Science.gov

Sample records for 5-hydroxytryptamine dorsal raphe

  1. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH. PMID:26749090

  2. Effects of morphine, physostigmine and raphe nuclei stimulation on 5-hydroxytryptamine release from the cerebral cortex of the cat.

    PubMed Central

    Aiello-Malmberg, P; Bartolini, A; Bartolini, R; Galli, A

    1979-01-01

    1. The release of 5-hydroxytryptamine (5-HT) from the cerebral cortex and caudate nucleus of brainstem-transected cats and from the cerebral cortex of rats anaesthetized with urethane was determined by radioenzymatic and biological assay. 2. The stimulation of nucleus linearis intermedius of raphe doubles the basal 5-HT release in the caudate nucleus and increases it 3 fold in the cerebral cortex. The effects of the electrical stimulation of the raphe are potentiated by chlorimipramine. 3. Brain 5-HT release is greatly increased by morphine hydrochloride (6 mg/kg i.v.) and by physostigmine (100 microgram/kg i.v.), but not by DL-DOPA (50 mg/kg i.v.). 4. It is suggested that the 5-HT releasing action of physostigmine can contribute to some of its pharmacological effects such as the analgesic effect so far attributed exclusively to its indirect cholinomimetic activity. 5. The 5-HT releasing action of physostigmine seems unrelated to its anticholinesterase activity. PMID:435680

  3. Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate

    PubMed Central

    Liu, Zhixiang; Zhou, Jingfeng; Li, Yi; Hu, Fei; Lu, Yao; Ma, Ming; Feng, Qiru; Zhang, Ju-en; Wang, Daqing; Zeng, Jiawei; Bao, Junhong; Kim, Ji-Young; Chen, Zhou-Feng; Mestikawy, Salah El; Luo, Minmin

    2015-01-01

    Summary The dorsal raphe nucleus (DRN) in the midbrain is a key center for serotonin (5-hydroxytryptamine; 5-HT) expressing neurons. Serotonergic neurons in the DRN have been theorized to encode punishment by opposing the reward signaling of dopamine neurons. Here, we show that DRN neurons encode reward, but not punishment, through 5-HT and glutamate. Optogenetic stimulation of DRN Pet-1 neurons reinforces mice to explore the stimulation-coupled spatial region, shifts sucrose preference, drives optical self-stimulation, and directs sensory discrimination learning. DRN Pet-1 neurons increase their firing activity during reward tasks and this activation can be used to rapidly change neuronal activity patterns in the cortnassociated with 5-HT, they also release glutamate, and both neurotransmitters contribute to reward signaling. These experiments demonstrate the ability of DRN neurons to organize reward behaviors and might provide insights into the underlying mechanisms of learning facilitation and anhedonia treatment. PMID:24656254

  4. 5-Hydroxytryptamine

    PubMed Central

    Curzon, G.; Fernando, J.C.R.; Marsden, C.A.

    1978-01-01

    1 Control rats given L-tryptophan (100 mg/kg) showed a smaller increase of brain 5-hydroxytryptamine (5-HT) than its metabolite 5-hydroxyindoleacetic acid (5-HIAA). However, when brain 5-HT concentrations were depleted by 40-50% after treatment with the synthesis inhibitor p-chlorophenylalanine (PCPA) (150 mg/kg) L-tryptophan caused a considerable increase in 5-HT but no change in 5-HIAA. Similar results were obtained following depletion of brain 5-HT by pretreatment with p-chloroamphetamine (10 mg/kg). 2 Electrical stimulation of the median raphe nucleus of control rats significantly increased 5-HIAA in the hypothalamus, hippocampus and striatum. However, stimulation of PCPA (200 mg/kg) pretreated animals did not significantly increase 5-H1AA either 24 or 72 h after administration of the drug. 3 Pretreatment of rats with PCPA (200 mg/kg) increased striatal synaptosomal uptake of [3H]-5HT by 30% and reduced 5-HT concentration in the rest of the brain by 62%. 4 PCPA (150 mg/kg) markedly reduced the acute behavioural response (-76%) to p-chloroamphetamine (10 mg/kg) although brain 5-HT was only moderately reduced (-36%). L-Tryptophan (100 mg/kg) given 15 min before p-chloroamphetamine restored both brain 5-HT and the behavioural effects of p-chloroamphetamine in PCPA pretreated rats and enhanced the behavioural response to p-chloroamphetamine in control rats. 5 The results suggest that newly synthesized 5-HT is less rapidly metabolized in rats with low brain 5-HT. The possible reasons for this and the relevance of the results to the use of L-tryptophan in the treatment of depressive illness are discussed. PMID:80243

  5. Selective irreversible blockade of 5-hydroxytryptamine1A and 5-hydroxytryptamine1C receptor binding sites in the rat brain by 8-MeO-2'-chloro-PAT: a quantitative autoradiographic study.

    PubMed

    Radja, F; Daval, G; Emerit, M B; Gallissot, M C; Hamon, M; Vergé, D

    1989-01-01

    The possible irreversible blockade of 5-hydroxytryptamine1 receptor subtypes 5-hydroxytryptamine1A, 5-hydroxytryptamine1B/5-hydroxytryptamine1D and 5-hydroxytryptamine1C by the chloramine 8-methoxy-2-(N-2'-chloropropyl,N-propyl)aminotetralin (8-MeO-2'-chloro-PAT) was investigated in rat brain sections by quantitative autoradiography using [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT), [3H]5-hydroxytryptamine, [125I]BH-8-MeO-N-PAT and [125I]cyanopindolol as radio-ligands. A marked reduction (-50% to -75%) of [3H]8-OH-DPAT and [125I]BH-8-MeO-N-PAT specific binding to 5-hydroxytryptamine1A sites in the hippocampus (CA1 area) and the dorsal raphe nucleus, and of [3H]5-hydroxytryptamine specific binding to 5-hydroxytryptamine1C sites in the choroid plexus was found in sections exposed to 1 microM 8-MeO-2'-chloro-PAT and then washed extensively. In contrast the specific binding of [3H]5-hydroxytryptamine to 5-hydroxytryptamine1B/5-hydroxytryptamine1D sites and of [125I]cyanopindolol to 5-hydroxytryptamine1B sites in the substantia nigra and dorsal subiculum remained unaltered by this treatment. Similarly [125I]cyanopindolol binding to beta-adrenergic receptors was not affected by 8-MeO-2'-chloro-PAT. Prior occupancy of 5-hydroxytryptamine1A sites by 10 microM 5-hydroxytryptamine or 8-OH-DPAT, and of 5-hydroxytryptamine1C sites by 10 microM 5-hydroxytryptamine prevented any subsequent blockade by 8-MeO-2'-chloro-PAT. These data indicate that 8-MeO-2'-chloro-PAT should be a useful alkylating agent for achieving selective irreversible blockade of central 5-hydroxytryptamine1A and 5-hydroxytryptamine1C receptors in vivo in the rat. PMID:2531850

  6. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  7. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking.

    PubMed

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-04-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction. PMID:26324408

  8. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    PubMed

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. PMID:26871628

  9. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  10. Serotonin neurons in the dorsal raphe nucleus encode reward signals

    PubMed Central

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-01

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing. PMID:26818705

  11. Serotonin neurons in the dorsal raphe nucleus encode reward signals.

    PubMed

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-01

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing. PMID:26818705

  12. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  13. Nicotinic modulation of serotonergic activity in the dorsal raphe nucleus.

    PubMed

    Hernandez-Lopez, Salvador; Garduño, Julieta; Mihailescu, Stefan

    2013-01-01

    Cholinergic signaling mediated by nicotinic receptors has been associated to a large number of physiological and behavioral processes such as learning, memory, attention, food-intake and mood disorders. Although it is well established that many nicotinic actions are mediated through an increase in serotonin (5-HT) release, the physiological mechanisms by which nicotine produces these effects are still unclear. The dorsal raphe nucleus (DRN) contains the major amount of 5-HT neurons projecting to different parts of the brain. DRN also contains nicotinic acetylcholine receptors (nAChRs) located at somatic and presynaptic elements. Nicotine produces both inhibitory and excitatory effects on different subpopulations of 5-HT DRN neurons. In this review, we describe the presynaptic and postsynaptic mechanisms by which nicotine increases the excitability of DRN neurons as well as the subtypes of nAChRs involved. We also describe the inhibitory effects of nicotine and the role of 5-HT1A receptors in this effect. These nicotinic actions modulate the activity of different neuronal subpopulations in the DRN, changing the 5-HT tone in the brain areas where these groups of neurons project. Some of the physiological implications of nicotine-induced 5-HT release are discussed. PMID:24021594

  14. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed

    Pickard, Gary E; So, Kwok-Fai; Pu, Mingliang

    2015-10-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  15. Neuropharmacology of 5-hydroxytryptamine

    PubMed Central

    Richard Green, A

    2006-01-01

    This review outlines the history of our knowledge of the neuropharmacology of 5-hydroxytryptamine (5-HT; serotonin), focusing primarily on the work of U.K. scientists. The existence of a vasoconstrictive substance in the blood has been known for over 135 years. The substance was named serotonin and finally identified as 5-HT in 1949. The presence of 5-HT in the brain was reported by Gaddum in 1954 and it was Gaddum who also demonstrated that the action of 5-HT (in the gut) was antagonised by the potent hallucinogen lysergic acid diethylamide. This provoked the notion that 5-HT played a pivotal role in the control of mood and subsequent investigations have generally confirmed this hypothesis. Over the last 50 years a good understanding has been gained of the mechanisms involved in control of the storage, synthesis and degradation of 5-HT in the brain. Knowledge has also been gained on control of the functional activity of this monoamine, often by the use of behavioural models. A considerable literature also now exists on the mechanisms by which many of the drugs used to treat psychiatric illness alter the functional activity of 5-HT, particularly the drugs used to treat depression. Over the last 20 years the number of identified 5-HT receptor subtypes has increased from 2 to 14, or possibly more. A major challenge now is to utilise this knowledge to develop receptor-specific drugs and use the information gained to better treat central nervous system disorders. PMID:16402098

  16. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.

    PubMed

    Sakai, K

    2011-12-01

    We have recorded, for the first time, in non-anesthetized, head-restrained mice, a total of 407 single units throughout the dorsal raphe nucleus (DR), which contains serotonin (5-hydroxytryptamine, 5-HT) neurons, during the complete wake-sleep cycle. The mouse DR was found to contain a large proportion (52.0%) of waking (W)-active neurons, together with many sleep-active (24.8%) and W/paradoxical sleep (PS)-active (18.4%) neurons and a few state-unrelated neurons (4.7%). The W-active, W/PS-active, and sleep-active neurons displayed a biphasic narrow or triphasic broad action potential. Of the 212 W-active neurons, 194 were judged serotonergic (5-HT W-active neurons) because of their triphasic long-duration action potential and low rate of spontaneous discharge, while the remaining 18 were judged non-serotonergic (non-5-HT W-active neurons) because of their biphasic narrow action potential and higher rate of spontaneous discharge. The 5-HT W-active neurons were subdivided into four groups, types I, II, III, and IV, on the basis of differences in firing pattern during wake-sleep states, their waking selectivity of discharge being in the order type I>type II>type III>type IV. During the transition from sleep to waking, the vast majority of waking-specific or waking-selective type I and II neurons discharged after onset of waking, as seen with non-5-HT W-specific neurons. Triphasic DR W/PS-active neurons were characterized by a low rate of spontaneous discharge and a similar distribution to that of tyrosine hydroxylase-immunoreactive, dopaminergic neurons. Triphasic DR slow-wave sleep (SWS)-active and SWS/PS neurons were also characterized by slow firing. At the transition from sleep to waking, sleep-selective neurons with no discharge activity during waking ceased firing before onset of waking, while, at the transition from waking to sleep, they fired after onset of sleep. The present study shows a marked heterogeneity and functional topographic organization of both

  17. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids.

    PubMed

    Robichaud, M; Debonnel, G

    2004-07-01

    Important gender differences in mood disorders result in a greater susceptibility for women. Accumulating evidence suggests a reciprocal modulation between the 5-hydroxytryptamine (5-HT) system and neuroactive steroids. Previous data from our laboratory have shown that during pregnancy, the firing activity of 5-HT neurons increases in parallel with progesterone levels. This study was undertaken to evaluate the putative modulation of the 5-HT neuronal firing activity by different neurosteroids. Female rats received i.c.v. for 7 days a dose of 50 micro g/kg per day of one of the following steroids: progesterone, pregnenolone, 5beta-pregnane-3,20-dione (5beta-DHP), 5beta-pregnan-3alpha-ol,20-one, 5beta-pregnan-3beta-ol,20-one, 5alpha-pregnane-3,20-dione, 5alpha-pregnan-3alpha-ol,20-one (allopregnanolone, 3alpha,5alpha-THP), 5alpha-pregnane-3beta-ol,20-one and dehydroepiandrosterone (DHEA). 5beta-DHP and DHEA were also administered for 14 and 21 days (50 micro g/kg per day, i.c.v.) as well as concomitantly with the selective sigma 1 (sigma1) receptor antagonist NE-100. In vivo, extracellular unitary recording of 5-HT neurons performed in the dorsal raphe nucleus of these rats revealed that DHEA, 5beta-DHP and 3alpha,5alpha-THP significantly increased the firing activity of the 5-HT neurons. Interestingly, 5beta-DHP and DHEA showed different time-frames for their effects with 5beta-DHP having its greatest effect after 7 days to return to control values after 21 days, whereas DHEA demonstrated a sustained effect over the 21 day period. NE-100 prevented the effect of DHEA but not of 5beta-DHP, thus indicating that its sigma1 receptors mediate the effect of DHEA but not that of 5beta-DHP. In conclusion, our results offer a cellular basis for potential antidepressant effects of neurosteroids, which may prove important particularly for women with affective disorders. PMID:15225127

  18. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.

    PubMed

    Galindo-Charles, Luis; Hernandez-Lopez, Salvador; Galarraga, Elvira; Tapia, Dagoberto; Bargas, José; Garduño, Julieta; Frías-Dominguez, Carmen; Drucker-Colin, René; Mihailescu, Stefan

    2008-08-01

    Very few neurons in the telencephalon have been shown to express functional postsynaptic nicotinic acetylcholine receptors (nAChRs), among them, the noradrenergic and dopaminergic neurons. However, there is no evidence for postsynaptic nAChRs on serotonergic neurons. In this study, we asked if functional nAChRs are present in serotonergic (5-HT) and nonserotonergic (non-5-HT) neurons of the dorsal raphe nucleus (DRN). In rat midbrain slices, field stimulation at the tegmental pedunculopontine (PPT) nucleus evoked postsynaptic currents (eEPSCs) with different components in DRN neurons. After blocking the glutamatergic and GABAergic components, the remaining eEPSCs were blocked by mecamylamine and reduced by either the selective alpha7 nAChR antagonist methyllycaconitine (MLA) or the selective alpha4beta2 nAChR antagonist dihydro-beta-eritroidine (DHbetaE). Simultaneous addition of MLA and DHbetaE blocked all eEPSCs. Integrity of the PPT-DRN pathway was assessed by both anterograde biocytin tracing and antidromic stimulation from the DRN. Inward currents evoked by the direct application of acetylcholine (ACh), in the presence of atropine and tetrodotoxin, consisted of two kinetically different currents: one was blocked by MLA and the other by DHbetaE; in both 5-HT and non-5-HT DR neurons. Analysis of spontaneous (sEPSCs) and evoked (eEPSCs) synaptic events led to the conclusion that nAChRs were located at the postsynaptic membrane. The possible implications of these newly described nAChRs in various physiological processes and behavioral events, such as the wake-sleep cycle, are discussed. PMID:18512214

  19. Dorsal Raphe Neuroinflammation Promotes Dramatic Behavioral Stress Dysregulation

    PubMed Central

    Howerton, Alexis R.; Roland, Alison V.

    2014-01-01

    Impulsivity, risk-taking behavior, and elevated stress responsivity are prominent symptoms of mania, a behavioral state common to schizophrenia and bipolar disorder. Though inflammatory processes activated within the brain are involved in the pathophysiology of both disorders, the specific mechanisms by which neuroinflammation drives manic behavior are not well understood. Serotonin cell bodies originating within the dorsal raphe (DR) play a major role in the regulation of behavioral features characteristic of mania. Therefore, we hypothesized that the link between neuroinflammation and manic behavior may be mediated by actions on serotonergic neurocircuitry. To examine this, we induced local neuroinflammation in the DR by viral delivery of Cre recombinase into interleukin (IL)-1βXAT transgenic male and female mice, resulting in overexpressing of the proinflammatory cytokine, IL-1β. For assertion of brain-region specificity of these outcomes, the prefrontal cortex (PFC), as a downstream target of DR serotonergic projections, was also infused. Inflammation within the DR, but not the PFC, resulted in a profound display of manic-like behavior, characterized by increased stress-induced locomotion and responsivity, and reduced risk-aversion/fearfulness. Microarray analysis of the DR revealed a dramatic increase in immune-related genes, and dysregulation of genes important in GABAergic, glutamatergic, and serotonergic neurotransmission. Behavioral and physiological changes were driven by a loss of serotonergic neurons and reduced output as measured by high-performance liquid chromatography, demonstrating inflammation-induced serotonergic hypofunction. Behavioral changes were rescued by acute selective serotonin reuptake inhibitor treatment, supporting the hypothesis that serotonin dysregulation stemming from neuroinflammation in the DR underlies manic-like behaviors. PMID:24849347

  20. Dorsal raphe nucleus and harm avoidance: A resting-state investigation.

    PubMed

    Meylakh, N; Henderson, L A

    2016-06-01

    The temperament dimension of harm avoidance defines an individual's biological tendency to exhibit altering levels of anxious, inhibiting, and cautious behavior. High harm avoidance and anxiety are highly comorbid, likely due to activity in similar neural circuitries involving the dorsal raphe nucleus. Despite the many investigations that have explored personality factors and brain function, none have determined the influence of ongoing activity within dorsal raphe networks on harm avoidance. The aim of this study was to explore such a relationship. In 62 healthy subjects, a series of 180 functional magnetic resonance images covering the entire brain were collected, and each subject completed the 240-item TCI-R questionnaire. Independent component analyses were performed to define the dorsal raphe network and then to determine the regions significantly correlated with harm avoidance. The independent component analyses revealed three signal intensity fluctuation maps encompassing the dorsal raphe nucleus, showing interactions with regions of the amygdala, hippocampus, nucleus accumbens, and prefrontal, insular, and cingulate cortices. Within these systems, the resting signal intensity was significantly coupled to harm avoidance in the bilateral basal amygdala, bilateral ventral hippocampus, bilateral insula, bilateral nucleus accumbens, and medial prefrontal cortex. Note that we could not measure serotonergic output, but instead measured signal changes in the dorsal raphe that likely reflect synaptic activity. These data provide evidence that at rest, signal intensity fluctuations within the dorsal raphe networks are related to harm avoidance. Given the strong relationship between harm avoidance and anxiety-like behaviors, it is possible that ongoing activity within this identified neural circuitry can contribute to an individual developing anxiety disorders. PMID:27007610

  1. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei.

    PubMed

    Brodin, E; Linderoth, B; Goiny, M; Yamamoto, Y; Gazelius, B; Millhorn, D E; Hökfelt, T; Ungerstedt, U

    1990-12-10

    Extracellular levels of serotonin (5-hydroxytryptamine; 5-HT) were monitored by microdialysis in the dorsal vagal complex (DVC) and the ventral horn of the spinal cord at the level of the phrenic motor nucleus in decerebrated cats. A selective serotonin uptake inhibitor, alaproclate (10(-4) M) was included in the dialysis probe perfusion fluid to increase basal and stimulated levels of 5-HT. Electrical stimulation (30 Hz, 10 V, 0.5 ms) in the nucleus raphe obscurus, containing neurons projecting to the DVC and to the ventral horn, induced a 2-3-fold increase of the 5-HT release in both these regions. After termination of the stimulation, the release gradually decreased during the following 60 min. Substance P, which coexists with 5-HT in descending neurons, did not significantly affect the 5-HT release when it was added (100 microM) to the probe perfusion fluid. The present findings are in accordance with the hypothesis that prolonged release of 5-HT is responsible for the previously demonstrated long-lasting facilitation of phrenic activity following raphe obscurus stimulation. PMID:1705856

  2. Reward Processing by the Dorsal Raphe Nucleus: 5-HT and Beyond

    ERIC Educational Resources Information Center

    Luo, Minmin; Zhou, Jingfeng; Liu, Zhixiang

    2015-01-01

    The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of…

  3. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  4. Fos-like immunoreactivity in rat dorsal raphe nuclei induced by alkaloid extract of Mitragyna speciosa.

    PubMed

    Kumarnsit, Ekkasit; Vongvatcharanon, Uraporn; Keawpradub, Niwat; Intasaro, Pranom

    2007-04-12

    Mitragyna speciosa (MS) has been traditionally used for medicinal purposes especially in southern Thailand. Previously, an alkaloid extract of this plant was demonstrated to mediate antinociception, partly, through the descending serotonergic system. The present study investigated the stimulatory effect of the MS extract on the dorsal raphe nucleus and its antidepressant-like activity. The MS extract containing approximately 60% mitragynine as a major indole alkaloid was used to treat the animals. The stimulatory effect of the MS extract was determined by detecting the expression of the immediate early gene, cfos, in the dorsal raphe nucleus of male Wistar rats. The immunohistochemistry was used to detect Fos protein, the protein product of cfos gene. The present data show that a significant increase in Fos expression was observed following long-term administration of the MS extract (40 mg/kg) for 60 consecutive days. In addition, the antidepressant-like activity of the MS extract was determined by using the forced swimming test (FST) in male mice. The results show that a single injection (either 60 or 90 mg/kg doses) significantly decreased immobility time in the FST. These findings indicate that the MS extract has a stimulatory effect on the dorsal raphe nucleus and an antidepressant-like activity. Stimulation of this brain area has been known to cause antinociception. These findings suggest that the MS extract might produce antinociceptive and/or antidepressive actions partly through activation of the dorsal raphe nucleus. Moreover, the dorsal raphe nucleus may be one of site of MS action in the central nervous system. PMID:17316993

  5. Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow in the rat

    SciTech Connect

    Bonvento, G.; Lacombe, P.; Seylaz, J. )

    1989-06-01

    We have studied the effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow (LCBF), as assessed by the quantitative ({sup 14}C)-iodoantipyrine autoradiographic technique. Stimulation of the dorsal raphe nucleus in the alpha-chloralose anesthetized rat caused a significant decrease in LCBF, ranging from -13 to -26% in 24 brain structures out of 33 investigated. The most pronounced decreases (-23 to -26%) were observed in the accumbens, amygdaloid, interpeduncular nuclei and in the median raphe nucleus, limbic system relays. The decreases also concerned cortical regions and the extrapyramidal system. These results indicate that activation of ascending serotonergic system produces a vasoconstriction and that the dorsal raphe nucleus has a widespread modulatory influence on the cerebral circulation.

  6. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    PubMed Central

    2012-01-01

    Introduction Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS). The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM). Levels of Cytochrome c (Cyt-C) was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM). The change of thiamine monophosphatase (TMP) levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated with PTSD. PMID

  7. Activity of dorsal raphe cells across the sleep–waking cycle and during cataplexy in narcoleptic dogs

    PubMed Central

    Wu, M-F; John, J; Boehmer, L N; Yau, D; Nguyen, G B; Siegel, J M

    2004-01-01

    Cataplexy, a symptom associated with narcolepsy, represents a unique dissociation of behavioural states. During cataplectic attacks, awareness of the environment is maintained, as in waking, but muscle tone is lost, as in REM sleep. We have previously reported that, in the narcoleptic dog, noradrenergic cells of the locus coeruleus cease discharge during cataplexy. In the current study, we report on the activity of serotonergic cells of the dorsal raphe nucleus. The discharge patterns of serotonergic dorsal raphe cells across sleep–waking states did not differ from those of dorsal raphe and locus coeruleus cells recorded in normal rats, cats and monkeys, with tonic discharge in waking, reduced activity in non-REM sleep and cessation of activity in REM sleep. However, in contrast with locus coeruleus cells, dorsal raphe REM sleep-off neurones did not cease discharge during cataplexy. Instead, discharge continued at a level significantly higher than that seen in REM sleep and comparable to that seen in non-REM sleep. We also identified several cells in the dorsal raphe whose pattern of activity was the opposite of that of the presumed serotonergic cells. These cells were maximally active in REM sleep and minimally active in waking and increased activity during cataplexy. The difference between noradrenergic and serotonergic cell discharge profiles in cataplexy suggests different roles for these cell groups in the normal regulation of environmental awareness and muscle tone and in the pathophysiology of narcolepsy. PMID:14678502

  8. A subpopulation of dorsal raphe nucleus neurons retrogradely labeled with cholera toxin-B injected into the inner ear.

    PubMed

    Kim, D O; Yang, X M; Ye, Y

    2003-12-01

    Previous studies have shown that: (1) raphe neurons respond to acoustic and vestibular stimuli, some with a latency of 10-15 ms; (2) alterations of the raphe nuclei alter the acoustic startle reflex; (3) the dorsal raphe nucleus (DRN) is the major source of serotonergic neurons; and (4) approximately 57% of the DRN neurons are nonserotonergic. In the present study, cholera toxin subunit-B (CTB) was injected into cat cochleas, and the brain tissue was examined after a survival period of 5-7 days. Aside from neurons which were known to project to the inner ear, i.e., olivocochlear and vestibular efferent neurons, a surprising new finding was made that somata of a subpopulation of DRN neurons were intensely labeled with CTB. These CTB-labeled neurons were densely distributed in a dorsomedian part of the DRN with some in a surrounding area outside the DRN. The present results suggest that a novel raphe-labyrinthine projection may exist. A future study of anterograde labeling with injections of a tracer in the DRN will be needed to establish the existence of a raphe-labyrinthine projection more thoroughly. A raphe-labyrinthine descending input, together with an ascending input from the inner ear to the DRN through intervening neurons, such as the juxta-acousticofloccular raphe neurons (JAFRNs) described by Ye and Kim, may mediate a brain stem reflex whereby a salient multisensory (including auditory and vestibular) stimulus may alter the sensitivity of the inner ear. As a mammal responds to a biologically important auditory-vestibular multisensory event, the raphe projections to the inner ear and other auditory and vestibular structures may enhance the mammal's ability to localize and recognize the sound and respond properly. The raphe-labyrinthine projection may also modulate the inner ear's sensitivity as a function of the sleep-wake arousal state of an organism on a slower time course. PMID:12961055

  9. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    PubMed

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. PMID:26640169

  10. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy

    PubMed Central

    Soiza-Reilly, Mariano; Commons, Kathryn G.

    2014-01-01

    The dorsal raphe nucleus (DRN), representing the main source of brain’s serotonin, is implicated in the pathophysiology and therapeutics of several mental disorders that can be debilitating and life-long including depression, anxiety and autism. The activity of DRN neurons is precisely regulated, both phasically and tonically, by excitatory glutamate and inhibitory GABAergic axons arising from extra-raphe areas as well as from local sources within the nucleus. Changes in serotonin neurotransmission associated with pathophysiology may be encoded by alterations within this network of regulatory afferents. However, the complex organization of the DRN circuitry remains still poorly understood. Using a recently developed high-resolution immunofluorescence technique called array tomography (AT) we quantitatively analyzed the relative contribution of different populations of glutamate axons originating from different brain regions to the excitatory drive of the DRN. Additionally, we examined the presence of GABA axons within the DRN and their possible association with glutamate axons. In this review, we summarize our findings on the architecture of the rodent DRN synaptic neuropil using high-resolution neuroanatomy, and discuss possible functional implications for the nucleus. Understanding of the synaptic architecture of neural circuits at high resolution will pave the way to understand how neural structure and function may be perturbed in pathological states. PMID:25206323

  11. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons

    PubMed Central

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Wang, Huikun; de Jesus Aceves Buendia, Jose; Hoffman, Alexander F.; Lupica, Carl R.; Seal, Rebecca P.; Morales, Marisela

    2014-01-01

    Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibers of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibers have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release innucleus accumbens. Activation also reinforces instrumental behavior and establishes conditioned place preferences. These findings indicate that the DR-VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR—one of the most sensitive reward sites in the brain—to VTA dopaminergic neurons. PMID:25388237

  12. Cigarette Smoking and Tryptophan Hydroxylase 2 mRNA in the Dorsal Raphe Nucleus in Suicides

    PubMed Central

    Bach, Helene; Arango, Victoria; Kassir, Suham A.; Dwork, Andrew J.; Mann, J. John; Underwood, Mark D.

    2016-01-01

    Cigarette smoking is associated with suicide and mood disorders and stimulates serotonin release. Tryptophan hydroxylase (TPH2) synthesizes serotonin and is over-expressed in suicides. We determined whether smoking is associated with TPH2 mRNA in suicides and controls. TPH2 mRNA was measured postmortem in the dorsal raphe nucleus (DRN) of controls (N=26, 17 nonsmokers and nine smokers) and suicides (N=23, 5 nonsmokers and 18 smokers). Psychiatric history was obtained by psychological autopsy. TPH2 mRNA was greater in suicide nonsmokers than suicide smokers, control smokers and control nonsmokers (p=0.006). There was more TPH2 mRNA throughout the DRN. Smoking interferes with the TPH2 mRNA increase observed in suicide nonsmokers. The absence of altered TPH2 expression in non-suicide smokers suggests no pharmacological effect of smoking. PMID:26954509

  13. Ovarian Steroids Increase PSD-95 Expression and Dendritic Spines in the Dorsal Raphe of Ovariectomized Macaques

    PubMed Central

    Rivera, Heidi M.; Bethea, Cynthia L.

    2014-01-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E±P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E+P for 1 month (n=3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P and E+P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P=0.04). In the Golgi study, adult Ovx monkeys received placebo, E or E+P for 1 month (n=3–4) and the midbrain was Golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E+P treatment significantly increased spine density in higher-order (3–5°) dendritic branches relative to Ovx group (Bonferroni, P<0.05). In summary, E+P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. PMID:23959764

  14. Moderate differences in circulating corticosterone alter receptor-mediated regulation of 5-hydroxytryptamine neuronal activity.

    PubMed

    Judge, Sarah J; Ingram, Colin D; Gartside, Sarah E

    2004-12-01

    Circulating glucocorticoid levels vary with stress and psychiatric illness and play a potentially important role in regulating transmitter systems that regulate mood. To determine whether chronic variation in corticosterone levels within the normal diurnal range altered the control of 5-hydroxytryptamine (5-HT) neuronal activity, male rats were adrenalectomized and implanted with either a 2% or 70% corticosterone/cholesterol pellet (100 mg). Two weeks later, the regulation of 5-HT neuronal activity in the dorsal raphe nucleus was studied by in vitro electrophysiology. At this time, serum corticosterone levels approximated the low-point (2%) and mid-point (70%) of the diurnal range. The excitatory response of 5-HT neurones to the alpha1-adrenoceptor agonist phenylephrine (1-11 microM) was significantly greater in the 2% group compared to the 70% group. By contrast, the inhibitory response to 5-HT (10-50 microM) was significantly lower in the 2% group compared to the 70% group. Thus, chronic variation in circulating corticosterone over a narrow part of the normal diurnal range causes a shift in the balance of positive and negative regulation of 5-HT neurones, with increased alpha 1-adrenoceptor-mediated excitation and reduced 5-HT-mediated autoinhibition at lower corticosterone levels. This shift would have a major impact on control of 5-HT neuronal activity. PMID:15582914

  15. Functional connectivity of the dorsal and median raphe nuclei at rest.

    PubMed

    Beliveau, Vincent; Svarer, Claus; Frokjaer, Vibe G; Knudsen, Gitte M; Greve, Douglas N; Fisher, Patrick M

    2015-08-01

    Serotonin (5-HT) is a neurotransmitter critically involved in a broad range of brain functions and implicated in the pathophysiology of neuropsychiatric illnesses including major depression, anxiety and sleep disorders. Despite being widely distributed throughout the brain, there is limited knowledge on the contribution of 5-HT to intrinsic brain activity. The dorsal raphe (DR) and median raphe (MR) nuclei are the source of most serotonergic neurons projecting throughout the brain and thus provide a compelling target for a seed-based probe of resting-state activity related to 5-HT. Here we implemented a novel multimodal neuroimaging approach for investigating resting-state functional connectivity (FC) between DR and MR and cortical, subcortical and cerebellar target areas. Using [(11)C]DASB positron emission tomography (PET) images of the brain serotonin transporter (5-HTT) combined with structural MRI from 49 healthy volunteers, we delineated DR and MR and performed a seed-based resting-state FC analysis. The DR and MR seeds produced largely similar FC maps: significant positive FC with brain regions involved in cognitive and emotion processing including anterior cingulate, amygdala, insula, hippocampus, thalamus, basal ganglia and cerebellum. Significant negative FC was observed within pre- and postcentral gyri for the DR but not for the MR seed. We observed a significant association between DR and MR FC and regional 5-HTT binding. Our results provide evidence for a resting-state network related to DR and MR and comprising regions receiving serotonergic innervation and centrally involved in 5-HT related behaviors including emotion, cognition and reward processing. These findings provide a novel advance in estimating resting-state FC related to 5-HT signaling, which can benefit our understanding of its role in behavior and neuropsychiatric illnesses. PMID:25963733

  16. Sim1 Is a Novel Regulator in the Differentiation of Mouse Dorsal Raphe Serotonergic Neurons

    PubMed Central

    Osterberg, Nadja; Wiehle, Michael; Oehlke, Oliver; Heidrich, Stefanie; Xu, Cheng; Fan, Chen-Ming; Krieglstein, Kerstin; Roussa, Eleni

    2011-01-01

    Background Mesencephalic dopaminergic neurons (mDA) and serotonergic (5-HT) neurons are clinically important ventral neuronal populations. Degeneration of mDA is associated with Parkinson's disease; defects in the serotonergic system are related to depression, obsessive-compulsive disorder, and schizophrenia. Although these neuronal subpopulations reveal positional and developmental relationships, the developmental cascades that govern specification and differentiation of mDA or 5-HT neurons reveal missing determinants and are not yet understood. Methodology We investigated the impact of the transcription factor Sim1 in the differentiation of mDA and rostral 5-HT neurons in vivo using Sim1-/- mouse embryos and newborn pups, and in vitro by gain- and loss-of-function approaches. Principal Findings We show a selective significant reduction in the number of dorsal raphe nucleus (DRN) 5-HT neurons in Sim1-/- newborn mice. In contrast, 5-HT neurons of other raphe nuclei as well as dopaminergic neurons were not affected. Analysis of the underlying molecular mechanism revealed that tryptophan hydroxylase 2 (Tph2) and the transcription factor Pet1 are regulated by Sim1. Moreover, the transcription factor Lhx8 and the modulator of 5-HT1A-mediated neurotransmitter release, Rgs4, exhibit significant higher expression in ventral hindbrain, compared to midbrain and are target genes of Sim1. Conclusions The results demonstrate for the first time a selective transcription factor dependence of the 5-HT cell groups, and introduce Sim1 as a regulator of DRN specification acting upstream of Pet1 and Tph2. Moreover, Sim1 may act to modulate serotonin release via regulating RGS4. Our study underscores that subpopulations of a common neurotransmitter phenotype use distinct combinations of transcription factors to control the expression of shared properties. PMID:21541283

  17. Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity.

    PubMed

    Kaehler, S T; Singewald, N; Philippu, A

    1999-05-01

    The serotonergic innervation of the locus coeruleus paetly derives from the dorsal raphe nucleus (DRN). Using the push-pull superfusion technique, we investigated whether and to what extent the release of serotonin and the extracellular concentration of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the locus coeruleus are influenced by the neuronal activity of the DRN. In anaesthetized rats, a push-pull cannula was inserted into the locus coeruleus, which was continuously superfused with artificial cerebrospinal fluid (aCSF). Serotonin and 5-HIAA levels in the superfusate were determined by HPLC combined with electrochemical detection. Electrical stimulation (5 Hz, 300 microA, 1 ms) of the DRN for 5 min, or its chemical stimulation by microinjection of glutamate (3.5 nmol, 50 nl), led to an increased release of serotonin in the locus coeruleus and to a slight (2 mmHg) decrease in blood pressure. Superfusion of the locus coeruleus with tetrodotoxin (1 microM) abolished the increase in the release rate of serotonin evoked by electrical stimulation of the DRN, while the slight fall in blood pressure was not influenced. Thermic lesion (75 degrees C, 1 min) of the DRN elicited a pronounced decline in serotonin release rate within the locus coeruleus, the maximum decrease being 52%. The decrease in the release of serotonin was associated with a long-lasting rise in blood pressure. Microinjection of the serotonin neurotoxin 5,7-dihydroxytryptamine (5 microg, 250 nl) into the DRN led to an initial increase in the serotonin release rate that coincided with a short-lasting fall in blood pressure. Subsequently, the release of serotonin was permanently reduced and was associated with hypertension. Microinjection of the 5-HT1A receptor agonist (+/-)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT; 7.5 nmol, 50 nl) into the DRN led to a long-lasting reduction of the release rate of serotonin in the locus coeruleus. Microinjection of 8-OH-DPAT into the DRN also slightly

  18. Elucidation of The Behavioral Program and Neuronal Network Encoded by Dorsal Raphe Serotonergic Neurons.

    PubMed

    Urban, Daniel J; Zhu, Hu; Marcinkiewcz, Catherine A; Michaelides, Michael; Oshibuchi, Hidehiro; Rhea, Darren; Aryal, Dipendra K; Farrell, Martilias S; Lowery-Gionta, Emily; Olsen, Reid H J; Wetsel, William C; Kash, Thomas L; Hurd, Yasmin L; Tecott, Laurence H; Roth, Bryan L

    2016-04-01

    Elucidating how the brain's serotonergic network mediates diverse behavioral actions over both relatively short (minutes-hours) and long period of time (days-weeks) remains a major challenge for neuroscience. Our relative ignorance is largely due to the lack of technologies with robustness, reversibility, and spatio-temporal control. Recently, we have demonstrated that our chemogenetic approach (eg, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) provides a reliable and robust tool for controlling genetically defined neural populations. Here we show how short- and long-term activation of dorsal raphe nucleus (DRN) serotonergic neurons induces robust behavioral responses. We found that both short- and long-term activation of DRN serotonergic neurons induce antidepressant-like behavioral responses. However, only short-term activation induces anxiogenic-like behaviors. In parallel, these behavioral phenotypes were associated with a metabolic map of whole brain network activity via a recently developed non-invasive imaging technology DREAMM (DREADD Associated Metabolic Mapping). Our findings reveal a previously unappreciated brain network elicited by selective activation of DRN serotonin neurons and illuminate potential therapeutic and adverse effects of drugs targeting DRN neurons. PMID:26383016

  19. Corticotropin-releasing Factor in the Dorsal Raphe Nucleus: Linking Stress Coping and Addiction

    PubMed Central

    Valentino, Rita J.; Lucki, Irwin; Van Bockstaele, Elisabeth

    2009-01-01

    Addiction and stress are linked at multiple levels. Drug abuse is often initiated as a maladaptive mechanism for coping with stress. It is maintained in part by negative reinforcement to prevent the aversive consequences of stress associated with abstinence. Finally, stress is a major factor leading to relapse in subjects in which drug seeking behavior has extinguished. These associations imply overlapping or converging neural circuits and substrates that underlie the processes of addiction and the expression of the stress response. Here we discuss the major brain serotonin (5-HT) system, the dorsal raphe nucleus (DRN)-5-HT system as a point of convergence that links these processes and how the stress-related neuropeptide, corticotropin-releasing factor (CRF) directs this by a bimodal regulation of DRN neuronal activity. The review begins by describing a structural basis for CRF regulation of the DRN-5-HT system. This is followed by a review of the effects of CRF and stress on DRN function based on electrophysiological and microdialysis studies. The concept that multiple CRF receptor subtypes in the DRN facilitate distinct coping behaviors is reviewed with recent evidence for a unique cellular mechanism by which stress history can determine the type of coping behavior. Finally, work on CRF regulation of the DRN-5-HT system is integrated with literature on the role of 5-HT-dopamine interactions in addiction. PMID:19800322

  20. Action of hallucinogens on raphe-evoked dorsal root potentials (DRPs) in the cat.

    PubMed

    Larson, A A; Anderson, E G

    1986-02-01

    The dorsal root potential (DRP) evoked by stimulation of the inferior central nucleus (ICN) of the cat is affected by administration of a variety of hallucinogenic agents. It has been previously shown that a single low dose of LSD is unique in that it potentiates this DRP, while injections of 5-methoxy-N,N- dimethyltryptamine (5-MeODMT), ketamine or phencyclidine (PCP) inhibit its production. Tolerance develops to the facilitatory effect of low doses of LSD on the DRP, but not to the inhibitory action of 5-MeODMT. Repeated injections of ketamine every 30 minutes also fail to produce tachyphylaxis to the inhibitory effect of this dissociative anesthetic. The raphe-evoked DRP is a long latency potential that is inhibited by a wide variety of putative serotonin antagonists and has therefore been traditionally thought to be mediated by serotonin. However, in light of the inability of either tryptophan or fluoxetine to potentiate this DRP, and the resistance of this DRP to blockade by parachlorophenylalanine, reserpine or intrathecally administered 5,7-dihydroxytryptamine, it appears that this potential may in fact be mediated, at least in part, by a non-serotonergic transmitter. PMID:3952125

  1. Chronic L-dopa decreases serotonin neurons in a subregion of the dorsal raphe nucleus.

    PubMed

    Stansley, Branden J; Yamamoto, Bryan K

    2014-11-01

    L-Dopa (l-3,4-dihydroxyphenylalanine) is the precursor to dopamine and has become the mainstay therapeutic treatment for Parkinson's disease. Chronic L-dopa is administered to recover motor function in Parkinson's disease patients. However, drug efficacy decreases over time, and debilitating side effects occur, such as dyskinesia and mood disturbances. The therapeutic effect and some of the side effects of L-dopa have been credited to its effect on serotonin (5-HT) neurons. Given these findings, it was hypothesized that chronic L-dopa treatment decreases 5-HT neurons in the dorsal raphe nucleus (DRN) and the content of 5-HT in forebrain regions in a manner that is mediated by oxidative stress. Rats were treated chronically with l-dopa (6 mg/kg; twice daily) for 10 days. Results indicated that the number of 5-HT neurons was significantly decreased in the DRN after l-dopa treatment compared with vehicle. This effect was more pronounced in the caudal-extent of the dorsal DRN, a subregion found to have a significantly higher increase in the 3,4-dihydroxyphenylacetic acid/dopamine ratio in response to acute L-dopa treatment. Furthermore, pretreatment with ascorbic acid (400 mg/kg) or deprenyl (2 mg/kg) prevented the l-dopa-induced decreases in 5-HT neurons. In addition, 5-HT content was decreased significantly in the DRN and prefrontal cortex by l-dopa treatment, effects that were prevented by ascorbic acid pretreatment. Taken together, these data illustrate that chronic L-dopa causes a 5-HT neuron loss and the depletion of 5-HT content in a subregion of the DRN as well as in the frontal cortex through an oxidative-stress mechanism. PMID:25212217

  2. Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors.

    PubMed

    Pobbe, Roger L H; Zangrossi, Helio; Blanchard, D Caroline; Blanchard, Robert J

    2011-04-01

    Previous findings point to the involvement of the dorsal raphe nucleus (DRN) and dorsal periaqueductal gray (dPAG) serotonergic receptors in the mediation of defensive responses that are associated with specific subtypes of anxiety disorders. These studies have mostly been conducted with rats tested in the elevated T-maze, an experimental model of anxiety that was developed to allow the measurement, in the same animal, of two behaviors mentioned: inhibitory avoidance and one-way escape. Such behavioral responses have been respectively related to generalized anxiety disorder (GAD) and panic disorder (PD). In order to assess the generality of these findings, in the current study we investigated the effects of the injection of 5-HT-related drugs into the DRN and dPAG of another rodent species, mouse, on the mouse defense test battery (MDTB), a test of a range of defensive behaviors to an unconditioned threat, a predator. Male CD-1 mice were tested in the MDTB after intra-DRN administration of the 5-HT(1A) receptor antagonist WAY-100635 or after intra-dPAG injection of two serotonergic agonists, the 5-HT(1A) receptor agonist 8-OH-DPAT and the 5-HT(2A/2C) receptor agonist DOI. Intra-DRN injection of WAY-100635 did not change behavioral responses of mice confronted with a rat in the MDTB. In the dPAG, both 8-OH-DPAT and DOI consistently impaired mouse escape behavior assessed in the MDTB. Intra-dPAG infusion of 8-OH-DPAT also decreased measures of mouse risk assessment in the rat exposure test. In conclusion, the current findings are in partial agreement with previous results obtained with rats tested in the elevated T-maze. Although there is a high level of similarity between the behavioral effects obtained in rats (elevated T-maze) and mice (MDTB and RET) with the infusion of 5-HT agonists into the dPAG, the same is not true regarding the effects of blockade of DRN 5-HT(1A) receptors in these rodent species. These data suggest that there may be differences between mice

  3. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices

    PubMed Central

    Mlinar, Boris; Montalbano, Alberto; Piszczek, Lukasz; Gross, Cornelius; Corradetti, Renato

    2016-01-01

    Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r2 = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = −0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02–0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons. PMID:27536220

  4. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices.

    PubMed

    Mlinar, Boris; Montalbano, Alberto; Piszczek, Lukasz; Gross, Cornelius; Corradetti, Renato

    2016-01-01

    Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r (2) = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = -0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02-0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons. PMID:27536220

  5. Modulation of serotonin dynamics in the dorsal raphe nucleus via high frequency medial prefrontal cortex stimulation.

    PubMed

    Srejic, Luka R; Wood, Kevin M; Zeqja, Anisa; Hashemi, Parastoo; Hutchison, William D

    2016-10-01

    The subcallosal cingulate (SCC) region, or its rodent homologue the medial prefrontal cortex (mPFC), and midbrain dorsal raphe (DR) are crucial nodes of the widespread network implicated in emotional regulation. Stimulation of the SCC is being explored as a potential treatment for depression. Because modulation of the 5-HT system is the most common pharmacological means of treating depression, we sought to establish 5-HT's role in the mPFC-DR projection. Using anaesthetized mice, we recorded neuronal activity in 49 neurons of the DR before, during, and after high frequency stimulation (HFS) of the mPFC. The majority of DR cells (74%) significantly decreased firing rate during HFS (p<0.001, 65.7±9.4% of baseline, 14 mice). To see the effect of mPFC-HFS on 5-HT neurons, we used transgenic mice with expression of the channelrhodopsin fusion protein directed to the 5-HT neuronal population. Neurons were categorized as 5-HT based on their excitatory response to blue light stimulation (p<0.05, n=11). Our main finding was that identified 5-HT neurons in the DR were clearly inhibited by HFS, albeit non-selectively. Lastly, we used fast scan cyclic voltammetry (FSCV) to investigate the effects of mPFC-HFS on the release and reuptake of electrically stimulated 5-HT in the DR of C57BL/6J mice. Serotonin clearance was significantly faster following 5min HFS (2.3±1.0s, n=5, p<0.05) when compared to control levels (3.7±1.0s, n=5), indicating less release or more efficient 5-HT reuptake. Taken together, these findings imply that mPFC stimulation alters 5-HT activity dynamics in the DR. Such altered 5-HT dynamics may modulate the potential therapeutic mechanisms of SCC/mPFC stimulation. PMID:27326670

  6. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals. PMID:25231613

  7. Sodium Salicylate Suppresses GABAergic Inhibitory Activity in Neurons of Rodent Dorsal Raphe Nucleus

    PubMed Central

    Jin, Yan; Luo, Bin; Su, Yan-Yan; Wang, Xin-Xing; Chen, Liang; Wang, Ming; Wang, Wei-Wen; Chen, Lin

    2015-01-01

    Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain. PMID:25962147

  8. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  9. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    PubMed Central

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A; Kash, Thomas L

    2015-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased anxiety-like behavior at both 24 h and 7 days post-ethanol exposure. At 24 h post-ethanol exposure, we observed increased excitability and decreased spontaneous inhibitory transmission (inhibitory postsynaptic currents, IPSCs) in the DR. At 7 days post-ethanol exposure, we observed increased spontaneous and miniature excitatory transmission (excitatory postsynaptic currents, EPSCs). Because acute ethanol alters GABA transmission in other brain regions, we assessed the effects of ex vivo ethanol (50 mM) on miniature IPSCs (mIPSCs) in the DR 24-h post-ethanol exposure. Bath application of ethanol enhanced the amplitude of mIPSCs in cells from ethanol-naive and chronic intermittent ethanol-exposed (CIE) mice, but significantly enhanced the frequency of mIPSCs only in cells from CIE mice, suggesting that DR neurons are more sensitive to the inhibitory effects of acute ethanol following CIE. On the basis of these findings, we hypothesize that net excitation of DR neurons following chronic ethanol exposure contributes to enhanced anxiety during ethanol withdrawal, and that increased sensitivity of DR neurons to subsequent ethanol exposure may mediate acute ethanol's ability to relieve anxiety during ethanol withdrawal. PMID:25120075

  10. The role of the dorsal raphé nucleus in reward-seeking behavior

    PubMed Central

    Nakamura, Kae

    2013-01-01

    Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide “reward context” information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information. PMID:23986662

  11. Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor.

    PubMed

    Rood, B D; Beck, S G

    2014-02-28

    The neuropeptide vasopressin (AVP; arginine-vasopressin) is produced in a handful of brain nuclei located in the hypothalamus and extended amygdala and is released both peripherally as a hormone and within the central nervous system as a neurotransmitter. Central projections have been associated with a number of functions including regulation of physiological homeostasis, control of circadian rhythms, and modulation of social behavior. The AVP neurons located in the bed nucleus of the stria terminalis and medial amygdala (i.e., extended amygdala) in particular have been associated with affiliative social behavior in multiple species. It was recently demonstrated that in the mouse AVP projections emanating from extended amygdala neurons innervate a number of forebrain and midbrain brain regions including the dorsal raphe nucleus (DR), the site of origin of most forebrain-projecting serotonin neurons. Based on the presence of AVP fibers in the DR, we hypothesized that AVP would alter the physiology of serotonin neurons via AVP 1A receptor (V1AR) activation. Using whole-cell electrophysiology techniques, we found that AVP increased the frequency and amplitude of excitatory post-synaptic currents (EPSCs) in serotonin neurons of male mice. The indirect stimulation of serotonin neurons was AMPA/kainate receptor dependent and blocked by the sodium channel blocker tetrodotoxin, suggesting an effect of AVP on glutamate neurons. Further, the increase in EPSC frequency induced by AVP was blocked by selective V1AR antagonists. Our data suggest that AVP had an excitatory influence on serotonin neurons. This work highlights a new target (i.e., V1AR) for manipulating serotonin neuron excitability. In light of our data, we propose that some of the diverse effects of AVP on physiology and behavior, including social behavior, may be due to activation of the DR serotonin system. PMID:24345477

  12. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  13. Changes of reactions of neurones in dorsal raphe nucleus and locus coeruleus to electroacupuncture by hypothalamic arcuate nucleus stimulation.

    PubMed

    Yin, Q H; Mao, J R; Guo, S Y

    1988-01-01

    In this experiment the role of the hypothalamic arcuate nucleus (ARC) in acupuncture analgesia and its mechanisms were studied with behavioural and electrophysiological methods. After ARC stimulation the analgesic effect of acupuncture was enhanced significantly and the responses of neurones to electroacupuncture were increased in the dorsal raphe nucleus (DR) and reduced in the locus coeruleus (LC), which could be reversed by intraperitoneal injection of naloxone. The results indicate that ARC might participate in acupuncture analgesia via changing the responses of DR and LC neurones to electroacupuncture, a process in which opiate-like substances (probably beta-endorphin) are involved. PMID:3192102

  14. ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus

    PubMed Central

    Zhang, Ting; Huang, Lu; Zhang, Li; Tan, Minjie; Pu, Mingliang; Pickard, Gary E.; So, Kwok-Fai; Ren, Chaoran

    2016-01-01

    The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior. PMID:27181078

  15. ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus.

    PubMed

    Zhang, Ting; Huang, Lu; Zhang, Li; Tan, Minjie; Pu, Mingliang; Pickard, Gary E; So, Kwok-Fai; Ren, Chaoran

    2016-01-01

    The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior. PMID:27181078

  16. Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves.

    PubMed

    Lydic, R; McCarley, R W; Hobson, J A

    1987-10-01

    Brain stem transection studies suggest that pontine neurons play a key role in regulating the mammalian sleep cycle. The serotonin (5-HT) hypothesis originally postulated that pontine 5-HT containing neurons directly initiated and maintained synchronized or NREM sleep and "primed" rapid eye movement (REM) sleep. Contrary to the predictions of this hypothesis, single unit recordings from the serotonergic dorsal raphe nucleus (DRN) have uniformly shown that DRN discharge rate is positively correlated with behavioral arousal but negatively correlated with both the NREM and REM phases of sleep. These findings required revision of the original 5-HT hypothesis and suggested instead that DRN discharge may influence the maintenance of behavioral arousal and, by ceasing to discharge, may contribute to the generation of NREM and REM sleep. The purpose of this paper was to quantitatively assess the strength of the correlation between DRN discharge, REM sleep, and PGO waves following the experimental perturbations of the sleep cycle. Since forced locomotor activity is known to powerfully alter the timing of sleep and wakefulness, the present experiments used forced activity in an attempt to dissociate DRN discharge from the sleep cycle. It was hypothesized that such dissociations would suggest DRN discharge is not involved in sleep cycle regulation. Contrastingly, preserved correlations would support the hypothesis of a possible causal relationship between DRN discharge, PGO waves activity, and the timing of sleep and wakefulness. Extracellular recordings were obtained from single cells in the DRN of intact, undrugged cats across greater than 300 sleep cycles with durations ranging from about 8 to 80 mins. Forced activity significantly reduced the amount of time spent in wakefulness and increased the number but not the duration of REM sleep epochs. The results revealed that DRN discharge rate was altered as a function of sleep cycle duration. In no case, however, was forced

  17. Uptake of 5-hydroxytryptamine in different parts of the brain of the rabbit after intraventricular injection.

    PubMed Central

    Dow, R C; Laszlo, I

    1976-01-01

    1 The uptake of 5-hydroxytryptamine (5-HT) was investigated in different areas of the rabbit brain (anterior hypothalamus, the raphe, the region of the substantia nigra, several cortical areas and the medulla oblongata) after intraventricular injection in pargyline pretreated animals by the formaldehyde-induced histochemical fluorescence method. 2 The distribution of fluorescence showed that the uptake of 5-HT, after circulation in the cerebrospinal fluid, caused a general increase in intensity of green yellow to yellow background fluorescence. There was an increased fluorescence in the nerve terminals, but no uptake occurred either in the cell bodies of neurones or in the glial cells. Images Figure 1 Figure 2 PMID:1260225

  18. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle.

    PubMed

    Spannuth, B M; Hale, M W; Evans, A K; Lukkes, J L; Campeau, S; Lowry, C A

    2011-04-14

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-Fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 s) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: (1) placement in the training context without exposure to either the CS or acoustic startle (AS), (2) exposure to 10 trials of the 2 s CS, (3) exposure to 40 110 dB AS trials, or (4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. PMID:21277950

  19. GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice

    PubMed Central

    Takahashi, Aki; Shimamoto, Akiko; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.

    2010-01-01

    The serotonin (5-HT) system in the brain has been studied more than any other neurotransmitter for its role in the neurobiological basis of aggression. However, which mechanisms modulate the 5-HT system to promote escalated aggression is not clear. We here explore the role of GABAergic modulation in the raphé nuclei, from where most 5-HT in the forebrain originates, on escalated aggression in male mice. Pharmacological activation of GABAB, but not GABAA, receptors in the dorsal raphé nucleus (DRN) escalated aggressive behaviors. In contrast, GABA agonists did not escalate aggressive behaviors after microinjection into the median raphé nucleus (MRN). The aggression-heightening effect of the GABAB agonist baclofen depended on the activation of 5-HT neurons in the DRN because it was blocked by co-administration of the 5-HT1A agonist 8-OH-DPAT, which acts on autoreceptors and inhibits 5-HT neural activity. In vivo microdialysis showed that GABAB activation in the DRN increased extracellular 5-HT level in the medial prefrontal cortex (mPFC). This may be due to an indirect action via presynaptic GABAB receptors. The presynaptic GABAB receptors suppress Ca2+ channel activity and inhibit neurotransmission, and the co-administration of N-type Ca2+ channel blocker facilitated the effect of baclofen. These findings suggest that the indirect disinhibition of 5-HT neuron activity by presynaptic GABAB receptors on non-5-HT neurons in the DRN is one of the neurobiological mechanisms of escalated aggression. PMID:20810897

  20. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons is specific for suicide regardless of psychiatric diagnosis.

    PubMed

    Krzyżanowska, Marta; Steiner, Johann; Brisch, Ralf; Mawrin, Christian; Busse, Stefan; Karnecki, Karol; Jankowski, Zbigniew; Gos, Tomasz

    2016-07-30

    The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour. We have evaluated the transcriptional activity of ribosomal DNA (rDNA) in DRN neurons by AgNOR silver staining method. The cohort (containing 24 suicidal and 20 non-suicidal patients, and 28 controls) was previously analysed regarding diagnosis-related differences between schizophrenia and affective disorders. Significant decreases in both AgNOR and nuclear areas suggestive of attenuated rDNA activity were currently found in suicidal versus non-suicidal patients. This effect, which was more accentuated in affective disorders patients, was not explained by antidepressant and antipsychotic medication. PMID:27155286

  1. Nociceptive vocalization response in guinea pigs modulated by opioidergic, GABAergic and serotonergic neurotransmission in the dorsal raphe nucleus.

    PubMed

    Ferreira, Mateus Dalbem; Menescal-de-Oliveira, Leda

    2014-07-01

    The dorsal raphe nucleus (DRN) is involved in the control of several physiological functions, including nociceptive modulation. This nucleus is one of the main sources of serotonin to the CNS and neuromodulators such as opioids and GABA may be are important for its release. This study evaluated the influence of serotonergic, GABAergic and opioidergic stimulation, as well as their interactions in the DRN, on vocalization nociceptive response during a peripheral noxious stimulus application in guinea pigs. Morphine (1.1 nmol), bicuculline (0.50 nmol) and alpha-methyl-5-HT (1.6 nmol) microinjection on the DRN produces antinociception. The antinociception produced by morphine (1.1 nmol) and alpha-methyl-5-HT (1.6 nmol) into the DRN was blocked by prior microinjection of naloxone (0.7 nmol). The alpha-methyl-5-HT effect blocked by naloxone may indicate the existence of 5-HT2A receptors on enkephalinergic interneurons within the dorsal raphe. Pretreatment with muscimol (0.26 nmol) also prevented the antinociceptive effect caused by morphine (1.1 nmol) when administered alone at the same site, indicating an interaction between GABAergic and opioidergic interneurons. The antinociception produced by bicuculline (0.5 nmol) in the DRN was blocked by prior administration of 8-OH-DPAT (0.5 nmol), a 5-HT1A agonist. This may indicate that the 5-HT autoreceptor activation by 8-OH-DPAT at DRN effector neurons can oppose the bicuculline disinhibition effect applied to the same effectors. Thus, we suggest that 5-HT2 receptor activation in the DRN promotes endorphin/enkephalin release that may disinhibit efferent serotonergic neurons of this present structure by inhibiting GABAergic interneurons, resulting in antinociception. PMID:24831566

  2. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  3. Inactivation of the Dorsal Raphé Nucleus Reduces the Anxiogenic Response of Rats Running an Alley for Intravenous Cocaine

    PubMed Central

    Ettenberg, Aaron; Ofer, Oren A.; Mueller, Carl L.; Waldroup, Stephanie; Cohen, Ami; Ben-Shahar, Osnat

    2010-01-01

    Rats traversing a straight alley once a day for delivery of a single i.v. injection of cocaine develop over trials an ambivalence about entering the goal box. This ambivalence is characterized by the increasing occurrence of “retreat behaviors” where animals leave the start box and run quickly to the goal box, but then stop at the entry point and “retreat” back toward the start box. This unique pattern of retreat behavior has been shown to reflect a form of “approach-avoidance conflict” that stems from the animals’ concurrent positive (cocaine reward) and negative (cocaine-induced anxiety) associations with the goal box. Cocaine blocks reuptake of the serotonergic (5-HT) transporter and serotonin has been implicated in the modulation of anxiety. It was therefore of interest to determine whether inactivation of the serotonergic cell bodies residing in the dorsal raphé nucleus (DRN) and projecting to brain areas critical for the modulation of anxiety, would alter the anxiogenic state exhibited by rats running an alley for single daily i.v. injections of 1.0 mg/kg cocaine. Reversible inactivation of the DRN was accomplished by intracranial application of a mixed solution of the GABA agonists baclofen and muscimol. While DRN inactivation had no impact on the subjects’ motivation to initiate responding (i.e., latencies to leave the start box were unaffected) it reliably reduced the frequency of approach-avoidance retreat behaviors (conflict behavior). These data suggest that inactivation of the dorsal raphé reduces the conflict/anxiety otherwise present in experienced cocaine-seeking animals. PMID:21108959

  4. Sex differences in the ontogeny of CRF receptors during adolescent development in the dorsal raphe nucleus and ventral tegmental area.

    PubMed

    Lukkes, Jodi L; Norman, Kevin J; Meda, Shirisha; Andersen, Susan L

    2016-03-01

    Interactions between corticotropin-releasing factor (CRF) and monoaminergic systems originating from the dorsal raphe nucleus (DR) and ventral tegmental area (VTA) have been implicated in the etiology and pathophysiology of several stress-related neuropsychiatric disorders such as depression and substance abuse. Sub-regions within the DR and VTA give rise to specific projections that have unique roles in limbic- and reward-related behaviors. Given that these disorders typically emerge during adolescence, it is surprising that few studies have examined the age-, sex-, and region-dependent expression of CRF receptors throughout multiple stages of adolescence in these stress-relevant circuits. To determine the ontogeny of CRF receptors during adolescent development, three regions of the DR (dorsal, caudal, and ventrolateral parts) and the posterior VTA were microdissected from Sprague-Dawley male and female rats on postnatal day (P) 25, P35, P42, P56, and P90. Tissue was processed and analyzed with qRT-PCR to measure CRF1 and CRF2 receptors. The serotonin and catecholamine enzymes in the DR and VTA, tryptophan hydroxylase 2 (TPH2) and tyrosine hydroxylase, respectively, were also analyzed for maturational differences. This study identified that CRF1 receptors are lower in males than females within the dorsal, ventrolateral region of the DR (DRVL), which is involved in anxiety-, stress-, and panic-related responses. Females had higher CRF2 receptors compared to males in the DRVL only. Levels of TPH2 mRNA in the DRVL were overproduced transiently in females before declining into adulthood. These fundamental studies suggest that sex differences in CRF receptors should be considered when examining stress-related neuropsychiatric disorders and their treatment. PMID:26696011

  5. The role of the dorsal raphe nucleus in the development, expression, and treatment of L-dopa-induced dyskinesia in hemiparkinsonian rats.

    PubMed

    Eskow, Karen L; Dupre, Kristin B; Barnum, Christopher J; Dickinson, Sando O; Park, John Y; Bishop, Christopher

    2009-07-01

    Convergent evidence indicates that in later stages of Parkinson's disease raphestriatal serotonin neurons compensate for the loss of nigrostriatal dopamine neurons by converting and releasing dopamine derived from exogenous administration of the pharmacotherapeutic L-3,4-dihydroxyphenyl-L-alanine (L-dopa). Because the serotonin system is not equipped with dopamine autoregulatory mechanisms, it has been postulated that raphe-mediated striatal dopamine release may fluctuate dramatically. These fluctuations may portend the development of abnormal involuntary movements called L-dopa-induced dyskinesia (LID). As such, it has been hypothesized that reducing the activity of raphestriatal neurons could dampen supraphysiological stimulation of striatal dopamine receptors thereby alleviating LID. To directly address this, the current study employed the rodent model of LID to investigate the contribution of the rostral raphe nuclei (RRN) in the development, expression and treatment of LID. In the first study, dual serotonin/dopamine selective lesions of the RRN and medial forebrain bundle, respectively, verified that the RRN are essential for the development of LID. In a direct investigation into the neuroanatomical specificity of these effects, microinfusions of +/-8-OH-DPAT into the intact dorsal raphe nucleus dose-dependently attenuated the expression of LID without affecting the antiparkinsonian efficacy of L-dopa. These current findings reveal the integral contribution of the RRN in the development and expression of LID and implicate a prominent role for dorsal raphe 5-HT1AR in the efficacious properties of 5-HT1AR agonists. PMID:19309758

  6. Electrophysiological Assessment of Serotonin and GABA Neuron Function in the Dorsal Raphe during the Third Trimester Equivalent Developmental Period in Mice123

    PubMed Central

    Morton, Russell A.; Yanagawa, Yuchio

    2015-01-01

    Abstract Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5–P7] and late (P15–P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5–P7 relative to P15–P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development. PMID:26730407

  7. Inter- and intracellular relationship of substance P-containing neurons with serotonin and GABA in the dorsal raphe nucleus: combination of autoradiographic and immunocytochemical techniques

    SciTech Connect

    Magoul, R.; Onteniente, B.; Oblin, A.; Calas, A.

    1986-06-01

    Double-labeling experiments were performed at the electron microscopic level in the dorsal raphe nucleus of rat, in order to study the inter- and intracellular relationship of substance P with gamma-aminobutyric acid (GABA) and serotonin. Autoradiography for either (/sup 3/H)serotonin or (/sup 3/H)GABA was coupled, on the same tissue section, with peroxidase-antiperoxidase immunocytochemistry for substance P in colchicine-treated animals. Intercellular relationships were represented by synaptic contacts made by (/sup 3/H)serotonin-labeled terminals on substance P-containing somata and dendrites, and by substance P-containing terminals on (/sup 3/H)GABA-labeled cells. Intracellular relationships were suggested by the occurrence of the peptide within (/sup 3/H)serotonin-containing and (/sup 3/H)GABA-containing cell bodies and fibers. Doubly labeled varicosities of the two kinds were also observed in the supraependymal plexus adjacent to the dorsal raphe nucleus. The results demonstrated that, in addition to reciprocal synaptic interactions made by substance P with serotonin and GABA, the dorsal raphe nucleus is the site of intracellular relationships between the peptide and either the amine or the amino acid.

  8. Dorsal raphe nucleus and locus coeruleus neural networks and the elaboration of the sweet-substance-induced antinociception.

    PubMed

    Kishi, Renato; Bongiovanni, Renata; de Nadai, Tales Rubens; Freitas, Renato Leonardo; de Oliveira, Ricardo; Ferreira, Célio Marcos Dos Reis; Coimbra, Norberto Cysne

    2006-02-27

    In order to investigate the effects of monoaminergic neurons of the dorsal raphe nucleus (DRN) and locus coeruleus (LC) on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180-200 g received sucrose solution (250 g/L) for 7-14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL) in the DRN or in the LC. The tail withdrawal latencies of the rats in the tail-flick test were measured immediately before and 7 days after this treatment. The neurochemical lesion of locus coeruleus, but not of DRN neural networks with ibotenic acid, after the chronic intake of sweetened solution, decreased the sweet-substance-induced antinociception. These results indicate the involvement of noradrenaline-containing neurons of the LC in the sucrose-induced antinociception. We also consider the possibility of DRN serotonergic neurons exerting some inhibitory effect on the LC neural networks involved with the elaboration of the sweet-substance-induced antinociception. PMID:16289556

  9. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  10. Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress.

    PubMed

    Baratta, Michael V; Zarza, Christina M; Gomez, Devan M; Campeau, Serge; Watkins, Linda R; Maier, Steven F

    2009-09-01

    Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor 1 week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors. PMID:19686468

  11. Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress

    PubMed Central

    Baratta, Michael V.; Zarza, Christina M.; Gomez, Devan M.; Campeau, Serge; Watkins, Linda R.; Maier, Steven F.

    2009-01-01

    Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor one week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors. PMID:19686468

  12. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Yang, Guang; Ding, Hui; Song, Jin-Zhi; Ye, Hui; Sheng, Zhao-Fu; Wang, Zi-Jun; Zhang, Yong-He

    2016-01-01

    Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways. PMID:27456222

  13. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons differentiates between suicidal and non-suicidal death.

    PubMed

    Krzyżanowska, Marta; Steiner, Johann; Karnecki, Karol; Kaliszan, Michał; Brisch, Ralf; Wiergowski, Marek; Braun, Katharina; Jankowski, Zbigniew; Gos, Tomasz

    2016-04-01

    An involvement of the central serotonergic system has been implicated in the pathogenesis of suicide. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour. The study was carried out on paraffin-embedded brainstem blocks containing the DRN obtained from 27 suicide completers (predominantly violent) with unknown psychiatric diagnosis and 30 non-suicidal controls. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons as a surrogate marker of protein biosynthesis was evaluated by the AgNOR silver staining method. Significant decreases in AgNOR parameters suggestive of attenuated rDNA activity were found in the cumulative analysis of all DRN subnuclei in suicide victims versus controls (U test P values < 0.00001). Our findings suggest that the decreased activity of rDNA transcription in DRN neurons plays an important role in suicide pathogenesis. The method accuracy represented by the area under receiver operating characteristic curve (>80 %) suggests a diagnostic value of the observed effect. However, the possible application of the method in forensic differentiation diagnostics between suicidal and non-suicidal death needs further research. PMID:26590846

  14. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus.

    PubMed

    Morais, J S; Souza, M M; Campanha, T M N; Muller, C J T; Bittencourt, A S; Bortoli, V C; Schenberg, L C; Beijamini, V

    2016-11-01

    About 40% of the dorsal raphe nucleus (DRN) neurons co-express serotonin (5-HT) and galanin. Serotonergic pathways from the DRN to the amygdala facilitate learned anxiety, while those from the DRN to the dorsal periaqueductal grey matter (DPAG) impair innate anxiety. Previously, we showed that galanin infusion in the DRN of rats induces anxiolytic effect by impairing inhibitory avoidance without changing escape behaviour in the elevated T-maze (ETM). Here, we evaluated: (1) which galanin receptors would be involved in the anxiolytic effect of galanin in the DRN of rats tested in the ETM; (2) the effects of galanin intra-DRN on panic-like behaviours evoked by electrical stimulation of the DPAG. The activation of DRN GAL1 receptors by M617 (1.0 and 3.0nmol) facilitated inhibitory avoidance, whereas the activation of GAL2 receptors by AR-M1896 (3.0nmol) impaired the inhibitory avoidance in the ETM, suggesting an anxiogenic and an anxiolytic-like effect respectively. Both agonists did not change escape behaviour in the ETM or locomotor activity in the open field. The anxiolytic effect of AR-M1896 was attenuated by the prior administration of WAY100635 (0.18nmol), a 5-HT1A antagonist. Galanin (0.3nmol) administered in the DRN increased discreetly flight behaviours induced by electrical stimulation of the DPAG, suggesting a panicolytic effect. Together, our results showed that galanin mediates opposite anxiety responses in the DRN by activation of GAL1 and GAL2 receptors. The anxiolytic effect induced by activation of Gal2 receptors may depend on serotonergic tone. Finally, the role of galanin in panic related behaviours remains uncertain. PMID:27498247

  15. Unpredictable chronic mild stress exerts anxiogenic-like effects and activates neurons in the dorsal and caudal region and in the lateral wings of the dorsal raphe nucleus.

    PubMed

    Lopes, Danielle A; Lemes, Jéssica A; Melo-Thomas, Liana; Schor, Herbert; de Andrade, José S; Machado, Carla M; Horta-Júnior, José A C; Céspedes, Isabel C; Viana, Milena B

    2016-01-15

    In previous studies, we verified that exposure to unpredictable chronic mild stress (UCMS) facilitates avoidance responses in the elevated T-maze (ETM) and increased Fos-immunoreactivity in different brain structures involved in the regulation of anxiety, including the dorsal raphe (DR). Since, it has been shown that the DR is composed of distinct subpopulations of serotonergic and non-serotonergic neurons, the present study investigated the pattern of activation of these different subnuclei of the region in response to this stress protocol. Male Wistar rats were either unstressed or exposed to the UCMS procedure for two weeks and, subsequently, analyzed for Fos-immunoreactivity (Fos-ir) in serotonergic cells of the DR. To verify if the anxiogenic effects observed in the ETM could be generalized to other anxiety models, a group of animals was also tested in the light/dark transition test after UCMS exposure. Results showed that the UCMS procedure decreased the number of transitions and increased the number of stretched attend postures in the model, an anxiogenic effect. UCMS exposure also increased Fos-ir and the number of double-labeled neurons in the mid-rostral subdivision of the dorsal part of the DR and in the mid-caudal region of the lateral wings. In the caudal region of the DR there was a significant increase in the number of Fos-ir. No significant effects were found in the other DR subnuclei. These results corroborate the idea that neurons of specific subnuclei of the DR regulate anxiety responses and are differently activated by chronic stress exposure. PMID:26462572

  16. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: Biochemical, histochemical, and experimental studies at the light and electron microscopic level

    SciTech Connect

    Arvidsson, U.; Ulfhake, B.; Cullheim, S.; Bergstrand, A.; Theodorson, E.; Hoekfelt, T. )

    1991-06-01

    The distribution of galanin-like immunoreactivity (GAL-LI) in the spinal cord of the cat was studied by use of indirect histochemistry and the peroxidase-antiperoxidase (PAP) technique. In the ventral horn GAL-immunoreactive (IR) axonal fibers and terminals were most frequent in the ventral part of the motor nucleus. The GAL-IR axons also contained 5-hydroxytryptamine (5-HT)-LI, and they disappeared after spinal cord transection. It was concluded that these GAL-IR fibers belong to the serotoninergic bublospinal pathway. In the medulla oblongata from normal cats, scattered GAL-IR cell bodies were encountered within the nucleus raphe obscurus and nucleus raphe pallidus. Electron microscopic observations revealed that the fine structure of the GAL-IR axonal boutons in the motor nucleus was similar to that of 5-HT-IR boutons with a varying number of immunoreactive large dense core vesicles. The postsynaptic element in all cases studied was a dendrite. A dense GAL-IR axonal plexus was found in the superficial laminae I-II of the dorsal horn. Coexistence was found between the GAL- and substance P-LI in fibers within the dorsal horn plexus. Spinal cord transection did not alter the pattern of GAL-LI in the dorsal horn, while the vast majority of GAL-IR axonal swellings disappeared following dorsal root sectioning. Electron microscopic observations in lamina II (substantia gelatinosa) revealed that the GAL-IR axonal terminals could be divided into two main groups. One with small to medium-sized axonal boutons formed synaptic contacts with both dendritic and axonal profiles. The other formed the central axon terminals of glomeruli, suggesting that GAL-LI may be present in C-type primary afferents. Numerous small GAL-IR cell bodies were encountered in laminae II and III. GAL-IR cell bodies were also observed in lamina X.

  17. Lesions in Guddesn's tegmental nuclei produce behavioral and 5-HT effects similar to those after raphe lesions.

    PubMed

    Lorens, S A; Köhler, C; Guldberg, H C

    1975-01-01

    Lesions largely restricted to the dorsal and ventral tegmental nuclei of Gudden (GTN) produced several effects similar to those seen after midbrain raphe lesions. GTN lesions significantly reduced the 5-hydroxytryptamine (5-HT) concentration of the diencephalon (31 percent), hippocampus (59 percent), and remaining portion of the telencephalon (29 percent). Striatal 5-HT, however, was not affected. GTN lesions enhanced activity in an enclosed field and facilitated two-way avoidance acquisition. Pain sensitivity as measured by the flinch-jump method was not affected. These results suggest that the GTN may be the origin of ascending 5-HT fides and may be involved in the regulation of activity level and the adaptation of an animal to aversive situations. Thus, some of the behavioral and 5-HT effects of lesions in the midbrain raphe nuclei may be due to their involvement of the GTN and associated pathways. PMID:1187729

  18. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  19. Ethanol withdrawal induces anxiety-like effects: Role of nitric oxide synthase in the dorsal raphe nucleus of rats.

    PubMed

    Gonzaga, Natália Almeida; Batistela, Melissa Resende; Padovan, Diego; de Martinis, Bruno Spinosa; Tirapelli, Carlos Renato; Padovan, Cláudia Maria

    2016-05-01

    Nitric oxide (NO) mediated transmission in the dorsal raphe nucleus (DRN) has been shown to be involved in the modulation of anxiety-like behaviors. We investigated whether inhibition of nitric oxide synthase (NOS) in the DRN would prevent anxiety-like behavior induced by ethanol withdrawal. Male Wistar rats were treated with ethanol 2-6% (v/v) for a period of 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 h after ethanol discontinuation. Rats with a guide cannula aimed at the DRN received intra-DRN injections of the non-selective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME), selective neuronal NOS (nNOS) inhibitor N(ω)-propyl-l-arginine (NPLA), or selective inhibitor of inducible NOS (iNOS) N-([3-(aminomethyl)phenyl] methyl) ethanimidamidedihydrochloride (1400W). Five minutes later, the animals were tested in the elevated plus maze (EPM). Plasma ethanol levels were determined by gas chromatography. There was a reduction in plasma ethanol levels 48 h after ethanol withdrawal. Rats from the ethanol withdrawal group showed decreased exploration of the open arms of the EPM with no change in the exploration of enclosed arms. Intra-DRN treatment with l-NAME (100 nmoles/0.2 μL) and 1400W (1 nmol/0.2 μL), but not NPLA (10 nmoles/0.2 μL) in the DRN attenuated the decrease in the exploration of the open arms of the EPM induced by ethanol withdrawal. The major new finding of the present study is that iNOS in the DRN plays a role in the anxiety-like behavior induced by ethanol withdrawal. PMID:27139232

  20. D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance.

    PubMed

    Aman, Teresa K; Shen, Roh-Yu; Haj-Dahmane, Samir

    2007-01-01

    The dorsal raphe (DR) receives a prominent dopamine (DA) input that has been suggested to play a key role in the regulation of central serotoninergic transmission. DA is known to directly depolarize DR serotonin neurons, but the underlying mechanisms are not well understood. Here, we show that activation of D2-like dopamine receptors on DR 5-HT neurons elicits a membrane depolarization and an inward current associated with an increase in membrane conductance. The DA-induced inward current (I(DA)) exhibits a linear I-V relationship and reverses polarity at around -15 mV, suggesting the involvement of a mixed cationic conductance. Consistent with this notion, lowering the extracellular concentration of sodium reduces the amplitude of I(DA) and induces a negative shift of its reversal potential to approximately -45 mV. This current is abolished by inhibiting G-protein function with GDPbetaS. Examination of the downstream signaling mechanisms reveals that activation of the nonselective cation current requires the stimulation of phospholipase C but not an increase in intracellular calcium. Thus, pharmacological inhibition of phospholipase C reduces the amplitude of I(DA). In contrast, buffering intracellular calcium has no effect on the amplitude of I(DA). Bath application of transient receptor potential (TRP) channels blockers, 2-aminoethoxydiphenyl borate and SKF96365 [1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole], strongly inhibits I(DA) amplitude, suggesting the involvement of TRP-like conductance. These results reveal previously unsuspected mechanism by which D2-like DA receptors induce membrane depolarization and enhance the excitability of DR 5-HT neurons. PMID:17005915

  1. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  2. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores. PMID:23100436

  3. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat

    PubMed Central

    Challis, Collin; Beck, Sheryl G.; Berton, Olivier

    2014-01-01

    It has been well established that modulating serotonin (5-HT) levels in humans and animals affects perception and response to social threats, however the circuit mechanisms that control 5-HT output during social interaction are not well understood. A better understanding of these systems could provide groundwork for more precise and efficient therapeutic interventions. Here we examined the organization and plasticity of microcircuits implicated in top-down control of 5-HT neurons in the dorsal raphe nucleus (DRN) by excitatory inputs from the ventromedial prefrontal cortex (vmPFC) and their role in social approach-avoidance decisions. We did this in the context of a social defeat model that induces a long lasting form of social aversion that is reversible by antidepressants. We first used viral tracing and Cre-dependent genetic identification of vmPFC glutamatergic synapses in the DRN to determine their topographic distribution in relation to 5-HT and GABAergic subregions and found that excitatory vmPFC projections primarily localized to GABA-rich areas of the DRN. We then used optogenetics in combination with cFos mapping and slice electrophysiology to establish the functional effects of repeatedly driving vmPFC inputs in DRN. We provide the first direct evidence that vmPFC axons drive synaptic activity and immediate early gene expression in genetically identified DRN GABA neurons through an AMPA receptor-dependent mechanism. In contrast, we did not detect vmPFC-driven synaptic activity in 5-HT neurons and cFos induction in 5-HT neurons was limited. Finally we show that optogenetically increasing or decreasing excitatory vmPFC input to the DRN during sensory exposure to an aggressor's cues enhances or diminishes avoidance bias, respectively. These results clarify the functional organization of vmPFC-DRN pathways and identify GABAergic neurons as a key cellular element filtering top-down vmPFC influences on affect-regulating 5-HT output. PMID:24596546

  4. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain.

    PubMed

    Li, Chia; Sugam, Jonathan A; Lowery-Gionta, Emily G; McElligott, Zoe A; McCall, Nora M; Lopez, Alberto J; McKlveen, Jessica M; Pleil, Kristen E; Kash, Thomas L

    2016-07-01

    The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release. PMID:26792442

  5. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

    PubMed

    Shikanai, Hiroki; Yoshida, Takayuki; Konno, Kohtarou; Yamasaki, Miwako; Izumi, Takeshi; Ohmura, Yu; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2012-10-10

    The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor. PMID:23055511

  6. Stress-Hyperresponsive WKY Rats Demonstrate Depressed Dorsal Raphe Neuronal Excitability and Dysregulated CRF-Mediated Responses

    PubMed Central

    Lemos, Julia C; Zhang, Guojun; Walsh, Teresa; Kirby, Lynn G; Akanwa, Adaure; Brooks-Kayal, Amy; Beck, Sheryl G

    2011-01-01

    Major depression is a debilitating psychiatric disease that may be precipitated by a dysregulation of stress neurocircuitry caused by chronic or severe stress exposure. Moreover, hyperresponsivity to stressors correlates with depressed mood and may contribute to the etiology of major depression. The serotonergic dorsal raphe nucleus (DRN) is an important site in the neurocircuitry underlying behavioral responses to stressors, and is tightly regulated, in part, by a combination of intrinsic cell properties, autoinhibition, and GABAergic synaptic transmission. The stress-related neurotransmitter corticotropin-releasing factor (CRF) modulates DRN neuronal excitability and subsequent 5-HT release in the forebrain. Wistar Kyoto (WKY) rats exhibit exaggerated behavioral responses to stressors, that is, stress hyperresponsivity, and are considered an animal model of depression. To better understand the neurobiological basis of the stress hyperresponsivity, we used a combination of mRNA analysis and whole-cell electrophysiological techniques to measure differences in intrinsic activity and receptor response, in 5-HT- and non-5-HT-containing neurons of the DRN in WKY rats compared with Sprague-Dawley controls. In the WKY rat, there was a decrease in the neuronal excitability of 5-HT neurons coupled with decreased TPH2 production. Additionally, we found that CRF did not increase GABAergic activity in 5-HT neurons as is normally seen in 5-HT neurons of Sprague-Dawley controls. The CRF modulation of 5-HT DRN neurotransmission at the single-cell level is selectively disrupted in the WKY animal model of depression and may be one of the cellular correlates underlying depression. PMID:21160465

  7. GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption

    PubMed Central

    Takahashi, Aki; Kwa, Carolyn; DeBold, Joseph F.

    2010-01-01

    Rationale The dorsal raphé nucleus (DRN), the origin for serotonin (5-HT) in forebrain areas, has been implicated in the neural control of escalated aggression. Gamma aminobutyric acid type-A (GABAA) and type-B (GABAB) receptors are expressed in the DRN and modulate 5-HT neuronal activity, and both play a role in the behavioral effect of alcohol. Objective The purpose of this study is to examine the interaction between drugs acting on GABA receptors in the DRN and alcohol in their effects on aggressive behaviors. Method Male CFW mice, housed with a female, were trained to self-administer ethanol (1.0 g/kg) or water via an operant conditioning panel in their home cage. Immediately after they drank either ethanol or water, the animals were microinfused with a GABAergic drug into the DRN, and their aggressive behaviors were assessed 10 min later. Muscimol (0.006 nmol), a GABAA receptor agonist, escalated alcohol-heightened aggression but had no effect in the absence of ethanol. This effect of muscimol was prominent in the animals that showed alcohol-heightened aggression, but not the animals that reduced or did not change aggressive behavior after ethanol infusion compared to water. On the other hand, the GABAB agonist baclofen (0.06 nmol) increased aggressive behavior similarly in both water and ethanol conditions. Antagonists of the GABAA and GABAB receptors, bicuculline (0.006 nmol) and phaclofen (0.3 nmol) respectively, did not suppress heightened-aggressive behavior induced by ethanol self-administration. Conclusion GABAA receptors in the DRN are one of the neurobiological targets of alcohol-heightened aggression. Activation of the GABAB receptors in the DRN also produced escalated aggression, but that is independent of the effect of alcohol. PMID:20589493

  8. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  9. Chronic Stress Impairs α1-Adrenoceptor-Induced Endocannabinoid-Dependent Synaptic Plasticity in the Dorsal Raphe Nucleus

    PubMed Central

    Shen, Roh-Yu

    2014-01-01

    Alpha 1-adrenergic receptors (α1-ARs) control the activity of dorsal raphe nucleus (DRn) serotonin (5-HT) neurons and play crucial role in the regulation of arousal and stress homoeostasis. However, the precise role of these receptors in regulating glutamate synapses of rat DRn 5-HT neurons and whether chronic stress exposure alters such regulation remain unknown. In the present study, we examined the impact of chronic restraint stress on α1-AR-mediated regulation of glutamate synapses onto DRn 5-HT neurons. We found that, in the control condition, activation of α1-ARs induced an inward current and long-term depression (LTD) of glutamate synapses of DRn 5-HT neurons. The α1-AR LTD was initiated by postsynaptic α1-ARs but mediated by a decrease in glutamate release. The presynaptic expression of the α1-AR LTD was signaled by retrograde endocannabinoids (eCBs). Importantly, we found that chronic exposure to restraint stress profoundly reduced the magnitude of α1-AR LTD but had no effect on the amplitude of α1-AR-induced inward current. Chronic restraint stress also reduced the CB1 receptor-mediated inhibition of EPSC and the eCB-mediated depolarization-induced suppression of excitation. Collectively, these results indicate that chronic restraint stress impairs the α1-AR LTD by reducing the function of presynaptic CB1 receptors and reveal a novel mechanism by which noradrenaline controls synaptic strength and plasticity in the DRn. They also provide evidence that chronic stress impairs eCB signaling in the DRn, which may contribute, at least in part, to the dysregulation of the stress homeostasis. PMID:25355210

  10. Cholestasis of pregnancy, pruritus and 5-hydroxytryptamine 3 receptor antagonists.

    PubMed

    Schumann, Roman; Hudcova, Jana

    2004-09-01

    Pruritus, an early symptom of intrahepatic cholestasis of pregnancy, may be severe. Conventional treatment includes ursodeoxycholic acid and cholestyramine. Ondansetron, a 5-hydroxytryptamine 3 receptor antagonist antiemetic, has been shown to reduce pruritus of different etiologies including cholestasis. We now report the successful preoperative use of ondansetron in a patient with pruritus from intrahepatic cholestasis of pregnancy. While the mechanism for our patient's response is poorly understood, 5-hydroxytryptamine 3 receptor antagonists should be further evaluated and possibly considered as a treatment option for intrahepatic cholestasis of pregnancy-related pruritus. PMID:15315599

  11. Increase of 5-hydroxytryptamine in the rat brain by raunescine

    PubMed Central

    Paasonen, M. K.; Kärki, N. T.

    1959-01-01

    The Rauwolfia alkaloid raunescine (5 mg./kg., intraperitoneally) increased the concentration of 5-hydroxytryptamine in the brains of rats after iproniazid pre-treatment. This was evident 3 to 4 hr. after raunescine administration. There was no general increase in the noradrenaline content of the brains. In the intestine, raunescine depleted the 5-hydroxytryptamine content by about 50% within 3 to 4 hr. if the animals had been pre-treated with iproniazid. Iproniazid did not increase the content of noradrenaline in the intestine. PMID:13662567

  12. Ethanol consumption in the Sprague-Dawley rat increases sensitivity of the dorsal raphe nucleus to 5,7-dihydroxytryptamine.

    PubMed

    Vasudeva, Rani K; Hobby, Alexander R; Kirby, Lynn G

    2015-12-15

    Alcoholism afflicts 1 in 13 US adults, and comorbidity with depression is common. Levels of serotonin (5-HT) metabolites in alcoholic or depressed humans and rat strains are lower compared to healthy counterparts. Rats bred for ethanol (EtOH) preference are common in EtOH studies, however out-bred strains better model the range of EtOH consumption in humans. We examined voluntary EtOH consumption in out-bred Sprague-Dawley (SD) rats placed in the 20% EtOH intermittent access drinking paradigm (IA). Acquisition of 20% EtOH consumption (g EtOH/kg/24h) was assessed during the first 6-8 weeks of IA. Rats naturally separated into two groups (Drinkers or Non-drinkers) based on EtOH intake above or below 0.5 g/kg/24h prior to treatment intervention. We examined the effect of central 5-HT depletion on EtOH consumption by infusing 5,7-dihyroxytryptamine (5,7-DHT; i.c.v., 200-300 μg) or vehicle and measured EtOH consumption for 4 weeks post-operatively in IA. Compared to baseline, there was no effect of vehicle or 5,7-DHT on EtOH consumption during the post-operative period. Quantification of 5-HT depletion in the dorsal raphe nucleus (DRN) using tryptophan hydroxylase-2 (TPH2) immunohistochemistry resulted in a 76% decrease in staining with 5,7-DHT treatment. Interestingly, preservation of the ventromedial (VM) sub-regions was evident in all animals treated with 5,7-DHT, regardless of drinking behavior. In addition, Drinkers treated with 5,7-DHT had significantly more TPH2 depletion in the DRN compared to Non-drinkers. Our findings indicate that out-bred SD rats exhibit a natural EtOH consumption behavior (Drinker or Non-drinker) that is stable across time and independent of 5-HT depletion in the CNS. In addition, rats that regularly consumed >0.5 g EtOH/kg had greater sensitivity to 5,7-DHT in the DRN, indicating an interaction between EtOH and sensitivity of DRN 5-HT cells to neurotoxic substances. This may contribute to the dysfunctionality of the 5-HT system in

  13. 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus.

    PubMed

    Gualda, L B; Martins, G G; Müller, B; Guimarães, F S; Oliveira, R M W

    2011-04-01

    The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT(1A) autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT(1A) receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT(1A) receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F(7,63) = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT(1A) receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN. PMID:21445531

  14. Extensive juvenile "babysitting" facilitates later adult maternal responsiveness, decreases anxiety, and increases dorsal raphe tryptophan hydroxylase-2 expression in female laboratory rats.

    PubMed

    Harding, Kaitlyn M; Lonstein, Joseph S

    2016-05-01

    Pregnancy and parturition can dramatically affect female neurobiology and behavior. This is especially true for laboratory-reared rodents, in part, because such rearing prevents a host of developmental experiences that females might undergo in nature, including juvenile alloparenting. We examined the effect of chronic exposure to pups during post-weaning juvenile life (days 22-36) on adult maternal responsiveness, anxiety-related behaviors, and dorsal raphe tryptophan hydroxylase-2 (TPH2) and serotonin transporter (SERT) levels in nulliparous rats. Adult females with juvenile alloparental experience showed significantly faster sensitized maternal responsiveness, less anxiety, and more dorsal raphe TPH2. Juvenile alloparenting did not affect females' later social novelty and preference behaviors toward adults, suggesting their increased interest in pups did not extend to all social partners. In a second experiment, suckling a pregnant dam (achieved by postpartum estrus reinsemination), interacting with her after standard laboratory weaning age, and a 3-day exposure to younger siblings also reduced juvenile females' later anxiety but did not affect maternal responsiveness or TPH2. Thus, extensive juvenile "babysitting" can have long-term effects reminiscent of pregnancy and parturition on maternal responsiveness and anxiety, and these effects may be driven by upregulated serotonin. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 492-508, 2016. PMID:26806471

  15. Anticonvulsant compounds and 5-hydroxytryptamine in rat brain

    PubMed Central

    Bonnycastle, D. D.; Giarman, N. J.; Paasonen, M. K.

    1957-01-01

    In rats, a series of anticonvulsant compounds have been shown to cause a significant elevation of brain 5-hydroxytryptamine (5-HT) levels in comparison with control values. This increase in 5-HT only occurred in brain tissue and was not observed in spleen, upper small intestine or blood. Elevation of brain levels of 5-HT by iproniazid (Marsilid) or 5-hydroxytryptophan failed to give protection against the convulsant or lethal action of lept zol (75 mg./kg.). PMID:13446378

  16. Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides

    PubMed Central

    Bach-Mizrachi, H; Underwood, MD; Tin, A; Ellis, SP; Mann, JJ; Arango, V

    2008-01-01

    Deficient levels of serotonin are associated with suicide and depression. Paradoxically, in the dorsal raphe nucleus (DRN) there are more serotonin neurons and more neuronal tryptophan hydroxylase-2 (TPH2) expression postmortem in depressed suicides. In this study, we sought to determine whether greater TPH2 expression in depressed suicides was the result of more TPH2 expression per neuron. In situ hybridization and computer-assisted image analysis were performed on tissue sections throughout the extent of the raphe nuclei at the level of silver grains per neuron to systematically quantify TPH2 neuronal expression. Depressed suicides have 26.5% more TPH2 grain density per neuron in the DRN compared with matched controls (P= 0.04). The difference in grain density is greater at mid- and caudal anatomical levels across the rostrocaudal axis of the DRN. Densitometric analysis of TPH2 expression in the DRN subnuclei showed that higher expression levels were observed at posterior anatomical levels of depressed suicides (121% of control in the caudal subnucleus). Higher TPH2 expression in depressed suicides may explain more TPH2 protein and reflect a homeostatic response to deficient serotonin levels in the brains of depressed suicides. Localized changes in TPH2 expression in specific subnuclei of the DRN suggest that the serotonergic compensatory mechanism in depression and suicide is specifically regulated within the DRN and has implications for regions innervated by this subnucleus. PMID:18180753

  17. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  18. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  19. Raphe serotonin neurons are not homogenous: Electrophysiological, morphological and neurochemical evidence

    PubMed Central

    Calizo, Lyngine H.; Ma, Xiaohang; Pan, Yuzhen; Lemos, Julia; Craige, Caryne; Heemstra, Lyndia; Beck, Sheryl G.

    2011-01-01

    The median (MR) and dorsal raphe (DR) nuclei contain the majority of the 5-hydroxytryptamine (5-HT, serotonin) neurons that project to limbic forebrain regions, are important in regulating homeostatic functions and are implicated in the etiology and treatment of mood disorders and schizophrenia. The primary synaptic inputs within and to the raphe are glutamatergic and GABAergic. The DR is divided into three subfields, i.e., ventromedial (vmDR), lateral wings (lwDR) and dorsomedial (dmDR). Our previous work shows that cell characteristics of 5-HT neurons and the magnitude of the 5-HT1A and 5-HT1B receptor-mediated responses in the vmDR and MR are not the same. We extend these observations to examine the electrophysiological properties across all four raphe subfields in both 5-HT and non-5-HT neurons. The neurochemical topography of glutamatergic and GABAergic cell bodies and nerve terminals were identified using immunohistochemistry and the morphology of the 5-HT neurons was measured. Although 5-HT neurons possessed similar physiological properties, important differences existed between subfields. Non-5-HT neurons were indistinguishable from 5-HT neurons. GABA neurons were distributed throughout the raphe, usually in areas devoid of 5-HT neurons. Although GABAergic synaptic innervation was dense throughout the raphe (immunohistochemical analysis of the GABA transporters GAT1 and GAT3), their distributions differed. Glutamate neurons, as defined by vGlut3 antibodies, were intermixed and co-localized with 5-HT neurons within all raphe subfields. Finally, the dendritic arbor of the 5-HT neurons was distinct between subfields. Previous studies regard 5-HT neurons as a homogenous population. Our data support a model of the raphe as an area composed of functionally distinct subpopulations of 5-HT and non-5-HT neurons, in part delineated by subfield. Understanding the interaction of the cell properties of the neurons in concert with their morphology, local distribution of

  20. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence.

    PubMed

    Calizo, Lyngine H; Akanwa, Adaure; Ma, Xiaohang; Pan, Yu-Zhen; Lemos, Julia C; Craige, Caryne; Heemstra, Lydia A; Beck, Sheryl G

    2011-09-01

    The median (MR) and dorsal raphe (DR) nuclei contain the majority of the 5-hydroxytryptamine (5-HT, serotonin) neurons that project to limbic forebrain regions, are important in regulating homeostatic functions and are implicated in the etiology and treatment of mood disorders and schizophrenia. The primary synaptic inputs within and to the raphe are glutamatergic and GABAergic. The DR is divided into three subfields, i.e., ventromedial (vmDR), lateral wings (lwDR) and dorsomedial (dmDR). Our previous work shows that cell characteristics of 5-HT neurons and the magnitude of the 5-HT(1A) and 5-HT(1B) receptor-mediated responses in the vmDR and MR are not the same. We extend these observations to examine the electrophysiological properties across all four raphe subfields in both 5-HT and non-5-HT neurons. The neurochemical topography of glutamatergic and GABAergic cell bodies and nerve terminals were identified using immunohistochemistry and the morphology of the 5-HT neurons was measured. Although 5-HT neurons possessed similar physiological properties, important differences existed between subfields. Non-5-HT neurons were indistinguishable from 5-HT neurons. GABA neurons were distributed throughout the raphe, usually in areas devoid of 5-HT neurons. Although GABAergic synaptic innervation was dense throughout the raphe (immunohistochemical analysis of the GABA transporters GAT1 and GAT3), their distributions differed. Glutamate neurons, as defined by vGlut3 anti-bodies, were intermixed and co-localized with 5-HT neurons within all raphe subfields. Finally, the dendritic arbor of the 5-HT neurons was distinct between subfields. Previous studies regard 5-HT neurons as a homogenous population. Our data support a model of the raphe as an area composed of functionally distinct subpopulations of 5-HT and non-5-HT neurons, in part delineated by subfield. Understanding the interaction of the cell properties of the neurons in concert with their morphology, local

  1. Dorsal Raphe Serotonin Neurons in Mice: Immature Hyperexcitability Transitions to Adult State during First Three Postnatal Weeks Suggesting Sensitive Period for Environmental Perturbation

    PubMed Central

    Rood, Benjamin D.; Calizo, Lyngine H.; Piel, David; Spangler, Zachary P.; Campbell, Kaitlin

    2014-01-01

    Trauma during early life is a major risk factor for the development of anxiety disorders and suggests that the developing brain may be particularly sensitive to perturbation. Increased vulnerability most likely involves altering neural circuits involved in emotional regulation. The role of serotonin in emotional regulation is well established, but little is known about the postnatal development of the raphe where serotonin is made. Using whole-cell patch-clamp recording and immunohistochemistry, we tested whether serotonin circuitry in the dorsal and median raphe was functionally mature during the first 3 postnatal weeks in mice. Serotonin neurons at postnatal day 4 (P4) were hyperexcitable. The increased excitability was due to depolarized resting membrane potential, increased resistance, increased firing rate, lack of 5-HT1A autoreceptor response, and lack of GABA synaptic activity. Over the next 2 weeks, membrane resistance decreased and resting membrane potential hyperpolarized due in part to potassium current activation. The 5-HT1A autoreceptor-mediated inhibition did not develop until P21. The frequency of spontaneous inhibitory and excitatory events increased as neurons extended and refined their dendritic arbor. Serotonin colocalized with vGlut3 at P4 as in adulthood, suggesting enhanced release of glutamate alongside enhanced serotonin release. Because serotonin affects circuit development in other brain regions, altering the developmental trajectory of serotonin neuron excitability and release could have many downstream consequences. We conclude that serotonin neuron structure and function change substantially during the first 3 weeks of life during which external stressors could potentially alter circuit formation. PMID:24695701

  2. Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of serotonergic neurons in the dorsal raphe nucleus following lactate-induced panic

    PubMed Central

    Johnson, Philip L.; Lowry, Christopher A.; Truitt, William; Shekhar, Anantha

    2011-01-01

    Panic patients are vulnerable to induction of panic attacks by subthreshold interoceptive stimuli such as intravenous (i.v.) sodium lactate infusions. Facilitation of serotonergic signaling with selective serotonin re-uptake inhibitors (SSRIs) can suppress anxiety and panic-like responses, but the mechanisms involved are not clearly defined. We investigated the effects of i.v. 0.5M sodium lactate or saline, in control and panic-prone rats on c-Fos expression in serotonergic neurons within subdivisions of the midbrain/pontine raphe nuclei. Rats were chronically infused with either the GABA synthesis inhibitor l-allylglycine (l-AG) into the dorsomedial hypothalamus (DMH) to make them panic-prone, or the enantiomer d-allylglycine (d-AG) in controls. Lactate increased c-Fos expression in serotonergic neurons located in the ventrolateral part of the dorsal raphe nucleus (DRVL) and ventrolateral periaqueductal gray (VLPAG) of control, but not panic-prone, rats. The distribution of lactate-sensitive serotonergic neurons in d-AG-treated rats is virtually identical to previously defined pre-sympathomotor serotonergic neurons with multisynaptic projections to peripheral organs mediating “fight-or-flight”-related autonomic and motor responses. We hypothesize that serotonergic neurons within the DRVL/VLPAG region represent a “sympathomotor control system” that normally limits autonomic/behavioral responses to innocuous interoceptive and exteroceptive stimuli, and that dysfunction of this serotonergic system contributes to an anxiety-like state and increases vulnerability to panic in animals and humans. PMID:18308791

  3. ERK1/2 Phosphorylation in the Rat Supraoptic Nucleus, Dorsal Raphe Nucleus, and Locus Coeruleus Neurons Following Noxious Stimulation to the Hind Paw.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2016-01-01

    Phospho-ERK1/2 (pERK1/2) fluorescence-immunohistochemistry is specifically well suited to mirror neuronal activity in the pain pathway at the cellular level. This study employed this method to visualize neuronal activity in 3 rat CNS nuclei following an acute noxious stimulation. The rat hind paw was stimulated either by heat or by a sequence of mustard oil and heat. Two min after the thermal stimulation or after the combined mustard oil and thermal stimulation, there was a significant increase in cells showing pERK1/2 immunoreactivity in the supraoptic nucleus (SON), in the dorsal raphe nucleus (DRN), and in the locus coeruleus (LC). Pretreatment with the opioid analgesic morphine or the N-methyl-D-aspartate antagonist MK-801 markedly attenuated ERK1/2 phosphorylation. These findings support the concept that the SON, the DRN, and the LC are integrated into pain processing at the hypothalamic and brain stem level. PMID:26599629

  4. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  5. Mirtazapine exerts an anxiolytic-like effect through activation of the median raphe nucleus-dorsal hippocampal 5-HT pathway in contextual fear conditioning in rats.

    PubMed

    An, Yan; Chen, Chong; Inoue, Takeshi; Nakagawa, Shin; Kitaichi, Yuji; Wang, Ce; Izumi, Takeshi; Kusumi, Ichiro

    2016-10-01

    The functional role of serotonergic projections from the median raphe nucleus (MRN) to the dorsal hippocampus (DH) in anxiety remains understood poorly. The purpose of the present research was to examine the functional role of this pathway, using the contextual fear conditioning (CFC) model of anxiety. We show that intra-MRN microinjection of mirtazapine, a noradrenergic and specific serotonergic antidepressant, reduced freezing in CFC without affecting general motor activity dose-dependently, suggesting an anxiolytic-like effect. In addition, intra-MRN microinjection of mirtazapine dose-dependently increased extracellular concentrations of serotonin (5-HT) but not dopamine in the DH. Importantly, intra-DH pre-microinjection of WAY-100635, a 5-HT1A antagonist, significantly attenuated the effect of mirtazapine on freezing. These results, for the first time, suggest that activation of the MRN-DH 5-HT1A pathway exerts an anxiolytic-like effect in CFC. This is consistent with the literature that the hippocampus is essential for retrieval of contextual memory and that 5-HT1A receptor activation in the hippocampus primarily exerts an inhibitory effect on the neuronal activity. PMID:27137833

  6. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex.

    PubMed

    Amat, José; Paul, Evan; Zarza, Christina; Watkins, Linda R; Maier, Steven F

    2006-12-20

    Previous experience with stressors over which the subject has behavioral control blocks the typical behavioral consequences of subsequent exposure to stressors over which the organism has no behavioral control. The present experiments explored the involvement of the ventral medial prefrontal cortex (mPFCv) in mediating this "immunizing" or resilience producing effect of an initial experience with control. Behavioral immunization was blocked by inactivation of the mPFCv with muscimol at the time of the initial experience with control, as well as at the time of the later exposure to uncontrollable stress. Inhibition of protein synthesis within the mPFCv by anisomycin also blocked immunization when administered at the time of the initial controllable stress but had no effect when administered at the time of the later uncontrollable stress. Additional experiments found that the initial experience with control blocks the intense activation of serotonergic cells in the dorsal raphe nucleus that would normally be produced by uncontrollable stress, providing a mechanism for behavioral immunization. Furthermore, mPFCv activity during the initial controllable stressor was required for this effect to occur. These results suggest that the mPFCv is needed both to process information about the controllability of stressors and to utilize such information to regulate responses to subsequent stressors. Moreover, the mPFCv may be a site of storage or plasticity concerning controllability information. These results are consistent with recent research in other domains that explore the functions of the mPFCv. PMID:17182776

  7. 5-hydroxytryptamine medications for the treatment of obesity.

    PubMed

    Burke, L K; Heisler, L K

    2015-06-01

    The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health. PMID:25925636

  8. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.

    PubMed

    Hashemi, Parastoo; Dankoski, Elyse C; Petrovic, Jelena; Keithley, Richard B; Wightman, R M

    2009-11-15

    5-Hydroxytryptamine (5-HT) is an important molecule in the brain that is implicated in mood and emotional processes. In vivo, its dynamic release and uptake kinetics are poorly understood due to a lack of analytical techniques for its rapid measurement. Whereas fast-scan cyclic voltammetry with carbon fiber microelectrodes is used frequently to monitor subsecond dopamine release in freely moving and anesthetized rats, the electrooxidation of 5-HT forms products that quickly polymerize and irreversibly coat the carbon electrode surface. Previously described modifications of the electrochemical waveform allow stable and sensitive 5-HT measurements in mammalian tissue slice preparations and in the brain of fruit fly larvae. For in vivo applications in mammals, however, the problem of electrode deterioration persists. We identify the root of this problem to be fouling by extracellular metabolites such as 5-hydoxyindole acetic acid (5-HIAA), which is present in 200-1000 times the concentration of 5-HT and displays similar electrochemical properties, including filming of the electrode surface. To impede access of the 5-HIAA to the electrode surface, a thin layer of Nafion, a cation exchange polymer, has been electrodeposited onto cylindrical carbon-fiber microelectrodes. The presence of the Nafion film was confirmed with environmental scanning electron microscopy and was demonstrated by the diminution of the voltammetric signals for 5-HIAA as well as other common anionic species. The modified microelectrodes also display increased sensitivity to 5-HT, yielding a characteristic cyclic voltammogram that is easily distinguishable from other common electroactive brain species. The thickness of the Nafion coating and a diffusion coefficient (D) in the film for 5-HT were evaluated by measuring permeation through Nafion. In vivo, we used physiological, anatomical, and pharmacological evidence to validate the signal as 5-HT. Using Nafion-modified microelectrodes, we present the

  9. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  10. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways.

    PubMed

    Biagioni, Audrey Francisco; de Freitas, Renato Leonardo; da Silva, Juliana Almeida; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Alves, Vani Maria; Coimbra, Norberto Cysne

    2013-04-01

    Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH. PMID:23201351

  11. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphé nucleus of the rat in the absence of action potential firing

    PubMed Central

    de Kock, C P J; Cornelisse, L N; Burnashev, N; Lodder, J C; Timmerman, A J; Couey, J J; Mansvelder, H D; Brussaard, A B

    2006-01-01

    Activity and calcium-dependent release of neurotransmitters from the somatodendritic compartment is an important signalling mechanism between neurones throughout the brain. NMDA receptors and vesicles filled with neurotransmitters occur in close proximity in many brain areas. It is unknown whether calcium influx through these receptors can trigger the release of somatodendritic vesicles directly, or whether postsynaptic action potential firing is necessary for release of these vesicles. Here we addressed this question by studying local release of serotonin (5-HT) from dorsal raphé nucleus (DRN) neurones. We performed capacitance measurements to monitor the secretion of vesicles in giant soma patches, in response to short depolarizations and action potential waveforms. Amperometric measurements confirmed that secreted vesicles contained 5-HT. Surprisingly, two-photon imaging of DRN neurones in slices revealed that dendritic calcium concentration changes in response to somatic firing were restricted to proximal dendritic areas. This implied that alternative calcium entry pathways may dominate the induction of vesicle secretion from distal dendrites. In line with this, transient NMDA receptor activation, in the absence of action potential firing, was sufficient to induce capacitance changes. By monitoring GABAergic transmission onto DRN 5-HT neurones in slices, we show that endogenous NMDA receptor activation, in the absence of postsynaptic firing, induced release of 5-HT, which in turn increased the frequency of GABAergic inputs through activation of 5-HT2 receptors. We propose here that calcium influx through NMDA receptors can directly induce postsynaptic 5-HT release from DRN neurones, which in turn may facilitate GABAergic input onto these cells. PMID:17053037

  12. 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses.

    PubMed

    Spiacci, Ailton; Pobbe, Roger Luis Henschel; Matthiesen, Melina; Zangrossi, Helio

    2016-08-01

    The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses. PMID:26145183

  13. Axonal Targeting of the Serotonin Transporter in Cultured Rat Dorsal Raphe Neurons Is Specified by SEC24C-Dependent Export from the Endoplasmic Reticulum

    PubMed Central

    Sucic, Sonja; Koban, Florian; Schüchner, Stefan; Ogris, Egon; Sitte, Harald H.; Freissmuth, Michael

    2015-01-01

    Export of the serotonin transporter (SERT) from the endoplasmic reticulum (ER) is mediated by the SEC24C isoform of the coatomer protein-II complex. SERT must enter the axonal compartment and reach the presynaptic specialization to perform its function, i.e., the inward transport of serotonin. Refilling of vesicles is contingent on the operation of an efficient relay between SERT and the vesicular monoamine transporter-2 (VMAT2). Here, we visualized the distribution of both endogenously expressed SERT and heterologously expressed variants of human SERT in dissociated rat dorsal raphe neurons to examine the role of SEC24C-dependent ER export in axonal targeting of SERT. We conclude that axonal delivery of SERT is contingent on recruitment of SEC24C in the ER. This conclusion is based on the following observations. (1) Both endogenous and heterologously expressed SERT were delivered to the extensive axonal arborizations and accumulated in bouton-like structures. (2) In contrast, SERT–607RI608–AA, in which the binding site of SEC24C is disrupted, remained confined to the microtubule-associated protein 2-positive somatodendritic compartment. (3) The overexpression of dominant-negative SEC24C–D796V/D797N (but not of the corresponding SEC24D mutant) redirected both endogenous SERT and heterologously expressed yellow fluorescent protein–SERT from axons to the somatodendritic region. (4) SERT–K610Y, which harbors a mutation converting it into an SEC24D client, was rerouted from the axonal to the somatodendritic compartment by dominant-negative SEC24D. In contrast, axonal targeting of the VMAT2 was disrupted by neither dominant-negative SEC24C nor dominant-negative SEC24D. This suggests that SERT and VMAT2 reach the presynaptic specialization by independent routes. PMID:24790205

  14. Axonal targeting of the serotonin transporter in cultured rat dorsal raphe neurons is specified by SEC24C-dependent export from the endoplasmic reticulum.

    PubMed

    Montgomery, Therese R; Steinkellner, Thomas; Sucic, Sonja; Koban, Florian; Schüchner, Stefan; Ogris, Egon; Sitte, Harald H; Freissmuth, Michael

    2014-04-30

    Export of the serotonin transporter (SERT) from the endoplasmic reticulum (ER) is mediated by the SEC24C isoform of the coatomer protein-II complex. SERT must enter the axonal compartment and reach the presynaptic specialization to perform its function, i.e., the inward transport of serotonin. Refilling of vesicles is contingent on the operation of an efficient relay between SERT and the vesicular monoamine transporter-2 (VMAT2). Here, we visualized the distribution of both endogenously expressed SERT and heterologously expressed variants of human SERT in dissociated rat dorsal raphe neurons to examine the role of SEC24C-dependent ER export in axonal targeting of SERT. We conclude that axonal delivery of SERT is contingent on recruitment of SEC24C in the ER. This conclusion is based on the following observations. (1) Both endogenous and heterologously expressed SERT were delivered to the extensive axonal arborizations and accumulated in bouton-like structures. (2) In contrast, SERT-(607)RI(608)-AA, in which the binding site of SEC24C is disrupted, remained confined to the microtubule-associated protein 2-positive somatodendritic compartment. (3) The overexpression of dominant-negative SEC24C-D(796)V/D(797)N (but not of the corresponding SEC24D mutant) redirected both endogenous SERT and heterologously expressed yellow fluorescent protein-SERT from axons to the somatodendritic region. (4) SERT-K(610)Y, which harbors a mutation converting it into an SEC24D client, was rerouted from the axonal to the somatodendritic compartment by dominant-negative SEC24D. In contrast, axonal targeting of the VMAT2 was disrupted by neither dominant-negative SEC24C nor dominant-negative SEC24D. This suggests that SERT and VMAT2 reach the presynaptic specialization by independent routes. PMID:24790205

  15. Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition

    PubMed Central

    Vincent, Melanie Y.; Jacobson, Lauren

    2014-01-01

    Glucocorticoids can cause depression and anxiety. Mechanisms for glucocorticoid effects on mood are largely undefined. The dorsal raphé nucleus (DRN) produces the majority of serotonin in the brain, and expresses glucocorticoid receptors (GR). Since we previously showed that antidepressants used to treat depression and anxiety decrease DRN GR expression, we hypothesized that deleting DRN GR would have anxiolytic- and antidepressant-like effects. We also hypothesized that DRN GR deletion would disinhibit activity of the hypothalamic pituitary adrenal (HPA) axis. Adeno-associated virus pseudotype AAV2/9 expressing either Cre recombinase (DRNGRKO mice) or GFP (DRN-GFP mice) was injected into the DRN of floxed GR mice to test these hypotheses. Three weeks after injection, mice underwent 10d of social defeat or control handling and tested for anxiety-like behavior (open field test, elevated plus maze), depression-like behavior (sucrose preference, forced swim test (FST), tail suspension (TST)), social interaction, and circadian and stress-induced HPA activity. DRN GR deletion decreased anxiety-like behavior in control but not in defeated mice. DRN GR deletion decreased FST and tended to decrease TST despair-like behavior in both control and defeated mice, but did not affect sucrose preference. Exploration of social (a novel mouse) as well as neutral targets (an empty box) was increased in DRNGRKO mice, suggesting that DRN GR deletion also promotes active coping. DRN GR deletion increased stress-regulated HPA activity without strongly altering circadian HPA activity. We have shown a novel role for DRN GR to mediate anxiety- and despair-like behavior and to regulate HPA negative feedback during acute stress. PMID:24684372

  16. Corticotropin-releasing Factor in the Rat Dorsal Raphe Nucleus Promotes Different Forms of Behavioral Flexibility Depending on Social Stress History.

    PubMed

    Snyder, Kevin P; Hill-Smith, Tiffany E; Lucki, Irwin; Valentino, Rita J

    2015-10-01

    The stress-related neuropeptide, corticotropin-releasing factor (CRF) regulates the dorsal raphe nucleus-serotonin (DRN-5-HT) system during stress and this may underlie affective and cognitive dysfunctions that characterize stress-related psychiatric disorders. CRF acts on both CRF1 and CRF2 receptor subtypes in the DRN that exert opposing inhibitory and excitatory effects on DRN-5-HT neuronal activity and 5-HT forebrain release, respectively. The current study first assessed the cognitive effects of intra-DRN microinfusion of CRF or the selective CRF2 agonist, urocortin II in stress-naive rats on performance of an operant strategy set-shifting task that is mediated by the medial prefrontal cortex (mPFC). CRF (30 ng) facilitated strategy set-shifting performance, whereas higher doses of CRF and urocortin II that would interact with CRF2 were without effect, consistent with a CRF1-mediated action. This dose decreased 5-HT extracellular levels in the mPFC, further supporting a role for CRF1. The effects of CRF were then assessed in rats exposed to repeated social stress using the resident-intruder model. Repeated social stress shifted the CRF effect from facilitation of strategy set shifting to facilitation of reversal learning and this was most prominent in a subpopulation of rats that resist defeat. Notably, in this subpopulation of rats 5-HT neuronal responses to CRF have been demonstrated to shift from CRF1-mediated inhibition to CRF2-mediated excitation. Because 5-HT facilitates reversal learning, the present results suggest that stress-induced changes in the cellular effects of CRF in the DRN translate to changes in cognitive effects of CRF. Together, the results underscore the potential for stress history to shift cognitive processing through changes in CRF neurotransmission in the DRN and the association of this effect with coping strategy. PMID:25865931

  17. Markers of Serotonergic Function in the Orbitofrontal Cortex and Dorsal Raphé Nucleus Predict Individual Variation in Spatial-Discrimination Serial Reversal Learning

    PubMed Central

    Barlow, Rebecca L; Alsiö, Johan; Jupp, Bianca; Rabinovich, Rebecca; Shrestha, Saurav; Roberts, Angela C; Robbins, Trevor W; Dalley, Jeffrey W

    2015-01-01

    Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior. PMID:25567428

  18. Prior cold water swim stress alters immobility in the forced swim test and associated activation of serotonergic neurons in the rat dorsal raphe nucleus.

    PubMed

    Drugan, R C; Hibl, P T; Kelly, K J; Dady, K F; Hale, M W; Lowry, C A

    2013-12-01

    Prior adverse experience alters behavioral responses to subsequent stressors. For example, exposure to a brief swim increases immobility in a subsequent swim test 24h later. In order to determine if qualitative differences (e.g. 19°C versus 25°C) in an initial stressor (15-min swim) impact behavioral, physiological, and associated neural responses in a 5-min, 25°C swim test 24h later, rats were surgically implanted with biotelemetry devices 1 week prior to experimentation then randomly assigned to one of six conditions (Day 1 (15 min)/Day 2 (5 min)): (1) home cage (HC)/HC, (2) HC/25°C swim, (3) 19°C swim/HC, (4) 19°C swim/25°C swim, (5) 25°C swim/HC, (6) 25°C swim/25°C swim. Core body temperature (Tb) was measured on Days 1 and 2 using biotelemetry; behavior was measured on Day 2. Rats were transcardially perfused with fixative 2h following the onset of the swim on Day 2 for analysis of c-Fos expression in midbrain serotonergic neurons. Cold water (19°C) swim on Day 1 reduced Tb, compared to both 25°C swim and HC groups on Day 1, and, relative to rats exposed to HC conditions on Day 1, reduced the hypothermic response to the 25°C swim on Day 2. The 19°C swim on Day 1, relative to HC exposure on Day 1, increased immobility during the 5-min swim on Day 2. Also, 19°C swim, relative to HC conditions, on Day 1 reduced swim (25°C)-induced increases in c-Fos expression in serotonergic neurons within the dorsal and interfascicular parts of the dorsal raphe nucleus. These results suggest that exposure to a 5-min 19°C cold water swim, but not exposure to a 5-min 25°C swim alters physiological, behavioral and serotonergic responses to a subsequent stressor. PMID:23999122

  19. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign

  20. 5-hydroxytryptamine induced relaxation in the pig urinary bladder neck

    PubMed Central

    Recio, Paz; Barahona, María Victoria; Orensanz, Luis M; Bustamante, Salvador; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2009-01-01

    Background and purpose 5-Hydroxytryptamine (5-HT) is one of the inhibitory mediators in the urinary bladder outlet region. Here we investigated mechanisms involved in 5-HT-induced relaxations of the pig bladder neck. Experimental approach Urothelium-denuded strips of pig bladder were mounted in organ baths for isometric force recordings of responses to 5-HT and electrical field stimulation (EFS). Key results After phenylephrine-induced contraction, 5-HT and 5-HT receptor agonists concentration-dependently relaxed the preparations, with the potency order: 5-carboxamidotryptamine (5-CT) > 5-HT = RS67333 > (±)-8-hydroxy-2-dipropylaminotetralinhydrobromide > m-chlorophenylbiguanide > α-methyl-5-HT > ergotamine. 5-HT and 5-CT relaxations were reduced by the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulphonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride and potentiated by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY 100135) and cyanopindolol, 5-HT1A and 5-HT1A/1B receptor antagonists respectively. Inhibitors of 5-HT1B/1D, 5-HT2, 5-HT2B/2C, 5-HT3, 5-HT4, 5-HT5A and 5-HT6 receptors failed to modify 5-HT responses. Blockade of monoamine oxidase A/B, noradrenergic neurotransmission, α-adrenoceptors, muscarinic and purinergic receptors, nitric oxide synthase, guanylate cyclase and prostanoid synthesis did not alter relaxations to 5-HT. Inhibitors of Ca2+-activated K+ and ATP-dependent K+ channels failed to modify 5-HT responses but blockade of neuronal voltage-gated Na+-, Ca2+-and voltage-gated K+ (Kv)-channels potentiated these relaxations. Adenylyl cyclase activation and cAMP-dependent protein kinase (PKA) inhibition potentiated and reduced, respectively, 5-HT-induced responses. Under non-adrenergic, non-cholinergic, non-nitrergic conditions, EFS induced neurogenic, frequency-dependent, relaxations which were resistant to WAY 100135 and cyanopindolol. Conclusions and implications 5-HT relaxed

  1. Platelet-induced neurogenic coronary contractions due to accumulation of the false neurotransmitter, 5-hydroxytryptamine.

    PubMed Central

    Cohen, R A

    1985-01-01

    The purpose of this study was to determine if 5-hydroxytryptamine released from aggregating platelets could be accumulated and released by canine coronary adrenergic nerves, and if the false neurotransmitter resulted in an abnormal response of the smooth muscle to nerve stimulation. Isometric tension was measured in rings of epicardial coronary suspended in organ chambers filled with physiological salt solution. The response to electrical stimulation or exogenously added norepinephrine was elicited after contraction with prostaglandin F2 alpha. Electrical stimulation and exogenous norepinephrine caused beta-adrenergic relaxation of control rings. However, after rings were exposed for 2 h to aggregating platelets or 5-hydroxytryptamine, electrical stimulation caused frequency-dependent contractions. These contractions were prevented by the serotonergic antagonists, cyproheptadine or ketanserin, or by the neuronal uptake inhibitor, cocaine. The relaxation caused by exogenously added norepinephrine was unchanged after exposure to platelets or 5-hydroxytryptamine, indicating that smooth muscle alpha- and beta-adrenergic responsiveness was unchanged. The electrically stimulated overflow of radiolabeled norepinephrine from superfused strips of coronary artery was not altered by prior exposure to 5-hydroxytryptamine, indicating that the effect of exposure on the response to electrical stimulation is primarily at smooth muscle serotonergic receptors. Canine coronary arteries accumulated and metabolized radiolabeled 5-hydroxytryptamine in vitro. The accumulation of 5-hydroxytryptamine was inhibited by cocaine or by adrenergic denervation with 6-hydroxydopamine but unaffected by removal of endothelium, indicating that the adrenergic nerves were the primary site of accumulation. Electrical stimulation of superfused strips of coronary artery preincubated with radiolabeled 5-hydroxytryptamine caused the release of the intact indoleamine; this was blocked by the neurotoxin

  2. Circadian variation in sensitivity of suprachiasmatic and lateral geniculate neurones to 5-hydroxytryptamine in the rat.

    PubMed Central

    Mason, R

    1986-01-01

    Extracellular single-unit recordings were obtained from neurones in the suprachiasmatic nuclei (s.c.n.) of the rat (a putative circadian pace-maker), the ventral lateral geniculate nucleus (v.l.g.n.) and the hippocampus. These areas receive a 5-hydroxytryptamine (5-HT) innervation from the raphe nuclei. Recording of neuronal activity in the s.c.n., v.l.g.n. and the hippocampus revealed a diurnal variation in the response to the ionophoresis of 5-HT. This variation was manifest as a 2-3-fold increase in post-synaptic sensitivity to 5-HT during the subjective dark (active) phase of the circadian cycle. In contrast there was no apparent circadian variation in the sensitivity of s.c.n., v.l.g.n. or hippocampal neurones to ionophoresed gamma-aminobutyric acid (GABA). Neuronal activity recorded in the s.c.n., v.l.g.n. and hippocampus also exhibited a circadian variation in the recovery from 5-HT-induced suppression of firing. This may reflect reuptake processes as recovery can be prolonged by ionophoresis of uptake blockers (imipramine or fluoxetine). Rats (n = 15) expressing circadian arrhythmicity in their rest-activity behaviour induced by long-term continuous illumination (150-200 lx) showed no apparent circadian variation in 5-HT sensitivity. This loss was accompanied by either the development of a 5-6-fold subsensitivity to ionophoresed 5-HT (eleven out of fifteen rats) or a 2-3-fold supersensitivity to ionophoresed 5-HT (four out of fifteen rats). A similar loss of circadian variation and the development of a subsensitivity to ionophoresed 5-HT was also found in three rats sustaining complete electrolytic lesions of the s.c.n. These changes were not found in rats (n = 4) with partial s.c.n. lesions. These results implicate the s.c.n., or fibres passing through it, in the circadian modulation of 5-HT sensitivity in neurones both intrinsic to the s.c.n. circadian pace-maker itself and in the hippocampus and lateral geniculate nucleus (regions remote from the s

  3. Excitation and depression of cortical neurones by 5-hydroxytryptamine

    PubMed Central

    Roberts, M. H. T.; Straughan, D. W.

    1967-01-01

    1. 5-Hydroxytryptamine (5-HT) and various 5-HT antagonists have been applied micro-electrophoretically from multibarrelled micropipettes into the environment of single neurones in the post-sigmoid and suprasylvian gyri of the cat cerebral cortex. 2. In unanaesthetized animals (encéphale isolé) a high proportion of neurones (30%) were excited by 5-HT. This excitation usually had a rapid onset and was seen both in spontaneously active neurones and in otherwise quiescent neurones in which firing was induced by L-glutamate. Some neurones were so sensitive that the uncontrolled diffusion from micropipettes was sufficient to excite them. More cells were excited by 5-HT applied as a cation from solutions of the bimaleate salt than when solutions of the creatinine sulphate salt were used. 3. In a high proportion of cells (33%) spontaneous firing or amino acid excitation was depressed by 5-HT. 4. A mixed effect was seen in a small proportion (6%) of the cells tested; usually 5-HT caused an excitation initially which was followed by a depression. In other cells, desensitization occurred, and the excitatory effect of 5-HT was diminished or lost. 5. When glutamate was used to excite otherwise quiescent cells, there was a significant increase in the number of cells excited by 5-HT and a significant decrease in the number of cells unaffected compared with spontaneously active cells. 6. The micro-electrophoretic application of D-lysergic diethylamide (LSD 25), 2-brom LSD (BOL 148), methysergide (UML 491), or 2′- (3-dimethylaminopropylthio)cinnamanilide (SQ 10643) temporarily prevented excitation by 5-HT in half the cells tested. LSD and SQ 10643 were particularly potent in this respect. This antagonism of 5-HT excitation could still be seen when excitation of the cell by L-glutamate or acetylcholine (ACh) was unaffected. 7. The depression induced by 5-HT was not prevented by the application of known 5-HT antagonists in the majority of the cells tested (93%). In two cells

  4. The anterior pretectal nucleus participates as a relay station in the glutamate-, but not morphine-induced antinociception from the dorsal raphe nucleus in rats.

    PubMed

    Prado, W A; Faganello, F A

    2000-11-01

    The anterior pretectal nucleus (APtN) and the dorsal raphe nucleus (DRN) are involved in descending pathways that control noxious inputs to the spinal cord and participate in the normal physiological response to noxious stimulation. Evidence has also been provided for the involvement of the APtN acting as a relay station through which the DRN partly modulates spinal nociceptive messages. In the present study, the effects of microinjecting glutamate or morphine into the DRN on the latency for the tail withdrawal reflex after noxious heating of the skin were examined in rats in which hyperbaric lidocaine (5%), naloxone (a non-selective opioid antagonist) or methiothepin (a non-selective 5-HT(1) antagonist) was previously microinjected into the APtN. Microinjection of glutamate (38 nmol/0.25 microl) into the DRN evoked strong but short-lasting antinociception that was fully inhibited by the previous administration of lidocaine (0.25 microl), naloxone (2.7 nmol/0.25 microl), or methiothepin (1 nmol/0.25 microl). A smaller dose of methiothepin (0.5 nmol/0.25 microl) significantly reduced the effect of glutamate. Microinjection of morphine (7.5 nmol/0.25 microl) into the DRN evoked strong and long-lasting antinociception that was not significantly changed by previous microinjection of lidocaine into the APtN. These results confirm that APtN integrity is at least in part necessary for the antinociceptive effects of stimulating the DRN, and that at least opioid and 5-HT1 mechanisms in the APtN participate as neuromodulators in the DRN-APtN connection. The results demonstrate that the antinociceptive effects of stimulating the DRN-APtN path depend on the activation of cell bodies in the DRN that can be excited by the local administration of glutamate, but not morphine. The study also further supports the notion that the DRN is involved in both descending and ascending pain inhibitory systems. PMID:11050372

  5. Loss of 5-hydroxytryptamine from mammalian circulating labelled platelets

    PubMed Central

    Osim, E. E.; Wyllie, J. H.

    1983-01-01

    1. Platelets were obtained from three species of animal: rats, rabbits and dogs. They were labelled with 111In oxine to tag individual platelets and with 14C-labelled 5-hydroxytryptamine (5-HT). Doubly labelled platelets from rabbits and dogs were returned to their donors; in the case of rats the platelets were injected intravenously into other, identical rats. At time intervals from 2 to 64 hr, blood samples were drawn and platelets were collected. 111In and 14C were separately counted. In some experiments animals received the 5-HT precursor, 5-hydroxytryptophan (5-HTP) I.P. (for rats and rabbits) or subcutaneously (for dogs) in a dose of 20 mg/kg daily to accelerate synthesis of 5-HT. 2. 111In disappeared in approximately an exponential fashion in all experiments and the rate of disappearance was not affected by treatment with 5-HTP. The half-life for 111In in four control rats was 18·7 hr and in five rats treated with 5-HTP was 17·8 hr. In rabbits the half-life was 20·4 hr for eight control and 21·2 hr for seven treated with 5-HTP. In the dogs the half-life was 21·0 hr for control and 27·7 hr for experiments with 5-HTP. In control rats, the 14C behaved like the 111In. However, in control rabbits the half-life for 14C was 38·0 hr which is significantly longer than for 111In (P < 0·005). 14C also disappeared more slowly than the 111In in the dogs. 3. In all species treatment with 5-HTP accelerated the disappearance of the 14C approximately three-fold. This was not a reserpine-like effect because the platelets contained more, not less 5-HT than usual. 4. In an attempt to discover the fate of 5-HT disappearing from circulating platelets, experiments were made in which platelets from one rat were doubly labelled, and were then injected into two other rats from the identical strain; one of the recipients received daily I.P. injections of 20 mg/kg of 5-HTP. The other rat in each pair acted as a control. 5. Results from twelve control rats showed that the 14C

  6. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  7. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception.

    PubMed

    Parada, C A; Tambeli, C H; Cunha, F Q; Ferreira, S H

    2001-01-01

    Formalin injected subcutaneously into the paw is a widely used model of pain. This procedure evokes a short-lasting period of flinching (phase 1) and a long-lasting period of intense flinching (phase 2) following a very short period of quiescence. Phase 2 has been extensively used to support the involvement of central (spinal cord) sensitization in inflammatory hyperalgesia. The present study evaluated the contribution of stimulation of peripheral nociceptors by the release of endogenous mediators at the site of lesion. The participation of histamine and 5-hydroxytryptamine was demonstrated by the treatment of the rat hindpaws with selective histamine H1 (pyrilamine and meclizine) and histamine H2 (cimetidine) receptor antagonists or selective 5-hydroxytryptamine(1A) (WAY100,135) and 5-hydroxytryptamine(4/3) (tropisetron) receptor antagonists. The co-administration of pyrilamine or meclizine with formalin (1%) significantly reduced phases 1 and 2, while cimetidine had no effect. Pyrilamine administration during the period of quiescence (10min after formalin administration) caused strong dose-related inhibition of phase 2. The co-administration of tropisetron with formalin caused a blockade of both phases, while with WAY100,135 caused only inhibition of the phase 2. In contrast, tropisetron administrated during the period of quiescence did not cause antinociception. Histamine and 5-hydroxytryptamine receptors could be strongly activated in naïve animals by administration of a mixture of both agonists or compound 48/80 (2microg/paw) which is known to release both mediators from mast cells. Pretreatment of the paws with a mast cell stabilizer, sodium cromoglycate, significantly reduced the second phase of the formalin injection model. From these results we suggest that phases 1 and 2 of the formalin test are dependent upon the ongoing afferent input. Furthermore, while histamine H1 participates in both phases, 5-hydroxytryptamine(4/3) participates in phase 1 and 5

  8. Viral vector mediated expression of mutant huntingtin in the dorsal raphe produces disease-related neuropathology but not depressive-like behaviors in wildtype mice.

    PubMed

    Pitzer, Mark; Lueras, Jordan; Warden, Anna; Weber, Sydney; McBride, Jodi

    2015-05-22

    Huntington׳s disease (HD) is a neurodegenerative disorder caused by a mutation in the HTT gene (mHTT) encoding the protein huntingtin. An expansion in the gene׳s CAG repeat length renders a misfolded, dysfunctional protein with an abnormally long glutamine (Q) stretch at the N terminus that often incorporates into inclusion bodies and leads to neurodegeneration in many regions of the brain. HD is characterized by motor and cognitive decline as well as mood disorders, with depression being particularly common. Approximately 40% of the HD population suffers from depressive symptoms. Because these symptoms often manifest a decade or more prior to the knowledge that the person is at risk for the disease, a portion of the early depression in HD appears to be a consequence of the pathology arising from expression of the mutant gene. While the depression in HD patients is often treated with serotonin agonists, there is scant experimental evidence that the depression in HD responds well to these serotonin treatments or in a similar manner to how non-HD depression tends to respond. Additionally, at very early sub-threshold depression levels, abnormal changes in several neuronal populations are already detectable in HD patients, suggesting that a variety of brain structures may be involved. Taken together, the serotonin system is a viable candidate. However, at present there is limited evidence of the precise nuclei or circuits that play a role in HD depression. With this in mind, the current study was designed to control for the widespread brain neuropathology that occurs in HD and in transgenic mouse models of HD and focuses specifically on the influence of the midbrain dorsal raphe nucleus (DRN). The DRN provides the majority of the serotonin to the forebrain and exhibits cell loss in non-HD depression. Therefore, we employed a viral vector delivery system to investigate whether the over-expression of mHTT in the DRN׳s ventral sub-nuclei alone is sufficient to produce

  9. Effect of Y-25130, a selective 5-hydroxytryptamine3 receptor antagonist, on gastric emptying in mice.

    PubMed

    Haga, K; Asano, K; Inaba, K; Morimoto, Y; Setoguchi, M

    1994-01-01

    The effect of Y-25130 on gastric emptying of nutrient test meals (solid chow) was examined in mice. In a dose range of 0.01-1 mg/kg, p.o., Y-25130 significantly accelerated gastric emptying of solid meals in a dose-dependent manner, at an ED30 of 0.021 mg/kg. Other 5-hydroxytryptamine3 receptor antagonists and prokinetic agents having 5-hydroxytryptamine3 receptor antagonistic properties accelerated the emptying of solid meals in the following rank order of potency: Y-25130 = granisetron > or = tropisetron > ondansetron > cisapride > metoclopramide. The acceleration of the gastric emptying showed a good correlation with the antagonistic potencies of these compounds on 5-hydroxytryptamine3 receptors, determined by the inhibition test of the von Bezold-Jarisch reflex in anesthetized rats (r2 = 0.99). Domperidone (1 and 10 mg/kg, p.o.) and trimebutine (10 and 100 mg/kg, p.o.) failed to increase the rate of emptying from the stomach. Cisplatin (30 mg/kg, i.p.), a chemotherapeutic agent, significantly delayed the gastric emptying of solid meals, and Y-25130 (0.1-1 mg/kg, p.o.) prevented such a delay in emptying in a dose-dependent manner. These results suggest that Y-25130 accelerates the gastric emptying in mice by antagonism of the 5-hydroxytryptamine3 receptor. PMID:7625886

  10. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain.

    PubMed

    Greenwood-Van Meerveld, Beverley; Mohammadi, Ehsan; Tyler, Karl; Pietra, Claudio; Bee, Lucy A; Dickenson, Anthony

    2014-10-01

    Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome. PMID:25077526

  11. Release of ( sup 14 C)5-hydroxytryptamine from human platelets by red wine

    SciTech Connect

    Jarman, J.; Glover, V.; Sandler, M. )

    1991-01-01

    Red wine, at a final dilution of 1/50, caused released of ({sup 14}C)5-hydroxytryptamine (5-HT) from preloaded platelets, an effect which was not observed with any white wines or beers tested. Since 5-HT, is probably released from body stores during migraine attacks and red wine is known to provoke migraine episodes in susceptible individuals, release of 5-HT, possibly from central stores, could represent a plausible mechanism for its mode of action.

  12. Effects on amine oxidase of substances which antagonize 5-hydroxytryptamine more than tryptamine on the rat fundus strip

    PubMed Central

    Barlow, R. B.

    1961-01-01

    Certain substances, 2-bromolysergic acid diethylamide, dimethyltryptamine (3-(2-dimethylaminoethyl)indole), 2-methyldimethyltryptamine (3-(2-dimethylaminoethyl)-2-methylindole), and 5-benzyloxydimethyltryptamine (5-benzyloxy-3-(2-dimethylaminoethyl)indole), antagonize the effects of 5-hydroxytryptamine on the rat fundus strip more than those of tryptamine. These substances have been tested for their ability to inhibit the oxidation of tryptamine and 5-hydroxytryptamine by suspensions of guinea-pig liver and rat fundus. 2-Bromolysergic acid diethylamide has virtually no inhibitory activity and it is doubtful if the others produce any significant inhibition of amine oxidase in the concentrations which antagonize the effects of 5-hydroxytryptamine more than those of tryptamine. It seems that the differential character of the blocking action of these compounds should be ascribed either to interference with the transport of tryptamine (but not 5-hydroxytryptamine) through the cell wall, coupled with the block of a receptor common to both tryptamine and 5-hydroxytryptamine, or to the existence of separate tryptamine and 5-hydroxytryptamine receptors. The amine oxidases of the guinea-pig liver and rat fundus appear to be a mixture of at least two types of enzyme, one of which has a higher affinity for 5-hydroxytryptamine than the other and is more susceptible to inhibition by 2-methyldimethyltryptamine. PMID:13687054

  13. The effect of atropine on the activation of 5-hydroxytryptamine3 channels in rat nodose ganglion neurons.

    PubMed

    Fan, P; Weight, F F

    1994-10-01

    It has been suggested that changes in brain 5-hydroxytryptamine3 receptor function may contribute to some behavior disorders, such as anxiety, schizophrenia and drug abuse. We are using the whole-cell version of the patch-clamp technique to study the function of 5-hydroxytryptamine3 channels in neurons freshly dissociated from rat nodose ganglion. In these cells, 5-hydroxytryptamine elicits an inward current over the concentration range of 0.25-100 microM (EC50 = 2.62 microM) by activating 5-hydroxytryptamine3 receptors. The muscarinic cholinergic antagonist atropine reduced the amplitude of 5-hydroxytryptamine activated inward current in a concentration-dependent manner. Other muscarinic antagonists, scopolamine, dexetimide, the M1 muscarinic receptor antagonist pirenzepine, the M2 receptor antagonist methoctramine and the M3 receptor antagonist 4-DAMP methiodide also inhibited 5-hydroxytryptamine-induced inward current. Atropine did not appear to change the reversal potential of this current. In the presence of 5 microM atropine, the concentration-response curve for 5-hydroxytryptamine current was shifted to the right in a parallel fashion. The EC50 value for 5-hydroxytryptamine was increased from 2.62 to 8.76 microM. Schild plots of increasing atropine and 5-hydroxytryptamine concentrations revealed a pA2 value of 5.74 for atropine (apparent KD = 1.8 microM). These observations suggest that atropine competitively antagonizes the activation of a receptor for the neurotransmitter serotonin, a novel action of muscarinic antagonists in the nervous system. This effect of atropine may contribute to the clinical symptoms seen in severe atropine intoxication. PMID:7531305

  14. Role of 5-hydroxytryptamine in platelet thrombus formation and mechanisms of inhibition of thrombus formation by 5-hydroxytryptamine2A antagonists in rabbits.

    PubMed

    Takano, S

    1995-01-01

    The role of 5-hydroxytryptamine (5-HT) in platelet thrombus formation and in the mechanisms of inhibition of thrombus formation by 5-HT2A antagonists was investigated using a turbidimetric method. Collagen-induced platelet aggregation occurred simultaneously with a release of 5-HT from the platelets. The supernatant of collagen-aggregated platelets induced a further aggregation volume-dependently. This supernatant-induced aggregation was inhibited by either 5-HT2A antagonists or adenosine-diphosphate (ADP) scavenging. 5-Hydroxytryptamine and a small amount of the supernatant shifted the dose-response curves of collagen to the left. The aggregation velocity and the onset of aggregation by collagen were significantly increased by the supernatant, but not by 5-HT. The 5-HT2A antagonists, ketanserin and MCI-9042, returned the dose-response curves of the maximum aggregation and of the aggregation velocity of collagen, which were already amplified by the supernatant, to the original values. The onset of aggregation was delayed by the antagonists, but was not completely returned to the original points. There were distinct differences between the effects of endogenous 5-HT, derived from platelets which were stimulated by collagen, and those of exogenous 5-HT on both extensive platelet activation and amplification of the collagen-induced aggregation. These findings suggest that endogenous 5-HT activates platelets in synergism with ADP. The 5-HT2A antagonists used, block the synergism via 5-HT2A receptors and lead to inhibition of a positive feedback loop of thrombus formation. PMID:8836449

  15. Influence of 5-hydroxytryptamine (serotonin) on blood flow in the dog pulp

    SciTech Connect

    Kim, S.; Trowbridge, H.O.; Dorscher-Kim, J.E.

    1986-05-01

    The effect of intra-arterial injection of 5-hydroxytryptamine (5-HT) on pulpal blood flow of the dog was determined using the 15-micron radioisotope-labeled microsphere injection method. Pulpal blood flow was significantly reduced following the 5-HT injection. This decrease in blood flow appeared to be due to vasoconstriction as determined by an increase in pulpal vascular hindrance. However, our findings do not preclude the possibility that blood flow was reduced as a result of passive compression of venules produced by vasodilation in a low-compliance environment.

  16. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking

    PubMed Central

    McClintick, Jeanette N.; McBride, William J.; Bell, Richard L.; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J.

    2014-01-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 – 3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system. PMID:25542586

  17. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation

    PubMed Central

    Mills, D. C. B.; Robb, I. A.; Roberts, G. C. K.

    1968-01-01

    1. Adenosine diphosphate (ADP) and adrenaline caused the aggregation of human platelets suspended in plasma containing citrate anticoagulant and stirred at 37° C. The aggregation occurred in two phases and the second phase was associated with the appearance in the plasma of up to 30% of the ATP and 55% of the ADP present in the platelets. The concentration of ADP appearing in the plasma was up to 7 times the concentration added. 2. Radioactivity was released by ADP and by adrenaline from platelets labelled with radioactive 5-hydroxytryptamine; this release was closely correlated with the second phase of aggregation and with the release of nucleotides. 3. Acid phosphatase, β-glucuronidase and adenylate kinase were released to a small extent during second phase aggregation by ADP or adrenaline; thrombin and collagen particles caused significantly greater release of β-glucuronidase than of either acid phosphatase or of adenylate kinase. 4. Morphological changes indicating degranulation of the platelets were observed during the second phase of aggregation produced by adrenaline and by ADP. 5. The second phase of aggregation, degranulation of platelets, and the release of nucleotides, of labelled 5-hydroxytryptamine and of enzymes, were all inhibited by concentrations of amitriptyline which did not inhibit aggregation. ImagesPlate 1Plate 2 PMID:5649642

  18. The effect of altered 5-hydroxytryptamine levels on beta-endorphin

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.

    1986-01-01

    The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.

  19. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    PubMed Central

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-01-01

    Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478

  20. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. PMID:26657047

  1. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat

    NASA Technical Reports Server (NTRS)

    Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.

  2. 5-Hydroxytryptamine-induced calcium-channel gating in rainbow trout (Oncorhynchus mykiss) peripheral blood lymphocytes.

    PubMed Central

    Ferriere, F; Khan, N A; Meyniel, J P; Deschaux, P

    1997-01-01

    The present study was conducted on peripheral blood lympho-cytes of rainbow trout (Oncorhynchus mykiss) to assess the role of 5-hydroxytryptamine (5-HT; 'serotonin') in calcium signalling. 5-HT-induced increases in intracellular free calcium concentrations, [Ca2+]i, and its action was mediated by 5-HT receptor subtype 3 (5-HT3), but not by 5-HT receptor subtype 1A (5-HT1A) or subtype 2 (5-HT2) in these cells. In Ca2+-containing medium (1 mM CaCl2), 5-HT and 2-methyl-5-HT (5-HT3 receptor agonist) induced increases in [Ca2+]i, whereas in Ca2+-free medium (0 Ca2+, 1 mM EGTA), these two agents failed to evoke increases in [Ca2+]i in these cells, demonstrating that 5-HT mobilizes Ca2+ from the extracellular environment. Furthermore, 5-HT-induced increases in [Ca2+]i are not contributed to by the intracellular endoplasmic reticulum (ER) pool, as thapsigargin, an agent that recruits Ca2+ from ER stores, had additive effects on 5-HT-induced [Ca2+]i responses in fish peripheral lymphocytes. 5-HT-induced increases in [Ca2+]i were mediated by 5-HT3 receptors via gating the calcium through L-type, but not N-type, calcium channels in trout lymphocytes. PMID:9173890

  3. 5-Hydroxytryptamine release from platelets by different red wines: implications for migraine.

    PubMed

    Pattichis, K; Louca, L L; Jarman, J; Sandler, M; Glover, V

    1995-01-13

    We have confirmed our earlier finding that most red wines are able to bring about 5-hydroxytryptamine (5-HT, serotonin) release from platelets in vitro. Platelets from individual subjects manifested varying degrees of releasing ability but responded to different wines with a similar rank ordering. There was a high correlation (r = 0.87) between the effect of red wine and that of reserpine in different individuals. Some types of red wine caused a consistently higher release of 5-HT than others in all subjects; one red wine in particular resulted in negligible release. When several brands of this 'low-releasing' red wine were further examined, they all showed a lower activity than all the brands of a 'high-releasing' red wine type. This variation in releasing power was not related to intensity of red colour. Partial purification of red wine was achieved by column chromatography and showed releasing activity to be associated with a low molecular weight orange fraction. Preliminary studies, using solid phase extraction methods, showed that the active components lie mainly in a subgroup of the flavonoid fraction. If any of the adverse effects of red wine, such as headache induction, derive from this 5-HT releasing ability, then it may be possible to prepare red wines free from the chemical substances responsible. PMID:7720790

  4. 5-Hydroxytryptamine antagonists and the 5-methoxy-N,N-dimethyltryptamine-induced changes of postdecapitation convulsions.

    PubMed

    Archer, T

    1987-01-01

    The ability of various compounds to antagonise the 5-MeODMT induced prolongations of latency and duration of postdecapitation convulsions (PDCs) were compared. The 5-hydroxytryptamine (5-HT) receptor antagonists, mianserin, methergoline, cinanserin and methysergide antagonised the 5-MeODMT (0.5 to 4.0 mg/kg) induced prolongations of latency to onset of convulsions substantially and to a lesser extent the prolongation of duration. The efficacy of the 5-HT antagonists for blocking 5-MeODMT changes of PDCs was roughly of the order mianserin greater than cinanserin greater than methysergide greater than methergoline. Pirenperone, the 5-HT2 antagonist, and pimozide, the dopamine receptor antagonist did not antagonise the 5-MeODMT induced changes. Mianserin, methergoline, cinanserin and methysergide, by themselves, prolonged the duration of PDCs but did not affect latency. Pirenperone (0.25 mg/kg) prolonged both the latency and duration of the PDCs while pimozide (0.5-2.0 mg/kg) had no effect upon PDCs. This evidence suggests that 5-MeODMT induced changes of PDCs are mediated via 5-HT1 receptors and thus a reliable model to combine with other measures of spinal function is suggested. PMID:3562388

  5. Inhibitory effect of 5-hydroxytryptamine on penile erectile function in the rat.

    PubMed Central

    Finberg, J. P.; Vardi, Y.

    1990-01-01

    1. An increase in corporal pressure was elicited in pithed rats by stimulation of the sacral part of the spinal cord. This response was inhibited by intravenous injection of 5-hydroxytryptamine (5-HT) (ED50 = 28.5 +/- 2.2 micrograms kg-1). 2. The inhibitory effect of 5-HT was blocked by methysergide and methiothepin (each 1 mg kg-1), but not by ketanserin (0.02 mg kg-1), MDL 72222 (1 mg kg-1) or prazosin (0.1 mg kg-1). 3. An inhibitory effect on the corporal pressure response to spinal stimulation was also produced by 5-carboxyamidotryptamine (ED50 = 5.6 +/- 2.8 micrograms kg-1), but not by m-chlorophenylpiperazine (mCPP), RU 24969, 8-hydroxy-2-[di-n-propyl-amino]-tetralin (8-OH-DPAT) or fenfluramine (doses up to 1-2 mg kg-1). 4. Neither methiothepin (1 mg kg-1) nor clomipramine (1 mg kg-1) had any effect on the frequency-response curve for increase in corporal pressure by spinal stimulation. 5. The results indicate that 5-HT exerts an inhibitory action on penile erection by a peripheral mechanism. This effect may be mediated by vasoconstriction in cavernosal vessels, or inhibition of release of a vasodilator neurotransmitter. From the spectrum of agonist and antagonist responses, the receptor involved may be of the 5-HT1D subtype. PMID:2076486

  6. Radioimmunoassay of serotonin (5-hydroxytryptamine) in cerebrospinal fluid, plasma, and serum

    SciTech Connect

    Engbaek, F.; Voldby, B

    1982-04-01

    A direct radioimmunoassay is described for serotonin (5-hydroxytryptamine) in cerebrospinal fluid, platelet-poor plasma, and serum. Antisera in rabbits was raised against serotonin diazotized to a conjugate of bovine albumin and D,L-p-aminophenylalanine. Polyethylene glycol, alone or in combination with anti-rabbit immunoglobulins, is used to separate bound and unbound tritiated serotonin. The minimum concentration of serotonin detectable is 2 nmol/L in a 200-..mu..L sample. Within-day precision (CV) is 4.3% between-day precision 7.7%. Analytical recoveries of serotonin are 109% and 101% for cerebrospinal fluid and plasma, respectively. Tryptophan, 5-hydroxytryptophan, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol do not interfere with the assay. However, 5-methoxytryptamine and tryptamine cross react. Of samples of cerebrospinal fluid from patients with disc herniations (n=21) or low-pressure hydrocephalus (n=10), one-third had concentrations of 2-4 nmol/L and two-thirds were below the minimum detectable concentration. The observed range for the concentration of serotonin in plasma of 14 normal subjects was 5-14 nmol/L (mean +/- SD, 9 +/- 3 nmol/L). The observed ranges for serotonin in serum were: for 10 women 520-900 (mean +/- SD: 695 +/- 110) nmol/L and for 10 men 380-680 (520 +/- 94) nmol/L.

  7. In vivo modulation of vagal-identified dorsal medullary neurones by activation of different 5-Hydroxytryptamine2 receptors in rats

    PubMed Central

    Sévoz-Couche, Caroline; Spyer, K Michael; Jordan, David

    2000-01-01

    In in vivo experiments, DOI (a 5-HT2 receptor agonist), MK-212 (a 5-HT2C receptor agonist), and BW-723C86 (a 5-HT2B receptor agonist) were applied by ionophoresis to neurones in the rat nucleus tractus solitarius (NTS) receiving vagal afferent input. The majority of the putative ‘monosynaptically' vagal activated cells were inhibited by both MK-212 (4/6) and DOI (2/4), but unaffected by BW-723C86 (12/14). In contrast, ‘polysynaptically' activated NTS cells were excited by both BW-723C86 (13/19) and DOI (9/10). Inactive ‘intermediate' cells were inhibited by BW-723C86 (9/12), MK-212 (5/6) and DOI (3/4), whilst active cells of this group were excited by BW-723C86 (7/13) and DOI (5/5). The selective 5-HT2B receptor antagonist LY-202715 significantly reduced the excitatory actions of BW-723C86 on ‘intermediate' and ‘polysynaptic' cells (13/13), but not the inhibitory effects observed on inactive Group 2 cells (n=5) whereas the selective 5-HT2C receptor antagonist RS-102221 reversed the inhibitory effects of MK-212 and DOI on ‘monosynaptic and ‘intermediate' neurones. Cardio-pulmonary afferent stimulation inhibited two of four putative ‘monosynaptically' activated calls and all four inactive intermediate cells. These were also inhibited by DOI and MK-212. In contrast, cardio-pulmonary afferents excited all five active intermediate cells and all six putative ‘polysynaptically' activated NTS cells, while all were also previously excited by BW-723C86 and/or DOI. In conclusion, these data demonstrate that neurones in the NTS are affected differently by 5-HT2 receptor ligands, in regard of their vagal postsynaptic location, the type of cardio-pulmonary afferent they receive and the different 5-HT2 receptors activated. PMID:11090119

  8. Peptide displacement of ( sup 3 H)5-hydroxytryptamine binding to bovine cortical membranes

    SciTech Connect

    Takeuchi, Y.; Root-Bernstein, R.S.; Shih, J.C. )

    1990-12-01

    Chemical studies have demonstrated that peptides such as the encephalitogenic (EAE) peptide of myelin basic protein (MBP) and luteinizing hormone-releasing hormone (LHRH) can bind serotonin (5-hydroxytryptamine, 5-HT) in vitro. The present research was undertaken to determine whether such binding interferes with 5-HT binding to its 5-HT1 receptors on bovine cerebral cortical membranes. EAE peptide and LHRH displaced ({sup 3}H)5-HT with IC50s of 4.0 x 10(-4) and 1.8 x 10(-3) M respectively. MBP itself also showed apparent displacing ability with an IC50 of 6.0 x 10(-5) M, though it also caused aggregation of cortical membranes that might have interfered with normal receptor binding. These results support previous suggestions that the tryptophan peptide region of MBP may act as a 5-HT receptor in the neural system. We also tested the effects of muramyl dipeptide (N-acetyl-muramyl-L-Ala-D-isoGln, MD), a bacterial cell-wall breakdown product that acts as a slow-wave sleep promoter, binds to LHRH and EAE peptide, and competes for 5-HT binding sites on macrophages. It showed no significant displacement of 5-HT binding to cortical membranes (IC50 greater than 10(-1) M), but its D-Ala analogue did (IC50 = 1.7 x 10(-3) M). Thus, it seems likely that the 5-HT-related effects of naturally occurring muramyl peptides are physiologically limited by receptor types.

  9. Norepinephrine triggers Ca2+-dependent exocytosis of 5-hydroxytryptamine from rat pinealocytes in culture.

    PubMed

    Yamada, Hiroshi; Hayashi, Mitsuko; Uehara, Shunsuke; Kinoshita, Mika; Muroyama, Akiko; Watanabe, Masami; Takei, Koji; Moriyama, Yoshinori

    2002-05-01

    5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles. PMID:12065661

  10. The role of the 5-hydroxytryptamine pathway in reflux-induced esophageal mucosal injury in rats

    PubMed Central

    2012-01-01

    Background Dysfunction of the 5-hydroxytryptamine (5-HT) signaling pathway can lead to gastrointestinal motility and secretion abnormalities and to visceral hypersensitivity. The aim of this study is to investigate the role of 5-HT in reflux-induced esophageal mucosal injury. Methods Fifty 8-week-old male Sprague-Dawley (SD) rats were randomly divided into a gastroesophageal reflux (GER) model group (30 rats) and a sham surgery control group (20 rats). Four weeks after surgery, the esophageal mucosa was collected for histological evaluation, 5-HT concentrations, and 5-HT selective reuptake transporter (SERT) mRNA and 5-HT4 receptor (5-HT4R) protein expressions. Results Twenty-seven rats in the GER model group survived, and three rats died. Histologically, in the GER model group, 20 rats had reflux esophagitis (RE group), and 7 rats had non-erosive reflux disease (NERD group). The 5-HT levels in the esophageal tissue from the RE group were significantly higher than those from the control and NERD groups. Both the RE and NERD groups showed significant increases in SERT mRNA expression of the esophageal mucosa than that of the controls, and the SERT mRNA level in the RE group was significantly higher than that in the NERD group. The 5-HT4R protein level of the esophageal mucosa in the RE group was significantly lower than that in the controls and the NERD group. Conclusions We conclude that a 5-HT signaling pathway disorder could be a major factor in the pathogenesis of GER and RE. PMID:23092450

  11. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics.

    PubMed

    Hsu, Eric S

    2010-01-01

    Nausea and vomiting are 2 of the most upsetting adverse reactions of chemotherapy. Current guidelines propose 5-hydroxytryptamine3 (5-HT3) receptor antagonists as a pharmacologic intervention for acute and delayed nausea and vomiting [chemotherapy-induced nausea and vomiting (CINV)] associated with moderately and highly emetogenic chemotherapy. Meanwhile, both postoperative nausea and vomiting (PONV) and postdischarge nausea and vomiting are challenging situations after surgeries and procedures. Prophylactic and therapeutic combinations of antiemetics are recommended in patients at high risk of suffering from PONV and postdischarge nausea and vomiting. Granisetron (Kytril) is a selective 5-HT3 receptor antagonist that does not induce or inhibit the hepatic cytochrome P-450 system in vitro. There are also 4 other antagonists of 5-HT3 receptor (dolasetron, ondansetron, palonosetron, and tropisetron) being metabolized via the CYP2D6 and are subject to potential genetic polymorphism. The launch of a new class of antiemetics, the substance P/neurokinin1 receptor antagonists, was attributed to the scientific update on the central generator responsible for emesis and role of substance P. There has been mounting interest in exploring integrative medicine, either acupuncture or acustimulation of P6 (Nei-Kuwan), to complement the western medicine for prevention and management of nausea and vomiting. The potential application of cannabinoids, either alone or in combination with other agents of different mechanism, could contribute further to improve outcome in CINV. Implementation of future treatment guidelines for more effective management of CINV and PONV could certainly improve the efficacy and outcome of cancer and postoperative care. PMID:20844345

  12. 5-Hydroxytryptamine and dopamine transport by rat and human blood platelets

    PubMed Central

    Gordon, J.L.; Olverman, H.J.

    1978-01-01

    1 Uptake of 5-hydroxytryptamine (5-HT) by rat platelets in plasma was very rapid and diffusion did not contribute significantly at substrate concentrations that did not saturate the active transport. 2 Under conditions which allowed measurement of initial rates of uptake, kinetic analysis revealed a high affinity uptake mechanism for 5-HT (Km = 0.7 μM). 3 Uptake of dopamine was relatively slow and involved a lower affinity (Km = 70 μM) active transport process. Diffusion contributed significantly at concentrations that did not saturate the active transport. 4 5-HT competitively inhibited uptake of dopamine, and vice versa; Ki values for both amines were similar to their respective Km values for uptake. 5 Chlorimipramine, desmethylimipramine and benztropine were tested as uptake inhibitors. Each was equipotent against 5-HT and dopamine, although the absolute potency of the drugs varied greatly. Chlorimipramine was the most potent (Ki## 100 nM), and kinetic analysis revealed that the inhibition was competitive against both 5-HT and dopamine. 6 Similar results were obtained in studies with human platelets: Km values for 5-HT and dopamine were about 1 μM and 100 μM respectively. Activity profiles of inhibitors were also similar: each compound tested was equipotent against 5-HT and dopamine, and the two amines each competitively inhibited uptake of the other. 7 We conclude that dopamine is actively transported by platelets via the 5-HT uptake mechanism, but with a much lower affinity. There is no high-affinity dopamine-specific mechanism corresponding to that in the corpus striatum. Consequently although platelets may be valid models of transport in 5-hydroxytryptaminergic neurones, they should not be regarded as models for the dopamine transport mechanism found in dopaminergic neurones. PMID:623937

  13. 5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation.

    PubMed

    Darios, Emma S; Barman, Susan M; Orer, Hakan S; Morrison, Shaun F; Davis, Robert P; Seitz, Bridget M; Burnett, Robert; Watts, Stephanie W

    2015-05-01

    Infusion of 5-hydroxytryptamine (5-HT) in conscious rats results in a sustained (up to 30 days) fall in blood pressure. This is accompanied by an increase in splanchnic blood flow. Because the splanchnic circulation is regulated by the sympathetic nervous system, we hypothesized that 5-HT would: 1) directly reduce sympathetic nerve activity in the splanchnic region; and/or 2) inhibit sympathetic neuroeffector function in splanchnic blood vessels. Moreover, removal of the sympathetic innervation of the splanchnic circulation (celiac ganglionectomy) would reduce 5-HT-induced hypotension. In anaesthetized Sprague-Dawley rats, mean blood pressure was reduced from 101±4 to 63±3mm Hg during slow infusion of 5-HT (25μg/kg/min, i.v.). Pre- and postganglionic splanchnic sympathetic nerve activity were unaffected during 5-HT infusion. In superior mesenteric arterial rings prepared for electrical field stimulation, neither 5-HT (3, 10, 30nM), the 5-HT1B receptor agonist CP 93129 nor 5-HT1/7 receptor agonist 5-carboxamidotryptamine inhibited neurogenic contraction compared to vehicle. 5-HT did not inhibit neurogenic contraction in superior mesenteric venous rings. Finally, celiac ganglionectomy did not modify the magnitude of fall or time course of 5-HT-induced hypotension when compared to animals receiving sham ganglionectomy. We conclude it is unlikely 5-HT interacts with the sympathetic nervous system at the level of the splanchnic preganglionic or postganglionic nerve, as well as at the neuroeffector junction, to reduce blood pressure. These important studies allow us to rule out a direct interaction of 5-HT with the splanchnic sympathetic nervous system as a cause of the 5-HT-induced fall in blood pressure. PMID:25732865

  14. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  15. 5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation

    PubMed Central

    Darios, Emma S.; Barman, Susan M.; Orer, Hakan S.; Morrison, Shaun F.; Davis, Robert P.; Seitz, Bridget M.; Burnett, Robert; Watts, Stephanie W.

    2015-01-01

    Infusion of 5-hydroxytryptamine (5-HT) in conscious rats results in a sustained (up to 30 days) fall in blood pressure. This is accompanied by an increase in splanchnic blood flow. Because the splanchnic circulation is regulated by the sympathetic nervous system, we hypothesized that 5-HT would: 1) directly reduce sympathetic nerve activity in the splanchnic region; and/or 2) inhibit sympathetic neuroeffector function in splanchnic blood vessels. Moreover, removal of the sympathetic innervation of the splanchnic circulation (celiac ganglionectomy) would reduce 5-HT-induced hypotension. In anaesthetized Sprague-Dawley rats, mean blood pressure was reduced from 101 ± 4 to 63 ± 3 mm Hg during slow infusion of 5-HT (25 μg/kg/min, i.v.). Pre- and postganglionic splanchnic sympathetic nerve activity was unaffected during 5-HT infusion. In superior mesenteric arterial rings prepared for electrical field stimulation, neither 5-HT (3, 10, 30 nM), the 5-HT1B receptor agonist CP 93129 nor 5-HT1/7 receptor agonist 5-carboxamidotryptamine inhibited neurogenic contraction compared to vehicle. 5-HT did not inhibit neurogenic contraction in superior mesenteric venous rings. Finally, celiac ganglionectomy did not modify the magnitude of fall or time course of 5-HT-induced hypotension when compared to animals receiving sham ganglionectomy. We conclude it is unlikely 5-HT interacts with the sympathetic nervous system at the level of the splanchnic preganglionic or postganglionic nerve, as well as at the neuroeffector junction, to reduce blood pressure. These important studies allow us to rule out a direct interaction of 5-HT with the splanchnic sympathetic nervous system as a cause of the 5-HT-induced fall in blood pressure. PMID:25732865

  16. Interferon-γ Attenuates 5-Hydroxytryptamine-Induced Melanogenesis in Primary Melanocyte.

    PubMed

    Zhou, Jia; Ling, Jingjing; Ping, Fengfeng

    2016-01-01

    Interferon-γ (IFN-γ) is an important cytokine which can be secreted by keratinocytes or macrophages induced by UVB irradiation in skin. Mammalian skin cells have the capability to produce and metabolize 5-hydroxytryptamine (5-HT) whose cutaneous effects are mediated by the interactions with 5-HT receptors. Treatment with 5-HT resulted in a dose-dependent increase of tyrosinase (TYR) activity and melanin contents in normal human foreskin-derived epidermal melanocytes (NHEM), while with IFN-γ a decreased effect resulted. These regulatory results were due to changes of the expression levels of microphthalmia-associated transcription factor (MITF) and its downstream TYR, tyrosinase-related protein 1 (TRP-1) and dopachrome tautomerase (DCT). We proved here that 5-HTR1A/2A participated in the regulation of melanogenesis. IFN-γ could offset the pro-melanogenesis effect of 5-HT in NHEM and the intensity of this neutralization was unanticipated below the baseline level. IFN-γ neutralized the up-regulation effect of 5-HT on MITF and downstream TYR, TRP-1 and DCT. Though functioning as 5-HT1A/2A receptor during the melanogenesis process, IFN-γ played no role in 5-HT1A/2A receptor expressions. Our results also demonstrated that the inhibition of IFN-γ was reversible after its removal. Confusingly, the effect of cross-talk between 5-HT and IFN-γ on NHEM melanogenesis was irreversible. Whether treated with 5-HT for 5 d or 12 d, the pigmentation level neither recovered after displacing the IFN-γ-containing medium. In addition, IFN-γ was able to inhibit the inductive effect of 5-HT on NHEM migration. Taken together, the suppression of IFN-γ on 5-HT-induced melanogenesis further suggests the negative role of IFN-γ in inflammation-associated pigmentary changes. PMID:27374284

  17. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    PubMed Central

    Nakayama, Hiroto; Umeda, Sumiyo; Nibuya, Masashi; Terao, Takeshi; Nisijima, Koichi; Nomura, Soichiro

    2014-01-01

    We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists. PMID:24627634

  18. Upregulation of 5-Hydroxytryptamine Receptor Signaling in Coronary Arteries after Organ Culture

    PubMed Central

    Rao, Fang; Xue, Yu-Mei; Zhou, Zhi-Ling; Liu, Xiao-Ying; Shan, Zhi-Xin; Li, Xiao-Hong; Lin, Qiu-Xiong; Wu, Shu-Lin; Yu, Xi-Yong

    2014-01-01

    Background 5-Hydroxytryptamine (5-HT) is a powerful constrictor of coronary arteries and is considered to be involved in the pathophysiological mechanisms of coronary-artery spasm. However, the mechanism of enhancement of coronary-artery constriction to 5-HT during the development of coronary artery disease remains to be elucidated. Organ culture of intact blood-vessel segments has been suggested as a model for the phenotypic changes of smooth muscle cells in cardiovascular disease. Methodology/Principal Findings We wished to characterize 5-HT receptor-induced vasoconstriction and quantify expression of 5-HT receptor signaling in cultured rat coronary arteries. Cumulative application of 5-HT produced a concentration-dependent vasoconstriction in fresh and 24 h-cultured rat coronary arteries without endothelia. 5-HT induced greater constriction in cultured coronary arteries than in fresh coronary arteries. U46619- and CaCl2-induced constriction in the two groups was comparable. 5-HT stimulates the 5-HT2A receptor and cascade of phospholipase C to induce coronary vasoconstriction. Calcium influx through L-type calcium channels and non-L-type calcium channels contributed to the coronary-artery constrictions induced by 5-HT. The contractions mediated by non-L-type calcium channels were significantly enhanced in cultured coronary arteries compared with fresh coronary arteries. The vasoconstriction induced by thapsigargin was also augmented in cultured coronary arteries. The decrease in Orai1 expression significantly inhibited 5-HT-evoked entry of Ca2+ in coronary artery cells. Expression of the 5-HT2A receptor, Orai1 and STIM1 were augmented in cultured coronary arteries compared with fresh coronary arteries. Conclusions An increased contraction in response to 5-HT was mediated by the upregulation of 5-HT2A receptors and downstream signaling in cultured coronary arteries. PMID:25202989

  19. Increased contractile responses to 5-hydroxytryptamine and Angiotensin II in high fat diet fed rat thoracic aorta

    PubMed Central

    Ghatta, Srinivas; Ramarao, Poduri

    2004-01-01

    Background Feeding normal rats with high dietary levels of saturated fat leads to pathological conditions, which are quite similar to syndrome X in humans. These conditions such as hypertriglyceridemia, hypercholesterolemia, obesity, and hyperglycemia might induce hypertension through various mechanisms. Metabolic syndrome and the resulting NIDDM represent a major clinical challenge because implementation of treatment strategies is difficult. Vascular abnormalities probably contribute to the etiology of many diabetic complications including nephropathy, neuropathy, retinopathy, and cardiomyopathy. It has been shown that in Streptozotocin induced diabetic animals there is an increase in maximal responses to 5-Hydroxytryptamine and Angiotensin II. The purpose of this study was to evaluate High fat diet fed rats for the development of hypertriglyceridemia, hypercholesterolemia, hyperinsulinemia and hyperglycemia and to assess their vascular responses to 5-Hydroxytryptamine and Angiotensin II. Methods Male Sprague Dawley rats were used for this study and were divided into two equal groups. One of the groups was fed with normal pellet diet and they served as the control group, whereas the other group was on a high fat diet for 4 weeks. Body weight, plasma triglycerides, plasma cholesterol, and plasma glucose were measured every week. Intraperitoneal glucose tolerance test was performed after 4 weeks of feeding. At the end of fourth week of high fat diet feeding, thoracic aortae were removed, and cut into helical strips for vascular reactivity studies. Dose-response curves of 5-Hydroxytryptamine and Angiotensin II were obtained. Results There was no significant difference in pD2, with 5-Hydroxytryptamine and Angiotensin II in both groups but Emax was increased. Conclusions These results suggest that hypertension in high fat diet rats is associated with increased in vitro vascular reactivity to 5-HT and Ang II. PMID:15287987

  20. Characterization of the 5-hydroxytryptamine receptors mediating contraction in the pig isolated intravesical ureter

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Simonsen, Ulf; Recio, Paz; Rivera, Luis; Martínez, Ana Cristina; García-Sacristán, Albino; Orensanz, Luis M; Prieto, Dolores

    2003-01-01

    This study was designed to investigate the effect of 5-hydroxytryptamine (5-HT) and to characterize the 5-HT receptors involved in 5-HT responses in the pig intravesical ureter. 5-HT (0.01–10 μM) concentration-dependently increased the tone of intravesical ureteral strips, whereas the increases in phasic contractions were concentration-independent. The 5-HT2 receptor agonist α-methyl 5-HT, mimicked the effect on tone whereas weak or no response was obtained with 5-CT, 8-OH-DPAT, m-chlorophenylbiguanide and RS 67333, 5-HT1, 5-HT1A, 5-HT3 and 5-HT4 receptor agonists, respectively. 5-HT did not induce relaxation of U46619-contracted ureteral preparations. Pargyline (100 μM), a monoaminooxidase A/B activity inhibitor, produced leftward displacements of the concentration-response curves for 5-HT. 5-HT-induced tone was reduced by the 5-HT2 and 5-HT2A receptor antagonists ritanserine (0.1 μM) and spiperone (0.2 μM), respectively. However, 5-HT contraction was not antagonized by cyanopindolol (2 μM), SDZ–SER 082 (1 μM), Y-25130 (1 μM) and GR 113808 (0.1 μM), which are respectively, 5-HT1A/1B, 5-HT2B/2C, 5-HT3, and 5-HT4 selective receptor antagonists. Removal of the urothelium did not modify 5-HT-induced contractions. Blockade of neuronal voltage-activated sodium channels, α-adrenergic receptors and adrenergic neurotransmission with tetrodotoxin (1 μM), phentolamine (0.3 μM) and guanethidine (10 μM), respectively, reduced the contractions to 5-HT. However, physostigmine (1 μM), atropine (0.1 μM) and suramin (30 μM), inhibitors of cholinesterase activity, muscarinic- and purinergic P2-receptors, respectively, failed to modify the contractions to 5-HT. These results suggest that 5-HT increases the tone of the pig intravesical ureter through 5-HT2A receptors located at the smooth muscle. Part of the 5-HT contraction is indirectly mediated via noradrenaline release from sympathetic nerves. PMID:12522083

  1. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    PubMed

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients. PMID:21825000

  2. Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin

    PubMed Central

    Sbrenna, S; Marti, M; Morari, M; Calo', G; Guerrini, R; Beani, L; Bianchi, C

    2000-01-01

    The modulation of [3H]-5-hydroxytryptamine ([3H]-5-HT) efflux from superfused rat cortical synaptosomes by delta, kappa, mu and ORL1 opioid receptor agonists and antagonists was studied. Spontaneous [3H]-5-HT efflux was reduced (20% inhibition) by either 0.5 μM tetrodotoxin or Ca2+-omission. Ten mM K+-evoked [3H]-5-HT overflow was largely Ca2+-dependent (90%) and tetrodotoxin-sensitive (50%). The delta receptor agonist, deltorphin-I, failed to modulate the K+-evoked neurotransmitter efflux up to 0.3 μM. The kappa and the mu receptor agonists, U-50,488 and endomorphin-1, inhibited K+-evoked [3H]-5-HT overflow (EC50=112 and 7 nM, respectively; Emax=28 and 29% inhibition, respectively) in a norBinaltorphimine- (0.3 μM) and naloxone- (1 μM) sensitive manner, respectively. None of these agonists significantly affected spontaneous [3H]-5-HT efflux. The ORL1 receptor agonist nociceptin inhibited both spontaneous (EC50=67 nM) and K+-evoked (EC50=13 nM; Emax=52% inhibition) [3H]-5-HT efflux. The effect of NC was insensitive to naloxone (up to 10 μM), but was antagonized by [Nphe1]nociceptin(1-13)NH2 (a novel selective ORL1 receptor antagonist; pA2=6.7) and by naloxone benzoylhydrazone (pA2=6.3). The ORL1 ligand [Phe1ψ(CH2-NH)Gly2]nociceptin(1-13)NH2 also inhibited K+ stimulated [3H]-5-HT overflow (EC50=64 nM; Emax=31% inhibition), but its effect was partially antagonized by 10 μM naloxone. It is concluded that the ORL1 receptor is the most important presynaptic modulator of neocortical 5-HT release within the opioid receptor family. This suggests that the ORL1/nociceptin system may have a powerful role in the control of cerebral 5-HT-mediated biological functions. PMID:10807682

  3. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors.

    PubMed

    Cubeddu, L X; Bönisch, H; Göthert, M; Molderings, G; Racké, K; Ramadori, G; Miller, K J; Schwörer, H

    2000-01-01

    Nearly 30% of patients treated with metformin experience gastrointestinal side effects. Since release of 5-hydroxytryptamine (5-HT) from the intestine is associated with nausea, vomiting, and diarrhea, we examined whether metformin induces 5-HT release from the intestinal mucosa. In 40% of tissue biopsy specimens of human duodenal mucosa, metformin (1, 10, and 30 microM) caused an increase in 5-HT outflow by 35, 70, and 98%, respectively. Peak increases in 5-HT outflow were observed after 10-15 min exposure to metformin, returning to baseline levels after 25 min. Tetrodotoxin (1 microM) reduced by about 50% the metformin-evoked increase in 5-HT outflow (P<0.05). Metformin-evoked release was not affected by scopolamine + hexamethonium, propranolol, the 5-HT3 receptor antagonist dolasetron, naloxone, or the NK1 receptor antagonist L703606. In the presence of tetrodotoxin (1 microM), somatostatin (1 microM) further reduced metformin-induced 5-HT release by 15-20%. In view of the 5-HT releasing effects of selective 5-HT3 receptor agonists to which metformin (N-N-dimethylbiguanide) is structurally related, we investigated whether metformin directly interacts with 5-HT3 receptors. Receptor binding (inhibition of [3H]-GR65630 binding) and agonist effects (stimulation of [14C]-guanidinium influx) at 5-HT3 receptors were studied in murine neuroblastoma N1E-115 cells, which express functional 5-HT3 receptors. Metformin up to 0.3 mM failed to inhibit [3H]-GR65630 binding and to modify displacement of [3H]-GR65630 binding induced by 5-HT. 5-HT (3 microM) stimulated the influx of [14C]-guanidinium in intact N1E-115 cells. Metformin up to 1 mM failed to modify basal influx, 5-HT-induced influx, and 5-HT+ substance P-induced influx of [14C]-guanidinium. Our results indicate that metformin induces 5-HT3 receptor-independent release of 5-HT from human duodenal mucosa via neuronal and non-neuronal mechanisms. Part of the gastrointestinal side effects observed during treatment with

  4. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors.

    PubMed

    Hussy, N; Lukas, W; Jones, K A

    1994-12-01

    1. A comparative study of the whole-cell and single-channel properties of cloned and native mouse 5-hydroxytryptamine ionotropic receptors (5-HT3) was undertaken using mammalian cell lines expressing the cloned 5-HT3 receptor subunit A (5-HT3R-A), superior cervical ganglia (SCG) neurones and N1E-115 cells. 2. No pharmacological difference was found in the sensitivity to the agonists 5-HT and 2-methyl-5-HT, or to the antagonists d-tubocurare and 3-tropanyl-3,5-dichlorobenzoate (MDL-72222). 3. Current-voltage (I-V) relationships of whole-cell currents showed inward rectification in the three preparations. Rectification was stronger both in cells expressing the 5-HT3R-A subunit and in N1E-115 cells when compared with SCG neurones. 4. No clear openings could be resolved in 5-HT-activated currents in patches excised from cells expressing the 5-HT3R-A subunit or N1E-115 cells. Current fluctuation analysis of whole-cell and excised-patch records revealed a slope conductance of 0.4-0.6 pS in both preparations. Current-voltage relationships of these channels showed strong rectification that fully accounted for the whole-cell voltage dependence. 5. In contrast, single channels of about 10 pS were activated by 5-HT in patches excised from SCG neurones. The weak voltage dependence of their conductance did not account completely for the rectification of whole-cell currents. A lower unitary conductance (3.4 pS) was inferred from whole-cell noise analysis. 6. We conclude that the receptor expressed from the cloned cDNA is indistinguishable from the 5-HT3 receptor of N1E-115 cells, suggesting an identical structure for these two receptors. The higher conductance and different voltage dependence of the 5-HT3 receptor in SCG neurones might indicate the participation of an additional subunit in the structure of native ganglionic 5-HT3 receptors. Homo-oligomeric 5-HT3R-A channels may also be present as suggested by the lower conductance estimated by whole-cell noise analysis. PMID

  5. Arachidonate metabolism, 5-hydroxytryptamine release and aggregation in human platelets activated by palmitaldehyde acetal phosphatidic acid.

    PubMed Central

    Brammer, J. P.; Maguire, M. H.

    1984-01-01

    Palmitaldehyde acetal phosphatidic acid ( PGAP ) caused dose-dependent aggregation of human platelets resuspended in modified Tyrode medium, with a threshold concentration of 0.5-1 microM and an EC50 of 4 microM. Concentrations of PGAP which elicited biphasic irreversible aggregation concomitantly induced formation of 1.02 +/- 0.029 nmol (mean +/- s.e. mean) of malondialdehyde (MDA) per 10(9) platelets and caused release of 58 +/- 2.8% of platelet [14C]-5-hydroxytryptamine ([14C]-5-HT) from prelabelled platelets; no MDA formation or [14C]-5-HT release occurred at lower doses of PGAP which elicited only monophasic reversible aggregation. Adenosine 5'-pyrophosphate (ADP)-induced platelet activation resulted in formation of 0.344 +/- 0.004 nmol of MDA per 10(9) platelets in association with irreversible aggregation and 49.1 +/- 1% release of [14C]-5-HT. Mepacrine, a phospholipase A2 inhibitor, at 2.5 microM reduced PGAP -induced MDA formation and [14C]-5-HT release by the resuspended platelets without affecting irreversible aggregation; higher concentrations of mepacrine abolished all three responses. Chlorpromazine, a calmodulin antagonist, similarly inhibited PGAP -induced MDA formation and irreversible aggregation, and at 100 microM abolished monophasic aggregation. The cyclo-oxygenase inhibitor indomethacin caused a concentration-dependent reduction of PGAP -induced MDA formation by resuspended human platelets without significantly inhibiting [14C]-5-HT release or irreversible aggregation; concentrations (greater than or equal to 1.75 microM) which inhibited MDA formation by more than 94% abolished [14C]-5-HT release, and converted second phase irreversible aggregation to an extensive reversible response. 2-Methylthioadenosine 5'-phosphate (2 methylthio-AMP), an ADP antagonist, inhibited PGAP -induced MDA formation, [14C]-5-HT release and second phase aggregation in the human platelet suspensions in a parallel, concentration-dependent manner; at 9.4 microM 2

  6. 5-Hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing β-catenin.

    PubMed

    Fatima, Sarwat; Shi, Xiaoke; Lin, Zesi; Chen, Guo-Qing; Pan, Xiao-Hua; Wu, Justin Che-Yuen; Ho, John W; Lee, Nikki P; Gao, Hengjun; Zhang, Ge; Lu, Aiping; Bian, Zhao Xiang

    2016-02-01

    5-Hydroxytryptamine (5-HT), a neurotransmitter and vasoactive factor, has been reported to promote proliferation of serum-deprived hepatocellular carcinoma (HCC) cells but the detailed intracellular mechanism is unknown. As Wnt/β-catenin signalling is highly dysregulated in a majority of HCC, this study explored the regulation of Wnt/β-catenin signalling by 5-HT. The expression of various 5-HT receptors was studied by quantitative real-time polymerase chain reaction (qPCR) in HCC cell lines as well as in 33 pairs of HCC tumours and corresponding adjacent non-tumour tissues. Receptors 5-HT1D (21/33, 63.6%), 5-HT2B (12/33, 36.4%) and 5-HT7 (15/33, 45.4%) were overexpressed whereas receptors 5-HT2A (17/33, 51.5%) and 5-HT5 (30/33, 90.1%) were reduced in HCC tumour tissues. In vitro data suggests 5-HT increased total β-catenin, active β-catenin and decreased phosphorylated β-catenin protein levels in serum deprived HuH-7 and HepG2 cells compared to control cells under serum free medium without 5-HT. Activation of Wnt/β-catenin signalling was evidenced by increased expression of β-catenin downstream target genes, Axin2, cyclin D1, dickoppf-1 (DKK1) and glutamine synthetase (GS) by qPCR in serum-deprived HCC cell lines treated with 5-HT. Additionally, biochemical analysis revealed 5-HT disrupted Axin1/β-catenin interaction, a critical step in β-catenin phosphorylation. Increased Wnt/β-catenin activity was attenuated by antagonist of receptor 5-HT7 (SB-258719) in HCC cell lines and patient-derived primary tumour tissues in the presence of 5-HT. SB-258719 also reduced tumour growth in vivo. This study provides evidence of Wnt/β-catenin signalling activation by 5-HT and may represent a potential therapeutic target for hepatocarcinogenesis. PMID:26474915

  7. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  8. Localized Release of Serotonin (5-Hydroxytryptamine) by a Fecal Pellet Regulates Migrating Motor Complexes in Murine Colon

    PubMed Central

    HEREDIA, DANTE J.; DICKSON, EAMONN J.; BAYGUINOV, PETER O.; HENNIG, GRANT W.; SMITH, TERENCE K.

    2009-01-01

    Background & Aims The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter, through a rhythmic sequence of electrical activity and/or contractions, along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity. Methods Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet. Transducers were placed along the colon to record muscle tension and propulsive force on the pellet and microelectrodes were used to record electrical activity from circular muscle cells anal and oral of a pellet and in colons without the mucosa. Results Spontaneous CMMCs propagated in both an oral or anal direction. When a pellet was inserted, CMMCs increased in frequency and propagated anally, exerting propulsive force on the pellet. The amplitude of slow waves increased during the CMMC. Localized mucosal stimulation/circumferential stretch evoked a CMMC, regardless of stimulus strength. The serotonin (5-hydroxytryptamine-3) antagonist ondansetron reduced the amplitude of the CMMC, the propulsive force on the pellet, and the response to mucosal stroking, but increased the apparent conduction velocity of the CMMC. Removing the mucosa abolished spontaneous CMMCs, which still could be evoked by electrical stimulation. Conclusions The fecal pellet activates local mucosal reflexes, which release serotonin (5-hydroxytryptamine) from enterochromaffin cells, and stretch reflexes that determine the site of origin and propagation of the CMMC, facilitating propulsion. PMID:19138686

  9. 5-Hydroxytryptamine 4(a) receptor expressed in Sf9 cells is palmitoylated in an agonist-dependent manner.

    PubMed Central

    Ponimaskin, E G; Schmidt, M F; Heine, M; Bickmeyer, U; Richter, D W

    2001-01-01

    The mouse 5-hydroxytryptamine 4(a) receptor [5-HT(4(a))] was expressed with a baculovirus system in insect cells and analysed for acylation. [(3)H]Palmitic acid was effectively incorporated into 5-HT(4(a)) and label was sensitive to the treatment with reducing agents indicating a thioester-type bond. Analysis of protein-bound fatty acids revealed that 5-HT(4(a)) contains predominantly palmitic acid. Treatment of infected Sf9 (Spodoptera frugiperda) cells with BIMU8 [(endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dehydro-2-oxo-3-(prop-2-yl)-1H-benzimid-azole-1-carboxamide], a 5-HT(4) receptor-selective agonist, generated a dose-dependent increase in [(3)H]palmitate incorporation into 5-HT(4(a)) with an EC(50) of approx. 10 nM. The change in receptor labelling after stimulation with agonist was receptor-specific and did not result from general metabolic effects. We also used both pulse labelling and pulse-chase labelling to address the dynamics of 5-HT(4(a)) palmitoylation. Incorporation studies revealed that the rate of palmitate incorporation was increased approx. 3-fold after stimulation with agonist. Results of pulse-chase experiments show that activation with BIMU8 promoted the release of radiolabel from 5-HT(4(a)), thereby reducing the levels of receptor-bound palmitate to approximately one-half. Taken together, our results demonstrate that palmitoylation of 5-HT(4(a)) is a reversible process and that stimulation of 5-HT(4(a)) with agonist increases the turnover rate for receptor-bound palmitate. This provides evidence for a regulated cycling of receptor-bound palmitate and suggests a functional role for palmitoylation/depalmitoylation in 5-hydroxytryptamine-mediated signalling. PMID:11171060

  10. Antagonism of 5-hydroxytryptamine2A Receptor Results in Decreased Contractile Response of Bovine Lateral Saphenous Vein to Tall Fescue Alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  11. Cinitapride protects against ethanol-induced gastric mucosal injury in rats: role of 5-hydroxytryptamine, prostaglandins and sulfhydryl compounds.

    PubMed

    Alarcón-de-la-Lastra Romero, C; López, A; Martín, M J; la Casa, C; Motilva, V

    1997-04-01

    This study was designed to determine the gastroprotective properties of cinitapride (CNT), a novel prokinetic benzamide derivative agonist of 5-HT4 and 5-HT1 receptors and 5-HT2 antagonist, on mucosal injury produced by 50% (v/v) ethanol. Results were compared with those for 5-hydroxytryptamine (5-HT: 10 mg kg-1). The possible involvements of gastric mucus secretion, endogenous prostaglandins (PGs) and sulfhydryl compounds (SH) in the protection mediated by CNT were also examined. Intraperitoneal administration of CNT (0.50 and 1 mg kg-1), 30 min before ethanol, significantly prevented gastric ulceration and increased the hexosamine content of gastric mucus. CNT (1 mg kg-1) also produced a significant increase in gastric mucosal levels of PGE2, but did not induce any significant changes in SH values. On the contrary, pretreatment with 5-HT worsened ethanol-induced erosions, however, did not affect gastric mucus secretion, glycoprotein content or PGE2 levels, although the non-protein SH fraction was significantly decreased. The present results demonstrate that the gastroprotective effects of CNT could be partly explained by a complex PG dependent mechanism. We suggest that 5-HT dependent mechanisms through 5-HT2 receptor blockade and 5-HT1 receptor activation could be also involved. PMID:9211565

  12. Water-soluble jack-knife prawn extract inhibits 5-hydroxytryptamine-induced vasoconstriction and platelet aggregation in humans.

    PubMed

    Gamoh, Shuji; Kanai, Tasuku; Tanaka-Totoribe, Naoko; Ohkura, Masamichi; Kuwabara, Masachika; Nakamura, Eisaku; Yokota, Atsuko; Yamasaki, Tetsuo; Watanabe, Akiko; Hayashi, Masahiro; Fujimoto, Shouichi; Yamamoto, Ryuichi

    2015-02-01

    Coronary artery spasm plays an important role in the pathogenesis of various ischemic heart diseases or serious arrhythmia. The aim of this study is to look for functional foods which have physiologically active substances preventing 5-hydroxytryptamine (5-HT)-related vasospastic diseases including peri- and postoperative ischemic complications of coronary artery bypass grafting (CABG) from ocean resources in Japanese coastal waters. First, we evaluated the effect of water-soluble ocean resource extracts on the response to 5-HT in HEK293 cells which have forcibly expressed cyan fluorescent protein-fused 5-HT2A receptors (5-HT2A-CFP). Among 5 different water-soluble extracts of ocean resources, the crude water-soluble jack-knife prawn extract (WJPE) significantly reduced maximal Ca(2+) influx induced by 0.1 μM 5-HT in a concentration-dependent manner. The Crude WJPE significantly inhibited, in a concentration-dependent manner, 5-HT-induced constriction of human saphenous vein. 5-HT released from activated platelets plays a crucial roles in the constriction of coronary artery. Next the WJPE was purified for applying the experiment of 5-HT-induced human platelet aggregation. The purified WJPE significantly inhibited 5-HT-induced human platelet aggregation also in a concentration-dependent manner. Based on our findings, jack-knife prawn could be one of a functional food with health-promoting benefits for most people with vasospastic diseases including patients who have gone CABG. PMID:25464143

  13. Alterations of Ca(v)1.2 and 5-hydroxytryptamine in rat hearts after positional asphyxia.

    PubMed

    Li, X-F; Huang, Q-Y

    2015-01-01

    We investigated alterations of cardiac Ca(v)1.2 and 5-hydroxytryptamine (5-HT) associated with positional asphyxia. Male rats were divided into five groups: a control group with no restraint, group 1 restrained for 1 h, group 2 restrained for 2 h, group 3 restrained for 4 h, and group 4 restrained for 8 h. The rats that were restrained for 8 h ultimately suffered fatal asphyxia. After the restraint periods, the rats were sacrificed and immunohistochemistry was performed to evaluate the expressions of Ca(v)1.2 and 5-HT in the heart. Sections were analyzed by digital image analysis. Cardiac expression of Ca(v)1.2 and 5-HT proteins were significantly decreased by positional asphyxia in the rat, shown by integrated optical density (IOD) compared to controls. Our findings indicate that Ca(v)1.2 and 5-HT alterations could cause abnormal cardiac function, and the proteins investigated here may be useful for investigating the mechanisms underlying positional asphyxia. PMID:26471941

  14. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    PubMed

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  15. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  16. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  17. Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I.

    PubMed

    Lee, Byung-Hwan; Jeong, Sang-Min; Jung, Sang-Min; Lee, Jun-Ho; Kim, Jong-Hoon; Yoon, In-Soo; Lee, Joon-Hee; Choi, Sun-Hye; Lee, Sang-Mok; Chang, Choon-Gon; Kim, Hyung-Chun; Han, YeSun; Paik, Hyun-Dong; Kim, Yangmee; Nah, Seung-Yeol

    2005-08-31

    The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 (5-HT3A) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with 5-HT3A receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current (I(5-HT)) with an IC50 of 64.7 +/- 2.2 microM. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the 5-HT3A receptor. PMID:16258243

  18. Toward Selective Drug Development for the Human 5-Hydroxytryptamine 1E Receptor: A Comparison of 5-Hydroxytryptamine 1E and 1F Receptor Structure-Affinity RelationshipsS⃞

    PubMed Central

    Klein, Michael T.; Dukat, Małgorzata; Glennon, Richard A.

    2011-01-01

    The 5-hydroxytryptamine (5-HT) 1E receptor is highly expressed in the human frontal cortex and hippocampus, and this distribution suggests the function of 5-HT1E receptors might be linked to memory. To test this hypothesis, behavioral experiments are needed. Because rats and mice lack a 5-HT1E receptor gene, knockout strategies cannot be used to elucidate this receptor's functions. Thus, selective pharmacological tools must be developed. The tryptamine-related agonist BRL54443 [5-hydroxy-3-(1-methylpiperidin-4-yl)-1H-indole] is one of the few agents that binds 5-HT1E receptors with high affinity and some selectively; unfortunately, it binds equally well to 5-HT1F receptors (Ki ≈ 1 nM). The differences between tryptamine binding requirements of these two receptor populations have never been extensively explored; this must be done to guide the design of analogs with greater selectivity for 5-HT1E receptors versus 5-HT1F receptors. Previously, we determined the receptor binding affinities of a large series of tryptamine analogs at the 5-HT1E receptor; we now examine the affinities of this same series of compounds at 5-HT1F receptors. The affinities of these compounds at 5-HT1E and 5-HT1F receptors were found to be highly correlated (r = 0.81). All high-affinity compounds were full agonists at both receptor populations. We identified 5-N-butyryloxy-N,N-dimethyltryptamine as a novel 5-HT1F receptor agonist with >60-fold selectivity versus 5-HT1E receptors. There is significant overlap between 5-HT1E and 5-HT1F receptor orthosteric binding properties; thus, identification of 5-HT1E-selective orthosteric ligands will be difficult. The insights generated from this study will inform future drug development and molecular modeling studies for both 5-HT1E and 5-HT1F receptors. PMID:21422162

  19. Tong Xie Yao Fang relieves irritable bowel syndrome in rats via mechanisms involving regulation of 5-hydroxytryptamine and substance P

    PubMed Central

    Yin, Yue; Zhong, Lei; Wang, Jian-Wei; Zhao, Xue-Ying; Zhao, Wen-Jing; Kuang, Hai-Xue

    2015-01-01

    AIM: To investigate whether the Chinese medicine Tong Xie Yao Fang (TXYF) improves dysfunction in an irritable bowel syndrome (IBS) rat model. METHODS: Thirty baby rats for IBS modeling were separated from mother rats (1 h per day) from days 8 to 21, and the rectum was expanded by angioplasty from days 8 to 12. Ten normal rats were used as normal controls. We examined the effects of TXYF on defection frequency, colonic transit function and smooth muscle contraction, and the expression of 5-hydroxytryptamine (5-HT) and substance P (SP) in colonic and hypothalamus tissues by Western blot and RT-PCT techniques in both normal rats and IBS model rats with characterized visceral hypersensitivity. RESULTS: Defecation frequency was 1.8 ± 1.03 in normal rats and 4.5 ± 1.58 in IBS model rats (P < 0.001). However, the defecation frequency was significantly decreased (3.0 ± 1.25 vs 4.5 ± 1.58, P < 0.05), while the time (in seconds) of colon transit function was significantly increased (256.88 ± 20.32 vs 93.36 ± 17.28, P < 0.001) in IBS + TXYF group rats than in IBS group rats. Increased colonic smooth muscle tension and contract frequency in IBS model rats were significantly decreased by administration of TXYF. Exogenous agonist stimulants increased spontaneous activity and elicited contractions of colon smooth muscle in IBS model rats, and all of these actions were significantly reduced by TXYF involving 5-HT and SP down-regulation. CONCLUSION: TXYF can modulate the activity of the enteric nervous system and alter 5-HT and SP activities, which may contribute to the symptoms of IBS. PMID:25914462

  20. Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Meyer, V; Zwingelstein, C; Sleight, A J

    1997-09-01

    We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor. PMID:9284367

  1. Nocistatin inhibits 5-hydroxytryptamine release in the mouse neocortex via presynaptic Gi/o protein linked pathways

    PubMed Central

    Fantin, M; Fischetti, C; Trapella, C; Morari, M

    2007-01-01

    Background and purpose: Nocistatin (NST) is a neuropeptide generated from cleavage of the nociceptin/orphanin FQ (N/OFQ) precursor. Evidence has been presented that NST acts as a functional antagonist of N/OFQ, although NST receptor and transduction pathways have not yet been identified. We previously showed that N/OFQ inhibited [3H]5-hydroxytryptamine ([3H]5-HT) release from mouse cortical synaptosomes via activation of NOP receptors. We now investigate whether NST regulates [3H]5-HT release in the same preparation. Experimental approach: Mouse and rat cerebrocortical synaptosomes in superfusion, preloaded with [3H]5-HT and stimulated with 1 min pulses of 10 mM KCl, were used. Key results: Bovine NST (b-NST) inhibited the K+-induced [3H]5-HT release, displaying similar efficacy but lower potency than N/OFQ. b-NST action underwent concentration-dependent and time-dependent desensitization, and was not prevented either by the NOP receptor antagonist [Nphe1 Arg14,Lys15]N/OFQ(1-13)-NH2 (UFP-101) or by the non-selective opioid receptor antagonist, naloxone. Contrary to N/OFQ, b-NST reduced [3H]5-HT release from synaptosomes obtained from NOP receptor knockout mice. However, both N/OFQ and NST were ineffective in synaptosomes pre-treated with the Gi/o protein inhibitor, Pertussis toxin. NST-N/OFQ interactions were also investigated. Co-application of maximal concentrations of both peptides did not result in additive effects, whereas pre-application of maximal b-NST concentrations partially attenuated N/OFQ inhibition. Conclusions and implications: We conclude that b-NST inhibits [3H]5-HT release via activation of Gi/o protein linked pathways, not involving classical opioid receptors and the NOP receptor. The present data strengthen the view that b-NST is, per se, a biologically active peptide endowed with agonist activity. PMID:17618307

  2. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  3. Anxiolytic effect and memory improvement in rats by antisense oligodeoxynucleotide to 5-hydroxytryptamine-2A precursor protein.

    PubMed

    Cohen, Hagit

    2005-01-01

    Serotonergic (5-hydroxytryptamine; 5-HT) mechanisms have been implicated in a number of physiological and pathophysiological processes including mood, anxiety, and cognitive functioning. Among the many 5-HT receptor subtypes, the 5-HT2A receptors (5-HT2A-R) seem to be of particular importance in mediating these effects, and they are prime targets for a variety of psychoactive substances-from hallucinogenic drugs, through atypical antipsychotics, to anxiolytics and antidepressants. Various selective 5-HT2A-R ligands induce different behavioral responses. To determine whether receptor downregulation is an essential part of anxiolytic action, levels of 5-HT2A receptors were manipulated in rats using a nonpharmacological approach-by the administration of an antisense oligodeoxynucleotide (ASODN) to 5-HT2A-R. Each ASODN was injected icv between two and five times at 24-hr intervals. Control rats received injections of either a scrambled oligodeoxynucleotide (ScrODN) or the vehicle only. On Day 6, anxiety-related behavior was assessed in the elevated plus maze paradigm and performance of memory tasks in the Morris water maze. Gene transcripts were measured by quantitative reverse transcription polymerase chain reaction (PCR). The results show that compared to vehicle and ScrODN control animals, icv 5-HT2A-R-ASODN administrations for 4 consecutive days (but not less) significantly decreased anxietylike behavior and improved memory retention performance. The reduction in anxiety-related behavior in 5-HT2A-R-ASODN rats was accompanied by a decrease in 5-HT2A-R-mRNA expression in the frontal cortex and in the hippocampus. Receptor downregulation has been proposed as one of the central mechanisms for anxiolytic drug actions. Antisense-mediated downmanipulation of receptors in this study, especially of 5-HT2A, supports this theory. PMID:16149040

  4. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    PubMed

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  5. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter.

    PubMed

    Line, Samantha J; Barkus, Chris; Rawlings, Nancy; Jennings, Katie; McHugh, Stephen; Sharp, Trevor; Bannerman, David M

    2014-12-01

    The 5-hydroxytryptamine (5-HT) transporter (5-HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5-HTT gene promoter is associated with reduced 5-HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5-HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5-HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over-express the 5-HTT (5-HTTOE mice). Compared with wild-type mice, 5-HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision-making T-maze task, 5-HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild-type mice. However, further inspection of the data revealed that 5-HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5-HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5-HTT over-expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5-HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits. PMID:25283165

  6. In vivo labeling of 5-hydroxytryptamine uptake sites in mouse brain with ( sup 3 H)-6-nitroquipazine

    SciTech Connect

    Hashimoto, K.; Goromaru, T. )

    1990-10-01

    6-Nitroquipazine (DU 24565; 6-nitro 2-piperazinylquinoline) is a very potent 5-hydroxytryptamine (5-HT; serotonin) uptake inhibitor. It has been demonstrated very recently that (3H)-6-nitroquipazine is a suitable radioligand for studying 5-HT uptake sites. The present study evaluates (3H)6-nitroquipazine as a radioligand for in vivo labeling of 5-HT uptake sites in mouse brain. Very high uptake of radioactivity in the brain after i.v. administration of (3H)-6-nitroquipazine was shown. Regional distribution of the radioactivity in mouse brain 3 hr after injection of (3H)-6-nitroquipazine was in the order (highest to lowest) hypothalamus greater than midbrain greater than striatum greater than hippocampus greater than cerebral cortex greater than medulla oblongata greater than cerebellum. The regional distribution of in vivo (3H)-6-nitroquipazine binding in mouse brain was highly correlated with that in rat brain obtained from previous in vitro binding studies. Coadministration of carrier 6-nitroquipazine (5 mg/kg) significantly decreased the radioactivity in the hypothalamus, whereas that in the cerebellum and cerebral cortex was increased. Because the cerebellum has very low density of (3H)-6-nitroquipazine binding sites, the radioactivity in the cerebellum could, therefore, reflect the amount on nonspecific binding and free ligand. Kinetic studies showed highest in vivo specific binding 1 hr after injection of (3H)-6-nitroquipazine and slow clearance of specific binding. Specific binding in the hypothalamus was inhibited in a stereoselective manner by the stereoisomers of norzimelidine. Furthermore, specific binding in the hypothalamus was reduced by several 5-HT uptake inhibitors, in a dose-dependent manner.

  7. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise.

    PubMed

    Hu, Y; Liu, X; Qiao, D

    2015-09-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  8. The effect of selective 5-hydroxytryptamine uptake inhibitors on 5-methoxy-N,N-dimethyltryptamine-induced ejaculation in the rat.

    PubMed Central

    Rényi, L.

    1986-01-01

    The ejaculatory response and the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1 i.p.) were studied following acute and repeated treatment of rats with the selective uptake inhibitors of 5-HT, fluoxetine, zimeldine, alaproclate, and citalopram. The oral doses used were based on the respective ED50 values for uptake inhibition. Acute doses of fluoxetine and zimeldine significantly reduced the ejaculatory response when given 48 h before 5-MeODMT. This blockade was prevented by treatment of the rats with the postsynaptic 5-HT receptor antagonist methergoline. An acute dose of fluoxetine given 7 and 14 days before 5-MeODMT significantly enhanced the ejaculatory response. On day 24, the response returned to the control level. Repeated treatment every second day (5 times over 9 days and 10 times over 19 days) with fluoxetine caused a longer blockade of the ejaculatory response and the sensitization of the response came later than after an acute dose. Parallel with the ejaculatory response three other components of the 5-HT behavioural syndrome also decreased significantly. Acute doses of alaproclate and citalopram significantly blocked the ejaculatory response at 1 h, but they failed to affect the response at any other time point after either acute or repeated treatment. Neither did these drugs attentuate the 5-HT syndrome. It is concluded that acute and repeated treatment of rats with different selective 5-HT uptake inhibitors does not produce a common alteration in 5-HT2-receptor functions. PMID:2939912

  9. The effect of selective 5-hydroxytryptamine uptake inhibitors on 5-methoxy-N,N-dimethyltryptamine-induced ejaculation in the rat.

    PubMed

    Rényi, L

    1986-04-01

    The ejaculatory response and the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1 i.p.) were studied following acute and repeated treatment of rats with the selective uptake inhibitors of 5-HT, fluoxetine, zimeldine, alaproclate, and citalopram. The oral doses used were based on the respective ED50 values for uptake inhibition. Acute doses of fluoxetine and zimeldine significantly reduced the ejaculatory response when given 48 h before 5-MeODMT. This blockade was prevented by treatment of the rats with the postsynaptic 5-HT receptor antagonist methergoline. An acute dose of fluoxetine given 7 and 14 days before 5-MeODMT significantly enhanced the ejaculatory response. On day 24, the response returned to the control level. Repeated treatment every second day (5 times over 9 days and 10 times over 19 days) with fluoxetine caused a longer blockade of the ejaculatory response and the sensitization of the response came later than after an acute dose. Parallel with the ejaculatory response three other components of the 5-HT behavioural syndrome also decreased significantly. Acute doses of alaproclate and citalopram significantly blocked the ejaculatory response at 1 h, but they failed to affect the response at any other time point after either acute or repeated treatment. Neither did these drugs attentuate the 5-HT syndrome. It is concluded that acute and repeated treatment of rats with different selective 5-HT uptake inhibitors does not produce a common alteration in 5-HT2-receptor functions. PMID:2939912

  10. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    PubMed

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  11. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    PubMed Central

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP. PMID:22559843

  12. Changes in 5-hydroxytryptamine and cortisol plasma levels in menopausal women after inhalation of clary sage oil.

    PubMed

    Lee, Kyung-Bok; Cho, Eun; Kang, Young-Sook

    2014-11-01

    The purpose of this study was to examine the antidepressant-like effects of clary sage oil on human beings by comparing the neurotransmitter level change in plasma. The voluntary participants were 22 menopausal women in 50's. Subjects were classified into normal and depression tendency groups using each of Korean version of Beck Depression Inventory-I (KBDI-I), KBDI-II, and Korean version of Self-rating Depression Scale. Then, the changes in neurotransmitter concentrations were compared between two groups. After inhalation of clary sage oil, cortisol levels were significantly decreased while 5-hydroxytryptamine (5-HT) concentration was significantly increased. Thyroid stimulating hormone was also reduced in all groups but not statistically significantly. The different change rate of 5-HT concentration between normal and depression tendency groups was variable according to the depression measurement inventory. When using KBDI-I and KBDI-II, 5-HT increased by 341% and 828% for the normal group and 484% and 257% for the depression tendency group, respectively. The change rate of cortisol was greater in depression tendency groups compared with normal groups, and this difference was statistically significant when using KBDI-II (31% vs. 16% reduction) and Self-rating Depression Scale inventory (36% vs. 8.3% reduction). Among three inventories, only KBDI-II differentiated normal and depression tendency groups with significantly different cortisol level. Finally, clary sage oil has antidepressant-like effect, and KBDI-II inventory may be the most sensitive and valid tool in screening for depression status or severity. PMID:24802524

  13. The impact of 5-hydroxytryptamine-receptor antagonists on chemotherapy treatment adherence, treatment delay, and nausea and vomiting

    PubMed Central

    Palli, Swetha Rao; Grabner, Michael; Quimbo, Ralph A; Rugo, Hope S

    2015-01-01

    Purpose To determine the incidence of chemotherapy-induced nausea/vomiting (CINV) and chemotherapy treatment delay and adherence among patients receiving palonosetron versus other 5-hydroxytryptamine receptor antagonist (5-HT3 RA) antiemetics. Materials and methods This retrospective claims analysis included adults with primary malignancies who initiated treatment consisting of single-day intravenous highly emetogenic chemotherapy (HEC) or moderately EC (MEC) regimens. Treatment delay was defined as a gap in treatment at least twice the National Comprehensive Cancer Network-specified cycle length, specific to each chemotherapy regimen. Treatment adherence was determined by the percentage of patients who received the regimen-specific recommended number of chemotherapy cycles within the recommended time frame. Results We identified 1,832 palonosetron and 2,387 other 5-HT3 RA (“other”) patients who initiated HEC therapy, and 1,350 palonosetron users and 1,379 patients on other antiemetics who initiated MEC therapy. Fewer patients receiving palonosetron experienced CINV versus other (HEC, 27.5% versus 32.2%, P=0.0011; MEC, 36.1% versus 41.7%, P=0.0026), and fewer treatment delays occurred among patients receiving palonosetron versus other (HEC, 3.2% versus 6.0%, P<0.0001; MEC, 17.0% versus 26.8%, P<0.0001). Compared with the other cohort, patients receiving palonosetron were significantly more adherent to the index chemotherapy regimen with respect to the recommended time frame (HEC, 74.7% versus 69.7%, P=0.0004; MEC, 43.1% versus 37.3%, P=0.0019) and dosage (HEC, 27.3% versus 25.8%, P=0.0004; MEC, 15.0% versus 12.6%, P=0.0019). Conclusion Palonosetron more effectively reduced occurrence of CINV in patients receiving HEC or MEC compared with other agents in this real-world setting. Additionally, patients receiving palonosetron had better adherence and fewer treatment delays than patients receiving other 5-HT3 RAs. PMID:26124681

  14. Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex

    PubMed Central

    Marti, Matteo; Stocchi, Sara; Paganini, Francesca; Mela, Flora; Risi, Carmela De; Calo', Girolamo; Guerrini, Remo; Barnes, Timothy A; Lambert, David G; Beani, Lorenzo; Bianchi, Clementina; Morari, Michele

    2003-01-01

    The pharmacological profiles of presynaptic nociceptin/orphanin FQ (N/OFQ) peptide receptors (NOP) modulating 5-hydroxytryptamine (5-HT) and noradrenaline (NE) release in the rat neocortex were characterized in a preparation of superfused synaptosomes challenged with 10 mM KCl. N/OFQ concentration-dependently inhibited K+-evoked [3H]-5-HT and [3H]-NE overflow with similar potency (pEC50 ∼7.9 and ∼7.7, respectively) and efficacy (maximal inhibition ∼40%). N/OFQ (0.1 μM) inhibition of [3H]-5-HT and [3H]-NE overflow was antagonized by selective NOP receptor antagonists of peptide ([Nphe1]N/OFQ(1-13)NH2 and UFP-101; 10 and 1 μM, respectively) and non-peptide (J-113397 and JTC-801; both 0.1 μM) nature. Antagonists were routinely applied 3 min before N/OFQ. However, a 21 min pre-application time was necessary for J-113397 and JTC-801 to prevent N/OFQ inhibition of [3H]-NE overflow. The NOP receptor ligand [Phe1ψ(CH2-NH)Gly2]N/OFQ(1-13)NH2 ([F/G]N/OFQ(1-13)NH2; 3 μM) did not affect K+-evoked [3H]-NE but inhibited K+-evoked [3H]-5-HT overflow in a UFP-101 sensitive manner. [F/G]N/OFQ(1-13)NH2 antagonized N/OFQ actions on both neurotransmitters. The time-dependency of JTC-801 action was studied in CHO cells expressing human NOP receptors. N/OFQ inhibited forskolin-stimulated cAMP accumulation and JTC-801, tested at different concentrations (0.1–10 μM) and pre-incubation times (0, 40 and 90 min), antagonized this effect in a time-dependent manner. The Schild-type analysis excluded a competitive type of antagonism. We conclude that presynaptic NO receptors inhibiting 5-HT and NE release in the rat neocortex have similar pharmacological profiles. Nevertheless, they can be differentiated pharmacologically on the basis of responsiveness to [F/G]N/OFQ(1-13)NH2 and time-dependent sensitivity towards non-peptide antagonists. PMID:12522077

  15. Ascorbic acid prevents nonreceptor specific binding of (/sup 3/H)-5-hydroxytryptamine to bovine cerebral cortex membranes

    SciTech Connect

    Hamblin, M.W.; Adriaenssens, P.I.; Ariani, K.; Cawthon, R.M.; Stratford, C.A.; Tan, G.L.; Ciaranello, R.D.

    1987-03-01

    (/sup 3/H)-5-Hydroxytryptamine ((/sup 3/H)-5-HT) decomposes rapidly when exposed to air in solution at physiological pH if antioxidants are not present. The decomposition products appear to bind to two saturable sites on brain membranes (apparent Kd values = 1-2 and 100-1000 nM). This binding mimics ''specific'' ligand/receptor binding in that it is inhibited by 10 microM unlabeled 5-HT. This inhibition is not competitive, but rather is due to the prevention of (/sup 3/H)-5-HT breakdown by excess unlabeled 5-HT. Unlike genuine ligand/receptor binding, the binding of (/sup 3/H)-5-HT breakdown products is essentially irreversible and does not display a tissue distribution consistent with binding to authentic 5-HT receptors. (/sup 3/H)-5-HT decomposition can be eliminated by the inclusion of 0.05 to 5 mM ascorbic acid. At these concentrations ascorbic acid is not deleterious to reversible (/sup 3/H)-5-HT binding. When (/sup 3/H) 5-HT exposure to air occurs in the presence of brain membranes, the apparent antioxidant activity of brain membranes themselves affords protection against (/sup 3/H)-5-HT degradation equal to ascorbic acid. This protection is effective below final (/sup 3/H)-5-HT concentrations of 10 nM. Above 10 nM (/sup 3/H)-5-HT, addition of ascorbic acid or other antioxidants is necessary to avoid the occurrence of additional low affinity (apparent Kd = 15-2000 nM) binding sites that are specific but nonetheless irreversible. When care is taken to limit (/sup 3/H)-5-HT oxidation, the only reversible and saturable specific binding sites observed are of the 5-HT1 high affinity (Kd = 1-2 nM) type. Radioligand oxidation artifacts may be involved in previous reports of low affinity (Kd = 15-250 nM) (/sup 3/H)-5-HT binding sites in brain membrane preparations.

  16. Role of midbrain raphe in stress-induced renin and prolactin secretion.

    PubMed

    Van de Kar, L D; Lorens, S A; McWilliams, C R; Kunimoto, K; Urban, J H; Bethea, C L

    1984-10-01

    Stress-induced changes in renin and prolactin secretion were studied using a conditioned emotional response paradigm. Three minutes after being placed in a chamber, the stressed animals received a brief electric shock (1.0 mA for 10 s through the grid floor), then were returned to their home cage. This procedure was repeated for 3 consecutive days. On the fourth day, the rats were placed in the chamber for 3 min, but instead of receiving shock, they were removed and sacrificed. Control animals were treated in the same manner, except that they never received foot shock. The sham-operated stressed rats evidenced significant elevations in plasma renin activity (270%) and prolactin level (550%). Electrolytic lesions in the dorsal raphe nucleus blocked the stress-induced increase in plasma renin activity but did not affect the stress-induced increase in prolactin secretion. Electrolytic lesions in the median raphe nucleus did not affect prolactin levels in either control or stressed animals. However, median raphe lesions led to a significant increase in plasma renin activity in non-stressed rats and potentiated the stress-induced elevation in plasma renin activity. These results suggest that neurons within the dorsal and median raphe nuclei are involved in the regulation of renin but not prolactin secretion during stress. The results also suggest that median raphe neurons play a role in basal renin secretion. PMID:6208972

  17. Epidermal cyst of median raphe.

    PubMed

    LaNasa, J A

    1976-10-01

    Cysts of the penis are rare and references to them in standard textbooks are sketchy. A case report of a congenital epidermal cyst of the median raphe of the penis is presented; therapy involved excision of the mass. Review of the literature is given. PMID:973298

  18. Blockade of 5-hydroxytryptamine3 receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat

    NASA Technical Reports Server (NTRS)

    Lucot, J. B.

    1989-01-01

    5-Hydroxytryptamine3 antagonists have been reported to prevent emesis elicited by cisplatin and radiation. This study investigated the possibility that drugs with this mechanism of action may be useful in preventing emesis elicited by other stimuli. The drugs ICS 205-930 (0.1 and 1.0 mg/kg) and MDL 72222 (0.1 and 1.0 mg/kg) were administered SC to cats before challenging them with either provocative motion or an emetic dose of xylazine. In no instance was a significant reduction in emesis evident. Zacopride was also administered before motion testing (0.01 to 10.0 mg/kg) and found to not have efficacy. To test the possibility that species or route of administration were factors in the negative results, 1.0 mg/kg of ICS 205-930 was administered SC before IV infusion of 7.5 mg/kg of cisplatin. There was a total suppression of emesis for the duration of the six-hour observation periods. This result verifies other work which found 5-hydroxytryptamine3 antagonists to be effective in preventing emesis elicited by cancer chemotherapeutic treatments. However, there is no evidence that they are effective in other syndromes, such as motion sickness and xylazine-induced emesis.

  19. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    SciTech Connect

    Salvo, Nadia; Doble, Brett; Khan, Luluel; Amirthevasar, Gayathri; Dennis, Kristopher; Pasetka, Mark; DeAngelis, Carlo; Tsao, May; Chow, Edward

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57-0.86 for emesis; RR 0.84, 95% CI 0.73-0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15-0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at the NK

  20. Median raphe cyst of the penis.

    PubMed

    Terao, Y; Hamada, T

    1984-11-01

    A case of median raphe cyst of the penis in a 7-year-old boy is reported. Although the lesion is rare, characteristic clinical features makes it easy to diagnose median raphe cyst of the penis, which has been mistakenly reported as apocrine hidrocystoma. Surgical excision must be performed to prevent recurrence. PMID:6499536

  1. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.

    PubMed

    Yoo, Sang Bae; Kim, Bom-Taeck; Kim, Jin Young; Ryu, Vitaly; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2013-06-01

    This study was conducted to examine if fluoxetine, a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor, would reverse adverse behavioral effects of neonatal maternal separation in female rats. Sprague-Dawley pups were separated from dam daily for 3h during postnatal day (PND) 1-14 (maternal separation; MS) or left undisturbed (non-handled; NH). Female NH and MS pups received intraperitoneal injection of fluoxetine (10mg/kg) or vehicle daily from PND 35 until the end of the whole experimental period. Rats were either subjected to behavioral tests during PND 44-54, or sacrificed for neurochemical analyses during PND 43-45. Daily food intake and weight gain of both NH and MS pups were suppressed by fluoxetine, with greater effects in MS pups. MS experience increased immobility and decrease swimming in forced swim test. Swimming was increased, although immobility was not significantly decreased, in MS females by adolescence fluoxetine. However, adolescence fluoxetine increased immobility during forced swim test and decreased time spent in open arms during elevated plus maze test in NH females. Fluoxetine normalized MS-induced decrease of the raphe 5-HT levels and increased 5-HT metabolism in the hippocampus in MS females, and increased the hypothalamic 5-HT both in NH and MS. Fluoxetine decreased the raphe 5-HT and increased the plasma corticosterone in NH females. Results suggest that decreased 5-HTergic activity in the raphe nucleus is implicated in the pathophysiology of depression-like behaviors, and increased 5-HTergic activities in the raphe-hippocampus axis may be a part of anti-depressant efficacy of fluoxetine, in MS females. Also, an extra-hypothalamic 5-HTergic activity may contribute to the increased anorectic efficacy of fluoxetine in MS females. Additionally, decreased 5-HT in the raphe and elevated plasma corticosterone may be related with fluoxetine-induced depression- and/or anxiety-like behaviors in NH females. PMID:23010142

  2. Effects of p-chlorophenylalanine on the sensitivity of rat intestine to agonists and on intestinal 5-hydroxytryptamine levels during Nippostrongylus brasiliensis infection.

    PubMed Central

    Farmer, S. G.; Laniyonu, A. A.

    1984-01-01

    Infection of rats with the nematode N. brasiliensis caused non-specific increases in maximum response of isolated intestine to acetylcholine and 5-hydroxytryptamine (5-HT), and a specific subsensitivity to 5-HT. Intestinal levels of 5-HT, measured fluorimetrically, increased approximately 2 fold during infection. Treatment of infected rats with parachlorophenylalanine (PCPA) depleted the gut of 5-HT, and prevented the specific subsensitivity to the amine but not the increases in maximum response. Depletion of intestinal 5-HT did not prevent the immune expulsion of the parasites. It is concluded that the specific subsensitivity of the gut is due to the elevated levels of 5-HT during infection, but that the increased maximum responses are due to some other factor. Further, the lack of effect of PCPA on parasite rejection casts doubt on the proposed role of 5-HT in this process. PMID:6236863

  3. Blockade of 5-hydroxytryptamine(3) receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat

    NASA Technical Reports Server (NTRS)

    Lucot, James B.

    1989-01-01

    The effects of the 5-hydroxytryptamine(3) (5-HT-3) antagonists ICS 205-930 and MDL 72222 on the emesis induced by motion or by emetic doses of xylazine (0.66 mg/kg administered SC) or cisplatin (7.5 mg/kg infused over a period of 4-5 min) were investigated in cats. It was found that neither the low (0.1 mg/kg) or the high (1.0 mg.kg) doses of ICS 205-930 or MDL 72222 prevented emesis elicited by screening motion challenges or xylazine. On the other hand, treatment cats by 1.0 mg/kg of ICS 205-930 was effective against cisplatin-induced motion sickness, in agreement with earlier results obtained on other mammals.

  4. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  5. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway

    PubMed Central

    Ji, Qing; Liu, Xuan; Zhou, Lihong; Song, Haiyan; Zhou, Xiqiu; Xu, Yangxian; Chen, Zhesheng; Cai, Jianfeng; Ji, Guang; Li, Qi

    2015-01-01

    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer. PMID:26214021

  6. Anococcygeal Raphe Revisited: A Histological Study Using Mid-Term Human Fetuses and Elderly Cadavers

    PubMed Central

    Arakawa, Takashi; Abe, Hiroshi; Abe, Shinichi; Cho, Baik Hwan; Murakami, Gen; Sugihara, Kenichi

    2012-01-01

    Purpose We recently demonstrated the morphology of the anococcygeal ligament. As the anococcygeal ligament and raphe are often confused, the concept of the anococcygeal raphe needs to be re-examined from the perspective of fetal development, as well as in terms of adult morphology. Materials and Methods We examined the horizontal sections of 15 fetuses as well as adult histology. From cadavers, we obtained an almost cubic tissue mass containing the dorsal wall of the anorectum, the coccyx and the covering skin. Most sections were stained with hematoxylin and eosin or Masson-trichrome solution. Results The adult ligament contained both smooth and striated muscle fibers. A similar band-like structure was seen in fetuses, containing: 1) smooth muscle fibers originating from the longitudinal muscle coat of the anal canal and 2) striated muscle fibers from the external anal sphincter (EAS). However, in fetuses, the levator ani muscle did not attach to either the band or the coccyx. Along and around the anococcygeal ligament, we did not find any aponeurotic tissue with transversely oriented fibers connecting bilateral levator ani slings. Instead, in adults, a fibrous tissue mass was located at a gap between bilateral levator ani slings; this site corresponded to the dorsal side of the ligament and the EAS in the immediately deep side of the natal skin cleft. Conclusion We hypothesize that a classically described raphe corresponds to the specific subcutaneous tissue on the superficial or dorsal side of the anococcygeal ligament. PMID:22665356

  7. A phase 1 randomized study evaluating the effect of omeprazole on the pharmacokinetics of a novel 5-hydroxytryptamine receptor 4 agonist, revexepride (SSP-002358), in healthy adults

    PubMed Central

    Pierce, David; Corcoran, Mary; Velinova, Maria; Hossack, Stuart; Hoppenbrouwers, Mieke; Martin, Patrick

    2015-01-01

    Background About 30% of patients with gastroesophageal reflux disease continue to experience symptoms despite treatment with proton pump inhibitors. The 5-hydroxytryptamine 4 receptor agonist revexepride (SSP-002358) is a novel prokinetic that stimulates gastrointestinal motility, which has been suggested as a continued cause of symptoms in these patients. The aim of this study was to assess whether revexepride pharmacokinetics were affected by co-administration of omeprazole, in preparation for a proof-of-concept evaluation of revexepride added to proton pump inhibitor treatment. Methods In this phase 1, open-label, randomized, two-period crossover study, healthy adults aged 18–55 years were given a single dose of revexepride 1 mg or revexepride 1 mg + omeprazole 40 mg. Pharmacokinetic parameters were assessed for up to 48 hours after administration of the investigational product. Adverse events, clinical chemistry and hematology parameters, electrocardiograms, and vital signs were monitored. Results In total, 42 participants were enrolled and 40 completed the study. The median age was 24 years (18–54 years), 55% were women and 93% were white. The pharmacokinetic parameters of revexepride were similar without or with omeprazole co-administration. The mean area under the plasma concentration–time curve from time 0 to infinity (AUC0–∞) was 23.3 ng · h/mL (standard deviation [SD]: 6.33 ng · h/mL) versus 24.6 ng · h/mL (SD: 6.31 ng · h/mL), and maximum plasma concentrations (Cmax) were 3.89 ng/mL (SD: 1.30 ng/mL) and 4.12 ng/mL (SD: 1.29 ng/mL) in participants without and with omeprazole, respectively. For AUC0–∞ and Cmax, the 90% confidence intervals for the ratios of geometric least-squares means (with:without omeprazole) were fully contained within the pre-defined equivalence limits of 0.80–1.25. Mean apparent terminal phase half-life was 9.95 hours (SD: 2.06 hours) without omeprazole, and 11.0 hours (SD: 3.25 hours) with omeprazole. Conclusion

  8. Median raphe cysts of the penis.

    PubMed

    Asarch, R G; Golitz, L E; Sausker, W F; Kreye, G M

    1979-09-01

    The occurrence of a ventral cystic lesion of the penis should alert the clinician to the diagnosis of a median raphe cyst. The lesions, which are most common near the glans penis, may occur anywhere from the urethral meatus to the anus. Cysts of the median raphe represent defects in the embryologic development of the genitalia and are usually lined by entodermal epithelium. Surgical excision is the treatment of choice. PMID:485186

  9. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway.

    PubMed

    Sui, Hua; Xu, Hanchen; Ji, Qing; Liu, Xuan; Zhou, Lihong; Song, Haiyan; Zhou, Xiqiu; Xu, Yangxian; Chen, Zhesheng; Cai, Jianfeng; Ji, Guang; Li, Qi

    2015-09-22

    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT(1D) receptor (5-HT(1D)R) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT(1D)R-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT(1D)R antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT(1D)R played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT(1D)R in pulmonary metastasis of colorectal cancer. PMID:26214021

  10. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules.

    PubMed

    Gandhimathi, A; Sowdhamini, R

    2016-05-01

    The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor. PMID:26327576

  11. Depressive behavior and alterations in receptors for dopamine and 5-hydroxytryptamine in the brain of the senescence accelerated mouse (SAM)-P10.

    PubMed

    Onodera, T; Watanabe, R; Tha, K K; Hayashi, Y; Murayama, T; Okuma, Y; Ono, C; Oketani, Y; Hosokawa, M; Nomura, Y

    2000-08-01

    The senescence accelerated mouse (SAM) is known as a murine model of aging. SAM consists of senescence accelerated-prone mouse (SAMP) and senescence accelerated-resistant mouse (SAMR). Previous studies reported that SAMP10 exhibits age-related learning impairments and behavioral depression in a tail suspension test after 7 months. We investigated the changes in emotional behavior in a forced swimming test and in receptors for dopamine and 5-hydroxytryptamine (5-HT) in SAMP10. SAMP10 at 8 months showed an increase of immobility in the test compared with SAMR1. Treatment with desipramine (25 mg/kg, i.p., 3 days) in SAMP10 caused a decrease in immobility. In the cortex from SAMP10, [3H]quinpirole binding to D2/D3 dopamine receptors increased significantly compared with control SAMR1. In the hippocampus from SAMP10, [3H]8-hydroxy DPAT binding to 5-HT1A receptor increased. In midbrains from SAMP10, bindings of [3H]quinpirole and [3H]8-hydroxy DPAT increased. [3H]SCH23390 binding to D1/D5 receptors and [3H]ketanserin binding to 5-HT2 receptor in brain regions examined in SAMP10 were similar to those in SAMR1. The present findings represent the first neurochemical evidence of an increase of D2/D3 and 5-HT1A receptors in SAMP10. SAMP10 may be a useful model of aging associated depressive behavior. PMID:11001177

  12. Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag(HIO6 )2 ](5-) -luminol chemiluminescence detection.

    PubMed

    Wu, Dong; Xie, He; Lu, Haifeng; Li, Wei; Zhang, Qunlin

    2016-09-01

    Based on the enhancing effects of norepinephrine (NE), epinephrine (EP), dopamine (DA) and 5-hydroxytryptamine (5-HT) on the chemiluminescence (CL) reaction between [Ag(HIO6 )2 ](5-) and luminol in alkaline solution, a high-performance liquid chromatography (HPLC) method with CL detection was explored for the sensitive determination of monoamine neurotransmitters for the first time. The UV-visible absorption spectra were recorded to study the enhancement mechanism of monoamine neurotransmitters on the CL of [Ag(HIO6 )2 ](5-) and luminol reaction. The HPLC separation of NE, EP, DA and 5-HT was achieved with isocratic elution using a mixture of aqueous 0.2% phosphoric acid and methanol (5:95, v/v) within 11.0 min. Under the optimized conditions, the detection limits of NE, EP, DA, and 5-HT were 4.8, 0.9, 1.9 and 2.3 ng/mL, respectively, corresponding to 17.6-96.0 pg for 20 μL sample injection. The recoveries of monoamine neurotransmitters in rat brain were >95.6% with the precisions expressed by RSD <5.0%. The validated HPLC-CL method was successfully applied for the quantification of NE, EP, DA and 5-HT in rat brain. This method has promising potential for some biological and clinical investigations focusing on the levels of monoamine neurotransmitters. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26876580

  13. Regulation of rat cortical 5-hydroxytryptamine2A-receptor mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine

    PubMed Central

    Marek, Gerard J.

    2008-01-01

    Down-regulation of 5-hydroxytryptamine2A (5-HT2A) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT2A receptor binding sites. However, the effects of antidepressants on 5-HT2A receptor-mediated responses on identified cells of the cerebral cortex has not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT2A receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT2A receptors was consistent with 5-HT2A receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT2A receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex. PMID:18294819

  14. A Chemocentric Informatics Approach to Drug Discovery: Identification and Experimental Validation of Selective Estrogen Receptor Modulators as ligands of 5-Hydroxytryptamine-6 Receptors and as Potential Cognition Enhancers

    PubMed Central

    Hajjo, Rima; Setola, Vincent; Roth, Bryan L.; Tropsha, Alexander

    2012-01-01

    We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure- Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5HT6R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT6R actives. Second, we queried chemogenomics data from the Connectivity Map (http://www.broad.mit.edu/cmap/) with the gene expression profile signatures of Alzheimer’s disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT6R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT6R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations. PMID:22537153

  15. Regulation of Oligomeric Organization of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Observed by Spatial Intensity Distribution Analysis*

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme

    2015-01-01

    The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490

  16. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile. PMID:17337633

  17. Cross-talk between 5-hydroxytryptamine and substance P in the melanogensis and apoptosis of B16F10 melanoma cells.

    PubMed

    Zhou, Jia; Geng, Kun-kun; Ping, Feng-feng; Gao, Yue-ying; Liu, Lei; Feng, Bai-nian

    2016-03-15

    Skin pigmentation is a complex process controlled by many different factors. Substance P (SP) regulates many biological functions, including melanogenesis and stress. Our previous study indicated that regulation of SP on melanocyte function was mediated by neurokinin 1 receptor (NK1 receptor). Substantial evidence has accumulated that psychological stress can be associated with skin pigmentation, so that the impact of 5-hydroxytryptamine (5-HT), one of the important factors participating in stress process, on melanogenesis has also been concerned. It has been reported that 5-HT induces melanin synthesis via 5-HT2A receptor. Furthermore, 5-HT2A receptor and NK1 receptor are G-protein coupled receptors (GPCRs) and both expressed on melanocyte, the present study was designed to investigate whether SP has influence on the adjustment function of 5-HT. Our data demonstrated that, SP inhibited 5-HT2A receptor expression to neutralize the pro-melanogenesis effect of 5-HT on B16F10 cells. The up-regulation of NK1 receptor expression was simultaneous with the down-regulation of 5-HT2A receptor treated by SP. This inhibition of 5-HT2A receptor expression by SP could be reversed by NK1 receptor antagonist Spantide I. Our studies indicated that SP could directly induce B16F10 cells apoptosis in vitro. 5-HT and 5-HT2A receptor agonist could mitigate this apoptotic effect of SP. It is the strong evidence of possible cross-talk between GPCRs and giving enlightenments when screening desirable drugs for target receptors. PMID:26872989

  18. Sucrose preload reduces snacking after mild mental stress in healthy participants as a function of 5-hydroxytryptamine transporter gene promoter polymorphism.

    PubMed

    Markus, C Rob; Jonkman, Lisa M; Capello, Aimee; Leinders, Sacha; Hüsch, Fabian

    2015-01-01

    Brain serotonin (5-hydroxytryptamine, 5-HT) dysfunction is considered to promote food intake and eating-related disturbances, especially under stress or negative mood. Vulnerability for 5-HT disturbances is considered to be genetically determined, including a short (S) allele polymorphism in the serotonin transporter gene (5-HTTLPR) that is associated with lower serotonin function. Since 5-HT function may be slightly increased by carbohydrate consumption, S-allele 5-HTTLPR carriers in particular may benefit from a sugar-preload due to their enhanced 5-HT vulnerability. The aim of the current study was to investigate whether a sugar-containing preload may reduce appetite and energy intake after exposure to stress to induce negative mood, depending on genetic 5-HT vulnerability. From a population of 771 healthy young male and female genotyped college students 31 S/S carriers (8 males, 23 females) and 26 long allele (L/L) carriers (9 males, 17 females) (mean ± S.D. 22 ± 1.6 years; body mass index, BMI, 18-33 kg/m(2)) were monitored for changes in appetite and snacking behavior after stress exposure. Results revealed an increased energy intake after mild mental stress (negative mood) mainly for high-fat sweet foods, which was significantly greater in S/S carriers, and only in these genotypes this intake was significantly reduced by a sucrose-containing preload. Although alternative explanations are possible, it is suggested that S/S participants may have enhanced brain (hypothalamic) 5-HT responsiveness to food that makes them more susceptible to the beneficial satiation effects of a sucrose-preload as well as to the negative effects of mild mental stress on weight gain. PMID:25423193

  19. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    PubMed

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. PMID:26604075

  20. A comparison of the effects of chlorpromazine and more selective histamine and 5-hydroxytryptamine antagonists on human IgG synthesis in vitro.

    PubMed

    Martinez, F; Coleman, J W

    1990-01-01

    We have shown previously that chlorpromazine, a drug associated with immunological abnormalities in vivo, significantly potentiates pokeweed mitogen (PWM)-stimulated IgG synthesis by human peripheral blood mononuclear cells (PBMC) in culture. Chlorpromazine is a pharmacological antagonist of histamine and 5-hydroxytryptamine (5-HT) and thus may exert its immune-enhancing effects by competing with these amines for their respective receptors, which are known to be present on lymphocytes. In this report we show that histamine and 5-HT are present at micromolar concentrations in PBMC cultures. To examine the role of histamine and 5-HT in chlorpromazine-induced enhancement of IgG synthesis we incubated PWM-treated cells with a range of selective histamine and 5-HT antagonists, and with the amines added to cultures either alone or in combination with chlorpromazine. The H1 antagonists mepyramine and promethazine and the H2 antagonist cimetidine had no significant effect on IgG synthesis. The combined 5-HT1/5-HT2 antagonists methysergide and methiothepin also failed to modulate synthesis. Neither histamine nor 5-HT at concentrations up to 100 microM modulated IgG synthesis, nor did they abrogate the enhancement of IgG synthesis induced by chlorpromazine. We conclude that the modulation of IgG synthesis in vitro by chlorpromazine cannot be attributed to an interaction of this drug with lymphocyte receptors for histamine and 5-HT. Other possibilities for the mechanism of action of this drug on immune function are discussed. PMID:2329012

  1. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3-36 and 5-hydroxytryptamine.

    PubMed

    Wu, Wenda; Zhou, Hui-Ren; Bursian, Steven J; Link, Jane E; Pestka, James J

    2016-04-01

    Trichothecene mycotoxins are a family of potent translational inhibitors that are associated with foodborne outbreaks of human and animal gastroenteritis in which vomiting is a clinical hallmark. Deoxynivalenol (DON, vomitoxin) and other Type B trichothecenes have been previously demonstrated to cause emesis in the mink (Neovison vison), and this response has been directly linked to secretion of both the satiety hormone peptide YY3-36 (PYY3-36) and neurotransmitter 5-hydroxytryptamine (5-HT). Here, we characterized the emetic responses in the mink to T-2 toxin (T-2) and HT-2 toxin (HT-2), two highly toxic Type A trichothecenes that contaminate cereals, and further compared these effects to those of emetine, a natural alkaloid that is used medicinally and also well known to block translation and cause vomiting. Following intraperitoneal (IP) and oral exposure, all three agents caused vomiting with evident dose-dependent increases in both duration and number of emetic events as well as decreases in latency to emesis. T-2 and HT-2 doses causing emesis in 50 % of treated animals (ED50s) were 0.05 and 0.02 mg/kg BW following IP and oral administration, respectively, whereas the ED50s for emetine were 2.0 and 1.0 mg/kg BW for IP and oral exposure, respectively. Importantly, oral administration of all three toxins elicited marked elevations in plasma concentrations of PYY3-36 and 5-HT that corresponded to emesis. Taken together, the results suggest that T-2 and HT-2 were much more potent than emetine and that emesis induction by all three translational inhibitors co-occurred with increases in circulating levels of PYY3-36 and 5-HT. PMID:25855062

  2. Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modified Microelectrode Array

    PubMed Central

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-01

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at −80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996) and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments. PMID:25580900

  3. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood

    PubMed Central

    Bombail, Vincent; Qing, Wei; Chapman, Karen E; Holmes, Megan C

    2014-01-01

    The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate ‘INI’ mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific. PMID:25257581

  4. Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist.

    PubMed

    Snigdha, S; Horiguchi, M; Huang, M; Li, Z; Shahid, M; Neill, J C; Meltzer, H Y

    2010-02-01

    Subchronic administration of the N-methyl-d-aspartate receptor antagonist, phencyclidine (PCP), in rodents has been shown to produce impairment in novel object recognition (NOR), a model of visual learning and memory. We tested the hypothesis that the selective 5-HT(2A) inverse agonists, pimavanserin and (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl]-4-piperidinemethanol (M100907), would potentiate subeffective doses of atypical antipsychotic drugs (APDs) to reverse the NOR deficits. Female rats received vehicle or PCP (2 mg/kg b.i.d.) for 7 days, followed by a 7-day washout. Pimavanserin (3 mg/kg) or M100907 (1 mg/kg) alone, or four atypicial APDs, risperidone (0.05-0.1 mg/kg), melperone (1-3 mg/kg), olanzapine (1-2 mg/kg), or N-desmethylclozapine (1-2 mg/kg), and the typical APD, haloperidol (0.05-0.1 mg/kg), were administered alone, or in combination with pimavanserin or M100907, before NOR testing. The exploration times of objects during 3-min acquisition and retention trials, separated by a 1-min interval, were compared by analysis of variance. Vehicle-, but not PCP-treated, animals, explored the novel object significantly more than the familiar in the retention trial (p < 0.05-0.01). Pretreatment with the higher doses of the atypical APDs, but not pimavanserin, M100907, or haloperidol alone, reversed the effects of PCP. The effect of risperidone was blocked by haloperidol pretreatment. Coadministration of pimavanserin or M100907, with ineffective doses of the atypical APDs, but not haloperidol, also reversed the PCP-induced deficit in NOR. These results support the importance of 5-hydroxytryptamine(2A) receptor blockade relative to D(2) receptor blockade in the ability of atypicals to ameliorate the effect of subchronic PCP, a putative measure of cognitive dysfunction in schizophrenia. PMID:19864614

  5. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation

    PubMed Central

    Witteveen, Josefine S.; Middelman, Anthonieke; van Hulten, Josephus A.; Martens, Gerard J. M.; Homberg, Judith R.; Kolk, Sharon M.

    2013-01-01

    Besides its “classical” neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT−/−). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT−/− pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for

  6. [Topography and cytoarchitecture of the raphe nuclei in the rat].

    PubMed

    Hölzel, B; Pfister, C

    1981-01-01

    Within the raphe complex of adult rat, ribonucleoproteids have been demonstrated by means of the Gallocyanin-Chromalaun-reaction according to EINARSON. The following subnuclei were characterized in a topographical and cytological view: nucleus raphe dorsalis, nucleus centralis superior, nucleus raphe pontis, nucleus raphe magnus, nucleus raphe obscurus, nucleus raphe pallidus. In all raphe nuclei 3 neuron types could be differentiated which differ both with respect to size and shape of their soma and nuclear morphology and intensity and distribution of the cellular ribonucleoproteids: 1. Large polygonal neurons, 2. medium-sized fusiform neurons, 3. small pyriform neurons. The results may serve as a basis for performing further investigations of these brain regions, employing morphological and pharmacological methods. PMID:7338625

  7. Pigmented median raphe cysts of the penis.

    PubMed

    Urahashi, J; Hara, H; Yamaguchi, Z; Morishima, T

    2000-01-01

    Two cases of median raphe cysts of the penis with melanosis are presented. The presence of melanocytes was observed in the lining of the cysts by light and electron microscopy. The possible mechanism of the embryological development of the cysts is discussed in the context of the published literature. PMID:11028867

  8. Gonococcal infection of the median penile raphe.

    PubMed

    Clifford, G R; Krieger, J N; Rein, M F

    1983-07-01

    Atypical involvement of the male genitourinary tract by Neisseria gonorrhoeae, such as isolated accessory glandular infection without urethritis, is a rare presentation of a common disease. We report a case of gonococcal abscess of the median raphe of the penis. PMID:6864898

  9. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery.

    PubMed Central

    Seager, J. M.; Murphy, T. V.; Garland, C. J.

    1994-01-01

    1. Small strips from third-order branches of rabbit mesenteric artery (approximately 150-200 microM wide) contracted in response to noradrenaline (10 microM) or 5-hydroxytryptamine (5-HT; 10 microM) in oxygenated Krebs solution containing 2.5 mM Ca2+. In a Ca(2+)-free mock intracellular solution (0 Ca2+ plus 0.2 mM EGTA), noradrenaline (10 microM) and caffeine (10 mM) induced only a single, transient contraction in artery strips, while 5-HT (10 microM) failed to induce any response. 2. In strips of mesenteric artery which had been permeabilized with Staphylococcus alpha-toxin and bathed in Ca(2+)-free mock intracellular solution, noradrenaline (10 microM), caffeine (10 mM) and D-myo-inositol (1,4,5)-trisphosphate (IP3, 100 microM), but not 5-HT (10 or 100 microM) induced a transient contraction. In contrast to the non-permeabilized strips, contractions to noradrenaline, caffeine and IP3 were restored by prior incubation (10 min) in solution containing 0.08 microM Ca2+. The contractions to noradrenaline and IP3 in permeabilized muscle strips required the presence of 100 microM guanosine 5'-triphosphate (GTP), although in the absence of Ca2+. GTP alone did not induce contraction. 3. Exposure of permeabilized mesenteric artery strips to IP3 significantly reduced the subsequent contractile responses to caffeine. Contractile responses to caffeine and IP3 were abolished by the Ca(2+)-ATPase inhibitor, thapsigargin (1 microM). 4. Ca2+ (0.1-10 microM) induced concentration-dependent contraction in permeabilized artery strips. In strips which were submaximally contracted with 0.5 microM Ca2+/100 microM GTP, the subsequent addition of 5-HT (10 microM) stimulated further contraction. The protein kinase C inhibitor, H-7 (1 microM) abolished the 5-HT/GTP-induced contraction, but did not alter the contraction to Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004397

  10. Pharmacological characterization of a rat 5-hydroxytryptamine type3 receptor subunit (r5-HT3A(b)) expressed in Xenopus laevis oocytes

    PubMed Central

    Mair, Ian D; Lambert, Jeremy J; Yang, Jay; Dempster, John; Peters, John A

    1998-01-01

    The present study has utilized the two electrode voltage-clamp technique to examine the pharmacological profile of a splice variant of the rat orthologue of the 5-hydroxytryptamine type 3A subunit (5-HT3A(b)) heterologously expressed in Xenopus laevis oocytes. At negative holding potentials, bath applied 5-HT (300 nM–10 μM) evoked a transient, concentration-dependent (EC50=1.1±0.1 μM), inward current. The response reversed in sign at a holding potential of −2.1±1.6 mV. The response to 5-HT was mimicked by the 5-HT3 receptor selective agonists 2-methyl-5-HT (EC50=4.1±0.2 μM), 1-phenylbiguanide (EC50=3.0±0.1 μM), 3-chlorophenylbiguanide (EC50=140± 10 nM), 3,5-dichlorophenylbiguanide (EC50=14.5±0.4 nM) and 2,5-dichlorophenylbiguanide (EC50= 10.2±0.6 nM). With the exception of 2-methyl-5-HT, all of the agonists tested elicited maximal current responses comparable to those produced by a saturating concentration (10 μM) of 5-HT. Responses evoked by 5-HT at EC50 were blocked by the 5-HT3 receptor selective antagonist ondansetron (IC50=231±22 pM) and by the less selective agents (+)-tubocurarine (IC50=31.9± 0.01 nM) and cocaine (IC50=2.1±0.2 μM). The data are discussed in the context of results previously obtained with the human and mouse orthologues of the 5-HT3A subunit. Overall, the study reinforces the conclusion that species differences detected for native 5-HT3 receptors extend to, and appear largely explained by, differences in the properties of homo-oligomeric receptors formed from 5-HT3A subunit orthologues. PMID:9756382

  11. A Meta-Analysis of the Effects of the 5-Hydroxytryptamine Transporter Gene-Linked Promoter Region Polymorphism on Susceptibility to Lifelong Premature Ejaculation

    PubMed Central

    Wu, Sheng; Shao, Hongbao; Dai, Feng; Peng, Tao; Qin, Feng; Feng, Ninghan

    2013-01-01

    Objective Premature ejaculation (PE) has been reported as the most common male sexual dysfunction with global prevalence rates estimated at approximately 30%. The neurobiogenesis of ejaculation is very complex and involves the serotoninergic (5-hydroxytryptamine, 5-HT) system. Recently, genetic polymorphisms located on SLC6A4 gene codifying for 5-HT transporter (5-HTT), the major regulator of serotonic neurotransmission, have been linked with the pathogenesis and risk of PE. Apparently studies of this type of polymorphism in PE have show conflicting results. Methods A meta-analysis was performed that are available in relation with 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism and the risk of lifelong PE (LPE) in men to clarify this relationship. We searched Pubmed and Embase (last search updated on Aug 2012) using ‘premature ejaculation’, ‘polymorphism or variant’, ‘genotype’, ‘ejaculatory function’, and ‘rapid ejaculation’ as keywords and reference lists of studies corresponded to the inclusion criteria for meta-analysis. These studies involved the total number of 481 LPE men and 466 health control men subjects. Odds ratio (OR) and 95% confidence intervals (CIs) were used to evaluate this relationship. Results In the overall analysis, significant associations between LPE risk and 5-HTTLPR polymorphism were found (L-allele vs. S-allele OR = 0.86, 95% CI = 0.79–0.95, P = 0.002; LL vs. SS: OR = 0.80, 95% CI = 0.68–0.95, P = 0.009; LS vs. SS: OR = 0.85, 95% CI = 0.76–0.97, P = 0.012 and LL+LS vs. SS: OR = 0.88, 95% CI = 0.81–0.95, P = 0.002). Moreover, in subgroup analysis based on ethnicity, similar significant associations were detected. The Egger’s test did not reveal presence of a publication bias. Conclusions Our investigations demonstrate that 5-HTTLPR (L>S) polymorphism might protect men against LPE risk. Further studies based on larger sample size and gene

  12. Differentiation of 5-hydroxytryptamine2 receptor subtypes using sup 125 I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and sup 3 H-ketanserin

    SciTech Connect

    McKenna, D.J.; Peroutka, S.J. )

    1989-10-01

    The radioligand binding characteristics of 125I-R-(-)4-iodo-2,5-dimethoxyphenylisopropylamine (125I-R-(-)DOI) and 3H-ketanserin were compared in rat and bovine cortical membranes. In rat cortex, 125I-R-(-)DOI labels a relatively low density of binding sites (Bmax = 2.5 +/- 0.2 pmol/gm tissue) with high affinity (KD = 0.63 +/- 0.09 nM). In bovine cortex, specific binding of 125I-R-(-)DOI represents less than 20% of total binding at radioligand concentrations above 0.6 nM, and, therefore, the data cannot be analyzed adequately by Scatchard transformation. By contrast, 3H-ketanserin displays saturable, specific high-affinity binding in both rat cortex (KD = 1.0 +/- 0.1 nM; Bmax = 11 +/- 0.4 pmol/gm tissue) and bovine cortex (KD = 1.2 +/- 0.2 nM; Bmax = 5.3 +/- 0.4 pmol/gm tissue). Ki values for 30 drugs were determined for 125I-R-(-)DOI-labeled sites in rat cortex and 3H-ketanserin-labeled sites in bovine cortex. 5-Hydroxytryptamine (5-HT) displays 250-fold higher selectivity for the 125I-R-(-)DOI-labeled sites (Ki = 3.0 +/- 0.7 nM) than for the 3H-ketanserin-labeled sites (Ki = 750 +/- 50 nM). Structural congeners of R-(-)DOI display 80- to 160-fold higher affinity for the 125I-R-(-)DOI binding site than for the 3H-ketanserin-labeled binding site. d-LSD and putative 5-HT2 antagonists are approximately equipotent at both sites. Significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and putative 5-HT2A sites labeled previously by 77Br-R-(-)DOB (r = 0.93, p less than 0.01), putative 5-HT2B sites labeled by 3H-ketanserin in bovine cortex (r = 0.63, p less than 0.01), and 5-HT1C binding sites that have been characterized by other investigators (r = 0.78, p less than 0.01). No significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and 5-HT1A, 5-HT1B, 5-HT1D, or 5-HT3 sites, as determined by previous investigators.

  13. 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein.

    PubMed

    Cohen, M L; Schenck, K

    1999-09-01

    Recently, several novel approaches to the treatment of migraine have been advanced, including selective 5-hydroxytryptamine (or serotonin) 1B/1D (5-HT(1B/1D)) receptor agonists such as sumatriptan and 5-HT(1F) receptor agonists such as LY344864. Many 5-HT(1B/1D) receptor agonists have been identified based on their ability to produce cerebral vascular contraction, whereas LY344864 was identified as an inhibitor of trigeminal nerve-mediated dural extravasation. In our study, several triptan derivatives were compared with LY344864 for their ability to contract the rabbit saphenous vein, a tissue used in the preclinical identification of sumatriptan-related agonists. Sumatriptan, zolmitriptan, rizatriptan, and naratriptan all contracted the rabbit saphenous vein from baseline tone, whereas LY344864 in concentrations up to 10(-4) M did not contract the rabbit saphenous vein. Furthermore, vascular contractions to sumatriptan were markedly augmented in the presence of prostaglandin F(2alpha) (PGF(2alpha)). However, even in the presence of PGF(2alpha) (3 x 10(-7) M), LY344864 did not contract the rabbit saphenous vein in concentrations well in excess of its 5-HT(1F) receptor affinity (pK(i) = 8.2). Only when concentrations exceeded those likely to activate 5-HT(1B) and 5-HT(1D) receptors (>10(-5) M) did modest contractile responses occur in the presence of PGF(2alpha). Use of these serotonergic agonists revealed a significant correlation between the contractile potency in the rabbit saphenous vein and the affinities of these agonists at 5-HT(1B) and 5-HT(1D) receptors, although contractile agonist potencies were not quantitatively similar to 5-HT(1B) or 5-HT(1D) receptor affinities. In contrast, no significant correlation existed between the contractile potencies of these serotonergic agonists in the rabbit saphenous vein and their affinity at 5-HT(1F) receptors. These data support the contention that activation of 5-HT(1F) receptors will not result in vascular

  14. Median raphe canals of the penis.

    PubMed

    Golitz, L E; Robin, M

    1981-02-01

    Developmental abnormalities of the male genitalia can result in epithelial-lined canals or cysts which occur along the ventral median raphe from the glans penis to the anus. Although usually asymptomatic, secondary infection may produce swelling, tenderness and a purulent discharge. The canals are lined by stratified squamous epithelium which does not communicate with the urethra. Surgical excision is the treatment of choice. PMID:7226886

  15. The atypical antipsychotic profile of NRA0045, a novel dopamine D4 and 5-hydroxytryptamine2A receptor antagonist, in rats

    PubMed Central

    Okuyama, Shigeru; Chaki, Shigeyuki; Kawashima, Naoya; Suzuki, Yoshiko; Ogawa, Shin-ichi; Kumagai, Toshihito; Nakazato, Atsuro; Nagamine, Masashi; Yamaguchi, Kazumasa; Tomisawa, Kazuyuki

    1997-01-01

    The atypical antipsychotic profile of (R)-(+)-2-amino-4-(4-fluorophenyl)-5-[1-[4-(4-fluorophenyl)-4-oxobutyl] pyrrolidin-3-yl] thiazole (NRA0045), a potent dopamine D4 and 5-hydroxytryptamine (5-HT)2A receptor antagonist, was examined in rats. Spontaneous locomotor activity was decreased dose-dependently with i.p. administration of clozapine (ED50 3.7 mg kg−1), haloperidol (ED50 0.1 mg kg−1) and chlorpromazine (ED50 0.9 mg kg−1), whereas inhibition of this type of behaviour induced by i.p. administration of NRA0045, at doses up to 10 mg kg−1, did not exceed 50%. Locomotor hyperactivity induced by methamphetamine (MAP, 2 mg kg−1, i.p.) in rats (a model of antipsychotic activity) was dose-dependently antagonized by NRA0045 (ED50 0.4 mg kg−1, i.p., and 0.3 mg kg−1, p.o., respectively), clozapine (ED50 0.3 mg kg−1, i.p. and 0.8 mg kg−1, p.o., respectively), haloperidol (ED50 0.02 mg kg−1, i.p. and 0.1 mg kg−1, p.o., respectively), chlorpromazine (ED50 0.3 mg kg−1, i.p. and 3.3 mg kg−1, p.o., respectively). In contrast, the MAP (3 mg kg−1, i.v.)-induced stereotyped behaviour in rats (a model of extrapyramidal symptoms) was not affected by NRA0045 or clozapine, at the highest dose given (30 mg kg−1, i.p.). Haloperidol (ED50 0.3 mg kg−1, i.p.) and chlorpromazine (ED50 4.8 mg kg−1, i.p.) strongly blocked the MAP-induced stereotyped behaviour. NRA0045 and clozapine selectively blocked behaviour associated with activation of the mesolimbic/mesocortical dopamine neurones rather than nigrostriatal dopamine neurones. Extracellular single-unit recording studies demonstrated that MAP (1 mg kg−1, i.v.) decreased the firing rate in the substantia nigra (A9) and ventral tegmental area (A10) dopamine neurones in anaesthetized rats. NRA0045 completely reversed the inhibitory effects of MAP on A10 dopamine neurones (ED50 0.1 mg kg−1, i.v.), whereas the inhibitory effects of

  16. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation. PMID:8663249

  17. Clinical correlates of raphe serotonergic dysfunction in early Parkinson's disease.

    PubMed

    Qamhawi, Zahi; Towey, David; Shah, Bina; Pagano, Gennaro; Seibyl, John; Marek, Kenneth; Borghammer, Per; Brooks, David James; Pavese, Nicola

    2015-10-01

    Post-mortem and neuroimaging studies suggest that the serotonergic system, which originates from the brainstem raphe nuclei, is disrupted in Parkinson's disease. This could contribute to the occurrence of non-motor symptoms and tremor, which are only partially explained by dopamine loss. However, the level of involvement of the serotonergic raphe nuclei in early Parkinson's disease is still debated. (123)I-FP-CIT single photon emission computed tomography is a marker of dopamine and serotonin transporter availability. While (123)I-FP-CIT binds primarily to dopamine transporters in the striatum, its binding in the brainstem raphe nuclei reflects serotonin transporter availability. We interrogated baseline single photon emission computed tomography scans of subjects recruited by the Parkinson's Progression Markers Initiative to determine: (i) the integrity of the brainstem raphe nuclei in early Parkinson's disease; and (ii) whether raphe serotonin transporter levels correlate with severity of tremor and symptoms of fatigue, depression, and sleep disturbance. Three hundred and forty-five patients with early drug-naïve Parkinson's disease, 185 healthy controls, and 56 subjects with possible Parkinson's disease without evidence of dopaminergic deficit were included. In the Parkinson's disease cohort, 37 patients had a tremulous, 106 patients had a pure akinetic-rigid, and 202 had a mixed phenotype. Patients with Parkinson's disease had significantly lower serotonin transporter availability in the brainstem raphe nuclei compared to controls (P < 0.01) and subjects without evidence of dopaminergic deficit (P < 0.05). However, only 13% of patients with Parkinson's disease individually had reduced signals. Raphe serotonin transporter availability over the entire Parkinson's disease cohort were associated with rest tremor amplitude (β = -0.106, P < 0.05), rest tremor constancy (β = -0.109, P < 0.05), and index of rest tremor severity (β = -0.104, P < 0.05). The tremulous

  18. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem

    PubMed Central

    2014-01-01

    Background Despite the importance of 5-HT1A as a major target for the action of several anxiolytics/antidepressant drugs, little is known about its regulation in central serotonin (5-hydroxytryptamine, 5-HT) neurons. Results We report that expression of 5-HT1A and the transcription factor Pet1 was impaired in the rostral raphe nuclei of mice lacking tryptophan hydroxylase 2 (Tph2) after birth. The downregulation of Pet1 was recapitulated in 5-Ht1a -/- mice. Using an explant culture system, we show that reduction of Pet1 and 5-HT1A was rescued in Tph2 -/- brainstem by exogenous 5-HT. In contrast, 5-HT failed to rescue reduced expression of Pet1 in 5-Ht1a -/- brainstem explant culture. Conclusions These results suggest a causal relationship between 5-HT1A and Pet1, and reveal a potential mechanism by which 5-HT1A-Pet1 autoregulatory loop is maintained by 5-HT in a spatiotemporal-specific manner during postnatal development. Our results are relevant to understanding the pathophysiology of certain psychiatric and developmental disorders. PMID:24972638

  19. Median raphe cyst of the penis.

    PubMed

    Cardoso, Raquel; Freitas, João Duarte; Reis, José Pedro; Tellechea, Oscar

    2005-01-01

    Cysts of the median raphe are uncommon. We describe a 43-year-old man with an asymptomatic nodule on the glans penis. Excision of the lesion was performed followed by histological and immunohistochemical studies. Histopathological examination revealed a solitary unilocular cystic cavity in the corium, lined by a pseudostratified columnar epithelium, among which mucinous cells where identified. Hints of decapitation secretion occurred at the apex of the luminal layer. An immunohistochemical study using a standard avidin-biotin peroxidase method disclosed CK7 and CK13 reactivity in the columnar cells. Epithelial membrane antigen (EMA) and carcinoembryonic (CEA) antigen immunoreactivity occurred at the apical border of the luminal cells. No staining was obtained with anti-CK20, human milk fat globulin 1 (HMFG1) and anti- S100 protein. The study supports its histogenetic relationship with the urothelium. PMID:16409933

  20. Addition of the Neurokinin-1-Receptor Antagonist (RA) Aprepitant to a 5-Hydroxytryptamine-RA and Dexamethasone in the Prophylaxis of Nausea and Vomiting Due to Radiation Therapy With Concomitant Cisplatin

    SciTech Connect

    Jahn, Franziska; Jahn, Patrick; Sieker, Frank; Vordermark, Dirk; Jordan, Karin

    2015-08-01

    Purpose: To assess, in a prospective, observational study, the safety and efficacy of the addition of the neurokinin-1-receptor antagonist (NK1-RA) aprepitant to concomitant radiochemotherapy, for the prophylaxis of radiation therapy–induced nausea and vomiting. Patients and Methods: This prospective observational study compared the antiemetic efficacy of an NK1-RA (aprepitant), a 5-hydroxytryptamine-RA, and dexamethasone (aprepitant regimen) versus a 5-hydroxytryptamine-RA and dexamethasone (control regimen) in patients receiving concomitant radiochemotherapy with cisplatin at the Department of Radiation Oncology, University Hospital Halle (Saale), Germany. The primary endpoint was complete response in the overall phase, defined as no vomiting and no use of rescue therapy in this period. Results: Fifty-nine patients treated with concomitant radiochemotherapy with cisplatin were included in this study. Thirty-one patients received the aprepitant regimen and 29 the control regimen. The overall complete response rates for cycles 1 and 2 were 75.9% and 64.5% for the aprepitant group and 60.7% and 54.2% for the control group, respectively. Although a 15.2% absolute difference was reached in cycle 1, a statistical significance was not detected (P=.22). Furthermore maximum nausea was 1.58 ± 1.91 in the control group and 0.73 ± 1.79 in the aprepitant group (P=.084); for the head-and-neck subset, 2.23 ± 2.13 in the control group and 0.64 ± 1.77 in the aprepitant group, respectively (P=.03). Conclusion: This is the first study of an NK1-RA–containing antiemetic prophylaxis regimen in patients receiving concomitant radiochemotherapy. Although the primary endpoint was not obtained, the absolute difference of 10% in efficacy was reached, which is defined as clinically meaningful for patients by international guidelines groups. Randomized phase 3 studies are necessary to further define the potential role of an NK1-RA in this setting.

  1. Adding 5-hydroxytryptamine receptor type 3 antagonists may reduce drug-induced nausea in poor insight obsessive-compulsive patients taking off-label doses of selective serotonin reuptake inhibitors: a 52-week follow-up case report

    PubMed Central

    2010-01-01

    Poor-insight obsessive-compulsive disorder (PI-OCD) is a severe form of OCD where the 'typically obsessive' features of intrusive, 'egodystonic' feelings and thoughts are absent. PI-OCD is difficult to treat, often requiring very high doses of serotonergic drugs as well as antipsychotic augmentation. When this occurs, unpleasant side effects as nausea are common, eventually further reducing compliance to medication and increasing the need for pharmacological alternatives. We present the case of a PI-OCD patient who developed severe nausea after response to off-label doses of the selective serotonin reuptake inhibitor (SSRI), fluoxetine. Drug choices are discussed, providing pharmacodynamic rationales and hypotheses along with reports of rating scale scores, administered within a follow-up period of 52 weeks. A slight reduction of fluoxetine dose, augmentation with mirtazapine and a switch from amisulpride to olanzapine led to resolution of nausea while preserving the anti-OCD therapeutic effect. Mirtazapine and olanzapine have already been suggested for OCD treatment, although a lack of evidence exists about their role in the course of PI-OCD. Both mirtazapine and olanzapine also act as 5-hydroxytryptamine receptor type 3 (5-HT3) blockers, making them preferred choices especially in cases of drug-induced nausea. PMID:21143969

  2. [Cysts of the median raphe (prepuce and perineum). Brief contribution].

    PubMed

    Pellicé i Vilalta, C; Luelmo i Aguilar, J

    1997-09-01

    A few remarks on the clinical records of two children with middle raphe cysts located in the pre-putium and the perineum. For a better understanding of this entity, the organogenetic dynamics of the penis, scrotum, pre-putium and male urethra are outlined and redefined. Middle raphe cysts are tegumentary formations that arise as a result of "tissue trappings". This entity should not be suggestive of malignancies. Therapeutical restraint should be the rule. Exeresis should only be indicated in the face of a hypothetical complication (e.g., infection, large volumes, etc.) or because of aesthetic reasons. PMID:9412236

  3. Circadian clock resetting by behavioral arousal: neural correlates in the midbrain raphe nuclei and locus coeruleus.

    PubMed

    Webb, I C; Patton, D F; Landry, G J; Mistlberger, R E

    2010-03-31

    Some procedures for stimulating arousal in the usual daily rest period (e.g., gentle handling, novel wheel-induced running) can phase shift circadian rhythms in Syrian hamsters, while other arousal procedures are ineffective (inescapable stress, caffeine, modafinil). The dorsal and median raphe nuclei (DRN, MnR) have been implicated in clock resetting by arousal and, in rats and mice, exhibit strong regionally specific responses to inescapable stress and anxiogenic drugs. To examine a possible role for the midbrain raphe nuclei in the differential effects of arousal procedures on circadian rhythms, hamsters were aroused for 3 h in the mid-rest period by confinement to a novel running wheel, gentle handling (with minimal activity) or physical restraint (with intermittent, loud compressed air stimulation) and sacrificed immediately thereafter. Regional expression of c-fos and tryptophan hydroxylase (TrpOH) were quantified immunocytochemically in the DRN, MnR and locus coeruleus (LC). Neither gentle handling nor wheel running had a large impact on c-fos expression in these areas, although the manipulations were associated with a small increase in c-Fos in TrpOH-like and TrpOH-negative cells, respectively, in the caudal interfascicular DRN region. By contrast, restraint stress significantly increased c-Fos in both TrpOH-like and TrpOH-negative cells in the rostral DRN and LC. c-Fos-positive cells in the DRN did not express tyrosine hydroxylase. These results reveal regionally specific monoaminergic correlates of arousal-induced circadian clock resetting, and suggest a hypothesis that strong activation of some DRN and LC neurons by inescapable stress may oppose clock resetting in response to arousal during the daily sleep period. More generally, these results complement evidence from other rodent species for functional topographic organization of the DRN. PMID:20079808

  4. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Cowan, Ann; Mazurkiewicz, Joseph E

    2012-07-01

    Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric. PMID:22593582

  5. Endocrine cells in median raphe cysts of the penis.

    PubMed

    Fetissof, F; Lorette, G; Dubois, M P; Philippe, A; Tharanne, M J; Jobard, P

    1985-12-01

    Serotonin-storing cells are distributed in all tissues derived from cloaca. They were observed in the cavernous portion of penile urethra whereas they were absent from the glans portion. Serotonin cells were detected in several morphologic varieties of median raphe cysts. It is suggested that these cysts arise from the endodermal part of urethra. PMID:3831998

  6. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates, the selective 5-hydroxytryptamine 1a agonist (R)-(+)-8-OHDPAT inhibits levodopa-induced dyskinesia but only with\\ increased motor disability.

    PubMed

    Iravani, Mahmoud M; Tayarani-Binazir, Kayhan; Chu, Wing B; Jackson, Michael J; Jenner, Peter

    2006-12-01

    5-Hydroxytryptamine 1a (5-HT(1a)) receptor agonists, such as sarizotan and tandospirone, are reported to reduce levodopa-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques and in Parkinson's disease without worsening motor disability. However, these compounds are not specific for 5-HT(1a) receptors and also possess dopamine antagonist actions. We now report on the effects of (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin [(R)-(+)-8-OHDPAT], a selective 5-HT(1a) agonist lacking dopaminergic activity, on motor disability and dyskinesia (chorea and dystonia) in levodopa-primed MPTP-treated common marmosets. Administration of (R)-(+)-8-OHDPAT (0.2, 0.6, and 2.0 mg/kg s.c), in conjunction with levodopa/carbidopa (12.5 mg/kg each p.o.) to levodopa-primed animals, dose-dependently reduced levodopa-induced chorea but did not affect dystonic movements. However, (R)-(+)-8-OHDPAT treatment also reduced locomotor activity and the reversal of motor disability. Administration of (R)-(+)-8-OHDPAT alone had no effects of motor behaviors. The effects of (R)-(+)-8-OHDPAT on levodopa-induced motor behaviors were antagonized by the 5-HT(1a) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY-100635) (1.0 mg/kg s.c.). Administration of (R)-(+)-8-OHDPAT (0.6 mg/kg s.c.) also reduced chorea produced by the administration of the D(2)/D(3) dopamine receptor agonist pramipexole (0.06 mg/kg p.o.) to levodopa-primed MPTP-treated animals. However, again the increase in locomotor activity and reversal of motor disability produced by pramipexole were also inhibited. These data suggest that selective 5-HT(1a) agonists do not provide an effective means of suppressing levodopa-induced dyskinesia, except with worsening of parkinsonism. PMID:16959959

  7. Dorsal wrist syndrome repair.

    PubMed

    Yasuda, Masataka; Masada, Kazuhiro; Takeuchi, Eiji

    2004-07-01

    Dorsal wrist pain with or without a palpable dorsal wrist ganglion is a common complaint. Watson developed the concept of the dorsal wrist syndrome (DWS) which is an entity encompassing pre-dynamic rotary subluxation of the scaphoid and the overloaded wrist. We reviewed 20 cases of DWS treated surgically. There were nine males (11 wrists) and nine females (nine wrists). Post-operative follow-up ranged from five to 67 months (mean, 37 months). At operation, we observed SLL tears in eight wrists and dorsal ganglia in 12 cases. Following surgery, 12 cases reported being pain free, five had mild pain, two moderate pain and one case reported severe pain. Post-operative extension/flexion was 73/70 average. Post-operative grip strength was 28 kg average. We believe that excision of the posterior interosseous nerve and the dorsal capsule including the ganglion, if present, provides pain relief in DWS. PMID:15368625

  8. Median raphe cyst of the penis with ciliated cells.

    PubMed

    Romaní, J; Barnadas, M A; Miralles, J; Curell, R; de Moragas, J M

    1995-08-01

    Cystic lesions occurring on the ventral surface of the penis have been classified as median raphe cysts of the penis. They are lined by pseudostratified, columnar or stratified squamous cell epithelium, mimicking the epithelial lining of the male urethra. Ciliated cysts of the human skin are unusual. Cystic lesions containing ciliated cells have been noted to occur in the chest, neck, or head, and bronchogenic origin has been the most accepted explanation for its origin. Other reports show the presence of ciliated cysts on the lower extremities, and the mechanism of formation is still a debated question. A case of median raphe cyst of the penis containing ciliated epithelium is presented. The existing literature about these cutaneous lesions is reviewed, including the possible mechanisms believed to be involved in its origin. PMID:7499581

  9. Split median raphe: case series and brief literature review.

    PubMed

    Valerio, Enrico; Cutrone, Mario

    2014-01-01

    We describe three cases of split median raphe of the penis (SMR) from our hospital newborn records from 2004 to 2013. One case was associated with median raphe cyst, one with skin hypochromia, and one with a scar-like aspect of the region of interest. SMR is thought to be the result of defective fusion of ectodermal tissue in the urethra and scrotum area or of defective growth of the perineal mesoderm around the urethra during gestation. Although SMR associated with other major penile congenital defects (epispadias, hypospadias, penile torsion, bifid scrotum, chordee) is common, isolated SMR is probably an underdiagnosed (although not rare) malformative condition. Recognizing SMR in a newborn may be of educational value to neonatologists because it leads to the search for and exclusion of the above-mentioned pathologic conditions. PMID:25236772

  10. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.

    PubMed

    Kapoor, Vikrant; Provost, Allison C; Agarwal, Prateek; Murthy, Venkatesh N

    2016-02-01

    The serotonergic raphe nuclei are involved in regulating brain states over timescales of minutes and hours. We examined more rapid effects of raphe activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels. PMID:26752161