The serum obtained from stressed mice showed significantly decreased tyrosinase activity in NHMCs compared to that from nonstressed mice. The decrease in tyrosinase activity was further augmented in the presence of 5-HTR1A, 1B and 7 antagonists, WAY100635, SB216641 and SB269970. In vivo, stressed mice received 5-HT precursor 5-hydroxy-l-tryptophan (5-HTP), a member of the class of selective serotonin reuptake inhibitors (fluoxetine; FX) and 5-HTR1A/1B agonists (8-OH-DPAT/CP94253), finally contributing to the normalization of pigmentary responses. Taken together, these data strongly suggest that the serotoninergic system plays an important role in the regulation of stress-induced depigmentation, which can be mediated by 5-HT1A/1B receptors. 5-HT and 5-HTR1A/1B may constitute novel targets for therapy of skin hypopigmentation disorders, especially those worsened with stress. PMID:24586946

  13. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    PubMed Central

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  14. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.

    PubMed

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  15. Cellular resilience: 5-HT neurons in Tph2(-/-) mice retain normal firing behavior despite the lack of brain 5-HT.

    PubMed

    Montalbano, Alberto; Waider, Jonas; Barbieri, Mario; Baytas, Ozan; Lesch, Klaus-Peter; Corradetti, Renato; Mlinar, Boris

    2015-11-01

    Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency. PMID:26409296

  16. Two types of receptors for 5-hydroxytryptamine on the cholinergic nerves of the guinea-pig myenteric plexus.

    PubMed Central

    Kilbinger, H.; Pfeuffer-Friederich, I.

    1985-01-01

    The effects of 5-hydroxytryptamine (5-HT) on spontaneous and electrically-evoked release of [3H]-acetylcholine (ACh) from guinea-pig myenteric plexus preparations preincubated with [3H]-choline have been investigated in the absence of cholinesterase inhibitors. 5-HT caused a transient increase in spontaneous release and an inhibition of the electrically-evoked release of [3H]-ACh. The 5-HT-induced contractions of the longitudinal muscle were clearly related to the increase in spontaneous release. The inhibitory effect was not due to activation of alpha-adrenoceptors since it was also observed in the presence of tolazoline and on strips from reserpine-pretreated guinea-pigs. After desensitization of the excitatory 5-HT receptors with 5-HT or metoclopramide the effects of 5-HT on spontaneous [3H]-ACh release were largely reduced. A variety of established antagonists at neuronal 5-HT receptors (i.e. metitepine 0.1-1 microM; methysergide 1 microM; ketanserin 0.1-1 microM; MDL 72222 0.1 microM; tropacocaine 1 microM) failed to block the excitation. The inhibition by 5-HT of the electrically evoked [3H]-ACh release was competitively antagonized by metitepine (pA2 7.6) and methysergide (pA2 7.0) but not by ketanserin. Tachyphylaxis to the inhibitory action of 5-HT did not occur. The results suggest that the excitatory 5-HT receptor ('M'-receptor) differs in its pharmacological properties from other neuronal 5-HT receptors. The presynaptically located inhibitory receptor may roughly correspond to the 5-HT1 receptor subtype but probably differs from the 5-HT autoreceptor. PMID:3161573

  17. The 5-hydroxytryptamine 4 Receptor Agonist-induced Actions and Enteric Neurogenesis in the Gut

    PubMed Central

    Goto, Kei; Kawahara, Isao

    2014-01-01

    We explored a novel effect of 5-hydroxytryptamine 4 receptor (5-HT4R) agonists in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex. The neural circuit insult was performed in guinea pigs and rats by rectal transection and anastomosis. A 5-HT4R-agonist, mosapride citrate (MOS) applied orally and locally at the anastomotic site for 2 weeks promoted the regeneration of the impaired neural circuit or the recovery of the distal gut reflex. MOS generated neurofilament-, 5-HT4R- and 5-bromo-2'-deoxyuridine-positive cells and formed neural network in the granulation tissue at the anastomosis. Possible neural stem cell markers increased during the same time period. These novel actions by MOS were inhibited by specific 5-HT4R-antagonist such as GR113808 (GR) or SB-207266. The activation of enteric neural 5-HT4R promotes reconstruction of an enteric neural circuit that involves possibly neural stem cells. We also succeeded in forming dense enteric neural networks by MOS in a gut differentiated from mouse embryonic stem cells. GR abolished the formation of enteric neural networks. MOS up-regulated the expression of mRNA of 5-HT4R, and GR abolished this upregulation, suggesting MOS differentiated enteric neural networks, mediated via activation of 5-HT4R. In the small intestine in H-line: Thy1 promoter green fluorescent protein (GFP) mice, we obtained clear 3-dimensional imaging of enteric neurons that were newly generated by oral application of MOS after gut transection and anastomosis. All findings indicate that treatment with 5-HT4R-agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic disorders in the whole gut. PMID:24466442

  18. The 5-hydroxytryptamine antagonist ketanserin inhibits the vasoconstrictor activity of per-operative CSF, from subarachnoid haemorrhage patients, on isolated tissues.

    PubMed Central

    Tagari, P C; Kaye, A H; Teddy, P J; Schachter, M; Adams, C B; Boullin, D J

    1983-01-01

    Peri-aneurysmal CSF was obtained at operation from 13 patients with subarachnoid haemorrhage from ruptured intracranial aneurysms. The 5-hydroxytryptamine antagonist ketanserin inhibited contractions of isolated human intracranial arteries, elicited by this CSF. The presence of 5-HT in CSF was confirmed by high performance liquid chromatography. The use of ketanserin in the therapy of postoperative cerebral vasospasm is discussed. PMID:6188804

  19. Effect of halothane on metabolism of 5-hydroxytryptamine by rat lungs perfused in situ.

    PubMed Central

    Watkins, C A; Wartell, S A; Rannels, D E

    1983-01-01

    The effect of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the uptake of 14C-labelled 5-hydroxytryptamine (5-HT) and its metabolism to 5-hydroxyindol-3-ylacetic acid (5-HIAA) was investigated in rat lungs perfused in situ. The rate of accumulation of 14C-labelled 5-HIAA in the tissue, monitored as an index of 5-HT metabolism, was linear with time, displayed saturation kinetics and remained stable for at least 180 min of perfusion. Exposure of the lungs to halothane (4%) for 60 min reversibly reduced production of 5-HIAA through an increase in the apparent Km for metabolism of the amine from 1.45 to 3.52 microM (P less than 0.001); the anaesthetic had no effect on the Vmax. of the process. The magnitude of the inhibition increased with time of exposure to the anaesthetic. Halothane exposure did not alter the distribution of [3H]sorbitol or [14C]5-HT, pulmonary vascular resistance, levels of ATP or the kinetics of amino acid transport in the tissue. Inhibition of protein synthesis by cycloheximide did not mimic the effect of the anaesthetic. These observations, together with those made in lungs exposed to inhibitors of 5-HT uptake and metabolism, were consistent with a halothane-mediated inhibition of 5-HT uptake, which did not appear to involve non-specific changes in membrane permeability. PMID:6847641

  20. Increased reactivity to 5-hydroxytryptamine of portal veins from mice infected with Schistosoma mansoni.

    PubMed

    Silva, C L; Morel, N; Lenzi, H L; Noël, F

    1998-07-01

    In chronic severe infection with Schistosoma mansoni, portal hypertension accompanied by anatomical changes of the portal vasculature can develop as a consequence of granulomatous response to eggs. Mice infected unisexually with male worms were used in the present study in order to investigate a direct effect of worms on the reactivity of their host portal vein. A higher reactivity in the presence of 5-hydroxytryptamine (5-HT), but not in the presence of KCl 100 mM solution, was observed in portal vein from infected mice compared to healthy mice. It was characterized by an increase in the maximal contraction and sensitivity to 5-HT. Blockade of NO-synthase with N omega-nitro-L-arginine methyl ester (L-NAME) induced a small increase in 5-HT potency in the portal vein from non-infected mice, but did not change the amplitude of the contractions. In portal veins from infected mice, preincubation with L-NAME did not affect the reactivity to 5-HT. Histological analysis indicated endothelial damage, subendothelial fibrous plaques, and focal areas of inflammatory infiltrates in the adventitial layer. As a conclusion, these results show that unisexual infection of mice with male S. mansoni increased the reactivity of the portal vein to 5-HT which seems to be only partially related to an alteration in the endothelial production of nitric oxide. PMID:9787826

  1. Elemental maps in human allantochorial placental vessels cells. 3. 5-hydroxytryptamine effects.

    PubMed

    Guiet-Bara, A; Michelet-Habchi, C; Barberet, Ph; Dutta, R K; Moretto, Ph; Bara, M

    2003-06-01

    The membrane potential, a regulator of vascular tone, is a function of the physiological activities of ionic channels (particularly, K+ and Ca2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particule induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs) in the placental human allantochorial vessels in a physiological medium (Hanks'solution) modified by the addition of a chemical stimulus: 5-hydroxytryptamine (5-HT), an activator of the voltage-sensitive Ca2+ channels. In VSMCs (media layer), the addition of 5-HT induced no modification of the Na, K, Cl, P, S and Ca concentrations but increased Mg concentration. In endothelium (VECs) 5-HT addition implicated an increase of the K, S, Ca concentrations, the concentration of the other ions remained constant. In VECs, Ca and K increase is due to open of L-type voltage-dependent Ca2+ channels and of K(Ca) channels. 5-HT induces also a secretion of endothelium hyperpolarizing factors which implicate decrease of [Ca2+]i in VSMCs opposite to a direct increase by 5-HT. Increase in [Mg2+]i may be due to activation of the Ca/Mg exchanger. PMID:12899438

  2. Evidence for depressant 5-HT1-like receptors on rat brainstem neurones.

    PubMed Central

    Davies, M.; Wilkinson, L. S.; Roberts, M. H.

    1988-01-01

    1. The technique of microiontophoresis was used to evaluate the contribution of 5-HT1-like, 5-HT2- and 5-HT3-receptors to the depressant effects of 5-hydroxytryptamine (5-HT) on neurones in the midline of the medullary brainstem of the rat in vivo. 2. Depressant responses to 5-HT were resistant to antagonism by the 5-HT2-receptor antagonist ketanserin and the 5-HT3-receptor antagonist MDL 72222 applied either microiontophoretically or administered systemically. 3. Microiontophoretic or systemic administration of the 5-HT antagonist metergoline, which shows nanomolar affinity for the 5-HT1-binding site, also failed to attenuate the depressant responses to 5-HT. 4. Systemic administration of high doses of methysergide (30-40 mg kg-1) attenuated the depressant responses to 5-HT but did not block depressant responses to GABA or excitatory responses to glutamate. 5. The depressant effects of 5-HT were potently mimicked by the 5-HT1-like receptor agonists 5-carboxamidotryptamine and 8-OH-DPAT. 6. These results indicate that neither 5-HT2-receptors nor 5-HT3-receptors are involved in the depressant effects of 5-HT on midline brainstem neurones. The depressant effects of 5-carboxamidotryptamine (5-CT) and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and blockade of the response to 5-HT by high doses of methysergide suggests the involvement of 5-HT1-like receptors. The lack of effect of metergoline, however, indicates that this receptor may be different from any of the 5-HT1 binding sites yet described. PMID:3395787

  3. Physiologically identified 5-HT2-like receptors at the crayfish neuromuscular junction.

    PubMed

    Tabor, Jami N; Cooper, Robin L

    2002-04-01

    The model synaptic preparation of the crayfish opener neuromuscular junction is known to be responsive to exogenous application of 5-HT. The primary effect of 5-HT is an enhancement of vesicular release from the presynaptic motor nerve terminal. 5-HT is known to act through an IP(3) cascade which suggests the presence of a 5-HT(2) receptor subtype; however, this is based on vertebrate 5-HT receptor classification. We examined this possibility by using a selective agonist and two antagonists of the vertebrate 5-HT(2) receptor subtypes. The antagonist ketanserin and spiperone reduce the responsiveness of 5-HT in a dose-dependent manner. The broad 5-HT(2) receptor agonist, alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) enhances synaptic transmission, in a concentration-dependent manner, but it is not as potent as 5-HT. These results support the notion that a 5-HT(2) receptor subtype is present presynaptically on the crayfish motor nerve terminals. By knowing the types of 5-HT receptors present on the presynaptic motor nerve terminals in this model synaptic preparation, a better understanding of the mechanisms of action of 5-HT on vesicular release will be forthcoming. PMID:11911865

  4. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  5. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 ?M, full block with 100 ?M) and by SCH23390 (EC50 = 1.95 ?M, full block with 30 ?M). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  6. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron (all 1 microM). 6. We conclude that 5-HT activates three pharmacologically distinct receptors to depolarize the guinea-pig SCG. Low concentrations of 5-HT appear to activate 5-HT2A receptors. Higher concentrations of 5-HT also activate 5-HT3 receptors and a possible novel 5-HT receptor. The novel receptor could be a species homologue of a 5-HT2 receptor or an, as yet, unclassified 5-HT receptor. PMID:8825338

  7. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex

    PubMed Central

    Bombardi, Cristiano

    2014-01-01

    The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and “remaining” nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala. PMID:24782772

  8. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat

    NASA Technical Reports Server (NTRS)

    Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.

  9. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat.

    PubMed

    Kolta, M G; Soliman, K F; Williams, B B

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta E) and immunoreactive insulin (IRI) was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) 3 days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for 3 days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindole acetic acid (5-HIAA) while it caused significant increase and decrease in brain beta E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta E and insulin regardless of the availability of pancreatic insulin. PMID:2935473

  10. Pharmacological Characterization of a 5-HT1-Type Serotonin Receptor in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Vleugels, Rut; Lenaerts, Cynthia; Baumann, Arnd; Vanden Broeck, Jozef; Verlinden, Heleen

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is known for its key role in modulating diverse physiological processes and behaviors by binding various 5-HT receptors. However, a lack of pharmacological knowledge impedes studies on invertebrate 5-HT receptors. Moreover, pharmacological information is urgently needed in order to establish a reliable classification system for invertebrate 5-HT receptors. In this study we report on the molecular cloning and pharmacological characterization of a 5-HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-HT1). The Trica5-HT1 receptor encoding cDNA shows considerable sequence similarity with members of the 5-HT1 receptor class. Real time PCR showed high expression in the brain (without optic lobes) and the optic lobes, consistent with the role of 5-HT as neurotransmitter. Activation of Trica5-HT1 in mammalian cells decreased NKH-477-stimulated cyclic AMP levels in a dose-dependent manner, but did not influence intracellular Ca2+ signaling. We studied the pharmacological profile of the 5-HT1 receptor and demonstrated that ?-methylserotonin, 5-methoxytryptamine and 5-carboxamidotryptamine acted as agonists. Prazosin, methiothepin and methysergide were the most potent antagonists and showed competitive inhibition in presence of 5-HT. This study offers important information on a 5-HT1 receptor from T. castaneum facilitating functional research of 5-HT receptors in insects and other invertebrates. The pharmacological profiles may contribute to establish a reliable classification scheme for invertebrate 5-HT receptors. PMID:23741451

  11. Effects of the antagonists MDL 72222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine.

    PubMed Central

    Kirby, G. C.; McQueen, D. S.

    1984-01-01

    The effects of intracarotid (i.c.) injections of 5-hydroxytryptamine (5-HT; 1-50 micrograms) on carotid chemoreceptor activity recorded from the carotid sinus nerve have been studied in anaesthetized cats. Three separate components in the complex response of the chemoreceptors to injected 5-HT were identified. Firstly, a transient burst of activity was obtained during the injection period in 56% of the recordings. Secondly, in all the recordings a period of chemodepression commenced a few seconds after completing the injection and was usually dose-related. Thirdly, a delayed longer-lasting chemoexcitation occurred in many experiments, concomitant with a fall in systemic blood pressure. The neuronal 5-HT receptor antagonist MDL 72222 (10-100 micrograms kg-1, i.c.) virtually abolished the transient chemoexcitation evoked during 5-HT injections and also significantly increased the mean ID50 for 5-HT-induced chemodepression; in 37% of recordings 5-HT caused a dose-related chemoexcitation after the high dose of MDL 72222. Neither the delayed chemoexcitation nor the hypotension caused by 5-HT were much affected by the antagonist. MDL 72222 itself had a biphasic effect on chemosensory discharge, causing depression followed by a delayed excitation. The 5-HT2-receptor antagonist ketanserin (100 micrograms kg-1, i.c.) had no appreciable effect on the transient chemoexcitation evoked during 5-HT injections and caused a slight but significant increase in the mean ID50 for 5-HT-induced chemodepression. The delayed chemoexcitation and accompanying hypotension associated with 5-HT were both substantially reduced or abolished by the antagonist. Ketanserin itself caused a short-lasting period of chemoexcitation. All the effects of injected 5-HT on chemosensory discharge could be abolished by the combination of MDL 72222 and ketanserin (100 micrograms kg-1, i.c.). Neither MDL 72222 nor ketanserin had any significant effect upon the response of the carotid chemoreceptors to hypoxia. The rate at which discharge increased, and also the steady-state discharge before and during hypoxia, were unaffected by the antagonists, alone or in combination. At least two types of 5-HT receptor appeared to be involved in the response of carotid body chemoreceptors to 5-HT. Transient excitation and chemodepression were mediated via MDL 72222-sensitive (peripheral neuronal) receptors whereas the delayed chemoexcitation and associated hypotension involved a ketanserin-sensitive, presumably 5-HT2-, receptor. It appears unlikely that 5-HT plays a crucial role in chemoreception. PMID:6487893

  12. Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro

    PubMed Central

    Gwynne, Rachel M.; Clarke, Amanda J.; Furness, John B.; Bornstein, Joel C.

    2014-01-01

    The roles of 5-HT3 and 5-HT4 receptors in the modulation of intestinal propulsion by luminal application of 5-HT and augmentation of endogenous 5-HT effects were studied in segments of guinea-pig ileum in vitro. Persistent propulsive contractions evoked by saline distension were examined using a modified Trendelenburg method. When 5-HT (30 nM), fluoxetine (selective serotonin reuptake inhibitor; 1 nM), 2-methyl-5-HT (5-HT3 receptor agonist; 1 mM), or RS 67506 (5-HT4 receptor agonist, 1 ?M) was infused into the lumen, the pressure needed to initiate persistent propulsive activity fell significantly. A specific 5-HT4 receptor antagonist, SB 207266 (10 nM in lumen), abolished the effects of 5-HT, fluoxetine, and RS 67506, but not those of 2-methyl-5-HT. Granisetron (5-HT3 receptor antagonist; 1 ?M in lumen) abolished the effect of 5-HT, fluoxetine, RS 67506, and 2-methyl-5-HT. The NK3 receptor antagonist SR 142801 (100 nM in lumen) blocked the effects of 5-HT, fluoxetine, and 2-methyl-5-HT. SB 207266, granisetron, and SR 142801 had no effect by themselves. Higher concentrations of fluoxetine (100 and 300 nM) and RS 67506 (3 and 10 ?M) had no effect on the distension threshold for propulsive contractions. These results indicate that luminal application of exogenous 5-HT, or increased release of endogenous mucosal 5-HT above basal levels, acts to lower the threshold for propulsive contractions in the guinea-pig ileum via activation of 5-HT3 and 5-HT4 receptors and the release of tachykinins. The results further indicate that basal release of 5-HT is insufficient to alter the threshold for propulsive motor activity. PMID:25285066

  13. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions. PMID:25739427

  14. Ascorbic acid prevents nonreceptor specific binding of (/sup 3/H)-5-hydroxytryptamine to bovine cerebral cortex membranes

    SciTech Connect

    Hamblin, M.W.; Adriaenssens, P.I.; Ariani, K.; Cawthon, R.M.; Stratford, C.A.; Tan, G.L.; Ciaranello, R.D.

    1987-03-01

    (/sup 3/H)-5-Hydroxytryptamine ((/sup 3/H)-5-HT) decomposes rapidly when exposed to air in solution at physiological pH if antioxidants are not present. The decomposition products appear to bind to two saturable sites on brain membranes (apparent Kd values = 1-2 and 100-1000 nM). This binding mimics ''specific'' ligand/receptor binding in that it is inhibited by 10 microM unlabeled 5-HT. This inhibition is not competitive, but rather is due to the prevention of (/sup 3/H)-5-HT breakdown by excess unlabeled 5-HT. Unlike genuine ligand/receptor binding, the binding of (/sup 3/H)-5-HT breakdown products is essentially irreversible and does not display a tissue distribution consistent with binding to authentic 5-HT receptors. (/sup 3/H)-5-HT decomposition can be eliminated by the inclusion of 0.05 to 5 mM ascorbic acid. At these concentrations ascorbic acid is not deleterious to reversible (/sup 3/H)-5-HT binding. When (/sup 3/H) 5-HT exposure to air occurs in the presence of brain membranes, the apparent antioxidant activity of brain membranes themselves affords protection against (/sup 3/H)-5-HT degradation equal to ascorbic acid. This protection is effective below final (/sup 3/H)-5-HT concentrations of 10 nM. Above 10 nM (/sup 3/H)-5-HT, addition of ascorbic acid or other antioxidants is necessary to avoid the occurrence of additional low affinity (apparent Kd = 15-2000 nM) binding sites that are specific but nonetheless irreversible. When care is taken to limit (/sup 3/H)-5-HT oxidation, the only reversible and saturable specific binding sites observed are of the 5-HT1 high affinity (Kd = 1-2 nM) type. Radioligand oxidation artifacts may be involved in previous reports of low affinity (Kd = 15-250 nM) (/sup 3/H)-5-HT binding sites in brain membrane preparations.

  15. Flibanserin, a potential antidepressant drug, lowers 5-HT and raises dopamine and noradrenaline in the rat prefrontal cortex dialysate: role of 5-HT1A receptors

    PubMed Central

    Invernizzi, Roberto William; Sacchetti, Giuseppina; Parini, Stefania; Acconcia, Sabrina; Samanin, Rosario

    2003-01-01

    Using in vivo intracerebral microdialysis in conscious, freely moving rats, we examined the effect of flibanserin, a potential antidepressant drug with high affinity for human 5-HT1A receptors and four–50-fold lower affinity for 5-HT2A and D4 receptors, on basal extracellular concentrations of serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA) and noradrenaline (NA) in selected regions of the rat brain. Flibanserin at 3 and 10 mg kg?1 significantly reduced extracellular 5-HT in the prefrontal cortex (by 30 and 45%) and dorsal raphe (35 and 44%), but had no effect on extracellular 5-HT in the ventral hippocampus. The 3 and 10 mg kg?1 doses raised extracellular NA to a similar extent in the prefrontal cortex (47 and 50%). In all, 10 mg kg?1 raised extracellular DA in the prefrontal cortex (63%) whereas 3 mg kg?1 had no significant effect. Pretreatment with the selective 5-HT1A receptor antagonist WAY100,635 (0.3 mg kg?1) 30 min before 10 mg kg?1 flibanserin completely antagonized the latter's effects on extracellular 5-HT, DA and NA in the prefrontal cortex. WAY100,635 by itself had no effect on cortical extracellular monoamines. The results show that the stimulation of 5-HT1A receptors plays a major role in the effect of flibanserin on brain extracellular 5-HT, DA and NA. PMID:12890707

  16. Flibanserin, a potential antidepressant drug, lowers 5-HT and raises dopamine and noradrenaline in the rat prefrontal cortex dialysate: role of 5-HT(1A) receptors.

    PubMed

    Invernizzi, Roberto William; Sacchetti, Giuseppina; Parini, Stefania; Acconcia, Sabrina; Samanin, Rosario

    2003-08-01

    (1) Using in vivo intracerebral microdialysis in conscious, freely moving rats, we examined the effect of flibanserin, a potential antidepressant drug with high affinity for human 5-HT(1A) receptors and four-50-fold lower affinity for 5-HT(2A) and D(4) receptors, on basal extracellular concentrations of serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA) and noradrenaline (NA) in selected regions of the rat brain. (2) Flibanserin at 3 and 10 mg kg(-1) significantly reduced extracellular 5-HT in the prefrontal cortex (by 30 and 45%) and dorsal raphe (35 and 44%), but had no effect on extracellular 5-HT in the ventral hippocampus. The 3 and 10 mg kg(-1) doses raised extracellular NA to a similar extent in the prefrontal cortex (47 and 50%). In all, 10 mg kg(-1) raised extracellular DA in the prefrontal cortex (63%) whereas 3 mg kg(-1) had no significant effect. (3) Pretreatment with the selective 5-HT(1A) receptor antagonist WAY100,635 (0.3 mg kg(-1)) 30 min before 10 mg kg(-1) flibanserin completely antagonized the latter's effects on extracellular 5-HT, DA and NA in the prefrontal cortex. WAY100,635 by itself had no effect on cortical extracellular monoamines. (4) The results show that the stimulation of 5-HT(1A) receptors plays a major role in the effect of flibanserin on brain extracellular 5-HT, DA and NA. PMID:12890707

  17. 5-Carboxamidotryptamine is a selective agonist at 5-hydroxytryptamine receptors mediating vasodilatation and tachycardia in anaesthetized cats.

    PubMed Central

    Connor, H. E.; Feniuk, W.; Humphrey, P. P.; Perren, M. J.

    1986-01-01

    We have attempted to characterize the 5-hydroxytryptamine (5-HT) receptors mediating bronchoconstriction, vasodilatation, vasodepression and tachycardia in anaesthetized cats following bilateral vagosympathectomy and beta-adrenoceptor blockade with propranolol. 5-HT (1-100 micrograms/kg-1 i.v.) caused dose-related bronchoconstriction and tachycardia but variable and complex effects on diastolic blood pressure and carotid arterial vascular resistance. In contrast, 5-carboxamidotryptamine (5-CT; 0.01-1 micrograms kg-1 i.v.) caused consistent, dose-related decreases in diastolic blood pressure and carotid arterial vascular resistance and increases in heart rate. 5-CT did not cause bronchoconstriction. The 5-HT-induced bronchoconstriction was dose-dependently antagonized by methiothepin, methysergide and ketanserin (10-100 micrograms kg-1 i.v.). The highest doses used of these antagonists did not antagonize bronchoconstriction induced by prostaglandin F2 alpha. The high potency of all three antagonists indicate a 5-HT2-receptor mediated effect. The 5-HT- and 5-CT-induced tachycardia as well as the 5-CT-induced vasodepressor and carotid arterial vasodilator responses were dose-dependently antagonized by low doses of methiothepin (10-100 micrograms kg-1 i.v.) and by high doses of methysergide (100-1000 micrograms kg-1 i.v.) but were little affected by ketanserin in doses up to 1000 micrograms kg-1 i.v. These selective effects of 5-CT appear to be mediated by '5-HT1-like' receptors. PMID:2937503

  18. Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline.

    PubMed Central

    Vanags, D. M.; Rodgers, S. E.; Duncan, E. M.; Lloyd, J. V.; Bochner, F.

    1992-01-01

    1. We have used dose-response curves to quantitate the potentiation of adenosine 5'-diphosphate (ADP)-induced aggregation and thromboxane (TXA2) generation by 5-hydroxytryptamine (5-HT) and adrenaline in human citrated platelet-rich plasma. We have also quantitated the inhibition of these responses by aspirin, ketanserin and yohimbine, singly and in pairs. 2. Ketanserin (5 microM) inhibited TXA2 production and the second wave of platelet aggregation induced by a range of concentrations of ADP alone. This indicates that endogenous 5-HT, released from the platelet dense granules, contributes significantly to responses induced by ADP. 3. When 5-HT (10 microM) was added before ADP, a lower concentration of ADP was required to cause 50% aggregation and TXA2 generation. The ratio of ADP concentrations (CR) to cause 50% aggregation in the presence and absence of 5-HT was 2.1 when only added 5-HT was considered, and 5.0 when endogenous 5-HT was also taken into account. 4. Potentiation of ADP-induced aggregation by 5-HT also occurred in the presence of aspirin, resulting in a CR of 2.3. As expected, ketanserin inhibited potentiation by 5-HT in the presence and absence of aspirin. Although aspirin caused substantial inhibition of aggregation induced by ADP and 5-HT (CR 3.4), further inhibition occurred when ketanserin was also present (CR 6.5). 5. A subthreshold concentration of adrenaline (0.25 microM) caused substantial potentiation of ADP-induced aggregation in the absence (CR 4.0) and presence (CR 2.0) of aspirin. As expected, yohimbine (9 microM) inhibited this potentiation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393289

  19. Assessment of 5-hydroxytryptamine efflux in rat brain during a mild, moderate and severe serotonin-toxicity syndrome

    PubMed Central

    Zhang, Gongliang; Krishnamoorthy, Swapna; Ma, Zhiyuan; Vukovich, Nick P.; Huang, Xupei; Tao, Rui

    2009-01-01

    Serotonin (5-hydroxytryptamine; 5-HT)-toxicity syndrome, an iatrogenic brain disorder induced by excessive efflux of 5-HT, has received much attention because of increasing incidents of serotonergic antidepressants. However, the neural mechanism by which extracellular 5-HT is elevated to a toxic level for the syndrome remains to be determined. The goal of the present study was to test the hypothesis that extracellular 5-HT is composed of two component effluxes responsible for distinct aspects of the syndrome. The first set of experiments was to characterize the syndrome by measuring changes in neuromuscular signs, body-core temperature and mortality rate. Our results indicate that the syndrome severity can be categorized into mild, moderate and severe levels. The second set of experiments was to determine a threshold of extracellular 5-HT for induction of each level of the syndrome. Our results demonstrate that there were an 11-fold increase in the mild syndrome and an over 55-fold increase in the severe syndrome. In the last series of experiments, the excessive increases in 5-HT were pharmacologically separated into primary and secondary component effluxes with the 5-HT2A receptor antagonists cyproheptadine and ketanserin and NMDA receptor antagonist (+)-MK-801. Our results suggest primary component efflux was caused by direct drug effects on 5-HT biosynthetic and metabolic pathways and secondary efflux ascribed to indirect drug effect on a positive feedback circuit involving 5-HT2A and NMDA receptors. In summary, the primary efflux could be an initial cause for the induction of the syndrome while the secondary efflux might involve deterioration of the syndrome. PMID:19464285

  20. Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells

    PubMed Central

    1990-01-01

    Ionic currents induced by 5-hydroxytryptamine (5-HT) in cultured neuroblastoma N18 cells were studied using whole-cell voltage clamp. The response was blocked by 1-10 nM 5-HT3 receptor-specific antagonists MDL 7222 or ICS 205-930, but not by 1 microM 5-HT1/5-HT2 receptor antagonist spiperone or 5-HT2 receptor-specific antagonist ketanserin. These 5-HT3 receptors seem to be ligand-gated channels because the response (a) did not require internal ATP or GTP, (b) persisted with long internal dialysis of CsF (90 mM), A1F4- (100 microM), or GTP gamma S (100 microM), and (c) with ionophoretic delivery of 5-HT developed with a delay of less than 10 ms and rose to a peak in 34-130 ms. Fluctuation analysis yielded an apparent single-channel conductance of 593 fS. The relative permeabilities of the channel for a variety of ions were determined from reversal potentials. The channel was only weakly selective among small cations, with permeability ratios PX/PNa of 1.22, 1.10, 1.01, 1.00, and 0.99 for Cs+, K+, Li+, Na+, and Rb+, and 1.12, 0.79, and 0.73 for Ca2+, Ba2+, and Mg2+ (when studied in mixtures of 20 mM divalent ions and 120 mM N-methyl-D-glucamine). Apparent permeability ratios for the divalent ions decreased as the concentration of divalent ions was increased. Small monovalent organic cations were highly permeant. Large organic cations such as Tris and glucosamine were measurably permeant with permeability ratios of 0.20 and 0.08, and N-methyl-D-glucamine was almost impermeant. Small anions, NO3-, Cl-, and F-, were slightly permeant with permeability ratios of 0.08, 0.04, and 0.03. The results indicate that the open 5-HT3 receptor channel has an effective minimum circular pore size of 7.6 A and that ionic interactions in the channel may involve negative charges near the pore mouth. PMID:2286832

  1. Portal veins of mice infected with Schistosoma mansoni exhibit an increased reactivity to 5-hydroxytryptamine.

    PubMed

    Silva, C L; Morel, N; Noël, F

    1998-01-01

    In chronic severe infection with Schistosoma mansoni, portal hypertension and related vascular alterations usually develop as a consequence of granulomatous response to eggs. In order to investigate a putative direct effect of worms on the reactivity of their host portal vein, mice infected only with male worms were used in the present study. An higher reactivity to 5-hydroxytryptamine (5-HT) characterized by an increase in the maximal contraction and sensitivity was observed in portal vein from infected mice compared to healthy mice. Blockade of NO-synthase with l-NAME induced a small increase in 5-HT potency in portal vein from non-infected mice without changing the amplitude of the contractions, whereas it did not alter the reactivity of veins from infected mice. The present results show that unisexual infection of mice with male S. mansoni increased the reactivity of the portal vein to 5-HT which seems to be partially related to an alteration in the nitric oxide release by endothelium. PMID:9921337

  2. The role of 5-hydroxytryptamine in the feline response to intravenous infusion of live E. coli.

    PubMed Central

    Arvidsson, S.; Falk, A.; Haglind, E.; Haglund, U.

    1983-01-01

    A standardized septic shock was induced in cats by intravenous infusion of a live E. coli bacteria strain. The bacterial infusion induced a rapid haemodynamic response characterized mainly by a pulmonary arterial hypertension and a late phase characterized by systemic hypotension and hypodynamic circulation. Systemic arterial, pulmonary arterial, portal venous, left atrial pressures, max inspiratory-expiratory pressure difference in the trachea, aortic and intestinal blood flows were monitored. Arterial blood samples were taken for recording the number of circulating platelets and white blood cells and for determining the acid-base balance. The effect of pretreatment with ketanserin, a specific 5-hydroxytryptamine2 (5-HT2)-receptor blocker on these haemodynamic reactions was studied. In short term experiments on non-bacteriaemic control cats, ketanserin prevented the pulmonary hypertension induced by intravenous 5-HT infusions but not the increase in intestinal blood flow. Ketanserin induced a reduction of total peripheral (including intestinal) vascular resistance to blood flow but had no effect on aortic blood flow. After infusion of bacteria, ketanserin pretreated cats were more hypotensive due to a relative peripheral dilatation of the resistance vessels. Ketanserin pretreatment had no effect on the pulmonary vascular reactions, the tracheal pressure difference or the number of circulating platelets or white blood cells. Thus, except for a more pronounced hypotension early after bacterial infusion, ketanserin pretreatment did not influence the haemodynamic response. It is concluded that 5-HT is not of significant importance in the pathogenesis of the haemodynamic reactions following experimental bacteraemia. PMID:6360276

  3. 5-Hydroxytryptamine2B receptor signaling in rat stomach fundus: role of voltage-dependent calcium channels, intracellular calcium release and protein kinase C.

    PubMed

    Cox, D A; Cohen, M L

    1995-01-01

    The rat stomach fundus is enriched with the 5-hydroxytryptamine (5-HT)2B receptor, the newest subtype of the 5-HT2 receptor family to be cloned. Although the 5-HT2A and 5-HT2C receptor subtypes couple to phosphatidylinositol hydrolysis, such a coupling has not been established for the 5-HT2B receptor in tissues. Thus, the purpose of this study was to characterize further the signal transduction mechanism of the 5-HT2B receptor in rat stomach fundus. Nitrendipine (1 microM) inhibited the maximal contraction to 5-HT (1 microM) by approximately 50%. Removal of extracellular calcium did not inhibit 5-HT contraction to a greater extent than that produced by nitrendipine, indicating that calcium influx through voltage-dependent calcium channels was predominantly responsible for the dependence of the 5-HT contraction on extracellular calcium. Depletion of both extracellular calcium and intracellular calcium stores abolished 5-HT contraction. Ryanodine (30 microM), a compound which inhibits calcium release from intracellular stores, significantly inhibited the maximal contraction to carbamylcholine (3 microM). In contrast, ryanodine (30 microM) did not inhibit the maximal contraction to 5-HT (1 microM) in the absence of nitrendipine. However, ryanodine (30 microM) did significantly inhibit the nitrendipine-insensitive 5-HT contraction, suggesting that this component of the contraction was due in part to calcium release from a ryanodine-sensitive store. Bisindolylmaleimide (5 microM), a specific inhibitor of protein kinase C (PKC), inhibited 5-HT contraction in either the absence or presence of nitrendipine, suggesting that activation of PKC is also involved.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7815326

  4. Evidence for excitatory 5-HT2-receptors on rat brainstem neurones.

    PubMed Central

    Davie, M.; Wilkinson, L. S.; Roberts, M. H.

    1988-01-01

    1. The technique of microiontophoresis was used to investigate the identity of the receptor mediating the excitatory effects of 5-hydroxytryptamine (5-HT) upon neurones in the midline of the medullary brainstem of the rat in vivo. 2. The 5-HT1-like receptor agonists 5-carboxamidotryptamine (5-CT) and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) failed to excite the majority of neurones excited by 5-HT. The mobilities of 5-CT and 8-OH-DPAT when tested in vitro were found not to differ significantly from that of 5-HT, suggesting that the lack of effect of these agonists was not due to a lower rate of release from the microelectrodes. 3. The excitatory responses to 5-HT were attenuated by the 5-HT 2-receptor antagonists ketanserin and methysergide when applied microiontophoretically or administered intravenously (0.3 and 1 mg kg-1 respectively). Excitatory responses to glutamate and noradrenaline were not reduced. 4. The 5-HT3-receptor antagonist MDL 72222 failed to attenuate selectively the excitatory response to 5-HT when applied either by microiontophoresis or administered intravenously (1 mg kg-1). 5. Microiontophoretic application of the alpha 1-adrenoceptor antagonist prazosin did not attenuate excitatory responses to either 5-HT or noradrenaline. Intravenously administered prazosin (0.8 mg kg-1) also failed to attenuate excitatory responses to 5-HT, but did block excitatory responses to noradrenaline. 6. These results suggest that 5-HT2-receptors, but not 5-HT1-like receptors, 5-HT3-receptors or alpha 1-adrenoceptors, are involved in the excitatory response of midline medullary neurones to 5-HT. PMID:3395786

  5. Effects of intracerebroventricular injections of 5-HT on systemic vascular resistances of conscious rats

    PubMed Central

    Davisson, Robin L.; Bates, James N.; Johnson, Alan Kim; Lewis, Stephen J.

    2014-01-01

    The aims of this study were to determine (i) the effects of intracerebroventricular (i.c.v.) injections of 5-hydroxytryptamine (5-HT, 10 µg) on mean arterial blood pressure (MAP), heart rate (HR) and mesenteric (MR), renal (RR) and hindquarter (HQR) vascular resistances of conscious rats, (ii) the central 5-HT receptor subtype which mediates these effects, and (iii) the role of nitric oxide (NO) in the expression of these responses. The i.c.v. injection of 5-HT had minor effects on MAP but produced a decrease in HR (?18 ± 4%), which lasted for 20 min. The i.c.v. injection of 5-HT elicited marked increases in MR (+50 ± 7%) and reductions in HQR (?31 ± 3%). These responses occurred promptly and lasted for 25–35 min. 5-HT also produced a transient decrease in RR (?26 ± 8% at 10 min). All of these responses were prevented by the prior i.c.v. injection of the 5-HT1/5-HT2-receptor antagonist, methysergide (10 µg). The intravenous injection of the NO synthesis inhibitor, L-NAME (25 µmol/kg), produced a sustained pressor response, bradycardia and increases in MR, RR and HQR. Subsequent i.c.v. injection of 5-HT produced a minor pressor response (+7 ± 2%), bradycardia (?18 ± 3%), an increase in MR (+52 ± 8%) but no decreases in RR or HQR. This study demonstrates that i.c.v. 5-HT differentially affects peripheral vascular resistances by activation of central 5-HT1/5-HT2-receptors. It appears that L-NAME did not interfere with the central actions of 5-HT as it did not prevent the 5-HT-induced bradycardia or mesenteric vasoconstriction. Since the 5-HT-induced falls in RR and HQR were abolished by L-NAME, it is possible that these responses are mediated by an active neurogenic process involving the release of NO within the vasculature. PMID:25128748

  6. Serotonin Reuptake Inhibitor Citalopram Inhibits GnRH Synthesis and Spermatogenesis in the Male Zebrafish.

    PubMed

    Prasad, Parvathy; Ogawa, Satoshi; Parhar, Ishwar S

    2015-10-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 ?g/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 ?g/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures. PMID:26157069

  7. Changes in Intensity of Serotonin Syndrome Caused by Adverse Interaction between Monoamine Oxidase Inhibitors and Serotonin Reuptake Blockers

    PubMed Central

    Tao, Rui; Rudacille, Mary; Zhang, Gongliang; Ma, Zhiyuan

    2014-01-01

    Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity. PMID:24577320

  8. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  9. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse

    PubMed Central

    Jacobsen, Jacob P. R.; Medvedev, Ivan O.; Caron, Marc G.

    2012-01-01

    A decreased level of brain 5-hydroxytryptamine (5-HT) has been theorized to be a core pathogenic factor in depression for half a century. The theory arose from clinical observations that drugs enhancing extracellular levels of 5-HT (5-HTExt) have antidepressant effects in many patients. However, whether such drugs indeed correct a primary deficit remains unresolved. Still, a number of anomalies in putative biomarkers of central 5-HT function have been repeatedly reported in depression patients over the past 40 years, collectively indicating that 5-HT deficiency could be present in depression, particularly in severely ill and/or suicidal patients. This body of literature on putative 5-HT biomarker anomalies and depression has recently been corroborated by data demonstrating that such anomalies indeed occur consequent to severely reduced 5-HTExt levels in a mouse model of naturalistic 5-HT deficiency, the tryptophan hydroxylase 2 His439 knockin (Tph2KI) mouse. In this review, we will critically assess the evidence for 5-HT deficiency in depression and the possible role of polymorphisms in the Tph2 gene as a causal factor in 5-HT deficiency, the latter investigated from a clinical as well as preclinical angle. PMID:22826344

  10. Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues.

    PubMed Central

    Leff, P.; Martin, G. R.; Morse, J. M.

    1987-01-01

    In ring preparations of the rabbit external jugular vein contracted with the thromboxane-mimetic U-46619, submicromolar concentrations of 5-hydroxytryptamine (5-HT) and chemically related analogues produced relaxations that were dependent on the integrity of the vascular endothelium. The receptor mediating endothelium-dependent relaxations was evidently similar to previously described endothelial 5-HT receptors since relaxation responses to alpha-methyl-5-HT were not blocked by atropine, (+/-)-propranolol, yohimbine, indomethacin, ketanserin or MDL-72222, but were non-competitively antagonized by methysergide, methiothepin and cyproheptadine. The activities of some tryptamine agonists and antagonists at the endothelial 5-HT receptor in rabbit jugular vein were compared with their activities at the smooth muscle 5-HT2-receptor in rabbit aortic rings. Differences in the tryptamines' affinities and relative efficacies showed that the endothelial 5-HT receptor was not of the 5-HT2-type. The high agonist potencies of 5-HT and 5-carboxamidotryptamine, the susceptibility to antagonism by both methiothepin and methysergide and the resistance to blockade by selective 5-HT2 and 5-HT3 ('M') receptor antagonists implies that the endothelial receptor belongs to the '5-HT1-like' class. However, the agonist potency order 5-HT = alpha-methyl-5-HT greater than 5-carboxamidotryptamine suggested that the receptor is not the same as the peripheral '5-HT1-like' receptors reported to mediate directly contraction of the dog saphenous vein or relaxation of vascular and non-vascular smooth muscles. At these receptors, the potency order is 5-carboxamidotryptamine greater than 5-HT greater than alpha-methyl-5-HT. These results constitute preliminary evidence that peripheral '5-HT1-like' receptors, like central 5-HT1 recognition sites, are a heterogeneous population. Further comparative studies with a wider range of receptor probes are necessary to establish whether or not these receptors represent functional counterparts of the ligand binding sites in the brain. Images Figure 1 PMID:3607360

  11. The effect of cooling and of 5-hydroxytryptamine on the peristaltic reflex of the isolated guinea-pig ileum

    PubMed Central

    Beleslin, D.; Varagi?, V.

    1958-01-01

    Cooling the guinea-pig ileum to 19 to 26° abolished the emptying phase of the peristaltic reflex. The effects of cooling to 10° were usually reversible, but cooling to 5° for 3 to 8 hr. produced an irreversible decrease in or abolition of the emptying phase. 5-Hydroxytryptamine (5-HT) added in low concentrations to the fluid outside the intestine restored slight peristaltic activity after this activity had been abolished by cooling. If the peristalsis had been depressed but not abolished by cooling, 5-HT in the bath sometimes abolished it. 5-HT introduced into the lumen of the cooled gut regularly restored or increased peristaltic activity. This action was prevented by previous injection of 2-bromolysergic acid diethylamide into the lumen. It is suggested that, when introduced into the lumen, 5-HT may sensitize the sensory receptors in the mucosa of the cooled intestine. When applied outside, 5-HT may facilitate transmission at synapses involved in the peristaltic reflex arc, the excitability of which has been depressed by cooling. PMID:13584727

  12. 5-HT1B autoreceptor regulation of serotonin transporter activity in synaptosomes

    PubMed Central

    Hagan, Catherine E.; McDevitt, Ross A.; Liu, Yusha; Furay, Amy R.; Neumaier, John F.

    2012-01-01

    Serotonin-1B (5-HT1B) autoreceptors are located in serotonin (5-HT) terminals along with serotonin transporters (SERT), and play a critical role in autoregulation of serotonergic neurotransmission, and are implicated in disorders of serotonergic function, particularly emotional regulation. SERT modulates serotonergic neurotransmission by high-affinity reuptake of 5-HT. Alterations in SERT activity are associated with increased risk for depression and anxiety. Several neurotransmitter receptors are known to regulate SERT Km and Vmax, and previous work suggests that 5-HT1B autoreceptors may regulate 5-HT reuptake, in addition to modulating 5-HT release and synthesis. We used rotating disk electrode voltammetry to investigate 5-HT1B autoreceptor regulation of SERT-mediated 5-HT uptake into synaptosomes. The selective 5-HT1B antagonist SB224289 decreased SERT activity in synaptosomes prepared from wild-type but not 5-HT1B knockout mice, whereas SERT uptake was enhanced after pre-treatment with the selective 5-HT1B agonist CP94253. Furthermore, SERT activity varies as a function of 5-HT1B receptor expression—specifically, genetic deletion of 5-HT1B decreased SERT function, while viral-mediated overexpression of 5-HT1B autoreceptors in rat raphe neurons increased SERT activity in rat hippocampal synaptosomes. Considered collectively, these results provide evidence that 5-HT1B autoreceptors regulate SERT activity. Since SERT clearance rate varies as a function of 5-HT1B autoreceptor expression levels and is modulated by both activation and inhibition of 5-HT1B autoreceptors, this dynamic interaction may be an important mechanism of serotonin autoregulation with therapeutic implications. PMID:22961814

  13. In vivo and in vitro activity of selective 5-hydroxytryptamine2 receptor antagonists.

    PubMed Central

    Conolan, S.; Quinn, M. J.; Taylor, D. A.

    1986-01-01

    The abilities of ketanserin, ritanserin, R56413 and LY53857 to inhibit 5-hydroxytryptamine (5-HT) and noradrenaline-induced vasoconstrictor responses both in vitro and in vivo and to lower blood pressure in the rat, were compared. In the isolated perfused mesenteric artery preparation of the rat all of the compounds tested were found to be potent inhibitors of 5-HT-induced vasoconstrictor responses. Ritanserin was the most potent compound, producing more than 50% inhibition of a near maximal response to 5-HT at a concentration of 10(-11) M. All four compounds were found to be competitive antagonists of noradrenaline; ketanserin being the most potent with a pA2 value of 7.64 +/- 0.06. 5-HT-induced pressor responses in the pithed rat were inhibited by low doses (0.3-10 micrograms kg-1) of the four compounds. Ketanserin, at doses of 0.1-3.0 mg kg-1, resulted in rightward shifts of the control dose-response curve to noradrenaline in the pithed rat. None of the other compounds had any significant effect on the noradrenaline-induced pressor responses. Ketanserin (0.1-1 mg kg-1) produced a dose-dependent decrease in the mean arterial blood pressure of anaesthetized rats. The maximum decrease in blood pressure observed following a dose of 1 mg kg-1 ketanserin was 73.7 +/- 4.7 mmHg. The other compounds at doses of 1.0-3.0 mg kg-1 produced a decrease in blood pressure of a lesser magnitude than that following ketanserin. In addition, this effect did not appear to be dose-dependent. It is suggested that the acute hypotensive effect of ketanserin results predominantly from alpha 1-adrenoceptor blockade.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3801767

  14. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  15. Role of 5-HT2 receptors in diabetes: Swertiamarin seco-iridoid glycoside might be a possible 5-HT2 receptor modulator.

    PubMed

    Sonawane, Rakesh Deelip; Deore, Vijaykumar B; Patil, Savita D; Patil, Chandragouda R; Surana, Sanjay J; Goyal, Ramesh K

    2015-05-15

    In the present review, we are focusing on modulators of 5-HT2 receptors, swertiamarin and their role in diabetes. These drugs possess both central and peripheral actions in various animal models of depression, diabetes and obesity. Swertiamarin and 5-HT2 antagonist are reported antidepressant, hypolipidemic and beneficial in peripheral vasculopathy. In contrast to this, 5-HT2C selective agonist decreases hyperglycemia, hyperlipidemia and insulin secretogogue by action. Selective serotonin reuptake inhibitors (SSRIs) are known antidepressant having weight gain as an adverse effect. Swertiamarin has similar pharmacological actions as 5-HT2 antagonist and 5-HT2C selective agonist. This warrants that swertiamarin might modulate 5-HT2 receptors rather than affecting the uptake of serotonin. In the light of present investigation, the mechanism of these drugs can correlate the role of central and peripheral 5-HT2 receptors in diabetes. PMID:25708274

  16. Effects of 5-hydroxytryptamine on defecation in open-field behavior in rats.

    PubMed

    Kameyama, T; Suzuki, M; Nabeshima, T

    1980-06-01

    An attempt was made to elucidate the role of the serotonergic nervous sytem in defecation resulting from environmental stimulation in rats. The open-field (OF) test and shuttle box method were used to study the defecation. 5-Hydroxytryptophan (5-HTP) significantly decreased the number of fecal boluses excreted in both emotional situations, namely, in both OF and shuttle box. The fecal excretion was significantly reduced compared with the controls after intraventricular injection of 5-hydroxytryptamine (5-HT). Animals pretreated with p-chlorophenylalanine (pCPA) and 5,6-dihydroxytryptamine (5,6-DHT) tended to show a slight increase in the OF defecation. 5-HTP was equally effective in diminishing the OF performance of pCPA-treated rats. The inhibitory effects of 5-HTP on the defecation were also observed after depletion of biogenic amines by reserpine treatment. Home cage defecation was increased after 5-HTP administration, decreased under pretreatment with pCPA and not influenced by intraventricular injection of 5-HTP. These results suggested that the defecation after environmental stimuli was due to a change in 5-HT levels in the brain. PMID:6447297

  17. Effects of 5,7-dihydroxytryptamine on an identified 5-hydroxytryptamine-containing neurone in the central nervous sytem of the snail Helix pomatia.

    PubMed

    Osborne, N N; Pentreath, V W

    1976-01-01

    1. The effect of 5,7-dihydroxytryptamine (5,7-DHT) on an identified 5-hydroxytryptamine (5-HT)-containing neurone in the CNS of the snail was studied by histochemical, biochemical and electrophysiological methods. 2. Low concentrations of 5,7-DHT decreased the endogenous 5-HT content of the neurone without affecting the amino acids, while relatively large amounts of the drug proportionately lowered 5-HT and in addition slightly decreased the tryptophan and methionine content of the cell. 3. 5,7-DHT blocked the uptake of [3H]-5-HT into the neurone; the close analogue 5,6-DHT was more potent. 4. As well as slightly influencing the accumulation of [3H]-tryptophan by the neurone 5,7-DHT inhibited the metabolism of this amino acid to form 5-HT, probably by affecting the enzyme tryptophan-hydroxylase. 5. 5,7-DHT produced a postsynaptic blockade of transmission from the neurone by blocking the 5-HT receptors of the follower neurones. This effect appeared to be specific for 5-HT receptors. 6. The data support the idea that 5,7-DHT is neurotoxic for indoleamine-containing neurones. PMID:1252663

  18. Alterations of Ca(v)1.2 and 5-hydroxytryptamine in rat hearts after positional asphyxia.

    PubMed

    Li, X-F; Huang, Q-Y

    2015-12-01

    We investigated alterations of cardiac Ca(v)1.2 and 5-hydroxytryptamine (5-HT) associated with positional asphyxia. Male rats were divided into five groups: a control group with no restraint, group 1 restrained for 1 h, group 2 restrained for 2 h, group 3 restrained for 4 h, and group 4 restrained for 8 h. The rats that were restrained for 8 h ultimately suffered fatal asphyxia. After the restraint periods, the rats were sacrificed and immunohistochemistry was performed to evaluate the expressions of Ca(v)1.2 and 5-HT in the heart. Sections were analyzed by digital image analysis. Cardiac expression of Ca(v)1.2 and 5-HT proteins were significantly decreased by positional asphyxia in the rat, shown by integrated optical density (IOD) compared to controls. Our findings indicate that Ca(v)1.2 and 5-HT alterations could cause abnormal cardiac function, and the proteins investigated here may be useful for investigating the mechanisms underlying positional asphyxia. PMID:26471941

  19. Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT2C and 5-HT1A receptors

    PubMed Central

    Maura, Guido; Marcoli, Manuela; Pepicelli, Olimpia; Rosu, Christian; Viola, Concetta; Raiteri, Maurizio

    2000-01-01

    The NMDA receptor/nitric oxide (NO)/cyclic GMP pathway and its modulation by 5-hydroxytryptamine (5-HT) was studied in slices of neocortical samples obtained from patients undergoing neurosurgery. The cyclic GMP elevation produced by 100??M NMDA was blocked by 100??M of the NO synthase inhibitor NG-nitro-L-arginine (L-NOARG) or by 10??M of the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-?] quinoxaline-1-one (ODQ). The NMDA effect was prevented by 5-HT or by the 5-HT2 agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((±)-DOI; EC50=22?nM). The (±)-DOI inhibition was insensitive to the 5-HT2A receptor antagonist MDL 100907 or the 5-HT2B antagonist rauwolscine; it was largely prevented by 1??M of the non-selective 5-HT2C antagonists mesulergine (5-HT2A,B,C), ketanserin (5-HT2A,C) or SB 200646A (5-HT2B,C); it was completely abolished by 0.1??M of the selective 5-HT2C receptor antagonist SB 242084. The NMDA-induced cyclic GMP elevation also was potently inhibited by the selective 5-HT2C agonist RO 60-0175 and by the antidepressant trazodone, both added at 1??M, in an SB 242084-sensitive manner. Finally, the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 1??M) inhibited the NMDA-evoked cyclic GMP response, an effect blocked by the selective 5-HT1A receptor antagonist WAY 100635. In conclusion, the NMDA receptor/NO/cyclic GMP pathway in human neocortex slices can be potently inhibited by activation of 5-HT2C or 5-HT1A receptors. PMID:10952674

  20. Adenosine receptors in rat basophilic leukaemia cells: transductional mechanisms and effects on 5-hydroxytryptamine release.

    PubMed Central

    Abbracchio, M. P.; Paoletti, A. M.; Luini, A.; Cattabeni, F.; De Matteis, M. A.

    1992-01-01

    1. The presence of adenosine receptors linked to adenylate cyclase activity and their functional role in calcium-evoked 5-hydroxytryptamine (5-HT) release was investigated in rat basophilic leukaemia (RBL) cells, a widely used model for studying the molecular mechanisms responsible for stimulus-secretion coupling. 2. In [3H]-5-HT-loaded cells triggered to release by the calcium ionophore A23187, a biphasic modulation of 5-HT secretion was induced by adenosine analogues, with inhibition of stimulated release at nM and potentiation at microM concentrations, suggesting the presence of adenosine receptor subtypes mediating opposite effects on calcium-dependent release. This was also confirmed by results obtained with other agents interfering with adenosine pharmacology, such as adenosine deaminase and the non-selective A1/A2 antagonist 8-phenyl-theophylline. 3. Similar biphasic dose-response curves were obtained with a variety of adenosine analogues on basal adenylate cyclase activity in RBL cells, with inhibition and stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production at nM and microM concentrations, respectively. The rank order of potency of adenosine analogues for inhibition and stimulation of adenylate cyclase activity and the involvement of G-proteins in modulation of cyclic AMP levels suggested the presence of cyclase-linked A1 high-affinity and A2-like low-affinity adenosine receptor subtypes. However, the atypical antagonism profile displayed by adenosine receptor xanthine antagonists on cyclase stimulation suggested that the A2-like receptor expressed by RBL cells might represent a novel cyclase-coupled A2 receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1313728

  1. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  2. Quipazine reduces food intake in the rat by activation of 5-HT2-receptors.

    PubMed Central

    Hewson, G.; Leighton, G. E.; Hill, R. G.; Hughes, J.

    1988-01-01

    1. To determine which subtype(s) of 5-hydroxytryptamine (5-HT) receptor are involved in the anorectic action of quipazine, the ability of selective antagonists at 5-HT2- and 5-HT3-receptors, and an antagonist at 5-HT1-like receptors, to block this response were investigated in non-deprived rats, trained to eat a palatable diet. 2. Quipazine (0.5-8 mg kg-1, i.p.) produced a dose-related reduction in the intake of palatable diet. 3. The anorectic effect of 4 mg kg-1 quipazine was antagonized by the nonselective 5-HT-receptor antagonist methysergide (5 mg kg-1, i.p.) and by the selective 5-HT2-receptor antagonists ketanserin (1 mg kg-1 and 2.5 mg kg-1, i.p.) and ritanserin (0.5 mg kg-1 and 1 mg kg-1, i.p.). The selective 5-HT3-receptor antagonist GR38032F (1 mg kg-1, i.p.) and (-)-pindolol (4 mg kg-1, i.p.), which blocks some of the effects mediated at 5-HT1-like receptors, did not block the reduction in food intake produced by this dose of quipazine. 4. None of the 5-HT-receptor antagonists had any effect on food intake when they were administered alone, suggesting that endogenous 5-HT is not involved in the tonic control of food intake under the conditions of these experiments. 5. It is concluded that the anorectic action of quipazine is mediated, at least in part, by activation of 5-HT2-receptors. PMID:2906561

  3. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  4. Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors.

    PubMed

    Cryan, J F; Lucki, I

    2000-12-01

    The role of the 5-HT(2C) receptor in mediating active behaviors in the modified rat forced swim test was examined. Three novel selective 5-HT(2C) receptor agonists, WAY 161503 (0.1-3.0 mg/kg), RO 60-0175 (2-20 mg/kg), and RO 60-0332 (20 mg/kg), all decreased immobility and increased swimming, a pattern of behavior similar to that which occurs with the selective serotonin reuptake inhibitor fluoxetine (5-20 mg/kg). However, the prototypical but nonselective 5-HT(2C) receptor agonist m-chlorophenylpiperazine (1-10 mg/kg) increased immobility scores in the forced swim test. The selective 5-HT(2C) receptor antagonist SB 206533 was inactive when given alone (1-20 mg/kg). However, SB 206533 (20 mg/kg) blocked the antidepressant-like effects of both WAY 161503 (1 mg/kg) and fluoxetine (20 mg/kg). The atypical antidepressant (noradrenergic alpha(2) and 5-HT(2C) receptor antagonist) mianserin reduced immobility and increased climbing at 30 mg/kg. At a behaviorally subactive dose (10 mg/kg), mianserin abolished the effects of WAY 161503 (1 mg/kg) on both swimming and immobility scores. Mianserin blocked the effects of fluoxetine (20 mg/kg) on swimming only; mianserin plus fluoxetine reduced immobility and induced a switch to climbing behavior, suggesting activation of noradrenergic transmission. These data exemplify the benefits of using the modified rat forced swim test, which was sensitive to serotonergic compounds and distinguished behavioral changes associated with serotonergic and noradrenergic effects. Taken together, the results strongly implicate a role for 5-HT(2C) receptors in the behavioral effects of antidepressant drugs. PMID:11082448

  5. The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy

    PubMed Central

    Martinez, Ashley; Finegersh, Andrey; Cannon, Dara M.; Dustin, Irene; Nugent, Alison; Herscovitch, Peter

    2013-01-01

    Objective: To study 5-HT transport and 5-HT1A receptors in temporal lobe epilepsy (TLE) and depression. Methods: Thirteen patients had PET with [11C]DASB for 5-HTT and [18F]FCWAY for 5-HT1A receptor binding, MRI, and psychiatric assessment. Sixteen healthy volunteers had [11C]DASB, 19 had [18F]FCWAY, and 6 had both PET studies. We used a reference tissue model to estimate [11C]DASB binding. [18F]FCWAY volume of distribution was corrected for plasma-free fraction. Images were normalized to common space. The main outcome was the regional asymmetry index. Positive asymmetry indicates relative reduced binding (reflecting transporter activity) ipsilateral to epileptic foci. Results: Mean regional [11C]DASB binding and asymmetry did not differ between patients and controls. [18F]FCWAY asymmetry was significantly greater for patients than controls in hippocampus, amygdala, and fusiform gyrus. On analysis of variance with region as a repeated measure, depression diagnosis had a significant effect on [11C]DASB asymmetry, with significantly higher [11C]DASB asymmetry in insular cortex (trend for fusiform gyrus). In insular cortex, patients had a significant correlation between [18F]FCWAY asymmetry and [11C]DASB asymmetry. Conclusions: Our study showed increased [11C]DASB asymmetry in insula and fusiform gyrus, and relatively reduced transporter activity, in subjects with both TLE and depression, as compared to subjects with TLE alone, implying reduced reuptake and thus increased synaptic 5-HT availability. This finding may represent a compensatory mechanism for 5-HT1A receptor loss. Altered serotonergic mechanisms have an important role in TLE and concomitant depression. PMID:23516322

  6. The effects of 5-HT and m-chlorophenylpiperazine (m-CPP) on the efflux of [3H]-5-HT from human perfused platelets.

    PubMed Central

    Carver, J G; Grahame-Smith, D G; Johnson, E S; Madgwick, Z

    1993-01-01

    1. m-Chlorophenylpiperazine (m-CPP), a 5-HT1c-receptor agonist, induces migraine-like headaches when taken orally by migraine sufferers. The present study was undertaken to see what effects m-CPP had on 5-HT function in platelets. 2. Platelets from healthy male volunteers were loaded with [3H]-5-HT and continuously perfused in vitro with carboxygenated Krebs solution at 37 degrees C. After 30 min washout the effects of m-CPP, thrombin, 5-HT and ADP on the efflux of [3H]-5-HT were recorded. 3. m-CPP (0.5-500 microM) did not evoke an increase in the efflux of [3H]-5-HT over that occurring spontaneously whereas thrombin, unlabelled 5-HT and ADP did. The effects of 5-HT were potentiated by ADP. The results were identical whether or not the 5-HT reuptake blocker paroxetine (1 microM) was present. 4. m-CPP inhibited the increase in the efflux of [3H]-5-HT evoked by different concentrations of unlabelled 5-HT in the presence of ADP (2.5 microM) and displaced the 5-HT log concentration response curve to the right. A similar result was obtained with the 5-HT2-receptor antagonist ketanserin. 5. We conclude that m-CPP is a 5-HT2-receptor antagonist on human platelets, which is unlikely to account for its headache-inducing property, as many drugs effective in migraine prophylaxis have this action. PMID:8512759

  7. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    SciTech Connect

    Salvo, Nadia; Doble, Brett; Khan, Luluel; Amirthevasar, Gayathri; Dennis, Kristopher; Pasetka, Mark; DeAngelis, Carlo; Tsao, May; Chow, Edward

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57-0.86 for emesis; RR 0.84, 95% CI 0.73-0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15-0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at the NK{sub 1} receptor antagonists to determine the most effective drug. Delayed nausea and vomiting should be a focus of future study, perhaps concentrating on the palliative cancer population.

  8. 5-HT1A Receptor Function in Major Depressive Disorder

    PubMed Central

    Savitz, Jonathan; Lucki, Irwin; Drevets, Wayne C

    2009-01-01

    Dysfunction of the serotonin 1A receptor (5-HT1A) may play a role in the genesis of major depressive disorder (MDD). Here we review the pharmacological, post-mortem, positron-emission tomography (PET), and genetic evidence in support of this statement. We also touch briefly on two MDD-associated phenotypes, cognitive impairment and somatic pain. The results of pharmacological challenge studies with 5-HT1A receptor agonists are indicative of blunted endocrine responses in depressed patients. Lithium, valproate, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and other treatment, such as electroconvulsive shock therapy (ECT), all increase post-synaptic 5-HT1A receptor signaling through either direct or indirect effects. Reduced somatodendritic and postsynaptic 5-HT1A receptor numbers or affinity have been reported in some post-mortem studies of suicide victims, a result consistent with well-replicated PET analyses demonstrating reduced 5-HT1A receptor binding potential in diverse regions such as the dorsal raphe, medial prefrontal cortex (mPFC), amygdala and hippocampus. 5-HT1A receptor knockout (KO) mice display increased anxiety-related behavior, which, unlike in their wild-type counterparts, cannot be rescued with AD treatment. In humans, the G allele of a single nucleotide polymorphism (SNP) in the 5-HT1A receptor gene (HTR1A; rs6295), which abrogates a transcription factor binding site for Deaf-1 and Hes5, has been reported to be over-represented in MDD cases. Conversely, the C allele has been associated with better response to AD drugs. We raise the possibility that 5-HT1A receptor dysfunction represents one potential mechanism underpinning MDD and other stress-related disorders. PMID:19428959

  9. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK

    PubMed Central

    Green, A R

    2008-01-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT. PMID:18516072

  10. Peripheral 5-HT2-like receptors. Can they be classified with the available antagonists?

    PubMed Central

    Leff, P.; Martin, G. R.

    1986-01-01

    Interactions between 5-hydroxytryptamine (5-HT) and the so-called 5-HT2 receptor antagonists ketanserin, spiperone, trazodone and methysergide were studied in isolated preparations of the rabbit aorta, rat jugular vein, and rat caudal artery. Trazodone and spiperone were apparently simple competitive antagonists since they produced antagonism that was surmountable over the concentration range studied and, in each tissue, their apparent affinity appeared to be independent of the antagonist concentration. Furthermore, concentration-ratios obtained with the two antagonists in combination suggested that antagonism was additive, implying mutual competition with a single population of 5-HT receptors. Ketanserin was a non-surmountable antagonist of 5-HT in the rat caudal artery and methysergide demonstrated surmountable, competitive antagonism only in the rabbit aorta. Antagonist dissociation constants estimated for apparently competitive interactions showed that ketanserin, spiperone and trazodone expressed affinities which differed according to the tissue used. In the case of trazodone, affinity estimates differed by as much as 12 fold. These discrepancies were independent of the 5-HT receptor agonist used and could not be attributed to an inadequate equilibration of the antagonist. These results can be interpreted in two ways: either the receptors in the different tissues are heterogeneous or the antagonists used here must be considered as unreliable probes for the classification of 5-HT2-like receptors. PMID:2943354

  11. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014. PMID:25870913

  12. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modi?ed microelectrode array.

    PubMed

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-01

    It is dif?cult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-de?ned oxidation peaks in differential pulse voltammetry (DPV) at -80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10(-6) M to 2 × 10(-4) M for DA (r = 0.996) and in the range of 1 × 10(-5) M to 3 × 10(-4) M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10(-4) M AA, the linear responses were obtained in the range of 1 × 10(-5) M to 3 × 10(-4) M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments. PMID:25580900

  13. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    SciTech Connect

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R. )

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.

  14. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  15. Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors

    PubMed Central

    Lladó-Pelfort, L; Assié, M-B; Newman-Tancredi, A; Artigas, F; Celada, P

    2010-01-01

    Background and purpose: F15599, a novel 5-hydroxytryptamine (5-HT)1A receptor agonist with 1000-fold selectivity for 5-HT compared with other monoamine receptors, shows antidepressant and procognitive activity at very low doses in animal models. We examined the in vivo activity of F15599 at somatodendritic autoreceptors and postsynaptic 5-HT1A heteroreceptors. Experimental approach: In vivo single unit and local field potential recordings and microdialysis in the rat. Key results: F15599 increased the discharge rate of pyramidal neurones in medial prefrontal cortex (mPFC) from 0.2 µg·kg?1 i.v and reduced that of dorsal raphe 5-hydroxytryptaminergic neurones at doses >10-fold higher (minimal effective dose 8.2 µg·kg?1 i.v.). Both effects were reversed by the 5-HT1A antagonist (±)WAY100635. F15599 did not alter low frequency oscillations (?1 Hz) in mPFC. In microdialysis studies, F15599 increased dopamine output in mPFC (an effect dependent on the activation of postsynaptic 5-HT1A receptors) with an ED50 of 30 µg·kg?1 i.p., whereas it reduced hippocampal 5-HT release (an effect dependent exclusively on 5-HT1A autoreceptor activation) with an ED50 of 240 µg·kg?1 i.p. Likewise, application of F15599 by reverse dialysis in mPFC increased dopamine output in a concentration-dependent manner. All neurochemical responses to F15599 were prevented by administration of (±)WAY100635. Conclusions and implications: These results indicate that systemic administration of F15599 preferentially activates postsynaptic 5-HT1A receptors in PFC rather than somatodendritic 5-HT1A autoreceptors. This regional selectivity distinguishes F15599 from previously developed 5-HT1A receptor agonists, which preferentially activate somatodendritic 5-HT1A autoreceptors, suggesting that F15599 may be particularly useful in the treatment of depression and of cognitive deficits in schizophrenia. PMID:20649591

  16. Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex

    PubMed Central

    Bülbring, Edith; Crema, A.

    1958-01-01

    In isolated guinea-pig intestine 5-hydroxytryptamine increased the longitudinal muscle contractions in response to acetylcholine while the ganglionic action of nicotine was first facilitated and then blocked. Phenyldiguanide, veratrine, veratridine and protoveratrine, like 5-hydroxytryptamine, depressed the response to nicotine, leaving that to acetylcholine unaffected. The sensory stimulants, like 5-hydroxytryptamine, facilitated the peristaltic reflex when applied to the mucosa, and abolished it when applied to the serosa. Preceding the block, the initial effect of low concentrations of 5-hydroxytryptamine applied to the serosa was a short stimulation of peristalsis. Concentrations of 5-hydroxytryptamine which had an approximately equal stimulant action (mucosal 1 to 4 × 10-6, serosal 2 to 8 × 10-8) were tested when various parts of the reflex arc were blocked. During block by procaine introduced into the lumen, mucosal application of 5-hydroxytryptamine re-established peristalsis, but serosal application of 5-hydroxytryptamine had no effect. During block by hexamethonium or atropine present in the bath, 5-hydroxytryptamine restored peristalsis more effectively by serosal application than by mucosal application. During block by serosal application of 5-hydroxytryptamine, morphine, phenoxybenzamine or dihydroergotamine, mucosal application of 5-hydroxytryptamine restored the peristaltic reflex while serosal application had no effect. During block by 2-bromo-lysergic acid diethylamide or lysergic acid diethylamide acting from the serosal surface, 5-hydroxytryptamine had no effect whether acting on the mucosal or on the serosal surface. It is concluded that 5-hydroxytryptamine facilitates the peristaltic reflex at two sites: when introduced into the lumen it stimulates mucosal sensory receptors; when acting from the serosal surface it sensitizes the muscle to the transmitter acetylcholine. There is also a transient stimulant action on the ganglia which is soon followed by inhibition; this indicates that 5-hydroxytryptamine applied to the serosa abolishes peristalsis by ganglion block. PMID:13618550

  17. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25838122

  18. Role of N-Linked Glycosylation of the 5-HT2A Receptor in JC Virus Infection?

    PubMed Central

    Maginnis, Melissa S.; Haley, Sheila A.; Gee, Gretchen V.; Atwood, Walter J.

    2010-01-01

    JC virus (JCV) is a human polyomavirus and the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection of host cells is dependent on interactions with cell surface asparagine (N)-linked sialic acids and the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR). The 5-HT2AR contains five potential N-linked glycosylation sites on the extracellular N terminus. Glycosylation of other serotonin receptors is essential for expression, ligand binding, and receptor function. Also, glycosylation of cellular receptors has been reported to be important for JCV infection. Therefore, we hypothesized that the 5-HT2AR N-linked glycosylation sites are required for JCV infection. Treatment of 5-HT2AR-expressing cells with tunicamycin, an inhibitor of N-linked glycosylation, reduced JCV infection. Individual mutation of each of the five N-linked glycosylation sites did not affect the capacity of 5-HT2AR to support JCV infection and did not alter the cell surface expression of the receptor. However, mutation of all five N-linked glycosylation sites simultaneously reduced the capacity of 5-HT2AR to support infection and altered the cell surface expression. Similarly, tunicamycin treatment reduced the cell surface expression of 5-HT2AR. Mutation of all five N-linked glycosylation sites or tunicamycin treatment of cells expressing wild-type 5-HT2AR resulted in an altered electrophoretic mobility profile of the receptor. Treatment of cells with PNGase F, to remove N-linked oligosaccharides from the cell surface, did not affect JCV infection in 5-HT2AR-expressing cells. These data affirm the importance of 5-HT2AR as a JCV receptor and demonstrate that the sialic acid component of the receptor is not directly linked to 5-HT2AR. PMID:20660194

  19. Prefrontal/amygdalar system determines stress coping behavior through 5-HT/GABA connection.

    PubMed

    Andolina, Diego; Maran, Dario; Valzania, Alessandro; Conversi, David; Puglisi-Allegra, Stefano

    2013-09-01

    Coping is defined as the behavioral and physiological effort made to master stressful situations. The ability to cope with stress leads either to healthy or to pathogenic outcomes. The medial prefrontal cortex (mpFC) and amygdala are acknowledged as having a major role in stress-related behaviors, and mpFC has a critical role in the regulation of amygdala-mediated arousal in response to emotionally salient stimuli. Prefrontal cortical serotonin (5-hydroxytryptamine (5-HT)) is involved in corticolimbic circuitry, and GABA has a major role in amygdala functioning. Here, using mice, it was assessed whether amygdalar GABA regulation by prefrontal 5-HT is involved in processing stressful experiences and in determining coping outcomes. First (experiment 1), bilateral selective 5-HT depletion in mpFC of mice reduced GABA release induced by stress in basolateral amygdala (BLA) and passive coping in the Forced Swimming Test (FST) (experiment 2). Moreover, prefrontal-amygdala disconnection procedure that combined a selective unilateral 5-HT depletion of mpFC and infusion of an inhibitor of GABA synthesis into the contralateral BLA, thereby to disrupt prefrontal-amygdalar serial connectivity bilaterally, showed that disconnection selectively decreases immobility in the FST. These results point to prefrontal/amygdala connectivity mediated by 5-HT and GABA transmission as a critical neural mechanism in stress-induced behavior. PMID:23636466

  20. Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition.

    PubMed

    Ugedo, L; Grenhoff, J; Svensson, T H

    1989-01-01

    The effect of systemic administration of ritanserin (R 55667), a 5-hydroxytryptamine (5-HT2) receptor antagonist, on midbrain dopamine (DA) neurons was studied with single cell recording techniques in the chloral hydrate anesthetized male rat. Dopamine cells of the zona compacta, substantia nigra (ZC-SN) and the ventral tegmental area (VTA) were identified by established criteria. Ritanserin (0.5-2.0 mg/kg, IV) dose-dependently increased both the burst firing and firing rate of the midbrain DA neurons. These effects were prevented by endogenous 5-HT depletion through pretreatment with the 5-HT synthesis inhibitor para-chlorophenylalanine (PCPA, 300 mg/kg, IP, x3), which did not significantly alter the firing characteristics of the midbrain DA cells when given alone. These results suggest that 5-HT exerts an inhibitory control of midbrain DA cell activity mediated by 5-HT2 receptors. The stimulatory effect of ritanserin on midbrain DA systems might contribute to some of its clinical effects, such as improvement of mood, drive and motivation as well as its therapeutic actions in parkinsonism and type II schizophrenia. PMID:2524859

  1. Prefrontal/Amygdalar System Determines Stress Coping Behavior Through 5-HT/GABA Connection

    PubMed Central

    Andolina, Diego; Maran, Dario; Valzania, Alessandro; Conversi, David; Puglisi-Allegra, Stefano

    2013-01-01

    Coping is defined as the behavioral and physiological effort made to master stressful situations. The ability to cope with stress leads either to healthy or to pathogenic outcomes. The medial prefrontal cortex (mpFC) and amygdala are acknowledged as having a major role in stress-related behaviors, and mpFC has a critical role in the regulation of amygdala-mediated arousal in response to emotionally salient stimuli. Prefrontal cortical serotonin (5-hydroxytryptamine (5-HT)) is involved in corticolimbic circuitry, and GABA has a major role in amygdala functioning. Here, using mice, it was assessed whether amygdalar GABA regulation by prefrontal 5-HT is involved in processing stressful experiences and in determining coping outcomes. First (experiment 1), bilateral selective 5-HT depletion in mpFC of mice reduced GABA release induced by stress in basolateral amygdala (BLA) and passive coping in the Forced Swimming Test (FST) (experiment 2). Moreover, prefrontal-amygdala disconnection procedure that combined a selective unilateral 5-HT depletion of mpFC and infusion of an inhibitor of GABA synthesis into the contralateral BLA, thereby to disrupt prefrontal-amygdalar serial connectivity bilaterally, showed that disconnection selectively decreases immobility in the FST. These results point to prefrontal/amygdala connectivity mediated by 5-HT and GABA transmission as a critical neural mechanism in stress-induced behavior. PMID:23636466

  2. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake

    PubMed Central

    Godar, Sean C.; Bortolato, Marco; Castelli, M. Paola; Casti, Alberto; Casu, Angelo; Chen, Kevin; Ennas, M. Grazia; Tambaro, Simone; Shih, Jean C.

    2014-01-01

    The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-ANeo mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-ANeo mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals. PMID:24882701

  3. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  4. Comparative recovery kinetics of 5-hydroxytryptamine 1A, 1B, and 2A receptor subtypes in rat cortex after receptor inactivation: evidence for differences in receptor production and degradation.

    PubMed

    Pinto, W; Battaglia, G

    1994-12-01

    The present study investigates the comparative repopulation kinetics of 5-hydroxytryptamine (5-HT)1A, 5-HT1B, and 5-HT2A receptors in rat cortex homogenates after irreversible receptor inactivation by N-ethoxycarbonyl-1,2-ethoxydihydroquinoline. Adult male rats were administered a single subcutaneous dose of vehicle (1:1 ethanol/water) or N-ethoxycarbonyl-1,2-ethoxydihydroquinoline (10 mg/kg), and the recovery of 5-HT receptor subtypes was measured at various times after injection (4-336 hr). Despite comparable control Bmax values for 5-HT1A (84 +/- 2 fmol/mg of protein) and 5-HT1B (94 +/- 4 fmol/mg) subtypes, marked differences were noted in their 1) receptor production rates (r = 0.349 versus 0.235 fmol/mg of protein/hr), 2) receptor degradation rate constants (k = 0.0056 versus 0.0033 hr-1), and 3) half-lives of receptor recovery (124.1 versus 212.5 hr). For 5-HT2A receptors, both r and k for agonist [(+/-)-1-(2,5-dimethoxy-4-[125I]iodophenyl)-2-aminopropane]- or antagonist ([3H]ketanserin)-labeled sites were markedly greater than the respective values for the 5-HT1 subtypes. In addition, the significantly different Bmax values for agonist- versus antagonist-labeled 5-HT2A receptors (79 +/- 4 versus 206 +/- 10 fmol/mg) were reflected exclusively as a 2.6-fold difference in receptor production rates, because degradation rate constants (k) were identical. Moreover, the stoichiometry of agonist-labeled to antagonist-labeled 5-HT2A receptors was not altered at any time point during recovery. These data indicate that 1) comparable receptor steady state Bmax values for 5-HT receptor subtypes may be due to markedly different receptor kinetic parameters (r and k), 2) differences in r and k are greater between 5-HT receptor families (i.e., 5-HT1 versus 5-HT2) than among subtypes within a family (i.e., 5-HT1A versus 5-HT1B), and, 3) despite marked changes in 5-HT2A receptor density, the percentage of receptors in the agonist-labeled, high affinity state is maintained. PMID:7808431

  5. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion.

    PubMed

    Rygula, Rafal; Clarke, Hannah F; Cardinal, Rudolf N; Cockcroft, Gemma J; Xia, Jing; Dalley, Jeff W; Robbins, Trevor W; Roberts, Angela C

    2015-09-01

    Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders. PMID:24879752

  6. Peptide Inhibitors Disrupt the Serotonin 5-HT2C Receptor Interaction with Phosphatase and Tensin Homolog to Allosterically Modulate Cellular Signaling and Behavior

    PubMed Central

    Anastasio, Noelle C.; Gilbertson, Scott R.; Bubar, Marcy J.; Agarkov, Anton; Stutz, Sonja J.; Jeng, Yowjiun; Bremer, Nicole M.; Smith, Thressa D.; Fox, Robert G.; Swinford, Sarah E.; Seitz, Patricia K.; Charendoff, Marc N.; Craft, John W.; Laezza, Fernanda M.; Watson, Cheryl S.; Briggs, James M.; Cunningham, Kathryn A.

    2013-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT2C receptor (5-HT2CR) is essential in normal physiology, whereas aberrant 5-HT2CR function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT2CR interacts with specific protein partners, but the impact of such interactions on 5-HT2CR function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT2CR and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT2CR-mediated biology but not that of the closely homologous 5-HT2AR. A peptide derived from the third intracellular loop of the human 5-HT2CR [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT2CR-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT2CR signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT2CR allostery and therapeutics for 5-HT2CR-mediated disorders. PMID:23345234

  7. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens

    PubMed Central

    Jean, Alexandra; Conductier, Grégory; Manrique, Christine; Bouras, Constantin; Berta, Philippe; Hen, René; Charnay, Yves; Bockaert, Joël; Compan, Valérie

    2007-01-01

    Anorexia nervosa is a growing concern in mental health, often inducing death. The potential neuronal deficits that may underlie abnormal inhibitions of food intake, however, remain largely unexplored. We hypothesized that anorexia may involve altered signaling events within the nucleus accumbens (NAc), a brain structure involved in reward. We show here that direct stimulation of serotonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HT4R) in the NAc reduces the physiological drive to eat and increases CART (cocaine- and amphetamine-regulated transcript) mRNA levels in fed and food-deprived mice. It further shows that injecting 5-HT4R antagonist or siRNA-mediated 5-HT4R knockdown into the NAc induced hyperphagia only in fed mice. This hyperphagia was not associated with changes in CART mRNA expression in the NAc in fed and food-deprived mice. Results include that 5-HT4R control CART mRNA expression into the NAc via a cAMP/PKA signaling pathway. Considering that CART may interfere with food- and drug-related rewards, we tested whether the appetite suppressant properties of 3,4-N-methylenedioxymethamphetamine (MDMA, ecstasy) involve the 5-HT4R. Using 5-HT4R knockout mice, we demonstrate that 5-HT4R are required for the anorectic effect of MDMA as well as for the MDMA-induced enhancement of CART mRNA expression in the NAc. Directly injecting CART peptide or CART siRNA into the NAc reduces or increases food consumption, respectively. Finally, stimulating 5-HT4R- and MDMA-induced anorexia were both reduced by injecting CART siRNA into the NAc. Collectively, these results demonstrate that 5-HT4R-mediated up-regulation of CART in the NAc triggers the appetite-suppressant effects of ecstasy. PMID:17913892

  8. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT?8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  9. Prelimbic cortex 5-HT1A and 5-HT2C receptors are involved in the hypophagic effects caused by fluoxetine in fasted rats.

    PubMed

    Stanquini, Laura A; Resstel, Leonardo B M; Corrêa, Fernando M A; Joca, Sâmia R L; Scopinho, América A

    2015-09-01

    The regulation of food intake involves a complex interplay between the central nervous system and the activity of organs involved in energy homeostasis. Besides the hypothalamus, recognized as the center of this regulation, other structures are involved, especially limbic regions such as the ventral medial prefrontal cortex (vMPFC). Monoamines, such as serotonin (5-HT), play an important role in appetite regulation. However, the effect in the vMPFC of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on food intake has not been studied. The aim of the present study was to study the effects on food intake of fed and fasted rats evoked by fluoxetine injection into the prelimbic cortex (PL), a sub-region of the vMPFC, or given systemically, and which 5-HT receptors in the PL are involved in fluoxetine responses. Fluoxetine was injected into the PL or given systemically in male Wistar rats. Independent groups of rats were pretreated with intra-PL antagonists of 5-HT receptors: 5-HT1A (WAY100635), 5-HT2C (SB242084) or 5-HT1B (SB216641). Fluoxetine (0.1; 1; 3; 10nmol/200nL) injected into the PL induced a dose-dependent hypophagic effect in fasted rats. This effect was reversed by prior local treatment with WAY100635 (1; 10nmol) or SB242084 (1; 10nmol), but not with SB216641 (0.2; 2.5; 10nmol). Systemic fluoxetine induced a hypophagic effect, which was blocked by intra-PL 5-HT2C antagonist (10nmol) administration. Our findings suggest that PL 5-HT neurotransmission modulates the central control of food intake and 5-HT1A and 5-HT2C receptors in the PL could be potential targets for the action of fluoxetine. PMID:26143050

  10. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    PubMed Central

    Hu, Y; Liu, X

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  11. Tong Xie Yao Fang relieves irritable bowel syndrome in rats via mechanisms involving regulation of 5-hydroxytryptamine and substance P

    PubMed Central

    Yin, Yue; Zhong, Lei; Wang, Jian-Wei; Zhao, Xue-Ying; Zhao, Wen-Jing; Kuang, Hai-Xue

    2015-01-01

    AIM: To investigate whether the Chinese medicine Tong Xie Yao Fang (TXYF) improves dysfunction in an irritable bowel syndrome (IBS) rat model. METHODS: Thirty baby rats for IBS modeling were separated from mother rats (1 h per day) from days 8 to 21, and the rectum was expanded by angioplasty from days 8 to 12. Ten normal rats were used as normal controls. We examined the effects of TXYF on defection frequency, colonic transit function and smooth muscle contraction, and the expression of 5-hydroxytryptamine (5-HT) and substance P (SP) in colonic and hypothalamus tissues by Western blot and RT-PCT techniques in both normal rats and IBS model rats with characterized visceral hypersensitivity. RESULTS: Defecation frequency was 1.8 ± 1.03 in normal rats and 4.5 ± 1.58 in IBS model rats (P < 0.001). However, the defecation frequency was significantly decreased (3.0 ± 1.25 vs 4.5 ± 1.58, P < 0.05), while the time (in seconds) of colon transit function was significantly increased (256.88 ± 20.32 vs 93.36 ± 17.28, P < 0.001) in IBS + TXYF group rats than in IBS group rats. Increased colonic smooth muscle tension and contract frequency in IBS model rats were significantly decreased by administration of TXYF. Exogenous agonist stimulants increased spontaneous activity and elicited contractions of colon smooth muscle in IBS model rats, and all of these actions were significantly reduced by TXYF involving 5-HT and SP down-regulation. CONCLUSION: TXYF can modulate the activity of the enteric nervous system and alter 5-HT and SP activities, which may contribute to the symptoms of IBS. PMID:25914462

  12. Palonosetron versus first-generation 5-hydroxytryptamine type 3 receptor antagonists for emesis prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Chou, Cheng-Wei; Chen, Yeh-Ku; Yu, Yuan-Bin; Chang, Kuang-Hsi; Hwang, Wen-Li; Teng, Chieh-Lin Jerry

    2014-07-01

    First-generation 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists (RAs) are currently the standard of care for prophylaxis against allo-HSCT-induced emesis. However, the efficacy of this combination in allo-HSCT recipients is not entirely satisfying. We sought to compare the efficacy of first-generation 5-HT3 RAs with that of second-generation 5-HT3 RAs in emesis prevention in allo-HSCT recipients. A total of 51 consecutive patients undergoing allo-HSCT for various hematological diseases in our institution were retrospectively reviewed. Patients who received daily first-generation 5-HT3 RAs, and 60-h palonosetron for emesis prophylaxis were stratified into the standard (n?=?23) and palonosetron (n?=?28) groups, respectively. Emesis severity and rescue therapy requirements in patients between these two groups were compared. Our results showed patients in standard and palonosetron groups had comparable severity of both acute and delayed emesis. However, 52.2 % of the patients in the standard group required rescue therapy, compared to only 21.4 % of the patients in the palonosetron group (p?=?0.046). Subgroup analysis showed rescue therapy for acute emesis was required by 26.1 % of the patients in the standard group and by only 3.6 % of the patients in the palonosetron group (p?=?0.037). In conclusion, palonosetron and first-generation 5-HT3 RAs were at least equally effective in emesis prophylaxis for allo-HSCT recipients. Patients receiving palonosetron, especially for acute emesis, required rescue therapy less frequently than those receiving first-generation 5-HT3 RAs. PMID:24604014

  13. Observations on the significance of 5-hydroxytryptamine in relation to the peristaltic reflex of the rat

    PubMed Central

    Boullin, D. J.

    1964-01-01

    Peristalsis of normal rats, and of rats fed either on a control diet or on a tryptophan-free diet (5-hydroxytryptamine-depleted rats), was studied in vitro and in situ to test the hypothesis that 5-hydroxytryptamine functions as a local hormone in the intestine and may be essential for initiation of the peristaltic reflex. A tryptophan-free diet depleted intestinal 5-hydroxytryptamine by a mean value of 90%; in some rats, the depletion appeared to be complete. Peristaltic responses, even of rats with complete depletion, were qualitatively similar to, and quantitatively not statistically different from those of normal or of pair-fed control animals whose intestinal mucosa contained high concentrations of 5-hydroxytryptamine. Intraluminal and serosal 5-hydroxytryptamine produced effects in 5-hydroxytryptamine-depleted rats similar to those in the normal and in the control animals. Furthermore, the maximal stimulatory effects of 5-hydroxytryptamine on peristaltic performance were not greater than spontaneous variations in performance in any group of animals, except with tryptophan-fed control rats, when the effects of the amine on peristalsis in situ were greater than spontaneous variation. It was therefore concluded that 5-hydroxytryptamine is not essential for peristalsis in the rat. PMID:14206265

  14. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  15. The responses of the venus heart to catechol amines and high concentrations of 5-hydroxytryptamine

    PubMed Central

    Greenberg, M. J.

    1960-01-01

    The catechol amines excite the isolated heart of Venus mercenaria in a characteristic manner. This response was not obtained with phenethylamine, tyramine, ephedrine, or mescaline, nor with histamine, nor with the basic n-alkylamines. 5-Hydroxytryptamine had a distinctive effect at high concentrations (above 3×10-6 M) different from that at lower doses. The response to high concentrations was dominated by an increase in muscle tone. Hearts exposed to high concentrations of 5-hydroxytryptamine and other tryptamine analogues for long periods became tachyphylactic to low doses of these substances. However, high doses of 5-hydroxytryptamine (about 2×10-5 M) still excited the tachyphylactic heart, but the response was then like that to the catechol amines. When high bath temperatures rendered the heart insensitive to 5-hydroxytryptamine, high concentrations of this compound again had the catechol amine effect. The possibility of a physiological role for the catechol amines or high 5-hydroxytryptamine concentrations is discussed. PMID:13708260

  16. Increase in the effectiveness of somatodendritic 5-HT-1A receptors in a rat model of tardive dyskinesia.

    PubMed

    Samad, Noreen; Khan, Asma; Perveen, Tahira; Haider, Saida; Abdul Haleem, Muhammad; Haleem, Darakhshan Jabeen

    2007-01-01

    The present study concerns responsiveness of pre- and postsynaptic 5-hydroxytryptamine (5-HT)-1A receptors in a rat model of tardive dyskinesia (TD). Vacuous chewing movements (VCMs) in rats are widely accepted as an animal model of TD. Results show that haloperidol injected at a dose of 1 mg/kg twice a day for 5 weeks elicited VCMs, which increased in a time dependent manner following the drug administration for 3-5 weeks. Tolerance was produced in motor coordination during the potentiation of VCMs. Exploratory activity in an open field and in an activity box decreased in haloperidol treated animals. The effects of 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT; 0.5 mg/kg) were monitored 48-h after withdrawal from repeated administration of haloperidol. 8-OH-DPAT-induced locomotion was greater in haloperidol treated rats. 5-HT synthesis increased in haloperidol treated animals, while 8-OH-DPAT-induced decreases of 5-HT synthesis were greater in repeated haloperidol than repeated saline injected animals. The results suggest that an increase in the effectiveness of somatodendritic 5-HT-1A receptors may decrease the inhibitory influence of 5-HT on the activity of dopaminergic neurons to precipitate VCMs. The 5-HT-1A agonist may help to alleviate neuroleptic-induced TD. PMID:18320717

  17. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    SciTech Connect

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.; Proakis, A.G.; Nolan, J.C.; Walsh, D.A. )

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADP (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.

  18. RhoBTB3 interacts with the 5-HT7a receptor and inhibits its proteasomal degradation.

    PubMed

    Matthys, Anne; Van Craenenbroeck, Kathleen; Lintermans, Béatrice; Haegeman, Guy; Vanhoenacker, Peter

    2012-05-01

    The 5-hydroxytryptamine (5-HT)7 receptor is the most recently identified serotonin receptor and is involved in a wide variety of central nervous system (CNS) functions, namely circadian rhythm, REM sleep, depression, thermoregulation, obsessive-compulsive disorder (OCD), anxiety, schizophrenia, epilepsy, nociception, migraine, sensation-seeking behavior, impulsivity, learning and memory. These numerous (patho)physiological processes of the CNS, in which the 5-HT7 receptor is involved, most likely reflect a diverse set of signaling pathways arising from this receptor. In order to reveal new interaction partners and possibly new signaling and/or trafficking pathways, we performed a yeast two-hybrid screening, using the C-terminal tail of the 5-HT7a receptor as bait and an adult-human brain cDNA library as prey. In this way we identified RhoBTB3 as a new interaction partner of the 5-HT7a receptor. By means of co-immunoprecipitation we were able to confirm the interaction between full length 5-HT7a receptor and RhoBTB3 in HEK293T cells. Subsequent domain mapping of this interaction revealed that not only the C-terminal tail, but also the third intracellular loop of the 5-HT7a receptor is involved. In addition, immunofluorescence microscopy showed clear co-localization between the 5-HT7a receptor and RhoBTB3 at the plasma membrane and in the endoplasmic reticulum. Despite the fact that RhoBTB3 has been shown to interact with Cul3, which in turn interacts with the E3 ubiquitin ligase, Roc1, we show here that RhoBTB3 neither recruits Cul3/Roc1 to the 5-HT7a receptor nor does it mediate ubiquitination of this receptor. Instead, we demonstrate that RhoBTB3 strongly inhibits proteasomal degradation of the 5-HT7a receptor. PMID:22245496

  19. Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon

    PubMed Central

    Yaakob, Nor S; Chinkwo, Kenneth A; Chetty, Navinisha; Coupar, Ian M; Irving, Helen R

    2015-01-01

    Background/Aims Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT3 and 5-HT4 receptors are clinically relevant. The aim was to examine the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine. Methods Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction. Results The 5-HT3 receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT3 receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT4 and 5-HT7 receptors were expressed throughout the colon although the 5-HT4 receptor d, g, and i variants were expressed less often. Conclusions The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT3 receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance. PMID:26130632

  20. Synergy between 5-HT4 receptor activation and acetylcholinesterase inhibition in human colon and rat forestomach.

    PubMed

    Cellek, S; Thangiah, R; Jarvie, E M; Vivekanandan, S; Lalude, O; Sanger, G J

    2008-05-01

    5-Hydroxytryptamine (5-HT4) receptor agonists increase gastrointestinal (GI) motility by enhancing enteric acetylcholine release which is then metabolized by acetylcholinesterase (AChE) to inactive metabolites. As both AChE inhibitors and, more usually, 5-HT4 receptor agonists are used to increase GI motility, an understanding of how these two different types of drugs might interact becomes of great importance. Our aim was to investigate the hypothesis that the effect of AChE inhibition will synergise with the ability of 5-HT4 receptor agonism to increase cholinergic activity, leading to an effect greater than that evoked by each action alone. We tested the activity of the 5-HT4 receptor agonist, prucalopride (10 nmol L(-1)-30 micromol L(-1)) and an AChE inhibitor, neostigmine (1 nmol L(-1)-10 micromol L(-1)) on cholinergically mediated contractions elicited by electrical field stimulation of human isolated colon circular muscle and rat isolated forestomach longitudinal strips. The experiments with human colon were performed in the presence of an inhibitor of nitric oxide synthase (N(omega)-nitro-l-arginine methyl ester, 300 micromol L(-1)). Prucalopride and neostigmine both enhanced cholinergic contractions in both tissues. The effect of prucalopride was inhibited in both tissues by SB-204070, a 5-HT4 receptor antagonist. In the presence of a minimum effective concentration of neostigmine (30 nmol L(-1)) and a submaximum concentration of prucalopride (3 micromol L(-1)) the enhancement of contractions was greater than either compound alone in both tissues. These data demonstrate that the combination of prucalopride and neostigmine potentiate cholinergic contractions more than their arithmetic sum of their individual values. The results suggest that a synergy between 5-HT4 receptor agonism and AChE inhibition could be established pharmacologically which could be utilized as a novel prokinetic approach to functional GI disorders. PMID:18194150

  1. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  2. 5-HT2A and mGlu2/3 receptor interactions: on their relevance to cognitive function and psychosis.

    PubMed

    Wischhof, Lena; Koch, Michael

    2016-02-01

    Serotonin [5-hydroxytryptamine (5-HT)] and glutamate have both been implicated in the pathophysiology of neuropsychiatric disorders but also in the mechanism of antipsychotic and hallucinogenic drug actions. Furthermore, close antagonistic interactions between 5-HT2A and metabotropic glutamate (mGlu)2/3 receptors have been established over the last decades on the basis of numerous electrophysiological, biochemical, and behavioral studies. Besides synaptic mechanisms, more recent findings suggested that heterodimeric 5-HT2A-mGlu2 receptor complexes in the prefrontal cortex may account for the functional crosstalk between these two receptor subtypes. In this review, we focus on in-vitro and in-vivo studies documenting the important relationship between 5-HT2A and mGlu2/3 receptors, with relevance to both normal behavioral function and psychosis. PMID:26292187

  3. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT–dependent neurite outgrowth in Aplysia bag cell neurons

    PubMed Central

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-01-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca2+; however, mechanistic roles for Ca2+ in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) ? inositol trisphosphate ? Ca2+ ? calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca2+ release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT–dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors. PMID:23097492

  4. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and postsynaptic 5-HT1A-Rs in MDD and anxiety. In agreement with pharmacological studies, presynaptic and postsynaptic 5-HT1A-R activation appears necessary for anxiolytic and antidepressant effects, respectively, yet, neurodevelopmental roles for 5-HT1A-Rs are also involved. Likewise, the use of small interference RNA has enabled the showing of robust antidepressant-like effects in mice after selective knock-down of 5-HT1A autoreceptors. Postsynaptic 5-HT1A-Rs in the prefrontal cortex (PFC) also appear important for the superior clinical effects of clozapine and other second-generation (atypical) antipsychotic drugs in the treatment of schizophrenia and related psychotic disorders. Despite showing a moderate in vitro affinity for 5-HT1A-Rs in binding assays, clozapine displays functional agonist properties at this receptor type in vivo. The stimulation of 5-HT1A-Rs in the PFC leads to the distal activation of the mesocortical pathway and to an increased dopamine release in PFC, an effect likely involved in the clinical actions of clozapine in negative symptoms and cognitive deficits in schizophrenia. The anxiolytic/antidepressant properties of 5-HT1A-R agonists in preclinical tests raised expectations enormously. However, these agents have achieved little clinical success, possibly due to their partial agonist character at postsynaptic 5-HT1A-Rs, together with full agonist properties at presynaptic 5-HT1A autoreceptors, as well as their gastrointestinal side effects. The partial 5-HT1A-R agonists buspirone, gepirone, and tandospirone are marketed as anxiolytic drugs, and buspirone is also used as an augmentation strategy in MDD. The development of new 5-HT1A-R agonists with selectivity for postsynaptic 5-HT1A-Rs may open new perspectives in the field. PMID:23757185

  5. Preclinical characterization of WAY-211612: a dual 5-HT uptake inhibitor and 5-HT1A receptor antagonist and potential novel antidepressant

    PubMed Central

    Beyer, CE; Lin, Q; Platt, B; Malberg, J; Hornby, G; Sullivan, KM; Smith, DL; Lock, T; Mitchell, PJ; Hatzenbuhler, NT; Evrard, DA; Harrison, BL; Magolda, R; Pangalos, MN; Schechter, LE; Rosenzweig-Lipson, S; Andree, TH

    2009-01-01

    Background and purpose As a combination of 5-HT selective reuptake inhibitor (SSRI) with 5-HT1A receptor antagonism may yield a rapidly acting antidepressant, WAY-211612, a compound with both SSRI and 5-HT1A receptor antagonist activities, was evaluated in preclinical models. Experimental approach Occupancy studies confirmed the mechanism of action of WAY-211612, while its in vivo profile was characterized in microdialysis and behavioural models. Key results WAY-211612 inhibited 5-HT reuptake (Ki = 1.5 nmol·L?1; KB = 17.7 nmol·L?1) and exhibited full 5-HT1A receptor antagonist activity (Ki = 1.2 nmol·L?1; KB = 6.3 nmol·L?1; Imax 100% in adenyl cyclase assays; KB = 19.8 nmol·L?1; Imax 100% in GTP?S). WAY-211612 (3 and 30 mg·kg?1, po) occupied 5-HT reuptake sites in rat prefrontal cortex (56.6% and 73.6% respectively) and hippocampus (52.2% and 78.5%), and 5-HT1A receptors in the prefrontal cortex (6.7% and 44.7%), hippocampus (8.3% and 48.6%) and dorsal raphe (15% and 83%). Acute or chronic treatment with WAY-211612 (3–30 mg·kg?1, po) raised levels of cortical 5-HT approximately twofold, as also observed with a combination of an SSRI (fluoxetine; 30 mg·kg?1, s.c.) and a 5-HT1A antagonist (WAY-100635; 0.3 mg·kg?1, s.c). WAY-211612 (3.3–30 mg·kg?1, s.c.) decreased aggressive behaviour in the resident-intruder model, while increasing the number of punished crossings (3–30 mg·kg?1, i.p. and 10–56 mg·kg?1, po) in the mouse four-plate model and decreased adjunctive drinking behaviour (56 mg·kg?1, i.p.) in the rat scheduled-induced polydipsia model. Conclusions and implications These findings suggest that WAY-211612 may represent a novel antidepressant. PMID:19338583

  6. Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat

    PubMed Central

    Criddle, D N; Soares de Moura, R; Greenwood, I A; Large, W A

    1997-01-01

    The effects of niflumic acid, an inhibitor of calcium-activated chloride currents, were compared with the actions of the calcium channel blocker nifedipine on noradrenaline- and 5-hydroxytryptamine (5-HT)-induced pressor responses of the rat perfused isolated mesenteric vascular bed.Bolus injections of noradrenaline (1 and 10?nmol) increased the perfusion pressure in a dose-dependent manner. Nifedipine (1??M) inhibited the increase in pressure produced by 1?nmol noradrenaline by 31±5%. Niflumic acid (10 and 30??M) also inhibited the noradrenaline-induced increase in perfusion pressure and 30??M niflumic acid reduced the pressor response to 1?nmol noradrenaline by 34±6%.The increases in perfusion elicited by 5-HT (0.3 and 3?nmol) were reduced by niflumic acid (10 and 30??M) in a concentration-dependent manner and 30??M niflumic acid inhibited responses to 0.3 and 3?nmol 5-HT by, respectively, 49±8% and 50±7%. Nifedipine (1??M) decreased the pressor response to 3?nmol 5-HT by 44±9%.In the presence of a combination of 30??M niflumic acid and 1??M nifedipine the inhibition of the pressor effects of noradrenaline (10?nmol) and 5-HT (3?nmol) was not significantly greater than with niflumic acid (30??M) alone. Thus the effects of niflumic acid and nifedipine were not additive.In Ca-free conditions the transient contractions induced by 5-HT (3?nmol) were not reduced by 30??M niflumic acid, suggesting that this agent does not inhibit calcium release from the intracellular store or the binding of 5-HT to its receptor.Niflumic acid 30??M did not inhibit the pressor responses induced by KCl (20 and 60??mol) which were markedly reduced by 1??M nifedipine. In addition, 1??M levcromakalim decreased pressor responses produced by 20??mol KCl. These data suggest that niflumic acid does not block directly calcium channels or activate potassium channels.It is concluded that niflumic acid selectively reduces a component of noradrenaline- and 5-HT-induced pressor responses by inhibiting a mechanism which leads to the opening of voltage-gated calcium channels. Our data suggest that the Ca2+-activated chloride conductance may play a pivotal role in the activation of voltage-gated calcium channels in agonist-induced constriction of resistance blood vessels. PMID:9138686

  7. Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat.

    PubMed

    Blomstrand, E; Perrett, D; Parry-Billings, M; Newsholme, E A

    1989-07-01

    Sustained exercise to fatigue elicits no major differences either in plasma amino acid levels or in brain 5-hydroxytryptamine (5-HT) metabolism between sedentary and endurance-trained animals. Furthermore, 11 weeks of endurance training did not influence the maximal activity of the enzyme monoamine oxidase in the brain areas which were studied. In both sedentary and endurance-trained rats, sustained running to fatigue caused an increase in the plasma concentration ratio of free tryptophan/other large neutral amino acids and an increase in the concentration of tryptophan in the six brain areas that were studied. The increase was similar in the different regions of the brain and averaged 36%. Exercise caused an increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the brain stem (14 and 44% respectively) and hypothalamus (16 and 17% respectively) and an increase in the level of 5-HIAA in the hippocampus (21%) and striatum (28%). Exercise also caused an increase in the level of dopamine in the brain stem (56%) and hypothalamus (46%) and of nor adrenaline in the striatum (59%). Since the levels of 5-HT and dopamine were both increased in the brain stem and hypothalamus, it is possible that these changes may play important roles in the central effects of exercise, including both physical and mental fatigue and effects on mood. PMID:2473602

  8. Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats.

    PubMed

    Fu, Jin; Jiao, Yun-Lu; Li, Zheng-Wei; Ji, Yong-Hua

    2015-06-25

    Subcutaneous injection of BmK I could be adopted to well establish a novel pain model. Moreover, 5-hydroxytryptamine (serotonin, 5-HT) receptor is involved in regulating animal pain-related behaviors. However, the underlying mechanism of 5-HT3R on BmK I-induced pain remains unclear. Animal behavioral testing, RT-PCR and Western blotting were used to yield the following results: first, intraplantar (i.pl.) injection of BmK I (10 ?g) induced elevated mRNA and protein levels of 5-HT3AR in bilateral L4-L5 spinal cord; Second, intrathecal (i.t.) injection of ondansetron (a specific antagonist of 5-HT3AR) reduced spontaneous pain responses, attenuated unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I; Microglia could be activated by BmK I (i.pl.) in both sides of L4-L5 spinal cord, and this effect was reversed by intrathecal pre-treatment with 5-HT3AR antagonist. Meanwhile, the 5-HT3AR in L4-L5 spinal cord was almost co-localized with NeuN (a marker of nerve cell), but not co-expressed with Iba-1 (a marker of microglia). Finally, the expression level of CX3CL1 and CX3CR1 was reduced by intrathecal pre-treatment with ondansetron. Our results indicate that both 5-HT3AR signaling pathway and microglia are activated in the process of induction and maintenance of BmK I-induced pain nociception. Meanwhile, our results suggest that the neuronal 5-HT3AR may communicate with microglia indirectly via CX3CL1 which is involved in regulating the BmK I-induced hyperalgesia and sensitization. PMID:26109301

  9. Relationship Between the Systems Responsible for Uptake of 5-hydroxytryptamine and of Noradrenaline by Human Blood Platelets.

    PubMed

    Bawa, S; Scrutton, M C

    1995-01-01

    Human blood platelets carry a high affinity, but low capacity, saturable system for the uptake of noradrenalhe. The uptake is partially Na(+) dependent but cannot be categorised as uptake. It is distinct from the uptake system responsible for 5-hydroxytryptamine transport into the platelet since the selective inhibitors of the platelet uptake system for 5-hydroxytryptamine (citalopram, paroxetine) Wer from those for the uptake system for noradrenaline (normetanephrine, methylisoprenaline). 5-hydroxytryptamine inhibits noradrenaline uptake but with properties inconsistent with competition for the same uptake system while noradrenaline does not inhibit 5-hydroxytryptamine uptake. Neither noradrenaline nor 5-hydroxytryptamine uptake by human platelets is inhibited by dopamine. PMID:21043727

  10. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain.

    PubMed

    Greenwood-Van Meerveld, Beverley; Mohammadi, Ehsan; Tyler, Karl; Pietra, Claudio; Bee, Lucy A; Dickenson, Anthony

    2014-10-01

    Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome. PMID:25077526

  11. Discriminating between 5-HT3A and 5-HT3AB receptors

    PubMed Central

    Thompson, AJ; Lummis, SCR

    2013-01-01

    The 5-HT3B subunit was first cloned in 1999, and co-expression with the 5-HT3A subunit results in heteromeric 5-HT3AB receptors that are functionally distinct from homomeric 5-HT3A receptors. The affinities of competitive ligands at the two receptor subtypes are usually similar, but those of non-competitive antagonists that bind in the pore often differ. A competitive ligand and allosteric modulator that distinguishes 5-HT3A from 5-HT3AB receptors has recently been described, and the number of non-competitive antagonists identified with this ability has increased in recent years. In this review, we discuss the differences between 5-HT3A and 5-HT3AB receptors and describe the possible sites of action of compounds that can distinguish between them. PMID:23489111

  12. Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis.

    PubMed Central

    Sharp, T.; Bramwell, S. R.; Hjorth, S.; Grahame-Smith, D. G.

    1989-01-01

    1. We have previously found that the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) decreases hippocampal 5-hydroxytryptamine (5-HT) release in the anaesthetized rat, as measured by brain microdialysis. The present study attempted to characterize the receptor involved in this response using a range of monoamine receptor antagonists. 2. The classical 5-HT receptor antagonists, metergoline (5 mg kg-1 s.c.), methysergide (10 mg kg-1 s.c.) and methiothepin (10 mg kg-1 s.c.) each reduced dialysate levels of 5-HT which complicated their use as antagonists in these experiments. Nevertheless, pretreatment with metergoline but not methiothepin and methysergide partially reduced the 5-HT response to a maximally effective dose of 8-OH-DPAT (0.25 mg kg-1 s.c.). 3. The mixed 5-HT 1/beta-adrenoceptor antagonist pindolol (8 mg kg-1 s.c.) was without effect on spontaneous 5-HT output but attenuated the effect of both maximally (0.25 mg kg-1 s.c.) and submaximally (0.05 mg kg-1 s.c.) effective dose of 8-OH-DPAT. In comparison, propranolol (10 mg kg-1 s.c.) did not affect 5-HT output when injected alone and did not alter the response to 8-OH-DPAT (0.25 mg kg-1 s.c.). 4. The 5-HT2 receptor antagonist ritanserin (0.2 mg kg-1 s.c.) and the 5-HT3 receptor antagonist BRL 43694 (0.5 mg kg-1 s.c.) neither altered 5-HT output alone nor significantly changed the response to 8-OH-DPAT (0.25 mg kg-1 s.c.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574066

  13. 5-hydroxytryptamine1C receptor density and mRNA levels in choroid plexus epithelial cells after treatment with mianserin and (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane.

    PubMed

    Barker, E L; Sanders-Bush, E

    1993-10-01

    5-Hydroxytryptamine (5HT)1C and 5HT2 receptors display paradoxical down-regulation when exposed to receptor antagonists in vivo, a property that is unique to these two subtypes of serotonin (5HT) receptors. Because of the absence of cell culture model systems, the mechanisms involved in this paradoxical down-regulation have been difficult to explore. The present study focuses on the regulation of 5HT1C receptors in primary cultures of rat choroid plexus epithelial cells. Exposure of the epithelial cell cultures to 100 nM mianserin, a receptor antagonist, or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane, an agonist, for 72 hr caused a loss of 5HT1C receptor binding sites, as determined by [3H]mesulergine binding to crude membrane preparations. No significant changes in Kd values were observed. Neither the agonist nor antagonist caused a significant change in binding sites after 24 hr. A solution hybridization assay was used to determine whether the down-regulation by mianserin or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane was accompanied by a decrease in the steady state level of 5HT1C receptor mRNA. These studies showed that neither treatment caused an alteration in the levels of 5HT1C receptor mRNA. Thus, it is possible to reproduce the in vivo regulatory effects of drugs on 5HT1C receptors in choroid plexus epithelial cells in culture, including the atypical down-regulation by receptor antagonists. Using this cell culture model system, indirect transynaptic effects and decreases in receptor mRNA levels have been ruled out as mechanisms accounting for the down-regulation. PMID:8232222

  14. Blockade of 5-hydroxytryptamine(3) receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat

    NASA Technical Reports Server (NTRS)

    Lucot, James B.

    1989-01-01

    The effects of the 5-hydroxytryptamine(3) (5-HT-3) antagonists ICS 205-930 and MDL 72222 on the emesis induced by motion or by emetic doses of xylazine (0.66 mg/kg administered SC) or cisplatin (7.5 mg/kg infused over a period of 4-5 min) were investigated in cats. It was found that neither the low (0.1 mg/kg) or the high (1.0 mg.kg) doses of ICS 205-930 or MDL 72222 prevented emesis elicited by screening motion challenges or xylazine. On the other hand, treatment cats by 1.0 mg/kg of ICS 205-930 was effective against cisplatin-induced motion sickness, in agreement with earlier results obtained on other mammals.

  15. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2+) channels, the binding of Ca(2+) to calmodulin and a lessening of the Mg(2+) -produced open-channel block of the NMDA receptor. PMID:15339859

  16. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones

    PubMed Central

    Holohean, Alice M; Hackman, John C

    2004-01-01

    In the presence of NMDA receptor open-channel blockers [Mg2+; (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30–100 ?M) of either 5-hydroxytryptamine (5-HT) or ?-methyl-5-hydroxytryptamine (?-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10–30 ?M), SB 206553 (10 ?M), and SB 204741 (30 ?M), but not by spiroxatrine (10 ?M), WAY 100,635 (1–30 ?M), ketanserin (10 ?M), RS 102221 (10 ?M), or RS 39604 (10–20 ?M). Therefore, ?-Me-5-HT's facilitatory effects appear to involve 5-HT2B receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5?-imidodiphosphate (GMP-PNP, 100 ?M) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2 (GP antagonist 2A, 3–6 ?M), but not by pertussis toxin (PTX, 3–6 ng ml?1, 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 ?M), U73122 (10 ?M) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 ?M) or by intracellular Ca2+ depletion with thapsigargin (0.1 ?M) (which inhibits Ca2+/ATPase). Exposure of the spinal cord to the L-type Ca2+ channel blockers nifedipine (10 ?M), KN-62 (5 ?M) or gallopamil (100 ?M) eliminated ?-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 ?M) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 ?M) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT2B receptors by ?-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca2+]i from the entry of extracellular Ca2+ through L-type Ca2+ channels, the binding of Ca2+ to calmodulin and a lessening of the Mg2+ -produced open-channel block of the NMDA receptor. PMID:15339859

  17. Low-dose prazosin in combination with 5-HT6 antagonist PRX-07034 has antipsychotic effects.

    PubMed

    Abraham, Renny; Nirogi, Ramakrishna; Shinde, Anil; Irupannanavar, Shantaveer

    2015-01-01

    An extensive amount of research has focused on the development of new pharmacological agents to treat schizophrenia. Varying from person to person, schizophrenia is a heterogeneous disease with symptoms of positive, negative, and cognitive deficits. PRX-07034, a 5-hydroxytryptamine6 (5-HT6) receptor antagonist has been evaluated for its potential in treating obesity and cognitive deficits. This study evaluated PRX-07034 (0.1, 0.3, and 1.0 mg/kg body mass, by intraperitoneal (i.p.) injection), in combination with a low dose of prazosin (0.3 mg/kg, i.p.), for its antipsychotic potential. The research utilized a stereotypy assay, an open field test, an object recognition task, and prepulse inhibition. Dizocilpine, a non-competitive N-methyl-d-aspartate (NMDA) antagonist, was also administered in the above-mentioned assays as a psychomimetic. The combination of PRX-07034 and prazosin alleviated stereotypy and hyperlocomotor activity while enhancing memory in an object recognition task, and reversed sensory-gating deficits induced by dizocilpine. Examination of the medial prefrontal cortex revealed that a combination of PRX-07034 and prazosin reduced the dizocilpine-mediated increase of 5-HT. These results suggest that the combination of a 5-HT6 antagonist with low doses of prazosin could have therapeutic potential in the treatment of schizophrenia. PMID:25429515

  18. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    PubMed

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective. PMID:25675490

  19. The impact of 5-hydroxytryptamine-receptor antagonists on chemotherapy treatment adherence, treatment delay, and nausea and vomiting

    PubMed Central

    Palli, Swetha Rao; Grabner, Michael; Quimbo, Ralph A; Rugo, Hope S

    2015-01-01

    Purpose To determine the incidence of chemotherapy-induced nausea/vomiting (CINV) and chemotherapy treatment delay and adherence among patients receiving palonosetron versus other 5-hydroxytryptamine receptor antagonist (5-HT3 RA) antiemetics. Materials and methods This retrospective claims analysis included adults with primary malignancies who initiated treatment consisting of single-day intravenous highly emetogenic chemotherapy (HEC) or moderately EC (MEC) regimens. Treatment delay was defined as a gap in treatment at least twice the National Comprehensive Cancer Network-specified cycle length, specific to each chemotherapy regimen. Treatment adherence was determined by the percentage of patients who received the regimen-specific recommended number of chemotherapy cycles within the recommended time frame. Results We identified 1,832 palonosetron and 2,387 other 5-HT3 RA (“other”) patients who initiated HEC therapy, and 1,350 palonosetron users and 1,379 patients on other antiemetics who initiated MEC therapy. Fewer patients receiving palonosetron experienced CINV versus other (HEC, 27.5% versus 32.2%, P=0.0011; MEC, 36.1% versus 41.7%, P=0.0026), and fewer treatment delays occurred among patients receiving palonosetron versus other (HEC, 3.2% versus 6.0%, P<0.0001; MEC, 17.0% versus 26.8%, P<0.0001). Compared with the other cohort, patients receiving palonosetron were significantly more adherent to the index chemotherapy regimen with respect to the recommended time frame (HEC, 74.7% versus 69.7%, P=0.0004; MEC, 43.1% versus 37.3%, P=0.0019) and dosage (HEC, 27.3% versus 25.8%, P=0.0004; MEC, 15.0% versus 12.6%, P=0.0019). Conclusion Palonosetron more effectively reduced occurrence of CINV in patients receiving HEC or MEC compared with other agents in this real-world setting. Additionally, patients receiving palonosetron had better adherence and fewer treatment delays than patients receiving other 5-HT3 RAs. PMID:26124681

  20. Human 5HT4 and 5HT7 Receptor Splice Variants: Are they Important?

    PubMed Central

    Coupar, Ian M; Desmond, Paul V; Irving, Helen R

    2007-01-01

    G-protein-coupled receptors (GPCRs), which are encoded by >300 genes in the human genome, are by far the largest class of targets for modern drugs. These macromolecules display inherent adaptability of function, which is partly due to the production of different forms of the receptor protein. These are commonly called ‘isoforms’ or ‘splice variants’ denoting the molecular process of their production/assembly. Not all GPCRs are expressed as splice variants, but certain subclasses of 5HT receptors are for example, the 5HT4 and 5HT7 receptors. There are at least 11 human 5HT4 and three h5HT7 receptor splice variants. This review describestheir discoveries, nomenclature and structures. The discovery that particular splice variants are tissue specific (or prominent) has highlighted their potential as future drug targets. In particular, this review examines the functional relevance of different 5HT4 and 5HT7 receptor splice variants. Examples are given to illustrate that splice variants have differential modulatory influences on signalling processes. Differences in agonist potency and efficacies and also differences in desensitisation rates to 5HT occur with both 5HT4 and 5HT7 receptor splice variants. The known and candidate signalling systems that allow for splice variant specific responses include GPCR interacting proteins (GIPs) and GPCR receptor kinases (GRKs) which are examined.Finally, the relevance of 5HT receptor splice variants to clinical medicine and to the pharmaceutical industry is discussed. PMID:19305739

  1. Short communication: Circulating serotonin (5-HT) concentrations on day 1 of lactation as a potential predictor of transition-related disorders.

    PubMed

    Laporta, J; Moore, S A E; Peters, M W; Peters, T L; Hernandez, L L

    2013-08-01

    The monoamine serotonin (5-hydroxytryptamine; 5-HT) has been described as a homeostatic regulator of lactation. Recently, our laboratory determined that 5-HT is involved in the regulation of calcium and glucose homeostasis during the transition period in rodents. More specifically, we demonstrate that 5-HT is responsible for calcium mobilization from bone and upregulation of hepatic gluconeogenic enzymes and mammary gland glucose transporters. Our objective was to investigate the correlation between circulating 5-HT concentrations and circulating ionized calcium, parathyroid hormone-related protein (PTHrP), and glucose concentrations on d 1 postpartum. We also investigated the correlation between circulating 5-HT and milk fever and ketosis incidence and severity in multiparous Holstein cows at the onset of lactation. Blood samples were collected from 42 multiparous cows on d 1 of lactation and analyzed for 5-HT, calcium, glucose, and PTHrP. Milk fever (determined subjectively for each cow on d 1 postpartum) and ketosis incidence and severity (scale 1 to 4, determined objectively for each cow during the first 10 d postpartum) were recorded for all animals. Serum 5-HT was positively correlated with serum calcium and with plasma PTHrP (r>0.37). Serum 5-HT was negatively correlated with milk fever incidence and with ketosis severity (most severe ketosis incidence recorded during the first 10 d postpartum; r<-0.33). Serum calcium and plasma glucose concentrations were negatively correlated with milk fever and ketosis severity, respectively (r<-0.39). These data indicate that 5-HT potentially plays a role in the regulation of calcium and glucose homeostasis during the transition period in cattle, which we previously demonstrated in rodents. Increased circulating concentrations of 5-HT might decrease milk fever at the onset of lactation and ketosis severity during the first 10 d postpartum in dairy cows. Understanding this physiological axis could help describe the underlying mechanisms associated with these periparturient metabolic disorders in dairy cows. PMID:23746592

  2. Prevention by the 5-HT3 receptor antagonist, ondansetron, of morphine-dependence and tolerance in the rat.

    PubMed Central

    Hui, S. C.; Sevilla, E. L.; Ogle, C. W.

    1996-01-01

    1. The effect of ondansetron, a selective 5-hydroxytryptamine3 (5-HT3) receptor antagonist, was studied in morphine-addicted rats. Morphine-dependence and tolerance, induced by drinking increasing concentrations of morphine sulphate in 5% sucrose solution for 3 weeks, were demonstrated by the naloxone-precipitated withdrawal syndrome and tail flick response to a thermal noxious stimulus (water at 50 degrees C), respectively. 2. Morphine-dependence, assessed by naloxone precipitated withdrawal, was undetectable by the 6th day, when the animals drank only tap water for 7 days after the 3-week induction period. 3. When detoxified rats were offered sucrose and morphine solutions for 10 days, the recurrence of opiate solution preference with relapse to dependence and tolerance was observed. 4. Giving ondansetron (0.1 or 1 microgram kg-1; i.p.; twice daily) on the 14th day of, or 7 days prior to, the 3-week induction period reduced dependence and tolerance seen during the 3-week morphine induction and the 10-day drinking preference periods. 5. 5-Hydroxytryptamine2 (5-HT2) receptor antagonism by cyproheptadine (100 or 250 micrograms kg-1; i.p.; twice daily) did not influence morphine-dependence and tolerance. 6. These findings suggest that ondansetron may be useful for treating opiate addiction and lowering the recidivism rate. PMID:8799580

  3. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1–5-HT axis

    PubMed Central

    Jiang, Fang-Xu; Mishina, Yuji; Baten, Akma; Morahan, Grant; Harrison, Leonard C.

    2015-01-01

    ABSTRACT Bone morphogenetic protein (BMP) signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3?months, and were more severely affected at 12?months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of ?-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1), encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT) was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from ? cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1–5-HT axis on glucose homeostasis. PMID:26187948

  4. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1-5-HT axis.

    PubMed

    Jiang, Fang-Xu; Mishina, Yuji; Baten, Akma; Morahan, Grant; Harrison, Leonard C

    2015-01-01

    Bone morphogenetic protein (BMP) signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3?months, and were more severely affected at 12?months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of ?-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1), encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT) was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from ? cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1-5-HT axis on glucose homeostasis. PMID:26187948

  5. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors.

    PubMed Central

    Kennett, G. A.; Curzon, G.

    1988-01-01

    1. The effects of 1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl] piperazine (TFMPP) on activity of rats in a novel cage, and on the rotorod and elevated bar co-ordination tests was examined. 2. Peripherally administered mCPP and TFMPP dose-dependently reduced locomotion, rearing, and feeding scores but not grooming of freely fed rats placed in a novel observation cage. Yawning behaviour was increased. Similar effects were also observed after injection of mCPP into the 3rd ventricle. 3. Co-ordination on a rotating drum of both untrained and trained rats was impaired following mCPP but co-ordination on an elevated bar was not. 4. The hypoactivity induced by mCPP was opposed by three antagonists with high affinity for the 5-hydroxytryptamine (5-HT1C) site; metergoline, mianserin, cyproheptadine and possibly also by a fourth antagonist mesulergine. Metergoline, mianserin and cyproheptadine also opposed the reduction in feeding scores. However, neither effect of mCPP was antagonized by the 5-HT2-receptor antagonists ketanserin or ritanserin, the 5-HT3-receptor antagonist ICS 205-930, the 5-HT1A and 5-HT1B-receptor antagonists (-)-pindolol, (-)-propranolol and (+/-)-cyanopindolol or the 5-HT1A-, 5-HT2- and dopamine receptor antagonist spiperone. The specific alpha 2-adrenoceptor antagonist idazoxan was also without effect. 5. Hypoactivity induced by TFMPP was similarly antagonized by mianserin but unaffected by (+/-)-cyanopindolol. 6. These results suggest that the hypoactivity is mediated by central 5-HT1C-receptors and that mCPP and possibly TFMPP may be 5-HT1C-receptor agonists. 7. As mianserin, cyproheptadine and mesulergine in the absence of mCPP did not increase locomotion but increased the number of feeding scores, the activation of 5-HT1C-receptors may be of physiological importance in the control of appetite. The possible relevance of these results to the therapeutic and side-effects of clinically used antidepressants (particularly trazodone and mianserin) and anorexigenic drugs is discussed. PMID:3401632

  6. Anxiolytic-like effect of a serotonergic ligand with high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Delgado, Mercedes; Caicoya, Anne G; Greciano, Virginia; Benhamú, Bellinda; López-Rodríguez, María Luz; Fernández-Alfonso, María Soledad; Pozo, Miguel A; Manzanares, Jorge; Fuentes, José A

    2005-03-21

    S-(-)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-alpha]-pyrazine (CSP-2503) is a serotonin (5-HT) receptor ligand with selectivity and high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. CSP-2503 reduced rectal temperature and 5-HT neuronal hypothalamic activity in mice, decreased electrical activity of raphe nuclei cells in rats and blocked the enhancement of adenylate cyclase activity induced by forskolin in HeLa cells transfected with the human 5-HT1A receptor. This compound also blocked head-twitches induced by the 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Contractions of guinea pig ileum induced by the 5-HT3 receptor agonist 2-methyl-5-HT were prevented by CSP-2503. Moreover, it reduced the bradycardia reflex induced by 2-methyl-5-HT in anaesthetized rats. In the light/dark box and social interaction tests, CSP-2503 presented anxiolytic activity, an action shared by 5-HT1 agonists and 5-HT3 antagonists. Taken together, these results suggest that CSP-2503 is a new 5-HT1 receptor agonist with 5-HT2A and 5-HT3)receptor antagonist activities that might be useful in a number of conditions associated with anxiety. PMID:15777774

  7. Associations of the 5-hydroxytryptamine (Serotonin) Receptor 1B Gene (HTR1B) with Alcohol, Cocaine, and Heroin Abuse

    PubMed Central

    Cao, Jian; LaRocque, Emily; Li, Dawei

    2014-01-01

    Abnormal serotonergic pathways are implicated in numerous neuropsychiatric disorders including alcohol and drug dependence (abuse). The human 5-hydroxytryptamine (serotonin) receptor 1B, encoded by the HTR1B (5-HT1B) gene, is a presynaptic serotonin autoreceptor that plays an important role in regulating serotonin synthesis and release. Although there was evidence of associations of the HTR1B gene variants in the etiologies of substance use disorders, negative findings were also reported. To clarify the roles of commonly-reported single nucleotide polymorphisms (SNPs) of the HTR1B gene underlying alcohol and drug dependence (abuse), we performed a meta-analysis based on the available genotype data from individual candidate gene-based association studies. Evidence of association was found between the functional SNP -161A>T (rs130058) and alcohol, cocaine, and heroin dependence (e.g., P = 0.03 and odds ratio = 1.2 (1.02, 1.42) in the combined European, Asian, African, and Hispanic populations). SNP -261T>G (rs11568817) also showed evidence of association but with different directions in Europeans and non-Europeans (e.g., P = 0.0018 with odds ratio = 1.42 (1.14, 1.76) and P = 0.01 with odds ratio = 0.5 (0.3, 0.85), respectively). This meta-analysis supports the associations of HTR1B -261T>G and -161A>T with alcohol and drug abuse and further investigations are warranted in larger samples. PMID:23335468

  8. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response.

    PubMed

    Lemonde, Sylvie; Du, Lisheng; Bakish, David; Hrdina, Pavel; Albert, Paul R

    2004-12-01

    Antidepressants, such as serotonin or noradrenaline reuptake inhibitors (e.g. fluoxetine, nefadozone) or 5-HT1A agonists (flibanserin), desensitize the 5-HT1A autoreceptor, which may contribute to their clinical efficacy. The 5-HT1A receptor gene is repressed by NUDR/DEAF-1 in raphe cells at the C-, but not at the G-allele of the C(-1019)G polymorphism that is associated with major depression and suicide. Depressed patients (n=118) were treated with antidepressants including fluoxetine or nefadozone combined with pindolol or flibanserin alone. The severity of depression was assesssed using the Hamilton Rating Scale for Depression. Although patients had similar severity initially, those with the homozygous G(-1019) genotype responded significantly less to flibanserin (p=0.039) and in pooled antidepressant treatment groups (p=0.0497) and were approximately twice as likely to be non-responders as those with the C(-1019)C genotype. These results implicate the C(-1019)G 5-HT1A gene polymorphism as a potential marker for antidepressant response, suggesting a role for repression of the 5-HT1A gene. PMID:15447813

  9. Melatonin inhibits tachykinin NK2 receptor-triggered 5-HT release from guinea pig isolated colonic mucosa

    PubMed Central

    Kojima, Shu-ichi; Tohei, Atsushi; Ikeda, Masashi

    2011-01-01

    BACKGROUND AND PURPOSE Melatonin is involved in the regulation of colonic motility, and sensation, but little is known about the influence of melatonin on 5-hydroxytryptamine (5-HT) release from colonic mucosa. A tachykinin NK2 receptor-selective agonist, [?-Ala8]-neurokinin A4-10[?Ala-NKA-(4-10)] can induce 5-HT release from guinea pig colonic mucosa via NK2 receptors on the mucosal layer. The present study was designed to determine the influence of melatonin on 5-HT release from guinea pig colonic mucosa, evoked by the NK2 receptor agonist, ?Ala-NKA-(4-10). EXPERIMENTAL APPROACH The effect of melatonin was investigated on the outflow of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) from muscle layer-free mucosal preparations of guinea pig colon, using high-performance liquid chromatography with electrochemical detection. KEY RESULTS Melatonin caused a sustained decline in the ?Ala-NKA-(4-10)-evoked 5-HT outflow from the muscle layer-free mucosal preparations, but failed to affect its metabolite 5-HIAA outflow. The specific MT3 receptor agonist, 5-methoxycarbonylamino-N-acetyltryptamine mimicked the inhibitory effect of melatonin on ?Ala-NKA-(4-10)-evoked 5-HT outflow. A MT3 receptor antagonist prazosin shifted the concentration-response curve of melatonin to the right in a concentration-dependent manner and depressed the maximum effect, but neither a combined MT1/MT2 receptor antagonist luzindole, nor a MT2 receptor antagonist N-pentanoyl-2-benzyltryptamine modified the concentration–response curve to melatonin. CONCLUSIONS AND IMPLICATIONS Melatonin inhibits NK2 receptor-triggered 5-HT release from guinea pig colonic mucosa by acting at a MT3 melatonin receptor located directly on the mucosal layer, without affecting 5-HT degradation processes. Possible contributions of MT1/MT2 melatonin receptors to the inhibitory effect of melatonin appear to be negligible. Melatonin may act as a modulator of excess 5-HT release from colonic mucosa. PMID:21091649

  10. Inhibition of excitatory non-adrenergic non-cholinergic bronchoconstriction in guinea-pig airways in vitro by activation of an atypical 5-HT receptor.

    PubMed Central

    Ward, J. K.; Fox, A. J.; Barnes, P. J.; Belvisi, M. G.

    1994-01-01

    1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7518294

  11. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine.

    PubMed

    Kloda, Anna; Adams, David J

    2005-02-01

    The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. In the absence of external Mg(2+) ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per approximately 20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. The inhibition of the open NMDA receptor by external Mg(2+) and 5-HT was not additive, suggesting competition between Mg(2+) and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg(2+). The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT=5-methyltryptamine>tryptamine>7-methyltryptamine>5-HT>tryptophan=melatonin. Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration. PMID:15655527

  12. GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus

    PubMed Central

    McAllister, C.E.; Creech, R.; Kimball, P.; Muma, N.; Li, Q.

    2012-01-01

    Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT1A) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT1A receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT1A receptor desensitization. We previously showed that estrogen receptor ? is not necessary for 5-HT1A receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT1A receptor as measured by hormonal responses to the selective 5-HT1A receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT1A receptor signaling components including 5-HT1A receptor, G?z, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT1A receptor protein but increased 5-HT1A mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT1A receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT1A receptor signaling pathway and desensitization of 5-HT1A receptor signaling. PMID:22265196

  13. Association of 5-HT3B Receptor Gene Polymorphisms with the Efficacy of Ondansetron for Postoperative Nausea and Vomiting

    PubMed Central

    Kim, Min-Soo; Lee, Jeong-Rim; Choi, Eun-Mi; Kim, Eun Ho

    2015-01-01

    Purpose Postoperative nausea and vomiting (PONV) is a common problem after general anesthesia. Although 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists have significantly reduced PONV, over 35% of patients treated with ondansetron can experience PONV. In this study, we investigated whether the Y129S and -100_-102AAG deletion polymorphisms of the 5-HT3B receptor gene affect the efficacy of ondansetron in preventing PONV. Materials and Methods Two hundred and forty-five adult patients who underwent laparoscopic cholecystectomy were enrolled. Ondansetron 0.1 mg/kg was intravenously administered 30 minutes before the end of surgery. Genomic DNA was prepared from blood samples using a nucleic acid isolation device. Both the Y129S variant and the -100_-102AAG deletion variant were screened for using a single base primer extension assay and a DNA direct sequencing method, respectively. The relationship between genetic polymorphisms and clinical outcomes of ondansetron treatment was investigated. Results Among the 5-HT3B AAG deletion genotypes, the incidence of PONV was higher in patients with the homomutant than with other genotypes during the first 2 hours after surgery (p=0.02). There were no significant differences in the incidence of PONV among genotypes at 2-24 hours after surgery. In the Y129S variants of the 5-HT3B receptor gene, there were no significant differences in the incidence of PONV among genotypes during the first 2 hours and at 2-24 hours after surgery. Conclusion The response to ondansetron for PONV was significantly influenced by the -100_-102AAG deletion polymorphisms of the 5-HT3B gene. Thus, the -100_-102AAG deletion variants may be a pharmacogenetic predictor for responsiveness to ondansetron for PONV. PMID:26256989

  14. Rotavirus Stimulates Release of Serotonin (5-HT) from Human Enterochromaffin Cells and Activates Brain Structures Involved in Nausea and Vomiting

    PubMed Central

    Engblom, David; Karlsson, Thommie; Rodriguez-Diaz, Jesus; Buesa, Javier; Taylor, John A.; Loitto, Vesa-Matti; Magnusson, Karl-Eric; Ahlman, Håkan; Lundgren, Ove; Svensson, Lennart

    2011-01-01

    Rotavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves connected to nucleus of the solitary tract (NTS) and area postrema in the brain stem, structures associated with nausea and vomiting. Our experiments revealed that RV can infect and replicate in human EC tumor cells ex vivo and in vitro and are localized to both EC cells and infected enterocytes in the close vicinity of EC cells in the jejunum of infected mice. Purified NSP4, but not purified virus particles, evoked release of 5-HT within 60 minutes and increased the intracellular Ca2+ concentration in a human midgut carcinoid EC cell line (GOT1) and ex vivo in human primary carcinoid EC cells concomitant with the release of 5-HT. Furthermore, NSP4 stimulated a modest production of inositol 1,4,5-triphosphate (IP3), but not of cAMP. RV infection in mice induced Fos expression in the NTS, as seen in animals which vomit after administration of chemotherapeutic drugs. The demonstration that RV can stimulate EC cells leads us to propose that RV disease includes participation of 5-HT, EC cells, the enteric nervous system and activation of vagal afferent nerves to brain structures associated with nausea and vomiting. This hypothesis is supported by treating vomiting in children with acute gastroenteritis with 5-HT3 receptor antagonists. PMID:21779163

  15. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link?

    PubMed Central

    2015-01-01

    5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses. PMID:25852551

  16. Piroxicam-mediated modulatory action of 5-hydroxytryptamine serves as a “brake” on neuronal excitability in ischemic stroke

    PubMed Central

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana

    2015-01-01

    Our previous studies indicated an increase in extracellular ?-aminobutyric acid (GABA) in rodent's ischemic brain after Piroxicam administration, leading to alleviation of glutamate mediated excitotoxicity through activation of type A GABA receptor (GABAA). This study was to investigate if GABAA activation by Piroxicam affects extracellular 5-hydroxytryptamine or not. High performance liquid chromatography revealed that there was a significant decrease in extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum in Piroxicam pre-treated rat brains. This suggests a probable role of Piroxicam in reducing extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum possibly due to the GABAA activation by Piroxicam. PMID:26604901

  17. Piroxicam-mediated modulatory action of 5-hydroxytryptamine serves as a "brake" on neuronal excitability in ischemic stroke.

    PubMed

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana

    2015-09-01

    Our previous studies indicated an increase in extracellular ?-aminobutyric acid (GABA) in rodent's ischemic brain after Piroxicam administration, leading to alleviation of glutamate mediated excitotoxicity through activation of type A GABA receptor (GABAA). This study was to investigate if GABAA activation by Piroxicam affects extracellular 5-hydroxytryptamine or not. High performance liquid chromatography revealed that there was a significant decrease in extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum in Piroxicam pre-treated rat brains. This suggests a probable role of Piroxicam in reducing extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum possibly due to the GABAA activation by Piroxicam. PMID:26604901

  18. Involvement of 5-HT? and 5-HT? receptors in the regulation of circadian clock gene expression in mouse small intestine.

    PubMed

    Aoki, Natsumi; Watanabe, Hiroyuki; Okada, Kazuya; Aoki, Kazuyuki; Imanishi, Takuma; Yoshida, Daisuke; Ishikawa, Ryosuke; Shibata, Shigenobu

    2014-01-01

    Several lines of evidence suggest that 5-HT receptors play a critical role in the expression of clock genes in the suprachiasmatic nucleus, the main circadian oscillator in hamsters. The contributions of 5-HT-receptor subtypes in the intestine, where they are expressed at high concentrations, are however not yet clarified. The 5-HT synthesis inhibitor, p-chlorophenylalanine, attenuated the daily rhythm of Per1 and Per2 gene expression in the intestine. Injection of 5-HT and agonists of the 5-HT3 and 5-HT4 receptors increased Per1/Per2 expression and decreased Bmal1 expression in a dose-dependent manner. Although treatment with antagonists of 5-HT3 and 5-HT4 alone did not affect clock gene expression, co-injection of these antagonists with 5-HT blocked the 5-HT-induced changes in clock gene expression. Increased tissue levels of 5-HT due to treatment with the antidepressants clomipramine and fluvoxamine did not affect clock gene expression. The present results suggest that the 5-HT system in the small intestine may play a critical role in regulating circadian rhythms through 5-HT3/5-HT4-receptor activation. PMID:24492464

  19. Effects of Monocrotaline Pretreatment of Rats on Removal of 5-Hydroxytryptamine and Noradrenaline by Perfused Lung

    PubMed Central

    Gillis, C.N.; Huxtable, Ryan J.; Roth, Robert A.

    1978-01-01

    1 The alkaloid, monocrotaline, causes significant pulmonary damage in many species, including the rat. We, therefore, determined whether the inactivation of biogenic amines by perfused lungs of rats was modified by prior treatment of the animals with monocrotaline. 2 Young rats (45 to 50 g) treated for 21 days with monocrotaline (22 ?g/ml) in their drinking water developed right ventricular hypertrophy. Treated animals gained weight more slowly and consumed less food and water than control rats that drank tap water. Lungs from monocrotaline-treated animals were heavier and had a higher protein content than control lungs. 3 Isolated lungs from treated animals removed and metabolized 50% less perfused 5-hydroxytryptamine than did controls. 4 The diminished 5-hydroxytryptamine metabolism was probably due to impaired delivery of substrate to intrapulmonary monoamine oxidase (MAO) since MAO activity in 600 g supernatant fractions of homogenates of lungs from monocrotaline-treated rats was not different from control values. 5 Pulmonary removal of perfused noradrenaline was decreased about 60% by the 21-day treatment, suggesting that the effects of monocrotaline were somewhat nonspecific. 6 These effects were not caused by monocrotaline directly, since perfusion of lungs from untreated animals with this drug did not alter removal of co-perfused 5-hydroxytryptamine. 7 Reduced pulmonary removal of circulating biogenic amines following pretreatment with monocrotaline may reflect damage to capillary endothelium, which could also affect other metabolic functions of lung. PMID:667487

  20. Endogenously released 5-HT inhibits A and C fiber-evoked synaptic transmission in the rat spinal cord by the facilitation of GABA/glycine and 5-HT release via 5-HT(2A) and 5-HT(3) receptors.

    PubMed

    Iwasaki, Takeyuki; Otsuguro, Ken-ichi; Kobayashi, Takeshi; Ohta, Toshio; Ito, Shigeo

    2013-02-28

    Serotonin (5-HT) released from descending fibers plays important roles in spinal functions such as locomotion and nociception. 5-HT2A and 5-HT3 receptors are suggested to contribute to spinal antinociception, although their activation also contributes to neuronal excitation. In the neonatal spinal cord, DL-p-chloroamphetamine (pCA), a 5-HT releaser, inhibited both A fiber-evoked monosynaptic reflex potential (MSR) and C fiber-evoked slow ventral root potential (sVRP). The pCA-mediated inhibition was reversed by ketanserin (a 5-HT2A receptor antagonist) and tropisetron (a 5-HT3 receptor antagonist). Bath-applied 5-HT also inhibited MSR and sVRP; in this case, the actions of 5-HT were antagonized by ketanserin, but not by tropisetron. The pCA-evoked inhibition of sVRP was reduced by bicuculline (a GABAA receptor antagonist) and strychnine (a glycine receptor antagonist). Furthermore, ketanserin inhibited the pCA-evoked release of gamma-aminobutyric acid (GABA) and glycine, while tropisetron inhibited the pCA-evoked release of 5-HT. These results suggest that 5-HT released by pCA activates 5-HT2A receptors, which in turn stimulates the release of GABA/glycine and thereby blocks the spinal nociceptive pathway. 5-HT3 receptors may be involved in the facilitation of 5-HT release via a positive feedback process. PMID:23399761

  1. Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice

    PubMed Central

    Wong, Dutt Way; Soga, Tomoko; Parhar, Ishwar S.

    2015-01-01

    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions. PMID:26442099

  2. Nelumbinis Semen reverses a decrease in 5-HT1A receptor binding induced by chronic mild stress, a depression-like symptom.

    PubMed

    Jang, Choon-Gon; Kang, Moonkyu; Cho, Jae-Han; Lee, Sun-Bok; Kim, Hyuntaek; Park, Soonkwon; Lee, Jinwoo; Park, Seong-Kyu; Hong, Moochang; Shin, Min Kyu; Shim, In-Sup; Bae, Hyunsu

    2004-10-01

    Depression is associated with a dysfunctional serotonin (5-hydroxytryptamine; 5-HT) system. More recently, several lines of evidence suggest that an important factor in the development of depression may be a deficit in the function and expression of 5-HT1A receptors. The present study assessed if Nelumbinis Semen (N.s.) had an anti-depression effect through reversing a decrease in 5-HT1A receptor binding in rats with depression-like symptoms induced by chronic mild stress. Using a 5-HT1A receptor binding assay, with a specific 5-HT1A receptor agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin), the mechanism of the anti-depression effect of N.s. on rats was investigated, and the effects compared with two well-known antidepressants, Hyperium Perforatum (St. Johns Wort) and fluoxetine (Prozac). Animals were divided into five groups: the normal (N) group without chronic mild stress (CMS), the control (C) group under CMS for 8 weeks, the Nelumbinis Semen (N.s.) treatment group under CMS for 8 weeks, the Hyperium Perforatum (H.p.) treatment group under CMS for 8 weeks and finally, the fluoxetine (F) treatment group under CMS for 8 weeks. Each treatment was administered to rats during the last 4 weeks of the 8-week CMS. A sucrose intake test was performed to test the anti-depression effect of N.s. The N.s. treatment significantly reversed the decreased sucrose intake under CMS (P < 0.05 compared to control group under CMS). In the CA2 and CA3 regions of the hippocampus, both N.s. and H.p. reversed the CMS-induced decrease in 5-HT1A receptor binding. In the I to II regions of the frontal cortex, N.s. and H.p. also reversed the CMS-induced decrease in 5-HT1A receptor binding, and even showed a significant increase in 5-HT1A receptor binding compared to the F treatment group (N.s. vs. P, p < 0.05, H.p. vs. P, p < 0.05). However, in the hypothalamus, all treatments reversed the CMS-induced decrease in 5-HT1A receptor binding. This reversal effect of N.s. on the decrease in 5-HT1A receptor binding in the frontal cortex, hippocampus and hypothalamus of rat brains was very similar to that of H.p, but different from that of F. It is concluded that N.s. presents an anti-depression effect through enhancing 5-HT1A receptor binding. PMID:15554266

  3. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis

    PubMed Central

    Araragi, Naozumi; Mlinar, Boris; Baccini, Gilda; Gutknecht, Lise; Lesch, Klaus-Peter; Corradetti, Renato

    2013-01-01

    Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling. PMID:23935583

  4. Synthesis and SAR of Imidazo[1,5-a]pyridine derivatives as 5-HT4 receptor partial agonists for the treatment of cognitive disorders associated with Alzheimer's disease.

    PubMed

    Nirogi, Ramakrishna; Mohammed, Abdul Rasheed; Shinde, Anil K; Bogaraju, Narsimha; Gagginapalli, Shankar Reddy; Ravella, Srinivasa Rao; Kota, Laxman; Bhyrapuneni, Gopinadh; Muddana, Nageswara Rao; Benade, Vijay; Palacharla, Raghava Chowdary; Jayarajan, Pradeep; Subramanian, Ramkumar; Goyal, Vinod Kumar

    2015-10-20

    Alzheimer's disease (AD) is a neurodegenerative disease which has a higher prevalence and incidence in older people. The need for improved AD therapies is unmet. The 5-hydroxytryptamine4 receptor (5-HT4R) partial agonists may be of benefit for both the symptomatic and disease-modifying treatment of cognitive disorders associated with AD. Herein, we report the design, synthesis and SAR of imidazo[1,5-a] pyridine derivatives as 5-HT4R partial agonists. The focused SAR, optimization of ADME properties resulted the discovery of compound 5a as potent, selective, brain penetrant 5-HT4 partial agonist as a lead compound with good ADME properties and efficacy in both symptomatic and disease modifying animal models of cognition. PMID:26363507

  5. Suppression of inflammatory events associated to intestinal ischemia-reperfusion by 5-HT1A blockade in mice.

    PubMed

    Bertoni, Simona; Arcaro, Valentina; Vivo, Valentina; Rapalli, Alberto; Tognolini, Massimiliano; Cantoni, Anna Maria; Saccani, Francesca; Flammini, Lisa; Domenichini, Giuseppe; Ballabeni, Vigilio; Barocelli, Elisabetta

    2014-03-01

    Intestinal ischemia and reperfusion (I/R) is a potentially life-threatening disease, ensuing from various clinical conditions. Experimentally, either protective or detrimental roles have been attributed to 5-HT in the functional and morphological injury caused by mesenteric I/R. Recently, we proved the involvement of 5-HT2A receptors in the intestinal dysmotility and leukocyte recruitment induced by 45min occlusion of the superior mesenteric artery (SMA) followed by 24h reperfusion in mice. Starting from these premises, the aim of our present work was to investigate the role played by endogenous 5-HT in the same experimental model where 45min SMA clamping was followed by 5h reflow. To this end, we first observed that ischemic preconditioning before I/R injury (IPC+I/R) reverted the increase in 5-HT tissue content and in inflammatory parameters induced by I/R in mice. Second, the effects produced by intravenous administration of 5-HT1A ligands (partial agonist buspirone 10mgkg(-1), antagonist WAY100135 0.5-5mgkg(-1)), 5-HT2A antagonist sarpogrelate (10mgkg(-1)), 5-HT3 antagonist alosetron (0.1mgkg(-1)), 5-HT4 antagonist GR125487 (5mgkg(-1)) and 5-HT re-uptake inhibitor fluoxetine (10mgkg(-1)) on I/R-induced inflammatory response were investigated in I/R mice and compared to those obtained in sham-operated animals (S). Our results confirmed the significant role played by 5-HT2A receptors not only in the late but also in the early I/R-induced microcirculatory dysfunction and showed that blockade of 5-HT1A receptors protected against the intestinal leukocyte recruitment, plasma extravasation and reactive oxygen species formation triggered by SMA occlusion and reflow. The ability of ?7 nicotinic receptor (?7nAchR) antagonist methyllycaconitine (5mgkg(-1)) to counteract the beneficial action provided by buspirone on I/R-induced neutrophil infiltration suggests that the anti-inflammatory effect produced by 5-HT1A receptor antagonism could be partly ascribed to the indirect activation of ?7nAch receptors. PMID:24548822

  6. Differential cross-tolerance development between single and repeated immobilization stress on the antinociceptive effect induced by ?-endorphin, 5-hydroxytryptamine, morphine, and WIN55,212-2 in the inflammatory mouse pain mode.

    PubMed

    Seo, Young-Jun; Kwon, Min-Soo; Choi, Seung-Min; Lee, Jin-Koo; Park, Soo-Hyun; Jung, Jun-Sub; Sim, Yun-Beom; Suh, Hong-Won

    2011-02-01

    We have evaluated the possible underlying mechanisms of immobilization stress-induced analgesia (SIA) by behavioral cross-tolerance studies and molecular studies. In the behavioral studies, the cross-tolerance between single or repeated immobilization SIA and the antinociceptive effects of ?-endorphin, morphine, 5-hydroxytryptamine (5-HT), or WIN55,212-2 were assessed. Both single and repeated (×7) immobilization stress significantly attenuated the ?-endorphin and 5-hydroxytryptamine-induced antinociception in the 2nd phase of formalin response, respectively. However, these cross-tolerances disappeared in prolonged repetition of the stress (×14). Neither single nor repeated (×7 and ×14) immobilization stress affected the antinociceptive effect of morphine or WIN55,212-2 at all. We also found that immobilization stress activated hypothalamic proopiomelanocortin (POMC) gene and ?-endorphin expression. Since, it has potent inhibitory activity on the noxious stimuli-induced POMC expression, immobilization stress seemed to dissipate the POMC gene expression process. Meanwhile, we did not find any changes in the opioid receptors' (mu-, delta- and kappa-receptor) and the cannabinoid receptors' (CB1 and CB2) expressions in the midbrain regions elicited by single or repeated stress. These results suggested that a single immobilization stress activates the descending pain modulatory system, which is mainly mediated through endorphinergic and serotonergic activation. Moreover, the tolerance of SIA induced by repeated stresses may be due to the prolonged activation of these systems induced by repeated immobilization. PMID:21380811

  7. The release of 5-hydroxytryptamine from the rat stomach in vitro

    PubMed Central

    Bennett, A.; Bucknell, Anne; Dean, A. C. B.

    1966-01-01

    1. 5-HT was released into the lumen of the intact isolated rat stomach and into the bath fluid surrounding a preparation of the body and antrum stretched mechanically. 2. Release of 5-HT increased when the pressure inside the intact stomach was raised or when the body/antrum preparation was stretched. 3. This increased release was not prevented by hexamethonium, atropine, hyoscine or procaine, and was probably due to distortion of cells containing 5-HT. 4. During periods of peristalsis induced by transmural stimulation the pharmacological activity of the fluid in the stomach was usually increased owing to a greater release of 5-HT and also to the release of an unidentified substance. 5. In reserpine-treated rats, 5-HT was released into the stomach but transmural stimulation did not produce true peristalsis and only rhythmic contractions occurred. 6. Peristalsis was seldom reduced by methysergide, and it is concluded that 5-HT is not essential for gastric peristalsis in the rat. PMID:5937416

  8. Characterization of the functional heterologous desensitization of hypothalamic 5-HT1A receptors after 5-HT2A receptor activation

    E-print Network

    Zhang, Yahong; D'Souza, Deborah N.; Raap, Dan?? K.; Garcia, Francisca; Battaglia, George; Muma, Nancy A.; Van de Kar, Louis D.

    2001-10-15

    Desensitization of 5-HT1A receptors could be involved in the long-term therapeutic effect of anxiolytic and antidepressant drugs. Pretreatment of rats with the 5-HT2A/2C agonist DOI induces an attenuation of hypothalamic 5-HT1Areceptor–Gz...

  9. Motoneuron excitability and muscle spasms are regulated by 5-HT2B and 5-HT2C receptor activity.

    PubMed

    Murray, Katherine C; Stephens, Marilee J; Ballou, Edmund W; Heckman, Charles J; Bennett, David J

    2011-02-01

    Immediately after spinal cord injury (SCI), a devastating paralysis results from the loss of brain stem and cortical innervation of spinal neurons that control movement, including a loss of serotonergic (5-HT) innervation of motoneurons. Over time, motoneurons recover from denervation and function autonomously, exhibiting large persistent calcium currents (Ca PICs) that both help with functional recovery and contribute to uncontrolled muscle spasms. Here we systematically evaluated which 5-HT receptor subtypes influence PICs and spasms after injury. Spasms were quantified by recording the long-lasting reflexes (LLRs) on ventral roots in response to dorsal root stimulation, in the chronic spinal rat, in vitro. Ca PICs were quantified by intracellular recording in synaptically isolated motoneurons. Application of agonists selective to 5-HT(2B) and 5-HT(2C) receptors (including BW723C86) significantly increased the LLRs and associated Ca PICs, whereas application of agonists to 5-HT(1), 5-HT(2A), 5-HT(3), or 5-HT(4/5/6/7) receptors (e.g., 8-OH-DPAT) did not. The 5-HT(2) receptor agonist-induced increases in LLRs were dose dependent, with doses for 50% effects (EC(50)) highly correlated with published doses for agonist receptor binding (K(i)) at 5-HT(2B) and 5-HT(2C) receptors. Application of selective antagonists to 5-HT(2B) (e.g., RS127445) and 5-HT(2C) (SB242084) receptors inhibited the agonist-induced increase in LLR. However, antagonists that are known to specifically be neutral antagonists at 5-HT(2B/C) receptors (e.g., RS127445) had no effect when given by themselves, indicating that these receptors were not activated by residual 5-HT in the spinal cord. In contrast, inverse agonists (such as SB206553) that block constitutive activity at 5-HT(2B) or 5-HT(2C) receptors markedly reduced the LLRs, indicating the presence of constitutive activity in these receptors. 5-HT(2B) or 5-HT(2C) receptors were confirmed to be on motoneurons by immunolabeling. In summary, 5-HT(2B) and 5-HT(2C) receptors on motoneurons become constitutively active after injury and ultimately contribute to recovery of motoneuron function and emergence of spasms. PMID:20980537

  10. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression.

    PubMed

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  11. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression

    PubMed Central

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  12. Role of 5-HT3 Receptors in the Antidepressant Response

    PubMed Central

    Bétry, Cécile; Etiévant, Adeline; Oosterhof, Chris; Ebert, Bjarke; Sanchez, Connie; Haddjeri, Nasser

    2011-01-01

    Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.

  13. Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders.

    PubMed

    Dawson, Lee A; Watson, Jeannette M

    2009-01-01

    Vilazodone (EMD 68843; 5-{4-[4-(5-cyano-3-indolyl)-butyl]-1-piperazinyl}-benzofuran-2-carboxamide hydrochloride) is a combined serotonin specific reuptake inhibitor (SSRI) and 5-HT1A receptor partial agonist currently under clinical evaluation for the treatment of major depression. This molecule was designed based on the premise that negative feedback circuitry, mediated via 5-HT1 receptors, limits the acute SSRI-induced enhancements in serotonergic neurotransmission. If the hypothesis is correct, combination of SSRI with 5-HT1A partial agonism should temporally enhance the neuroplastic adaptation and subsequently hasten therapeutic efficacy compared to current treatments. Preclinical in vitro evaluation has confirmed vilazodone's primary pharmacological profile both in clonal and native systems, that is, serotonin reuptake blockade and 5-HT1A partial agonism. However, in vivo and in contrast to combination of 8-OH-DPAT and paroxetine, vilazodone selectively enhanced serotonergic output in the prefrontal cortex of rats. Behavioral evaluations, in the ultrasonic vocalization model of anxiety in rats, demonstrated anxiolytic efficacy. In the forced swim test (a putative model of depression), vilazodone also showed efficacy but at a single dose only. In man, vilazodone abolished REM sleep and demonstrated clinical antidepressant efficacy equivalent to an SSRI. Ongoing clinical evaluations will hopefully reveal whether the founding hypothesis was valid and if vilazodone will produce a more rapid onset of antidepressant efficacy. PMID:19499624

  14. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response.

    PubMed

    Samuels, Benjamin Adam; Anacker, Christoph; Hu, Alice; Levinstein, Marjorie R; Pickenhagen, Anouchka; Tsetsenis, Theodore; Madroñal, Noelia; Donaldson, Zoe R; Drew, Liam John; Dranovsky, Alex; Gross, Cornelius T; Tanaka, Kenji F; Hen, René

    2015-11-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is not known whether mature dentate gyrus granule cells (DG GCs) also contribute. We deleted the serotonin 1A receptor (5HT1AR, a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the hypothalamic-pituitary-adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult-born GCs (abGCs) showed normal fluoxetine responses. Notably, 5HT1AR-deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response. PMID:26389840

  15. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    PubMed

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-01

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. PMID:24012617

  16. Ex vivo binding of flibanserin to serotonin 5-HT1A and 5-HT2A receptors.

    PubMed

    Scandroglio, A; Monferini, E; Borsini, F

    2001-02-01

    Flibanserin has been reported to be an agonist at 5-HT1A-receptors and an antagonist at 5-HT2A receptors, with higher affinity for 5-HT1A receptors. Despite the fact that less receptor occupation is required by full agonists than by antagonists to exert their effects, flibanserin was shown to exert 5-HT2A antagonism at doses (4-5 mg kg-1) that are lower or equal to those required to stimulate 5-HT1A receptors. In order to understand this phenomenon, the interaction of flibanserin with 5-HT1A and 5-HT2A receptors was evaluated in ex vivo binding studies. This interaction was evaluated in the prefrontal cortex, hippocampus and midbrain by using [3H]8-OH-DPAT and [3H]ketanserin to label 5-HT1A and 5-HT2A receptors, respectively. Flibanserin was given at 1, 10 and 30 mg kg-1 intraperitoneally. The dose of 1 mg kg-1 displaced both radioligands preferentially in the frontal cortex. The doses of 10 and 30 mg kg-1 reduced the binding of both radioligands in all the three brain regions non-selectively by about 50% and 70%, respectively. The displacement was maximal after 0.5 h and was reduced or not evident after 3 h. We conclude that 5-HT2 antagonism brought about by low doses of flibanserin may reflect functional mechanisms more than receptor-mediated effects. PMID:11243720

  17. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders. PMID:25770211

  18. Fluoxetine and all other SSRIs are 5-HT2B Agonists - Importance for their Therapeutic Effects

    PubMed Central

    Peng, Liang; Gu, Li; Li, Baoman; Hertz, Leif

    2014-01-01

    Fluoxetine and other serotonin-specific re-uptake inhibitors (SSRIs) are generally thought to owe their therapeutic potency to inhibition of the serotonin transporter (SERT). However, research in our laboratory showed that it affects, with relatively high affinity the 5-HT2B receptor in cultured astrocytes; this finding was confirmed by independent observations showing that fluoxetine loses its ability to elicit SSRI-like responses in behavioral assays in mice in which the 5-HT2B receptor was knocked-out genetically or inhibited pharmacologically. All clinically used SSRIs are approximately equipotent towards 5-HT2B receptors and exert their effect on cultured astrocytes at concentrations similar to those used clinically, a substantial difference from their effect on SERT. We have demonstrated up-regulation and editing of astrocytic genes for ADAR2, the kainate receptor GluK2, cPLA2 and the 5-HT2B receptor itself after chronic treatment of cultures, which do not express SERT and after treatment of mice (expressing SERT) for 2 weeks with fluoxetine, followed by isolation of astrocytic and neuronal cell fractionation. Affected genes were identical in both experimental paradigms. Fluoxetine treatment also altered Ca2+ homeostatic cascades, in a specific way that differs from that seen after treatment with the anti-bipolar drugs carbamazepine, lithium, or valproic acid. All changes occurred after a lag period similar to what is seen for fluoxetine’s clinical effects, and some of the genes were altered in the opposite direction by mild chronic inescapable stress, known to cause anhedonia, a component of major depression. In the anhedonic mice these changes were reversed by treatment with SSRIs. PMID:25342944

  19. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation.

    PubMed

    Janssen, Paddy Kc; Schaik, Ron van; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10-20, 20-30 and 30-60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3-27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3-80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes. PMID:24799636

  20. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation

    PubMed Central

    Janssen, Paddy KC; van Schaik, Ron; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10–20, 20–30 and 30–60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3–27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3–80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes. PMID:24799636

  1. Effects of amantadine and budipine on antidepressant drug-evoked changes in extracellular 5-HT in the frontal cortex of freely moving rats

    PubMed Central

    Owen, Jenny C E; Whitton, Peter S

    2005-01-01

    Evidence has recently suggested that NMDA receptors may play a role in the aetiology and possible treatment of depression and that weak noncompetitive NMDA receptor antagonists such as amantadine can synergize with conventional antidepressants in a model of the illness. To try to obtain a neurochemical rationale for these findings, we have studied the effects of acute and chronic administration of amantadine or the related drug budipine on cortical release of 5-hydroxytryptamine (5-HT) following the antidepressants reboxitine (REB), paroxetine (PAROX) and clomipramine (CLOM) in freely moving rats by using microdialysis. Acute administration of amantadine (40?mg?kg?1), budipine (10?mg?kg?1), REB (10?mg?kg?1), PAROX (10?mg?kg?1) or CLOM (10?mg?kg?1) all failed to significantly alter extracellular 5-HT in the cortex. However, when either amantadine or budipine was administered 30?min prior to any of the three antidepressants, a significant rise in 5-HT was observed. For chronic studies, the effects of the drugs were studied at 4, 7, 14 and 21 days. Amantadine and budipine did not significantly alter extracellular 5-HT at any time point. The three antidepressant drugs all elicited a gradual increase in 5-HT, which became significant after 14 days and tended to plateau thereafter. When either amantadine (20?mg?kg?1) or budipine (5?mg?kg?1) was coadministered with any of the three antidepressants, two differences were seen compared with the effects of the antidepressants alone. Firstly, the time required for significant increases in cortical 5-HT was reduced with elevated levels now being observed by 7 days. Secondly, the absolute magnitude of the increase in extracellular 5-HT was markedly greater in these rats from day 7 until the end of the experiment. If, as is widely considered, an increase in extracellular 5-HT represents a critical step in the mechanism of action of antidepressants, these data suggest that combined treatment with clinically tolerated NMDA antagonists such as amantadine could reduce the delay in therapeutic onset of antidepressants as well as possibly enhance their efficacy. PMID:15834446

  2. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats

    PubMed Central

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Mankind is exposed to a number of stressors, and among them noise is one which can cause intense stress. High levels of background noise can severely impair one’s ability to concentrate. The present study was aimed to investigate the effect of sub-chronic noise stress on cognitive behavior and hippocampal monoamine levels in male rats. The study was performed on 12 male Wistar rats, divided into two groups; the control and noise-exposed. The rats in the test group were subjected to noise stress, 4h daily for 15 days. Cognitive testing was performed by the Elevated Plus Maze test (EPM) and Novel Object Recognition test (NOR). HPLC-EC was used to determine hippocampal monoamine levels and their metabolites. The data obtained revealed a significant decrease in hippocampal serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) levels, whereas turnover ratios of 5-HT and DA were significantly increased compared to the controls. Rats exposed to noise exhibited a significant decrement in spatial memory. A significantly decreased recognition index of rats exposed to noise as compared to the control was also observed in the NOR test. Results of the present findings suggest the role of decreased hippocampal 5-HT and DA in the impairment of cognitive function following noise exposure. PMID:23264946

  3. Mediation of the antidepressant-like effect of 8-OH-DPAT in mice by postsynaptic 5-HT1A receptors.

    PubMed Central

    Luscombe, G. P.; Martin, K. F.; Hutchins, L. J.; Gosden, J.; Heal, D. J.

    1993-01-01

    1. The 5-hydroxytryptamine (5-HT)1A agonist 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) has been evaluated in a mouse model for detecting potential antidepressants (Porsolt test). The effects of various receptor antagonists, lesions of brain monoaminergic neurones and chronic drug treatments on this 8-OH-DPAT-induced response have also been determined. 2. 8-OH-DPAT (0.3-10.0 mg kg-1, s.c.) dose-dependently increased the mobility of mice in the Porsolt test. Other selective 5-HT1A receptor ligands (0.3-30 mg kg-1, s.c.) either mimicked the 8-OH-DPAT response (ipsapirone, at 10 and 30 mg kg-1, s.c.) or were inactive (buspirone and gepirone). However, each of these compounds (< or = 100 mg kg-1, p.o.) inhibited the response to 8-OH-DPAT (3 mg kg-1, s.c.) when given concurrently. 3. The putative 5-HT1A antagonists, spiroxatrine (1-30 mg kg-1, p.o.), (+/-)-pindolol (30 mg kg-1, p.o.) and methiothepin (3-10 mg kg-1, p.o.), each attenuated the 8-OH-DPAT (3 mg kg-1, s.c.)-induced increase in mobility. 4. The dopamine D1 receptor antagonist, SCH 23390 (3-10 mg kg-1, p.o.), weakly reversed the 8-OH-DPAT response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8467355

  4. A Meta-Analysis of the Effects of the 5-Hydroxytryptamine Transporter Gene-Linked Promoter Region Polymorphism on Susceptibility to Lifelong Premature Ejaculation

    PubMed Central

    Wu, Sheng; Shao, Hongbao; Dai, Feng; Peng, Tao; Qin, Feng; Feng, Ninghan

    2013-01-01

    Objective Premature ejaculation (PE) has been reported as the most common male sexual dysfunction with global prevalence rates estimated at approximately 30%. The neurobiogenesis of ejaculation is very complex and involves the serotoninergic (5-hydroxytryptamine, 5-HT) system. Recently, genetic polymorphisms located on SLC6A4 gene codifying for 5-HT transporter (5-HTT), the major regulator of serotonic neurotransmission, have been linked with the pathogenesis and risk of PE. Apparently studies of this type of polymorphism in PE have show conflicting results. Methods A meta-analysis was performed that are available in relation with 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism and the risk of lifelong PE (LPE) in men to clarify this relationship. We searched Pubmed and Embase (last search updated on Aug 2012) using ‘premature ejaculation’, ‘polymorphism or variant’, ‘genotype’, ‘ejaculatory function’, and ‘rapid ejaculation’ as keywords and reference lists of studies corresponded to the inclusion criteria for meta-analysis. These studies involved the total number of 481 LPE men and 466 health control men subjects. Odds ratio (OR) and 95% confidence intervals (CIs) were used to evaluate this relationship. Results In the overall analysis, significant associations between LPE risk and 5-HTTLPR polymorphism were found (L-allele vs. S-allele OR?=?0.86, 95% CI?=?0.79–0.95, P?=?0.002; LL vs. SS: OR?=?0.80, 95% CI?=?0.68–0.95, P?=?0.009; LS vs. SS: OR?=?0.85, 95% CI?=?0.76–0.97, P?=?0.012 and LL+LS vs. SS: OR?=?0.88, 95% CI?=?0.81–0.95, P?=?0.002). Moreover, in subgroup analysis based on ethnicity, similar significant associations were detected. The Egger’s test did not reveal presence of a publication bias. Conclusions Our investigations demonstrate that 5-HTTLPR (L>S) polymorphism might protect men against LPE risk. Further studies based on larger sample size and gene-environment interactions should be conducted the role of 5-HTTLPR polymorphism and LPE risk. PMID:23383022

  5. Effects of venlafaxine on extracellular 5-HT, dopamine and noradrenaline in the hippocampus and on peripheral hormone concentrations in the rat in vivo.

    PubMed

    Piacentini, M F; Clinckers, R; Meeusen, R; Sarre, S; Ebinger, G; Michotte, Y

    2003-09-26

    The purpose of the present study was to study the effect of an acute dose of the serotonin (5-HT) - noradrenaline (NA) reuptake inhibitor venlafaxine on extracellular concentrations of 5-HT, NA and dopamine (DA) in the hippocampus and on the peripheral hormone concentrations in freely moving rats. Blood obtained from a catheter placed in the vena femoralis was analyzed for adrenocorticotropin (ACTH), beta-endorphins, prolactin (PRL), growth hormone (GH) and cortisol. Collections are referred to pre and post injection of 20 mg/kg of venlafaxine. Extracellular hippocampal NA and 5-HT as determined with in vivo microdialysis increased significantly after drug injection. PRL and ACTH were significantly affected by the drug. At the selected dose venlafaxine is able to increase the release of 5-HT but also of NA in rat hippocampus. Due to the dual reuptake properties of the drug and the functional interconnection of the NA and the 5-HT systems, the observed effects on peripheral hormones are possibly mediated by a combined action of these 2 systems. PMID:12954452

  6. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan)

    PubMed Central

    Martin, G R; Robertson, A D; MacLennan, S J; Prentice, D J; Barrett, V J; Buckingham, J; Honey, A C; Giles, H; Moncada, S

    1997-01-01

    311C90 (zolmitriptan zomig: (S)-4[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-2-oxazolidinone) is a novel 5-HT1B/1D receptor agonist with proven efficacy in the acute treatment of migraine. Here, we describe the receptor specificity of the drug and its actions on trigeminal-evoked plasma protein extravasation into the dura mater of the anaesthetized guinea-pig. At the ‘5-HT1B-like' receptor mediating vascular contraction (rabbit saphenous vein), the compound was a potent (p[A50]=6.79±0.06) partial agonist achieving 77±4% of the maximum effect to 5-hydroxytryptamine (5-HT). In the same experiments, sumatriptan (p[A50]=6.48±0.04) was half as potent as 311C90 and produced 97±2% of the 5-HT maximum effect. Studies in which receptor inactivation methods were used to estimate the affinity (pKA) and efficacy relative to 5-HT (?rel.) for each agonist confirmed that 311C90 exhibits higher affinity than sumatriptan (pKA=6.63±0.04 and 6.16±0.03, respectively) and that both drugs are partial agonists relative to 5-HT (?rel=0.61±0.03 and 0.63±0.10, respectively, compared to 5-HT=1.0). Consistent with its effects in rabbit saphenous vein, 311C90 also produced concentration-dependent contractions of primate basilar artery and human epicardial coronary artery rings. In basilar artery, agonist potency (p[A50]=6.92±0.07) was similar to that demonstrated in rabbit saphenous vein, again being 2–3 fold higher than for sumatriptan (p[A50]=6.46±0.03). Both agonists produced about 50% of the maximum response obtained with 5-HT in the same preparations. In rings of human coronary artery, the absolute potency of 311C90 and sumatriptan was higher than in primate basilar artery (p[A50]=7.3±0.1 and 6.7±0.1, respectively), but maximum effects relative to 5-HT were lower (37±8% and 35±7%, respectively). In both types of vessel, the inability of 5-HT1B/1D agonists to achieve the same maximum as the endogenous agonist 5-HT is explained by the additional presence of 5-HT2A receptors. 311C90 displayed high affinity at human recombinant 5-HT1D (formerly 5-HT1D?) and 5-HT1B (formerly 5-HT1D?) receptors in transfected CHO-K1 cell membranes (pIC50 values=9.16±0.12 and 8.32±0.09, respectively). In intact cells, the drug produced concentration-dependent inhibition of forskolin-stimulated adenylyl cyclase (p[A50]=9.9 and 9.5, respectively) achieving the same maximum effect as 5-HT. Excepting human recombinant 5-HT1A and 5-ht1F receptors at which the drug behaved as an agonist with modest affinity (pIC50=6.45±0.11 and 7.22±0.12, respectively), 311C90 exhibited low, or no detectable affinity (pKi or pKB ? 5.5) at numerous other monoamine receptors, including other 5-HT receptor subtypes. When administered to anaesthetized guinea-pigs ten minutes before unilateral electrical stimulation of the trigeminal ganglion (1.2?mA, 5?Hz, 5?ms, 5?min), 311C90 (3–30??g?kg?1, i.v.) caused a dose-dependent inhibition of [125I]-albumin extravasation within the ipsilateral dura mater. At the same doses, the drug also produced dose-dependent falls in cranial vascular conductance (32.3±7.5% at 30??g?kg?1), as measured in the ear by laser doppler flowmetry. These results show that 311C90, a novel member of the 5-HT1B/1D agonist drug class, exhibits a high degree of pharmacological specificity. Its potent partial agonist action at ‘5-HT1B-like' receptors in intracranial arteries, coupled with potent agonism at 5-HT1D and 5-HT1B receptors and an ability to inhibit neurogenic plasma protein extravasation in the dura, are consistent with its utility as an effective acute treatment for migraine. PMID:9154322

  7. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-01

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least in part, an interaction with 5-HT(1A/1B) and 5-HT(2C) receptors. PMID:17942093

  8. (1R, 3S)-(?)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through G?q to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(?)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (?)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (?)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (?)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (?)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (?)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (?)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  9. BIMT 17, a 5-HT1A receptor agonist/5-HT2A receptor antagonist, directly activates postsynaptic 5-HT inhibitory responses in the rat cerebral cortex.

    PubMed

    Borsini, F; Ceci, A; Bietti, G; Donetti, A

    1995-09-01

    BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1-10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1-1000 micrograms/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4-[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1-10 micrograms/kg and 0.1-3 micrograms/kg i.v. respectively, and reduced it at high doses, 30-300 micrograms/kg and 10-30 micrograms/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 micrograms/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OH-DPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8584043

  10. Effect of ethanol on thrombin-induced platelet phospholipid breakdown and release of (TH)-5-hydroxytryptamine

    SciTech Connect

    Fenn, G.C.; Caberos, L.P.; Littleton, J.M.

    1985-01-01

    Ethanol has been reported previously to inhibit chemically-induced platelet aggregation and the release of platelet contents. In platelet suspensions the mechanical stimulus of stirring can induce slow aggregation and the loss of endogenous arachidonic acid from phospholipids by activation of platelet phospholipases. These changes are prevented by the presence of ethanol 20-100 mM, whereas, in unstirred suspensions, ethanol alone has no effect on platelet phospholipids. Under similar conditions of reduced platelet: platelet contact, chemical stimuli, such as thrombi, although unable to produce visible aggregation, still cause the release of (TH)-5-hydroxytryptamine from platelets and also initiate the breakdown of platelet phospholipids. Ethanol does not now inhibit the thrombin-induced release of platelet contents and has little effect on phosphatidylinositol breakdown, though it inhibits phosphatidylcholine breakdown. Ethanol may therefore inhibit platelet aggregation by reducing the effect of mechanical and chemical stimuli on the activation of phospholipase A2. In contrast ethanol has rather little effect on the receptor-mediated breakdown of phosphatidylinositol which is apparently sufficient to trigger the release of platelet contents.

  11. Role of 5-ht2c receptor density on behaviour in mice 

    E-print Network

    Stevenson, Paula Louise

    2011-07-05

    The neurotransmitters serotonin (5-HT) and dopamine (DA) play roles in eating disorders, mood disorders, such as depression and anxiety, and in the regulation of locomotion. The 5-HT2C receptor is one of fourteen 5-HT receptor subtypes...

  12. Differential regulation of rat peripheral 5-HT(2A) and 5-HT(2B) receptor systems: influence of drug treatment.

    PubMed

    Enguix, M J; Sánchez, L; Villazón, M; Brea, J; Tristán, H; Caruncho, H J; Cadavid, M I; Loza, M I

    2003-08-01

    Most studies of 5-HT(2) receptor regulation have been carried out on the central nervous system (CNS) (which expresses 5-HT(2A) and 5-HT(2C) receptors); very few in vitro studies have addressed the peripheral receptors 5-HT(2A) and 5-HT(2B). The aim of this investigation was to compare the possible short- and long-term processes regulating these peripheral receptors in the rat. The in vitro contractile response elicited by serotonin (5-HT, 10 micro M) in the rat gastric fundus (5-HT(2B) receptor system) was rapid and followed by a partial fade to a steady state, in contrast with the rat thoracic aorta response (5-HT(2A) receptor system), which was more stable, slower and sustained. To characterize drug-receptor interactions, cumulative concentration/response curves (CCRCs) for 5-HT were constructed ex vivo for rat tissues treated with drugs acting at these receptors. Rats were examined 4 or 24 h after a single, i.p. administration of (+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(+/-)DOI, 1 or 2.5 mg/kg], clozapine, cyproheptadine or rauwolscine (10 mg/kg), 48 h after a single i.p. administration of (+/-)DOI (2.5 mg/kg), clozapine or cyproheptadine (10 mg/kg) or 24 h after the last of with 15 daily i.p. administrations of (+/-)DOI (1 or 2.5 mg/kg), clozapine, cyproheptadine or rauwolscine (10 mg/kg). In the aorta, E(max) (the maximum response elicited by 5-HT) was unchanged 4 h after a single dose of any of the drugs tested. However, 24 h after a single dose, E(max) was lower in animals treated with (+/-)DOI (2.5 mg/kg), clozapine or cyproheptadine than in controls, whilst 48 h after a single dose of (+/-)DOI (2.5 mg/kg), clozapine or cyproheptadine there was no difference in E(max) between experimental and control animals. After chronic treatment with (+/-)DOI (2.5 mg/kg), clozapine and cyproheptadine, E(max) was lower than in controls. In the gastric fundus, E(max) 4 h after a single dose of each drug was lower than in controls, and the response recovered by 24 or 48 h. Following chronic treatment, E(max) was significantly lower than in controls for each drug used. These findings suggest first, that regulation of peripheral 5-HT(2) receptors (5-HT(2A) and 5-HT(2B)) is a functionally significant phenomenon in vivo, and occurs after administration of both agonists and antagonists. Second, the kinetics of peripheral 5-HT(2) receptor regulation were similar in both in vivo and ex vivo experiments. The 5-HT(2B) receptors in rat gastric fundus are more sensitive to drug-induced regulation than the 5-HT(2A) rat aortic receptors. Finally, long-term regulation of both receptors stabilizes short-term desensitization for longer. PMID:12861437

  13. Risks and benefits of selective serotonin reuptake inhibitors in the treatment of depression.

    PubMed

    Mourilhe, P; Stokes, P E

    1998-01-01

    Depression is a common, life-disrupting, potentially lethal illness that can affect both sexes and all ages. Its peak onset is in the early adult years. It is more common than hypertension in primary care practice. Recent studies show that fewer than 1 in 20 depressed patients are correctly diagnosed and adequately treated. Depression periodically destroys the productivity of those with the condition, and depressed patients have a worse quality of life than patients with debilitating, chronic conditions such as arthritis, hypertension, diabetes mellitus and back pain. Suicide occurs in as many as 15% of patients with depression, especially those with recurrent episodes and hospitalisations, and may even occur in those with in subsyndromal depression. Suicide is one of the leading causes of death, and individuals who complete suicide have usually experienced mood disorders, mainly depression. Current data support a decreased frequency of suicidal ideation with all antidepressants, including selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs). Modern pharmacotherapy is the cornerstone for effective treatment of depression. As they are well tolerated, even in the presence of comorbid medical illness, and easier to manage, SSRIs enhance compliance. A fully adequate antidepressant dosage is suitable for patients of all ages and can be used by non-psychiatrist physicians for the treatment of the acute episode, as well as the frequent recurrences that often require long term maintenance antidepressant medication. SSRIs have fewer drug interactions than older antidepressants, and even the SSRI inhibition of hepatic cytochrome P450 enzymes has proven only very infrequently to be of clinical importance. SSRIs also effectively treat anxious depression, dysthymia and atypical depression. Fluoxetine may provide more rapid onset of therapeutic effect because it can be started at closer to its usual full therapeutic dosage than other SSRIs or older antidepressants. SSRIs, in particular fluoxetine, are more suitable for use as long-term maintenance therapy in these chronic relapsing diseases. These factors and the high efficacy rate, increased safety in overdose, reduced incidence of adverse effects (mostly decreasing with time) and superiority in ease of maintaining patients in adequate treatment plans provides fluoxetine with an overall superior therapeutic profile. PMID:9466088

  14. Characterizing new fluorescent tools for studying 5-HT? receptor pharmacology.

    PubMed

    Jack, Thomas; Simonin, Jonathan; Ruepp, Marc-David; Thompson, Andrew J; Gertsch, Jürg; Lochner, Martin

    2015-03-01

    The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues. PMID:25460187

  15. Differential responses to acute administration of a new 5-HT7-R agonist as a function of adolescent pre-treatment: phMRI and immuno-histochemical study

    PubMed Central

    Altabella, Luisa; Sbriccoli, Marco; Zoratto, Francesca; Poleggi, Anna; Vinci, Ramona; Lacivita, Enza; Leopoldo, Marcello; Laviola, Giovanni; Cardone, Franco; Canese, Rossella; Adriani, Walter

    2014-01-01

    LP-211 is a new, selective agonist of serotonin (5-hydroxytryptamine, 5-HT) receptor 7 (5-HT7-R), which is part of a neuro-transmission system with a proposed role in neural plasticity and in mood, cognitive and sleep regulation. Adolescent subchronic LP-211 treatment produces some persisting changes in rats' forebrain structural and functional parameters. Here, using pharmacological MRI (phMRI), we investigated the effect of acute administration with LP-211 (10 mg/kg i.p.), or vehicle, to adult rats previously exposed to the same drug (0.25 mg/kg/day for 5 days), or vehicle, during adolescence (44–48 post-natal days); histology and immuno-histochemistry were performed ex vivo to evaluate neuro-anatomical and physiological long-term adaptation to pharmacological pre-treatment. The phMRI signal reveals forebrain areas (i.e., hippocampus, orbital prefrontal cortex), activated in response to LP-211 challenge independently of adolescent pre-treatment. In septum and nucleus accumbens, sensitized activation was found in adolescent pre-treated rats but not in vehicle-exposed controls. Immuno-histochemical analyses showed marked differences in septum as long-term consequence of the adolescent pre-treatment: increased level of 5-HT7-R, increased number of 5-HT7-R positive cells, and enhanced astrocyte activation. For nucleus accumbens, immuno-histochemical analyses did not reveal any difference between adolescent pre-treated rats and vehicle-exposed controls. In conclusion, subchronic LP-211 administration during adolescence is able to induce persistent physiological changes in the septal 5-HT7-R expression and astrocyte response that can still be observed in adulthood. Data shed new insights into roles of 5-HT7-R for normal and pathologic behavioral regulations. PMID:25565998

  16. Endogenous opioid peptide modulation of LH secretion in the ewe lamb: possible involvement of 5-hydroxytryptamine.

    PubMed

    Stansfield, S C; Knight, P G; Howles, C M; Cunningham, F J

    1988-03-01

    Evidence from several species suggest that the endogenous opioid peptides participate in the regulation of gonadotrophin and prolactin secretion. The aim of the present study involving intact and ovariectomized prepubertal ewe lambs was to compare the effects in vivo of an opioid peptide agonist [D-Ala2,N-Phe4,Met(0)ol5]-enkephalin (FK 33-824) and antagonist, naloxone, on concentrations of LH and prolactin in plasma, and levels of neurotransmitter metabolites in cerebrospinal fluid (CSF), with their effects in vitro on the release of gonadotrophin-releasing hormone (GnRH) and neurotransmitters from isolated median eminences. Infusion of FK 33-824 (0.5 mg/30 min) in vivo depressed plasma LH levels in both intact and ovariectomized lambs; this effect could be reversed by naloxone. In ovariectomized lambs, the inhibitory action of FK 33-824 on plasma LH levels was associated with a 13% rise in the concentration of the metabolite of 5-hydroxytryptamine, 5-hydroxyindolacetic acid (5-HIAA). Concurrent administration of naloxone resulted in an abrupt 33% fall in CSF levels of 5-HIAA. No significant changes in plasma concentrations of prolactin or CSF concentrations of the metabolites of dopamine were observed in response to the administration of FK 33-824 or FK 33-824 plus naloxone. That FK 33-824 inhibited LH release through a central mechanism was confirmed using superfused median eminences in vitro. Thus FK 33-824 (1 mumol/l) greatly diminished the release of GnRH induced by the introduction of a depolarizing stimulus (36 mmol K+/l) in tissue obtained from both intact and ovariectomized ewe lambs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3351429

  17. Repeated exposure of rats to JP-4 vapor induces changes in neurobehavioral capacity and 5-HT/5-HIAA levels.

    PubMed

    Nordholm, A F; Rossi, J; Ritchie, G D; McInturf, S; Hulme, M E; McCool, C; Narayanan, L; MacMahon, K L; Eggers, J; Leahy, H F; Wolfe, R E

    1999-04-01

    Thirty-two Sprague-Dawley rats were exposed for 6 h/d for 14 consecutive days to JP-4 jet fuel vapor (2 mg/L) or room air control conditions. Following a 14- or 60-d recovery period, rats completed a battery of 8 tests selected from the Navy Neurobehavioral Toxicity Assessment Battery (NTAB) to evaluate changes in performance capacity. Exposure to JP-4 vapor resulted in significant changes in neurobehavioral capacity on several tests that varied as a function of the duration of the recovery period. Rats were evaluated for major neurotransmitter and metabolite levels in five brain regions and in the blood serum. Levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were shown to be significantly elevated in several brain regions as well as in the blood serum in the vapor-exposed groups. Results of the rat study are compared to previously reported neurobehavioral evaluations of European manufacturing personnel exposed chronically to jet fuel vapor. PMID:10201635

  18. Pharmacological profile of 2-bromoterguride at human dopamine D2, porcine serotonin 5-hydroxytryptamine 2A, and ?2C-adrenergic receptors, and its antipsychotic-like effects in rats.

    PubMed

    Jantschak, F; Brosda, J; Franke, R T; Fink, H; Möller, D; Hübner, H; Gmeiner, P; Pertz, H H

    2013-10-01

    Dopaminergic, serotonergic, and adrenergic receptors are targets for therapeutic actions in schizophrenia. Dopamine D2 receptor partial agonists such as aripiprazole represent a treatment option for patients with this severe disorder. The ineffectiveness of terguride, another D2 receptor partial agonist, in treating schizophrenia was recently attributed to its considerably high intrinsic activity at D2 receptors. In this study, we used functional assays for recombinant D2 receptors and native 5-hydroxytryptamine 2A (5-HT2A), ?2C-adrenergic, and histamine H1 receptors to compare the pharmacological properties of terguride and three of its halogenated derivatives (2-chloro-, 2-bromo-, 2-iodoterguride) with those of aripiprazole. Subsequently, we studied the antidopaminergic effects of 2-bromoterguride using amphetamine-induced locomotion (AIL). Its influence on spontaneous behavior was tested in the open field. Extrapyramidal side effect (EPS) liability was evaluated by catalepsy test. In a guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP?S) binding assay, 2-chloro-, 2-bromo-, and 2-iodoterguride produced intrinsic activities at human D2short (hD2S) receptors that were half as high as the intrinsic activity for terguride; aripiprazole lacked agonist activity. 2-Bromoterguride and aripiprazole activated D2S receptor-mediated inhibition of cAMP accumulation to the same extent; intrinsic activity was half as high as that of terguride. All compounds tested behaved as antagonists at human D2long/G?o (hD2L/G?o) receptors. Compared with aripiprazole, terguride and its derivatives displayed higher affinity at porcine 5-HT2A receptors and ?2C-adrenoceptors and lower affinity at H1 receptors. 2-Bromoterguride inhibited AIL and did not induce catalepsy in rats. Because of its in vitro and in vivo properties, 2-bromoterguride may be a strong candidate for the treatment of schizophrenia with a lower risk to induce EPS. PMID:23863695

  19. Influence of 5-HT1A and 5-HTTLPR genetic variants on the schizophrenia symptoms and occurrence of treatment-resistant schizophrenia

    PubMed Central

    Terzi?, Tea; Kastelic, Matej; Dolžan, Vita; Plesni?ar, Blanka Kores

    2015-01-01

    This study aimed to explore the influence of two genetic polymorphisms of the 5-hydroxytryptamine 1A receptor (5-HT1A) and solute carrier family 6, member 4 (SLC6A4) genes on the clinical symptoms and treatment resistance in Slovenian patients with schizophrenia. A total of 138 patients with schizophrenia were evaluated using the Positive and Negative Syndrome Scale, Brief Psychiatric Rating Scale, Clinical Global Impression, and Global Assessment of Functioning. Based on the selected criteria, 94 patients were included in the treatment-responsive and 44 in the treatment-resistant group. All subjects and 94 controls were genotyped for the 5-HT1A rs6295 and 5-HTTLPR polymorphisms. There were no statistically significant differences in the frequencies of these polymorphisms between the patients with schizophrenia and the control group and between the treatment-resistant and treatment-responsive group of schizophrenia patients. Polymorphisms rs6295 and 5-HTTLPR had an influence on the Global Assessment of Functioning scale score, while 5-HTTLPR also had an influence on the total score of the negative subscale within the Positive and Negative Syndrome Scale. Although we found no effect on progression toward the treatment-resistant schizophrenia, our data suggest that the rs6295 and 5-HTTLPR polymorphisms can influence some clinical symptoms in schizophrenia. PMID:25759587

  20. Electrochemical measurements of serotonin (5-HT) release from the guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode

    PubMed Central

    Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.

    2009-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder characterized by chronic abdominal discomfort, including pain, bloating and changes in bowel habits. The exact cause of IBS is not entirely understood. Recent studies have shown that IBS may be associated with altered serotonin (5-hydroxytryptamine, 5-HT) levels within the GI tract. About 90% of 5-HT in the human body is produced and stored in enterochromaffin (EC) cells that reside in the mucosal layer of the intestine. Measurements of serotonin availability locally in the mucosa can provide insight on the functionality of these cells and potentially the pathophysiology of the disease. In this study, we used continuous amperometry with a diamond microelectrode to record serotonin levels in vitro in the ileum mucosa as an oxidation current. The boron-doped diamond (BDD) microelectrode is quite practical for these measurements because if its low background signal, low sensitivity to solution pH changes, and excellent resistance to fouling by adsorbed serotonin oxidation reaction products. In fact, the measurements are only possible because of the unique properties of diamond. We present electrochemical data that demonstrate the diamond microelectrode’s utility for assessment of enterochromaffin cell function. Confirmation that the oxidation current was associated with indogenous serotonin release came from pharmacological studies. We are hopeful that these types of in vitro electrochemical measurements will lead to a better understanding of the pathophysiology of IBS. PMID:20209031

  1. 5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems.

    PubMed

    Corradi, Jeremias; Thompson, Andrew J; McGonigle, Ian; Price, Kerry L; Bouzat, Cecilia; Lummis, Sarah C R

    2015-07-15

    Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electrode voltage-clamp, radioligand binding, fluorescence, whole cell, and single channel patch-clamp studies to characterize the roles of 5-HT3Br1 and 5-HT3Br2 subunits on function and pharmacology in heterologously expressed 5-HT3 receptors. The data show that the 5-HT3Br1 transcriptional variant, when coexpressed with 5-HT3A subunits, alters the EC50, nH, and single channel conductance of the 5-HT3 receptor, but has no effect on the potency of competitive antagonists; thus, 5-HT3ABr1 receptors have the same characteristics as 5-HT3AB receptors. There were some differences in the shapes of 5-HT3AB and 5-HT3ABr1 receptor responses, which were likely due to a greater proportion of homomeric 5-HT3A versus heteromeric 5-HT3ABr1 receptors in the latter, as expression of the 5-HT3Br1 compared to the 5-HT3B subunit is less efficient. Conversely, the 5-HT3Br2 subunit does not appear to form functional channels with the 5-HT3A subunit in either oocytes or HEK293 cells, and the role of this subunit is yet to be determined. PMID:25951416

  2. 5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems

    PubMed Central

    2015-01-01

    Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electrode voltage-clamp, radioligand binding, fluorescence, whole cell, and single channel patch-clamp studies to characterize the roles of 5-HT3Br1 and 5-HT3Br2 subunits on function and pharmacology in heterologously expressed 5-HT3 receptors. The data show that the 5-HT3Br1 transcriptional variant, when coexpressed with 5-HT3A subunits, alters the EC50, nH, and single channel conductance of the 5-HT3 receptor, but has no effect on the potency of competitive antagonists; thus, 5-HT3ABr1 receptors have the same characteristics as 5-HT3AB receptors. There were some differences in the shapes of 5-HT3AB and 5-HT3ABr1 receptor responses, which were likely due to a greater proportion of homomeric 5-HT3A versus heteromeric 5-HT3ABr1 receptors in the latter, as expression of the 5-HT3Br1 compared to the 5-HT3B subunit is less efficient. Conversely, the 5-HT3Br2 subunit does not appear to form functional channels with the 5-HT3A subunit in either oocytes or HEK293 cells, and the role of this subunit is yet to be determined. PMID:25951416

  3. The 5-HT[subscript 3A] Receptor Is Essential for Fear Extinction

    ERIC Educational Resources Information Center

    Kondo, Makoto; Nakamura, Yukiko; Ishida, Yusuke; Yamada, Takahiro; Shimada, Shoichi

    2014-01-01

    The 5-HT [subscript 3] receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT [subscript 3A] receptor knockout mice in fear conditioning paradigms revealed that the 5-HT [subscript 3A]…

  4. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice lacking 5-HT 2C receptors displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT2CRs only in pro-opiomelanocortin (POMC) neurons. 5-HT2CR deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT2CR agonist); these effects were re...

  5. Selectivity of 3H-MADAM binding to 5-hydroxytryptamine transporters in vitro and in vivo in mice; correlation with behavioural effects

    PubMed Central

    Larsen, A K; Brennum, L T; Egebjerg, J; Sánchez, C; Halldin, C; Andersen, P H

    2004-01-01

    Binding of the novel radioligand 3H-2-(2-dimethylaminomethyl-phenylsulphanyl)-5-methyl-phenylamine (3H-MADAM) to the serotonin transporter (SERT) was used to characterise a range of selective serotonin re-uptake inhibitors (SSRIs) in vitro and in vivo. 3H-MADAM bound with high affinity in a saturable manner to both human SERT expressed in CHO cells (Kd=0.20 nM (pKd=9.74±0.12), Bmax=35±4 fmol mg?1 protein) and mouse cerebral cortex membranes (Kd=0.21 nM (pKd=9.66±0.10), Bmax=50±24 fmol mg?1 protein). Binding of 3H-MADAM was highly selective for SERT in vitro as demonstrated by the in vitro profile of MADAM tested at 75 different receptors, ion channels and transporters. This was further substantiated by the pharmacological profile of the binding. Hence, the binding of 3H-MADAM was potently inhibited by SSRIs but not by selective inhibitors of noradrenaline transport and dopamine transport. Likewise, a 5-HT2A/2C receptor antagonist did not inhibit 3H-MADAM binding. 3H-MADAM binding in vivo was inhibited only by compounds which also inhibited the binding of 3H-MADAM in vitro (the SSRIs, mixed SERT/noradrenaline transport inhibitors and clomipramine), confirming the selectivity of 3H-MADAM for SERT also in vivo. Moreover, compounds effective in inhibiting 3H-MADAM binding were the only ones found to be active in the mouse 5-HTP potentiation test confirming the model as a behavioural correlate to in vivo 5-HT uptake. Finally, it was found that a SERT occupancy of 85–95% was necessary to produce 50% of the maximum behavioural response (ED50). PMID:14993096

  6. 5-HT(1A)-receptor over-expressing mice: genotype and sex dependent responses to antidepressants in the forced swim-test.

    PubMed

    Günther, Lydia; Rothe, Julia; Rex, André; Voigt, Jörg-Peter; Millan, Mark J; Fink, Heidrun; Bert, Bettina

    2011-09-01

    Deficiencies in serotonergic neurotransmission are involved in the pathophysiology of depression. Due to its modulatory effect on serotonin (5-HT) release, the 5-HT(1A)-receptor is thought to play a decisive role in the therapy of this mood disorder. However, it is not fully understood how antidepressant effects are mediated by pre- and postsynaptic receptor sites. In this study we examined the impact of postsynaptic 5-HT(1A)-receptor over-expression in corticolimbic areas of male and female mice on the performance in the forced swim-test (FST). Furthermore, we investigated their response to the serotonin selective reuptake inhibitor (SSRI) citalopram in comparison to the selective noradrenaline reuptake inhibitor reboxetine, as well as the partial 5-HT(1A)-receptor agonists, buspirone and S 15535. Additionally, these drugs were evaluated in the open field-test in order to observe effects on motor activity. The density of 5-HT(1A)-receptors in discrete corticolimbic regions was determined in detail by quantitative autoradiography with [(3)H]8-OH-DPAT to investigate genotype as well as sex dependent differences in the expression pattern. [(3)H]8-OH-DPAT binding differed depending on sex with female mice of both genotypes displaying higher receptor binding in distinct brain areas. In the FST untreated male but not female over-expressing (OE) mice showed an antidepressant-like behaviour compared to wild-type (WT) mice. Citalopram yielded an antidepressant effect without influencing locomotor activity in OE mice but not in WT mice. Reboxetine had no antidepressant-like effect in OE mice, but sex-dependently in WT mice. The two partial agonists, buspirone and S 15535 produced no antidepressant-like activity in both genotypes and sexes, but aberrant motor effects. The antidepressant-like phenotype of male transgenic mice accounts for an involvement of postsynaptic 5-HT(1A)-receptors in the FST behaviour. In addition, the selective over-expression of postsynaptic 5-HT(1A)-receptors in mice contributes to the antidepressant response to citalopram in the FST. Although further pharmacological analysis is required, the data provide novel support for a role of postsynaptic 5-HT(1A)-receptors in the effects of SSRIs. PMID:21419787

  7. Measurement of 5-HT1A receptor density and in-vivo binding parameters of [18F]mefway in the nonhuman primate

    PubMed Central

    Wooten, Dustin W; Hillmer, Ansel T; Moirano, Jeffrey M; Ahlers, Elizabeth O; Slesarev, Maxim; Barnhart, Todd E; Mukherjee, Jogeshwar; Schneider, Mary L; Christian, Bradley T

    2012-01-01

    The goal of this work was to characterize the in-vivo behavior of [18F]mefway as a suitable positron emission tomography (PET) radiotracer for the assay of 5-hydroxytryptamine1A (5-HT1A) receptor density (Bmax). Six rhesus monkeys were studied using a multiple-injection (M-I) protocol consisting of three sequential bolus injections of [18F]mefway. Injection times and amounts of unlabeled mefway were optimized for the precise measurement of Bmax and specific binding parameters koff and kon for estimation of apparent KD. The PET time series were acquired for 180?minutes with arterial sampling performed throughout. Compartmental analysis using the arterial input function was performed to obtain estimates for K1, k2, koff, Bmax, and KDapp in the cerebral cortex and raphe nuclei (RN) using a model that accounted for nontracer doses of mefway. Averaged over subjects, highest binding was seen in the mesial temporal and dorsal anterior cingulate cortices with Bmax values of 42±8 and 36±8?pmol/mL, respectively, and lower values in the superior temporal cortex, RN, and parietal cortex of 24±4, 19±4, and 13±2?pmol/mL, respectively. The KDapp of mefway for the 5-HT1A receptor sites was 4.3±1.3?nmol/L. In conclusion, these results show that M-I [18F]mefway PET experiments can be used for the in-vivo measurement of 5-HT1A receptor density. PMID:22472611

  8. Kisspeptin1 modulates odorant-evoked fear response via two serotonin receptor subtypes (5-HT1A and 5-HT2) in zebrafish.

    PubMed

    Nathan, Fatima M; Ogawa, Satoshi; Parhar, Ishwar S

    2015-06-01

    Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5-HT) system to decrease odorant cue [alarm substance (AS)]-evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5-HT system as well as to determine the involvement of the 5-HT receptor subtypes in AS-evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5-HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS-evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (p < 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5-HT1 and 5-HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (p < 0.001). From this, we conclude that Kiss1 modulates AS-evoked fear responses mediated by the 5-HT1A and 5-HT2 receptors. Kiss1 peptide intracranially (IC) administrated has been shown to decrease olfactory, alarm substance (AS)-evoked fear response. Blockade of the 5-HT1A receptor utilizing WAY 100635 (0.28 mg/kg) and the 5-HT1 and 5-HT2 receptor utilizing methysergide (92.79 mg/kg) produced increased AS-evoked fear responses that were unable to be overcome even during the recovery period. Blockade of this 5-HT system followed by Kiss1 administration showed that the peptide was unable to recover the anxiolytic effects upon 5-HT1A blocking using WAY 100635 with the exception of freezing behaviour while methysergide significantly blocked all the anxiolytic effects of Kiss1. These findings implicate that Kiss1 could modulate AS-evoked fear responses mediated by 5-HT1A and 5-HT2 receptors. PMID:25818845

  9. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation

    PubMed Central

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-01-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30–80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease. In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin (5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations. Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3. Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders. PMID:25107925

  10. Enhanced Responsiveness to Selective Serotonin Reuptake Inhibitors during Lactation

    PubMed Central

    Jury, Nicholas J.; McCormick, Betsy A.; Horseman, Nelson D.; Benoit, Stephen C.; Gregerson, Karen A.

    2015-01-01

    The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD. PMID:25689282

  11. Enhanced responsiveness to selective serotonin reuptake inhibitors during lactation.

    PubMed

    Jury, Nicholas J; McCormick, Betsy A; Horseman, Nelson D; Benoit, Stephen C; Gregerson, Karen A

    2015-01-01

    The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD. PMID:25689282

  12. The role of 5-HT1A receptors in the anti-aversive effects of cannabidiol on panic attack-like behaviors evoked in the presence of the wild snake Epicrates cenchria crassus (Reptilia, Boidae).

    PubMed

    Twardowschy, André; Castiblanco-Urbina, Maria Angélica; Uribe-Mariño, Andres; Biagioni, Audrey Francisco; Salgado-Rohner, Carlos José; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-12-01

    The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors. PMID:23926240

  13. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.

    PubMed Central

    Gerald, C; Adham, N; Kao, H T; Olsen, M A; Laz, T M; Schechter, L E; Bard, J A; Vaysse, P J; Hartig, P R; Branchek, T A

    1995-01-01

    Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable. Images PMID:7796807

  14. Profound, non-opioid analgesia produced by the high-efficacy 5-HT(1A) agonist F 13640 in the formalin model of tonic nociceptive pain.

    PubMed

    Bardin, L; Tarayre, J P; Malfetes, N; Koek, W; Colpaert, F C

    2003-04-01

    Previously, we have reported that in rat models of chronic pain, in particular, the very-high-efficacy 5-HT(1A) agonist F 13640 induces unprecedented pain relief by novel neuroadaptative mechanisms that involve inverse tolerance and cooperation with nociceptive stimulation in producing analgesia. The present studies detailed the actions of F 13640 and other compounds in the formalin model of tonic nociceptive pain. Intraperitoneal injection of F 13640 (0.01-2.5 mg/kg; t -15 min) caused a dose-dependent and complete inhibition of the paw elevation and paw licking that occurred both early (0-5 min) and late (22.5-27.5 min) after the intraplantar injection of diluted formaldehyde (2.5%) in the rat. The extent to which F 13640 and other 5-HT(1A) receptor ligands inhibited these pain behaviors correlated (p < 0.05) with the extent to which they activated 5-HT(1A) receptors. Under similar conditions, some inhibitory effects were also observed with various agents that are known to produce analgesia by different peripheral and/or central mechanisms (e.g., opioids, NA/5-HT reuptake inhibitors, COX-2 inhibitors and other nonsteroidal anti-inflammatory drugs, gabapentin, and ABT-594). However, with the possible exception of morphine, the effects of all of these agents at nontoxic doses were lower than those of F 13640, in particular in inhibition of early paw elevation. The 5-HT(1A) antagonist WAY 100635, but not naloxone, antagonized the actions of F 13640. These results help to establish large-magnitude 5-HT(1A) receptor activation as a new molecular mechanism of profound, central analgesia and suggest that F 13640 may be particularly effective against pain arising from severe tonic nociceptive stimulation. PMID:12595749

  15. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  16. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  17. Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy.

    PubMed

    Schaerlinger, B; Hickel, P; Etienne, N; Guesnier, L; Maroteaux, L

    2003-09-01

    1. The pharmaceutical compound, dihydroergotamine (DHE) is dispensed to prevent and reduce the occurrence of migraine attacks. Although still controversial, the prophylactic effect of this drug is believed to be caused through blockade and/or activation of numerous receptors including serotonin (5-HT) receptors of the 5-HT2 subtype. 2. To elucidate if 5-HT2 receptors (5-HT2Rs) may be involved in DHE prophylactic effect, we performed investigations aimed to determine the respective pharmacological profile of DHE and of its major metabolite 8'-hydroxy-DHE (8'-OH-DHE) at the 5-HT2B and 5-HT2CRs by binding, inositol triphosphate (IP3) or cyclic GMP (cGMP) coupling studies in transfected fibroblasts. 3. DHE and 8'-OH-DHE are competitive compounds at 5-HT2B and 5-HT2CRs. 8'-OH-DHE interaction at (5-HT2BRs) was best fitted by a biphasic competition curve and displayed the highest affinity with a Ki of 5 nm. These two compounds acted as agonists for both receptors in respect to cGMP production with pEC50 of 8.32+/-0.09 for 8'-OH-DHE at 5-HT2B and 7.83+/-0.06 at 5-HT2CRs. 4. Knowing that the antimigraine prophylactic effect of DHE is only observed after long-term treatment, we chronically exposed the recombinant cells to DHE and 8'-OH-DHE. The number of 5-HT2BR-binding sites was always more affected than 5-HT2CRs. At 5-HT2BRs, 8'-OH-DHE was more effective than DHE, with an uncoupling that persisted for more than 40 h for IP3 or cGMP. By contrast, the 5-HT2CR coupling was reversible after either treatment. 5. Chronic exposure to 8'-OH-DHE caused a persistent agonist-mediated desensitisation of 5-HT2B, but not 5-HT2CRs. This may be of relevance to therapeutic actions of the compound. PMID:12970106

  18. Signal transduction by the 5-HT2A receptor and its H452Y polymorphic variant 

    E-print Network

    Barclay, Zoë Jade

    2010-01-01

    The 5-HT2A receptor (5-HT2AR) is implicated in neuropsychiatric disorders such as schizophrenia and is thought to mediate the actions of a number of hallucinogenic and antipsychotic drugs. Additionally, certain polymorphic ...

  19. Pathology and Neurotoxicity in Dogs after Repeat Dose Exposure to a Serotonin 5-HT1B Inhibitor

    PubMed Central

    Chang, Jane C.F.; Ciaccio, Paul; Schroeder, Patricia; Wright, Lindsay; Westwood, Russell; Berg, Anna-Lena

    2014-01-01

    AZD3783, a cationic amphiphilic drug and a potent inhibitor of the 5-hydroxytryptamine (5-HT1B) receptor, was explored as a potential treatment for depression. To support clinical trials, repeat dose toxicity studies in rats and dogs were conducted. Here we report toxicity findings in dogs after dosing from 1 to 3 months. In the 1-month study, there were minimal neuronal vacuolation in the brain, a marked increase in liver enzymes accompanied by hepatocellular degeneration/necrosis and phospholipidosis (PLD), and PLD/cholecystitis in the gallbladder of animals dosed at 47 mg/kg/day. In the 3-month study, neurotoxicity resulted in euthanasia of one animal dosed at 30 mg/kg/day after 86 days. Extensive pathologic changes were seen in all animals in retina epithelium (inclusion bodies), brain (neuronal vacuolation, degeneration, or necrosis and nerve fiber degeneration), spinal ganglia (vacuolation, degeneration, or necrosis), as well as sciatic and optic nerves (degeneration). Pigment-laden macrophages were observed in the lung, kidney, liver, gallbladder, bone marrow, gastrointestinal tract, and lymphoid tissues. Also seen were vitrel and retinal hemorrhage in the eyes. A brain concentration and pathology study showed that the concentration of AZD3783 in the brain was approximately 4 times higher than in the plasma after 4 weeks of dosing, however, they were similar in all regions examined, and did not correlate with areas with pathologic findings. Our findings with AZD3783 in dogs have not been reported previously with other CNS compounds that effect through serotonergic pharmacology. PMID:24791065

  20. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  1. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  2. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness

    PubMed Central

    Albert, Paul R.

    2012-01-01

    The serotonin-1A (5-HT1A) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT1A receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT1A receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT1A receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT1A autoreceptor expression in animal models and humans. Its association with altered 5-HT1A expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT1A heteroreceptors, and rs6295-induced upregulation of 5-HT1A autoreceptors. Targeted therapeutics to inhibit 5-HT1A autoreceptor expression and induce 5-HT1A heteroreceptor expression may ameliorate treatment of anxiety and major depression. PMID:22826341

  3. Can 5-HT3 antagonists contribute toward the treatment of schizophrenia?

    PubMed

    Ellenbroek, Bart A; Prinssen, Eric P M

    2015-02-01

    In one of his earlier papers, Lex Cools stated that the 'concept of an impaired balance between the in series connected […] dopamine system, […] 5-HT system and […] noradrenaline system offers a single coherent and integrated theory of schizophrenia' (Cools, 1975). Since then, considerable attention has focused on the interaction between dopamine and 5-HT and it is now well accepted that most antipsychotics (especially the second-generation drugs) modulate both dopaminergic and serotonergic receptors. However, the vast majority of research has focused on the 5-HT1A, 5-HT2A and 5-HT2C receptors. In the present paper, we review the literature pertaining to the 5-HT3 receptor, the only ionotropic 5-HT receptor. We discuss both the interactions between 5-HT3 receptors and dopamine, and the animal and human literature investigating the role of 5-HT3 receptors in schizophrenia. The results show that the interactions between 5-HT3 receptors and dopamine are complex, but that 5-HT3 receptors do not have a strong influence on the positive symptoms of schizophrenia. However, when added to standard antipsychotic medication, several recent studies have found that 5-HT3 receptor antagonists can induce a statistically significantly improvement in negative and cognitive symptoms. The implications of these findings in relation to animal modelling and drug development are discussed. PMID:25356732

  4. In vitro release of hypothalamic beta-endorphin (beta E) by arginine vasopressin, corticotropin-releasing hormone and 5-hydroxytryptamine: evidence for release of opioid active and inactive beta E forms.

    PubMed

    Bronstein, D M; Akil, H

    1990-05-01

    The aims of the present experiments were: 1) to test whether substances which modulate beta-endorphin-immunoreactive (beta E-ir) release from the pituitary gland might act similarly in hypothalamic tissue; and 2) to further characterize the beta E-ir forms which are released from hypothalamus. To address these questions, hypothalamic tissue was incubated in vitro for 10 min periods in either normal media (basal conditions) or in media containing 55 mM KCl or one of several other test substances (stimulation conditions) and release was estimated by measuring the beta E-ir concentrations in the media. Depolarizing concentrations of K+ increased beta E-ir release 2-3 fold over basal levels and this effect appeared to be Ca2(+)-dependent. Dose-dependent increases in beta E-ir release were elicited by nanonolar to micromolar concentrations of either corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), or 5-hydroxytryptamine (5-HT). Conversely, dopamine (1 microM) inhibited both the basal and K(+)-stimulated release of beta E-ir from hypothalamus. Gel filtration chromatography revealed that beta E1-31 and beta E1-27/beta E1-26 were the primary beta E-ir peptides released under either basal or CRH-stimulated conditions; the relative amounts of the beta E-ir peptides found in the media were nearly identical to those found in the hypothalamus itself. This result indicates that the release of different beta E-ir peptides into the media appears to be proportional to the relative amounts stored in tissue.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2250765

  5. Drug evaluation: Vilazodone--a combined SSRI and 5-HT1A partial agonist for the treatment of depression.

    PubMed

    de Paulis, Tomas

    2007-03-01

    Vilazodone is a combined selective serotonin reuptake inhibitor (SSRI) and a 5-HT(1A) receptor partial agonist that is being developed by Clinical Data Inc for the treatment of depression. In preclinical studies, vilazodone compared favorably to other antidepressants such as paroxetine and fluoxetine. Orally administered vilazodone inhibited ultrasonic vocalization in the rat after electrical foot shock (a model of anxiolytic activity). Yet, in the forced swimming test model of depression in rats, vilazodone administered intraperitoneally was active at 1 mg/kg but not at 3 or 10 mg/kg. During clinical trials, vilazodone completely abolished REM sleep for 8 h and demonstrated antidepressant efficacy that was equal to that of current antidepressant therapeutics. The author concludes that the success of vilazodone as an effective antidepressant agent will depend on whether the drug can produce a more rapid antidepressant effect than other SSRI agents, or if specific genetic markers of patients can be associated with clinical efficacy. PMID:17351874

  6. Density and Function of Central Serotonin (5-HT) Transporters, 5-HT1A and 5-HT2A Receptors, and Effects of their Targeting on BTBR T+tf/J Mouse Social Behavior

    PubMed Central

    Gould, Georgianna G.; Hensler, Julie G.; Burke, Teresa F.; Benno, Robert H.; Onaivi, Emmanuel S.; Daws, Lynette C.

    2010-01-01

    BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT1A and 5-HT2A receptor densities among BTBR and C57 strains. Autoradiographic [3H] cyanoimipramine (1nM) binding to SERT was 20–30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates [3H] citalopram maximal binding (Bmax) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (KD) was 2 ± 0.3 nM vs. 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT1A and 5-HT2A receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [35S] GTP?S binding in the BTBR hippocampal CA1 region was 28% higher, indicating elevated 5-HT1A capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT1A receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D2/5-HT2 receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying but failed to improve sociability. Overall, altered SERT and/or 5-HT1A functionality in hippocampus could contribute to the relatively low sociability of BTBR mice. PMID:21070242

  7. 5-HT6 receptor agonism facilitates emotional learning

    PubMed Central

    Pereira, Marcela; Martynhak, Bruno J.; Andreatini, Roberto; Svenningsson, Per

    2015-01-01

    Serotonin (5-HT) and its receptors play crucial roles in various aspects of mood and cognitive functions. However, the role of specific 5-HT receptors in these processes remains to be better understood. Here, we examined the effects of the selective and potent 5-HT6 agonist (WAY208466) on mood, anxiety and emotional learning in mice. Male C57Bl/6J mice were therefore tested in the forced swim test (FST), elevated plus-maze (EPM), and passive avoidance tests (PA), respectively. In a dose-response experiment, mice were treated intraperitoneally with WAY208466 at 3, 9, or 27 mg/kg and examined in an open field arena open field test (OFT) followed by the FST. 9 mg/kg of WAY208466 reduced immobility in the FST, without impairing the locomotion. Thus, the dose of 9 mg/kg was subsequently used for tests of anxiety and emotional learning. There was no significant effect of WAY208466 in the EPM. In the PA, mice were trained 30 min before the treatment with saline or WAY208466. Two separate sets of animals were used for short term memory (tested 1 h post-training) or long term memory (tested 24 h post-training). WAY208466 improved both short and long term memories, evaluated by the latency to enter the dark compartment, in the PA. The WAY208466-treated animals also showed more grooming and rearing in the light compartment. To better understand the molecular mechanisms and brain regions involved in the facilitation of emotional learning by WAY208466, we studied its effects on signal transduction and immediate early gene expression. WAY208466 increased the levels of phospho-Ser845-GluA1 and phospho-Ser217/221-MEK in the caudate-putamen. Levels of phospho-Thr202/204-Erk1/2 and the ratio mature BDNF/proBDNF were increased in the hippocampus. Moreover, WAY208466 increased c-fos in the hippocampus and Arc expression in both hippocampus and prefrontal cortex (PFC). The results indicate antidepressant efficacy and facilitation of emotional learning by 5-HT6 receptor agonism via mechanisms that promote neuronal plasticity in caudate putamen, hippocampus, and PFC. PMID:26441657

  8. Antagonist binding at 5-HT(2A) and 5-HT(2C) receptors in the rabbit: high correlation with the profile for the human receptors.

    PubMed

    Aloyo, V J; Harvey, J A

    2000-10-13

    This study examined the binding of serotonin receptor antagonists at the 5-HT(2A) and 5-HT(2C) receptors of the rabbit's cerebral cortex. The 5-HT(2A) receptor was characterized by the binding of [3H]MDL 100,907 (R(+)-alpha-(2, 3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methan ol) to cortical membranes and the 5-HT(2C) receptor by the binding of [3H]mesulergine in the presence of the selective 5-HT(2A) receptor ligand spiperone. Both [3H]MDL 100,907 and [3H]mesulergine demonstrated high affinity binding to single sites in rabbit membranes. Based on Scatchard plots of [3H]MDL 100,907 binding, the mean B(max) was 8.5+/-0.7 fmol/mg tissue and the mean K(d) was 33. 1+/-3.5 pM. For [3H]mesulergine binding the mean B(max) was 3.70+/-0. 58 fmol/mg tissue and the mean K(d) was 0.35+/-0.05 nM. Binding of [3H]MDL 100,907 to the 5-HT(2A) receptor and of [3H]mesulergine to the 5-HT(2C) receptor was confirmed by displacement studies with highly selective 5-HT(2A) and 5-HT(2C) receptor ligands. The pharmacological profile of these ligands in rabbits correlated highly with published values for 5-HT(2A) (r=0.91, P<0.001) and 5-HT(2C) (r=0.94, P<0.001) receptors in humans. There was also a high correlation between the profiles for human and rat 5-HT(2C) receptor (r=0.92, P<0.001), but not for 5-HT(2A) receptors (r=0.53, P>0.10). It was concluded that the rabbit provides an appropriate animal model for studies attempting to predict the pharmacology of human 5-HT(2A) and 5-HT(2C) receptors. PMID:11020478

  9. Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors.

    PubMed

    Aira, Zigor; Buesa, Itsaso; García del Caño, Gontzal; Salgueiro, Monika; Mendiable, Nahia; Mingo, Janire; Aguilera, Luciano; Bilbao, Juan; Azkue, Jon Jatsu

    2012-07-01

    Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. Spinal superfusion with (100 nM) mu-opioid receptor (MOR)-agonist DAMGO significantly depressed C fiber-evoked spinal field potentials. Simultaneous administration of subclinical 5-HT2AR antagonist 4F 4PP (100 nM) or 5-HT2BR antagonist SB 204741 (100 nM) significantly reduced the IC50 value for DAMGO in nerve-ligated rats (97.56 nM ± 1.51 and 1.20 nM ± 1.28 respectively, relative to 104 nM ± 1.08 at the baseline condition), but not in sham-operated rats. Both antagonists failed to alter depression induced by delta-opioid receptor (DOR)-agonist D-ala2-deltorphin II after SNL as well as in the sham condition. Western blot analysis of dorsal horn homogenates revealed bilateral upregulation of 5-HT2AR and 5-HT2BR protein band densities after SNL. As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR. PMID:22520172

  10. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-01

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. PMID:24309097

  11. The 5-HT3A receptor is essential for fear extinction

    PubMed Central

    Kondo, Makoto; Nakamura, Yukiko; Ishida, Yusuke; Yamada, Takahiro; Shimada, Shoichi

    2014-01-01

    The 5-HT3 receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT3A receptor knockout mice in fear conditioning paradigms revealed that the 5-HT3A receptor is not required for the acquisition or retention of fear memory but is essential for the extinction of contextual and tone-cued fear. Our data suggest that the 5-HT3A receptor could be a key molecule regulating fear memory processes and a potential therapeutic target for fear disorders. PMID:24344177

  12. Identification of dual active agents targeting 5-HT1A and SERT by combinatorial virtual screening methods.

    PubMed

    Wang, Panpan; Yang, Fengyuan; Yang, Hong; Xu, Xiaofei; Liu, Duo; Xue, Weiwei; Zhu, Feng

    2015-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are most adopted therapeutics marketed for major depression, and the efficacy of which are greatly reduced by their delayed onset of action and undesirable side effects. 5-HT1A receptor partial agonist and SERT inhibitor (SPARI) was proposed as a novel strategy to overcome the shortage of efficacy by a negative feedback control of 5-HT1A receptor. However, only one SPARI (vilazodone) has been approved for clinical use, and none is currently in clinical trial, which demonstrates a strong need for searching more novel SPARIs to facilitate antidepressants discovery. This work applied a combinatorial virtual screening method (CVSM) by integrating multiple tools. Statistic analysis reveals that CVSM surpasses single virtual screening methods in terms of hit rates and enrichment factors. By adopting optimized CVSM, 91 promising dual target leads form 15 scaffolds were identified, and 40% of these scaffolds have already been reported to show antidepressant related therapeutic effects. In sum, CVSM is capable in identifying novel SPARIs from large chemical libraries with extremely low false hit rate. PMID:26406003

  13. Kynuramines induce overexpression of heat shock proteins in pancreatic cancer cells via 5-hydroxytryptamine and MT1/MT2 receptors.

    PubMed

    Leja-Szpak, A; Pierzchalski, P; Goralska, M; Nawrot-Porabka, K; Bonior, J; Link-Lenczowski, P; Jastrzebska, M; Jaworek, J

    2015-10-01

    Kynuramines, metabolites of melatonin and L-tryptophan, are synthesized endogenously by oxygenases or in spontaneous reaction by an interaction with free radicals. We have reported previously that melatonin stimulates expression and phosphorylation of heat shock protein (HSP) 27, as well as production of HSP70 and HSP90?? in pancreatic carcinoma cells (PANC-1). Based on those results, we hypothesized that above processes could have been involved in the interruption of intrinsic proapoptotic pathway. Herein, we report that incubation of PANC-1 cells with N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) or with L-kynurenine (L-KYN) lead to the overexpression of heat shock protein synthesis and these effects are partially reversed by 5-HT3 or MT1/MT2 receptor antagonists. PANC-1 cells in culture were treated with AFMK or L-KYN, with non selective MT1/MT2 receptor antagonist (luzindole), with 5-HT2 and 5-HT3 receptor antagonists (ketanserin and MDL72222), or combination of these substances. Both AFMK and L-KYN significantly decreased cytoplasmic HSP27 and this effect was presumably due to increased of its phosphorylation and consequent nuclear translocation, confirmed by immunoprecipitation of phosphorylated form of HSP27. These changes were accompanied by marked augmentation of HSP70 and HSP90?? in the cytosolic fraction. Pretreatment of cell cultures with luzindole or MDL72222 followed by the addition of AFMK or L-KYN reversed the stimulatory effects of these substances on HSP expression in PANC-1 cells, whereas ketanserin failed to influence mentioned above phenomenon. We conclude that activation of HSPs in pancreatic carcinoma cells seems to be dependent on an interaction of AFMK or L-KYN with MT1/MT2 or/and 5-HT3 receptors. PMID:26579577

  14. Antidepressant drug development: Focus on triple monoamine reuptake inhibition.

    PubMed

    Lane, Roger M

    2015-05-01

    Many patients with major depressive disorder (MDD) only partially respond, and some have no clinically meaningful response, to current widely used antidepressant drugs. Due to the purported role of dopamine in the pathophysiology of depression, triple-reuptake inhibitors (TRIs) that simultaneously inhibit serotonin (5-HT), norepinephrine (NE) and dopamine reuptake could be a useful addition to the armamentarium of treatments for MDD. A TRI should more effectively activate mesolimbic dopamine-related reward-networks, restore positive mood and reduce potent 5-HT reuptake blockade associated "hypodopaminergic" adverse effects of decreased libido, weight gain and "blunting" of emotions. On the other hand, dopaminergic effects raise concern over abuse liability and TRIs may have many of the cardiovascular effects associated with NET inhibition. Several clinical development programs for potential TRI antidepressants have failed to demonstrate significantly greater efficacy than placebo or standard of care. Successful late-stage clinical development of a TRI is more likely if experimental research studies in the target population of depressed patients have demonstrated target engagement that differentially and dose-dependently improves assessments of reward-network dysfunction relative to existing antidepressants. TRI treatment could be individualized on the basis of predictive markers such as the burden of decreased positive mood symptoms and/or neuroimaging evidence of reward network dysfunction. This review focuses on how the next generation of monoamine-based treatments could be efficiently developed to address unmet medical need in MDD. PMID:25315829

  15. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    PubMed

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. PMID:26617215

  16. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1?g/kg each) or l-694,247 (5-HT1D agonist; 0.0125?g/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists ?-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125?g/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  17. Down-Regulation of 5-HT1B and 5-HT1D Receptors Inhibits Proliferation, Clonogenicity and Invasion of Human Pancreatic Cancer Cells

    PubMed Central

    Alpay, S. Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B– and 5-HT1D–mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new therapeutic targets for managing pancreatic cancer. PMID:25170871

  18. BIMT 17, a 5-HT2A receptor antagonist and 5-HT1A receptor full agonist in rat cerebral cortex.

    PubMed

    Borsini, F; Giraldo, E; Monferini, E; Antonini, G; Parenti, M; Bietti, G; Donetti, A

    1995-09-01

    In the search for antidepressant agents with a rapid onset of action, we have found that compound BIMT 17 (1-[2-[4-(3-trifluoromethylphenyl)piperazin-1- yl]ethyl]benzimidazol-[1H]-2-one) shows a good affinity for cerebral cortical 5-HT1A (pKi = 7.72) and 5-HT2A (pKi = 6.90) receptors, with no appreciable affinity for the other 5-HT receptor subtypes, including 5-HT2C. BIMT 17 reduced forskolin-stimulated cAMP accumulation in the cerebral cortex (pEC50 = 6.09) and in the hippocampus (pEC50 = 6.50), and antagonized 5-HT-induced phosphatidylinositol turnover (pKi = 6.96) in the cerebral cortex. The effect on cAMP accumulation was blocked by the 5-HT1A receptor antagonist tertatolol. Buspirone, 8-OH-DPAT and S 14671 (1-[2-(2-thenoylamino)ethyl]- 4[1-(7-methoxynaphtyl)]-piperazine), claimed to be 5-HT1A receptor agonists, did not reduce forskolin-stimulated cAMP formation in the cerebral cortex. On the basis of these data, it was concluded that BIMT 17 was the only compound that behaved as a full agonist with respect to the cAMP response in the cortex, while exerting concurrent agonism at 5-HT1A receptors and antagonism at 5-HT2A receptors. These characteristics might explain the peculiar behavior of BIMT 17 in mimicking the inhibitory action of 5-HT on the basal firing rate of the cortical neurons (see accompanying paper). PMID:8584042

  19. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments

    PubMed Central

    Connors, Kristin A.; Valenti, Theodore W.; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S.; Brooks, Bryan W.; Gould, Georgianna G.

    2014-01-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitolizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [3H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of simalarly G?i/o-coupled cannabinoid receptors. [3H] 8-OH-DPAT specific binding was 176 ± 8, 275 ± 32, and 230 ± 36 fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [3H] WIN55,212-2 binding density was higher in those same brain regions at 6 ± 0.3, 5.5 ± 0.4 and 7.3 ± 0.3 pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50 mg/L), or dietary exposure to WIN55,212-2 (7 ?g/week) zebrafish spent more time in and/or entered white arms more often than controls (p < 0.05). Acute exposure to WIN55,212-2 at 0.5-50 mg/L, reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165

  20. Modifying 5-HT1A Receptor Gene Expression as a New Target for Antidepressant Therapy

    PubMed Central

    Albert, Paul R.; Le François, Brice

    2010-01-01

    Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT) neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone) that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(?1019)G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression. PMID:20661455

  1. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC. PMID:25914158

  2. Selective serotonin reuptake inhibitors and ?-blocker transformation products may not pose a significant risk of toxicity to aquatic organisms in wastewater effluent-dominated receiving waters.

    PubMed

    Brown, Alistair K; Challis, Jonathan K; Wong, Charles S; Hanson, Mark L

    2015-10-01

    A probabilistic ecological risk assessment was conducted for the transformation products (TPs) of 3 ?-blockers (atenolol, metoprolol, and propranolol) and 5 selective serotonin reuptake inhibitors (SSRIs; citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline) to assess potential threats to aquatic organisms in effluent-dominated surface waters. To this end, the pharmacokinetic literature, the University of Minnesota's Biocatalysis/Biodegradation Database Pathway Prediction System aerobic microbial degradation software, and photolysis literature pertaining to ?-blockers and SSRIs were used to determine their most likely TPs formed via human metabolism, aerobic biodegradation, and photolysis, respectively. Monitoring data from North American and European surface waters receiving human wastewater inputs were the basis of the exposure characterizations of the parent compounds and the TPs, where available. In most cases, where monitoring data for TPs did not exist, we assumed a conservative 1:1 parent-to-TP production ratio (i.e., 100% of parent converted). The US Environmental Protection Agency (USEPA)'s EPISuite and ECOSAR v1.11 software were used to estimate acute and chronic toxicities to aquatic organisms. Hazard quotients, which were calculated using the 95(th) percentile of the exposure distributions, ranged from 10(-11) to 10(-3) (i.e., all significantly less than 1). Based on these results, the TPs of interest would be expected to pose little to no environmental risk in surface waters receiving wastewater inputs. Overall, we recommend developing analytical methods that can isolate and quantify human metabolites and TPs at environmentally relevant concentrations to confirm these predictions. Further, we recommend identifying the major species of TPs from classes of pharmaceuticals that could elicit toxic effects via specific modes of action (e.g., norfluoxetine via the serotonin 5-hydroxytryptamine [5-HT]1A receptors) and conducting aquatic toxicity tests to confirm these findings. To our knowledge, this is the first quantitative probabilistic ecotoxicological assessment of all of the predicted and probable TPs of these pharmaceuticals, and our approach provides a framework for future such studies with other compound classes as data become available. PMID:25820351

  3. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  4. 5-HT2A receptor blockade and 5-HT2C receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Conway, Sineadh M.; Ullman, Teresa E.; Zwick, Kimberly R.; Neisewander, Janet L.

    2012-01-01

    Both the 5-HT2A receptor (R) antagonist M100907 and the 5-HT2CR agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT2A/5-HT2CR interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: 1) saline + saline, 2) saline + cocaine, 3) 0.025 mg/kg M100907 + cocaine, 4) 0.125 mg/kg MK212 + cocaine, or 5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT2R subtypes on behavior. Further research investigating combined 5-HT2AR antagonism and 5-HT2CR agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  5. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen.

    PubMed

    Pockros, Lara A; Pentkowski, Nathan S; Conway, Sineadh M; Ullman, Teresa E; Zwick, Kimberly R; Neisewander, Janet L

    2012-12-01

    Both the 5-HT(2A) receptor (R) antagonist M100907 and the 5-HT(2C) R agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently, we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT(2A)/5-HT(2C) R interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: (1) saline + saline, (2) saline + cocaine, (3) 0.025 mg/kg M100907 + cocaine, (4) 0.125 mg/kg MK212 + cocaine, or (5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT(2A) Rs and 5-HT(2C) Rs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT(2) R subtypes on behavior. Further research investigating combined 5-HT(2A) R antagonism and 5-HT(2C) R agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  6. Sulfonyl-containing modulators of serotonin 5-HT6 receptors and their pharmacophore models

    NASA Astrophysics Data System (ADS)

    Ivachtchenko, A. V.

    2014-05-01

    Data published in recent years on the synthesis of serotonin 5-HT6 receptor modulators are summarized. Modulators with high affinity for 5-HT6 receptors exhibiting different degrees of selectivity — from highly selective to semiselective and multimodal — are described. Clinical trial results are reported for the most promising serotonin 5-HT6 receptor modulators attracting special attention of medicinal chemists. The bibliography includes 128 references.

  7. Pharmacokinetic–pharmacodynamic modelling of fluvoxamine 5-HT transporter occupancy in rat frontal cortex

    PubMed Central

    Geldof, M; Freijer, J I; van Beijsterveldt, L; Langlois, X; Danhof, M

    2008-01-01

    Background and purpose: The pharmacokinetic–pharmacodynamic (PK–PD) correlation of fluvoxamine 5-HT transporter (SERT) occupancy was determined in rat frontal cortex ex vivo. Experimental approach: Rats (n=47) with permanent arterial and venous cannulas received a 30?min intravenous infusion of fluvoxamine (1 or 7.3?mg?kg?1). At various time points after dosing, brains were collected for determination of fluvoxamine concentration and SERT occupancy. In addition, the time course of fluvoxamine concentration in plasma was determined up to the time of brain collection. In a separate study (n=26), the time course of fluvoxamine concentration in brain extracellular fluid (ECF) and plasma was determined. The results of the investigations were interpreted by nonlinear mixed effects modeling Key results: Highest SERT occupancy was reached at the first time point (10 or 15?min) and maintained for 1.5 and 7?h after 1 and 7.3?mg?kg?1, respectively. Thereafter, SERT occupancy decreased linearly at a rate of 8%?h?1. SERT occupancy could be directly related to plasma, brain ECF and brain tissue concentrations by a hyperbolic function (Bmax model). Maximal SERT occupancy (Bmax) was 95%. Estimated concentrations at half-maximal SERT occupancy (EC50) in plasma, ECF and brain tissue were 0.48, 0.22 and 14.8?ng?mL?1 respectively. The minimum value of the objective function decreased 12 points for ECF and brain tissue concentrations relative to plasma (P<0.01), presumably as a result of nonlinear brain distribution. Conclusions and implications: The proposed PK–PD model constitutes a useful basis for prediction of the time course of ex vivo SERT occupancy in behavioural studies with selective serotonin reuptake inhibitors. PMID:18493251

  8. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity.

    PubMed

    Nautiyal, Katherine M; Tanaka, Kenji F; Barr, Mary M; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J; Gardier, Alain M; Blanco, Carlos; Hen, René; Ahmari, Susanne E

    2015-05-01

    Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulates impulsive behavior during adulthood. PMID:25892302

  9. Platelet 5-HT(1A) receptor correlates with major depressive disorder in drug-free patients.

    PubMed

    Zhang, Zhang-Jin; Wang, Di; Man, Sui Cheung; Ng, Roger; McAlonan, Grainne M; Wong, Hei Kiu; Wong, Wendy; Lee, Jade; Tan, Qing-Rong

    2014-08-01

    The platelet serotonergic system has potential biomarker utility for major depressive disorder (MDD). In the present study, platelet expression of 5-HT1A receptors and serotonin transporter (SERT) proteins, and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were quantified in 53 patients with MDD and 22 unaffected controls. All were drug-free, non-smokers and had no other psychiatric and cardiovascular comorbidity. The severity of depression symptoms was evaluated using the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Self-rating Depression Scale (SDS). Patients with MDD had significantly higher expression of platelet 5-HT1A receptors but significantly lower contents of platelet 5-HT, platelet-poor plasma (PPP) 5-HT and PPP 5-HIAA compared to healthy controls, and this was correlated with the severity of depression. SERT expression did not differ between the two groups. Correlation analysis confirmed a strong, inverse relationship between the 5-HT1A receptor expression and the 5-HT and 5-HIAA levels. Thus overexpression of platelet 5-HT1A receptors and reduced 5-HT tone may function as a peripheral marker of depression. PMID:24657886

  10. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  11. Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT?A and 5-HT? receptor ligands.

    PubMed

    Modica, Maria N; Intagliata, Sebastiano; Pittalà, Valeria; Salerno, Loredana; Siracusa, Maria A; Cagnotto, Alfredo; Salmona, Mario; Romeo, Giuseppe

    2015-04-01

    New long-chain 4-substituted piperazines linked to a thienopyrimidine or a quinazoline system were synthesized and tested for their binding properties on human cloned 5-HT1A and 5-HT7 serotonin receptors. Some structural modifications, concerning tree main portions, that is, terminal fragment, chain length, and aryl substituents, were examined. The 2- and 3-substituted thienopyrimidinone and quinazolinone systems were selected as terminal fragment and a chain length of four or five methylene units was set. Explored aryl substituents were phenyl, phenylmethyl, 3- or 4-chlorophenyl, and 2-ethoxyphenyl. Title compounds showed affinity for 5-HT1A and 5-HT7 receptors. In particular, 2-ethoxyphenyl derivatives 40 and 45 displayed Ki values in the nanomolar range on both receptors, acting as dual ligands. PMID:25759032

  12. New Multi-target Antagonists of ?1A-, ?1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure.

    PubMed

    Nascimento-Viana, Jéssica B; Carvalho, Aline R; Nasciutti, Luiz Eurico; Alcántara-Hernández, Rocío; Chagas-Silva, Fernanda; Souza, Pedro A R; Romeiro, Luiz Antonio S; García-Sáinz, J Adolfo; Noël, François; Silva, Claudia Lucia Martins

    2016-01-01

    Benign prostatic hyperplasia (BPH) is characterized by stromal cell proliferation and contraction of the periurethral smooth muscle, causing lower urinary tract symptoms. Current BPH treatment, based on monotherapy with ?1A-adrenoceptor antagonists, is helpful for many patients, but insufficient for others, and recent reports suggest that stimulation of ?1D-adrenoceptors and 5-hydroxytryptamine (serotonin) (5-HT)1A receptors contributes to cell proliferation. In this study, we investigated the potential of three N-phenylpiperazine derivatives (LDT3, LDT5, and LDT8) as multi-target antagonists of BPH-associated receptors. The affinity and efficacy of LDTs were estimated in isometric contraction and competition-binding assays using tissues (prostate and aorta) and brain membrane samples enriched in specific on- or off-target receptors. LDTs' potency was estimated in intracellular Ca(2+) elevation assays using cells overexpressing human ?1-adrenoceptor subtypes. The antiproliferative effect of LDTs on prostate cells from BPH patients was evaluated by viable cell counting and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays. We also determined LDTs' effects on rat intraurethral and arterial pressure. LDT3 and LDT5 are potent antagonists of ?1A-, ?1D-adrenoceptors, and 5-HT1A receptors (Ki values in the nanomolar range), and fully inhibited phenylephrine- and 5-HT-induced proliferation of BPH cells. In vivo, LDT3 and LDT5 fully blocked the increase of intraurethral pressure (IUP) induced by phenylephrine at doses (ED50 of 0.15 and 0.09 ?g.kg(-1), respectively) without effect on basal mean blood pressure. LDT3 and LDT5 are multi-target antagonists of key receptors in BPH, and are capable of triggering both prostate muscle relaxation and human hyperplastic prostate cell growth inhibition in vitro. Thus, LDT3 and LDT5 represent potential new lead compounds for BPH treatment. PMID:26493747

  13. Structure-activity relationships and molecular modeling studies of novel arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones as 5-HT(7) and 5-HT(1A) receptor ligands.

    PubMed

    Salerno, Loredana; Pittalà, Valeria; Modica, Maria N; Siracusa, Maria A; Intagliata, Sebastiano; Cagnotto, Alfredo; Salmona, Mario; Kurczab, Rafa?; Bojarski, Andrzej J; Romeo, Giuseppe

    2014-10-01

    A novel series of arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones 18-38 was designed, synthesized and tested to evaluate their affinity for the 5-HT7 and 5-HT1A receptors. Compounds with a 2-benzothiazolone nucleus generally had affinity values higher than the corresponding 2-benzoxazolone compounds. In particular, derivatives possessing a six or seven carbon chain linker between 2-benzothiazolone and arylpiperazine had Ki values in the subnanomolar range for the 5-HT1A receptor and in the low nanomolar range for the 5-HT7 receptor, indicating that they may be interesting dual ligands. Molecular modeling studies revealed different docking poses for the investigated compounds in homology models of 5-HT1A and 5-HT7 receptors, which explained their experimentally determined affinities and general low selectivity. Additionally, structural interaction fingerprints analysis identified the important amino acid residues for the specific interactions of long-chain arylpiperazines within the binding pockets of both serotonin receptors. PMID:25128671

  14. Inhibition by N-acetyl-5-hydroxytryptamine of nitric oxide synthase expression in cultured cells and in the anaesthetized rat.

    PubMed Central

    Klemm, P.; Hecker, M.; Stockhausen, H.; Wu, C. C.; Thiemermann, C.

    1995-01-01

    1. Induction of the calcium-independent isoform of nitric oxide (NO) synthase (iNOS) in various cell types has been implicated in the circulatory failure in experimental models of septic shock. Tetrahydrobiopterin (BH4) appears to be an essential co-factor for NO formation and therefore an inhibition of its biosynthesis represents a feasible therapeutic target. We have investigated the effects of an inhibitor of BH4 synthesis, N-acetyl-5-hydroxytryptamine (N-acetylserotonin, NAS), on the expression of iNOS in cultured macrophages and smooth muscle cells in vitro, and on the hypotensive response to bacterial lipopolysaccharide (LPS) in the anaesthetized rat in vivo. 2. NAS (0.01-5 mM) caused a concentration-dependent inhibition of the accumulation of nitrite in the conditioned medium of LPS/interferon-gamma (IFN gamma)-stimulated RAW 264.7 macrophages and interleukin-1 beta (IL-1 beta)-activated vascular smooth muscle cells (VSMC). This effect was paralleled by a similar decrease in the iNOS protein content of these cells, as determined by immunoblot analysis. 3. Pretreatment of RAW 264.7 macrophages with the BH4 precursor, dihydrobiopterin (BH2, 0.1 mM) did not restore nitrite formation in the presence of NAS (1 mM). 4. Intravenous administration of NAS (1 mg kg-1 min-1 for 30 min) in anaesthetized rats significantly reduced the fall in mean arterial blood pressure, restored the pressor response to noradrenaline (1 micrograms kg-1), and ameliorated the increase in plasma nitrite following exposure to LPS (10 mg kg-1).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 7 PMID:7582541

  15. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    PubMed Central

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-01-01

    Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478

  16. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine

    SciTech Connect

    McKenna, D.J.; Guan, X.M.; Shulgin, A.T. )

    1991-03-01

    The effect of various analogues of the neurotoxic amphetamine derivative, MDA (3,4-methylenedioxyamphetamine) on carrier-mediated, calcium-independent release of 3H-5-HT and 3H-DA from rat brain synaptosomes was investigated. Both enantiomers of the neurotoxic analogues MDA and MDMA (3,4-methylenedioxymethamphetamine) induce synaptosomal release of 3H-5-HT and 3H-DA in vitro. The release of 3H-5-HT induced by MDMA is partially blocked by 10(-6) M fluoxetine. The (+) enantiomers of both MDA and MDMA are more potent than the (-) enantiomers as releasers of both 3H-5-HT and 3H-DA. Eleven analogues, differing from MDA with respect to the nature and number of ring and/or side chain substituents, also show some activity in the release experiments, and are more potent as releasers of 3H-5-HT than of 3H-DA. The amphetamine derivatives {plus minus}fenfluramine, {plus minus}norfenfluramine, {plus minus}MDE, {plus minus}PCA, and d-methamphetamine are all potent releasers of 3H-5-HT and show varying degrees of activity as 3H-DA releasers. The hallucinogen DOM does not cause significant release of either 3H-monoamine. Possible long-term serotonergic neurotoxicity was assessed by quantifying the density of 5-HT uptake sites in rats treated with multiple doses of selected analogues using 3H-paroxetine to label 5-HT uptake sites. In the neurotoxicity study of the compounds investigated, only (+)MDA caused a significant loss of 5-HT uptake sites in comparison to saline-treated controls. These results are discussed in terms of the apparent structure-activity properties affecting 3H-monoamine release and their possible relevance to neurotoxicity in this series of MDA congeners.

  17. Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP

    PubMed Central

    2015-01-01

    Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here, we report the X-ray crystal structure of the 5-HT binding protein (5-HTBP) in complex with varenicline, and test the predicted interactions by probing the potency of varenicline in a range of mutant 5-HT3 receptors expressed in HEK293 cells and Xenopus oocytes. The structure reveals a range of interactions between varenicline and 5-HTBP. We identified residues within 5 Å of varenicline and substituted the equivalent residues in the 5-HT3 receptor with Ala or a residue with similar chemical properties. Functional characterization of these mutant 5-HT3 receptors, using a fluorescent membrane potential dye in HEK cells and voltage clamp in oocytes, supports interactions between varenicline and the receptor that are similar to those in 5-HTBP. The structure also revealed C-loop closure that was less than in the 5-HT-bound 5-HTBP, and hydrogen bonding between varenicline and the complementary face of the binding pocket via a water molecule, which are characteristics consistent with partial agonist behavior of varenicline in the 5-HT3 receptor. Together, these data reveal detailed insights into the molecular interaction of varenicline in the 5-HT3 receptor. PMID:25648658

  18. 5-HT1A receptors, gene repression, and depression: guilt by association.

    PubMed

    Albert, Paul R; Lemonde, Sylvie

    2004-12-01

    The serotonin system is implicated in major depression and suicide and is negatively regulated by somatodendritic 5-HT1A autoreceptors. Desensitization of 5-HT1A autoreceptors is implicated in the 2- to 3-week latency for antidepressant treatments. Alterations in 5-HT1A receptor levels are reported in depression and suicide, and gene knockout of the 5-HT1A receptor results in an anxiety phenotype, suggesting that abnormal transcriptional regulation of this receptor gene may underlie these disorders. The 5-HT1A receptor gene is negatively regulated in neurons by repressors including REST/NRSF, Freud-1, NUDR/Deaf-1, and Hes5. The association with major depression, suicide, and panic disorder of a new functional 5-HT1A polymorphism at C(-1019)G that selectively blocks repression of the 5-HT1A autoreceptor by NUDR further suggests a causative role for altered regulation of this receptor in predisposition to mental illness. The authors review evidence that altered transcription of the 5-HT1A receptor can affect the serotonin system and limbic and cortical areas, leading to predisposition to depression. PMID:15534042

  19. Compulsive behavior in the 5-HT2C receptor knockout mouse.

    PubMed

    Chou-Green, Jennifer M; Holscher, Todd D; Dallman, Mary F; Akana, Susan F

    2003-04-01

    The efficacy of serotonergic pharmacotherapy indicates that serotonin (5-HT) plays a role in the treatment, if not the etiology, of obsessive-compulsive disorder (OCD). While some clinical evidence implicates 5-HT(2C) receptors in this disorder, a definitive function has yet to be validated. We hypothesized that 5-HT(2C) receptor knockout (KO) mice may display compulsive-like behavior. This paper describes characterization of several distinct, highly organized behaviors in mice lacking functional 5-HT(2C) receptors, which supports a compulsive-like syndrome.Compulsive-like behavior was assessed in male 5-HT(2C) receptor KO and wildtype (WT) mice. Chewing of non-nutritive clay, chewing patterns on plastic-mesh screens, and the frequency of head dipping were measured. 5-HT(2C) receptor KO mice chewed more clay, produced a distinct pattern of "neat" chewing of plastic screens and exhibited reduced habituation of head dipping activity compared to WT mice. We conclude that the 5-HT(2C) receptor null mutant mouse provides a promising model of compulsive behavior and a means to further explore the role of 5-HT in OCD. PMID:12782219

  20. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK.

    PubMed

    Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta

    2016-02-01

    The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum. PMID:26482421

  1. Brief Communication A Functional Genetic Variation of the Serotonin (5-HT)

    E-print Network

    and depressive disorders and their treatment. However, the physiological and genetic factors controlling 5-HT1A and cortical regions involved in mood regulation, 5-HT1A agonists are anxiolytic, and antidepressant and recent with major depressive dis- order (Drevets et al., 1999; Sargent et al., 2000; Bhagwagar et al., 2004), panic

  2. Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex

    PubMed Central

    Centenaro, Lígia Aline; Vieira, Karin; Zimmermann, Nicolle; Miczek, Klaus A.; Lucion, Aldo Bolten

    2015-01-01

    Rationale Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. Objectives The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. Results 8-OH-DPAT (0.56 and 1.0 ?g) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 ?g) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 ?g) and SB-224,289 (1.0 ?g). Conclusions The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner. PMID:18688602

  3. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    PubMed Central

    S?awi?ska, Urszula; Miazga, Krzysztof; Jordan, Larry M.

    2014-01-01

    There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation. PMID:25191231

  4. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Logan, J.

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  5. Regulation of cortical and hippocampal 5-HT1A receptor function by corticosterone in GR+/? mice

    PubMed Central

    Hensler, Julie G.; Vogt, Miriam A.; Gass, Peter

    2009-01-01

    SUMMARY Our objective in the present study was to examine 5-HT1A receptor function in prefrontal cortex and hippocampus of GR+/? mice, which appear to be an appropriate murine model of depression. 5-HT1A receptor function was determined by measuring [35S]GTP?S binding stimulated by the 5-HT1A receptor agonist 8-OH-DPAT (1 ?M), an indication of the capacity of the receptor to activate G proteins. 5-HT1A receptor expression was determined by measuring the binding of [3H]8-OH-DPAT (2 nM). We observed no effect of the constitutive reduction in GR on 5-HT1A receptor-stimulated [35S]GTP?S binding or 5-HT1A receptor binding sites. Corticosterone treatment (10 mg/kg, sc once daily for 21 days) of wild-type mice resulted in a decrease in 5-HT1A receptor function in prefrontal cortex [8-OH-DPAT-stimulated [35S]GTP?S binding (% above basal), vehicle-treated: 39±4.9; corticosterone-treated: 17±2.8], but not in hippocampus. The constitutive reduction in GR expression prevented the down-regulation of 5-HT1A receptor function in frontal cortex by chronic corticosterone administration. In contrast, corticosterone treatment of GR+/? mice resulted in an increase in 5-HT1A receptor function in hippocampus which reached statistical significance in CA2/3 region [8-OH-DPAT-stimulated [35S]GTP?S binding (% above basal), vehicle-treated: 41±9.7; corticosterone-treated: 94±23]. These changes seem to be evoked by a combined effect of high corticosterone levels and GR deficiency. Although GR+/? mice do not exhibit changes in baseline corticosterone, the constitutive deficiency in GR appears to have unmasked regulatory effects of elevated corticosterone in the maintenance of 5-HT1A receptor function in prefrontal cortex and hippocampus. PMID:19766402

  6. Biochemical, electrophysiological and neurohormonal studies with B-20991, a selective 5-HT1A receptor agonist.

    PubMed

    Caicoya, A G; Beneytez, M E; Delgado, M; Manzanares, J; López-Rodríguez, M L; Benhamu, B; Morcillo, M J; Pozo, M A; Rubia, F J; Fuentes, J A

    2001-05-01

    Different receptor subtypes mediate the effects produced by serotonin (5-HT) in mammals. Besides their proved anxiolytic action, agonists of the 5-HT1A receptor subtype show prospects as antidepressants or neuroprotective agents in case of ischemia. In order to better define the pharmacological profile and determine the selectivity for the 5-HT receptor type, the properties of the new 5-HT1A receptor agonist 2[[4-(o-methoxyphenyl)piperazin-1-yl]-methyl]-1.3-dioxoperhydroimidazo[1.5-a]pyridine (B-20991), an arylpiperazine derivative, have now been further studied. B-20991 was found to antagonize the forskolin-induced increase of cAMP synthesis in a HeLa cell line transfected with the human 5-HT1A in a process sensitive to the selective blocker N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY 100635). Additionally, B-20991 showed a dose-dependent inhibition of the spontaneous on-going activity of serotonin (5-HT) neurons in the dorsal raphe nucleus in rats, an effect that was reversed by treatment with WAY 100635. This, together with the fact that the hypothermia induced by B-20991 in mice was also antagonized by WAY 100635, suggests that the new compound acts upon somatodendritic 5-HT1A receptors. Additional activation of 5-HT1A postsynaptic receptors was indicated by the increase of corticosterone plasma levels induced by B-20991 in the rat. These results demonstrate that B-20991 is a selective 5-HT1A receptor agonist acting both pre- and postsynaptically, which represents an useful pharmacological tool to study 5-HT1A-receptor-mediated effects. PMID:11360001

  7. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    SciTech Connect

    Yagaloff, K.A.

    1986-01-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.

  8. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    PubMed

    Dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69nmol) for 20min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan hydroxylase expression in the raphe nuclei and decreased prosencephalic 5-HT release but failed to affect 5-HT- or DPAT-induced drinking or sleep behavior. 5-HT- and DPAT-induced ingestive and sleep behaviors in pigeons appear to be mediated by heterosynaptic and/or non-somatodendritic presynaptic 5-HT1ARs localized to periventricular diencephalic circuits. PMID:25843559

  9. Synthesis and evaluation of methylated arylazepine compounds for PET imaging of 5-HT(2c) receptors.

    PubMed

    Granda, Michael L; Carlin, Stephen M; Moseley, Christian K; Neelamegam, Ramesh; Mandeville, Joseph B; Hooker, Jacob M

    2013-02-20

    The serotonin 5-HT(2c) receptor is implicated in a number of diseases including obesity, depression, anxiety, and schizophrenia. In order to ascribe the role of 5-HT(2c) in these diseases, a method for measuring 5-HT(2c )density and function in vivo, such as with positron emission tomography (PET), must be developed. Many high-affinity and relatively selective ligands exist for 5-HT(2c) but cannot be accessed with current radiosynthetic methods for use as PET radiotracers. We propose that N-methylation of an arylazepine moiety, a frequent structural feature in 5-HT(2c) ligands, may be a suitable method for producing new radiotracers for 5-HT(2c). The impact of N-methylation has not been previously reported. For the agonists that we selected herein, N-methylation was found to increase affinity up to 8-fold without impairing selectivity. Compound 5, an N-methylated azetidine-derived arylazepine, was found to be brain penetrant and reached a brain/blood ratio of 2.05:1. However, our initial test compound was rapidly metabolized within 20 min of administration and exhibited high nonspecific binding. N-Methylation, with 16 ± 3% isolated radiochemical yield (decay corrected), is robust and may facilitate screening other 5-HT(2c) ligands as radiotracers for PET. PMID:23421677

  10. 5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function

    PubMed Central

    Garcia-Garcia, Alvaro; Tancredi, Adrian Newman-; Leonardo, E. David

    2014-01-01

    Rationale Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT1A) subtype, in both disorders. Objectives In this review, we examine the function of 5-HT1A receptor sub-populations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor vs heteroreceptor) and the temporal (developmental vs adult) roles of the endogenous 5-HT1A receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. Results It is difficult to unambiguously distinguish the effects of different populations of the 5-HT1A receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for distinct roles of these populations in governing emotion related behavior are emerging. Conclusions There is strong and growing evidence for a functional dissociation between auto and heteroreceptor populations in mediating anxiety and depressive-like behaviors respectively. Furthermore, while it is well established that 5-HT1A receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT1A heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects. PMID:24337875

  11. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor.

    PubMed

    Kohen, R; Metcalf, M A; Khan, N; Druck, T; Huebner, K; Lachowicz, J E; Meltzer, H Y; Sibley, D R; Roth, B L; Hamblin, M W

    1996-01-01

    We describe the cloning and characterization of a human 5-HT6 serotonin receptor. The open reading frame is interrupted by two introns in positions corresponding to the third cytoplasmic loop and the third extracellular loop. The human 5-HT6 cDNA encodes a 440-amino-acid polypeptide whose sequence diverges significantly from that published for the rat 5-HT6 receptor. Resequencing of the rat cDNA revealed a sequencing error producing a frame shift within the open reading frame. The human 5-HT6 amino acid sequence is 89% similar to the corrected rat sequence. The recombinant human 5-HT6 receptor is positively coupled to adenylyl cyclase and has pharmacological properties similar to the rat receptor with high affinity for several typical and atypical antipsychotics, including clozapine. The receptor is expressed in several human brain regions, most prominently in the caudate nucleus. The gene for the receptor maps to the human chromosome region 1p35-p36. This localization overlaps that established for the serotonin 5-HT1D alpha receptor, suggesting that these may be closely linked. Comparison of genomic and cDNA clones for the human 5-HT6 receptor also reveals an Rsal restriction fragment length polymorphism within the coding region. PMID:8522988

  12. Interaction between 5-HT1B receptors and nitric oxide in zebrafish responses to novelty.

    PubMed

    Maximino, Caio; Lima, Monica Gomes; Batista, Evander de Jesus Oliveira; Oliveira, Karen Renata Herculano Matos; Herculano, Anderson Manoel

    2015-02-19

    Nitric oxide (NO) and serotonin (5-HT) interact at the molecular and systems levels to control behavioral variables, including agression, fear, and reactions to novelty. In zebrafish, the 5-HT1B receptor has been implicated in anxiety and reactions to novelty, while the 5-HT1A receptor is associated with anxiety-like behavior; this role of the 5-HT1A receptor is mediated by NO. This work investigated whether NO also participates in the mediation of novelty responses by the 5-HT1B receptor. The 5-HT1B receptor inverse agonist SB 224,289 decreased bottom-dwelling and erratic swimming in zebrafish; the effects on bottom-dwelling, but not on erratic swimming, were blocked by pre-treatment with the nitric oxide synthase inhibitor L-NAME. These effects underline a novel mechanism by which 5-HT controls zebrafish reactivity to novel environments, with implications for the study of neotic reactions, exploratory behavior, and anxiety-like states. PMID:25545556

  13. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    SciTech Connect

    Fischman, A.J.; Bonab, A.A.; Babich, J.W.

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  14. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to A?-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-? level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against A?-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-?B, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications. PMID:25377794

  15. Treatment of hypertension with ketanserin, a new selective 5-HT2 receptor antagonist.

    PubMed Central

    Wenting, G J; Man in 't Veld, A J; Woittiez, A J; Boomsma, F; Schalekamp, M A

    1982-01-01

    The new selective 5-HT2 receptor blocking agent ketanserin was given in a dose of 10 mg intravenously to 12 patients with essential hypertension. It caused a distinct fall in supine systemic arterial, right atrial, pulmonary artery, and pulmonary capillary "wedge" pressures. Cardiac output, renal blood flow, and glomerular filtration rate showed no persistent changes. Thus 5-HT2 receptor blockade caused dilatation of both resistance and capacitance vessels and of the renal vascular bed. Heart rate and plasma concentrations of renin and noradrenaline rose after ketanserin. These data suggest that 5-HT may have a role in maintaining high blood pressure. PMID:6800533

  16. The head-twitch response in the least shrew (Cryptotis parva) is a 5-HT2- and not a 5-HT1C-mediated phenomenon.

    PubMed

    Darmani, N A; Mock, O B; Towns, L C; Gerdes, C F

    1994-06-01

    Our initial studies suggested that the 5-HT2/1C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane [(+/-)-DOI] produces both the head-twitch response (HTR) and the ear-scratch response (ESR) in mice via stimulation of 5-HT2 receptors. However, challenge studies revealed that these behaviors are produced via two different receptors (possibly 5-HT2 and 5-HT1C). Due to a lack of selective agents one cannot designate a particular response for the activation of a specific receptor. The purpose of the present study was to investigate such behaviors in the least shrew, which is more sensitive to (+/-)-DOI than rodents. IP injection of (+/-)-DOI in shrews produced a dose-dependent (bell-shaped) and time-dependent increase in the HTR frequency. The (+/-)-DOI-induced HTR was equipotently and completely attenuated by the 5-HT2/1C antagonists ketanserin and spiperone. The 5-HT1C antagonist with 5-HT2 agonist action, lisuride, also produced the HTR in a bell-shaped dose- and time-dependent fashion. Central injections of both (+/-)-DOI (0.2 microgram) and lisuride (0.5 microgram) also induced the behavior. Both peripheral and central administration of lisuride failed to produce the ESR. (+/-)-DOI significantly induced the ESR only at the highest dose tested (2.5 mg/kg, IP). Centrally administered (+/-)-DOI (0.2 microgram) produced more ESRs relative to vehicle controls; however, the difference did not attain significance. At low doses (0.31 and 0.63 mg/kg), (+/-)-DOI had no effect on locomotor activity, but it significantly attenuated the behavior at larger doses. Both low and high doses of lisuride increased the motor activity. Spiperone dose-dependently suppressed locomotion, whereas ketanserin had no effect. The present results suggest that the HTR is a 5-HT2 receptor-mediated event and changes in locomotor activity do not affect the induced HTR. PMID:8090805

  17. Fingerprint-based consensus virtual screening towards structurally new 5-HT(6)R ligands.

    PubMed

    Smusz, Sabina; Kurczab, Rafa?; Sata?a, Grzegorz; Bojarski, Andrzej J

    2015-05-01

    Virtual screening towards the search of new 5-HT6R ligands was carried out with three different fingerprints used for molecules representation. Two structurally new compounds were found to be characterized by a significant 5-HT6R activity (Ki of 119 and 670 nM). The compounds do not possess a positive ionizable group in their structures and therefore they belong to the group of atypical, non-basic 5-HT6R ligands. The obtained hits were proved to fit well in the 5-HT6R binding cavity by docking and molecular dynamic simulation experiments. Moreover, an in silico evaluation of the ADMET properties of these compounds predicted their drug-like character. PMID:25866241

  18. Short communication: Timing of first milking affects serotonin (5-HT) concentrations.

    PubMed

    Laporta, J; Gross, J J; Crenshaw, T D; Bruckmaier, R M; Hernandez, L L

    2014-05-01

    Hormonal signals differentially regulate the timing of parturition, as well lactogenesis and, potentially, colostrum formation in the mammary gland. Non-neuronal serotonin (5-HT) is a homeostatic regulator of the mammary gland. In the current study, we manipulated the timing of first milking to investigate its effects on serum 5-HT and calcium concentrations in the maternal and calf circulation, as well as in colostrum. Twenty-three cows were randomly assigned to a control (CON; n=10) group, milked for the first time at 4h postcalving, or a treatment (TRT; n=13) group, milked for the first time approximately 1 d before calving in addition to 4h postcalving. Maternal blood samples were collected for 4 d precalving, 3 times daily, and 1 blood sample was taken 4h postcalving. Calf blood samples were collected 4 (before first colostrum feeding) and 12h after birth, and at 3 wk of age. Calves from both treatments were fed colostrum from their respective mothers. Serum 5-HT concentrations were greater in CON cows and decreased significantly in TRT cows after milking was initiated precalving (951 vs. 524 ± 111 ng/mL, respectively). Cow serum calcium concentrations were affected by time, beginning to decrease 1 d precalving until 4h postcalving, but this drop in serum calcium was more pronounced in TRT cows. Serum 5-HT and calcium concentrations were negatively correlated (r=-0.57) for the CON cows and positively correlated (r=0.6) for the TRT cows. Maternal calcium and 5-HT decreased similarly due to precalving milking. Calcium and 5-HT concentrations were greater in colostrum collected from TRT cows milked precalving. Overall, calves had higher circulating 5-HT concentrations than cows, and calves born to TRT cows had increased 5-HT concentrations compared with the CON. Precalving milking could affect 5-HT synthesis within the mammary gland and therefore affect maternal 5-HT and calcium concentrations. Further research is needed in ruminants to assess the extent of 5-HT placental transfer, its role on pre- and postnatal development of the calf, the importance of its presence in colostrum, and potential long-term effects on calf health. PMID:24612806

  19. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness

    PubMed Central

    2011-01-01

    The serotonin-1A (5-HT1A) receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A) using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019)G (rs6295) polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission. PMID:21619616

  20. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11

    PubMed Central

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ögren, S O; Greengard, P; Svenningsson, P

    2013-01-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT1BR) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT1BR, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT1BR agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT1BR agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT1BR stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT1BR agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT1BR action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders. PMID:23032875

  1. EXPRESSION OF 5-HT1A AND 5-HT2C RECEPTORS IN THE HYPOTHALAMUS DURING THE TURKEY REPRODUCTIVE CYCLE: COLOCALIZATION WITH TYROSINE HYDROXYLASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin (5-HT) acts through dopamine (DA) and vasoactive intestinal peptide (VIP) to stimulate prolactin (PRL) release when infused into the third ventricle of the turkey brain. Dopamine also inhibits PRL release by antagonizing the stimulatory effect of VIP at the pituitary level. Recent studies ...

  2. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  3. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors.

    PubMed

    Svejda, Bernhard; Kidd, Mark; Timberlake, Andrew; Harry, Kathy; Kazberouk, Alexander; Schimmack, Simon; Lawrence, Ben; Pfragner, Roswitha; Modlin, Irvin M

    2013-07-01

    Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT? receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT? receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT? expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT? receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT? receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC??: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT? was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT? receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT? in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors. PMID:23578138

  4. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  5. The interaction of antidepressant drugs with enteric 5-HT7 receptors.

    PubMed

    Lucchelli, A; Santagostino-Barbone, M G; D'Agostino, G; Masoero, E; Tonini, M

    2000-09-01

    In this study the functional interaction of the antidepressant drugs amitriptyline, mianserin, maprotiline, imipramine, fluoxetine and the putative antidepressant drug flibanserin has been studied on 5-HT7-mediated responses to 5-carboxamidotryptamine (5-CT) in the guinea-pig ileum. 5-CT induced a concentration-dependent inhibition of the contractile response to substance P (100 nM). Except for fluoxetine and flibanserin, all the antidepressants antagonized by different degrees the 5-CT inhibitory response with the following rank affinity order: mianserin > maprotiline > imipramine > amitriptyline. Mianserin was the only antidepressant to show a profile of competitive antagonism at 5-HT7 receptors in a tenfold range of concentrations (0.1-1 microM), with an affinity (pA2) value of 8.1 +/- 0.6. The antagonism of the other antidepressants was not concentration-dependent (amitriptyline) or was associated with slight or moderate reduction of the maximal 5-CT response (imipramine or maprotiline). The apparent affinity (pKB) values were: amitriptyline, 7.0 +/- 0.2; maprotiline, 7.3 +/- 0.6; imipramine, 7.2 +/- 0.4. Our results show that various antidepressant drugs belonging to different chemical classes behave as antagonists at enteric 5-HT7 receptors through competitive or allosteric mechanisms. This evidence extends our previous findings demonstrating the interaction of antidepressants with other 5-HT receptors, namely 5-HT3 and 5-HT4 receptors. PMID:10997731

  6. Sensitivity of transformed (phasic to tonic) motor neurons to the neuromodulator 5-HT.

    PubMed

    Griffis, B; Bonner, P; Cooper, R L

    2000-12-01

    Long-term adaptation resulting in a 'tonic-like' state can be induced in phasic motor neurons of the crayfish, Procambarus clarkii, by daily low-frequency stimulation [Lnenicka, G.A., Atwood, H.L., 1985b. Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. J. Neurobiol. 16, 97-110]. To test the hypothesis that motor neurons undergoing adaptation show increased responses to the neuromodulator serotonin (5-HT), phasic motor neurons innervating the deep abdominal extensor muscles of crayfish were stimulated at 2.5 Hz, 2 h/day, for 7 days. One day after cessation of conditioning, contralateral control and conditioned motor neurons of the same segment were stimulated at 1 Hz and the induced excitatory post-synaptic potentials (EPSPs) were recorded from DEL(1) muscle fibers innervated by each motor neuron type. Recordings were made in saline without and with 100 nM 5-HT. EPSP amplitudes were increased by 5-HT exposure in all cases. Conditioned muscles exposed to 5-HT showed a 2-fold higher percentage of increase in EPSP amplitude than did control muscles. Thus, the conditioned motor neurons behaved like intrinsically tonic motoneurons in their response to 5-HT. While these results show that long-term adaptation (LTA) extends to 5-HT neuromodulation, no phenotype switch could be detected in the postsynaptic muscle. Protein isoform profiles, including the myosin heavy chains, do not change after 1 week of conditioning their innervating motor neurons. PMID:11154946

  7. Heart rate within male crayfish: social interactions and effects of 5-HT.

    PubMed

    Listerman, L R; Deskins, J; Bradacs, H; Cooper, R L

    2000-02-01

    Behaviors, such as those that establish dominant and subordinate social status, are thought to be driven by various neuromodulators and hormones. In crustaceans, the level of serotonin (5-HT) in the hemolymph is correlated with degree of aggressiveness. The crustacean heart is neurogenic and is modulated by neural secretion of 5-HT in the hemolymph, which bathes the cardiac tissue. We discuss and present the results of measuring heart rate (HR) of crayfish during interactions, as an indication of their state of excitability. HR is the result of multiple influences: a cocktail of hormones and modulators. HR was monitored during the periods in which crayfish established aggressive and submissive social status, during sham injections, and following injections of various doses of 5-HT. Crayfish, during an interaction to establish social status, can increase HR. Both the aggressive and submissive crayfish can dampen their HR within seconds during a pause in the interaction, while still posturing in an aggressive or submissive state. Injections of 5-HT to obtain systemic levels of approximately 100 nM-10 microM increase HR substantially for hours. This suggests that aggressive interactions and the establishment of a dominant posture may not be related to large increases in the free concentrations of 5-HT within the circulating hemolymph, since a sustained HR is not observed in aggressive animals. Instead, the results may demonstrate that inhibitory cardiac regulation is present in the aggressors during interactions and that a regulator is possibly 5-HT. PMID:10825697

  8. A microdialysis study of ST1936, a novel 5-HT6 receptor agonist.

    PubMed

    Valentini, V; Frau, R; Bordi, F; Borsini, F; Di Chiara, G

    2011-03-01

    The function of 5-HT6 receptors, one of the last additions to the large family of 5-HT receptors, is largely unknown due to the limited knowledge of their transduction mechanisms, lack of full centrally acting agonists and inconsistencies in the pharmacological and neurochemical effects of the antagonists. Recently, a new full agonist, ST1936, with nanomolar affinity for 5-HT6 receptors, has become available. Here we report the effect of ST1936 (5-10-20 mg/kg/ip) on dialysate DA, NA and 5-HT in the medial prefrontal cortex (PFCX) and in the shell and core of the nucleus accumbens (NAc). Systemic administration of ST1936 dose-dependently increased dialysate DA and NA in the NAc shell and PFCX and to a lesser extent in the NAc core; these effects were prevented by systemic administration of the two 5-HT6 receptor antagonists, SB271046 (10-20 mg/kg/ip) and SB399885 (5 mg/kg/ip). These properties of ST1936 suggest that 5-HT6 receptors control the activity of DA and NA neurons projecting to the NAc and to the PFCX. PMID:21185318

  9. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  10. Blockade of 5-hydroxytryptamine3 receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat

    NASA Technical Reports Server (NTRS)

    Lucot, J. B.

    1989-01-01

    5-Hydroxytryptamine3 antagonists have been reported to prevent emesis elicited by cisplatin and radiation. This study investigated the possibility that drugs with this mechanism of action may be useful in preventing emesis elicited by other stimuli. The drugs ICS 205-930 (0.1 and 1.0 mg/kg) and MDL 72222 (0.1 and 1.0 mg/kg) were administered SC to cats before challenging them with either provocative motion or an emetic dose of xylazine. In no instance was a significant reduction in emesis evident. Zacopride was also administered before motion testing (0.01 to 10.0 mg/kg) and found to not have efficacy. To test the possibility that species or route of administration were factors in the negative results, 1.0 mg/kg of ICS 205-930 was administered SC before IV infusion of 7.5 mg/kg of cisplatin. There was a total suppression of emesis for the duration of the six-hour observation periods. This result verifies other work which found 5-hydroxytryptamine3 antagonists to be effective in preventing emesis elicited by cancer chemotherapeutic treatments. However, there is no evidence that they are effective in other syndromes, such as motion sickness and xylazine-induced emesis.

  11. Anethum graveolens seeds aqueous extract stimulates whole brain 5-hydroxytryptamine metabolism and reduces feeding behavior and body weight in obese rats.

    PubMed

    Bano, Farhat; Ahmed, Afrinah; Ahmed, Maryam; Parveen, Tahira

    2015-01-01

    The percentage of overweight and obese person has increased markedly since several decays. Obesity is associated with increased risked factor for many diseases such as, diabetes, heart complications, arthritis and certain types of cancer. Feeding behavior is in controlled by a major interaction between central nervous system and many organs of the body. The role of serotonin (5-HT) in feeding behavior is well recognized. The aim of present study was to evaluate the effect of Anethum graveolens seeds aqueous extract (AGAE) on food intake, body weight and serotonin metabolism in over weight rats. Five weeks oral administration of AGAE shows significant decrease in body weight, food intake and significant increase in whole brain 5-HT, 5-HIAA and tryptophan level in brain and plasma of experimental animals. Increased level of 5-HT induced satiety and suppressed food intake and result is the reduction in body weight. PMID:25553698

  12. Influence of some agents that affect 5-hydroxytryptamine metabolism and receptors on nitrazepam-induced sleep in mice.

    PubMed

    Wambebe, C

    1985-01-01

    The effects of 5-hydroxytryptophan (5-HTP), citalopram, p-chlorophenylalanine (PCPA), cyproheptadine, lysergic acid diethylamide (LSD-25), metitepine and NSD 1034 on nitrazepam-induced sleep were investigated in mice. Nitrazepam (1.6-25.6 mg kg-1, i.p.) induced a dose-dependent sedative-hypnotic effect. 5-HTP (8-128 mg kg-1 i.m.) did not induce behavioural sleep but sedated mice and significantly potentiated nitrazepam-induced sleep. Similarly, 5-HTP (4-32 mg kg-1, i.m.) increased pentobarbitone sleeping time. Citalopram (2.5-10 mg kg-1, i.p.) significantly potentiated nitrazepam sleep. PCPA (300-400 mg kg-1, i.p.) completely abolished nitrazepam sleep; 5-HTP (32 mg kg-1, i.m.) reversed this effect. NSD 1034 (75-150 mg kg-1, i.p.) antagonized the potentiating effect of 5-HTP (32 mg kg-1, i.m.) on nitrazepam sleep. Cyproheptadine (5-10 mg kg-1, i.p.) and LSD-25 (2.5-10 micrograms kg-1, i.p.) partially antagonized nitrazepam sleep. Similarly, 5-HTP-induced potentiation of nitrazepam sleep was antagonized by cyproheptadine and LSD-25. Metitepine (4-8 mg kg-1, i.p.) induced behavioural sleep and significantly potentiated nitrazepam sleep. Ro15-1788 (10 mg kg-1, i.p.) effectively antagonized nitrazepam-induced sleep. These results indicate that enhancement of central 5-HT neurotransmission may underlie nitrazepam-induced sleep in mice. PMID:3156646

  13. Presynaptic modulation of 5-HT release in the rat septal region.

    PubMed

    Rutz, S; Riegert, C; Rothmaier, A K; Jackisch, R

    2007-05-11

    5-HT released from serotonergic axon terminals in the septal nuclei modulates the activity of septal output neurons (e.g. septohippocampal cholinergic neurons) bearing somatodendritic 5-HT receptors. Therefore, we studied the mechanisms involved in the presynaptic modulation of 5-HT release in the lateral (LS) and medial septum (MS), and the diagonal band of Broca (DB). HPLC analysis showed that tissue concentrations of noradrenaline, dopamine and 5-HT were highest in DB (DB>MS>LS). Slices prepared from LS, MS and DB regions were preincubated with [(3)H]5-HT, superfused in the presence of 6-nitro-2-(1-piperazinyl)-quinoline (6-nitroquipazine) and electrically stimulated up to three times (first electrical stimulation period (S(1)), S(2), S(3); 360 pulses, 3 Hz, 2 ms, 26-28 mA). In all septal regions the Ca(2+)-dependent and tetrodotoxin-sensitive electrically-evoked overflow of [(3)H] was inhibited by the 5-HT(1B) agonist CP-93,129 and the alpha(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline tartrate (UK-14,304). Also the mu- and kappa-opioid receptor agonists (d-Ala(2), N-Me-Phe(4), glycinol(5))-enkephalin (DAMGO) and [trans-(1S,2S(-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzenacetamide hydro-chloride] (U-50,488H), respectively, acted inhibitory (although less potently), whereas the delta-opioid receptor agonist (d-Pen(2), d-Pen(5))-enkephalin (DPDPE), the dopamine D(2) receptor agonist quinpirole and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were all ineffective; the GABA(B) receptor agonist baclofen had weak effects. All inhibitory effects of the agonists were antagonized by the corresponding antagonists (3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide dihydrochloride (GR-55,562), idazoxan, naloxone, nor-binaltorphimine), which also significantly enhanced the evoked release of 5-HT at S(1). It is concluded that 5-HT release in septal nuclei of the rat is modulated by presynaptic 5-HT(1B) autoreceptors, as well as by alpha(2)-, mu- and kappa-opioid heteroreceptors. All of these receptors seem to be under a tonic inhibitory influence of the corresponding endogenous agonists and show qualitatively comparable modulatory properties along the dorso-ventral distribution of the 5-HT terminals. PMID:17383104

  14. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats

    PubMed Central

    2012-01-01

    Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0?mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0?mg/kg) and SB 242084 (3.0?mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0?mg/kg) failed to attenuate the effects of 5.0 and 10?mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0?mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated. Thus, SB 206553 deserves further attention in the study of psychostimulant abuse disorders. PMID:22697313

  15. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kami?ska, Katarzyna; Go?embiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  16. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary visit http://dx.doi.org/10.1111/bph.12550. PMID:24283776

  17. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  18. Distribution of serotonin receptor 5-HT6 mRNA in rat neuronal subpopulations: A double in situ hybridization study.

    PubMed

    Helboe, L; Egebjerg, J; de Jong, I E M

    2015-12-01

    The 5-HT6 receptor (5-HT6R) is almost exclusively expressed in the brain and has emerged as a promising target for cognitive disorders, including Alzheimer's disease. In the present study, we have determined the cell types on which the 5-HT6R is expressed by colocalizing 5-HT6R mRNA with that of a range of neuronal and interneuronal markers in the rat brain. Here, we show that 5-HT6R mRNA was expressed at high levels in medium spiny neurons in caudate putamen and in nucleus accumbens, as well as in the olfactory tubercle. Striatal 5-HT6R mRNA was colocalized with both dopamine D1 and D2 receptor mRNA. 5-HT6R mRNA was moderately expressed in the hippocampus and throughout cortical regions in glutamatergic neurons coexpressing vGluT1. A subset of GAD67-positive GABAergic interneurons (approximately 15%) expressed 5-HT6R mRNA in the cortex and hippocampus, the majority of which belonged to the 5-HT3a receptor (5-HT3aR)-expressing subpopulation. In contrast, 5-HT6R mRNA was only expressed to a minor extent in the parvalbumin and somatostatin subpopulations. A subset of calbindin- and calretinin-positive GABAergic interneurons expressed 5-HT6R mRNA while only a very minor fraction of VIP or NPY interneurons in forebrain structures expressed 5-HT6R mRNA. Serotonergic, dopaminergic or cholinergic neurons did not express 5-HT6R mRNA. These data indicate that the 5-HT6R is located on GABAergic and glutamatergic principal neurons, and on a subset of interneurons mainly belonging to the 5-HT3aR subgroup suggesting that the 5-HT6R is positioned to regulate the balance between excitatory and inhibitory signaling in the brain. These data provide new insights into the mechanisms of 5-HT6R signaling. PMID:26424380

  19. Serotonin, 5HT1 agonists, and migraine: new data, but old questions still not answered

    PubMed Central

    Dussor, Greg

    2014-01-01

    Purpose of review The serotonergic system has long been linked to migraine but recent studies highlight how much is still unclear about this link. And recent data add to the uncertainty of where/how triptans act and why they are headache specific. Recent findings Markers of 5HT levels in the brains of migraine patients show no changes between attacks. Several recent meta-analyses show the most convincing data on genetic differences in the serotonergic system for 5HT transporters. Findings of additional triptan actions on peripheral trigeminovascular neurons and in the hypothalamus add more fuel to the debate on where these drugs act. A growing list of studies show efficacy of multiple triptans and other 5HT1b/1d agonists in pre-clinical models of non-headache pain arguing for reevaluation of whether these drugs have efficacy in other pain states. Despite these issues, serotonergic drugs continue to be the gold standard for abortive agents with new members on the horizon (5HT1f agonists). Summary Given the clear efficacy of serotonergic drugs for migraine, continued study on the role of the endogenous 5HT system may lead to more novel therapies. And with the list of studies demonstrating efficacy triptans in models of non-headache, clinical studies should address whether these drugs work for other types of pain. PMID:24670810

  20. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    PubMed

    Ho?uj, Ma?gorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3?mg/kg) and SB-269970 (1?mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30?mg/kg) and haloperidol (0.2?mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10?mg/kg) abolished the prosocial efficacy of amisulpride (3?mg/kg). The coadministration of an inactive dose of SB-269970 (0.2?mg/kg) showed the prosocial effects of inactive doses of amisulpride (1?mg/kg) and sulpiride (20?mg/kg). The anxiolytic chlordiazepoxide (2.5?mg/kg) and the antidepressant fluoxetine (2.5?mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal. PMID:25769091

  1. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons.

    PubMed

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-01

    Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E2 (PGE2) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE2 induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE2 effect on visceral afferent sensory neurons of the rat. Interestingly, PGE2 itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE2-induced potentiation were blocked by a selective E-prostanoid type 4 (EP4) receptors antagonist, L-161,982, but type 1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE2 effects. PGE2 induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE2 potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin synthetase inhibitors by selectively targeting EP4 receptor/PKA pathway without interrupt prostaglandin synthesis. PMID:25446121

  2. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System.

    PubMed

    Fink, Latham H L; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([(3)H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  3. Transcriptional Dys-regulation in Anxiety and Major Depression: 5-HT1A Gene Promoter Architecture as a Therapeutic Opportunity

    PubMed Central

    Albert, Paul R.; Fiori, Laura M.

    2015-01-01

    The etiology of major depression remains unclear, but reduced activity of the serotonin (5-HT) system remains implicated and treatments that increase 5-HT neurotransmission can ameliorate depressive symptoms. 5-HT1A receptors are critical regulators of the 5-HT system. They are expressed as both presynaptic autoreceptors that negatively regulate 5-HT neurons, and as post-synaptic heteroreceptors on non-serotonergic neurons in the hippocampus, cortex, and limbic system that are critical to mediate the antidepressant actions of 5-HT. Thus, 5-HT1A auto- and heteroreceptors have opposite actions on serotonergic neurotransmission. Because most 5-HT1A ligands target both auto- and heteroreceptors their efficacy has been limited, resulting in weak or unclear responses. We propose that by understanding the transcriptional regulation of the 5-HT1A receptor it may be possible to regulate its expression differentially in raphe and projection regions. Here we review the transcriptional architecture of the 5-HT1A gene (HTR1A) with a focus on specific DNA elements and transcription factors that have been shown to regulate 5-HT1A receptor expression in the brain. Association studies with the functional HTR1A promoter polymorphism rs6295 suggest a new model for the role of the 5-HT1A receptor in susceptibility to depression involving early deficits in cognitive, fear and stress reactivity as stressors that may ultimately lead to depression. We present evidence that by targeting specific transcription factors it may be possible to oppositely regulate 5-HT1A auto- and heteroreceptor expression, synergistically increasing serotonergic neurotransmission for the treatment of depression. PMID:24180393

  4. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrz?bska-Wi?sek, Magdalena; Siwek, Agata; G?uch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Ga?uszka, Adam; B?achuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Weso?owska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic ?1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  5. Identification of multiple 5-HT? partial agonist clinical candidates for the treatment of Alzheimer's disease.

    PubMed

    Brodney, Michael A; Johnson, David E; Sawant-Basak, Aarti; Coffman, Karen J; Drummond, Elena M; Hudson, Emily L; Fisher, Katherine E; Noguchi, Hirohide; Waizumi, Nobuaki; McDowell, Laura L; Papanikolaou, Alexandros; Pettersen, Betty A; Schmidt, Anne W; Tseng, Elaine; Stutzman-Engwall, Kim; Rubitski, David M; Vanase-Frawley, Michelle A; Grimwood, Sarah

    2012-11-01

    The cognitive impairments observed in Alzheimer's disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT(4)) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT(4) agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure-response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT(4) partial agonist candidates 2d and 3 were chosen for clinical development. PMID:22974325

  6. New benzocycloalkylpiperazines, potent and selective 5-HT1A receptor ligands.

    PubMed

    el Ahmad, Y; Laurent, E; Maillet, P; Talab, A; Teste, J F; Dokhan, R; Tran, G; Ollivier, R

    1997-03-14

    A series of 1-(benzocycloalkyl)-4-(benzamidolkyl)piperazine derivatives was prepared in order to obtain compounds with a high affinity and selectivity for 5-HT1A receptors. The modifications of aromatic substituents, the length of the alkyl chain, and the size of the ring were explored. Most of N-(1,2,3,4-tetrahydronaphthyl)-N'-(benzamidoethyl)piperazines (32-37) were bound to 5-HT1A receptors in a nanomolar range and presented a high degree of selectivity. After resolution, levorotatory enantiomers showed affinity and selectivity higher than those of dextrorotory ones for 5-HT1A sites. The agonist type activity of selected derivatives was also confirmed in vitro on the inhibition of the activation of adenylate cyclase induced by forskolin and, in vivo, on the induction of the lower lip retraction in rats. PMID:9083484

  7. The extraction, isolation and purification of an endogenous regulator for the 5-HT2 receptor.

    PubMed

    Apud, José A

    2011-10-01

    Early studies indicated that serotonin, a primary transmitter in the central nervous system, may not represent the primary endogenous regulator for the 5-HT2 receptor labeled by [3H]-ketanserin. Instead, an endogenous ligand may be responsible for modulating the [3H]-ketanserin site. Through different isolation and purification procedures, a pronase-sensitive peptide with activity on [3H]-ketanserin binding was identified in the rat brain. This peptide seems specific for the 5-HT2 receptor since it does not displace the binding of [3H]-imipramine or [3H]-mianserin from rat cortical membranes and is able to stimulate PI turnover in a ketanserin sensitive fashion. Given the role of 5-HT2 receptors in the action of antidepressants, this finding may help understand some of the molecular mechanisms involved in antidepressant effect. PMID:21683793

  8. Serotonergic 5-HT2A/2C receptors are involved in prolactin secretion in hyperestrogenic rats.

    PubMed

    Mallmann, E S; Paixão, L; Ribeiro, M F; Spritzer, P M

    2014-10-17

    Serotonin (5-HT) has been shown to participate in prolactin secretion through a complex process resulting in both positive and negative effects. Estrogen has also been recognized as being involved in this serotonergic effect on prolactin release. Therefore, the aim of the present study was to assess whether estradiol modulates serotonergic involvement in prolactin secretion though 5-HT1A and/or 5-HT2A/2C receptors. Ovariectomized female Wistar rats, treated for 2 weeks with estrogen to induce a hyperprolactinemic status (hyperestrogenic rats) or with sunflower oil vehicle (hypoestrogenic rats), were injected daily with normal saline solution or 6-chloro-2-(1-piperazinyl)pyrazine (MK-212), an 5-HT2A/2C receptor agonist, for 4 days. Other groups of ovariectomized animals received 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) or pindolol, an agonist and antagonist of the 5-HT1A receptor respectively, on the last day of treatment with estrogen or vehicle. Prolactin levels were compared among groups in each experiment under the distinct drug treatments. MK-212 was found to increase prolactin concentrations both in hyper- and hypoestrogenic females compared to controls (p<0.05). In contrast, prolactin levels remained similar to those of controls both in hyperestrogenic animals treated with 8-OH-DPAT and pindolol and in hypoestrogenic rats administered the same treatments. In conclusion, our findings indicate the involvement of 5-HT2A/2C receptors on prolactin release through serotonergic pathways in female animals, especially in hyperestrogenic states. PMID:25220702

  9. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and G?s-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both G?s and G?12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  10. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  11. Evidence for a role of a dopamine/5-HT6 receptor interaction in cocaine reinforcement.

    PubMed

    Valentini, V; Piras, G; De Luca, M A; Perra, V; Bordi, F; Borsini, F; Frau, R; Di Chiara, G

    2013-02-01

    The putative 5-HT6 receptor agonist ST1936 has been shown to increase extracellular dopamine (DA) in the n.accumbens (NAc) shell and in the medial prefrontal cortex (PFCX). These observations suggest that 5-HT6 receptors modulate DA transmission in mesolimbic and mesocortical terminal DA areas. To investigate the behavioral counterpart of this interaction we studied in rats 1) the ability of ST1936 to maintain i.v. self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement; 2) the effect of 5-HT6 receptor blockade on cocaine stimulated overflow of DA in dialysates from the PFCX and from the NAc shell and on cocaine i.v. self-administration. ST1936 was i.v. self-administered at unitary doses of 0.5-1 mg/kg on an FR1 and PR schedule of reinforcement, with breaking point of about 4. Pretreatment with the 5-HT6 antagonist SB271046 reduced by about 80% responding for ST1936. SB271046 also reduced cocaine-induced increase of dialysate DA in the NAc shell but not in the PFCX and impaired i.v. cocaine self-administration. These observations indicate that ST1936 behaves as a weak reinforcer and suggest that 5-HT6 receptors play a role in cocaine reinforcement via their facilitatory interaction with DA projections to the NAc shell. This novel 5-HT/DA interaction might provide the basis for a new pharmacotherapeutic strategy of cocaine addiction. PMID:22982249

  12. Novel Striatal GABAergic Interneuron Populations Labeled in the 5HT3aEGFP Mouse.

    PubMed

    Muñoz-Manchado, A B; Foldi, C; Szydlowski, S; Sjulson, L; Farries, M; Wilson, C; Silberberg, G; Hjerling-Leffler, J

    2016-01-01

    Histological and morphological studies indicate that approximately 5% of striatal neurons are cholinergic or ?-aminobutyric acidergic (GABAergic) interneurons (gINs). However, the number of striatal neurons expressing known interneuron markers is too small to account for the entire interneuron population. We therefore studied the serotonin (5HT) receptor 3a-enhanced green fluorescent protein (5HT3a(EGFP)) mouse, in which we found that a large number of striatal gINs are labeled. Roughly 20% of 5HT3a(EGFP)-positive cells co-express parvalbumin and exhibit fast-spiking (FS) electrophysiological properties. However, the majority of labeled neurons do not overlap with known molecular interneuron markers. Intrinsic electrical properties reveal at least 2 distinct novel subtypes: a late-spiking (LS) neuropeptide-Y (NPY)-negative neurogliaform (NGF) interneuron, and a large heterogeneous population with several features resembling low-threshold-spiking (LTS) interneurons that do not express somatostatin, NPY, or neuronal nitric oxide synthase. Although the 5HT3a(EGFP) NGF and LTS-like interneurons have electrophysiological properties similar to previously described populations, they are pharmacologically distinct. In direct contrast to previously described NPY(+) LTS and NGF cells, LTS-like 5HT3a(EGFP) cells show robust responses to nicotine administration, while the 5HT3a(EGFP) NGF cell type shows little or no response. By constructing a molecular map of the overlap between these novel populations and existing interneuron populations, we are able to reconcile the morphological and molecular estimates of striatal interneuron numbers. PMID:25146369

  13. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  14. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  15. Reactions between beta-casomorphins-7 and 5-HT2-serotonin receptors.

    PubMed

    Sokolov, O Yu; Pryanikova, N A; Kost, N V; Zolotarev, Yu A; Ryukert, E N; Zozulya, A A

    2005-11-01

    Radioreceptor analysis showed that human beta-casomorphin-7 displaced 3H-spiperone from 5-HT2-serotonin receptors of the rat cerebral frontal cortex: EC50 8 +/- 1 microM. Human and bovine beta-casomorphin-7 dose-dependently blocked serotonin-induced human platelet aggregation: IC50 5 +/- 1 and 20 +/- 4 microM, respectively. It was proved that beta-casomorphins-7 act as 5-HT2-serotonin receptor antagonists; one of the mechanisms of their biological effects is presumably associated with modulation of the serotoninergic system. PMID:16758631

  16. Acute 5-HT2A receptor blocking alters the processing of fearful faces in orbitofrontal cortex and amygdala

    PubMed Central

    Hornboll, Bettina; Macoveanu, Julian; Rowe, James; Elliott, Rebecca; Paulson, Olaf B.; Siebner, Hartwig R.; Knudsen, Gitte M.

    2015-01-01

    Background The serotonin 2A (5-HT2A) receptor has been implicated in neural-processing of emotionally salient information. To elucidate its role in processing of fear and anger, healthy individuals were studied with functional MRI (fMRI) after 5-HT2A receptor blockade, while judging the gender of neutral, fearful and angry faces. Methods 5-HT2A receptors were blocked with ketanserin to a variable degree across subjects by adjusting the time between ketanserin-infusion and onset of the fMRI protocol. Neocortical 5-HT2A receptor binding in terms of the binding potential (BPp) was assessed prior to fMRI with 18F-altanserin positron emission tomography (PET) and subsequently integrated in the fMRI data analysis. Also functional connectivity analysis was employed to evaluate the effect of ketanserin blocking on connectivity. Results Compared to a control session, 5-HT2A receptor blockade reduced the neural response to fearful faces in medial orbitofrontal cortex (OFC), independently of 5-HT2A receptor occupancy or neocortical 5-HT2A receptor BPp. The medial OFC also showed increased functional coupling with left amygdala during processing of fearful faces depending on the amount of blocked 5-HT2A receptors. Conclusions 5-HT2A receptor mediated signaling increases the sensitivity of OFC to fearful facial expressions and regulates the strength of a negative feedback signal from OFC to amygdala during processing of fearful faces. PMID:23824248

  17. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    PubMed Central

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT7 receptors as well as 5-HT turnover in AG. PMID:23542440

  18. A Subpopulation of Serotonergic Neurons That Do Not Express the 5HT1A Autoreceptor

    E-print Network

    that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback originally thought. Using juxtacellular labeling techniques, it was found that, besides the population call to re-evaluate the definition of serotonergic cell, and to determine which methods are most

  19. Behavioral/Systems/Cognitive Enhanced Function of Prefrontal Serotonin 5-HT2 Receptors

    E-print Network

    Vaidya, Vidita

    400005, India, and Departments of 2Physiology and 3Obstetrics and Gynaecology, University of Toronto receptors have long been implicated in mood and anxiety disorders (Naughton et al., 2000; Stock- meier, 2003). Furthermore, adding a 5-HT2 antagonist to the current standard treatment for mood and anxiety disorders

  20. Role of spinal 5-HT(1A) receptors in morphine analgesia and tolerance in rats.

    PubMed

    Bardin, Laurent; Colpaert, Francis C

    2004-06-01

    We here studied the involvement of spinally located 5-HT(1A) and opioid receptors, in the paradoxical effects that their activation can produce on nociception. Intrathecal (i.t.) injection of the 5-HT(1A) receptor agonist 8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT) (1-10 microg) induced analgesic effects in the formalin model of tonic pain whereas in the paw pressure test, it decreased the vocalization threshold. In this latter test, i.t. 8-OH-DPAT also markedly reduced the analgesic effect of systemic morphine (5-10 mg/kg, s.c.). At 10 microg, 8-OH-DPAT totally abolished the effect of 5 mg/kg of morphine; this inhibitory effect was antagonized by pre-treatment with 0.63 mg/kg of the 5-HT(1A) antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl)-cyclohexanecarboxamide-trihydrochloride). In contrast, the i.t. injection of WAY-100635 (1-10 microg) dose-dependently potentiated the antinociceptive activity of a dose of morphine (2.5 mg/kg, s.c.). Furthermore, WAY-100635 (10 microg, i.t.) potentiated morphine analgesia in morphine-tolerant rats. These findings demonstrate that 5-HT(1A) receptor agonists can act in the spinal cord to produce both hyper- and hypo-algesic effects and play a major role in the opioid analgesia and tolerance. PMID:15109976

  1. Role of 5-HT2C receptors in modulating spinal nociceptive processing in neuropathic pain 

    E-print Network

    Patel, Anisha

    2010-01-01

    the dorsal horn of the spinal cord, which may help to explain the abnormal pain responses observed in humans and animals. Descending inputs from the brainstem can modulate nociception at the level of the spinal dorsal horn and serotonin (5-HT) is one...

  2. Varenicline interactions at the 5-HT3 receptor ligand binding site are revealed by 5-HTBP

    E-print Network

    Price, Kerry L.; Lillestol, Reidun K.; Ulens, Chris; Lummis, Sarah C. R.

    2015-02-19

    Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here...

  3. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey

    PubMed Central

    Becker, Matthew I.; Parker, David

    2015-01-01

    In addition to the disruption of neural function below spinal cord injuries (SCI), there also can be changes in neuronal properties above and below the lesion site. The relevance of these changes is generally unclear, but they must be understood if we are to provide rational interventions. Pharmacological approaches to improving locomotor function have been studied extensively, but it is still unclear what constitutes an optimal approach. Here, we have used the lamprey to compare the modulatory effects of 5-HT and lesion-induced changes in cellular and synaptic properties in unlesioned and lesioned animals. While analyses typically focus on the sub-lesion spinal cord, we have also examined effects above the lesion to see if there are changes here that could potentially contribute to the functional recovery. Cellular and synaptic properties differed in unlesioned and lesioned spinal cords and above and below the lesion site. The cellular and synaptic modulatory effects of 5-HT also differed in lesioned and unlesioned animals, again in region-specific ways above and below the lesion site. A role for 5-HT in promoting recovery was suggested by the potential for improvement in locomotor activity when 5-HT was applied to poorly recovered animals, and by the consistent failure of animals to recover when they were incubated in PCPA to deplete 5-HT. However, PCPA did not affect swimming in animals that had already recovered, suggesting a difference in 5-HT effects after lesioning. These results show changes in 5-HT modulation and cellular and synaptic properties after recovery from a spinal cord transection. Importantly, effects are not confined to the sub-lesion spinal cord but also occur above the lesion site. This suggests that the changes may not simply reflect compensatory responses to the loss of descending inputs, but reflect the need for co-ordinated changes above and below the lesion site. The changes in modulatory effects should be considered in pharmacological approaches to functional recovery, as assumptions based on effects in the unlesioned spinal cord may not be justified. PMID:25653594

  4. On the role of 5-HT(1A) receptor gene in behavioral effect of brain-derived neurotrophic factor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Il'chibaeva, Tatyana V; Popova, Nina K

    2014-08-01

    Experiments were made on a congenic AKR.CBA-D13Mit76C (76C) mouse strain created by transferring a chromosome 13 fragment containing the 5-HT1A receptor gene from a CBA strain to an AKR background. It was shown that 76C mice differed from AKR mice by decreased 5-HT1A receptor and tryptophan hydroxylase-2 (tph-2) genes expression in the midbrain. Functional activity of 5-HT2A receptors and 5-HT(2A) receptor mRNA levels in the midbrain and hippocampus of 76C mice were decreased compared with AKR mice. Central brain-derived neurotrophic factor (BDNF) administration (300 ng i.c.v.) reduced 5-HT1A and 5-HT(2A) receptor mRNA levels in the frontal cortex and tph-2 mRNA level in the midbrain of AKR mice. However, BDNF failed to produce any effect on the expression of 5-HT(1A) , 5-HT(2A) , and tph-2 genes in 76C mice but decreased functional activity of 5-HT(2A) receptors in 76C mice and increased it in AKR mice. BDNF restored social deficiency in 76C mice but produced asocial behavior (aggressive attacks towards young mice) in AKR mice. The data indicate that a small genetic variation altered the response to BDNF and show an important role of 5-HT(1A) receptor gene in the 5-HT system response to BDNF treatment and in behavioral effects of BDNF. PMID:24706292

  5. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    SciTech Connect

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. )

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  6. Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission.

    PubMed

    Ebner, Karl; Singewald, Georg M; Whittle, Nigel; Ferraguti, Francesco; Singewald, Nicolas

    2008-07-01

    Antagonists of the substance P (SP) preferring neurokinin 1 receptor (NK1R) represent a promising novel class of drugs for the treatment of stress-related disorders such as depression and anxiety disorders; however, the involved neuronal pathways releasing SP in response to stressors are ill defined. By using in vivo microdialysis in combination with a highly sensitive and selective radioimmunoassay we found that exposure to forced swim stress increased SP release in the rat lateral septum (LS), a key area in processing emotions and stress responses. Acute administration of the selective NK1R antagonist L-822429 injected either systemically or locally into the LS reduced passive and facilitated active stress-coping strategies in the forced swim test. This effect seems to be mediated by enhanced intraseptal serotonergic transmission via serotonin (5-HT)1A receptors since NK1R blockade reversed the swim stress-induced decrease to an increase in extracellular 5-HT efflux, and furthermore the behavioral effects of L-822429 were blocked by intraseptal 5-HT1A receptor antagonism. A direct heterosynaptic regulation by NK1R on 5-HT release from serotonergic fibers was ruled out by immunocytochemistry at the light and electron microscopic level indicating involvement of GABAergic interneuron(s) in this interaction. Taken together, our data identify the LS as a critical brain area for the involvement of SP transmission in the modulation of stress responses and demonstrate that NK1R blockade can elicit a functionally significant facilitatory effect on 5-HT transmission, which does not necessarily involve the previously proposed interaction with neuronal firing at the cell body level of raphe neurons. PMID:17957216

  7. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior.

    PubMed

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe; Franceschini, Silvia; Trotta, Francesco; Borriello, Marianna; Ceres, Nicoletta; Ros, Sindu; Coccone, Salvatore Sanna; Bernetti, Matteo; De Angelis, Meri; Brindisi, Margherita; Nacci, Vito; Fiorini, Isabella; Novellino, Ettore; Cagnotto, Alfredo; Mennini, Tiziana; Sandager-Nielsen, Karin; Andreasen, Jesper Tobias; Scheel-Kruger, Jorgen; Mikkelsen, Jens D; Fattorusso, Caterina

    2009-01-01

    Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c-fos expression in mesocorticolimbic areas, confirmed an atypical antipsychotic profile of 5i in vivo, characterized by the absence of catalepsy at antipsychotic dose. PMID:19072656

  8. Synaptic connectivity of amine-containing neurosecretory cells of lobsters: Inputs to 5HT-and OCT-containing neurons

    E-print Network

    Cromarty, Stuart I.

    - 1 - Synaptic connectivity of amine-containing neurosecretory cells of lobsters: Inputs to 5HT like aggression. In lobsters the biogenic amines 5HT and OCT appear to be involved in the modulation also influence how long losing lobsters and crayfish are willing to fight (Huber et al., 1997

  9. Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor.

    PubMed

    Ponnala, Shashikanth; Kapadia, Nirav; Madapa, Sudharshan; Alberts, Ian L; Harding, Wayne W

    2015-11-15

    A series of C1 aporphine analogs related to compound 5 and that contain substituted allylic, alkynyl, nitrile, ester and benzyl groups was synthesized and evaluated for affinity at h5HT2A and ?1A receptors in functional activity assays that measure calcium release. The presence of branched allylic substituent groups diminished affinity for the h5HT2A receptor. Likewise, the alkynyl, nitrile and ester derivatives evaluated displayed lower 5-HT2A receptor affinity as compared to 5. Hydrophobic, steric and electronic effects impact the affinity of p-substituted benzyl derivatives 8i-8k but in different ways. High hydrophobicity and size favor 5-HT2A affinity whereas, high electronegativity disfavors 5-HT2A affinity. p-Bromobenzyl analog 8k was identified as a 5-HT2A receptor selective ligand, with the highest 5-HT2A receptor affinity of any aporphine known to date. Most of the other analogs were selective for the 5-HT2A versus the ?1A receptor. ChemScore binding energies from docking studies correlated qualitatively with the observed trends in affinity for 8i-8k, although the binding energies were not well differentiated quantitatively. PMID:26475518

  10. Role of "Aplysia" Cell Adhesion Molecules during 5-HT-Induced Long-Term Functional and Structural Changes

    ERIC Educational Resources Information Center

    Han, Jin-Hee; Lim, Chae-Seok; Lee, Yong-Seok; Kandel, Eric R.; Kaang, Bong-Kiun

    2004-01-01

    We previously reported that five repeated pulses of 5-HT lead to down-regulation of the TM-apCAM isoform at the surface of "Aplysia" sensory neurons (SNs). We here examined whether apCAM down-regulation is required for 5-HT-induced long-term facilitation. We also analyzed the role of the cytoplasmic and extracellular domains by overexpressing…

  11. A phase 1 randomized study evaluating the effect of omeprazole on the pharmacokinetics of a novel 5-hydroxytryptamine receptor 4 agonist, revexepride (SSP-002358), in healthy adults

    PubMed Central

    Pierce, David; Corcoran, Mary; Velinova, Maria; Hossack, Stuart; Hoppenbrouwers, Mieke; Martin, Patrick

    2015-01-01

    Background About 30% of patients with gastroesophageal reflux disease continue to experience symptoms despite treatment with proton pump inhibitors. The 5-hydroxytryptamine 4 receptor agonist revexepride (SSP-002358) is a novel prokinetic that stimulates gastrointestinal motility, which has been suggested as a continued cause of symptoms in these patients. The aim of this study was to assess whether revexepride pharmacokinetics were affected by co-administration of omeprazole, in preparation for a proof-of-concept evaluation of revexepride added to proton pump inhibitor treatment. Methods In this phase 1, open-label, randomized, two-period crossover study, healthy adults aged 18–55 years were given a single dose of revexepride 1 mg or revexepride 1 mg + omeprazole 40 mg. Pharmacokinetic parameters were assessed for up to 48 hours after administration of the investigational product. Adverse events, clinical chemistry and hematology parameters, electrocardiograms, and vital signs were monitored. Results In total, 42 participants were enrolled and 40 completed the study. The median age was 24 years (18–54 years), 55% were women and 93% were white. The pharmacokinetic parameters of revexepride were similar without or with omeprazole co-administration. The mean area under the plasma concentration–time curve from time 0 to infinity (AUC0–?) was 23.3 ng · h/mL (standard deviation [SD]: 6.33 ng · h/mL) versus 24.6 ng · h/mL (SD: 6.31 ng · h/mL), and maximum plasma concentrations (Cmax) were 3.89 ng/mL (SD: 1.30 ng/mL) and 4.12 ng/mL (SD: 1.29 ng/mL) in participants without and with omeprazole, respectively. For AUC0–? and Cmax, the 90% confidence intervals for the ratios of geometric least-squares means (with:without omeprazole) were fully contained within the pre-defined equivalence limits of 0.80–1.25. Mean apparent terminal phase half-life was 9.95 hours (SD: 2.06 hours) without omeprazole, and 11.0 hours (SD: 3.25 hours) with omeprazole. Conclusion Co-administration of the 5-hydroxytryptamine receptor 4 agonist revexepride with omeprazole did not affect the pharmacokinetics of revexepride in healthy adults. PMID:25767373

  12. Altered responsiveness to 5-HT at the crayfish neuromuscular junction due to chronic p-CPA and m-CPP treatment.

    PubMed

    Cooper, R L; Chase, R J; Tabor, J

    2001-10-19

    Serotonin (5-HT) levels in the hemolymph of crustaceans has been implied to alter aggressiveness which influences social interactions. The activation of IP3 as a second messenger cascade within crayfish motor neurons in response to application of 5-HT, suggests that the 5-HT receptor subtypes on the motor neurons are analogous to the vertebrate 5-HT2A receptors. Based on evidence in other systems, it would be expected that chronically sustained 5-HT levels in aggressive individuals would result in a compensatory negative feed-back regulation and/or that target tissues would diminish their sensitivity to high levels of circulating, free 5-HT. We addressed the issue of up- and down-regulation in the sensitivity of the responsiveness to exogenously applied 5-HT at the NMJs of crayfish in which the animals have altered endogenous 5-HT levels. Injections of the 5-HT1 and 5-HT2 vertebrate receptor agonist, 1-(3-Chlorophenyl) piperazine dihydrochloride (m-CPP), for 1 week resulted in a decreased responsiveness to application of 5-HT. The compound p-chlorophenylalanine (p-CPA) blocks the enzymatic synthesis of 5-HT and following 7 days of p-CPA injections, a super-sensitivity to exogenous application of 5-HT for both tonic and phasic neuromuscular junctions (NMJs) was observed. However, acute applications of p-CPA and m-CPP, followed by extensive saline washing, did not reveal any altered receptivity to 5-HT application. PMID:11597601

  13. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects

    PubMed Central

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato

    2015-01-01

    Backgound: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Methods: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC-/-) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. Results: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC-/- mice, as administration of 8-bromoadenosine 3’, 5’-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Conclusions: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. PMID:25899065

  14. Effects of serotonin 5-HT(2A/2C) antagonists on associative learning in the rabbit.

    PubMed

    Welsh, S E; Romano, A G; Harvey, J A

    1998-05-01

    The 5-HT(2A/2C) receptor antagonist, ritanserin, was reported to retard the acquisition of conditioned responses (CRs) during classical conditioning of the rabbit's nictitating membrane (NM) response. The present study compared the effects of ritanserin on acquisition of CRs to a tone conditioned stimulus (CS) with that of the 5-HT(2A/2C) receptor antagonist, LY-53,857 and the 5-HT2A selective antagonist, MDL-11,939. All three drugs were injected at equimolar doses of 0.067, 0.67 and 6.7 micromol/kg, SC, 1 h before behavioral testing. Ritanserin and MDL-11,939 retarded CR acquisition to a tone CS, while LY-53,857 had no effect. Control experiments demonstrated that ritanserin (1 micromol/kg), MDL-11,939 (1 micromol/kg) and LY-53,857 (2 micromol/kg) had no effect on baseline responding or non-associative responding to the CS. However, both ritanserin and MDL-11,939 impaired the performance of the unconditioned NM reflex, as measured by a decrease in UR amplitudes on US alone trials, while LY-53,857 had no effect. In previously trained animals, ritanserin robustly impaired the performance of CRs, as measured by a reduced ability of the CS to elicit CRs, while the effects of LY-53,857 and MDL-11,939 were marginal. The retardation of associative learning produced by ritanserin and MDL-11,939 may have been due, at least in part, to their impairment of the NM reflex arc. Since MDL-11,939 is a highly selective 5-HT2A antagonist, the retardation of learning and impairment of UR amplitudes produced by MDL-11,939 and ritanserin may have been due to blockade of the 5-HT2A receptor. The ability of ritanserin and MDL-11,939 to produce effects on learning and performance that were opposite to that of 5-HT(2A/2C) agonists suggests that they may be acting as inverse agonists at that receptor. These results stress the importance of the serotonergic system for optimal associative learning and motor function. PMID:9630002

  15. Theoretical evaluation of antiemetic effects of 5-HT3 receptor antagonists for prevention of vomiting induced by cisplatin.

    PubMed

    Nakamura, Hironori; Yokoyama, Haruko; Takayanagi, Risa; Yoshimoto, Koichi; Nakajima, Akihiro; Okuyama, Kiyoshi; Iwase, Osamu; Yamada, Yasuhiko

    2015-03-01

    5-HT(3) receptor antagonists are widely used as antiemetic agents in clinical setting, of which palonosetron, with a long elimination half life (t(1/2)), has recently become available. It is important to evaluate the concentration of serotonin when investigating the antiemetic effects of 5-HT(3) receptor antagonists, as those effects are not based solely on the t(1/2) value. We theoretically evaluated the antiemetic effects of three 5-HT(3) receptor antagonists (granisetron, azasetron, palonosetron) on cisplatin-induced nausea and vomiting by estimating the time course of the 5-HT(3) receptor occupancy of serotonin. We estimated the 5-HT(3) receptor occupancy of serotonin in the small intestine, based on the time course of plasma concentration of each 5-HT(3) receptor antagonist and the time course of concentration of serotonin near the 5-HT(3) receptor in the small intestine after administration of cisplatin. The antiemetic effect of each 5-HT(3) receptor antagonist was evaluated based on the normal level of 5-HT(3) receptor occupancy of serotonin. Our results suggest that an adequate antiemetic effect will be provided when a dose of 75 mg/m(2) of cisplatin is given to patients along with any single administration of granisetron, azasetron, or palonosetron at a usual dose. On the other hand, the 5-HT(3) receptor occupancy of serotonin was found to be significantly lower than normal for several days after administration of palonosetron, as compared to granisetron and azasetron, indicating that constipation may be induced. Our results show that granisetron, azasetron, and palonosetron each have an adequate antiemetic effect after administration of 75 mg/m(2) of cisplatin. PMID:24470169

  16. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist

    PubMed Central

    Newman-Tancredi, A; Martel, J-C; Assié, M-B; Buritova, J; Lauressergues, E; Cosi, C; Heusler, P; Slot, L Bruins; Colpaert, FC; Vacher, B; Cussac, D

    2009-01-01

    Background and purpose: Activation of post-synaptic 5-HT1A receptors may provide enhanced therapy against depression. We describe the signal transduction profile of F15599, a novel 5-HT1A receptor agonist. Experimental approach: F15599 was compared with a chemical congener, F13714, and with (+)8-OH-DPAT in models of signal transduction in vitro and ex vivo. Key results: F15599 was highly selective for 5-HT1A receptors in binding experiments and in [35S]-GTP?S autoradiography of rat brain, where F15599 increased labelling in regions expressing 5-HT1A receptors. In cell lines expressing h5-HT1A receptors, F15599 more potently stimulated extracellular signal-regulated kinase (ERK1/2) phosphorylation, compared with G-protein activation, internalization of h5-HT1A receptors or inhibition of cAMP accumulation. F13714, (+)8-OH-DPAT and 5-HT displayed a different rank order of potency for these responses. F15599 stimulated [35S]-GTP?S binding more potently in frontal cortex than raphe. F15599, unlike 5-HT, more potently and efficaciously stimulated G?i than G?o activation. In rat prefrontal cortex (a region expressing post-synaptic 5-HT1A receptors), F15599 potently activated ERK1/2 phosphorylation and strongly induced c-fos mRNA expression. In contrast, in raphe regions (expressing pre-synaptic 5-HT1A receptors) F15599 only weakly or did not induce c-fos mRNA expression. Finally, despite its more modest affinity in vitro, F15599 bound to 5-HT1A receptors in vivo almost as potently as F13714. Conclusions and implications: F15599 showed a distinctive activation profiles for 5-HT1A receptor-mediated signalling pathways, unlike those of reference agonists and consistent with functional selectivity at 5-HT1A receptors. In rat, F15599 potently activated signalling in prefrontal cortex, a feature likely to underlie its beneficial effects in models of depression and cognition. PMID:19154445

  17. Structure and functional expression of cloned rat serotonin 5HT-2 receptor.

    PubMed Central

    Pritchett, D B; Bach, A W; Wozny, M; Taleb, O; Dal Toso, R; Shih, J C; Seeburg, P H

    1988-01-01

    A complementary DNA (cDNA) encoding a serotonin receptor with 51% sequence identity to the 5HT-1C subtype was isolated from a rat brain cDNA library by homology screening. Transient expression of the cloned cDNA in mammalian cells was used to establish the pharmacological profile of the encoded receptor polypeptide. Membranes from transfected cells showed high-affinity binding of the serotonin antagonists spiperone, ketanserin and mianserin, low affinity for haloperidol (a dopamine D2 receptor antagonist), 8-OH-DPAT as well as MDL-72222 and no detectable binding of [3H]serotonin. This profile is consonant with the 5HT-2 subtype of serotonin receptors. In agreement with this assignment, serotonin increased the intracellular Ca2+ concentration and activated phosphoinositide hydrolysis in transfected mammalian cells. The agonist also elicited a current flow, blocked by spiperone, in Xenopus oocytes injected with in vitro synthesized RNA containing the cloned nucleotide sequences. PMID:2854054

  18. Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.

    PubMed

    Prinssen, E P; Ellenbroek, B A; Cools, A R

    1994-09-01

    Previous studies have shown that alpha 1-adrenoceptors, dopamine D1-like and 5-HT2A receptors play an important role in the effects of the atypical neuroleptic, clozapine, on the parameter modelling antipsychotic efficacy in the paw test. Therefore, it became of interest to investigate whether antagonism of all these receptors together would give rise to effects characteristic of clozapine. The effects of the combined administration of the alpha 1-adrenoceptor antagonist phenoxybenzamine, the dopamine D1 receptor antagonist, SCH 39166 (4-(4-chloro-3-methoxyphenyl)-1,2- dihydronaphthalene), and the 5-HT2A receptor antagonist, ketanserin, were therefore measured in the paw test. The present data show that all three drugs together, but not simply combinations of two out of three, produced a profile similar to that of clozapine: a significant increase in the parameter modelling antipsychotic efficacy and no change in the parameter modelling extrapyramidal side-effects. PMID:7813569

  19. Neonatal capsaicin treatment abolishes the nociceptive responses to intravenous 5-HT in the rat.

    PubMed

    Meller, S T; Lewis, S J; Ness, T J; Brody, M J; Gebhart, G F

    1991-03-01

    The intravenous (i.v.) administration of serotonin (5-HT) to lightly pentobarbital-anesthetized rats is known to produce a triad of reflex cardiovascular responses, distinct afferent-mediated pseudaffective reactions, and a vagally mediated inhibition of the nociceptive tail-flick (TF) reflex consistent with 5-HT acting as a noxious stimulus. In the present experiments we examined the involvement of capsaicin-sensitive afferents in mediating these responses. Lightly pentobarbital-anesthetized 16-week-old male Sprague-Dawley rats which had been treated as neonates (in the first 48 h of life) with capsaicin (50 micrograms/kg, s.c.) were compared to age-matched neonatal vehicle-treated controls. Whereas the i.v. administration of 5-HT produced a dose-dependent (6-96 micrograms/kg, i.v.) inhibition of the nociceptive TF reflex (ED50 = 48.1 +/- 11.3 micrograms/kg; n = 7) and distinct pseudaffective responses (usually by 24-48 micrograms/kg) in vehicle-treated rats, 5-HT (6-192 micrograms/kg, i.v.) failed to significantly alter TF latency or produce pseudaffective behaviors in the capsaicin-treated rats (n = 10). There was no difference in baseline TF latencies between the two groups. There were essentially no differences between vehicle- and capsaicin-treated rats with respect to the initial cardiopulmonary vagal afferent-mediated (Bezold-Jarisch reflex) decreases in heart rate and arterial blood pressure or the subsequent pressor phase. However, the magnitude of the late hypotensive phase was significantly greater in capsaicin-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1709387

  20. From mouse to man: the 5-HT3 receptor modulates physical dependence on opioid narcotics

    PubMed Central

    Chu, Larry F.; Liang, De-Yong; Li, Xiangqi; Sahbaie, Peyman; D'Arcy, Nicole; Liao, Guochun; Peltz, Gary; Clark, J. David

    2009-01-01

    Objectives Addiction to opioid narcotics represents a major public health challenge. Animal models of one component of addiction, physical dependence, show this trait to be highly heritable. The analysis of opioid dependence using contemporary in-silico techniques offers an approach to discover novel treatments for dependence and addiction. Methods In these experiments, opioid withdrawal behavior in 18 inbred strains of mice was assessed. Mice were treated for 4 days with escalating doses of morphine before the administration of naloxone allowing the quantification of opioid dependence. After haplotypic analysis, experiments were designed to evaluate the top gene candidate as a modulator of physical dependence. Behavioral studies as well as measurements of gene expression on the mRNA and protein levels were completed. Finally, a human model of opioid dependence was used to quantify the effects of the 5-HT3 antagonist ondansetron on signs and symptoms of withdrawal. Results The Htr3a gene corresponding to the 5-HT3 receptor emerged as the leading candidate. Pharmacological studies using the selective 5-HT3 antagonist ondansetron supported the link in mice. Morphine strongly regulated the expression of the Htr3a gene in various central nervous system regions including the amygdala, dorsal raphe, and periaqueductal gray nuclei, which have been linked to opioid dependence in previous studies. Using an acute morphine administration model, the role of 5-HT3 in controlling the objective signs of withdrawal in humans was confirmed. Conclusion These studies show the power of in-silico genetic mapping, and reveal a novel target for treating an important component of opioid addiction. PMID:19214139

  1. Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats.

    PubMed

    Liao, Chun-Chieh; Lee, Li-Jen

    2014-02-01

    Serotonin (5-HT), the target of numerous psychiatric medicines, plays important roles in neural development. In this study we examined the direct effects of 5-HT on the physiological properties of neurons in the cortical subplate, a structure that develops early in life and is important for the maturation of cortical circuits. Acute brain slices were prepared from neonatal rats and the intrinsic and synaptic properties of subplate neurons (SPns) were evaluated before and after 5-HT bath-application. In all concentrations tested, 5-HT did not affect the intrinsic properties of SPns. However, thalamus-evoked excitatory postsynaptic currents (eEPSCs) in SPn were significantly suppressed by 5-HT in a dose-dependent manner. Because 5-HT did not affect AMPA- or NMDA-induced currents, it is unlikely that a 5-HT-mediated postsynaptic mechanism reduced EPSCs. Subsequent to 5-HT application, increased paired-pulse ratios and decreased MK-801 blocking rates were noted, indicating the presence of a presynaptic 5-HT receptor-mediated suppressive effect in the thalamocortical afferent (TCA)-SPn synapses. To elucidate the type(s) of 5-HT receptor involved in this process, various 5-HT receptor agonists and antagonists were tested. CP93129, a 5-HT(1B) receptor agonist, mimicked the effect of 5-HT and in the contrary, the 5-HT(1B) receptor antagonist SB224289 prevented 5-HT-mediated synaptic suppression. Our cumulative data demonstrated the presynaptic 5-HT(1B) receptor-mediated suppressive effect on the excitatory synapses between TCAs and SPns in the somatosensory cortex of neonatal rats. Early exposure to drugs that might interrupt 5-HT homeostasis should be considered. PMID:24055501

  2. A quantitative model of amphetamine action on the 5-HT transporter

    PubMed Central

    Sandtner, Walter; Schmid, Diethart; Schicker, Klaus; Gerstbrein, Klaus; Koenig, Xaver; Mayer, Felix P; Boehm, Stefan; Freissmuth, Michael; Sitte, Harald H

    2014-01-01

    Background and Purpose Amphetamines bind to the plasmalemmal transporters for the monoamines dopamine (DAT), noradrenaline (NET) and 5-HT (SERT); influx of amphetamine leads to efflux of substrates. Various models have been proposed to account for this amphetamine-induced reverse transport in mechanistic terms. A most notable example is the molecular stent hypothesis, which posits a special amphetamine-induced conformation that is not likely in alternative access models of transport. The current study was designed to evaluate the explanatory power of these models and the molecular stent hypothesis. Experimental Approach Xenopus laevis oocytes and HEK293 cells expressing human (h) SERT were voltage-clamped and exposed to 5-HT, p-chloroamphetamine (pCA) or methylenedioxyamphetamine (MDMA). Key Results In contrast to the currents induced by 5-HT, pCA-triggered currents through SERT decayed slowly in Xenopus laevis oocytes once the agonist was removed (consistent with the molecular stent hypothesis). However, when SERT was expressed in HEK293 cells, currents induced by 3 or 100??M pCA decayed 10 or 100 times faster, respectively, after pCA removal. Conclusions and Implications This discrepancy in decay rates is inconsistent with the molecular stent hypothesis. In contrast, a multistate version of the alternative access model accounts for all the observations and reproduces the kinetic parameters extracted from the electrophysiological recordings. A crucial feature that explains the action of amphetamines is their lipophilic nature, which allows for rapid diffusion through the membrane. PMID:24251585

  3. The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation

    PubMed Central

    Richerson, George B.

    2010-01-01

    The functional roles of the medullary raphé, and specifically 5-HT neurons, are not well understood. It has previously been stated that the role of 5-HT has been so difficult to understand, because “it is implicated in virtually everything, but responsible for nothing”(Cowen PJ. Foreword. In: Serotonin and Sleep: Molecular, Functional and Clinical Aspects, edited by Monti JM, Prandi-Perumal SR, Jacobs BL, Nutt DJ. Switzerland: Birkhauser, 2008). Are 5-HT neurons important, and can we assign a general, or even specific, function to them given their diffuse projections? Recent data obtained from transgenic animals and other model systems indicate that the 5-HT system is not expendable, particularly during postnatal development, and likely plays specific roles in vital functions such as respiratory and thermoregulatory control. We recently provided a detailed and updated review of one specific function of 5-HT neurons, as central respiratory chemoreceptors contributing to the brain's ability to detect changes in pH/CO2 and stimulate adjustments to ventilation accordingly (9). Here, we turn our focus to recent data demonstrating that 5-HT neurons provide an essential excitatory drive to the respiratory network. We then further discuss their role in the CO2 chemoreflex, as well as other homeostatic functions that are closely related to ventilatory control. Last, we provide additional hypotheses/concepts that are worthy of further study, and how 5-HT neurons may be involved in human disease. PMID:20133432

  4. The effects of chronic ethanol self-administration on hippocampal 5-HT1A receptors in monkeys

    PubMed Central

    Burnett, Elizabeth J.; Grant, Kathleen A.; Davenport, April T.; Hemby, Scott E.; Friedman, David P.

    2014-01-01

    BACKGROUND Chronic alcohol consumption reduces brain serotonin and alters the synaptic mechanisms involved in memory formation. Hippocampal 5-HT1A receptors modulate these mechanisms, but the neuroadaptive response of 5HT1A receptors to chronic alcohol self-administration is not well understood. METHODS Hippocampal tissue from monkeys that voluntarily self-administered ethanol for 12 months (n=9) and accompanying controls (n=8) were prepared for in vitro receptor autoradiography and laser capture microdissection. The 5-HT1A receptor antagonist, [3H]MPPF, and the agonist, [3H]8-OH-DPAT, were used to measure total and G-protein coupled 5-HT1A receptors respectively. The expression of the genes encoding the 5-HT1A receptor and its trafficking protein Yif1B was measured in microdissected dentate gyrus (DG) granule cells and CA1 pyramidal neurons. RESULTS An increase in G-protein coupled, but not total, receptors was observed in the posterior pyramidal cell layer of CA1 in ethanol drinkers compared to controls. Chronic ethanol self-administration was also associated with an up-regulation of total and G-protein coupled 5-HT1A receptors in the posterior DG polymorphic layer. Changes in receptor binding were not associated with concomitant changes in 5-HT1A receptor mRNA expression. Chronic ethanol self-administration was associated with a significant increase in Yif1B gene expression in posterior CA1 pyramidal neurons. CONCLUSIONS Chronic, ethanol self-administration up-regulates hippocampal 5-HT1A receptor density in a region-specific manner that does not appear to be due to alterations at the level of transcription but instead may be due to increased receptor trafficking. Further exploration of the mechanisms mediating chronic ethanol-induced 5-HT1A receptor up-regulation and how hippocampal neurotransmission is altered is warranted. PMID:24467872

  5. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a postsynaptic effect of 8-OH-DPAT leading to a gradually developing inhibition by activation of 5-HT-1A receptors. Hyperventilatory apnoea depressed on-going synaptic activity and unmasked the effect of ionophoretically applied 8-OH-DPAT. The responses of the E-2 neurone were enhanced, as evidenced by increased membrane hyperpolarization and greater reduction of input resistance. Both responses faded appreciably, indicating receptor desensitization. The degree and rate of apparent desensitization depended on the dose/ejecting current. The greater sensitivity and faster desensitization to 8-OH-DPAT were attributed to the hyperventilatory alkalinization of the extracellular fluid, which might influence agonist binding to 5HT-1A receptors and/or receptor properties. Images Figure 9 PMID:8046627

  6. Blockade of 5-HT2a receptors reduces haloperidol-induced attenuation of reward.

    PubMed

    Benaliouad, Faïza; Kapur, Shitij; Rompré, Pierre-Paul

    2007-03-01

    Previous studies have shown that effective antipsychotic medications attenuate reward, an effect that is generally attributed to their effectiveness at blocking the dopamine D2-like receptors. As blockade of the serotonin type 2a (5-HT2a) receptors is a common property of the newer antipsychotics, the present study compared the effect of haloperidol, clozapine, and M100907 (a selective 5-HT2a antagonist) and the combined effect of haloperidol and M100907 treatment on brain stimulation reward (BSR). Experiments were performed on male Sprague-Dawley rats trained to produce an operant response to obtain electrical stimulation in the lateral hypothalamus. Measures of reward threshold were determined in different groups of rats using the curve-shift method using fixed current intensity and variable frequency before and at different times after injection of haloperidol (0.01, 0.05, 0.1, and 0.25 mg/kg), clozapine (1, 7.5, 15, and 30 mg/kg), M100907 (0.033, 0.1, and 0.3 mg/kg), or their vehicle. The effect of M100907 (0.3 mg/kg) on the attenuation of BSR by a sub- and suprathreshold dose of haloperidol was studied in another group of rats. Clozapine produced a dose-orderly increase in reward threshold with a mean maximal increase of 50%; at high doses, clozapine induced cessation of responding in several animals at different time periods. Haloperidol induced a dose-dependent increase in reward threshold, with the mean maximal increase (75%) being observed at the highest dose; it also produced a dose-dependent reduction of maximum rates of responding. M100907 failed to alter reward at any of the doses tested and had no effect on the subthreshold dose (0.01 mg/kg) of haloperidol. But when combined with a suprathreshold dose of haloperidol, M100907 reduced the reward-attenuating effect of haloperidol. These results show that 5-HT2a receptors are unlikely to constitute a component of the reward-relevant pathway activated by lateral hypothalamic stimulation. However, blockade of 5-HT2a receptors may account for the relatively lower level of reward attenuation produced by clozapine, and predict that antipsychotic medications that have a high affinity for the 5-HT2a receptor may be less likely to induce dysphoria. PMID:16794561

  7. Development of Plate Reader and On-Line Microfluidic Screening to Identify Ligands of the 5-Hydroxytryptamine Binding Protein in Venoms

    PubMed Central

    Otvos, Reka A.; Krishnamoorthy Iyer, Janaki; van Elk, René; Ulens, Chris; Niessen, Wilfried M. A.; Somsen, Govert W.; Kini, R. Manjunatha; Smit, August B.; Kool, Jeroen

    2015-01-01

    The 5-HT3 receptor is a ligand-gated ion channel, which is expressed in the nervous system. Its antagonists are used clinically for treatment of postoperative- and radiotherapy-induced emesis and irritable bowel syndrome. In order to better understand the structure and function of the 5-HT3 receptor, and to allow for compound screening at this receptor, recently a serotonin binding protein (5HTBP) was engineered with the Acetylcholine Binding Protein as template. In this study, a fluorescence enhancement assay for 5HTBP ligands was developed in plate-reader format and subsequently used in an on-line microfluidic format. Both assay types were validated using an existing radioligand binding assay. The on-line microfluidic assay was coupled to HPLC via a post-column split which allowed parallel coupling to a mass spectrometer to collect MS data. This high-resolution screening (HRS) system is well suitable for compound mixture analysis. As a proof of principle, the venoms of Dendroapsis polylepis, Pseudonaja affinis and Pseudonaja inframacula snakes were screened and the accurate masses of the found bioactives were established. To demonstrate the subsequent workflow towards structural identification of bioactive proteins and peptides, the partial amino acid sequence of one of the bioactives from the Pseudonaja affinis venom was determined using a bottom-up proteomics approach. PMID:26114334

  8. Development of Plate Reader and On-Line Microfluidic Screening to Identify Ligands of the 5-Hydroxytryptamine Binding Protein in Venoms.

    PubMed

    Otvos, Reka A; Iyer, Janaki Krishnamoorthy; van Elk, René; Ulens, Chris; Niessen, Wilfried M A; Somsen, Govert W; Kini, R Manjunatha; Smit, August B; Kool, Jeroen

    2015-07-01

    The 5-HT3 receptor is a ligand-gated ion channel, which is expressed in the nervous system. Its antagonists are used clinically for treatment of postoperative- and radiotherapy-induced emesis and irritable bowel syndrome. In order to better understand the structure and function of the 5-HT3 receptor, and to allow for compound screening at this receptor, recently a serotonin binding protein (5HTBP) was engineered with the Acetylcholine Binding Protein as template. In this study, a fluorescence enhancement assay for 5HTBP ligands was developed in plate-reader format and subsequently used in an on-line microfluidic format. Both assay types were validated using an existing radioligand binding assay. The on-line microfluidic assay was coupled to HPLC via a post-column split which allowed parallel coupling to a mass spectrometer to collect MS data. This high-resolution screening (HRS) system is well suitable for compound mixture analysis. As a proof of principle, the venoms of Dendroapsis polylepis, Pseudonaja affinis and Pseudonaja inframacula snakes were screened and the accurate masses of the found bioactives were established. To demonstrate the subsequent workflow towards structural identification of bioactive proteins and peptides, the partial amino acid sequence of one of the bioactives from the Pseudonaja affinis venom was determined using a bottom-up proteomics approach. PMID:26114334

  9. Effect of the 5-hydroxytryptamine type 2 receptor antagonist, ketanserin, on blood pressure, the renin-angiotensin system and sympatho-adrenal function in patients with essential hypertension.

    PubMed Central

    Zabludowski, J R; Zoccali, C; Isles, C G; Murray, G D; Robertson, J I; Inglis, G C; Fraser, R; Ball, S G

    1984-01-01

    Ketanserin, a 5-HT type 2 receptor antagonist, was administered intravenously to nine patients with essential hypertension in a double-blind placebo controlled study to investigate the drug's effects on blood pressure, heart rate, the renin-angiotensin system and sympatho-adrenal function. Average blood-pressure for the group prior to injection of the drug was 150 +/- 7/94 +/- 4 (s.e. mean) mm Hg and decreased significantly (P less than 0.01) to 137 +/- 8/88 +/- 5 mm Hg during the 2 h after injection; heart rate increased immediately after injection of ketanserin, reaching a maximum of 81 +/- 4 beats/min. After drug administration systolic and diastolic blood pressure decreased on tilting, but the heart rate response was not different from that with placebo. Ketanserin did not affect the blood pressure response to graded infusion of the alpha 1-adrenoceptor agonist phenylephrine. Plasma active renin, angiotensin II and aldosterone concentrations increased slightly but not significantly after the drug; plasma noradrenaline increased transiently. 5-HT may be important in the maintenance of blood pressure but alternative mechanisms for the action of ketanserin in reducing blood pressure require investigation. PMID:6712863

  10. Novel Role of the JAK-STAT Pathway in Mediating the Effects of Atypical Antipsychotics on 5-HT2A Receptor Signaling

    E-print Network

    Singh, Rakesh K.

    2008-05-06

    Biosynthesis and Metabolism 10 Serotonin Receptors 11 5-HT Receptors 12 5-HT 2A Receptors 14 Depression and 5-HT 2A Receptors 16 Schizophrenia and 5-HT 2A Receptors 18 Signaling... sclerosis NCSC Nomenclature Committee of the NMDA N-methyl-D-aspartic acid NO Nitric oxide of transcription PC12 Pheochromocytoma of the rat adrenal medulla PCPA Parachorophenylalanine PCR Polymerase chain...

  11. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT1A and 5-HT2A receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT1A/5-HT2A-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT1A-R and 5-HT2A-R, using wild type (WT) and 5-HT2A-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT1A-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT1A-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT1A-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT1A-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT2A-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development. PMID:26477571

  12. Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-( sup 125 I) iodophenyl)-2-aminopropane (( sup 125 I)DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain

    SciTech Connect

    Appel, N.M.; Mitchell, W.M.; Garlick, R.K.; Glennon, R.A.; Teitler, M.; De Souza, E.B. )

    1990-11-01

    The 5-HT2 (serotonin) receptor has traditionally been labeled with antagonist radioligands such as (3H)ketanserin and (3H)spiperone, which label both agonist high-affinity (guanyl nucleotide-sensitive) and agonist low-affinity (guanyl nucleotide-insensitive) states of this receptor. The hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) is an agonist which labels the high-affinity guanyl nucleotide-sensitive state of brain 5-HT2 receptors selectively. In the present study, conditions for autoradiographic visualization of (+/-)-(125I)DOI-labeled 5-HT2 receptors were optimized and binding to slide-mounted sections was characterized with respect to pharmacology, guanyl nucleotide sensitivity and anatomical distribution. In slide-mounted rat brain sections (+/-)-(125I)DOI binding was saturable, of high affinity (KD approximately 4 nM) and displayed a pharmacologic profile typical of 5-HT2 receptors. Consistent with coupling of 5-HT2 receptors in the high-affinity state to a guanyl nucleotide regulatory protein, (125I)DOI binding was inhibited by guanyl nucleotides but not by adenosine triphosphate. Patterns of autoradiographic distribution of (125I)DOI binding to 5-HT2 receptors were similar to those seen with (3H)ketanserin- and (125I)-lysergic acid diethylamide-labeled 5-HT2 receptors. However, the density of 5-HT2 receptors labeled by the agonist (125I)DOI was markedly lower (30-50%) than that labeled by the antagonist (3H)ketanserin. High densities of (125I)DOI labeling were present in olfactory bulb, anterior regions of cerebral cortex (layer IV), claustrum, caudate putamen, globus pallidus, ventral pallidum, islands of Calleja, mammillary nuclei and inferior olive. Binding in hippocampus, thalamus and hypothalamus was generally sparse.

  13. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments

    PubMed Central

    Sanberg, Cyndy Davis; Jones, Floretta L.; Do, Viet H.; Dieguez, Dario; Derrick, Brian E.

    2006-01-01

    Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated enhancement of LTP. In freely moving animals, systemic administration of the selective 5-HT1a antagonist WAY-100635 (WAY) attenuated LTP in a dose-dependent manner when LTP was induced while animals explored novel cages. In contrast, LTP was completely unaffected by WAY when induced in familiar environments. LTP was also blocked in anesthetized animals by direct application of WAY to the dentate gyrus, but not to the median raphe nucleus (MRN), suggesting the effect of systemic WAY is mediated by a block of dentate 5-HT1a receptors. Paradoxically, systemic administration of the 5-HT1a agonist 8-OH-DPAT also attenuated LTP. This attenuation was mimicked in anesthetized animals following application of 8-OH-DPAT to the MRN, but not the dentate gyrus. In addition, application of a 5-HT1a agonist to the dentate gyrus reduced somatic GABAergic inhibition. Because serotonergic projections from the MRN terminate on dentate inhibitory interneurons, these data suggest 5-HT1a receptors contribute to LTP induction via inhibition of GABAergic interneurons. Moreover, activation of raphe 5-HT1a autoreceptors, which inhibits serotonin release, attenuated LTP induction even in familiar environments. This suggests that serotonin normally contributes to dentate LTP induction in a variety of behavioral states. Together, these data suggest that serotonin and dentate 5-HT1a receptors play a permissive role in dentate LTP induction, particularly in novel conditions, and presumably, during the encoding of novel, hippocampus-relevant information. PMID:16452654

  14. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons.

    PubMed

    Lladó-Pelfort, Laia; Santana, Noemí; Ghisi, Valentina; Artigas, Francesc; Celada, Pau

    2012-07-01

    5-HT(1A) receptors (5-HT1AR) are expressed by pyramidal and ?-aminobutyric acidergic (GABAergic) neurons in medial prefrontal cortex (mPFC). Endogenous serotonin inhibits mPFC pyramidal neurons via 5-HT1AR while 5-HT1AR agonists, given systemically, paradoxically excite ventral tegmental area-projecting pyramidal neurons. This enhances mesocortical dopamine function, a process involved in the superior efficacy of atypical antipsychotic drugs on negative and cognitive symptoms of schizophrenia. Moreover, the 5-HT1AR-induced increase of pyramidal discharge may also contribute to the maintenance of activity patterns required for working memory, impaired in schizophrenia. Given the importance of these processes, we examined the neurobiological basis of pyramidal activation through 5-HT1AR using the prototypical agent 8-OH-DPAT. (±)8-OH-DPAT (7.5 ?g/kg i.v.) increased discharge rate and c-fos expression in rat mPFC pyramidal neurons. Local blockade of GABA(A) inputs with gabazine (SR-95531) avoided (±)8-OH-DPAT-induced excitations of pyramidal neurons. Moreover, (±)8-OH-DPAT administration reduced the discharge rate of mPFC fast-spiking GABAergic interneurons at doses exciting pyramidal neurons. Activation of other 5-HT1AR subpopulations (raphe nuclei or hippocampus) does not appear to contribute to pyramidal excitations. Overall, the present data suggest a preferential action of (±)8-OH-DPAT on 5-HT1AR in GABAergic interneurons. This results in pyramidal disinhibition and subsequent downstream excitations of subcortical structures reciprocally connected with PFC, such as midbrain dopaminergic neurons. PMID:21893679

  15. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    PubMed

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. PMID:26259827

  16. Synergistic antiemetic interactions between serotonergic 5-HT3 and tachykininergic NK1-receptor antagonists in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Chebolu, Seetha; Amos, Barry; Alkam, Tursun

    2011-10-01

    Significant electrophysiological and biochemical findings suggest that receptor cross-talk occurs between serotonergic 5-HT(3)- and tachykininergic NK(1)-receptors in which co-activation of either receptor by ineffective doses of their corresponding agonists (serotonin (5-HT) or substance P (SP), respectively) potentiates the activity of the other receptor to produce a response. In contrast, selective blockade of any one of these receptors attenuates the increase in abdominal vagal afferent activity caused by either 5-HT or SP. This interaction has important implications in chemotherapy-induced nausea and vomiting (CINV) since 5-HT(3)- and NK(1)-receptor antagonists are the major classes of antiemetics used in cancer patients receiving chemotherapy. The purpose of this study was to demonstrate whether the discussed interaction produces effects at the behavioral level in a vomit-competent species, the least shrew. Our results demonstrate that pretreatment with either a 5-HT(3) (tropisetron)- or an NK(1) (CP99,994)-receptor specific antagonist, attenuates vomiting caused by a selective agonist (2-methyl 5-HT or GR73632, respectively) of both emetic receptors. In addition, relative to each antagonist alone, their combined doses were 4-20 times more potent against vomiting caused by each emetogen. Moreover, combined sub-maximal doses of the agonists 2-methyl 5-HT and GR73632, produced 8-12 times greater number of vomits relative to each emetogen tested alone. However, due to large variability in vomiting caused by the combination doses, the differences failed to attain significance. The antiemetic dose-response curves of tropisetron against both emetogens were U-shaped probably because larger doses of this antagonist behave as a partial agonist. The data demonstrate that 5-HT(3)- and NK(1)-receptors cross-talk to produce vomiting, and that synergistic antiemetic effects occur when both corresponding antagonists are concurrently used against emesis caused by each specific emetogen. PMID:21683089

  17. Platelet serotonin transporter and 5-HT2A receptor binding in adolescents with eating disorders.

    PubMed

    Sigurdh, Jeanette; Allard, Per; Spigset, Olav; Hägglöf, Bruno

    2013-05-01

    The pathogenetic involvement of the serotonergic system in eating disorders is an established finding. Conclusions from platelet studies are based on results from investigations of subjects with a mean age of 20 years or more. The aim was to investigate whether previous findings in adults are valid also for adolescents who are examined within a relatively short interval after the onset of the eating disorder. [(3)H]paroxetine binding to the platelet serotonin transporter and [(3)H]lysergic acid diethylamide ([(3)H]LSD) binding to the 5-HT2A receptor was studied in 15 female adolescents with eating disorders (11 with anorexia nervosa and 4 with clearly anorectic eating behaviour not fulfilling the criteria for anorexia nervosa) and 32 controls. The patients revealed a higher density of serotonin transporters and a lower density of 5-HT2A receptors compared with healthy controls of the same age (775 ± 165 vs. 614 ± 111 fmol/mg protein (p = 0.003) for [(3)H]paroxetine binding and 215 ± 59 vs. 314 ± 151 fmol/mg protein (p = 0.005) for [(3)H]LSD binding). The findings of increased density of platelet serotonin transporters and reduced density of 5-HT2A receptors differ from previous results in older patients. The lower patient age and the short duration of disease in the present study, possibly in conjunction with variations in stress-related psychological and biological factors, may have caused these differences. Although the present findings contradict prevailing evidence, they add further information concerning the nature of serotonergic involvement in eating disorders and indicate that demographic and course-related factors might influence the regulation of the serotonin system in these disorders. PMID:23360120

  18. Amperozide, a 5-HT2 antagonist, attenuates craving for cocaine by rats.

    PubMed

    McMillen, B A; Jones, E A; Hill, L J; Williams, H L; Björk, A; Myers, R D

    1993-09-01

    Amperozide, a novel 5-HT2 receptor antagonist with little affinity for the dopamine receptor, suppresses the intake of alcohol in rats without affecting food intake or inducing other side effects. Because of these actions, amperozide was examined for its efficacy on the oral preference by the rat for a solution of cocaine. In this study, rats were selected for their voluntary consumption of at least 10 mg/kg of cocaine per day in a two-choice paradigm. A solution of 0.02% to 0.06% cocaine plus 0.03% saccharin in water was offered to each animal simultaneously with a solution of only 0.03% saccharin in water. The consumption of food and both fluids, as well as body weight, was recorded daily for three successive periods: 4 days of pretreatment baseline; 3 days during injections of either amperozide or the saline vehicle solution; and 4 days postinjections. Amperozide was administered SC twice daily in a dose of 0.5, 1.0, or 2.5 mg/kg. The volitional intake of cocaine was significantly reduced not only during the 3-day period of injections of amperozide but also during the 4-day posttreatment period. Amperozide exerted little or no effect on the intake of food or on body weight. Radioligand binding experiments confirmed that amperozide has at least a twentyfold greater affinity for 5-HT2 receptors in the frontal cortex of the rat, as compared to striatal DA1 and DA2 receptors, with the proportion value similar to that of the 5-HT2 receptor antagonist, ritanserin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8255902

  19. Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands.

    PubMed

    Pittalà, Valeria; Siracusa, Maria A; Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Madjid, Nather; Ogren, Sven Ove

    2015-08-01

    In light of the involvement of serotonergic 5-HT1A receptors in the mediation of the memory of aversive events, the potent and selective 5-HT1A receptor antagonists, MC18 fumarate and VP08/34 fumarate, were tested in the passive avoidance task (PA), a rodent model of instrumental conditioning. Either alone or in combination with the prototypical agonist 8-OH-DPAT, MC18 fumarate at doses (0.1, 0.3 and 1mg/kg given 15min prior to training) exerted a dose-dependent facilitation of PA memory retention. When administered 15min prior to 8-OH-DPAT (0.3 and 1mg/kg), MC18 fumarate at a dose of 0.3mg/kg, enhanced significantly the impairment of PA retention caused by 8-OH-DPAT (1mg/kg). However, VP08/34 fumarate given at the same doses exerted no statistically effect on PA retention memory. Furthermore, VP08/34 fumarate given 15min prior to 8-OH-DPAT (0.3 and 1mg/kg) only slightly enhanced the PA impairment induced by 8-OH-DPAT. In conclusion, the profile of MC18 fumarate is intriguing since it behaves in a manner which differs from both full receptor antagonists such as NAD-299 or partial receptor agonists. The results also illustrate the importance of subtle receptor interaction and probably ligand efficacy in determining the actions of two almost identical 5-HT1A receptor ligands in cognitive function such as instrumental learning. PMID:25963581

  20. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics

    PubMed Central

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M. Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C.; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development. PMID:25814944