Science.gov

Sample records for 5-hydroxytrytamine 2c receptor

  1. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    PubMed Central

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  2. Serotonin2C receptors and drug addiction: focus on cocaine.

    PubMed

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human. PMID:23748692

  3. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  4. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  5. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.

    PubMed

    Wissmann, Melanie; Yin, Na; Müller, Judith M; Greschik, Holger; Fodor, Barna D; Jenuwein, Thomas; Vogler, Christine; Schneider, Robert; Günther, Thomas; Buettner, Reinhard; Metzger, Eric; Schüle, Roland

    2007-03-01

    Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities. PMID:17277772

  6. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  7. Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction.

    PubMed

    Schellekens, Harriët; De Francesco, Pablo N; Kandil, Dalia; Theeuwes, Wessel F; McCarthy, Triona; van Oeffelen, Wesley E P A; Perelló, Mario; Giblin, Linda; Dinan, Timothy G; Cryan, John F

    2015-07-15

    Understanding the intricate pathways that modulate appetite and subsequent food intake is of particular importance considering the rise in the incidence of obesity across the globe. The serotonergic system, specifically the 5-HT2C receptor, has been shown to be of critical importance in the regulation of appetite and satiety. The GHS-R1a receptor is another key receptor that is well-known for its role in the homeostatic control of food intake and energy balance. We recently showed compelling evidence for an interaction between the GHS-R1a receptor and the 5-HT2C receptor in an in vitro cell line system heterologously expressing both receptors. Here, we investigated this interaction further. First, we show that the GHS-R1a/5-HT2C dimer-induced attenuation of calcium signaling is not due to coupling to GαS, as no increase in cAMP signaling is observed. Next, flow cytometry fluorescence resonance energy transfer (fcFRET) is used to further demonstrate the direct interaction between the GHS-R1a receptor and 5-HT2C receptor. In addition, we demonstrate colocalized expression of the 5-HT2C and GHS-R1a receptor in cultured primary hypothalamic and hippocampal rat neurons, supporting the biological relevance of a physiological interaction. Furthermore, we demonstrate that when 5-HT2C receptor signaling is blocked ghrelin's orexigenic effect is potentiated in vivo. In contrast, the specific 5-HT2C receptor agonist lorcaserin, recently approved for the treatment of obesity, attenuates ghrelin-induced food intake. This underscores the biological significance of our in vitro findings of 5-HT2C receptor-mediated attenuation of GHS-R1a receptor activity. Together, this study demonstrates, for the first time, that the GHS-R1a/5-HT2C receptor interaction translates into a biologically significant modulation of ghrelin's orexigenic effect. This data highlights the potential development of a combined GHS-R1a and 5-HT2C receptor treatment strategy in weight management. PMID:25727097

  8. Stimulation of medial prefrontal cortex serotonin 2C (5-HT(2C)) receptors attenuates cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Duke, Felicia D; Weber, Suzanne M; Pockros, Lara A; Teer, Andrew P; Hamilton, Elizabeth C; Thiel, Kenneth J; Neisewander, Janet L

    2010-09-01

    Serotonin 2C receptor (5-HT(2C)R) agonists administered systemically attenuate both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior. To further elucidate the function of these receptors in addiction-like processes, this study examined the effects of microinfusing the 5-HT(2C)R agonist MK212 (0, 10, 30, 100 ng/side/0.2 microl) into the medial prefrontal cortex (mPFC) on cocaine self-administration and reinstatement of extinguished cocaine-seeking behavior. Male Sprague-Dawley rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. Once responding stabilized, rats received MK212 microinfusions before tests for maintenance of cocaine self-administration. Next, extinction training to reduce cocaine-seeking behavior, defined as responses performed without cocaine reinforcement available, occurred until low extinction baselines were achieved. Rats then received MK212 microinfusions before tests for reinstatement of extinguished cocaine-seeking behavior elicited by cocaine-priming injections (10 mg/kg, i.p.) or response-contingent presentations of the cocaine-associated cues; operant responses during cocaine-primed reinstatement tests produced no consequences. MK212 microinfusions into the prelimbic and infralimbic, but not anterior cingulate, regions of the mPFC dose-dependently attenuated both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior, but did not reliably affect cocaine self-administration. A subsequent experiment showed that the effects of MK212 (100 ng/side/0.2 microl) on reinstatement of extinguished cocaine-seeking behavior were blocked by co-administration of the 5-HT(2C)R antagonist SB242084 (200 ng/side/0.2 microl). MK212 administered alone into the mPFC as a drug prime produced no discernable effects on cocaine-seeking behavior. These findings suggest that stimulation of 5-HT(2C)Rs in the mPFC attenuates the incentive motivational effects

  9. Compulsive behavior in the 5-HT2C receptor knockout mouse.

    PubMed

    Chou-Green, Jennifer M; Holscher, Todd D; Dallman, Mary F; Akana, Susan F

    2003-04-01

    The efficacy of serotonergic pharmacotherapy indicates that serotonin (5-HT) plays a role in the treatment, if not the etiology, of obsessive-compulsive disorder (OCD). While some clinical evidence implicates 5-HT(2C) receptors in this disorder, a definitive function has yet to be validated. We hypothesized that 5-HT(2C) receptor knockout (KO) mice may display compulsive-like behavior. This paper describes characterization of several distinct, highly organized behaviors in mice lacking functional 5-HT(2C) receptors, which supports a compulsive-like syndrome.Compulsive-like behavior was assessed in male 5-HT(2C) receptor KO and wildtype (WT) mice. Chewing of non-nutritive clay, chewing patterns on plastic-mesh screens, and the frequency of head dipping were measured. 5-HT(2C) receptor KO mice chewed more clay, produced a distinct pattern of "neat" chewing of plastic screens and exhibited reduced habituation of head dipping activity compared to WT mice. We conclude that the 5-HT(2C) receptor null mutant mouse provides a promising model of compulsive behavior and a means to further explore the role of 5-HT in OCD. PMID:12782219

  10. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-01-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome. PMID:27406820

  11. How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing.

    PubMed

    Englander, Michael T; Dulawa, Stephanie C; Bhansali, Punita; Schmauss, Claudia

    2005-01-19

    In two inbred strains of mice, C57BL/6 and 129Sv, the majority of forebrain neocortical pre-mRNA encoding the serotonin 2C (5-HT2C) receptor is altered by adenosine-to-inosine editing. As a result, >60% of all mRNAs encode receptors with reduced constitutive and agonist-stimulated activity. However, in the BALB/c strain, a genetically distinct inbred strain with lower forebrain serotonin levels, spontaneously elevated anxiety, and increased stress reactivity, the majority of 5-HT2C mRNA is nonedited and encodes receptors with the highest constitutive activity and the highest agonist affinity and potency. Neither acute stress (the forced swim test) nor chronic treatment with the serotonin-selective reuptake inhibitor fluoxetine elicit significant changes in 5-HT2C pre-mRNA editing in C57BL/6 mice. In contrast, exposure of BALB/c mice to acute stress and chronic treatment of nonstressed BALB/c mice with fluoxetine elicit significant, site-specific increases in 5-HT2C pre-mRNA editing that increase the pool of mRNA encoding receptors with reduced function. These changes in 5-HT2C pre-mRNA editing resemble those detected previously in the prefrontal cortex of subjects with major depression. However, when chronic fluoxetine treatment is combined with stress exposure of BALB/c mice, these changes in 5-HT2C pre-mRNA editing are no longer detected. These findings illustrate that 5-HT2C pre-mRNA editing responses to stress and chronic fluoxetine are modulated by the genetic background, as well as the behavioral state of the animal. They suggest further that the changes in 5-HT2C pre-mRNA editing found in major depression reflect a previously unrecognized molecular response to stress that can be prevented by chronic antidepressant treatment. PMID:15659601

  12. NR2C and NR2D subunits of NMDA receptors in frog and turtle retina.

    PubMed

    Vitanova, Lily Alexandrova

    2012-12-01

    Glutamate NMDA (N-methyl-D-aspartate) receptors are widely distributed in the central nervous system where they are involved in cognitive processes, motor control and many other functions. They are also well studied in the retina, which may be regarded as a biological model of the nervous system. However, little is known about NR2C and NR2D subunits of NMDA receptors, which have some specific features as compared to other subunits. Consequently the aim of the present study was to investigate their distribution in frog (Rana ridibunda) and turtle (Emys orbicularis) retinas which possess mixed and cone types of retina respectively. The experiments were performed using an indirect immunofluorescence method. Four antibodies directed to NR2C and NR2D subunits of NMDA receptor, as well as three antibodies directed to different splice variants of NR1 subunit, which is known to be obligatory for proper functioning of the receptor, were applied. All antibodies caused well expressed labeling in frog and turtle retinas. The NR2C and NR2D subunits were localized in glial Müller cells, while the NR1 subunit had both neuronal and glial localization. Our results show that glial NMDA receptors differ from neuronal ones in their subunit composition. The functional significance of the NMDA receptors and their NR2C and NR2D subunits, in particular for the neuron-glia interactions, is discussed. PMID:22386206

  13. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation.

    PubMed

    Heisler, Lora K; Pronchuk, Nina; Nonogaki, Katsunori; Zhou, Ligang; Raber, Jacob; Tung, Loraine; Yeo, Giles S H; O'Rahilly, Stephen; Colmers, William F; Elmquist, Joel K; Tecott, Laurence H

    2007-06-27

    The dynamic interplay between serotonin [5-hydroxytryptamine (5-HT)] neurotransmission and the hypothalamic-pituitary-adrenal (HPA) axis has been extensively studied over the past 30 years, but the underlying mechanism of this interaction has not been defined. A possibility receiving little attention is that 5-HT regulates upstream corticotropin-releasing hormone (CRH) signaling systems via activation of serotonin 2C receptors (5-HT(2C)Rs) in the paraventricular nucleus of the hypothalamus (PVH). Through complementary approaches in wild-type rodents and 5-HT(2C)R-deficient mice, we determined that 5-HT(2C)Rs are necessary for 5-HT-induced HPA axis activation. We used laser-capture PVH microdissection followed by microarray analysis to compare the expression of 13 5-HTRs. Only 5-HT(2C)R and 5-HT(1D)R transcripts were consistently identified as present in the PVH, and of these, the 5-HT(2C)R was expressed at a substantially higher level. The abundant expression of 5-HT(2C)Rs in the PVH was confirmed with in situ hybridization histochemistry. Dual-neurohistochemical labeling revealed that approximately one-half of PVH CRH-containing neurons coexpressed 5-HT(2C)R mRNA. We observed that PVH CRH neurons consistently depolarized in the presence of a high-affinity 5-HT(2C)R agonist, an effect blocked by a 5-HT(2C)R antagonist. Supporting the importance of 5-HT(2C)Rs in CRH neuronal activity, genetic inactivation of 5-HT(2C)Rs produced a downregulation of CRH mRNA and blunted CRH and corticosterone release after 5-HT compound administration. These findings thus provide a mechanistic explanation for the longstanding observation of HPA axis stimulation in response to 5-HT and thereby give insight into the neural circuitry mediating the complex neuroendocrine responses to stress. PMID:17596444

  14. Stimulation of Medial Prefrontal Cortex Serotonin 2C (5-HT2C) Receptors Attenuates Cocaine-Seeking Behavior

    PubMed Central

    Pentkowski, Nathan S; Duke, Felicia D; Weber, Suzanne M; Pockros, Lara A; Teer, Andrew P; Hamilton, Elizabeth C; Thiel, Kenneth J; Neisewander, Janet L

    2010-01-01

    Serotonin 2C receptor (5-HT2CR) agonists administered systemically attenuate both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior. To further elucidate the function of these receptors in addiction-like processes, this study examined the effects of microinfusing the 5-HT2CR agonist MK212 (0, 10, 30, 100 ng/side/0.2 μl) into the medial prefrontal cortex (mPFC) on cocaine self-administration and reinstatement of extinguished cocaine-seeking behavior. Male Sprague–Dawley rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. Once responding stabilized, rats received MK212 microinfusions before tests for maintenance of cocaine self-administration. Next, extinction training to reduce cocaine-seeking behavior, defined as responses performed without cocaine reinforcement available, occurred until low extinction baselines were achieved. Rats then received MK212 microinfusions before tests for reinstatement of extinguished cocaine-seeking behavior elicited by cocaine-priming injections (10 mg/kg, i.p.) or response-contingent presentations of the cocaine-associated cues; operant responses during cocaine-primed reinstatement tests produced no consequences. MK212 microinfusions into the prelimbic and infralimbic, but not anterior cingulate, regions of the mPFC dose-dependently attenuated both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior, but did not reliably affect cocaine self-administration. A subsequent experiment showed that the effects of MK212 (100 ng/side/0.2 μl) on reinstatement of extinguished cocaine-seeking behavior were blocked by co-administration of the 5-HT2CR antagonist SB242084 (200 ng/side/0.2 μl). MK212 administered alone into the mPFC as a drug prime produced no discernable effects on cocaine-seeking behavior. These findings suggest that stimulation of 5-HT2CRs in the mPFC attenuates the incentive motivational

  15. Modulation of α2C adrenergic receptor temperature-sensitive trafficking by HSP90

    PubMed Central

    Filipeanu, Catalin M.; de Vries, René; Danser, A.H. Jan; Kapusta, Daniel R.

    2010-01-01

    Decreasing the temperature to 30°C is accompanied by significant enhancement of α2C-AR plasma membrane levels in several cell lines with fibroblast phenotype, as demonstrated by radioligand binding in intact cells or isolated membranes. No changes were observed on the effects of low-temperature after blocking receptor internalization in α2C-AR transfected HEK293T cells. In contrast, two pharmacological chaperones, dimethyl sulfoxide and glycerol, increased the cell surface receptor levels at 37°C, but not at 30°C. Further, at 37°C α2C-AR is co-localized with endoplasmic reticulum markers, but not with the lysosomal markers. Treatment with three distinct HSP90 inhibitors, radicicol, macbecin and 17-DMAG significantly enhanced α2C-AR cell surface levels at 37°C, but these inhibitors had no effect at 30°C. Similar results were obtained after decreasing the HSP90 cellular levels using specific siRNA. Co-immunoprecipitation experiments demonstrated that α2C-AR interacts with HSP90 and this interaction is decreased at 30°C. The contractile response to endogenous α2C-AR stimulation in rat tail artery was also enhanced at reduced temperature. Similar to HEK293T cells, HSP90 inhibition increased the α2C-AR contractile effects only at 37°C. Moreover, exposure to low-temperature of vascular smooth muscle cells from rat tail artery decreased the cellular levels of HSP90, but did not change HSP70 levels. These data demonstrate that exposure to low-temperature augments the α2C-AR transport to the plasma membrane by releasing the inhibitory activity of HSP90 on the receptor traffic, findings which may have clinical relevance for the diagnostic and treatment of Raynaud Phenomenon. PMID:21145921

  16. Serotonin receptor 2C gene polymorphism associated with post-stroke depression in Chinese patients.

    PubMed

    Tang, W K; Tang, N; Liao, C D; Liang, H J; Mok, V C T; Ungvari, G S; Wong, K S

    2013-01-01

    The serotonin receptor 2C (HTR2C) gene has been shown to play a pivotal role in major depression. We examined the association between post-stroke depression (PSD) and polymorphism in HTR2C. A cohort of 223 patients with acute lacunar stroke admitted to the stroke unit of a university-affiliated regional hospital in Hong Kong was recruited. Three months after the onset of the index stroke, a research assistant administered the locally validated 15-item Geriatric Depression Scale. PSD was defined as a geriatric depression scale score of 7 or above. Possible confounding factors, including previous history of stroke, severity of stroke, level of social support, and recent life events, were investigated. All patients were genotyped for polymorphisms of HTR2C. Separate analyses were performed for males and females. Sixty-one patients were found to have PSD. There were significant associations between the HTR2C gene and PSD status in the male patients, but not in the female ones. After adjusting for possible confounders, the rs12837651 T allele (odds ratio = 4.020) and the rs2192371 G allele (odds ratio = 2.866) were found to be significantly associated with PSD in males. Genetic variation in HTR2C receptors appears to be involved in the pathogenesis of PSD in Chinese males. PMID:23765961

  17. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014. PMID:25870913

  18. Regulation of Oligomeric Organization of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Observed by Spatial Intensity Distribution Analysis*

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme

    2015-01-01

    The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490

  19. Inhibition of opioid release in the rat spinal cord by α2C adrenergic receptors

    PubMed Central

    Chen, Wenling; Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic α2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of μ-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The α2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked μ-opioid receptor internalization with IC50s of 1.7 μM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited μ-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibition produced by clonidine, guanfacine or UK-14304 was completely reversed by the selective α2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the α2A antagonist BRL-44408. These results show that α2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active. PMID:18343461

  20. Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists

    PubMed Central

    2015-01-01

    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization. PMID:25815155

  1. CRF Type 2 Receptors Mediate the Metabolic Effects of Ghrelin in C2C12 cells

    PubMed Central

    Gershon, Eran; Vale, Wylie W

    2014-01-01

    Objective Ghrelin is known to regulate appetite control and cellular metabolism. The Corticotropin-Releasing Factor (CRF) family is also known to regulate energy balance. In this study, we investigated the links between ghrelin and the CRF family in C2C12 cells, a mouse myoblast cell line. Design and methods C2C12 cells were treated with ghrelin in the presence or absence of CRF receptor antagonists and then subjected to different metabolic analyses. Results Ghrelin enhanced glucose uptake by C2C12 cells, induced GLUT4 translocation to the cell surface and decreased RBP4 expression. A CRF-R2 selective antagonist, anti-sauvagine-30, blocked ghrelin-induced glucose uptake, Ghrelin upregulated CRF-R2 but not CRF-R1 levels. Moreover, ghrelin-treated C2C12 cells displayed a cAMP and pERK activation in response to Ucn3, a CRF-R2 specific ligand, but not in response to CRF or stressin, CRF-R1 specific ligands. Ghrelin also induced UCP2 and UCP3 expression, which were blocked by anti-sauvagine-30. Ghrelin did not induce fatty acids uptake by C2C12 cells or ACC expression. Even though C2C12 cells clearly exhibited responses to ghrelin, the known ghrelin receptor, GHSR1a, was not detectable in C2C12 cells. Conclusion Our results suggest that, ghrelin plays a role in regulating muscle glucose and, raise the possibility that suppression of the CRF-R2 pathway might provide benefits in high ghrelin states. PMID:23804489

  2. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  3. Identification of a cys-ser substitution in the 5-HT{sub 2C} (HTR2C) receptor gene and allelic association to violent behavior and alcoholism

    SciTech Connect

    Lappalainen, J.; Ozaki, N.; Goldman, D.

    1994-09-01

    Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behavior and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.

  4. Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity.

    PubMed

    Miller, Keith J

    2005-10-01

    Obesity continues to be a burgeoning health problem worldwide. Before their removal from the market, fenfluramine and the more active enantiomer dexfenfluramine were considered to be among the most effective of weight loss agents. Much of the weight loss produced by fenfluramine was attributed to the direct activation of serotonin 5-HT(2C) receptors in the central nervous system via the desmethyl-metabolite of fenfluramine, norfenfluramine. Norfenfluramine, however, is non-selective, activating additional serotonin receptors, such as 5-HT(2A) and 5-HT(2B), which likely mediated the heart valve hypertrophy seen in many patients. Development of highly selective 5-HT(2C) agonists may recapitulate the clinical anti-obesity properties observed with fenfluramine while avoiding the significant cardiovascular and pulmonary side effects. PMID:16249524

  5. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects.

    PubMed

    Opal, M D; Klenotich, S C; Morais, M; Bessa, J; Winkle, J; Doukas, D; Kay, L J; Sousa, N; Dulawa, S M

    2014-10-01

    Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling. PMID:24166413

  6. Selective 5-HT2C receptor agonists: Design and synthesis of pyridazine-fused azepines.

    PubMed

    Green, Martin P; McMurray, Gordon; Storer, R Ian

    2016-08-15

    Heterocycle-fused azepines are discussed as potent 5-HT2C receptor agonists with excellent selectivity over 5-HT2B agonism. Synthesis and structure activity relationships are outlined for a series of bicyclic pyridazino[3,4-d]azepines. By comparison with earlier published work, in vitro assays predict a high probability for achieving CNS penetration for a potent and selective compound 15a, a pre-requisite to achieve in vivo efficacy. PMID:27381086

  7. Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C.

    PubMed

    Barr, C L; Wigg, K; Zai, G; Roberts, W; Malone, M; Schachar, R; Tannock, R; Kennedy, J L

    2001-05-01

    The adrenergic system has been hypothesized to be involved in the etiology of attention-deficit hyperactivity disorder (ADHD) based on pharmacological interventions and animal models. Noradrenergic neurons are implicated in the modulation of vigilance, improvement of visual attention, initiation of adaptive response, learning and memory. In this study we tested the genes for two adrenergic receptors, alpha 1C (ADRA1C) located on chromosome 8p11.2, and alpha 2C (ADRA2C) located on chromosome 4p16, as genetic susceptibility factors in ADHD. For the adrenergic receptor alpha 1C we used a C to T polymorphism that results in a change of Cys to Arg at codon 492 for the linkage study. For the adrenergic receptor alpha 2C gene we examined a dinucleotide repeat polymorphism located approximately 6 kb from the gene. We examined these polymorphisms in a sample of 103 families ascertained through an ADHD proband. Using the transmission disequilibrium test, we did not observe biased transmission of any of the alleles of these polymorphisms. We conclude that the alleles at the polymorphisms tested in these two genes are not linked to the ADHD phenotype in this sample of families. PMID:11326305

  8. Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair.

    PubMed

    Aoki, Miku; Watanabe, Yoshihisa; Yoshimoto, Kanji; Tsujimura, Atsushi; Yamamoto, Toshiro; Kanamura, Narisato; Tanaka, Masaki

    2016-05-01

    Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour. Here, we examined the behavioural phenotype and molecular changes of INI mice on a C57BL/6J background. INI mice showed an enhanced behavioural despair in the forced swimming test, elevated sensitivity to the tricyclic antidepressant desipramine, and significantly decreased serotonin in the nucleus accumbens (NAc), amygdala, and striatum. They also showed reduced expression of neuropeptide Y (NPY) mRNA in the NAc. In addition, by stereotactic injection of adeno-associated virus encoding NPY into the NAc, we demonstrated that accumbal NPY overexpression relieved behavioural despair. Our results suggest that accumbal NPY expression may be regulated by 5-HT2 C R RNA editing, and its impairment may be linked to mood disorders. PMID:26950265

  9. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions.

    PubMed

    Takeuchi, Jun; Okamoto, Masanori; Akiyama, Tomonori; Muto, Takuya; Yajima, Shunsuke; Sue, Masayuki; Seo, Mitsunori; Kanno, Yuri; Kamo, Tsunashi; Endo, Akira; Nambara, Eiji; Hirai, Nobuhiro; Ohnishi, Toshiyuki; Cutler, Sean R; Todoroki, Yasushi

    2014-06-01

    The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor-ABA complexes revealed a tunnel above ABA's 3' ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3' alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3'-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class. PMID:24792952

  10. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  11. Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues.

    PubMed

    Eason, M G; Liggett, S B

    1993-07-01

    At present, molecular cloning and pharmacological studies have delineated three human alpha 2-adrenergic receptor (alpha 2AR) subtypes, alpha 2C10, alpha 2C4, and alpha 2C2. Assignment of the alpha 2AR subtypes to specific functions has been limited by an unclear definition of tissue alpha 2AR expression outside of the central nervous system. It has been suggested that alpha 2C4 expression is confined to the brain, that alpha 2C2 expression is only in the liver and kidney, and that there is nearly ubiquitous expression of alpha 2C10. However, this is based on studies of a limited number of rat tissues or on studies using non-species-specific approaches. Therefore, to define alpha 2C10, alpha 2C4, and alpha 2C2 tissue expression, we used reverse transcription of total RNA isolated from 20 human tissues, followed by amplification of alpha 2AR cDNA using the polymerase chain reaction. This technique provided two advantages: high sensitivity and, with the use of subtype-specific oligonucleotide primers and probes, differentiation between the alpha 2AR subtypes. The tissues studied were aorta, vena cava, heart (epicardium and endocardium), lung, skeletal muscle, liver, pancreas (head and tail), fat (perinephric and subcutaneous), kidney (cortex and medulla), prostate, stomach, ileum, jejunum, colon, adrenal gland, and spleen. We found that the majority of these tissues expressed alpha 2C10, with the exceptions being the head of the pancreas, subcutaneous fat, colon, and spleen. In marked distinction to other studies, however, we found a prolific expression of the alpha 2C4 and alpha 2C2 subtypes. Expression of alpha 2C4 was found in all tissues with the exception of liver, fat, stomach, and colon, and a virtually ubiquitous expression of alpha 2C2 was found, with the exception of epicardium. Of all tissues studied, only colon and subcutaneous fat expressed a single alpha 2AR subtype, which was alpha 2C2. Thus, the alpha 2AR subtypes do not have a confined expression but

  12. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  13. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E

    2015-04-01

    G protein-coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10(-9) cm(2)/s and were expressed at 32 receptors/μm(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  14. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  15. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  16. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  17. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    PubMed

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. PMID:26617215

  18. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  19. A-to-I editing of the 5HT2C receptor and behaviour.

    PubMed

    Gardiner, Katheleen; Du, Yunzhi

    2006-03-01

    Site-specific deamination of five adenosine residues in the pre-mRNA of the serotonin 2C receptor, 5HT2CR, alters the amino acid sequence of the encoded protein. Such RNA editing can produce 32 mRNA variants, encoding 24 protein isoforms that vary in biochemical and pharmacological properties. Because serotonin functions in the regulation of mood and behaviour, modulation of serotonin signalling by RNA editing may be relevant to such psychiatric disorders as anxiety and depression. Several recent human studies have reported changes in 5HT2CR editing in schizophrenia, major depression or suicide, but results are variable and not conclusive. Rodent studies have begun to examine effects of drug treatments and stress. Understanding the importance of 5HT2CR editing in mood and behaviour will be assisted by experiments designed to analyse multiple strains of mice, in different behavioural tests, with optimal evaluation of the time course of molecular changes. PMID:16769676

  20. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  1. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders. PMID:25770211

  2. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice.

    PubMed

    Brennan, T J; Seeley, W W; Kilgard, M; Schreiner, C E; Tecott, L H

    1997-08-01

    The epilepsies are a heterogeneous collection of seizure disorders with a lifetime expectancy risk rate of 2-4%. A convergence of evidence indicates that heritable factors contribute significantly to seizure susceptibility. Genetically epilepsy-prone rodent strains have been frequently used to examine the effect of genetic factors on seizure susceptibility. The most extensively studied of these have been strains that are susceptible to sound-induced convulsions (audiogenic seizures, or AGSs). Early observations of the AGS phenomenon were made in the laboratory of Dr. Ivan Pavlov; in the course of appetite-conditioning experiments in mice, the loud bell used to signal food presentation unexpectedly produced seizures in some animals. In 1947, DBA/2 (D2) mice were found to exhibit a genetic susceptibility to AGSs stimulated by a doorbell mounted in an iron tub. Since this discovery, AGSs have been among the most intensively studied phenotypes in behavioural genetics. Although several genetic loci confer susceptibility to AGSs, the corresponding genes have not been cloned. We report that null mutant mice lacking serotonin 5-HT2C receptors are extremely susceptible to AGSs. The onset of susceptibility is between two and three months of age, with complete penetrance in adult animals. AGS-induced immediate early gene expression indicates that AGSs are subcortical phenomena in auditory circuits. This AGS syndrome is the first produced by a known genetic defect; it provides a robust model for the examination of serotoninergic mechanisms in epilepsy. PMID:9241279

  3. Interactions between soybean ABA receptors and type 2C protein phosphatases

    PubMed Central

    Ha, Si; Yang, Fen; Ma, Jun; Gao, Xiao-Su; Wang, Zhi-Min; Zhu, Jian-Kang

    2013-01-01

    The plant hormone abscisic acid (ABA) plays important roles in regulating plant growth, development, and responses to environmental stresses. Proteins in the PYR/PYL/RCAR family (hereafter referred to as PYLs) are known as ABA receptors. Since most studies thus far have focused on Arabidopsis PYLs, little is known about PYL homologs in crop plants. We report here the characterization of 21 PYL homologs (GmPYLs) in soybean. Twenty three putative GmPYLs can be found from soybean genome sequence and categorized into three subgroups. GmPYLs interact with AtABI1 and two GmPP2Cs in diverse manners. A lot of the subgroup I GmPYLs interact with PP2Cs in an ABA-dependent manner, whereas most of the subgroup II and III GmPYLs bind to PP2Cs in an ABA-independent manner. The subgroup III GmPYL23, which cannot interact with any of the tested PP2Cs, differs from other GmPYLs. The CL2/gate domain is crucial for GmPYLs-PP2Cs interaction, and a mutation in the conserved proline (P109S) abolishes the interaction between GmPYL1 and AtABI1. Furthermore, the ABA dependence of GmPYLs-PP2Cs interactions are partially correlated with two amino acid residues preceding the CL2/gate domain of GmPYLs. We also show that GmPYL1 interacts with AtABI1 in an ABA-dependent manner in plant cells. Three GmPYLs differentially inhibit AtABI1 and GmPP2C1 in an ABA-dependent or -enhanced manner in vitro. In addition, ectopically expressing GmPYL1 partially restores ABA sensitivity of the Arabidopsis triple mutant pyr1/pyl1/pyl4. Taken together, our results suggest that soybean GmPYLs are ABA receptors that function by interacting and inhibiting PP2Cs. PMID:23934343

  4. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  5. Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize.

    PubMed

    Wang, Ying-Ge; Yu, Hao-Qiang; Zhang, Yuan-Yuan; Lai, Cong-Xian; She, Yue-Hui; Li, Wan-Chen; Fu, Feng-Ling

    2014-10-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. In recent researches, pyrabactin resistance 1-like protein (PYL) and protein phosphatase type 2C (PP2C) were identified as the direct receptor and the second component of ABA signaling pathway, respectively. However, a lot of PYL and PP2C members were found in Arabidopsis and several other plants. Some of them were found not to be involved in ABA signaling. Because of the complex diversity of the genome, few documents have been available on the molecular details of the ABA signal perception system in maize. In the present study, we conducted bioinformatics analysis to find out the candidates (ZmPYL3 and ZmPP2C16) of the PYL and PP2C members most probably involved in ABA signaling in maize, cloned their encoding genes (ZmPYL3 and ZmPP2C16), verified the interaction between these two proteins in response to exogenous ABA induction by yeast two-hybrid assay and bimolecular fluorescence complementation, and investigated the expression patterns of these two genes under the induction of exogenous ABA by real-time fluorescence quantitative PCR. The results indicated that the ZmPYL3 and ZmPP2C16 proteins interacted in vitro and in vivo in response to the induction of exogenous ABA. The downregulated expression of the ZmPYL3 gene and the upregulated expression of the ZmPP2C16 gene are responsive to the induction of exogenous ABA. The ZmPYL3 and ZmPP2C16 proteins are the most probable members of the receptors and the second components of ABA signaling pathway, respectively. PMID:25091169

  6. Social Behavioral Deficits Coincide with the Onset of Seizure Susceptibility in Mice Lacking Serotonin Receptor 2c.

    PubMed

    Séjourné, Julien; Llaneza, Danielle; Kuti, Orsolya J; Page, Damon T

    2015-01-01

    The development of social behavior is strongly influenced by the serotonin system. Serotonin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharmacological modulation of 5-HT2cR activity alters social interaction in adult rodents. However, the role of 5-HT2cR in the development of social behavior is unexplored. Here we address this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit social behavior deficits as adults but not as juveniles. Moreover, we found that the age of onset of these deficits displays similar timing as the onset of susceptibility to spontaneous death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR in the modulation of social behavior and seizure susceptibility in the context of normal development and Pten haploinsufficiency. PMID:26308619

  7. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  8. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  9. Modulation of dopamine transmission by 5HT2C and 5HT3 receptors: a role in the antidepressant response.

    PubMed

    Dremencov, Eliyahu; Weizmann, Yifat; Kinor, Noa; Gispan-Herman, Iris; Yadid, Gal

    2006-02-01

    Dopaminergic mesolimbic and mesocortical systems are fundamental in hedonia and motivation. Therefore their regulation should be central in understanding depression treatment. This review highlights the dopaminergic activity in relation to depressive behavior and suggests two putative receptors as potential targets for research and development of future antidepressants. In this article we review data that describe the role of serotonin in regulating dopamine release, via 5HT2C and 5HT3 receptors. This action of serotonin appears to be linked to depressive-like behavior and to onset of behavioral effects of antidepressants in an animal model of depression. We suggest that drugs or strategies that decrease 5HT2C and increase 5HT3 receptor-mediated dopamine release in the limbic areas of the brain may provide a fast onset of therapeutic effect. Clinical and basic research data supporting this hypothesis are discussed. PMID:16475958

  10. The human serotonin 5-HT{sub 2C} receptor: Complete cDNA, genomic structure, and alternatively spliced variant

    SciTech Connect

    Xie, Enzhong; Zhu, Lingyu; Zhao, Lingyun

    1996-08-01

    The complete 4775-nt cDNA encoding the human serotonin 5-HT{sub 2C} receptor (5-HT{sub 2C}R), a G-protein-coupled receptor, has been isolated. It contains a 1377-nt coding region flanked by a 728-nt 5{prime}-untranslated region and a 2670-nt 3{prime}-untranslated region. By using the cloned 5-HT{sub 2C}R cDNA probe, the complete human gene for this receptor has been isolated and shown to contain six exons and five introns spanning at least 230 kb of DNA. The coding region of the human 5-HT{sub 2C}R gene is interrupted by three introns, and the positions of the intron/exon junctions are conserved between the human and the rodent genes. In addition, an alternatively spliced 5-HT{sub 2C}R RNA that contains a 95-nt deletion in the region coding for the second intracellular loop and the fourth transmembrane domain of the receptor has been identified. This deletion leads to a frameshift and premature termination so that the short isoform RNA encodes a putative protein of 248 amino acids. The ratio for the short isoform over the 5-HT{sub 2C}R RNA was found to be higher in choroid plexus tumor than in normal brain tissue, suggesting the possibility of differential regulation of the 5-HT{sub 2C}R gene in different neural tissues or during tumorigenesis. Transcription of the human 5-HT{sub 2C}R gene was found to be initiated at multiple sites. No classical TATA-box sequence was found at the appropriate location, and the 5{prime}-flanking sequence contains many potential transcription factor-binding sites. A 7.3-kb 5{prime}-flanking 5-HT{sub 2C}R DNA directed the efficient expression of a luciferase reported gene in SK-N-SH and IMR32 neuroblastoma cells, indicating that is contains a functional promoter. 69 refs., 8 figs., 1 tab.

  11. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  12. RNA editing of the human serotonin 5-HT(2C) receptor delays agonist-stimulated calcium release.

    PubMed

    Price, R D; Sanders-Bush, E

    2000-10-01

    RNA encoding the human 5-HT(2C) receptor undergoes adenosine-to-inosine RNA editing events at five positions in the putative second intracellular loop, with a corresponding reduction in receptor/G-protein coupling. Agonist-stimulated calcium release was examined in NIH-3T3 fibroblasts stably expressing the nonedited human INI (hINI) or the edited hVSV or hVGV variants. We hypothesized that different receptor isoforms would show altered dynamics of agonist-induced calcium release. The three isoforms showed a rightward shift in agonist concentration-response curves for eliciting calcium release (EC(50) values: hINI, 2.2 nM; hVSV, 15 nM; hVGV, 49 nM). Additionally, the hVGV receptor showed a blunted and delayed [Ca(2+)](i) peak compared with the hINI or hVSV receptor isoforms. These distinctions in agonist-induced [Ca(2+)](i) release imply that edited 5-HT(2C) receptors may produce distinct physiological responses within the central nervous system. PMID:10999958

  13. CYP2C8 Is a Novel Target of Peroxisome Proliferator-Activated Receptor α in Human Liver.

    PubMed

    Makia, Ngome L; Goldstein, Joyce A

    2016-01-01

    Human cytochrome P450 (CYP) 2C enzymes metabolize ∼30% of clinically prescribed drugs and various environmental chemicals. CYP2C8, an important member of this subfamily, metabolizes the anticancer drug paclitaxel, certain antidiabetic drugs, and endogenous substrates, including arachidonic acid, to physiologically active epoxyeicosatrienoic acids. Previous studies from our laboratory showed that microRNA 107 (miR107) and microRNA 103 downregulate CYP2C8 post-transcriptionally. miR107 is located in intron 5 of the pantothenate kinase 1 (PANK1) gene. p53 has been reported to coregulate the induction of PANK1 and miR107. Here, we examine the possible downregulation of CYP2C8 by drugs capable of inducing miR107. Hypolipidemic drugs, such as bezafibrate, known activators of the peroxisome proliferator-activated receptor α (PPARα), induce both the PANK1 gene and miR107 (∼2.5-fold) in primary human hepatocytes. Surprisingly, CYP2C8 mRNA and protein levels were induced by bezafibrate. CYP2C8 promoter activity was increased by ectopic expression of PPARα in HepG2 cells, with a further increase after bezafibrate (∼18-fold), 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (∼10-fold) treatment, or the antidiabetic drug rosiglitazone, all known PPAR activators. Promoter sequence analyses, deletion studies, mutagenesis studies, and electrophoretic mobility shift assays identified a PPARα response element located at position -2109 base pair relative to the translation start site of CYP2C8. Chromatin immunopreciptation assay analysis confirmed recruitment of PPARα to this PPARα response element after bezafibrate treatment of human hepatocytes. Thus, we show for the first time that CYP2C8 is transcriptionally regulated by PPARα, suggesting the potential for drug-drug interactions due to upregulation of CYP2C8 by PPAR activators. PMID:26467040

  14. CYP2C8 Is a Novel Target of Peroxisome Proliferator-Activated Receptor α in Human Liver

    PubMed Central

    Makia, Ngome L.

    2016-01-01

    Human cytochrome P450 (CYP) 2C enzymes metabolize ∼30% of clinically prescribed drugs and various environmental chemicals. CYP2C8, an important member of this subfamily, metabolizes the anticancer drug paclitaxel, certain antidiabetic drugs, and endogenous substrates, including arachidonic acid, to physiologically active epoxyeicosatrienoic acids. Previous studies from our laboratory showed that microRNA 107 (miR107) and microRNA 103 downregulate CYP2C8 post-transcriptionally. miR107 is located in intron 5 of the pantothenate kinase 1 (PANK1) gene. p53 has been reported to coregulate the induction of PANK1 and miR107. Here, we examine the possible downregulation of CYP2C8 by drugs capable of inducing miR107. Hypolipidemic drugs, such as bezafibrate, known activators of the peroxisome proliferator-activated receptor α (PPARα), induce both the PANK1 gene and miR107 (∼2.5-fold) in primary human hepatocytes. Surprisingly, CYP2C8 mRNA and protein levels were induced by bezafibrate. CYP2C8 promoter activity was increased by ectopic expression of PPARα in HepG2 cells, with a further increase after bezafibrate (∼18-fold), 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (∼10-fold) treatment, or the antidiabetic drug rosiglitazone, all known PPAR activators. Promoter sequence analyses, deletion studies, mutagenesis studies, and electrophoretic mobility shift assays identified a PPARα response element located at position −2109 base pair relative to the translation start site of CYP2C8. Chromatin immunopreciptation assay analysis confirmed recruitment of PPARα to this PPARα response element after bezafibrate treatment of human hepatocytes. Thus, we show for the first time that CYP2C8 is transcriptionally regulated by PPARα, suggesting the potential for drug-drug interactions due to upregulation of CYP2C8 by PPAR activators. PMID:26467040

  15. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Cowan, Ann; Mazurkiewicz, Joseph E

    2012-07-01

    Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric. PMID:22593582

  16. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    PubMed

    Gotoh, Saki; Negishi, Masahiko

    2015-01-01

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes. PMID:26392083

  17. Effects of RO 60 0175, a 5-HT(2C) receptor agonist, in three animal models of anxiety.

    PubMed

    Kennett, G; Lightowler, S; Trail, B; Bright, F; Bromidge, S

    2000-01-10

    There is some controversy as to whether 5-HT(2C) receptor agonists are anxiogenic or anxiolytic. The effects of the novel 5-HT(2C) receptor agonist, (S)-2-chloro-5-fluoro-indol-1-yl)-1-methyl ethylamine fumarate (RO 60 0175), in three models of anxiety were therefore tested. RO 60 0175 was found to induce hypolocomotion in rats at doses greater than 0.5 mg/kg s.c., an effect reversed by the selective 5-HT(2C) receptor antagonist, SB-242084. RO 60 0175 did not elicit anxiolytic-like responses in the social interaction test under high light unfamiliar conditions, but suppressed both time spent in social interaction and locomotion at doses of 1 and 3 mg/kg s.c., suggesting a sedative response. In the Vogel conflict test, RO 60 0175 had no significant action on the number of shocks taken. In the Geller-Seifter test, RO 60 0175 (0.3 and 1 mg/kg s.c.) simultaneously reduced both unpunished and punished lever pressing, a profile consistent with sedation. Finally, RO 60 0175 was tested in a rat social interaction test under low light familiar conditions optimal for the detection of anxiogenic-like responses. At 1 and 3 mg/kg s.c., RO 60 0175 reduced both time spent in social interaction and concurrent locomotion, a profile more consistent with sedation than anxiogenesis. In conclusion, RO 60 0175 induced sedative-like responses via 5-HT(2C) receptor activation, but was neither anxiolytic, nor clearly anxiogenic at the doses tested. PMID:10650160

  18. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  19. Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor.

    PubMed

    Kurko, Dalma; Kapui, Zoltán; Nagy, József; Lendvai, Balázs; Kolok, Sándor

    2014-08-01

    Although G protein-coupled receptors (GPCRs) are traditionally categorized as Gs-, Gq-, or Gi/o-coupled, their signaling is regulated by multiple mechanisms. GPCRs can couple to several effector pathways, having the capacity to interact not only with more than one G protein subtype but also with alternative signaling or effector proteins such as arrestins. Moreover, GPCR ligands can have different efficacies for activating these signaling pathways, a characteristic referred to as biased agonism or functional selectivity. In this work our aim was to detect differences in the ability of various agonists acting at the α2C type of adrenergic receptors2C-ARs) to modulate cAMP accumulation, cytoplasmic Ca(2+) release, β-arrestin recruitment and receptor internalization. A detailed comparative pharmacological characterization of G protein-dependent and -independent signaling pathways was carried out using adrenergic agonists (norepinephrine, phenylephrine, brimonidine, BHT-920, oxymetazoline, clonidine, moxonidine, guanabenz) and antagonists (MK912, yohimbine). As initial analysis of agonist Emax and EC50 values suggested possible functional selectivity, ligand bias was quantified by applying the relative activity scale and was compared to that of the endogenous agonist norepinephrine. Values significantly different from 0 between pathways indicated an agonist that promoted different level of activation of diverse effector pathways most likely due to the stabilization of a subtly different receptor conformation from that induced by norepinephrine. Our results showed that a series of agonists acting at the α2C-AR displayed different degree of functional selectivity (bias factors ranging from 1.6 to 36.7) through four signaling pathways. As signaling via these pathways seems to have distinct functional and physiological outcomes, studying all these stages of receptor activation could have further implications for the development of more selective therapeutics with

  20. Editing of the serotonin 2C receptor pre-mRNA: Effects of the Morris Water Maze.

    PubMed

    Du, Yunzhi; Stasko, Melissa; Costa, Alberto C; Davisson, Muriel T; Gardiner, Katheleen J

    2007-04-15

    The pre-mRNA encoding the serotonin 2C receptor, HTR2C (official mouse gene symbol, Htr2c), is subject to adenosine deamination that produces inosine at five sites within the coding region. Combinations of this site-specific A-to-I editing can produce 32 different mRNA sequences encoding 24 different protein isoforms with differing biochemical and pharmacological properties. Studies in humans have reported abnormalities in patterns of HTR2C editing in psychiatric disorders, and studies in rodents show altered patterns of editing in response to drug treatments and stressful situations. To further explore the biological significance of editing of the Htr2c mRNA and its regulation, we have examined patterns of Htr2c editing in C57BL/6J mice after exposure to the hidden platform version of the Morris Water Maze, a test of spatial learning that, in mice, is also associated with stress. In brains of both swimming controls and mice trained to find the platform, subtle time dependent changes in editing patterns are seen as soon as 1 h after a probe trial and typically last less than 24 h. Changes in whole brain with cerebellum removed differ from those seen in isolated hippocampus and cortex. Unexpectedly, in hippocampi from subsets of mice, abnormally low levels of editing were seen that were not correlated with behavior or with editing levels in cortex. These data implicate responses to spatial learning and stress, in addition to stochastic processes, in the generation of subtle changes in editing patterns of Htr2c. PMID:17307311

  1. Editing of the Serotonin 2C Receptor Pre-mRNA: Effects of the Morris Water Maze

    PubMed Central

    Du, Yunzhi; Stasko, Melissa; Costa, Alberto C.; Davisson, Muriel T.; Gardiner, Katheleen J.

    2007-01-01

    The pre-mRNA encoding the serotonin 2C receptor, HTR2C (official mouse gene symbol, Htr2c), is subject to adenosine deamination that produces inosine at five sites within the coding region. Combinations of this site-specific A-to-I editing can produce 32 different mRNA sequences encoding 24 different protein isoforms with differing biochemical and pharmacological properties. Studies in humans have reported abnormalities in patterns of HTR2C editing in psychiatric disorders, and studies in rodents show altered patterns of editing in response to drug treatments and stressful situations. To further explore the biological significance of editing of the Htr2c mRNA and its regulation, we have examined patterns of Htr2c editing in C57BL/6J mice after exposure to the hidden platform version of the Morris Water Maze, a test of spatial learning that, in mice, is also associated with stress. In brains of both swimming controls and mice trained to find the platform, subtle time dependent changes in editing patterns are seen as soon as one hour after a probe trial and typically last less than 24 hours. Changes in whole brain with cerebellum removed differ from those seen in isolated hippocampus and cortex. Unexpectedly, in hippocampi from subsets of mice, abnormally low levels of editing were seen that were not correlated with behavior or with editing levels in cortex. These data implicate responses to spatial learning and stress, in addition to stochastic processes, in the generation of subtle changes in editing patterns of Htr2c. PMID:17307311

  2. Identification, expression, and pharmacology of a Cys{sub 23}-Ser{sub 23} substitution in the human 5-HT{sub 2C} receptor gene (HTR2C)

    SciTech Connect

    Lappalainen, J.; Ozaki, N.; Goldman, D.

    1995-05-20

    The function of brain serotonin-2C (5-HT{sub 2C}) receptors, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist challenge, has been suggested to be abnormal in individuals with neuropsychiatric disorders. Thus, it is important to identify polymorphisms and functional variants within this gene. Using SSCP analysis, the authors identified a Cys{sub 23}-Ser{sub 23} substitution (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}) in the first hydrophobic region of the human 5-HT{sub 2C} receptor. Allele frequencies in unrelated Caucasians were 0.13 and 0.87 for 5-HT{sub 2Cser} and 5-HT{sub 2Ccys}, respectively. DNAs from informative CEPH families were typed for this polymorphism and analyzed with respect to 20 linked markers on the X chromosome. Linkage analysis placed the 5-HT{sub 2C} receptor gene (HTR2C) on Xq24. To evaluate whether this amino acid substitution causes a variant function of this receptor, recombinant human 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptors were expressed in Xenopus oocytes and tested for responses to 5-HT using electrophysiological techniques. Concentration-response curves for 5-HT were not significantly different in oocytes expressing either form of the receptor, suggesting that the 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptor proteins may not differ in their responses to serotonin under baseline physiological conditions. 43 refs., 3 figs., 1 tab.

  3. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    PubMed

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11. PMID:23995658

  4. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  5. Role of 5-HT2C Receptors in Effects of Monoamine Releasers on Intracranial Self-Stimulation in Rats

    PubMed Central

    Bauer, Clayton T.; Banks, Matthew L.; Blough, Bruce E.; Negus, S. Stevens

    2015-01-01

    Rationale Many monoamine releasers are abused by humans and produce abuse-related facilitation of intracranial self-stimulation (ICSS) in rats. Facilitation of ICSS in rats can be limited by monoamine releaser-induced serotonin (5-HT) release, but receptors that mediate 5-HT effects of monoamine releasers are unknown. Objectives Investigate whether 5-HT2C receptor activation is necessary for rate-decreasing effects produced in an ICSS procedure in rats by the 5-HT-selective monoamine releaser fenfluramine and the non-selective releasers napthylisopropylamine (PAL-287) and (+)-3,4-methylenedioxymethamphetamine ((+)-MDMA). Methods Adult male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for brain stimulation under a “frequency-rate” ICSS procedure. Effectiveness of the 5-HT2C antagonist SB 242,084 was evaluated to block rate-decreasing effects produced by (1) the 5-HT2C agonist Ro 60-0175, (2) the 5-HT-selective releaser fenfluramine, and (3) the mixed-action dopamine (DA)/norepinephrine (NE)/5-HT releasers PAL-287 (1.0-5.6 mg/kg), and (+)-MDMA (1.0-3.2 mg/kg). For comparison, effectiveness of SB 242,084 to alter rate-decreasing effects of the kappa opioid receptor agonist U69,593 and rate-increasing effects of the DA>5-HT releaser amphetamine were also examined. Results SB 242,084 pretreatment blocked rate-decreasing effects of Ro 60-0175 and fenfluramine, but not the rate-decreasing effects of U69,593 or the rate-increasing effects of amphetamine. SB 242,084 blunted the rate-decreasing effects and enhanced expression of rate-increasing effects of PAL-287 and (+)-MDMA. Conclusions These data suggest that 5-HT2C receptor activation contributes to rate-decreasing effects that are produced by selective and mixed-action 5-HT releasers in rats and that may oppose and limit the expression of abuse-related ICSS facilitation by these compounds. PMID:26041338

  6. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor.

    PubMed

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  7. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor

    PubMed Central

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  8. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS. PMID:24008353

  9. Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes.

    PubMed

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung

    2013-10-01

    Areca nut (Areca catechu) is chewed as a medical and psychoactive food by roughly 10% of the world population. Areca nut chewing may lead to low birth weight, premature delivery and impaired muscle development. Our previous study showed that arecoline, a major alkaloid in the areca nut, inhibited the myogenic differentiation of C2C12 myoblastic cells. The clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the neuromuscular junction (NMJ) by agrin, a signaling protein released by motor neurons, is critical for the development of functional muscles. Here, we further investigate whether arecoline affects the AChR clustering using cultured C2C12 myotubes. Rhodamine-conjugated α-bungarotoxin was used to detect the presence of AChR clusters. Our results showed that arecoline inhibited the formation of agrin-induced AChR clusters and destabilized agrin-induced or spontaneous AChR cluster formation. In addition, arecoline inhibited the expression of myogenin in C2C12 myotubes. These results shed light on the important role of arecoline on the detrimental effect of areca nut to muscle development. PMID:23933062

  10. Functional Divergence of the Nuclear Receptor NR2C1 as a Modulator of Pluripotentiality During Hominid Evolution.

    PubMed

    Baker, Jennifer L; Dunn, Katherine A; Mingrone, Joseph; Wood, Bernard A; Karpinski, Beverly A; Sherwood, Chet C; Wildman, Derek E; Maynard, Thomas M; Bielawski, Joseph P

    2016-06-01

    Genes encoding nuclear receptors (NRs) are attractive as candidates for investigating the evolution of gene regulation because they (1) have a direct effect on gene expression and (2) modulate many cellular processes that underlie development. We employed a three-phase investigation linking NR molecular evolution among primates with direct experimental assessment of NR function. Phase 1 was an analysis of NR domain evolution and the results were used to guide the design of phase 2, a codon-model-based survey for alterations of natural selection within the hominids. By using a series of reliability and robustness analyses we selected a single gene, NR2C1, as the best candidate for experimental assessment. We carried out assays to determine whether changes between the ancestral and extant NR2C1s could have impacted stem cell pluripotency (phase 3). We evaluated human, chimpanzee, and ancestral NR2C1 for transcriptional modulation of Oct4 and Nanog (key regulators of pluripotency and cell lineage commitment), promoter activity for Pepck (a proxy for differentiation in numerous cell types), and average size of embryological stem cell colonies (a proxy for the self-renewal capacity of pluripotent cells). Results supported the signal for alteration of natural selection identified in phase 2. We suggest that adaptive evolution of gene regulation has impacted several aspects of pluripotentiality within primates. Our study illustrates that the combination of targeted evolutionary surveys and experimental analysis is an effective strategy for investigating the evolution of gene regulation with respect to developmental phenotypes. PMID:27075724

  11. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile. PMID:17337633

  12. Enhancement of alcohol drinking in mice depends on alterations in RNA editing of serotonin 2C receptors

    PubMed Central

    Watanabe, Yoshihisa; Yoshimoto, Kanji; Tatebe, Harutsugu; Kita, Masakazu; Nishikura, Kazuko; Kimura, Minoru; Tanaka, Masaki

    2014-01-01

    Serotonin 2C receptors (5-HT2CR) are G-protein-coupled receptors with various actions, including involvement in drug addiction. 5-HT2CR undergoes mRNA editing, converting genomically encoded adenosine residues to inosines via adenosine deaminases acting on RNA (ADARs). Here we show that enhanced alcohol drinking behaviour in mice is associated with the degree of 5-HT2CR mRNA editing in the nucleus accumbens and dorsal raphe nuceus, brain regions important for reward and addiction. Following chronic alcohol vapour exposure, voluntary alcohol intake increased in C57BL/6J mice, but remained unchanged in C3H/HeJ and DBA/2J mice. 5-HT2CR mRNA editing frequency in both regions increased significantly in C57BL/6J mice, as did expressions of 5-HT2CR, ADAR1 and ADAR2, but not in other strains. Moreover, mice that exclusively express the unedited isoform (INI) of 5-HT2CR mRNA on a C57BL/6J background did not exhibit increased alcohol intake compared with wild-type mice. Our results indicate that alterations in 5-HT2CR mRNA editing underlie alcohol preference in mice. PMID:24345557

  13. Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice.

    PubMed

    Halberstadt, Adam L; Sindhunata, Ivan S; Scheffers, Kees; Flynn, Aaron D; Sharp, Richard F; Geyer, Mark A; Young, Jared W

    2016-08-01

    Timing deficits are observed in patients with schizophrenia. Serotonergic hallucinogens can also alter the subjective experience of time. Characterizing the mechanism through which the serotonergic system regulates timing will increase our understanding of the linkage between serotonin (5-HT) and schizophrenia, and will provide insight into the mechanism of action of hallucinogens. We investigated whether interval timing in mice is altered by hallucinogens and other 5-HT2 receptor ligands. C57BL/6J mice were trained to perform a discrete-trials temporal discrimination task. In the discrete-trials task, mice were presented with two levers after a variable interval. Responding on lever A was reinforced if the interval was <6.5 s, and responding on lever B was reinforced if the interval was >6.5 s. A 2-parameter logistic function was fitted to the proportional choice for lever B (%B responding), yielding estimates of the indifference point (T50) and the Weber fraction (a measure of timing precision). The 5-HT2A antagonist M100907 increased T50, whereas the 5-HT2C antagonist SB-242,084 reduced T50. The results indicate that 5-HT2A and 5-HT2C receptors have countervailing effects on the speed of the internal pacemaker. The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI; 3 mg/kg IP), a 5-HT2 agonist, flattened the response curve at long stimulus intervals and shifted it to the right, causing both T50 and the Weber fraction to increase. The effect of DOI was antagonized by M100907 (0.03 mg/kg SC) but was unaffected by SB-242,084 (0.1 mg/kg SC). Similar to DOI, the selective 5-HT2A agonist 25CN-NBOH (6 mg/kg SC) reduced %B responding at long stimulus intervals, and increased T50 and the Weber fraction. These results demonstrate that hallucinogens alter temporal perception in mice, effects that are mediated by the 5-HT2A receptor. It appears that 5-HT regulates temporal perception, suggesting that altered serotonergic signaling may contribute to the timing deficits

  14. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  15. Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

    PubMed Central

    Anastasio, N C; Liu, S; Maili, L; Swinford, S E; Lane, S D; Fox, R G; Hamon, S C; Nielsen, D A; Cunningham, K A; Moeller, F G

    2014-01-01

    Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity') that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence. PMID:24618688

  16. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen.

    PubMed

    Pockros, Lara A; Pentkowski, Nathan S; Conway, Sineadh M; Ullman, Teresa E; Zwick, Kimberly R; Neisewander, Janet L

    2012-12-01

    Both the 5-HT(2A) receptor (R) antagonist M100907 and the 5-HT(2C) R agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently, we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT(2A)/5-HT(2C) R interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: (1) saline + saline, (2) saline + cocaine, (3) 0.025 mg/kg M100907 + cocaine, (4) 0.125 mg/kg MK212 + cocaine, or (5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT(2A) Rs and 5-HT(2C) Rs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT(2) R subtypes on behavior. Further research investigating combined 5-HT(2A) R antagonism and 5-HT(2C) R agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  17. Lorcaserin, a selective 5-HT(2C) receptor agonist, decreases alcohol intake in female alcohol preferring rats.

    PubMed

    Rezvani, Amir H; Cauley, Marty C; Levin, Edward D

    2014-10-01

    Serotonergic systems in the brain have been found to be important in the addiction to alcohol. The purpose of this study was to evaluate the efficacy of a novel 5-HT2c receptor agonist, lorcaserin for reducing alcohol consumption in alcohol-preferring (P) rats. Adult female rats were allowed to drink water or alcohol (12%, v/v) using a standard two-bottle choice procedure. Once stable baselines were established, the acute (0, 0.3125, 0.625 and 1.25 mg/kg, s.c.), and chronic (0, 0.625 mg/kg, sc for 10 days) effects of lorcaserin on alcohol intake and preference were assessed at different time points. In a separate experiment, the effects of lorcaserin on locomotor activity were determined. Our results show that both 0.625 and 1.25 mg/kg lorcaserin significantly reduced alcohol intake at 2, 4 and 6 h. after the drug administration. The chronic administration of 0.625 mg/kg lorcaserin significantly reduced alcohol intake up to 6h every day after the injection and there was no sign of diminished efficacy of the drug during 10-day treatment. To determine the effects of lorcaserin on sucrose intake, rats were put on a two-bottle choice of water vs a solution of 7% sucrose. The high dose of lorcaserin (1.25 mg/kg, s.c.) reduced sucrose intake only for up to 2 h. When tested for locomotor activity, lorcaserin injected 20 min before testing significantly reduced locomotor activity at all doses. However, when it was injected 5.5h before the start of the 1-h session, neither dose had a significant effect on locomotor activity. These results show the efficacy of lorcaserin in reducing alcohol intake without a significant effect on water intake and locomotion suggesting the involvement of 5-HT2c receptors in alcohol seeking behavior. Further research is warranted to determine the possible efficacy of lorcaserin or similar drugs as treatments for the treatment of alcoholism. PMID:25109272

  18. Stimulation of 5-HT2C Receptors Improves Cognitive Deficits Induced by Human Tryptophan Hydroxylase 2 Loss of Function Mutation

    PubMed Central

    Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin

    2014-01-01

    Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946

  19. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood

    PubMed Central

    Bombail, Vincent; Qing, Wei; Chapman, Karen E; Holmes, Megan C

    2014-01-01

    The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate ‘INI’ mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific. PMID:25257581

  20. Functional interaction between peroxisome proliferator-activated receptors-α and Mef-2C on human carnitine palmitoyltransferase 1β (CPT1β) gene activation

    PubMed Central

    Baldán, Ángel; Relat, Joana; Marrero, Pedro F.; Haro, Diego

    2004-01-01

    Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential. PMID:15356291

  1. Activation of serotonin(2C) receptors in the lateral habenular nucleus increases the expression of depression-related behaviors in the hemiparkinsonian rat.

    PubMed

    Han, Ling-Na; Zhang, Li; Li, Li-Bo; Sun, Yi-Na; Wang, Yong; Chen, Li; Guo, Yuan; Zhang, Yu-Ming; Zhang, Qiao-Jun; Liu, Jian

    2015-06-01

    The roles of lateral habenular nucleus (LHb) glutamate neurons and serotonin2C (5-HT2C) receptors in depression are poorly understood, particularly in Parkinson's disease-associated depression. Here we assessed the importance of LHb glutamate neurons and 5-HT2C receptors for depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. The lesion induced depressive-like responses compared to sham-operated rats. Intra-LHb injection of potent, selective 5-HT2C receptor agonist Ro60-0175 decreased sucrose consumption and increased immobility time in sham-operated rats, indicating the induction of depressive-like responses, and intra-LHb injection of Ro60-0175 further increased the expression of depressive-like behaviors in the lesioned rats. Activation of LHb 5-HT2C receptors by the local administration of Ro60-0175 increased the firing rate of EAAC1 (a neuronal glutamate transporter)-positive neurons and percentage of the neurons with burst-firing pattern in the two groups of rats. Compared to sham-operated rats, the duration of Ro60-0175 action on the firing rate of EAAC1-positive neurons was markedly prolonged in the lesioned rats. Intra-LHb injection of Ro60-0175 decreased dopamine, 5-HT and noradrenaline levels in the medial prefrontal cortex, habenula, hippocampus and amygdala in sham-operated and the lesioned rats. The lesion did not change the percentage of EAAC1/5-HT2C receptor co-expressing neurons in the LHb. These findings indicate that activation of 5-HT2C receptors in the LHb increases firing activity of LHb glutamate neurons and then decreases monoamine levels in several brain regions, which increase the expression of depressive-like behaviors. Further, our results also suggest that the lesion leads to hyperfunctionality of 5-HT2C receptors on glutamate neurons of the LHb. PMID:25661701

  2. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    PubMed

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity. PMID:25720309

  3. Lorcaserin, A 5-HT2C Receptor Agonist, Reduces Body Weight by Decreasing Energy Intake without Influencing Energy Expenditure

    PubMed Central

    Martin, Corby K.; Redman, Leanne M.; Zhang, Jinkun; Sanchez, Matilde; Anderson, Christen M.; Smith, Steven R.

    2011-01-01

    Context: Lorcaserin, a selective 5-hydroxytryptamine (5-HT)2C receptor agonist, reduces body weight. It is unclear whether weight loss is due to reduced energy intake (EI) or also to enhanced energy expenditure (EE). Objective: This study tested the effect of lorcaserin on EI and EE. Design, Participants, and Intervention: In a double-blind, randomized, placebo-controlled trial, 57 (39 women) overweight and obese (body mass index, 27–45 kg/m2) adults were randomized to placebo (n = 28) or 10 mg twice daily lorcaserin (n = 29) for 56 d. Weight maintenance was imposed during d 1–7. Beginning on d 8, participants followed a diet and exercise plan targeting a 600 kcal/d deficit. Outcomes: At baseline and after 7 and 56 d of treatment, we measured body weight, body composition (dual x-ray absorptiometry), blood pressure, heart rate, EI at lunch and dinner, subjective appetite ratings, and 24-h EE and 24-h-respiratory quotient (RQ), measured by indirect calorimetry in a respiratory chamber. Results: After 7 d of weight maintenance, EI was significantly (P < 0.01) reduced with lorcaserin but not placebo (mean ± sem for lorcaserin, −286 ± 86 kcal; placebo, −147 ± 89 kcal). After 56 d, lorcaserin resulted in significantly larger reductions in body weight (lorcaserin, −3.8 ± 0.4 kg; placebo, −2.2 ± 0.5 kg; P < 0.01), EI (lorcaserin, −470 ± 87 kcal; placebo, −205 ± 91 kcal; P < .05), and appetite ratings than in placebo. Changes in 24-h EE and 24-h RQ did not differ between groups, even after 24-h EE was adjusted for body weight and composition. Compared with placebo, lorcaserin had no effect on systolic or diastolic blood pressure or heart rate after 56 d. Conclusions: Lorcaserin reduces body weight through reduced EI, not altered EE or RQ. PMID:21190985

  4. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase.

    PubMed

    Montastruc, François; Palmaro, Aurore; Bagheri, Haleh; Schmitt, Laurent; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse

    2015-10-01

    Pharmacodynamic mechanisms of diabetes induced by antipsychotic drugs remain unclear, while numerous receptors have been suspected to be involved in the genesis of this Adverse Drug Reaction (ADR). We investigated potential relationships between antipsychotics׳ receptor occupancy (serotonin 5-HT1A, 5-HT2A, 5-HT2C, histamine H1, muscarinic M3, adrenergic α1, α2 or dopaminergic D2 D3 occupancies) and reports of diabetes using VigiBase(®), the World Health Organization (WHO) global Individual Case Safety Report (ICSR) database. All ADR reports from 15 first and second generation antipsychotic drugs recorded in VigiBase(®) were extracted. Logistic regression models, completed by disproportionality analysis, were used to determine the associations between antipsychotics׳ receptor occupancy and ICSRs of diabetes on VigiBase(®). During the study period, 94,460 ICSRs involved at least one of the 15 antipsychotics of interest. Diabetes was reported in 1799 (1.9%) patients. Clozapine was the most frequently suspected drug (n=953; 53.0%). A significant and positive association was found between histamine H1, muscarinic M3 and serotonin 5-HT2C, 5-HT2A receptor occupancies and reports of diabetes. A multivariable stepwise regression model showed that only serotonin 5-HT2c (AOR=2.13, CI 95% 1.72-2.64) and histamine H1 (AOR=1.91, CI 95% 1.38-2.64) predicted the risk for diabetes mellitus (p<0.001). Using an original pharmacoepidemiology-pharmacodynamic (PE-PD) approach, our study supports that antipsychotic drugs blocking simultaneously histamine H1 and serotonin 5-HT2C receptors are more frequently associated with diabetes reports in VigiBase(®) than other antipsychotics. These findings should encourage investigation of histamine H1 and serotonin 5-HT2C properties for predicting the risk of glycemic effects in candidate antipsychotics. PMID:26256010

  5. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    SciTech Connect

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  6. (1R, 3S)-(−)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through Gαq to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(−)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (−)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (−)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (−)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (−)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (−)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (−)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  7. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  8. Quinazolin-4-one derivatives: A novel class of non-competitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists

    PubMed Central

    Mosley, Cara A.; Acker, Timothy M.; Hansen, Kasper B.; Mullasseril, Praseeda; Andersen, Karen T.; Le, Phuong; Vellano, Kimberly M.; Bräuner-Osborne, Hans; Liotta, Dennis C.; Traynelis, Stephen F.

    2010-01-01

    We describe a new class of subunit-selective antagonists of N-methyl D-Aspartate (NMDA)-selective ionotropic glutamate receptors that contain the (E)-3-phenyl-2-styrylquinazolin-4(3H)-one backbone. The inhibition of recombinant NMDA receptor function induced by these quinazolin-4-one derivatives is non-competitive and voltage-independent, suggesting that this family of compounds does not exert action on the agonist binding site of the receptor or block the channel pore. The compounds described here resemble CP-465,022 ((S)-3-(2-chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-vinyl]-6-fluoro-3H-quinazolin-4-one), a non-competitive antagonist of AMPA-selective glutamate receptors. However, modification of ring substituents resulted in analogues with greater than 100-fold selectivity for recombinant NMDA receptors over AMPA and kainate receptors. Furthermore, within this series of compounds, analogues were identified with 50-fold selectivity for recombinant NR2C/D-containing receptors over NR2A/B containing receptors. These compounds represent a new class of non-competitive subunit-selective NMDA receptor antagonists. PMID:20684595

  9. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  10. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  11. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    PubMed

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  12. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells

    PubMed Central

    Peng, Xinxia; Li, Shuying S.; Gilbert, Peter B.; Geraghty, Daniel E.; Katze, Michael G.

    2016-01-01

    The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies. PMID:27015273

  13. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells.

    PubMed

    Peng, Xinxia; Li, Shuying S; Gilbert, Peter B; Geraghty, Daniel E; Katze, Michael G

    2016-01-01

    The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies. PMID:27015273

  14. Deletion of the Activating NKG2C Receptor and a Functional Polymorphism in its Ligand HLA-E in Psoriasis Susceptibility

    PubMed Central

    Zeng, Xue; Chen, Haoyan; Gupta, Rashmi; Paz-Altschul, Oscar; Bowcock, Anne M.; Liao, Wilson

    2013-01-01

    Psoriasis is an inflammatory, immune-mediated disease of the skin. Several studies have suggested that natural killer (NK) cells and their receptors may be important for its pathogenesis. Here, we examined whether deletion of the activating natural killer receptor gene NKG2C, which has a frequency of 20% in the European population, was associated with psoriasis susceptibility. The NKG2C deletion and a functional polymorphism in its ligand HLA-E were genotyped in a Caucasian cohort of 611 psoriasis cases and 493 controls. We found that the NKG2C deletion was significantly increased in cases compared to controls (0.258 vs. 0.200, p=0.0012, OR=1.43 [1.15–1.79]). The low-expressing HLA-E*01:01 allele was associated with psoriasis (p=0.0018), although this association was dependent on HLA-C. Our findings support a potential immunoregulatory role for NK cells in psoriasis and suggest the importance of future studies to investigate the contribution of NK cells and their regulatory receptors to the pathogenesis of psoriasis. PMID:24079744

  15. Deletion of the activating NKG2C receptor and a functional polymorphism in its ligand HLA-E in psoriasis susceptibility.

    PubMed

    Zeng, Xue; Chen, Haoyan; Gupta, Rashmi; Paz-Altschul, Oscar; Bowcock, Anne M; Liao, Wilson

    2013-10-01

    Psoriasis is an inflammatory, immune-mediated disease of the skin. Several studies have suggested that natural killer (NK) cells and their receptors may be important for its pathogenesis. Here, we examined whether deletion of the activating natural killer receptor gene NKG2C, which has a frequency of 20% in the European population, was associated with psoriasis susceptibility. The NKG2C deletion and a functional polymorphism in its ligand HLA-E were genotyped in a Caucasian cohort of 611 psoriasis cases and 493 controls. We found that the NKG2C deletion was significantly increased in cases compared with controls [0.258 vs 0.200, P = 0.0012, OR = 1.43 (1.15-1.79)]. The low-expressing HLA-E*01:01 allele was associated with psoriasis (P = 0.0018), although this association was dependent on HLA-C. Our findings support a potential immunoregulatory role for NK cells in psoriasis and suggest the importance of future studies to investigate the contribution of NK cells and their regulatory receptors to the pathogenesis of psoriasis. PMID:24079744

  16. A Novel Translational Assay of Response Inhibition and Impulsivity: Effects of Prefrontal Cortex Lesions, Drugs Used in ADHD, and Serotonin 2C Receptor Antagonism

    PubMed Central

    Humby, Trevor; Eddy, Jessica B; Good, Mark A; Reichelt, Amy C; Wilkinson, Lawrence S

    2013-01-01

    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control. PMID:23657439

  17. The Serotonin 2C Receptor Agonist Lorcaserin Attenuates Intracranial Self-Stimulation and Blocks the Reward-Enhancing Effects of Nicotine.

    PubMed

    Zeeb, Fiona D; Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    Lorcaserin, a serotonin (5-hydroxytryptamine, 5-HT) 2C receptor agonist, was recently approved for the treatment of obesity. We previously suggested that 5-HT2C receptor agonists affect reward processes and reduce the rewarding effects of drugs of abuse. Here, we determined whether lorcaserin (1) decreases responding for brain stimulation reward (BSR) and (2) prevents nicotine from enhancing the efficacy of BSR. Rats were trained on the intracranial self-stimulation (ICSS) paradigm to nosepoke for BSR of either the dorsal raphé nucleus or left medial forebrain bundle. In Experiment 1, lorcaserin (0.3-1.0 mg/kg) dose-dependently reduced the efficacy of BSR. This effect was blocked by prior administration of the 5-HT2C receptor antagonist SB242084. In Experiment 2, separate groups of rats received saline or nicotine (0.4 mg/kg) for eight sessions prior to testing. Although thresholds were unaltered in saline-treated rats, nicotine reduced reward thresholds. An injection of lorcaserin (0.3 mg/kg) prior to nicotine prevented the reward-enhancing effect of nicotine across multiple test sessions. These results demonstrated that lorcaserin reduces the rewarding value of BSR and also prevents nicotine from facilitating ICSS. Hence, lorcaserin may be effective in treating psychiatric disorders, including obesity and nicotine addiction, by reducing the value of food or drug rewards. PMID:25781911

  18. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    PubMed

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  19. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal.

    PubMed

    Marcinkiewcz, Catherine A; Dorrier, Cayce E; Lopez, Alberto J; Kash, Thomas L

    2015-02-01

    One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal. PMID:25229718

  20. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine.

    PubMed

    Cathala, Adeline; Devroye, Céline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-05-01

    In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity. PMID:24661380

  1. A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury.

    PubMed

    Muller, Dominik N; Theuer, Juergen; Shagdarsuren, Erdenechimeg; Kaergel, Eva; Honeck, Horst; Park, Joon-Keun; Markovic, Marija; Barbosa-Sicard, Eduardo; Dechend, Ralf; Wellner, Maren; Kirsch, Torsten; Fiebeler, Anette; Rothe, Michael; Haller, Hermann; Luft, Friedrich C; Schunck, Wolf-Hagen

    2004-02-01

    Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-kappa B activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-alpha-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-kappa B activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was the major isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-alpha activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism. PMID:14742258

  2. A Peroxisome Proliferator-Activated Receptor-α Activator Induces Renal CYP2C23 Activity and Protects from Angiotensin II-Induced Renal Injury

    PubMed Central

    Muller, Dominik N.; Theuer, Juergen; Shagdarsuren, Erdenechimeg; Kaergel, Eva; Honeck, Horst; Park, Joon-Keun; Markovic, Marija; Barbosa-Sicard, Eduardo; Dechend, Ralf; Wellner, Maren; Kirsch, Torsten; Fiebeler, Anette; Rothe, Michael; Haller, Hermann; Luft, Friedrich C.; Schunck, Wolf-Hagen

    2004-01-01

    Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-κB activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-α-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-κB activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was themajor isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-α activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism. PMID:14742258

  3. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  4. Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice.

    PubMed

    Dougherty, John P; Oristaglio, Jeff

    2013-07-01

    Animal studies have established that drugs activating the serotonin 2A (5-HT2A) receptor can enhance learning and memory in a variety of classical and operant conditioning tasks. Unfortunately, long-term agonism typically results in receptor downregulation, which can negate such nootropic effects. Conversely, chronic antagonism can act to increase receptor density, an adaptation which, in principle, should enhance cognition in a manner similar to acute agonism. In this study, we questioned whether chronic treatment with the 5-HT2A receptor antagonist, SR 46349B, a drug known to increase 5-HT2A receptor density in vivo, would improve cognitive performance in normal mice. To address this question, we administered SR 46349B to mice for 4 days following initial training on a simple rule-based reward acquisition task. We subsequently tested their recall of this task and, finally, their ability to adapt to a reversal in reward contingency (reversal learning). For comparison, two additional groups were treated with the 5-HT2A/2C receptor agonist, DOI, which downregulates the 5-HT2A receptor. SR 46349B improved retention of the previously-learned task but did not affect reversal learning. Subjects treated with SR 46349B also completed trials faster and with greater motor efficiency than vehicle- or DOI-treated subjects. We hypothesize that long-term drug treatments resulting in 5-HT2A receptor up-regulation may be useful in enhancing recall of learned behaviors and, thus, may have potential for treating cognitive impairment associated with neurodegenerative disorders. PMID:23587729

  5. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  6. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    PubMed

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete

  7. Mechanism for Noncompetitive Inhibition by Novel GluN2C/D N-Methyl-d-aspartate Receptor Subunit-Selective ModulatorsS⃞

    PubMed Central

    Acker, Timothy M.; Yuan, Hongjie; Hansen, Kasper B.; Vance, Katie M.; Ogden, Kevin K.; Jensen, Henrik S.; Burger, Pieter B.; Mullasseril, Praseeda; Snyder, James P.; Liotta, Dennis C.

    2011-01-01

    The compound 4-(5-(4-bromophenyl)-3-(6-methyl-2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxobutanoic acid (DQP-1105) is a representative member of a new class of N-methyl-d-aspartate (NMDA) receptor antagonists. DQP-1105 inhibited GluN2C- and GluN2D-containing receptors with IC50 values that were at least 50-fold lower than those for recombinant GluN2A-, GluN2B-, GluA1-, or GluK2-containing receptors. Inhibition was voltage-independent and could not be surmounted by increasing concentrations of either coagonist, glutamate or glycine, consistent with a noncompetitive mechanism of action. DQP-1105 inhibited single-channel currents in excised outside-out patches without significantly changing mean open time or single-channel conductance, suggesting that DQP inhibits a pregating step without changing the stability of the open pore conformation and thus channel closing rate. Evaluation of DQP-1105 inhibition of chimeric NMDA receptors identified two key residues in the lower lobe of the GluN2 agonist binding domain that control the selectivity of DQP-1105. These data suggest a mechanism for this new class of inhibitors and demonstrate that ligands can access, in a subunit-selective manner, a new site located in the lower, membrane-proximal portion of the agonist-binding domain. PMID:21807990

  8. The 5-HT(2C) receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity.

    PubMed

    Harvey-Lewis, Colin; Li, Zhaoxia; Higgins, Guy A; Fletcher, Paul J

    2016-02-01

    Lorcaserin (Lorqess, Belviq(®)) is a selective 5-HT(2C) receptor agonist that has received FDA approval for the treatment of obesity. 5-HT(2C) receptor agonists are also efficacious in decreasing multiple aspects of cocaine motivation and reward in preclinical models. This would suggest that lorcaserin is a clinically available therapeutic with the potential to treat cocaine addiction. Here we report the effects of lorcaserin (0.1 mg/kg-1.0 mg/kg) on multiple aspects of cocaine-related behaviours in rats. We find that lorcaserin dose-dependently decreases cocaine self-administration on progressive and fixed ratio schedules of reinforcement. Lorcaserin also reduces reinstatement of cocaine-seeking behaviour in response to priming injections of cocaine and/or reintroduction of cocaine-associated cues. Finally, lorcaserin dose-dependently decreases cocaine-induced hyperlocomotion. Our results, when considered in concert with similar emergent findings in non-human primates, strongly support continued research into the potential of lorcaserin as a clinical treatment for cocaine addiction. PMID:26427596

  9. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    PubMed

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  10. Transcriptional Regulation of CYP3A4/2B6/2C9 Mediated via Nuclear Receptor PXR by Helicid and Its Metabolites

    PubMed Central

    Chen, Qun; Xie, Hai-tang; Li, Yan; Wang, Guo; Xu, Zhe; Pu, Zhi-chen; Hu, Hua

    2015-01-01

    Objective. This study aims at establishing and validating an in vitro system to screen drug inducers of CYPs mediated via hPXR, as well as studying transcriptional regulation of CYPs mediated via hPXR by helicid and its two metabolites. Methods. Cloning the nuclear receptor hPXR and the promoters of CYP3A4, CYP2B6, CYP2C9, and inserting the trans-element to the upstream of firefly luciferase reporter gene of the pGL4.17 vectors, then cotransfecting the report vectors and hPXR expression plasmid to HepG2 cell line. After 24 hours, the transfected cells were treated with helicid (0.004, 0.04, and 0.4 μmol/L) and its metabolite I and metabolite II (0.0004, 0.004, and 0.04 μmol/L) for 48 h, while rifampin (10 μmol/L) was included as the positive control and 0.1% DMSO as the negative control group. Cells were lysized and luciferase activity was determined using a dual luciferase reporter assay kit. Results. Helicid and its metabolites did not significantly increase promoter activities of CYP3A4, CYP2B6, and CYP2C9 in HepG2 cells transfected with PXR expression plasmid (P > 0.05). Conclusion. PXR-expressed CYP3A4, CYP2B6, and CYP2C9 dual luciferase reporter gene platforms were successfully established, and helicid and its metabolites I, II do not significantly induce the transcription of CYP3A4, CYP2B6, and CYP2C9. PMID:25977700

  11. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    PubMed

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  12. A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains.

    PubMed

    Du, Yunzhi; Davisson, Muriel T; Kafadar, Karen; Gardiner, Katheleen

    2006-11-01

    The serotonin receptor 5HT2CR pre-mRNA is subject to adenosine deamination (RNA editing) at five residues located within a 15 nucleotide stretch of the coding region. Such changes of adenosine to inosine (A-to-I) can produce 32 mRNA variants, encoding 24 different protein isoforms, some of which vary in biochemical and pharmacological properties. Because serotonin mediates diverse neurological processes relevant to behavior and because inbred mouse strains vary in their responses to tests of learning and behavior, we have examined the A-to-I editing patterns of the 5HT2CR mRNA in whole brains from eight mouse strains. By sequencing approximately 100 clones from individual mice, we generated detailed information on levels of editing at each site and patterns of editing that identify a total of 28 mRNA and 20 protein isoforms. Significant differences between individuals from different strains were found in total editing frequency, in the proportion of transcripts with 1 and 4 edited sites, in editing frequency at the A, B, E and D sites, in amino acid frequencies at positions 157 and 161, and in subsets of major protein isoforms. Primer extension assays were used to show that individuals within strains (six C3H.B-+rd1 and four 129SvImrJ) displayed no significant differences in any feature. These findings suggest that genetic background contributes to subtle variation in 5HT2CR mRNA editing patterns which may have consequences for pharmacological treatments and behavioral testing. PMID:16904273

  13. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  14. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide

    PubMed Central

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella

    2014-01-01

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207

  15. Allosteric modulation of GluN2C/GluN2D-containing NMDA receptors bidirectionally modulates dopamine release: implication for Parkinson's disease

    PubMed Central

    Zhang, X; Feng, Z-J; Chergui, K

    2014-01-01

    BACKGROUND AND PURPOSE Allosteric modulators of ionotropic receptors and GPCRs might constitute valuable therapeutic tools for intervention in several diseases, including Parkinson's disease (PD). However, the possibility that some of these compounds could alter neurotransmission in health and disease has not been thoroughly examined. Hence, we determined whether CIQ, a positive allosteric modulator of NMDA receptors that contain the GluN2C or GluN2D subunits, modulates dopamine release in the striatum of control mice and of a mouse model of presymptomatic Parkinsonism. EXPERIMENTAL APPROACH We used amperometry to measure, in mouse brain slices containing the dorsal striatum, dopamine release evoked by stimulations that mimicked tonic (single pulses) or phasic (trains) activity. We used control mice and mice with a partial, 6-hydroxydopamine-induced, degeneration of dopaminergic neurons in the substantia nigra. KEY RESULTS In control mice, CIQ inhibited tonic dopamine release and induced an initial inhibition followed by a long-lasting increase in phasic release. Pirenzepine, a muscarinic receptor antagonist, blocked the depression of release induced by CIQ, but not the long-lasting potentiation. CIQ also increased action potential firing in striatal cholinergic interneurons. In the partially dopamine-depleted striatum, CIQ induced an inhibition followed by a potentiation of both tonic and phasic release, but did not significantly increase the firing of cholinergic interneurons. CONCLUSIONS AND IMPLICATIONS CIQ has bidirectional, activity- and ACh-dependent, modulatory effects on dopamine release in the striatum. This study suggests a potentially valuable means to enhance dopamine release in presymptomatic Parkinsonism. PMID:24818560

  16. Functional Status of the Serotonin 5-HT2C Receptor (5-HT2CR) Drives Interlocked Phenotypes that Precipitate Relapse-Like Behaviors in Cocaine Dependence

    PubMed Central

    Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G; Sears, Robert M; Emeson, Ronald B; DiLeone, Ralph J; O'Neil, Richard T; Fink, Latham H; Li, Dingge; Green, Thomas A; Gerard Moeller, F; Cunningham, Kathryn A

    2014-01-01

    Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. PMID:23939424

  17. Effects of the 5-HT2C receptor agonist CP809101 in the amygdala on reinstatement of cocaine-seeking behavior and anxiety-like behavior.

    PubMed

    Pockros-Burgess, Lara A; Pentkowski, Nathan S; Der-Ghazarian, Taleen; Neisewander, Janet L

    2014-11-01

    Serotonin 2C receptor (5-HT2CR) agonists attenuate reinstatement of cocaine-seeking behavior. These receptors are found throughout the limbic system, including the basolateral amygdala (BlA), which is involved in forming associations between emotional stimuli and environmental cues, and the central amygdala (CeA), which is implicated in the expression of conditioned responding to emotional stimuli. This study investigated whether 5-HT2CRs in the amygdala are involved in cue and cocaine-primed reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) which that was paired with light and tone cues, and then subsequently they underwent daily extinction training. Rats then received bilateral microinfusions of the 5-HT2CR agonist CP809101 (0.01-1.0 μg/0.2 μl/side) into either the BlA or CeA prior to tests for cue or cocaine-primed (10 mg/kg, i.p.) reinstatement. Rats were also tested for CP809101 effects on anxiety-like behavior on the elevated plus-maze (EPM). Surprisingly, intra-BlA CP809101 had no effect on cue reinstatement, though it did increase anxiety-like behavior on the EPM. Intra-CeA infusions of CP809101 attenuated cocaine-primed reinstatement, an effect that was prevented with concurrent administration of the 5-HT2CR antagonist SB242084 (0.1 μg/0.2 μl/side). CP809101 had no effect on cue reinstatement or anxiety-like behavior on the EPM. These findings suggest that 5-HT2CRs in the BlA modulate anxiety, whereas those in the CeA modulate incentive motivational effects induced by cocaine priming injections. PMID:24984080

  18. 5-HT2A receptor blockade and 5-HT2C receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Conway, Sineadh M.; Ullman, Teresa E.; Zwick, Kimberly R.; Neisewander, Janet L.

    2012-01-01

    Both the 5-HT2A receptor (R) antagonist M100907 and the 5-HT2CR agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT2A/5-HT2CR interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: 1) saline + saline, 2) saline + cocaine, 3) 0.025 mg/kg M100907 + cocaine, 4) 0.125 mg/kg MK212 + cocaine, or 5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT2R subtypes on behavior. Further research investigating combined 5-HT2AR antagonism and 5-HT2CR agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  19. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  20. 759C/T Variants of the Serotonin (5-HT2C) Receptor Gene and Weight Gain in Children and Adolescents in Long-Term Risperidone Treatment

    PubMed Central

    del Castillo, Nicole; Zimmerman M, Bridget; Tyler, Billie; Ellingrod, Vicki L; Calarge, Chadi

    2014-01-01

    Background Great inter-individual variability exists in the susceptibility to gain weight during antipsychotic treatment. Thus, we examined whether the −759C/T variants in the promoter region of the 5HT2C receptor gene were differentially associated with weight gain in children and adolescents in long-term risperidone treatment. Methods Medically healthy 7 to 17 year-olds, treated with risperidone for ≥ six months, were enrolled. Anthropometric measurements, laboratory tests, and treatment history were obtained upon enrollment and from medical records. The effect of the genotype on the trajectory of age-sex-adjusted weight and body mass index (BMI) z scores before and after the onset of risperidone treatment was investigated. Results In 124 subjects (90% males, mean age: 11.8 years) treated with risperidone for a mean of 2.8 years, weight and BMI z scores significantly increased after starting risperidone. This change was similar across the two genotype groups as were changes in several cardiometabolic variables. Conclusion In contrast to other reports, the T allele failed to confer protection against excessive weight gain or cardiometabolic abnormalities in this group of children and adolescents chronically treated with risperidone. PMID:24772381

  1. Serotonin (5-HT) 2C Receptor (5-HT2CR) Protein Expression is Enriched in Synaptosomal and Postsynaptic Compartments of Rat Cortex

    PubMed Central

    Anastasio, Noelle C.; Lanfranco, Maria Fe; Bubar, Marcy J.; Seitz, Patricia K.; Stutz, Sonja J.; McGinnis, Andrew G.; Watson, Cheryl S.; Cunningham, Kathryn A.

    2010-01-01

    The action of serotonin (5-HT) at the 5-HT2C receptor (5-HT2CR) in cerebral cortex is emerging as a candidate modulator of neural processes that mediate core phenotypic facets of several psychiatric and neurological disorders. However, our understanding of the neurobiology of the cortical 5-HT2CR protein complex is currently limited. The goal of the present study was to explore the subcellular localization of the 5-HT2CR in synaptosomes and the postsynaptic density, an electron-dense thickening specialized for postsynaptic signaling and neuronal plasticity. Utilizing multiples tissues (brain, peripheral tissues), protein fractions (synaptosomal, postsynaptic density), and controls (peptide neutralization, 5-HT2CR stable-expressing cells), we established the selectivity of two commercially available 5-HT2CR antibodies and employed the antibodies in Western blot and immunoprecipitation studies of PFC and motor cortex, two regions implicated in cognitive, emotional and motor dysfunction. For the first time, we demonstrated the expression of the 5-HT2CR in postsynaptic density-enriched fractions from both PFC and motor cortex. Co-immunoprecipitation studies revealed the presence of PSD-95 within the 5-HT2CR protein complex expressed in PFC and motor cortex. Taken together, these data support the hypothesis that the 5-HT2CR is localized within the postsynaptic thickening of synapses and is therefore positioned to directly modulate synaptic plasticity in cortical neurons. PMID:20345755

  2. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance. PMID:26832922

  3. Peptide Inhibitors Disrupt the Serotonin 5-HT2C Receptor Interaction with Phosphatase and Tensin Homolog to Allosterically Modulate Cellular Signaling and Behavior

    PubMed Central

    Anastasio, Noelle C.; Gilbertson, Scott R.; Bubar, Marcy J.; Agarkov, Anton; Stutz, Sonja J.; Jeng, Yowjiun; Bremer, Nicole M.; Smith, Thressa D.; Fox, Robert G.; Swinford, Sarah E.; Seitz, Patricia K.; Charendoff, Marc N.; Craft, John W.; Laezza, Fernanda M.; Watson, Cheryl S.; Briggs, James M.; Cunningham, Kathryn A.

    2013-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT2C receptor (5-HT2CR) is essential in normal physiology, whereas aberrant 5-HT2CR function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT2CR interacts with specific protein partners, but the impact of such interactions on 5-HT2CR function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT2CR and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT2CR-mediated biology but not that of the closely homologous 5-HT2AR. A peptide derived from the third intracellular loop of the human 5-HT2CR [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT2CR-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT2CR signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT2CR allostery and therapeutics for 5-HT2CR-mediated disorders. PMID:23345234

  4. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  5. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity

    PubMed Central

    Higgins, Guy A; Desnoyer, Jill; Van Niekerk, Annalise; Silenieks, Leo B; Lau, Winnie; Thevarkunnel, Sandy; Izhakova, Julia; DeLannoy, Ines AM; Fletcher, Paul J; DeLay, Josepha; Dobson, Howard

    2015-01-01

    The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague–Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1–2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma Cmin and Cmax were in the range 13–160 ng/mL (1 mg/kg b.i.d.) and 34–264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0–5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity. PMID:25692009

  6. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity.

    PubMed

    Higgins, Guy A; Desnoyer, Jill; Van Niekerk, Annalise; Silenieks, Leo B; Lau, Winnie; Thevarkunnel, Sandy; Izhakova, Julia; DeLannoy, Ines Am; Fletcher, Paul J; DeLay, Josepha; Dobson, Howard

    2015-02-01

    The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague-Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1-2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma C min and C max were in the range 13-160 ng/mL (1 mg/kg b.i.d.) and 34-264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0-5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity. PMID:25692009

  7. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4. PMID:22126990

  8. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    PubMed

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  9. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  10. 5-HT2A/2C receptor and 5-HT transporter densities in mice prone or resistant to chronic high-fat diet-induced obesity: a quantitative autoradiography study.

    PubMed

    Huang, Xu-Feng; Huang, Xin; Han, Mei; Chen, Feng; Storlien, Len; Lawrence, Andrew J

    2004-08-27

    The present study examined the density of 5-HT2A/2C receptors and 5-HT transporters in the brains of chronic high-fat diet-induced obese (cDIO) and obese-resistant (cDR) mice. Thirty-five male mice were used in this study. Twenty-eight mice were fed with a high-fat diet (40% of calories from fat) for 6 weeks and then classified as the cDIO (n=8) or cDR (n=8) mice according to the highest and lowest body weight gainers. Seven mice were placed on a low-fat diet (LF: 10% of calories from fat) and were used as controls. After 20 weeks of feeding, the sum of epididymal, perirenal, omental and inguinal fat masses was 9.3+/-0.3 g in the cDIO group versus 3.1+/-0.5 g in the cDR (p<0.005) and 1.5+/-0.1 g in the LF (p<0.001) groups. Using quantitative autoradiography techniques, the binding site densities of 5-HT2A/2C receptors and 5-HT transporters were measured in multiple brain sections of mice from the three groups. Most regions did not differ between groups but, importantly, the cDIO mice had a significantly higher 5-HT2A/2C binding density in the anterior olfactory nucleus and ventromedial hypothalamic nucleus (VMH) compared to the cDR and LF mice (+39% and +47%, p=0.003 and 0.045, respectively), whereas the latter two groups did not differ. The density of 5-HT2A/2C receptors in the VMH was associated with total amount of fat mass (r=0.617, p=0.032). On the other hand, the cDR mice had significantly lower 5-HT transporter binding than the cDIO and LF mice, respectively, in the nucleus accumbens (-44%, -38%, both p<0.02), central nucleus of the amygdaloid nucleus (-40%, -44%, p=0.003 and 0.009), and olfactory tubercle nucleus (-42%, -42%, both p=0.03). In conclusion, this study has demonstrated differentially regulated levels of the 5-HT2A/2C receptor and 5-HT transporter in specific brain regions of the cDIO and cDR mice. It provides neural anatomical bases by which genetic variability in 5-HT2A/2C receptors and 5-HT transporter may influence satiety and sensory

  11. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41.

    PubMed

    Han, Joo-Hui; Kim, In-Su; Jung, Sang-Hyuk; Lee, Sang-Gil; Son, Hwa-Young; Myung, Chang-Seon

    2014-01-01

    Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes. PMID:24748202

  12. Synthesis and pharmacological evaluation of dual ligands for melatonin (MT1/MT2) and serotonin 5-HT2C receptor subtypes (II).

    PubMed

    Ettaoussi, Mohamed; Pérès, Basile; Errazani, Aïcha; Boutin, Jean A; Caignard, Daniel-Henri; Delagrange, Philippe; Melnyk, Patricia; Berthelot, Pascal; Yous, Saïd

    2015-01-27

    In this paper we report the investigation of C-3 and β-acetamide positions of agomelatine analogues. Concomitant insertion of a hydroxymethyl in the β-acetamide position and aliphatic groups in C-3 position produced a positive effect on both melatonin (MT1, MT2) and serotonin (5-HT2C) binding affinities. In particular, the allyl 6b and ethyl 15a represented the more interesting compounds of this series. Furthermore, the introduction of methyl cycloalkyl groups (compounds 11a, 12a) exhibited no change in both MT2 and 5-HT2C binding affinities while a decrease of MT1 binding affinity occurred leading to an MT2 selectivity. Finally, the acetamide modulation has led to methyl thiourea 11h, with a weak MT2 selectivity. PMID:25528336

  13. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  14. AKAP79, PKC, PKA and PDE4 participate in a Gq-linked muscarinic receptor and adenylate cyclase 2 cAMP signalling complex

    PubMed Central

    Shen, Jia X.; Cooper, Dermot M. F.

    2014-01-01

    AC2 (adenylate cyclase 2) is stimulated by activation of Gq-coupled muscarinic receptors through PKC (protein kinase C) to generate localized cAMP in HEK (human embryonic kidney)-293 cells. In the present study, we utilized a sensitive live-cell imaging technique to unravel the proteins that play essential roles in a Gq-coupled muscarinic receptor-mediated cAMP signalling complex. We reveal that, upon agonist binding to the Gq-coupled muscarinic receptor, AKAP79 (A-kinase-anchoring protein 79) recruits PKC to activate AC2 to produce cAMP. The cAMP formed is degraded by PDE4 (phosphodiesterase 4) activated by an AKAP-anchored PKA (protein kinase A). Calcineurin, a phosphatase bound to AKAP79, is not involved in this regulation. Overall, a transient cAMP increase is generated from AC2 by Gq-coupled muscarinic receptor activation, subject to sophisticated regulation through AKAP79, PKC, PDE4 and PKA, which significantly enhances acetylcholine-mediated signalling. PMID:23889134

  15. NADPH-cytochrome P-450 reductase, cytochrome P-450 2C11 and P-450 1A1, and the aryl hydrocarbon receptor in livers of rats fed methyl-folate-deficient diets.

    PubMed

    Zhang, J; Henning, S M; Heber, D; Choi, J; Wang, Y; Swendseid, M E; Go, V L

    1997-01-01

    We investigated three hepatic cytochrome P-450 isozymes and the aryl hydrocarbon (Ah) receptor in rats fed one of the following three diets for 15 months: a diet containing the AIN vitamin mixture (control), the control diet devoid of choline and folate (CFD), or the CFD diet devoid of niacin (CFND). Hepatic tumors developed in all CFD- and CFND-fed rats. Western blot analyses of nontumor hepatic tissue showed that NADPH-cytochrome P-450 reductase (P-450 reductase) increased significantly in the CFD and CFND groups compared with the control group. Hepatic cytochrome P-450 2C11 (CYP2C11) was not detectable in the CFD and CFND groups compared with the control group. Ah receptor and cytochrome P-450 1A1 (CYP1A1) were detected in higher amounts in livers of both deficient groups. CYP1A1 is an enzyme associated with bioactivation of exogenous genotoxins. To our knowledge, this is the first time it has been shown that CYP1A1 and the Ah receptor are induced by dietary deficiencies. PMID:9290122

  16. Mechanical-Stretch of C2C12 Myoblasts Inhibits Expression of Toll-Like Receptor 3 (TLR3) and of Autoantigens Associated with Inflammatory Myopathies

    PubMed Central

    Liu, Xinghui; Adriouch, Sahil; Liao, Hua

    2013-01-01

    Recent studies in patients suffering from inflammatory autoimmune myopathies suggested that moderate exercise training improves or at least stabilizes muscle strength and function without inducing disease flares. However, the precise mechanisms involved in this beneficial effect have not been extensively studied. Here we used a model of in vitro stretched C2C12 myoblasts to investigate whether mechanical stretch could influence myoblast proliferation or the expression of proinflammatory genes. Our results demonstrated that cyclic mechanical stretch stimulated C2C12 cell cycling and early up-regulation of the molecules related to mechanical-stretch pathway in muscle (calmodulin, nNOS, MMP-2, HGF and c-Met). Unexpectedly, mechanical stretch also reduced the expression of TLR3 and of proteins known to represent autoantigens in inflammatory autoimmune myopathies (Mi-2, HRS, DNA-PKcs, U1-70). Interestingly, stimulation or inhibition of calmodulin, NOS, HGF or c-Met molecules in vitro affected the expression of autoantigens and TLR3 proteins confirming their role in the inhibition of autoantigens and TLR3 during mechanical stretch. Overall, this study demonstrates for the first time that mechanical stretch could be beneficial by reducing expression of muscle autoantigens and of pro-inflammatory TLR3 and may provide new insight to understand how resistance training can reduce the symptoms associated with myositis. PMID:24224022

  17. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  18. Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy

    PubMed Central

    Schaerlinger, B; Hickel, P; Etienne, N; Guesnier, L; Maroteaux, L

    2003-01-01

    The pharmaceutical compound, dihydroergotamine (DHE) is dispensed to prevent and reduce the occurrence of migraine attacks. Although still controversial, the prophylactic effect of this drug is believed to be caused through blockade and/or activation of numerous receptors including serotonin (5-HT) receptors of the 5-HT2 subtype. To elucidate if 5-HT2 receptors (5-HT2Rs) may be involved in DHE prophylactic effect, we performed investigations aimed to determine the respective pharmacological profile of DHE and of its major metabolite 8′-hydroxy-DHE (8′-OH-DHE) at the 5-HT2B and 5-HT2CRs by binding, inositol triphosphate (IP3) or cyclic GMP (cGMP) coupling studies in transfected fibroblasts. DHE and 8′-OH-DHE are competitive compounds at 5-HT2B and 5-HT2CRs. 8′-OH-DHE interaction at (5-HT2BRs) was best fitted by a biphasic competition curve and displayed the highest affinity with a Ki of 5 nM. These two compounds acted as agonists for both receptors in respect to cGMP production with pEC50 of 8.32±0.09 for 8′-OH-DHE at 5-HT2B and 7.83±0.06 at 5-HT2CRs. Knowing that the antimigraine prophylactic effect of DHE is only observed after long-term treatment, we chronically exposed the recombinant cells to DHE and 8′-OH-DHE. The number of 5-HT2BR-binding sites was always more affected than 5-HT2CRs. At 5-HT2BRs, 8′-OH-DHE was more effective than DHE, with an uncoupling that persisted for more than 40 h for IP3 or cGMP. By contrast, the 5-HT2CR coupling was reversible after either treatment. Chronic exposure to 8′-OH-DHE caused a persistent agonist-mediated desensitisation of 5-HT2B, but not 5-HT2CRs. This may be of relevance to therapeutic actions of the compound. PMID:12970106

  19. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes

    PubMed Central

    Passey, Samantha L.; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P.; Hansen, Michelle J.

    2016-01-01

    Background Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. Results SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10–13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. Conclusions These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass. PMID

  20. Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia.

    PubMed

    Niemira, Magdalena; Dastych, Jarosław; Mazerska, Zofia

    2013-07-15

    Induction of proteins involved in drug metabolism and in drug delivery has a significant impact on drug-drug interactions and on the final therapeutic effects. Two antitumor acridine derivatives selected for present studies, C-1748 (9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine) and C-1305 (5-dimethylaminopropylamino-8-hydroxy-triazoloacridinone), expressed high and low susceptibility to metabolic transformations with liver microsomes, respectively. In the current study, we examined the influence of these compounds on cytochrome P450 3A4 (CYP3A4) and 2C9 (CYP2C9) enzymatic activity and gene expression in HepG2 tumor cells. Luminescence and HPLC examination, real-time RT-PCR and western blot analyses along with transfection of pregnane X receptor (PXR) siRNA and CYP3A4 reporter gene assays were applied. We found that both compounds strongly induced CYP3A4 and CYP2C9 activity and expression as well as expression of UGT1A1 and MDR1 in a concentration- and time-dependent manner. C-1748-mediated CYP3A4 and CYP2C9 mRNA induction equal to rifampicin occurred at extremely low concentrations (0.001 and 0.01μM), whereas 10μM C-1305 induced three-times higher CYP3A4 and CYP2C9 mRNA levels than rifampicin did. CYP3A4 and CYP2C9 expressions were shown to be PXR-dependent; however, neither compound influenced PXR expression. Thus, the observed drug-mediated induction of isoenzymes occurs on a PXR-mediated regulatory level. Furthermore, C-1748 and C-1305 were demonstrated to be selective PXR agonists. These effects are hypoxia-inhibited only in the case of C-1748, which is sensitive to P450 metabolism. In summary, PXR was found to be a new target of the studied compounds. Thus, possible combinations of these compounds with other therapeutics might lead to the PXR-dependent enzyme-mediated drug-drug interactions. PMID:23688499

  1. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system.

    PubMed

    Swinford-Jackson, S E; Anastasio, N C; Fox, R G; Stutz, S J; Cunningham, K A

    2016-06-01

    Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C​ receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. PMID:26926963

  2. Critical Role for an Acidic Amino Acid Region in Platelet Signaling by the HemITAM (Hemi-immunoreceptor Tyrosine-based Activation Motif) Containing Receptor CLEC-2 (C-type Lectin Receptor-2)*

    PubMed Central

    Hughes, Craig E.; Sinha, Uma; Pandey, Anjali; Eble, Johannes A.; O'Callaghan, Christopher A.; Watson, Steve P.

    2013-01-01

    CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors. PMID:23264619

  3. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells.

    PubMed

    Lauffer, Lisa; Glas, Evi; Gudermann, Thomas; Breit, Andreas

    2016-07-01

    Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment. PMID:27189964

  4. 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed.

    PubMed

    Pitychoutis, P M; Dalla, C; Sideris, A C; Tsonis, P A; Papadopoulou-Daifoti, Z

    2012-05-17

    It is well established that women experience major depression at roughly twice the rate of men. Interestingly, accumulating clinical and experimental evidence shows that the responsiveness of males and females to antidepressant pharmacotherapy, and particularly to tricyclic antidepressants (TCAs), is sex-differentiated. Herein, we investigated whether exposure of male and female rats to the chronic mild stress (CMS) model of depression, as well as treatment with the TCA clomipramine may affect serotonergic receptors' (5-HTRs) mRNA expression in a sex-dependent manner. Male and female rats were subjected to CMS for 4 weeks and during the next 4 weeks they concurrently received clomipramine treatment (10 mg/ml/kg). CMS and clomipramine's effects on 5-HT(1A)R, 5-HT(2A)R, and 5-HT(2C)R mRNA expression were assessed by in situ hybridization histochemistry in selected subfields of the hippocampus and in the lateral orbitofrontal cortex (OFC), two regions implicated in the pathophysiology of major depression. CMS and clomipramine treatment induced sex-differentiated effects on rats' hedonic status and enhanced 5-HT(1A)R mRNA expression in the cornu ammonis 1 (CA1) hippocampal region of male rats. Additionally, CMS attenuated 5-HT(1A)R mRNA expression in the OFC of male rats and clomipramine reversed this effect. Moreover, 5-HT(2A)R mRNA levels in the OFC were enhanced in females but decreased in males, while clomipramine reversed this effect only in females. CMS increased 5-HT2CR mRNA expression in the CA4 region of both sexes and this effect was attenuated by clomipramine. Present data exposed that both CMS and clomipramine treatment may induce sex-differentiated and region-distinctive effects on 5-HTRs mRNA expression and further implicate the serotonergic system in the manifestation of sexually dimorphic neurobehavioral responses to stress. PMID:22441040

  5. The serotonin transporter (5-HTTLPR) but not serotonin receptor (5-HT2C Cys23Ser) variant is associated with bipolar I disorder in Kurdish population from Western Iran.

    PubMed

    Mohammadi, Sahar; Khazaie, Habibolah; Rahimi, Ziba; Vaisi-Raygani, Asad; Zargooshi, Newsha; Rahimi, Zohreh

    2015-03-17

    The role of 5-HTTLPR and 5-HT2C Cys23Ser polymorphisms in the psychopathology of mood disorders and suicide behavior is controversial. The aim of present study was to investigate the association between 5-HTTLPR and 5-HT2C Cys23Ser variants and susceptibility to bipolar I disorder (BID). The 5-HT2C genotypes were studied in 152 patients with BID and 173 gender- and age-matched healthy individuals with Kurds ethnic background from Western Iran using PCR and PCR-RFLP methods. In recessive model (SS vs. LL+LS) the SS genotype was associated with 1.79-fold increased risk of BID (p=0.018). Also, the presence of S allele increased the risk of adult-onset BID by 1.76-fold (p=0.027). No association was detected between 5-HTTLPR genotypes and alleles with suicide attempt. The frequency of 5-HT2C Ser allele in patients and controls were 12.3 and 12.5%, respectively. Mutant allele of HT2C Ser had higher frequency in female (14.7%) than male (10.5%, p=0.27) patients. The frequency of HT2C Ser allele in patients with a family history of BID tended to be higher (15.7%) than those without a family history of the disease (11.8%). The frequency of HT2C Ser allele in suicide attempter women was higher (16.7%) than those without a suicide attempt (14.3%). Our findings demonstrate 5-HTTLPR polymorphism might be a risk factor for BID and adult-onset BID in Kurds population. However, we found the lack of an association between 5-HT2C Cys/Ser variants and the risk of BID. PMID:25596490

  6. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives.

    PubMed

    Lazzari, Paolo; Distinto, Rita; Manca, Ilaria; Baillie, Gemma; Murineddu, Gabriele; Pira, Marilena; Falzoi, Matteo; Sani, Monica; Morales, Paula; Ross, Ruth; Zanda, Matteo; Jagerovic, Nadine; Pinna, Gérard Aimè

    2016-10-01

    8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed. PMID:27240274

  7. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  8. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    SciTech Connect

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  9. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms.

    PubMed

    Lai, Xin-Sheng; Yang, Li-Ping; Li, Xiao-Tian; Liu, Jun-Ping; Zhou, Zhi-Wei; Zhou, Shu-Feng

    2009-11-01

    Human CYP2C8 is a key member of the CYP2C family and metabolizes more than 60 clinical drugs. A number of active site residues in CYP2C8 have been identified based on homology modeling and site-directed mutagenesis studies. In the structure of CYP2C8, the large active site cavity exhibits a trifurcated topology that approximates a T or Y shape, which is consistent with the finding that CYP2C8 can efficiently oxidize relatively large substrates such as paclitaxel and cerivastatin. The active site cavity of CYP2C8 contains at least 48 amino acid residues and many of them are important for substrate binding. The structures of CYP2C8 in complex with distinct ligands have revealed that the enzyme can bind divergent substrates and inhibitors without extensive conformational changes. CYP2C8 is a major catalyst in the metabolism of paclitaxel, amodiaquine, troglitazone, amiodarone, verapamil and ibuprofen, with a secondary role in the biotransformation of cerivastatin and fluvastatin. CYP2C8 also metabolises endogenous compounds such as retinoids and arachidonic acid. Many drugs are inhibitors of CYP2C8 and inhibition of this enzyme may result in clinical drug interactions. The pregnane X receptor, constitutive androstane receptor, and glucocorticoid receptor are likely to involve the regulation of CYP2C8. A number of genetic mutations in the CYP2C8 gene have been identified in humans and some of them have functional impact on the clearance of drugs. Further studies are needed to delineate the role of CYP2C8 in drug development and clinical practice. PMID:20214592

  10. Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of zafirlukast.

    PubMed

    Lee, Hyun-Jee; Kim, Young-Hoon; Kim, Se-Hyung; Lee, Choong-Min; Yang, Ae-Yun; Jang, Choon-Gon; Lee, Seok-Yong; Bae, Jung-Woo; Choi, Chang-Ik

    2016-07-01

    Zafirlukast, a cysteinyl leukotriene receptor antagonist, is indicated for the treatment of patients with mild to moderate asthma. Zafirlukast is metabolized mainly by CYP3A4 and CYP2C9. We investigated the effects of the major CYP2C9 variant alleles in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of zafirlukast in healthy Korean subjects. A single 20-mg oral dose of zafirlukast was given to 23 Korean male subjects divided into two genotype groups according to CYP2C9 genotypes, CYP2C9EM (n = 11; CYP2C9*1/*1) and CYP2C9IM (n = 12; 9 and 3 carriers of CYP2C9*1/*3 and *1/*13, respectively). Zafirlukast concentrations were determined using a validated HPLC-MS/MS analytical method in plasma samples collected after the drug intake. Compared with the CYP2C9EM group, the Cmax and AUCinf of zafirlukast in the CYP2C9IM group were 1.44- and 1.70-fold higher, respectively (p < 0.01 and p < 0.0001). The CL/F of zafirlukast was 42.8 % lower in the CYP2C9IM group compared with the CYP2C9EM group (p < 0.001). Slightly higher Cmax and AUC, and lower CL/F of zafirlukast were observed in subjects with the CYP2C9*1/*13 genotype compared with the CYP2C9*1/*3 genotype subjects. CYP2C9*3 and CYP2C9*13 alleles significantly affected the plasma concentrations of zafirlukast. PMID:27377818

  11. In Silico Modeling of Human α2C-Adrenoreceptor Interaction with Filamin-2

    PubMed Central

    Pawlowski, Marcin; Saraswathi, Saras; Motawea, Hanaa K. B.; Chotani, Maqsood A.; Kloczkowski, Andrzej

    2014-01-01

    Vascular smooth muscle α2C-adrenoceptors (α2C-ARs) mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM) and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456) and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals. PMID:25110951

  12. Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

    PubMed

    Rodgers, Buel D; Wiedeback, Benjamin D; Hoversten, Knut E; Jackson, Melissa F; Walker, Ryan G; Thompson, Thomas B

    2014-03-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes. PMID:24424069

  13. Geometric and electronic properties of Sc2C2@C84

    NASA Astrophysics Data System (ADS)

    Wu, Haiping; Deng, Kaiming; Lu, Gongli; Yuan, Yongbo; Yang, Jinlong; Wang, Xin

    2006-08-01

    The geometric and electronic properties of metal-carbon encaged fullerenes Sc2C2@C84 have been studied using the density functional theory at the Becke exchange gradient correction and the Perdew-Wang correlation gradient correction function level with the double numerical atomic orbitals basis sets augmented by polarization functions. The Sc2C2 cluster was found to be stable in C84 cage, while the cage expands slightly. The Sc2C2 cluster can rotate freely in the cage around the Sc-Sc axis which is coincident with the vertical principal axis of the cage. As the Sc2C2 cluster is encaged, the degeneracy of energy splits, and the HOMO-LUMO energy gap becomes smaller than that of the pure C84, which suggests that Sc2C2@C84 has higher reactivity than C84. Based on our calculated results, the electronic structure of Sc2C2@C84 might be formally described as (Sc2C2)+1@(C84)-1 due to the charge transferring from the Sc2C2 cluster to C84 cage.

  14. Nanosegregation in Na2C60

    SciTech Connect

    Klupp, G.; Kamaras, K.; Matus, P.; Kiss, L.F.; Kovats, E.; Pekker, S.; Nemes, N.M.; Quintavalle, D.; Janossy, A.

    2005-09-27

    There is continuous interest in the nature of alkali metal fullerides containing C{sub 60}{sup 4-} and C{sub 60}{sup 2-}, because these compounds are believed to be nonmagnetic Mott-Jahn-Teller insulators. This idea could be verified in the case of A4C60, but Na2C60 is more controversial. By comparing the results of infrared spectroscopy and X-ray diffraction, we found that Na2C60 is segregated into 3-10 nm large regions. The two main phases of the material are insulating C60 and metallic Na3C60. We found by neutron scattering that the diffusion of sodium ions becomes faster on heating. Above 470 K Na2C60 is homogeneous and we show IR spectroscopic evidence of a Jahn-Teller distorted C{sub 60}{sup 2-} anion.

  15. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes

    PubMed Central

    Burzomato, Valeria; Frugier, Guillaume; Pérez-Otaño, Isabel; Kittler, Josef T; Attwell, David

    2010-01-01

    NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg2+ than are most neuronal NMDA receptors. This weak Mg2+ block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mm Mg2+ than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg2+) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg2+ block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits. PMID:20660562

  16. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    SciTech Connect

    Shi, Ge; Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin; Ou, Bai-sheng; Kim, Sooil; Lee, Young Ho; Yoon, Tae-Jin; Kim, Seong-Jin; Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon; Kim, Chang Deok

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  17. Intestinal GUCY2C Prevents TGF-β Secretion Coordinating Desmoplasia and Hyperproliferation in Colorectal Cancer

    PubMed Central

    Gibbons, Ahmara V.; Lin, Jieru E.; Kim, Gilbert W.; Marszalowicz, Glen P.; Li, Peng; Stoecker, Brian A.; Blomain, Erik S.; Rattan, Satish; Snook, Adam E.; Schulz, Stephanie; Waldman, Scott A.

    2013-01-01

    Tumorigenesis is a multi-step process that reflects intimate reciprocal interactions between epithelia and underlying stroma. However, tumor-initiating mechanisms coordinating transformation of both epithelial and stromal components are not defined. In humans and mice, initiation of colorectal cancer is universally associated with loss of guanylin and uroguanylin, the endogenous ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), disrupting a network of homeostatic mechanisms along the crypt-surface axis. Here, we reveal that silencing GUCY2C in human colon cancer cells increases Akt-dependent TGF-β secretion, activating fibroblasts through TGF-β type I receptors and Smad3 phosphorylation. In turn, activating TGF-β signaling induces fibroblasts to secrete hepatocyte growth factor (HGF), reciprocally driving colon cancer cell proliferation through cMET-dependent signaling. Elimination of GUCY2C signaling in mice (Gucy2c-/-) produces intestinal desmoplasia, with increased reactive myofibroblasts, which is suppressed by anti-TGF-β antibodies or genetic silencing of Akt. Thus, GUCY2C coordinates intestinal epithelial-mesenchymal homeostasis through reciprocal paracrine circuits mediated by TGF-β and HGF. In that context, GUCY2C signaling constitutes a direct link between the initiation of colorectal cancer and the induction of its associated desmoplastic stromal niche. The recent regulatory approval of oral GUCY2C ligands to treat chronic gastrointestinal disorders underscores the potential therapeutic opportunity for oral GUCY2C hormone replacement to prevent remodeling of the microenvironment essential for colorectal tumorigenesis. PMID:24085786

  18. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    PubMed Central

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  19. Meconium ileus in a Lebanese family secondary to mutations in the GUCY2C gene

    PubMed Central

    Smith, Amanda; Bulman, Dennis E; Goldsmith, Claire; Bareke, Eric; Majewski, Jacek; Boycott, Kym M; Nikkel, Sarah M

    2015-01-01

    Meconium ileus is most often associated with mutations in the CFTR gene; however recently, mutations in GUCY2C in the Bedouin population have also been shown to result in this phenotype. This gene codes for an intestinal transmembrane receptor that generates cyclic GMP, which activates cystic fibrosis transmembrane receptor. We report a third family that supports the association of variants in the GUCY2C gene with meconium ileus (MI). A Lebanese kindred was studied and individuals affected with MI had either homozygous or compound heterozygous variants in GUCY2C. The earliest manifestation of the affected individuals was the presence of second trimester fetal echogenic bowel, thus resulting in the expansion of the differential diagnosis of this ultrasound finding. PMID:25370039

  20. Isolation and characterization of canine parvovirus type 2C (CPV-2C) from symptomatic puppies.

    PubMed

    Puentes, R; Eliopulos, N; Pérez, R; Franco, G; Sosa, K; Bianchi, P; Furtado, A; Hübner, S O; Esteves, P A

    2012-07-01

    Canine parvovirus type 2 (CPV-2) is a leading cause of diarrhea in puppies in several parts of the world. In this study CPV-2 was detected and recovered from puppies showing clinical disease from Montevideo, Uruguay. Samples were processed and used to infect CRFK and MDCK cells in order to isolate the virus. Out of twelve, two samples were positive for CPV-2. A genomic region of 583 bp was amplified and the molecular characterization was performed by sequencing, phylogenetic analysis and Restriction Fragment Length Polymorphism (RFLP). Two isolated viruses (UY1 and UY2) were CPV-2c-like viruses. The comparison between the cytophatic effect (CPE) of CPV-2 (vaccinal virus) and CPV-2c (isolated virus) on primary canine cells cultures and on CRFK line cells, demonstrated that CPV-2c is less citopathogenic in CRFK than in primary cultures. Our study represents the first report on isolation and characterization of canine parvovirus type 2c (CPV-2c) in cell cultures from South American dogs. PMID:24031919

  1. Isolation and characterization of canine parvovirus type 2C (CPV-2C) from symptomatic puppies

    PubMed Central

    Puentes, R; Eliopulos, N; Pérez, R; Franco, G; Sosa, K; Bianchi, P; Furtado, A; Hübner, S.O.; Esteves, P.A.

    2012-01-01

    Canine parvovirus type 2 (CPV-2) is a leading cause of diarrhea in puppies in several parts of the world. In this study CPV-2 was detected and recovered from puppies showing clinical disease from Montevideo, Uruguay. Samples were processed and used to infect CRFK and MDCK cells in order to isolate the virus. Out of twelve, two samples were positive for CPV-2. A genomic region of 583 bp was amplified and the molecular characterization was performed by sequencing, phylogenetic analysis and Restriction Fragment Length Polymorphism (RFLP). Two isolated viruses (UY1 and UY2) were CPV-2c-like viruses. The comparison between the cytophatic effect (CPE) of CPV-2 (vaccinal virus) and CPV-2c (isolated virus) on primary canine cells cultures and on CRFK line cells, demonstrated that CPV-2c is less citopathogenic in CRFK than in primary cultures. Our study represents the first report on isolation and characterization of canine parvovirus type 2c (CPV-2c) in cell cultures from South American dogs. PMID:24031919

  2. Design, Synthesis, and Application of OB2C Combinatorial Peptide and Peptidomimetic Libraries

    PubMed Central

    Liu, Ruiwu; Shih, Tsung-Chieh; Deng, Xiaojun; Anwar, Lara; Ahadi, Sara; Kumaresan, Pappanaicken; Lam, Kit S.

    2015-01-01

    The “one-bead two-compound” (OB2C) combinatorial library is constructed on topologically segregated trifunctional bilayer beads such that each bead has a fixed cell-capturing ligand and a random library compound co-displayed on its surface and a chemical coding tag (bar code) inside the bead. An OB2C library containing thousands to millions of compounds can be synthesized and screened concurrently within a short period of time. When live cells are incubated with such OB2C libraries, every bead will be coated with a monolayer of cells. The cell membranes of the captured cells facing the bead surface are exposed to the library compounds tethered to each bead. A specific biochemical or cellular response can be detected with an appropriate reporter system. The OB2C method enables investigators to rapidly discover synthetic molecules that not only interact with cell-surface receptors but can also stimulate or inhibit downstream cell signaling. To demonstrate this powerful method, one OB2C peptide library and two OB2C peptidomimetic libraries were synthesized and screened against Molt-4 lymphoma cells to discover “death ligands.” Apoptosis of the bead-bound cells was detected with immunocytochemistry using horseradish peroxidase (HRP)-conjugated anti-cleaved caspase-3 antibody and 3,3′-diaminobenzidine as a substrate. Two novel synthetic “death ligands” against Molt-4 cells were discovered using this OB2C library approach. PMID:25616322

  3. Design, synthesis, and application of OB2C combinatorial peptide and peptidomimetic libraries.

    PubMed

    Liu, Ruiwu; Shih, Tsung-Chieh; Deng, Xiaojun; Anwar, Lara; Ahadi, Sara; Kumaresan, Pappanaicken; Lam, Kit S

    2015-01-01

    The "one-bead two-compound" (OB2C) combinatorial library is constructed on topologically segregated trifunctional bilayer beads such that each bead has a fixed cell-capturing ligand and a random library compound co-displayed on its surface and a chemical coding tag (bar code) inside the bead. An OB2C library containing thousands to millions of compounds can be synthesized and screened concurrently within a short period of time. When live cells are incubated with such OB2C libraries, every bead will be coated with a monolayer of cells. The cell membranes of the captured cells facing the bead surface are exposed to the library compounds tethered to each bead. A specific biochemical or cellular response can be detected with an appropriate reporter system. The OB2C method enables investigators to rapidly discover synthetic molecules that not only interact with cell-surface receptors but can also stimulate or inhibit downstream cell signaling. To demonstrate this powerful method, one OB2C peptide library and two OB2C peptidomimetic libraries were synthesized and screened against Molt-4 lymphoma cells to discover "death ligands." Apoptosis of the bead-bound cells was detected with immunocytochemistry using horseradish peroxidase (HRP)-conjugated anti-cleaved caspase-3 antibody and 3,3'-diaminobenzidine as a substrate. Two novel synthetic "death ligands" against Molt-4 cells were discovered using this OB2C library approach. PMID:25616322

  4. Telecom 2-B and 2-C (TC2B and TC2C)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Alvarez, H.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  5. Nonsynonymous HTR2C polymorphism predicts cortisol response to psychosocial stress II: Evidence from two samples.

    PubMed

    Way, Baldwin M; Brown, Kirk Warren; Quaglia, Jordan; McCain, Nancy; Taylor, Shelley E

    2016-08-01

    The 5-HT2C receptor is the primary serotonin receptor located in the corticotrophin releasing hormone (CRH) neurons of the hypothalamus. These neurons initiate the signaling cascade that culminates in cortisol release. Therefore, genetic variation in the 5-HT2C receptor gene (HTR2C) is a prime candidate for affecting cortisol reactivity to stress. Accordingly, we examined the association of a nonsynonymous polymorphism (Cys23Ser; rs6318) in HTR2C with stress reactivity in two Trier Social Stress Tests conducted at separate sites. In both Study 1 (N=128) and Study 2 (N=185), Cys23 homozygous females and hemizygous males had greater cortisol reactivity. There was no relation between this polymorphism and self-reported affective response (Studies 1 and 2) or cardiovascular reactivity (Study 2). Additionally, the short/short genotype of a polymorphism (5-HTTLPR) in the serotonin transporter gene was associated with greater cortisol reactivity in Study 1 as well as in Study 2 (previously reported). The Cys23Ser polymorphism and the 5-HTTLPR were independently associated with cortisol reactivity in both studies. These findings emphasize the important role of genetic variation in the serotonin system on regulating cortisol reactivity to social evaluative stress. Comparison of the present associations with those of prior studies underscores the likely importance of situational and psychological factors in determining the direction and magnitude of the association between genotype and phenotype. PMID:27211696

  6. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development.

    PubMed

    Pfaff, Miles J; Xue, Ke; Li, Li; Horowitz, Mark C; Steinbacher, Derek M; Eswarakumar, Jacob V P

    2016-07-15

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor's gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  7. CYP2C8- and CYP3A-mediated C-demethylation of (3-{[(4-tert-butylbenzyl)-(pyridine-3-sulfonyl)-amino]-methyl}-phenoxy)-acetic acid (CP-533,536), an EP2 receptor-selective prostaglandin E2 agonist: characterization of metabolites by high-resolution liquid chromatography-tandem mass spectrometry and liquid chromatography/mass spectrometry-nuclear magnetic resonance.

    PubMed

    Prakash, Chandra; Wang, Weiwei; O'Connell, Thomas; Johnson, Kim A

    2008-10-01

    CP-533,536, (3-{[(4-tert-butyl-benzyl)-(pyridine-3-sulfonyl)-amino]-methyl}-phenoxy)-acetic acid (1), an EP2 receptor-selective prostaglandin E2 agonist, is being developed to aid in the healing of bone fractures. To support the development of this program, in vitro metabolism of 1 was investigated in human liver microsomes and major recombinant human cytochrome P450 (P450) isoforms. 1 was metabolized in vitro by at least three recombinant human P450s: CYP3A4, CYP3A5, and CYP2C8. The turnover of 1 was NADPH-dependent and was completely inhibited by ketoconazole and quercetin in the CYP3A4/5 and CYP2C8 incubations, respectively. The major metabolic pathways were caused by oxidation of the tert-butyl moiety to form the omega-hydroxy metabolite (M4), oxidation of the pyridine moiety, and/or N-dealkylation of the methylphenoxy acetic acid moiety. The alcohol metabolite M4 was further oxidized to the corresponding carboxylic acid M3. In addition to these pathways, three unusual metabolites (M22, M23, and M26) resulting from C-demethylation of the tert-butyl group were identified using high-resolution liquid chromatography/tandem mass spectrometry and liquid chromatography/mass spectrometry/NMR. The C-demethylated metabolites were not detected on incubation of carboxylic acid metabolite M3 with either human liver microsomes or CYP3A/2C8 isoforms, suggesting that these metabolites were not derived from decarboxylation of M3. A possible mechanism for C-demethylation may involve the oxidation of M4 to form an aldehyde metabolite (M24), followed by P450-mediated deformylation, to give an unstable carbon-centered radical and formic acid. The carbon-centered radical intermediate then undergoes either oxygen rebound to form an alcohol metabolite M23 or hydrogen abstraction leading to an olefin metabolite M26. PMID:18653741

  8. Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol.

    PubMed

    Hermida, José; Zarza, José; Alberca, Ignacio; Montes, Ramón; López, María Luz; Molina, Eva; Rocha, Eduardo

    2002-06-01

    The 2C9*3 and 2C9*2 polymorphisms of cytochrome P-450 CYP2C9 are associated with hypersensitivity to warfarin and bleeding. The effect of these polymorphisms on sensitivity to acenocoumarol is unknown. Three groups of patients, with low, medium, or high acenocoumarol-dose requirements, were studied. Age influenced the acenocoumarol sensitivity. Bearing the 2C9*3 allele was associated with the need for a lower acenocoumarol dose (odds ratio [OR], 6.02; 95% confidence interval [CI], 1.50-24.18); 80% of carriers of the 2C9*3 allele required a low dose. The 2C9*2 allele was associated with a lower acenocoumarol-dose requirement (OR, 2.70; 95% CI, 1.11-6.58) because of a reduced risk of the need for a high acenocoumarol dose (4.8% of the patients in the high-dose group carried the 2C9*2 allele versus 34.1% and 30.2%, respectively, in the medium-dose and low-dose groups). Therefore, carriers of 2C9*3 may need a low initial loading dose of acenocoumarol. Because acenocoumarol sensitivity with the 2C9*2 variant does not seem to be clinically relevant, the drug could be an alternative to warfarin in 2C9*2 carriers. PMID:12010835

  9. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis

    PubMed Central

    Wang, Wenyuan; Org, Tonis; Montel-Hagen, Amélie; Pioli, Peter D.; Duan, Dan; Israely, Edo; Malkin, Daniel; Su, Trent; Flach, Johanna; Kurdistani, Siavash K.; Schiestl, Robert H.; Mikkola, Hanna K. A.

    2016-01-01

    DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors. PMID:27507714

  10. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis.

    PubMed

    Wang, Wenyuan; Org, Tonis; Montel-Hagen, Amélie; Pioli, Peter D; Duan, Dan; Israely, Edo; Malkin, Daniel; Su, Trent; Flach, Johanna; Kurdistani, Siavash K; Schiestl, Robert H; Mikkola, Hanna K A

    2016-01-01

    DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors. PMID:27507714

  11. HTR1B and HTR2C in autism spectrum disorders in Brazilian families.

    PubMed

    Orabona, G M; Griesi-Oliveira, K; Vadasz, E; Bulcão, V L S; Takahashi, V N V O; Moreira, E S; Furia-Silva, M; Ros-Melo, A M S; Dourado, F; Matioli, S R; Matioli, R; Otto, P; Passos-Bueno, M R

    2009-01-23

    Autism spectrum disorders (ASD) is a group of behaviorally defined neurodevelopmental disabilities characterized by multiple genetic etiologies and a complex presentation. Several studies suggest the involvement of the serotonin system in the development of ASD, but only few have investigated serotonin receptors. We have performed a case-control and a family-based study with 9 polymorphisms mapped to two serotonin receptor genes (HTR1B and HTR2C) in 252 Brazilian male ASD patients of European ancestry. These analyses showed evidence of undertransmission of the HTR1B haplotypes containing alleles -161G and -261A at HTR1B gene to ASD (P=0.003), but no involvement of HTR2C to the predisposition to this disease. Considering the relatively low level of statistical significance and the power of our sample, further studies are required to confirm the association of these serotonin-related genes and ASD. PMID:19038234

  12. Poliovirus protein 2C has ATPase and GTPase activities.

    PubMed

    Rodríguez, P L; Carrasco, L

    1993-04-15

    Poliovirus protein 2C belongs to an expanding group of proteins containing a nucleotide binding motif in their sequence. We present evidence that poliovirus 2C has nucleoside triphosphatase (NTPase) activity and binds to RNA. Poliovirus 2C was expressed in Escherichia coli cells as a fusion protein with the maltose binding protein (MBP). The fusion protein MBP-2C is efficiently cut by protease Xa within the 2C region. Thus, the fusion protein as such was used to assay for the putative activities of poliovirus 2C. Deletion mutants were constructed which lacked different portions of the 2C carboxyl terminus: mutant 2C delta 1 lacked the last 169 amino acids, whereas mutant 2C delta 2 had the last 74 amino acids deleted. The fusion proteins MBP-2C, MBP-2BC, and the mutant MBP-2C delta 2 that contained the first 255 amino acids of 2C had NTPase activity. Both ATPase and GTPase activities are inhibited by antibodies directed against the MBP-2C protein. Analysis of the ability of the different proteins to bind to labeled RNA indicates that MBP-2C and MBP-2BC form a complex, whereas none of the mutants interacted with RNA, indicating that the RNA binding domain lies beyond amino acid 255. None of the fusion proteins had detectable helicase activity. We suggest that poliovirus protein 2C shows similarities to the GTPases group involved in vesicular traffic and transports the viral RNA replication complexes. These results provide the first experimental evidence that poliovirus protein 2C is an NTPase and that this protein has affinity for nucleic acids. PMID:8385138

  13. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  14. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  15. NKG2C, HLA-E and their association with psoriasis

    PubMed Central

    Patel, Forum; Marusina, Alina I; Duong, Christopher; Adamopoulos, Iannis E; Maverakis, Emanual

    2015-01-01

    Natural killer (NK) cell activation is regulated by the integration of signals from inhibitory and activating cell surface receptors. Both NKG2A and NKG2C, pair with CD94 to form inhibitory and activating receptors specific for the HLA-E-canonical peptide complex. HLA-E is a nonclassical MHC Class Ib molecule with limited polymorphism. It preferentially binds to and presents leader sequence peptides derived from classical MHC class I molecules. Wilson Liao and colleagues have identified an association between NKG2C deficiency and psoriasis. They have also discovered an HLA-C-dependent association between HLA-E and psoriasis. Their research highlights the importance of NK cells in the pathophysiology of psoriasis. Herein we propose two different models to explain the association between NKG2C, HLA-E, and psoriasis. In the first model we hypothesize that NKG2C deficiency and/or HLA-E O1:01 can inhibit the ability of NK cells to regulate autoreactive T cells, predisposing to psoriasis. The second model proposes that HLA-E 01:03 can disrupt the presentation of the psoriasis-inducing self-determinant by HLA-C, thereby protecting against psoriasis. PMID:24279916

  16. GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer

    PubMed Central

    Marszalowicz, Glen P.; Snook, Adam E.; Magee, Michael S.; Merlino, Dante; Lisa, D. Berman-Booty; Waldman, Scott A.

    2014-01-01

    The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors >80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas. PMID:25294806

  17. Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa.

    PubMed

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-07-29

    Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal

  18. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  19. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C

    PubMed Central

    Müller, Thomas; Rasool, Insha; Heinz-Erian, Peter; Mildenberger, Eva; Hülstrunk, Christian; Müller, Andreas; Michaud, Laurent; Koot, Bart G P; Ballauff, Antje; Vodopiutz, Julia; Rosipal, Stefan; Petersen, Britt-Sabina; Franke, Andre; Fuchs, Irene; Witt, Heiko; Zoller, Heinz; Janecke, Andreas R; Visweswariah, Sandhya S

    2016-01-01

    Objective Congenital sodium diarrhoea (CSD) refers to a form of secretory diarrhoea with intrauterine onset and high faecal losses of sodium without congenital malformations. The molecular basis for CSD remains unknown. We clinically characterised a cohort of infants with CSD and set out to identify disease-causing mutations by genome-wide genetic testing. Design We performed whole-exome sequencing and chromosomal microarray analyses in 4 unrelated patients, followed by confirmatory Sanger sequencing of the likely disease-causing mutations in patients and in their family members, followed by functional studies. Results We identified novel de novo missense mutations in GUCY2C, the gene encoding receptor guanylate cyclase C (GC-C) in 4 patients with CSD. One patient developed severe, early-onset IBD and chronic arthritis at 4 years of age. GC-C is an intestinal brush border membrane-bound guanylate cyclase, which functions as receptor for guanylin, uroguanylin and Escherichia coli heat-stable enterotoxin. Mutations in GUCY2C were present in different intracellular domains of GC-C, and were activating mutations that enhanced intracellular cyclic guanosine monophosphate accumulation in a ligand-independent and ligand-stimulated manner, following heterologous expression in HEK293T cells. Conclusions Dominant gain-of-function GUCY2C mutations lead to elevated intracellular cyclic guanosine monophosphate levels and could explain the chronic diarrhoea as a result of decreased intestinal sodium and water absorption and increased chloride secretion. Thus, mutations in GUCY2C indicate a role for this receptor in the pathogenesis of sporadic CSD. PMID:25994218

  20. Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogen-activated protein kinase.

    PubMed Central

    Peraldi, P; Zhao, Z; Filloux, C; Fischer, E H; Van Obberghen, E

    1994-01-01

    Protein-tyrosine-phosphatase 2C (PTP2C, also named SHPTP2, SHPTP3, or PTP1D) is a cytosolic enzyme with two Src homology 2 domains. We have investigated its regulation by phosphorylation in PC12 rat pheochromocytoma cells. In untreated cells, PTP2C was phosphorylated predominantly on serine residues. A 5-min treatment with epidermal growth factor (EGF) induced an increase in phosphorylation on threonine and, to a lesser degree, on serine. After 45 min of exposure to EGF, PTP2C phosphorylation returned to basal levels. Using an in vitro kinase assay, we found that the 44-kDa mitogen-activated protein kinase, p44mapk, phosphorylated PTP2C on serine and threonine residues. This phosphorylation resulted in a pronounced inhibition of PTP2C enzyme activity measured with phosphorylated EGF receptors as substrate. Moreover, in intact PC12 cells, PTP2C was also inhibited following a short EGF treatment, but its activity returned to normal when the exposure to EGF was maintained for 45 min. The profile of this response to EGF can be inversely correlated to that of the stimulatory action of EGF on p44mapk. These data suggest that the EGF-induced regulation of PTP2C activity is mediated by p44mapk. These findings provide evidence for an additional role of the mitogen-activated protein kinase cascade--namely, the regulation of a PTP. Images PMID:8197172

  1. Unusual behaviour of (Np,Pu)B2C

    NASA Astrophysics Data System (ADS)

    Klimczuk, Tomasz; Boulet, Pascal; Griveau, Jean-Christophe; Colineau, Eric; Bauer, Ernst; Falmbigl, Matthias; Rogl, Peter; Wastin, Franck

    2015-02-01

    Two transuranium metal boron carbides, NpB2C and PuB2C have been synthesized by argon arc melting. The crystal structures of the {Np,Pu}B2C compounds were determined from single-crystal X-ray data to be isotypic with the ThB2C-type (space group ?, a = 0.6532(2) nm; c = 1.0769(3) nm for NpB2C and a = 0.6509(2) nm; c = 1.0818(3) nm for PuB2C; Z = 9). Physical properties have been derived from polycrystalline bulk material in the temperature range from 2 to 300 K and in magnetic fields up to 9 T. Magnetic susceptibility and heat capacity data indicate the occurrence of antiferromagnetic ordering for NpB2C with a Neel temperature TN = 68 K. PuB2C is a Pauli paramagnet most likely due to a strong hybridization of s(p,d) electrons with the Pu-5f states. A pseudo-gap, as concluded from the Sommerfeld value and the electronic transport, is thought to be a consequence of the hybridization. The magnetic behaviour of {Np,Pu}B2C is consistent with the criterion of Hill.

  2. Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator

    PubMed Central

    Okoro, Danielle R.; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival. PMID:24147044

  3. Structural, electronic and bonding properties of antifluorite crystals of Be2C, BeMgC and Mg2C

    NASA Astrophysics Data System (ADS)

    Joshi, K. B.; Trivedi, D. K.; Paliwal, U.; Galav, K. L.

    2016-05-01

    Structure prediction methods are coupled with the first-principles linear combination of atomic orbitals method to propose the crystal parameters and bulk modulus of antifluorite BeMgC. The binary antifluorite methanides Be2C, Mg2C are also studied. Electronic structure calculations and Mulliken population analyses (MPA) are performed to unravel bands dispersion and bonding properties. The values of the indirect band gap Γ → X for Be2C, Mg2C and BeMgC, in order, are 2.90, 2.05 and 1.86 eV. The calculated energies of a few occupied bands in Be2C are in very good agreement with the available experimental data. The application of pressure causes change in the band gap of three carbides. The Γ-Γ, Γ-X and Γ-K band gaps exhibit different trends with pressure. Effective charges on the basis of MPA in the three compounds are {(B{e}+1.095)}2{C}-2.19, {(M{g}+1.615)}2{C}-3.23 and B{e}+1.12M{g}+1.682{C}-2.802. It signifies covalent bonding in Be2C, ionic in Mg2C, and intermediate in the BeMgC.

  4. First detection of canine parvovirus type 2c in Brazil

    PubMed Central

    Streck, André Felipe; de Souza, Carine Kunzler; Gonçalves, Karla Rathje; Zang, Luciana; Pinto, Luciane Dubina; Canal, Cláudio Wageck

    2009-01-01

    The presence of canine parvovirus type 2 (CPV-2), 2a and 2b has been described in Brazil, however, the type 2c had not been reported until now. In the current study, seven out of nine samples from dogs with diarrhea were characterized as CPV-2c, indicating that this virus is already circulating in the Brazilian canine population. PMID:24031389

  5. The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction

    PubMed Central

    Li, Juan; Shi, Chaowei; Sun, Demeng; He, Yao; Lai, Chaohua; Lv, Pei; Xiong, Ying; Zhang, Longhua; Wu, Fangming; Tian, Changlin

    2015-01-01

    PYL10 is a monomeric abscisic acid (ABA) receptor that inhibits protein phosphatase 2C (PP2C) activity in Arabidopsis thaliana. Previous studies reported that the PP2C phosphatase inhibition by PYL10 was ABA-independent. Here, systematic PYL10 biochemical studies demonstrated that PYL10 activity was ABA-dependent, and the previously reported studies was interfered by the presence of BSA in the commercial kit. To investigate dynamic mechanism of how ABA binding to PYL10 induces PP2C phosphatase inhibiting activity, solution NMR relaxation analysis of apo-PYL10 and PYL10/ABA were conducted following backbone resonance assignments. Reduced spectrum density mapping of the backbone relaxation data revealed that PYL10 was more flexible in ABA bound form than apo-PYL10, indicating an increased conformational entropy upon ligand binding. Moreover, to illustrate conformation exchanges of PYL10 upon ABA binding, NMR line shape analysis was performed with increasing concentrations of ABA, and the results indicated that PYL10 backbone conformational changes occur at different time scales. PMID:26044871

  6. Leptin rapidly activates PPARs in C2C12 muscle cells

    SciTech Connect

    Bendinelli, Paola; Piccoletti, Roberta . E-mail: Roberta.Piccoletti@unimi.it; Maroni, Paola

    2005-07-08

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluated as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.

  7. Activating KIRs and NKG2C in Viral Infections: Toward NK Cell Memory?

    PubMed Central

    Della Chiesa, Mariella; Sivori, Simona; Carlomagno, Simona; Moretta, Lorenzo; Moretta, Alessandro

    2015-01-01

    Natural killer (NK) cells are important players in the immune defense against viral infections. The contribution of activating killer immunoglobulin-like receptors (KIRs) and CD94/NKG2C in regulating anti-viral responses has recently emerged. Thus, in the hematopoietic stem cell transplantation setting, the presence of donor activating KIRs (aKIRs) may protect against viral infections, while in HIV-infected individuals, KIR3DS1, in combination with HLA-Bw4-I80, results in reduction of viral progression. Since, studies have been performed mainly at the genetic or transcriptional level, the effective size, the function, and the “licensing” status of NK cells expressing aKIRs, as well as the nature of their viral ligands, require further investigation. Certain viral infections, mainly due to Human cytomegalovirus (HCMV), can deeply influence the NK cell development and function by inducing a marked expansion of mature NKG2C+ NK cells expressing self-activating KIRs. This suggests that NKG2C and/or aKIRs are involved in the selective proliferation of this subset. The persistent, HCMV-induced, imprinting suggests that NK cells may display unexpected adaptive immune traits. The role of aKIRs and NKG2C in regulating NK cell responses and promoting a memory-like response to certain viruses is discussed. PMID:26617607

  8. Structure-Activity Relationships and Pharmacophore Model of a Non-Competitive Pyrazoline Containing Class of GluN2C/GluN2D Selective Antagonists

    PubMed Central

    Acker, Timothy M.; Khatri, Alpa; Vance, Katie M.; Slabber, Cathryn; Bacsa, John; Snyder, James P.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Here we describe the synthesis and structure-activity relationship for a class of pyrazoline-containing dihydroquinolone negative allosteric modulators of the NMDA receptor that show strong subunit-selectivity for GluN2C- and GluN2D-containing receptors over GluN2A-and GluN2B-containing receptors. Several members of this class inhibit NMDA receptor responses in the nanomolar range, and are more than 50-fold selective over GluN1/GluN2A and GluN1/GluN2B NMDA receptors, as well as AMPA, kainate, GABA, glycine, nicotinic, serotonin, and purinergic receptors. Analysis of the purified enantiomers of one of the more potent and selective compounds shows that the S-enantiomer is both more potent and more selective than the R-enantiomer. The S-enantiomer had an IC50 value of 0.17–0.22 µM at GluN2D- and GluN2C-containing receptors, respectively, and showed over 70-fold selectivity over other NMDA receptor subunits. The subunit-selectivity of this class of compounds should be useful in defining the role of GluN2C- and GluN2D-containing receptors in specific brain circuits in both physiological and patho-physiological conditions. PMID:23909910

  9. Selective 5-HT2C agonists as potential antidepressants.

    PubMed

    Leysen, D C

    1999-02-01

    The antidepressants currently used need improvement, especially in terms of efficacy, relapse rate and onset of action. In this review the clinical and experimental data which support the rationale for 5-HT2C agonists in the treatment of depression are listed. Next, the results obtained with the non-selective 5-HT2C agonists on the market and in clinical development are described. Finally, the preclinical data on the more selective 5-HT2C agonists are summarized. These recent preclinical results reveal a greater potency and effect size compared to fluoxetine, good tolerability and no evidence of tolerance development. Selective 5-HT2C agonists might become innovative drugs for the treatment of depression, panic, obsessive-compulsive disorder (OCD), some forms of aggression and eating disorders. PMID:16160946

  10. A potential therapeutic effect of CYP2C8 overexpression on anti-TNF-α activity

    PubMed Central

    LIU, WANJUN; WANG, BEI; DING, HU; WANG, DAO WEN; ZENG, HESONG

    2014-01-01

    Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid catalysed by cytochrome P450 (CYP) epoxygenases. In addition to regulating vascular tone EETs may alleviate inflammation and ROS. The present study was conducted to determine whether CYP2C8 gene overexpression was able to increase the level of EETs, and subsequently prevent TNF-α induced inflammation and reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs) and macrophages. Peroxisome proliferator-activated receptor γ (PPARγ) activation, nuclear factor-κB (NF-κB) activation, endothelial nitric oxide synthase (eNOS) activation, gp-91 activation, and inflammatory cytokine expression were detected by western blot analysis or enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) was measured by flow cytometry, while the migration of vascular smooth muscle cells (VSMCs) was detected by Transwell assay. pCMV-mediated CYP2C8 overexpression and its metabolites, EETs, markedly suppressed TNF-α induced inflammatory cytokines IL-6 and MCP-1 expression via the activation of NF-κB and degradation of IκBα. Moreover, pretreatment with 11,12-EET significantly blocked TNF-α-induced ROS production. CYP2C8-derived EETs also effectively alleviated the migration of VSMCs and improved the function of endothelial cells through the upregulation of eNOS, which was significantly decreased under the stimulation of TNF-α. Furthermore, these protective effects observed were mediated by PPARγ activation. To the best of our knowledge, the results of the present study demonstrated for the first time that CYP2C8-derived EETs exerted antivascular inflammatory and anti-oxidative effects, at least in part, through the activation of PPARγ. Thus, the CYP2C8 gene may be useful in the prevention and treatment of vascular inflammatory diseases. PMID:25017038

  11. The interstellar chemistry of H2C3O isomers

    NASA Astrophysics Data System (ADS)

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-03-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects.

  12. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  13. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A

    NASA Astrophysics Data System (ADS)

    Benoit, Roger M.; Frey, Daniel; Hilbert, Manuel; Kevenaar, Josta T.; Wieser, Mara M.; Stirnimann, Christian U.; McMillan, David; Ceska, Tom; Lebon, Florence; Jaussi, Rolf; Steinmetz, Michel O.; Schertler, Gebhard F. X.; Hoogenraad, Casper C.; Capitani, Guido; Kammerer, Richard A.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral β-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open β-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.

  14. Polymorphism of FCGR2A, FCGR2C, and FCGR3B Genes in the Pathogenesis of Sarcoidosis.

    PubMed

    Typiak, M; Rębała, K; Dudziak, M; Słomiński, J M; Dubaniewicz, A

    2016-01-01

    We have previously presented evidence that the polymorphism of the FCGR3A gene, encoding the receptor for Fc fragment of immunoglobulin G IIIa (FcγRIIIa) plays a role in the enhancement of circulating immune complexes (CIs) with the occurrence of Mycobacterium tuberculosis heat shock proteins in patients with sarcoidosis (SA). The immunocomplexemia might be caused by decreased affinity of CIs to Fcγ receptors, with the subsequently decreased receptor clearance by immune cells. In the present study we examined whether the polymorphisms of other related genes (FCGR2A, FCGR2C, FCGR3B) encoding other activatory Fcγ receptors, could have a similar effect. To this end, we genotyped 124 patients with sarcoidosis and 148 healthy volunteers using polymerase chain reaction with sequence-specific primers. We revealed a significant decrease in the percentage of the FCGR2A and FCGR2C variants that ensure effective CIs clearance, with a concomitant increase of less functional variants of these genes in Stages I/II, compared with Stages III/IV of SA. There was no aberration in FCGR3B allele/genotype frequencies. We conclude that the FCGR2A and FCGR2C polymorphisms may also contribute to immunocomplexemia present in SA. The assessment of FCGR genes could become a tool in presaging a clinical course of sarcoidosis and in its personalized therapy. PMID:26801149

  15. The strong selective sweep candidate gene ADRA2C does not explain domestication related changes in the stress response of chickens.

    PubMed

    Elfwing, Magnus; Fallahshahroudi, Amir; Lindgren, Isa; Jensen, Per; Altimiras, Jordi

    2014-01-01

    Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C) gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1-8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection of some unknown

  16. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes.

    PubMed

    Hewawasam, Ruwani P; Liu, Dan; Casarotto, Marco G; Board, Philip G; Dulhunty, Angela F

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  17. IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion

    PubMed Central

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-01-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C+ subset and general NK cell recovery rely on signals derived from CD14+ monocytes. In a coculture system, a subset of CD14+ cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C+ subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C+ NK cells. Together, our results reveal that IL-12, CD14+ cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C+ NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C+ NK cell subset have the potential to be exploited in NK cell–based intervention strategies against viral infections and cancer. PMID:25384219

  18. Obesity-Induced Colorectal Cancer Is Driven by Caloric Silencing of the Guanylin-GUCY2C Paracrine Signaling Axis.

    PubMed

    Lin, Jieru E; Colon-Gonzalez, Francheska; Blomain, Erik; Kim, Gilbert W; Aing, Amanda; Stoecker, Brian; Rock, Justin; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Tomczak, Michal; Blumberg, Richard S; Waldman, Scott A

    2016-01-15

    Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer. Using genetically engineered mice on different diets, we found that diet-induced obesity caused a loss of guanylin expression in the colon with subsequent GUCY2C silencing, epithelial dysfunction, and tumorigenesis. Mechanistic investigations revealed that obesity reversibly silenced guanylin expression through calorie-dependent induction of endoplasmic reticulum stress and the unfolded protein response in intestinal epithelial cells. In transgenic mice, enforcing specific expression of guanylin in intestinal epithelial cells restored GUCY2C signaling, eliminating intestinal tumors associated with a high calorie diet. Our findings show how caloric suppression of the guanylin-GUCY2C signaling axis links obesity to negation of a universal tumor suppressor pathway in colorectal cancer, suggesting an opportunity to prevent colorectal cancer in obese patients through hormone replacement with the FDA-approved oral GUCY2C ligand linaclotide. PMID:26773096

  19. NKG2A inhibits NKG2C effector functions of γδ T cells: implications in health and disease.

    PubMed

    Angelini, Daniela F; Zambello, Renato; Galandrini, Ricciarda; Diamantini, Adamo; Placido, Roberta; Micucci, Federica; Poccia, Fabrizio; Semenzato, Giuseppe; Borsellino, Giovanna; Santoni, Angela; Battistini, Luca

    2011-01-01

    The CD94/NKG2 complex is expressed on T and NK lymphocytes. CD94 molecules covalently associate to activating or inhibitory NKG2 molecules, and their expression finely tunes cell responses. Human γδ T cells express several NKRs. Expression of these receptors is confined to the cytolytic Vδ2 subset, which coexpresses the FcγRIII CD16 and CD45RA and has been defined as Vγ9Vδ2 T(EMRA) cells. We show that the CD94/NKG2C complex, associated with KARAP/DAP12, is fully functional in γδ T cells, as determined by measuring IFN-γ production, T cell proliferation, and cytolytic activity by γδ lymphocytes. In contrast, NKG2A expression was found on all γδ T cell memory subsets, suggesting a crucial role of the inhibitory signal provided by this receptor on γδ T cell responses. Moreover, we found Vγ9Vδ2 T(EMRA), NK, and CD8+ αβ T cells coexpressing NKG2A and NKG2C receptors. Functional experiments showed that the inhibitory signal mediated by the NKG2A receptor prevails when double-positive cells are activated. Finally, NKG2A expression on γδ LDGL correlates with asymptomatic pathology, even in the presence of NKG2C coexpression, whereas in symptomatic patients affected by severe disease, the inhibitory NKG2A receptor is absent, and a variety of activatory NKRs was found. We propose that the silent behavior of γδ cells in LDGL patients is a result of effective inhibitory HLA class I receptors. PMID:20952657

  20. Thermoelectric performance of functionalized Sc2C MXenes

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Schwingenschlögl, U.

    2016-07-01

    Functionalization of the MXene Sc2C , which has the rare property to realize semiconducting states for various functionalizations including O, F, and OH, is studied with respect to the electronic and thermal behavior. The lowest lattice thermal conductivity is obtained for OH functionalization and an additional 30% decrease can be achieved by confining the phonon mean free path to 100 nm. Despite a relatively low Seebeck coefficient, Sc2C (OH) 2 is a candidate for intermediate-temperature thermoelectric applications due to compensation by a high electrical conductivity and very low lattice thermal conductivity.

  1. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    SciTech Connect

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  2. E-2C Loads Calibration in DFRC Flight Loads Lab

    NASA Technical Reports Server (NTRS)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  3. Magnetic ordering in Ho2Fe2Si2C

    NASA Astrophysics Data System (ADS)

    Susilo, R. A.; Cadogan, J. M.; Cobas, R.; Hutchison, W. D.; Avdeev, M.; Campbell, S. J.

    2015-05-01

    We have used neutron diffraction and 57Fe Mössbauer spectroscopy, complemented by magnetisation and specific heat measurements, to examine the magnetic ordering of Ho2Fe2Si2C. We have established that Ho2Fe2Si2C orders antiferromagnetically below TN = 16(1) K with a magnetic structure involving ordering of the Ho sublattice along the b-axis with a propagation vector k =[0 0 1/2 ] . 57Fe Mössbauer spectra collected below TN show no evidence of a magnetic splitting, demonstrating the absence of long range magnetic ordering of the Fe sublattice. A small line broadening is observed in the 57Fe spectra below TN, which is due to a transferred hyperfine field—estimated to be around 0.3 T at 10 K—from the Ho sublattice.

  4. Flux Line Lattice Structure in YNi2B2C

    NASA Astrophysics Data System (ADS)

    Kawano-Furukawa, Hazuki; Ohira-Kawamura, Seiko; Tsukagoshi, Hitomi; Kobayashi, Chiyako; Nagata, Takashi; Sakiyama, Naoki; Yoshizawa, Hideki; Yethiraj, Mohana; Suzuki, Jun-ichi; Takeya, Hiroyuki

    2008-10-01

    Recently Nakai et al. reported a theoretical H-T phase diagram of flux line lattice (FLL) structure in which successive transitions from a triangular, a square (\\squarev), a triangular and another square (\\squareg) occur with increasing a magnetic field. Here \\squarev and \\squareg indicate the FLL structures reflecting anisotropies in the Fermi velocity and the superconducting gap, respectively. In the case of YNi2B2C, \\squarev and \\squareg should rotate by 45°. The low field transition from triangular to \\squarev is observed in RENi2B2C (\\textit{RE}=Er, Tm, Lu, and Y). However, there is no experimental evidence for the appearance of \\squareg phase so far. We studied the FLL structure of YNi2B2C in the higher field region by small-angle neutron scattering. Our results show that a large area of the H-T phase diagram is occupied by \\squarev phase and there is no evidence for the appearance of \\squareg lattice.

  5. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica

    PubMed Central

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar. PMID:26431530

  6. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica.

    PubMed

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar. PMID:26431530

  7. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  8. Mg intercalation into Ti2C building block

    NASA Astrophysics Data System (ADS)

    Yu, Xue-fang; Cheng, Jianbo; Liu, Zhenbo; Li, Qingzhong; Li, Wenzuo; Yang, Xin; Xiao, Bo

    2015-06-01

    Generally, intercalation occurs when foreign atoms intercalate into multi-layer structures, while adsorption occurs when foreign atoms interact with monolayer structures or surfaces. We performed an investigation on the Mg intercalation into Ti2C building block (MXene) from first-principles simulation. We found that Mg can favorably intercalate into MXene, forming the stable compound Ti2MgC, which corresponds to the stage I in the Li intercalation into graphite. Based on the evaluation of the average cell potential and the energy barrier of Mg diffusion for the most energetically stable structure, our results suggest that Ti2MgC is a potential anode for Mg ion batteries.

  9. Global structure search and physical properties of Os2C

    NASA Astrophysics Data System (ADS)

    Hong, Feng; Lu, Jian; Gao, Heng; Ren, Wei; Xu, Run; Xu, Fei; Ma, Zhongquan; Yan, Yanfa

    2016-09-01

    The crystal structures of Os2C were extensively investigated using the structure search method from the first-principles calculations. In contrast to the P6 3 /mmc phase previously proposed as the ground state at ambient pressure, an energetically favorable structure with space group P-6m2 was found more stable at ambient condition. The structural stabilities of the new phase are confirmed by the phonon dispersion and elastic constants. Further calculations indicate that the newly predicted P-6m2 phase is ultra-incompressible with a high bulk modulus of 387 GPa and has a larger ideal shear strength than the P6 3 /mmc phase.

  10. Genipin stimulates glucose transport in C2C12 myotubes via an IRS-1 and calcium-dependent mechanism.

    PubMed

    Ma, Chan-Juan; Nie, Ai-Fang; Zhang, Zhi-Jian; Zhang, Zhi-Guo; Du, Li; Li, Xiao-Ying; Ning, Guang

    2013-03-01

    Genipin, a compound derived from Gardenia jasminoides Ellis fruits, has been used over the years in traditional Chinese medicine to treat symptoms of type 2 diabetes. However, the molecular basis for its antidiabetic effect has not been fully revealed. In this study, we investigated the effects of genipin on glucose uptake and signaling pathways in C(2)C(12) myotubes. Our study demonstrates that genipin stimulated glucose uptake in a time- and dose-dependent manner. The maximal effect was achieved at 2 h with a concentration of 10 μM. In myotubes, genipin promoted glucose transporter 4 (GLUT4) translocation to the cell surface, which was observed by analyzing their distribution in subcellular membrane fraction, and increased the phosphorylation of insulin receptor substrate-1 (IRS-1), AKT, and GSK3β. Meanwhile, genipin increased ATP levels, closed K(ATP) channels, and then increased the concentration of calcium in the cytoplasm in C(2)C(12) myotubes. Genipin-stimulated glucose uptake could be blocked by both the PI3-K inhibitor wortmannin and calcium chelator EGTA. Moreover, genipin increases the level of reactive oxygen species and ATP in C(2)C(12) myotubes. These results suggest that genipin activates IRS-1, PI3-K, and downstream signaling pathway and increases concentrations of calcium, resulting in GLUT4 translocation and glucose uptake increase in C(2)C(12) myotubes. PMID:23257267

  11. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    PubMed

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment. PMID:24517573

  12. Acute Necrotizing Pancreatitis Following Olanzapine Treatment and 759C/T Polymorphism of HTR2C Gene: A Case Report.

    PubMed

    Rizos, Emmanouil; Tournikioti, Kalliopi; Alevyzakis, Evangelos; Peppa, Melpomeni; Papazaxos, Konstantinos; Zorbas, Georgios; Michopoulos, Ioannis; Liappas, Ioannis; Papageorgiou, Charalampos; Douzenis, Athanasios

    2015-01-01

    Acute pancreatitis can be attributed to numerous potential causes, such as alcohol abuse, chololithiasis, infection, lesions, tumors, hypercalcemia, hyperlipidemia, and medications. Among psychotropic medications, the use of some atypical antipsychotics, such as clozapine, olanzapine, quetiapine and risperidone, has been implicated in the development of acute pancreatitis, although the underlying mechanism has not been clarified. We describe the case of a young man with no other major medical problems, alcohol abuse or predisposing factors, who developed acute necrotizing pancreatitis following olanzapine administration, possibly through severe elevation of serum triglycerides. A pharmacogenomic analysis revealed the presence of the 5-hydroxytryptamine (serotonin) receptor 2C, G protein-coupled (HTR2C) -759C genotype which is related to increased risk for metabolic syndrome. PMID:26359410

  13. Up-Regulation of CYP2C19 Expression by BuChang NaoXinTong via PXR Activation in HepG2 Cells

    PubMed Central

    Wu, Xiao-Ying; Wang, Huan; Qu, Qiang; Tan, Shen-Lan; Ruan, Jun-Shan; Qu, Jian; Chen, Hui

    2016-01-01

    Background Cytochrome P450 2C19 (CYP2C19) is an important drug-metabolizing enzyme (DME), which is responsible for the biotransformation of several kinds of drugs such as proton pump inhibitors, platelet aggregation inhibitors and antidepressants. Previous studies showed that Buchang NaoXinTong capsules (NXT) increased the CYP2C19 metabolic activity in vitro and enhanced the antiplatelet effect of clopidogrel in vivo. However, the underlying molecular mechanism remained unclear. In the present study, we examined whether Pregnane X receptor (PXR) plays a role in NXT-mediated regulation of CYP2C19 expression. Methods We applied luciferase assays, real-time quantitative PCR (qPCR), Western blotting and cell-based analysis of metabolic activity experiments to investigate the NXT regulatory effects on the CYP2C19 promoter activity, the mRNA/ protein expression and the metabolic activity. Results Our results demonstrated that NXT significantly increased the CYP2C19 promoter activity when co-transfected with PXR in HepG2 cells. Mutations in PXR responsive element abolished the NXT inductive effects on the CYP2C19 promoter transcription. Additionally, NXT incubation (150 and 250μg/mL) also markedly up-regulated endogenous CYP2C19 mRNA and protein levels in PXR-transfected HepG2 cells. Correspondingly, NXT leaded to a significant enhancement of the CYP2C19 catalytic activity in PXR-transfected HepG2 cells. Conclusion In summary, this is the first study to suggest that NXT could induce CYP2C19 expression via PXR activation. PMID:27467078

  14. The Strong Selective Sweep Candidate Gene ADRA2C Does Not Explain Domestication Related Changes In The Stress Response Of Chickens

    PubMed Central

    Elfwing, Magnus; Fallahshahroudi, Amir; Lindgren, Isa; Jensen, Per; Altimiras, Jordi

    2014-01-01

    Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C) gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1–8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection of some unknown

  15. Global structure search and physical properties of Os2C.

    PubMed

    Hong, Feng; Lu, Jian; Gao, Heng; Ren, Wei; Xu, Run; Xu, Fei; Ma, Zhongquan; Yan, Yanfa

    2016-09-14

    The crystal structures of Os2C were extensively investigated using the structure search method from the first-principles calculations. In contrast to the P6 3 /mmc phase previously proposed as the ground state at ambient pressure, an energetically favorable structure with space group P-6m2 was found more stable at ambient condition. The structural stabilities of the new phase are confirmed by the phonon dispersion and elastic constants. Further calculations indicate that the newly predicted P-6m2 phase is ultra-incompressible with a high bulk modulus of 387 GPa and has a larger ideal shear strength than the P6 3 /mmc phase. PMID:27400877

  16. NMR characteristics in noncentrosymmetric Mo3Al2C

    NASA Astrophysics Data System (ADS)

    Kuo, C. N.; Liu, H. F.; Lue, C. S.

    2012-02-01

    We present an extensive study of the noncentrosymmetric superconductor Mo3Al2C using 27Al nuclear magnetic resonance (NMR) spectroscopy. The NMR line shapes, Knight shifts, as well as spin-lattice relaxation rates in both superconducting and normal states have been identified. In the superconducting phase, the results of the Knight shift and relaxation rate signify the existence of finite density of states, attributed to the strong antisymmetric spin-orbital coupling effect enhanced by intrinsic defects. In the normal state, peculiar changes such as the broadening of the NMR linewidth and the distinct drop of the Knight shift were discerned across a characteristic temperature of T*≃196 K. Moreover, the magnitude of 1/T1T decreases markedly and develops pseudogaplike behavior below T*. We associated these anomalous features with distortions near the Al sites toward a lower symmetric structural environment, leading to the modification of electronic structures around Fermi surfaces.

  17. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases. PMID:25631710

  18. Preparation and characterization of Pt-CeO2/C and Pt-TiO2/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Hameed, R. M. Abdel; Amin, R. S.; El-Khatib, K. M.; Fetohi, Amani E.

    2016-03-01

    Pt-TiO2/C and Pt-CeO2/C electrocatalysts were synthesized by solid state reaction of TiO2/C and CeO2/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt-TiO2/C and Pt-CeO2/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt-TiO2/C and Pt-CeO2/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt-CeO2/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt-TiO2/C and Pt-CeO2/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt-metal oxide/C electrocatalysts.

  19. Genetic polymorphisms of CYP2C9 and CYP2C19 are not related to drug-induced idiosyncratic liver injury (DILI)

    PubMed Central

    Pachkoria, K; Lucena, M I; Ruiz-Cabello, F; Crespo, E; Cabello, M R; Andrade, R J

    2007-01-01

    Background and purpose: The general view on the pathogenesis of drug-induced idiosyncratic liver injury (DILI) is that parent compounds are rendered hepatotoxic by metabolism, mainly by cytochrome (CYP) 450, although other metabolic pathways can contribute. Anecdotal reports suggest a role of CYP 450 polymorphisms in DILI. We aimed to assess in a series of Spanish DILI patients the prevalence of important allelic variants of CYP2C9 and CYP2C19, known to be involved in the metabolism of several hepatotoxic drugs. Experimental approach: Genotyping of CYP2C9 (*2, *3) and CYP2C19 (*2 and *3), was carried out in a total of 28 and 32 patients with a well established diagnosis of DILI. CYP2C9 and CYP2C19 variants were analysed in genomic DNA by means of PCR-FRET and compared with previous findings in other Caucasian populations. Key results: CYP2C9 and CYP2C19 allele and genotype frequencies were in agreement with Hardy-Weinberg equilibrium. Fourteen patients (50%) were heterozygous and 1(4%) found to be compound heterozygous for the CYP2C9 allele. Seven (22%) were found to carry one and 1(3%) carried two CYP2C19 mutated alleles. No patients were homozygous for *3 allele. The distribution of both CYP2C9 and CYP2C19 allelic variants in DILI patients were similar to those in other Caucasian populations. Patients with variant and those with wild-type alleles did not differ in regard to clinical presentation of DILI, type of injury and outcome. Conclusions and Implications: We find no evidence to support CYP2C9 and CYP2C19 genetic polymorphisms as predictable potential risk factors for DILI. PMID:17279092

  20. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial

    PubMed Central

    Li, Shuying S.; Gilbert, Peter B.; Tomaras, Georgia D.; Kijak, Gustavo; Ferrari, Guido; Thomas, Rasmi; Pyo, Chul-Woo; Zolla-Pazner, Susan; Montefiori, David; Liao, Hua-Xin; Nabel, Gary; Pinter, Abraham; Evans, David T.; Gottardo, Raphael; Dai, James Y.; Janes, Holly; Morris, Daryl; Fong, Youyi; Edlefsen, Paul T.; Li, Fusheng; Frahm, Nicole; Alpert, Michael D.; Prentice, Heather; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Robb, Merlin L.; O’Connell, Robert J.; Haynes, Barton F.; Michael, Nelson L.; Kim, Jerome H.; McElrath, M. Juliana; Geraghty, Daniel E.

    2014-01-01

    The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1–specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor–mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-γ receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial. PMID:25105367

  1. The Role of CYP2C8 and CYP2C9 Genotypes in Losartan-Dependent Inhibition of Paclitaxel Metabolism in Human Liver Microsomes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2016-06-01

    The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. PMID:26551762

  2. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.

    PubMed

    Budasz-Rwiderska, M; Jank, M; Motyl, T

    2005-06-01

    Myostatin (MSTN) and transforming growth factor-beta1 (TGF-beta1) belong to the same TGF-beta superfamily of proteins. They are involved in regulation of skeletal muscle growth and development as well as muscle catabolism. The aim of the present study was to investigate the relationship between MSTN and TGF-beta1 expression in proliferating and differentiating mouse C2C12 myoblasts cultured in normal and catabolic conditions and to evaluate the effect of exogenous TGF-beta1 as well as "knock down" of TGF-beta1 receptor type II on MSTN expression in proliferating and differentiating myogenic cells. The direct effect of TGF-beta1 on myostatin was also examined. Myostatin expression increased gradually with cell confluency in proliferating cultures, while the level of TGF-beta1, detected in the form of a 100 kDa small latent complex diminished. Myostatin expression was accompanied by a partial cell cycle arrest. Three forms of myostatin were found: a 52 kDa precursor, a 40 kDa latency associated propeptide, and a 26 kDa active peptide. A decrease in myostatin and TGF-beta1 levels was observed during the first three days of differentiation, which was subsequently followed by significant increase of their expression during next three to four days of differentiation. Catabolic state induced by dexamethasone significantly increased the level of all forms of myostatin as well as latent (100 kDa) and active (25 kDa) forms of TGF-beta1 in differentiating myoblasts in a dose dependent manner. Exogenous TGF-beta1 (2 ng/ml) significantly increased myostatin levels both in proliferating and differentiating C2C12 myoblasts, whereas silencing of the TGF-beta1 receptor II gene significantly lowered myostatin level in examined cells. The presented results indicate that TGF-beta1 may control myostatin-related regulation of myogenesis through up-regulation of myostatin, predominantly in the course of terminal differentiation and glucocorticoid-dependent catabolic stimulation. PMID

  3. Functional Characterization of Human CYP2C9 Allelic Variants in COS-7 Cells

    PubMed Central

    Du, Huihui; Wei, Zhiyun; Yan, Yucai; Xiong, Yuyu; Zhang, Xiaoqing; Shen, Lu; Ruan, Yunfeng; Wu, Xi; Xu, Qingqing; He, Lin; Qin, Shengying

    2016-01-01

    Variability in activity of CYP2C9, which is involved in the metabolism of approximately 15% of current therapeutic drugs, is an important contributor to interindividual differences in drug response. To evaluate the functional alternations of CYP2C9*2, CYP2C9*3, CYP2C9*8, CYP2C9*11 and CYP2C9*31, identified in our previous study in Chinese Han population, allelic variants as well as the wild-type CYP2C9 were transiently expressed in COS-7 cells. Kinetic parameters (Km, Vmax, and Clint) for S-warfarin 7-hydroxylation by these recombinant CYP2C9s were determined. Relative to CYP2C9.1, recombinant CYP2C9.3 and CYP2C9.11 exhibited significantly higher Km values, and all allelic variants showed significantly decreased Vmax and Clint values. Among all allelic variants, catalytic activity of CYP2C9.3 and CYP2C9.11 reduced the most (8.2% and 9.8% of Clint ratio, respectively; P < 0.001). These findings should be useful for predicting the phenotype profiles of CYP2C9 in Chinese Han population, comparing the functional results of these alleles accurately, and finally optimizing pharmacotherapy of drug treatment. PMID:27199745

  4. Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate.

    PubMed

    VandenBrink, Brooke M; Foti, Robert S; Rock, Dan A; Wienkers, Larry C; Wahlstrom, Jan L

    2011-09-01

    Understanding the potential for cytochrome P450 (P450)-mediated drug-drug interactions is a critical step in the drug discovery process. Although in vitro studies with CYP3A4, CYP2C9, and CYP2C19 have suggested the presence of multiple binding regions within the P450 active site based on probe substrate-dependent inhibition profiles, similar studies have not been performed with CYP2C8. The ability to understand CYP2C8 probe substrate sensitivity will enable appropriate in vitro and in vivo probe selection. To characterize the potential for probe substrate-dependent inhibition with CYP2C8, the inhibition potency of 22 known inhibitors of CYP2C8 were measured in vitro using four clinically relevant CYP2C8 probe substrates (montelukast, paclitaxel, repaglinide, and rosiglitazone) and amodiaquine. Repaglinide exhibited the highest sensitivity to inhibition in vitro. In vitro phenotyping indicated that montelukast is an appropriate probe for CYP2C8 inhibition studies. The in vivo sensitivities of the CYP2C8 probe substrates cerivastatin, fluvastatin, montelukast, pioglitazone, and rosiglitazone were determined in relation to repaglinide on the basis of clinical drug-drug interaction (DDI) data. Repaglinide exhibited the highest sensitivity in vivo, followed by cerivastatin, montelukast, and pioglitazone. Finally, the magnitude of in vivo CYP2C8 DDI caused by gemfibrozil-1-O-β-glucuronide was predicted. Comparisons of the predictions with clinical data coupled with the potential liabilities of other CYP2C8 probes suggest that montelukast is an appropriate CYP2C8 probe substrate to use for the in vivo situation. PMID:21697463

  5. New thermoelastic parameters of natural C2/ c omphacite

    NASA Astrophysics Data System (ADS)

    Pandolfo, Francesco; Nestola, Fabrizio; Cámara, Fernando; Domeneghetti, M. Chiara

    2012-04-01

    The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/ c) obtained by annealing a natural omphacite sample (space group P2/ n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch-Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K' = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c ≤ β a ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10-5 K-1 and an axial thermal expansion anisotropy of α b ≫ α a > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite-diopside binary join [ K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.

  6. Basic Data Report for Drillhole SNL-2 (C-2948)

    SciTech Connect

    Powers, Dennis W.

    2005-01-19

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  7. Endothelin signaling activates Mef2c expression in the neural crest through a MEF2C-dependent positive-feedback transcriptional pathway.

    PubMed

    Hu, Jianxin; Verzi, Michael P; Robinson, Ashley S; Tang, Paul Ling-Fung; Hua, Lisa L; Xu, Shan-Mei; Kwok, Pui-Yan; Black, Brian L

    2015-08-15

    Endothelin signaling is essential for neural crest development, and dysregulated Endothelin signaling is associated with several neural crest-related disorders, including Waardenburg and other syndromes. However, despite the crucial roles of this pathway in neural crest development and disease, the transcriptional effectors directly activated by Endothelin signaling during neural crest development remain incompletely elucidated. Here, we establish that the MADS box transcription factor MEF2C is an immediate downstream transcriptional target and effector of Endothelin signaling in the neural crest. We show that Endothelin signaling activates Mef2c expression in the neural crest through a conserved enhancer in the Mef2c locus and that CRISPR-mediated deletion of this Mef2c neural crest enhancer from the mouse genome abolishes Endothelin induction of Mef2c expression. Moreover, we demonstrate that Endothelin signaling activates neural crest expression of Mef2c by de-repressing MEF2C activity through a Calmodulin-CamKII-histone deacetylase signaling cascade. Thus, these findings identify a MEF2C-dependent, positive-feedback mechanism for Endothelin induction and establish MEF2C as an immediate transcriptional effector and target of Endothelin signaling in the neural crest. PMID:26160899

  8. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  9. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    PubMed Central

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  10. Mir-17-92 regulates bone marrow homing of plasma cells and production of immunoglobulin G2c.

    PubMed

    Xu, Shengli; Ou, Xijun; Huo, Jianxin; Lim, Kristen; Huang, Yuhan; Chee, Sheena; Lam, Kong-Peng

    2015-01-01

    The polycistronic mir-17-92 cluster, also known as oncomir-1, was previously shown to be essential for early B lymphopoiesis. However, its role in late-stage B-cell differentiation and function remains unexplored. Here we ablate mir-17-92 in mature B cells and demonstrate that mir-17-92 is dispensable for conventional B-cell development in the periphery. Interestingly, mir-17-92-deficiency in B cells leads to enhanced homing of plasma cells to the bone marrow during T-cell-dependent immune response and selectively impairs IgG2c production. Mechanistically, mir-17-92 directly represses the expression of Sphingosine 1-phosphate receptor 1 and transcription factor IKAROS, which are, respectively, important for plasma cell homing and IgG2c production. We further show that deletion of mir-17-92 could reduce IgG2c anti-DNA autoantibody production and hence mitigate immune complex glomerulonephritis in Shp1-deficient mice prone to autoimmunity. Our results identify important roles for mir-17-92 in the regulation of peripheral B-cell function. PMID:25881561

  11. Sprouty-2 Overexpression in C2C12 Cells Confers Myogenic Differentiation Properties in the Presence of FGF2D⃞

    PubMed Central

    de Alvaro, Cristina; Martinez, Natalia; Rojas, Jose M.; Lorenzo, Margarita

    2005-01-01

    Myoblast C2C12 cells cultured in the presence of FGF2 actively proliferate and showed a differentiation-defective phenotype compared with cells cultured in low serum or in the presence of insulin. These FGF2 effects are associated with sustained activation of p44/p42-MAPK and lack of activation of AKT. Here we demonstrate that Sprouty-2, a protein involved in the negative feedback of receptor tyrosine kinase signaling, when stably overexpressed in C2C12 cells and in the presence of FGF2 produces growth arrest (precluding the expression of PCNA and the phosphorylation of retinoblastoma and inducing the expression of p21CIP) and myogenesis (multinucleated myotubes formation, induction of creatine kinase and expression of myosin heavy chain protein). These events were accompanied by repression of p44/p42-MAPK and activation of AKT. When C2C12 cells were stably transfected with a Sprouty-2 (Y55F) mutant defective in inhibiting p44/p42-MAPK activation by FGF, myoblasts in the presence of FGF continue to grow and completely fail to form myotubes. This work is the first evidence of the contribution of sprouty genes to myogenic differentiation in the presence of FGF2. PMID:16000370

  12. Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle α2C-adrenoceptors through the actin-binding protein filamin-2

    PubMed Central

    Motawea, Hanaa K. B.; Jeyaraj, Selvi C.; Eid, Ali H.; Mitra, Srabani; Unger, Nicholas T.; Ahmed, Amany A. E.; Flavahan, Nicholas A.

    2013-01-01

    The second messenger cyclic AMP (cAMP) plays a vital role in vascular physiology, including vasodilation of large blood vessels. We recently demonstrated cAMP activation of Epac-Rap1A and RhoA-Rho-associated kinase (ROCK)-F-actin signaling in arteriolar-derived smooth muscle cells increases expression and cell surface translocation of functional α2C-adrenoceptors (α2C-ARs) that mediate vasoconstriction in small blood vessels (arterioles). The Ras-related small GTPAse Rap1A increased expression of α2C-ARs and also increased translocation of perinuclear α2C-ARs to intracellular F-actin and to the plasma membrane. This study examined the mechanism of translocation to better understand the role of these newly discovered mediators of blood flow control, potentially activated in peripheral vascular disorders. We utilized a yeast two-hybrid screen with human microvascular smooth muscle cells (microVSM) cDNA library and the α2C-AR COOH terminus to identify a novel interaction with the actin cross-linker filamin-2. Yeast α-galactosidase assays, site-directed mutagenesis, and coimmunoprecipitation experiments in heterologous human embryonic kidney (HEK) 293 cells and in human microVSM demonstrated that α2C-ARs, but not α2A-AR subtype, interacted with filamin. In Rap1-stimulated human microVSM, α2C-ARs colocalized with filamin on intracellular filaments and at the plasma membrane. Small interfering RNA-mediated knockdown of filamin-2 inhibited Rap1-induced redistribution of α2C-ARs to the cell surface and inhibited receptor function. The studies suggest that cAMP-Rap1-Rho-ROCK signaling facilitates receptor translocation and function via phosphorylation of filamin-2 Ser2113. Together, these studies extend our previous findings to show that functional rescue of α2C-ARs is mediated through Rap1-filamin signaling. Perturbation of this signaling pathway may lead to alterations in α2C-AR trafficking and physiological function. PMID:23864608

  13. Isolation and Crystallographic Characterization of La2C2@Cs(574)-C102 and La2C2@C2(816)-C104: Evidence for the Top-Down Formation Mechanism of Fullerenes.

    PubMed

    Cai, Wenting; Li, Fang-Fang; Bao, Lipiao; Xie, Yunpeng; Lu, Xing

    2016-05-25

    Tubular higher fullerenes are prototypes of finite-length end-capped carbon nanotubes (CNTs) whose structures can be accurately characterized by single-crystal X-ray diffraction crystallography. We present here the isolation and crystallographic characterization of two unprecedented higher fullerenes stabilized by the encapsulation of a La2C2 cluster, namely, La2C2@Cs(574)-C102, which has a perfect tubular cage corresponding to a short (10, 0) zigzag carbon nanotube, and La2C2@C2(816)-C104 which has a defective cage with a pyracylene motif inserting into the cage waist. Both cages provide sufficient spaces for the large La2C2 cluster to adopt a stretched and nearly planar configuration, departing from the common butterfly-like configuration which has been frequently observed in midsized carbide metallofullerenes (e.g., Sc2C2@C80-84), to achieve strong metal-cage interactions. More meaningfully, our crystallographic results demonstrate that the defective cage of C2(816)-C104 is a starting point to form the other three tubular cages known so far, i.e., D5(450)-C100, Cs(574)-C102, and D3d(822)-C104, presenting evidence for the top-down formation mechanism of fullerenes. The fact that only the large La2C2 cluster has been found in giant fullerene cages (C>100) and the small clusters M2C2 (M = Sc, Y, Er, etc.) are present in midsized fullerenes (C80-C86) indicates that geometrical matching between the cluster and the cage, which ensures strong metal-cage interactions, is an important factor controlling the stability of the resultant metallofullerenes, in addition to charge transfer. PMID:27157415

  14. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction.

    PubMed

    Berglund, Sean P; He, Huichao; Chemelewski, William D; Celio, Hugo; Dolocan, Andrei; Mullins, C Buddie

    2014-01-29

    p-Si/W2C photocathodes are synthesized by evaporating tungsten metal in an ambient of ethylene gas to form tungsten semicarbide (W2C) thin films on top of p-type silicon (p-Si) substrates. As deposited the thin films contain crystalline W2C with a bulk W:C atomic ratio of approximately 2:1. The W2C films demonstrate catalytic activity for the hydrogen evolution reaction (HER), and p-Si/W2C photocathodes produce cathodic photocurrent at potentials more positive than 0.0 V vs RHE while bare p-Si photocathodes do not. The W2C films are an effective support for Pt nanoparticles allowing for a considerable reduction in Pt loading. p-Si/W2C/Pt photocathodes with Pt nanoparticles achieve photocurrent onset potentials and limiting photocurrent densities that are comparable to p-Si/Pt photocathodes with Pt loading nine times higher. This makes W2C an earth abundant alternative to pure Pt for use as an electrocatalyst on photocathodes for the HER. PMID:24393053

  15. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  16. Cartilage-derived morphogenetic proteins enhance the osteogenic protein-1-induced osteoblastic cell differentiation of C2C12 cells.

    PubMed

    Yeh, Lee-Chuan C; Tsai, Alicia D; Zavala, Michelle C; Lee, John C

    2004-12-01

    Previous studies have shown that osteogenic protein-1 (OP-1; also known as BMP-7) induces differentiation of the pluripotent mesenchymal cell line C2C12 into osteoblastic cells. OP-1 also alters the steady-state levels of messenger RNA (mRNA) encoding for the cartilage-derived morphogenetic proteins (CDMPs) in C2C12 cells. In the present study, the effects of exogenous CDMPs on bone cell differentiation induced by OP-1 in C2C12 cells were examined. Exogenous CDMP-1, -2, and -3 synergistically and dose-dependently enhanced OP-1 action in stimulating alkaline phosphatase (AP) activity and osteocalcin (OC) mRNA expression. AP staining studies revealed that the combination of OP-1 and CDMP enhanced OP-1 action by stimulating those cells that had responded to OP-1 and not by activating additional cells. The combination did not change the mRNA expression of the BMPs and their receptors. CDMP-1 enhanced the suppression of the OP-1-induced expression of the myogeneic differentiation regulator MyoD. CDMP-1 and OP-1 alone stimulated Smad5 protein expression, but the combination of OP-1 and CDMP-1 stimulated synergistically Smad5 protein expression. Thus, one mechanism of the observed synergy involved enhancement of the induced Smad5 protein expression. At the same protein concentration, CDMP-1 is most potent in enhancing OP-1 activity in inducing osteoblastic cell differentiation of C2C12 cells. CDMP-3 is about 80% as potent as CDMP-1, and CDMP-2 is the least potent (about 50% of CDMP-1). PMID:15389555

  17. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression. PMID:22700758

  18. Application of an Integrated GPCR SAR-Modeling Platform To Explain the Activation Selectivity of Human 5-HT2C over 5-HT2B.

    PubMed

    Heifetz, Alexander; Storer, R Ian; McMurray, Gordon; James, Tim; Morao, Inaki; Aldeghi, Matteo; Bodkin, Mike J; Biggin, Philip C

    2016-05-20

    Agonism of the 5-HT2C serotonin receptor has been associated with the treatment of a number of diseases including obesity, psychiatric disorders, sexual health, and urology. However, the development of effective 5-HT2C agonists has been hampered by the difficulty in obtaining selectivity over the closely related 5-HT2B receptor, agonism of which is associated with irreversible cardiac valvulopathy. Understanding how to design selective agonists requires exploration of the structural features governing the functional uniqueness of the target receptor relative to related off targets. X-ray crystallography, the major experimental source of structural information, is a slow and challenging process for integral membrane proteins, and so is currently not feasible for every GPCR or GPCR-ligand complex. Therefore, the integration of existing ligand SAR data with GPCR modeling can be a practical alternative to provide this essential structural insight. To demonstrate this, we integrated SAR data from 39 azepine series 5-HT2C agonists, comprising both selective and unselective examples, with our hierarchical GPCR modeling protocol (HGMP). Through this work we have been able to demonstrate how relatively small differences in the amino acid sequences of GPCRs can lead to significant differences in secondary structure and function, as supported by experimental data. In particular, this study suggests that conformational differences in the tilt of TM7 between 5-HT2B and 5-HT2C, which result from differences in interhelical interactions, may be the major source of selectivity in G-protein activation between these two receptors. Our approach also demonstrates how the use of GPCR models in conjunction with SAR data can be used to explain activity cliffs. PMID:26900768

  19. Down-regulation of cytochrome P450 2C family members and positive acute-phase response gene expression by peroxisome proliferator chemicals.

    PubMed

    Corton, J C; Fan, L Q; Brown, S; Anderson, S P; Bocos, C; Cattley, R C; Mode, A; Gustafsson, J A

    1998-09-01

    In this study, we show that peroxisome proliferator chemical (PPC) exposure leads to alterations in the expression of genes in rat liver regulated by the sex-specific growth hormone secretory pattern and induced during inflammation. Expression of the male-specific cytochrome P450 (P450) 2C11 and alpha2 urinary globulin (alpha2u) genes and the female-specific P450 2C12 gene was down-regulated by some PPC. Expression of P450 2C13, also under control by the sex-specific growth hormone secretory pattern, was not altered by PPC treatment, indicating that regulation of CYP2C family members does not involve perturbation of the growth hormone secretory pattern. In contrast to the increases in expression observed when inflammation was induced in male rats, two positive acute-phase response genes, alpha1-acid glycoprotein and beta-fibrinogen, were decreased by PPC exposure. The down-regulation of the P450 2C11 by WY-14,643 could be reproduced in cultured rat hepatocytes, indicating the down-regulation is a direct effect. Experiments in wild-type mice and mice that lacked a functional peroxisome proliferator-activated receptor-alpha gene showed that down-regulation by WY of alpha1-acid glycoprotein, beta-fibrinogen, and a mouse homologue of alpha2u was dependent on peroxisome proliferator-activated receptor-alpha expression. Our results demonstrate that PPC exposure leads to down-regulation of diverse liver-specific genes, including CYP2C family members important in hormonal homeostasis and acute-phase response genes important in inflammatory responses. PMID:9730905

  20. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    PubMed

    Hu, Wei; Yan, Yan; Hou, Xiaowan; He, Yanzhen; Wei, Yunxie; Yang, Guangxiao; He, Guangyuan; Peng, Ming

    2015-01-01

    Group A protein phosphatases 2Cs (PP2Cs) are essential components of abscisic acid (ABA) signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA) and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS) accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process. PMID:26057628

  1. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy.

    PubMed

    Ortega-Vázquez, A; Dorado, P; Fricke-Galindo, I; Jung-Cook, H; Monroy-Jaramillo, N; Martínez-Juárez, I E; Familiar-López, I; Peñas-Lledó, E; LLerena, A; López-López, M

    2016-06-01

    We aimed to explore the possible influence of CYP2C9 (*2, *3 and IVS8-109 A>T), CYP2C19 (*2, *3 and *17) and ABCB1 (1236C>T, 2677G>A/T and 3435C>T) on phenytoin (PHT) plasma concentrations in 64 Mexican Mestizo (MM) patients with epilepsy currently treated with PHT in mono- (n=25) and polytherapy (n=39). Genotype and allele frequencies of these variants were also estimated in 300 MM healthy volunteers. Linear regression models were used to assess associations between the dependent variables (PHT plasma concentration and dose-corrected PHT concentration) with independent variables (CYP2C9, CYP2C19 and ABCB1 genotypes, ABCB1 haplotypes, age, sex, weight, and polytherapy). In multivariate models, CYP2C9 IVS8-109 T was significantly associated with higher PHT plasma concentrations (t(64)=2.27; P=0.03). Moreover, this allele was more frequent in the supratherapeutic group as compared with the subtherapeutic group (0.13 versus 0.03, respectively; P=0.05, Fisher's exact test). Results suggest that CYP2C9 IVS8-109 T allele may decrease CYP2C9 enzymatic activity on PHT. More research is needed to confirm findings. PMID:26122019

  2. Genetic Polymorphism of Cytochrome p450 (2C9) Enzyme in Iranian Baluch Ethnic Group

    PubMed Central

    Tabari, Mojdeh Ghiyas; Naseri, Fatemeh; Ataby, Maryam Agh; Marjani, Abdoljalal

    2015-01-01

    The aim of the present study is to assess and compare the frequencies of the cytochrome P450 CYP2C9 variations in the Baluch ethnic group (n=110) with other ethnic groups. The allele frequencies of CYP2C9*1, CYP2C9*2 and CYP2C9*3 were 80.90%, 11.82% and 7.27%, respectively. 70.90%, 11.82%, 8.18%, 4.55%, 2.73% and 1.82% of subjects were with CYP2C9*1/*1, CYP2C9*1/*2, CYP2C9*1/*3, CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, respectively. Different mutants may effect on prediction of drug dose requirements in different ethnic groups. Thus, CYP2C9 variants to be determined for findings high risk groups use optimal dosage of drugs metabolized by this polymorphic enzyme. PMID:26464589

  3. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity.

    PubMed

    Lin, Jieru Egeria; Snook, Adam Eugene; Li, Peng; Stoecker, Brian Arthur; Kim, Gilbert Won; Magee, Michael Sullivan; Garcia, Alex Vladimir Mejia; Valentino, Michael Anthony; Hyslop, Terry; Schulz, Stephanie; Waldman, Scott Arthur

    2012-01-01

    The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2c(-/-)) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous and carcinogen-induced systemic tumorigenesis in Gucy2c(-/-) mice. GUCY2C regulated barrier integrity by repressing AKT1, associated with increased junction proteins occludin and claudin 4 in mice and Caco2 cells in vitro. Thus, GUCY2C defends the intestinal barrier, opposing colitis and systemic genotoxicity and tumorigenesis. The therapeutic potential of this observation is underscored by the emerging clinical development of oral GUCY2C ligands, which can be used for chemoprophylaxis in inflammatory bowel disease and cancer. PMID:22384056

  4. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.

    PubMed

    Kerk, David; Silver, Dylan; Uhrig, R Glen; Moorhead, Greg B G

    2015-01-01

    Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s") which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary

  5. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases

    PubMed Central

    Kerk, David; Silver, Dylan; Uhrig, R. Glen; Moorhead, Greg B. G.

    2015-01-01

    Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class (“PP2C7s”) which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key

  6. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  7. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4.

    PubMed

    Ohbuchi, Masato; Noguchi, Kiyoshi; Kawamura, Akio; Usui, Takashi

    2012-07-01

    Inhibitory potential of proton pump inhibitors (PPIs) and famotidine, an H(2) receptor antagonist, on the metabolic activation of clopidogrel was evaluated using recombinant CYP2B6, CYP2C19 and CYP3A4. Formation of the active metabolite from an intermediate metabolite, 2-oxo-clopidogrel, was investigated by liquid chromatography-tandem mass spectrometry and three peaks corresponding to the pharmacologically active metabolite and its stereoisomers were detected. Omeprazole potently inhibited clopidogrel activation by CYP2C19 with an IC(50) of 12.8 μmol/L and more weakly inhibited that by CYP2B6 and CYP3A4. IC(50) of omeprazole for CYP2C19 and CYP3A4 was decreased about two- and three-fold, respectively, by 30-min preincubation with NADPH. Lansoprazole, esomeprazole, pantoprazole, rabeprazole and rabeprazole thioether, a major metabolite, also inhibited metabolic activation by CYP2C19, with an IC(50) of 4.3, 8.9, 48.3, 36.2 and 30.5 μmol/L, respectively. In contrast, famotidine showed no more than 20% inhibition of clopidogrel activation by CYP2B6, CYP2C19 and CYP3A4 at up to 100 μmol/L and had no time-dependent CYP2C19 and CYP3A4 inhibition. These results provide direct evidence that PPIs inhibit clopidogrel metabolic activation and suggest that CYP2C19 inhibition is the main cause of drug-drug interaction between clopidogrel and omeprazole. Famotidine is considered as a safe anti-acid agent for patients taking clopidogrel. PMID:22313038

  8. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions.

    PubMed

    Backman, Janne T; Filppula, Anne M; Niemi, Mikko; Neuvonen, Pertti J

    2016-01-01

    During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed. PMID:26721703

  9. Permanent Uncoupling of Male-specific CYP2C11 Transcription / Translation by Perinatal Glutamate

    PubMed Central

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H.

    2015-01-01

    Perinatal exposure of rats and mice to the typically reported 4mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform - all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. PMID:25697375

  10. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate.

    PubMed

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A; Shapiro, Bernard H

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform--all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2mg/g bd wt on alternate days for the first 9days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70-80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. PMID:25697375

  11. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population

    PubMed Central

    Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna

    2016-01-01

    Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application “Lekgen” that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy.

  12. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    SciTech Connect

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H.

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  13. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    PubMed Central

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  14. Genetic Polymorphisms of CYP2C8 in the Czech Republic

    PubMed Central

    Buzkova, Helena; Matouskova, Olga; Perlik, Frantisek

    2012-01-01

    Aim: CYP2C8 represents 7% of the hepatic cytochrome system and metabolizes around 5% of drugs in phase I processes. It also plays a significant role in metabolism of endogenous compounds. More than 20 single-nucleotide polymorphisms (SNPs) have been noted, mainly in exons 3, 5, and 8. The most studied SNPs may lead to decreased enzyme activity and may have impact on drug metabolism. Variant alleles are called CYP2C8*2 (I269F), CYP2C8*3 (R139K, K399R), and CYP2C8*4(I264M). Our aim was to investigate the frequency of major functional SNPs among the Czech population. Material and methods: DNA was isolated from whole blood of 161 healthy, young, and unrelated subjects (94 men and 67 women, aged from 23 to 28 years). The genotypes of polymorphic positions CYP2C8*2, CYP2C8*3 (G416A, A1196G), and CYP2C8*4 were determined by polymerase chain reaction–restriction fragment length polymorphism. Results and conclusion: Observed allele frequencies were 10.9%, 5.9%, and 0.3% for the alleles CYP2C8*3, CYP2C8*4, and CYP2C8*2, respectively. Both CYP2C8*3 (G416A, A1196G) alleles have been found in complete linkage disequilibrium. The allele distribution complies well with Hardy–Weinberg equilibrium. Allele frequencies of functionally important CYP2C8 variants in the Czech population are similar to that of other Caucasian populations. PMID:22313047

  15. P450 2C18 catalyzes the metabolic bioactivation of phenytoin.

    PubMed

    Kinobe, Robert T; Parkinson, Oliver T; Mitchell, Deanne J; Gillam, Elizabeth M J

    2005-12-01

    The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a kcat (2.46 +/- 0.09 min-1) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min-1) and P450 2C19 (0.054 +/- 0.002 min-1) and Km (45 +/- 5 microM) slightly greater than those of P450 2C9 (12 +/- 4 microM) and P450 2C19 (29 +/- 4 microM). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo. PMID:16359177

  16. Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells

    PubMed Central

    Honardoost, Maryam; Arefian, Ehsan; Soleimani, Masoud; Soudi, Sara; Sarookhani, Mohammad Reza

    2016-01-01

    Objective Micro-RNAs (miRNAs) are a class of posttranscriptional regulators that play crucial roles in various biological processes. Emerging evidence suggests a direct link between miRNAs and development of several diseases including type 2 diabetes (T2D). In this study, we aimed to investigate the effect of predicted miRNA and target genes on insulin resistance. Materials and Methods This experimental study was conducted on the C2C12 cell line. Using bioinformatics tools miRNA-135 and two respective target genes-insulin receptor (Insr) and vesicle associated membrane protein 2 (Vamp2)were selected as potential factors involved in insulin resistance process. Levels of glucose uptake miRNA expression and respective gene targets were determined after cell transfaction by miR-135. Results It was determined that Insr gene expression was significantly down-regulated in miR-135 transfected C2C12 cell line (P≤0.05). Interestingly; these transfected cells have shown a significant difference in glucose uptake incomparision the positive control cells, while it was similar to the insulin resistant cell line (P≤0.05). In contrast, no significant alteration of Vamp2 gene expression was observed. Conclusion Our data indicated no change on the Vamp2 expression level after miRNA transfection, while expression level of Insr was reduced and miR-135 expression was contrarily increased leading to poor stimulation of glucose uptake through insulin, and development of insulin resistance phenotype in C2C12 cell line. PMID:27602317

  17. Protein O-Fucosyltransferase 1 Expression Impacts Myogenic C2C12 Cell Commitment via the Notch Signaling Pathway

    PubMed Central

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman

    2014-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7+/MyoD− cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation. PMID:25384974

  18. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation.

    PubMed

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco's modified Eagle's medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  19. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  20. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation

    PubMed Central

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco’s modified Eagle’s medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  1. MEF2C and EBF1 Co-regulate B Cell-Specific Transcription.

    PubMed

    Kong, Nikki R; Davis, Matthew; Chai, Li; Winoto, Astar; Tjian, Robert

    2016-02-01

    Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action remained unclear. Here, we have identified early B cell factor-1 (EBF1) as a co-regulator of gene expression with MEF2C. A genome-wide survey of MEF2C and EBF1 binding sites identified a subset of B cell-specific genes that they target. We also determined that the p38 MAPK pathway activates MEF2C to drive B cell differentiation. Mef2c knockout mice showed reduced B lymphoid-specific gene expression as well as increased myeloid gene expression, consistent with MEF2C's role as a lineage fate regulator. This is further supported by interaction between MEF2C and the histone deacetylase, HDAC7, revealing a likely mechanism to repress the myeloid transcription program. This study thus elucidates both activation and repression mechanisms, identifies regulatory partners, and downstream targets by which MEF2C regulates lymphoid-specific differentiation. PMID:26900922

  2. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  3. Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling

    PubMed Central

    Bellot, Morgane; Galandrin, Ségolène; Boularan, Cédric; Matthies, Heinrich J; Despas, Fabien; Denis, Colette; Javitch, Jonathan; Mazères, Serge; Sanni, Samra Joke; Pons, Véronique; Seguelas, Marie-Hélène; Hansen, Jakob L; Pathak, Atul; Galli, Aurelio; Sénard, Jean-Michel; Galés, Céline

    2015-01-01

    Hypersecretion of norepinephrine (NE) and angiotensin II (AngII) is a hallmark of major prevalent cardiovascular diseases that contribute to cardiac pathophysiology and morbidity. Herein, we explore whether heterodimerization of presynaptic AngII AT1 receptor (AT1-R) and NE α2C-adrenergic receptor2C-AR) could underlie their functional cross-talk to control NE secretion. Multiple bioluminescence resonance energy transfer and protein complementation assays allowed us to accurately probe the structures and functions of the α2C-AR–AT1-R dimer promoted by ligand binding to individual protomers. We found that dual agonist occupancy resulted in a conformation of the heterodimer different from that induced by active individual protomers and triggered atypical Gs-cAMP–PKA signaling. This specific pharmacological signaling unit was identified in vivo to promote not only NE hypersecretion in sympathetic neurons but also sympathetic hyperactivity in mice. Thus, we uncovered a new process by which GPCR heterodimerization creates an original functional pharmacological entity and that could constitute a promising new target in cardiovascular therapeutics. PMID:25706338

  4. Establishing a Research Center: The Minority Male Community College Collaborative (M2C3)

    ERIC Educational Resources Information Center

    Wood, J. Luke; Urias, Marissa Vasquez; Harris, Frank, III

    2016-01-01

    This chapter describes the establishment of the Minority Male Community College Collaborative (M2C3), a research and practice center at San Diego State University. M2C3 partners with community colleges across the United States to enhance access, achievement, and success among men of color. This chapter begins with a description of the national…

  5. Phosphorylation-dependent degradation of MEF2C contributes to regulate G2/M transition.

    PubMed

    Badodi, Sara; Baruffaldi, Fiorenza; Ganassi, Massimo; Battini, Renata; Molinari, Susanna

    2015-01-01

    The Myocyte Enhancer Factor 2C (MEF2C) transcription factor plays a critical role in skeletal muscle differentiation, promoting muscle-specific gene transcription. Here we report that in proliferating cells MEF2C is degraded in mitosis by the Anaphase Promoting Complex/Cyclosome (APC/C) and that this downregulation is necessary for an efficient progression of the cell cycle. We show that this mechanism of degradation requires the presence on MEF2C of a D-box (R-X-X-L) and 2 phospho-motifs, pSer98 and pSer110. Both the D-box and pSer110 motifs are encoded by the ubiquitous alternate α1 exon. These two domains mediate the interaction between MEF2C and CDC20, a co-activator of APC/C. We further report that in myoblasts, MEF2C regulates the expression of G2/M checkpoint genes (14-3-3γ, Gadd45b and p21) and the sub-cellular localization of CYCLIN B1. The importance of controlling MEF2C levels during the cell cycle is reinforced by the observation that modulation of its expression affects the proliferation rate of colon cancer cells. Our findings show that beside the well-established role as pro-myogenic transcription factor, MEF2C can also function as a regulator of cell proliferation. PMID:25789873

  6. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  7. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  8. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  9. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  10. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  11. The Transcription Factor MEF2C Negatively Controls Angiogenic Sprouting of Endothelial Cells Depending on Oxygen

    PubMed Central

    Sturtzel, Caterina; Testori, Julia; Schweighofer, Bernhard; Bilban, Martin; Hofer, Erhard

    2014-01-01

    The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis. PMID:24988463

  12. Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions

    PubMed Central

    González, Débora; Torrens, Marta; Farré, Magí

    2015-01-01

    Background. 2C-B (Nexus) is one of the most widespread novel psychoactive substances. There is limited information about its pharmacological properties, and few studies in humans concern its acute and chronic effects. 2C-B has been classified as a stimulant, hallucinogen, entactogen, and/or empathogen. Objectives. To evaluate the emotional, subjective, and cardiovascular effects of 2C-B. Methods. Twenty healthy recreational 2C-B users (12 women) self-administered a 20 mg dose of 2C-B. Evaluations included emotional (IAPS, FERT, and speech), subjective (visual analog scales, ARCI, VESSPA, HRS, and POMS questionnaires), and cardiovascular effects (blood pressure and heart rate). Results. Positive subjective effects predominated with a reduction of anger under the influence of 2C-B. It did, however, increase reactivity to negative emotional stimuli and decrease the ability to recognize expressions of happiness. Augmented emotionality in speech could be appreciated by others. 2C-B induced euphoria and well-being, changes in perceptions, and slight hallucinogenic states. Mild sympathetic actions were observed. Conclusions. The specific profile that 2C-B exerts on emotions suggests its classification as an entactogen with psychedelic properties. PMID:26543863

  13. MEF2C and EBF1 Co-regulate B Cell-Specific Transcription

    PubMed Central

    Kong, Nikki R.; Davis, Matthew; Chai, Li; Winoto, Astar; Tjian, Robert

    2016-01-01

    Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action remained unclear. Here, we have identified early B cell factor-1 (EBF1) as a co-regulator of gene expression with MEF2C. A genome-wide survey of MEF2C and EBF1 binding sites identified a subset of B cell-specific genes that they target. We also determined that the p38 MAPK pathway activates MEF2C to drive B cell differentiation. Mef2c knockout mice showed reduced B lymphoid-specific gene expression as well as increased myeloid gene expression, consistent with MEF2C’s role as a lineage fate regulator. This is further supported by interaction between MEF2C and the histone deacetylase, HDAC7, revealing a likely mechanism to repress the myeloid transcription program. This study thus elucidates both activation and repression mechanisms, identifies regulatory partners, and downstream targets by which MEF2C regulates lymphoid-specific differentiation. PMID:26900922

  14. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    NASA Astrophysics Data System (ADS)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  15. High specific surface area Mo2C nanoparticles as an efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Tang, Chaoyun; Sun, Aokui; Xu, Yushuai; Wu, Zhuangzhi; Wang, Dezhi

    2015-11-01

    Mo2C nanoparticles with high specific surface area (120 m2 g-1) are successfully synthesized using a typical and low-cost monosaccharide of glucose via a facile calcination and subsequent reduction process. The HER functions of the obtained Mo2C nanoparticles are investigated and the effect of reduction time in hydrogen is also discussed. It is found that η-MoC can be obtained at 800 °C with a reduction time of 10 min, but the formation of β-Mo2C phase requires more than 20 min. Moreover, the β-Mo2C obtained with a reduction time of 20 min exhibits the best HER activity with a small Tafel slope of 55 mV dec-1 and a large current density of 60 mA cm-2 at -200 mV, which is among the best records over Mo2C-based HER catalysts.

  16. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c.

    PubMed

    Jiang, Yong; Liu, He; Liu, Wen-Jing; Tong, Hai-Bin; Chen, Chang-Jun; Lin, Fu-Gui; Zhuo, Yan-Hang; Qian, Xiao-Zhen; Wang, Zeng-Bin; Wang, Yu; Zhang, Peng; Jia, Hong-Liang

    2016-04-30

    Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells. PMID:26923194

  17. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

    PubMed Central

    Jiang, Yong; Liu, He; Liu, Wen-jing; Tong, Hai-bin; Chen, Chang-jun; Lin, Fu-gui; Zhuo, Yan-hang; Qian, Xiao-zhen; Wang, Zeng-bin; Wang, Yu; Zhang, Peng; Jia, Hong-liang

    2016-01-01

    Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells. PMID:26923194

  18. Imaging Evaluation of 5HT2C Agonists, [11C]WAY-163909 and [11C]Vabicaserin, Formed by Pictet–Spengler Cyclization

    PubMed Central

    2015-01-01

    The serotonin subtype 2C (5HT2C) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT2C full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet–Spengler cyclization with [11C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT2C agonists. Both radiolabeled molecules exhibit high blood–brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet–Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers. PMID:24491146

  19. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress

    PubMed Central

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-01-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf. PMID:21873532

  20. One-Pot N2C/C2C/N2N Ligation To Trap Weak Protein-Protein Interactions.

    PubMed

    Zhao, Lei; Ehrt, Christiane; Koch, Oliver; Wu, Yao-Wen

    2016-07-01

    Weak transient protein-protein interactions (PPIs) play an essential role in cellular dynamics. However, it is challenging to obtain weak protein complexes owing to their short lifetime. Herein we present a general and facile method for trapping weak PPIs in an unbiased manner using proximity-induced ligations. To expand the chemical ligation spectrum, we developed novel N2N (N-terminus to N-terminus) and C2C (C-terminus to C-terminus) ligation approaches. By using N2C (N-terminus to C-terminus), N2N, and C2C ligations in one pot, the interacting proteins were linked. The weak Ypt1:GDI interaction drove C2C ligation with t1/2 of 4.8 min and near quantitative conversion. The Ypt1-GDI conjugate revealed that binding of Ypt1 G-domain causes opening of the lipid-binding site of GDI, which can accommodate one prenyl group, giving insights into Rab membrane recycling. Moreover, we used this strategy to trap the KRas homodimer, which plays an important role in Ras signaling. PMID:27213482

  1. The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro.

    PubMed

    Pan, Pei-Pei; Weng, Qing-Hua; Zhou, Chen-Jian; Wei, Yan-Li; Wang, Li; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-02-01

    We aimed at investigating the role of CYP2C9 in carvedilol O-desmethylation and identifying the effect of 35 CYP2C9 allelic variants we found in Chinese Han population on the in vitro metabolism of carvedilol. Recombinant CYP2C9 and CYP2D6 microsomes of the wild type were used to test and verify the enzymes involved in carvedilol O-desmethylation. Recombinant CYP2C9 microsomes of distinguished genotypes were used to characterize the corresponding enzyme activity toward carvedilol. 2-100 μM carvedilol was incubated for 30 min at 37 °C. The products were detected using high-performance liquid chromatography. CYP2C9 plays a certain role in carvedilol metabolism. Compared with wild-type CYP2C9*1, the intrinsic clearance (V max/K m) values of all variants toward carvedilol O-desmethylation were significantly altered. The variants exhibited significantly decreased values (from 30 to 99.8 %) due to increased K m and/or decreased V max values. We conclude that recombinant system could be used to investigate the enzymes involved in drug metabolism and these findings complement the database where CYP2C9 polymorphism interacts with biotransformation of exogenous substances like drugs and toxins. PMID:25476996

  2. Possible high-temperature superconductivity in hole-doped MgB2C2

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Modak, P.; Gaitonde, D. M.; Rao, R. S.; Godwal, B. K.; Gupta, L. C.

    2003-09-01

    We report first-principles full potential linearised augmented plane wave calculations of the electronic band structure of the compound MgB2C2 and its hole-doped derivatives Mg0.5Li0.5B2C2, Mg0.5Na0.5B2C2, Mg0.9Na0.1B2C2 and Mg0.5K0.5B2C2. The parent compound MgB2C2 is a band insulator, which on hole doping, is predicted to turn metallic with a large density of states at the Fermi energy. Its band dispersion shows a flat band feature close to the Fermi energy, reminiscent of MgB2. Based on our estimates of changes in the density of states at the Fermi level, we predict that hole-doped MgB2C2 is a potential candidate for high-temperature superconductivity.

  3. Targeting of Splice Variants of Human Cytochrome P450 2C8 (CYP2C8) to Mitochondria and Their Role in Arachidonic Acid Metabolism and Respiratory Dysfunction*

    PubMed Central

    Bajpai, Prachi; Srinivasan, Satish; Ghosh, Jyotirmoy; Nagy, Leslie D.; Wei, Shouzou; Guengerich, F. Peter; Avadhani, Narayan G.

    2014-01-01

    In this study, we found that the full-length CYP2C8 (WT CYP2C8) and N-terminal truncated splice variant 3 (∼44-kDa mass) are localized in mitochondria in addition to the endoplasmic reticulum. Analysis of human livers showed that the mitochondrial levels of these two forms varied markedly. Molecular modeling based on the x-ray crystal structure coordinates of CYP2D6 and CYP2C8 showed that despite lacking the N-terminal 102 residues variant 3 possessed nearly complete substrate binding and heme binding pockets. Stable expression of cDNAs in HepG2 cells showed that the WT protein is mostly targeted to the endoplasmic reticulum and at low levels to mitochondria, whereas variant 3 is primarily targeted to mitochondria and at low levels to the endoplasmic reticulum. Enzyme reconstitution experiments showed that both microsomal and mitochondrial WT CYP2C8 efficiently catalyzed paclitaxel 6-hydroxylation. However, mitochondrial variant 3 was unable to catalyze this reaction possibly because of its inability to stabilize the large 854-Da substrate. Conversely, mitochondrial variant 3 catalyzed the metabolism of arachidonic acid into 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid when reconstituted with adrenodoxin and adrenodoxin reductase. HepG2 cells stably expressing variant 3 generated higher levels of reactive oxygen species and showed a higher level of mitochondrial respiratory dysfunction. This study suggests that mitochondrially targeted variant 3 CYP2C8 may contribute to oxidative stress in various tissues. PMID:25160618

  4. Lipoxin receptors.

    PubMed

    Romano, Mario; Recchia, Irene; Recchiuti, Antonio

    2007-01-01

    Lipoxins (LXs) represent a class of arachidonic acid (AA) metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO) and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2) in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL). In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1). This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed. PMID:17767357

  5. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    SciTech Connect

    Witek, Matthew; Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A.; Snook, Adam E.

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  6. Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution

    PubMed Central

    2014-01-01

    Background Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated. We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models. Results Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19*2 and *3). REHH was high around CYP2C19*2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at −29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19*3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity < = 0.037, p <0.001. Conclusions We found some evidence that the slow metabolizing allele CYP2C19*2 is subject to positive selective forces worldwide. Similar evidence was also found for CYP2C19*3 which is frequent only in Asia. FST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices. PMID:24690327

  7. C-Axis Properties of DyNi2B2C System

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    2012-02-01

    We have measured the electrical resistivity along c-axis ρc(T, H) of the DyNi2B2C single crystal with the magnetic fields perpendicular to the c-axis and the magnetization isotherms M(H) of the DyNi2B2C single crystal with magnetic fields perpendicular and parallel to the c-axis. We confirmed that Neel temperature TN is 10.3K from the ρc(T) result which is consistent with that from previous ρab(T) result. In addition, the constructed critical fields Hc2(T) curve and magnetic transitions diagram of DyNi2B2C from ρc(T) magnetic fields perpendicular to c-axis is similar to that of ρab(T) result, which is thought to arise that 3 D magnetic structure of DyNi2B2C.

  8. Synthesis of MoS(2)-C one-dimensional nanostructures with improved lithium storage properties.

    PubMed

    Zhang, Chaofeng; Wang, Zhiyu; Guo, Zaiping; Lou, Xiong Wen David

    2012-07-25

    Uniform one-dimensional (1D) MoS2-C composite nanostructures including nanorods and nanotubes have been produced through a sulfidation reaction in H2S flow using MoOx/polyaniline hybrid nanostructures as the precursor. These MoS2-C 1D nanostructures exhibit greatly enhanced electrochemical performance as anode materials for lithium-ion batteries. Typically, stable capacity retention of 776 mA h g(-1) can be achieved after 100 cycles for MoS2-C nanotubes. Even cycled at a high current density of 1000 mA g(-1), these structures can still deliver high capacities of 450-600 mA h g(-1). The unique 1D nanostructure and the extra carbon in the hybrid structure are beneficial to the greatly improved electrochemical performance of these MoS2-C nanocomposites. PMID:22757965

  9. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. PMID:22819650

  10. Reversion to wildtype of a mutated and nonfunctional coxsackievirus B3CRE(2C).

    PubMed

    Smithee, Shane; Tracy, Steven; Chapman, Nora M

    2016-07-15

    The cis-acting replication element (CRE) in the 2C protein coding region [CRE(2C)] of enteroviruses (EV) facilitates the addition of two uridine residues (uridylylation) onto the virus-encoded protein VPg in order for it to serve as the RNA replication primer. We demonstrated that coxsackievirus B3 (CVB3) is replication competent in the absence of a native (uridylylating) CRE(2C) and also demonstrated that lack of a functional CRE(2C) led to generation of 5' terminal genomic deletions in the CVB3 CRE-knock-out (CVB3-CKO) population. We asked whether reversion of the mutated CRE(2C) occurred, thus permitting sustained replication, and when were 5' terminal deletions generated during replication. Virions were isolated from HeLa cells previously electroporated with infectious CVB3-CKO T7 transcribed RNA or from hearts and spleens of mice after transfection with CVB3-CKO RNA. Viral RNA was isolated in order to amplify the CRE(2C) coding region and the genomic 5' terminal sequences. Sequence analysis revealed reversion of the CVB3-CKO sequence to wildtype occurs by 8 days post-electroporation of HeLa cells and by 20days post-transfection in mice. However, 5' terminal deletions evolve prior to these times. Reversion of the CRE(2C) mutations to wildtype despite loss of the genomic 5' termini is consistent with the hypothesis that an intact CRE(2C) is inherently vital to EV replication even when it is not enabling efficient positive strand initiation. PMID:27130630

  11. An ANFIS-based on B2C electronic commerce transaction

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenlian; Guo, Yongning

    2014-10-01

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  12. Is cytochrome P450 2C9 genotype associated with NSAID gastric ulceration?

    PubMed Central

    Martin, Jennifer H; Begg, Evan J; Kennedy, Martin A; Roberts, Rebecca; Barclay, Murray L

    2001-01-01

    Aims The aim of this study was to explore whether genetic variation of cytochrome P450 2C9 (CYP2C9) contributes to NSAID-associated gastric ulceration. The hypothesis tested was that CYP2C9 poor metabolizer genotype would predict higher risk of gastric ulceration in patients on NSAIDs that are metabolized by CYP2C9, due to higher plasma NSAID concentrations. Methods Peripheral blood DNA samples from 23 people with a history of gastric ulceration attributed to NSAIDs metabolized by CYP2C9, and from 32 people on NSAIDs without gastropathy, were analysed to determine CYP2C9 genotype. Results The following genotypes were found: *1/*1 (wild type) in 70% of cases and 58% of controls, *1/*2 in 17% of cases and 29% of controls, *1/*3 in 13% of cases and 13% of controls. The difference between case and control nonwild-type genotype frequency was 11.5% (95% CI −14,37%), with the direction of the difference being against the hypothesis. No individuals with homozygote poor metaboliser genotype were identified. The differences in genotype frequencies between the two groups were not significant and the frequencies were similar to those in a large published population study. Ninety-five percent binomial confidence interval analysis confirms that there is no apparent clinically significant relationship between CYP2C9 genotype and risk of gastric ulceration although a small difference in risk in poor metabolizers cannot be excluded. Conclusions These results do not support the hypothesis that gastric ulceration resulting from NSAID usage is linked to the poor metabolizing genotypes of CYP2C9. PMID:11422024

  13. An ANFIS-based on B2C electronic commerce transaction

    SciTech Connect

    Lin, Juan; Liu, Chenlian; Guo, Yongning

    2014-10-06

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  14. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    SciTech Connect

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  15. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    SciTech Connect

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  16. Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Remijan, A. J.; Jewell, P. R.; Lovas, F. J.

    2005-12-01

    The 3-carbon keto-ring cyclopropenone (c-H2C3O) has been detected largely in absorption with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of a number of rotational transitions between energy levels that have energies less than 10 K. Previous negative results from searches for interstellar c-H2C3O by other investigators attempting to detect rotational transitions that have energy levels ˜10 K or greater indicate no significant hot core component. Thus, we conclude that only the low energy levels of c-H2C3O are populated because the molecule state temperature is low, suggesting that c-H2C3O resides in a star-forming core halo region that has a widespread arcminute spatial scale. Toward Sagittarius B2(N), the GBT was also used to observe the previously-reported, spatially-ubiquitous, 3-carbon ring cyclopropenylidene (c-C3H2) which has a divalent carbon that makes it highly reactive in the laboratory. The presence of both c-C3H2 and c-H2C3O toward Sagittarius B2(N) suggests that gas-phase oxygen addition may account for the synthesis of c-H2C3O from c-C3H2. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO) .

  17. Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Remijan, Anthony J.; Jewell, P. R.; Lovas, F. J.

    2006-05-01

    The three-carbon keto ring cyclopropenone (c-H2C 3O) has been detected largely in absorption with the 100 m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of a number of rotational transitions between energy levels that have energies less than 10 K. Previous negative results from searches for interstellar c-H2C3O by other investigators attempting to detect rotational transitions that have energy levels ~10 K or greater indicate no significant hot core component. Thus, we conclude that only the low-energy levels of c-H2C3O are populated because the molecule state temperature is low, suggesting that c-H2C3O resides in a star-forming core halo region that has a widespread arcminute spatial scale. Toward Sagittarius B2(N), the GBT was also used to observe the previously reported, spatially ubiquitous, three-carbon ring cyclopropenylidene (c-C3H2 ), which has a divalent carbon that makes it highly reactive in the laboratory. The presence of both c-C3H2 and c-H2C3O toward Sagittarius B2(N) suggests that gas-phase oxygen addition may account for the synthesis of c-H 2C3O from c-C3H2. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  18. A New subset I2C protocol for interfacing Camera module with baseband processor

    NASA Astrophysics Data System (ADS)

    Kushwaha, Mamita; Kapse, Vinod

    2012-12-01

    High speed serial interface between camera sensor and mobile baseband processor it shall support 3.4 MHZ operation and 7-bit Slave addressing according to a new industry Standard that support unidirectional transmission of capture image from sensor to memory of baseband processor for controlling the sensor from baseband processor, we need to have an interface that exchange control signals between the two sides .We use Camera control Interface (CCI) protocol for the same .A receiver shall be configured as a CC I master and a CSI-2 transmitter shall be configure as a slave on the CCI bus.CCI is a two-wire ,bi-directional ,half duplex, serial interface for controlling the transmitter.CCI is compatible with the fast mode variant of the I2C interface .CCI support400khz operation and 7-bit Slave Addressing. CCI is capable of handling multiple slaves on the bus. However, multi-master mode is not supported by CCI. Any I2C commands that are not described in this section shall be ignored and shall not cause unintended device operation. Typically, there is a dedicated CCI interface between the transmitter and the receiver. CCI is a subset of the I2C protocol, including the minimum combination of obligatory features for I2C slave devices specified in the I2C specification.Therefore, transmitters complying with the CCI specification can also be connected system to I2C bus.The data protocol is presented in the following section.

  19. A new 2D monolayer BiXene, M2C (M = Mo, Tc, Os).

    PubMed

    Sun, Weiwei; Li, Yunguo; Wang, Baotian; Jiang, Xue; Katsnelson, Mikhail I; Korzhavyi, Pavel; Eriksson, Olle; Di Marco, Igor

    2016-08-25

    The existence of BiXenes, a new family of 2D monolayers, is hereby predicted. Theoretically, BiXenes have 1H symmetry (P6[combining macron]m2) and can be formed from the 4d/5d binary carbides. As the name suggests, they are close relatives of MXenes, which instead have 1T symmetry (P3[combining macron]m1). The newly found BiXenes, as well as some new MXenes, are shown to have formation energies close to that of germanene, which suggests that these materials should be possible to be synthesised. Among them, we illustrate that 1H-Tc2C and 1T-Mo2C are dynamically stable at 0 K, while 1H-Mo2C, 1T-Tc2C, 1H-Os2C, and 1T-Rh2C are likely to be stabilised via strain or temperature. In addition, the nature of the chemical bonding is analysed, emphasizing that the covalency between the transition metal ions and carbon is much stronger in BiXenes than in MXenes. The emergence of BiXenes can not only open up a new era of conducting 2D monolayers, but also provide good candidates for carrier materials aimed at energy storage and spintronic devices that have already been unveiled in MXenes. PMID:27528499

  20. Structural, electronic and magnetic properties of layered REB2C compounds (RE=Dy, Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Simon, Arndt; Hoch, Constantin; Hiebl, Kurt; Le Pollès, Laurent; Gautier, Régis; Halet, Jean-François

    2012-07-01

    The crystal structure of LuB2C has been determined from single crystal and powder X-ray diffraction data. It crystallizes in the orthorhombic space group Pbam (a=6.7429(1) Å, b=6.7341(1) Å, c=3.5890(1) Å, Z=4, R1=0.024 (wR2=0.059) for 436 reflections with Io>2σ(Io)). The compounds REB2C (RE=Y, Tb-Lu) are isotypic. The boron and carbon atoms form infinite, planar two-dimensional nets which alternate with sheets of rare-earth metal atoms. Inside the nonmetal atom nets, a coloring with fused B2C2 rhombuses and B5C2 heptagons is proposed, supported by NMR experiments and density functional theory calculations. The calculated density of states of LuB2C indicates this compound to be metallic. The magnetic properties of the isotypic compound TmB2C, has been measured in the temperature range 2 K3 T a metamagnetic transition is encountered. The temperature dependence of the electrical resistivity proves the metallic character of the TmB2C compound as well as the AFM ordering.

  1. First astronomical detection of the cumulene carbon chain molecule H2C6 in TMC-1

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Kuiper, T. B.; Peng, R.; McCarthy, M. C.; Travers, M. J.; Kovacs, A.; Gottlieb, C. A.; Thaddeus, P.; Levin, S. M. (Principal Investigator)

    1997-01-01

    The cumulene carbenes are important components of hydrocarbon chemistry in low-mass star-forming cores. Here we report the first astronomical detection of the long-chain cumulene carbene H2C6 in the interstellar cloud TMC-1, from observations of two of its rotational transitions: J(K,K') = 7(1,7) --> 6(1,6) at 18.8 GHz and 8(1,8) --> 7(1,7) at 21.5 GHz, using NASA's Deep Space Network 70 m antenna at Goldstone, California. In addition we also observed the shorter cumulene carbene H2C4 at the same position. The fractional abundance of H2C6 relative to H2 is about 4.7 x 10(-11) and that of H2C4 is about 4.1 x 10(-9). The abundance of H2C6 is in fairly good agreement with gas-phase chemical models for young molecular cloud cores, but the abundance of H2C4 is significantly larger than predicted.

  2. Assessment of arginine 97 and lysine 72 as determinants of substrate specificity in cytochrome P450 2C9 (CYP2C9).

    PubMed

    Davies, Carwyn; Witham, Katey; Scott, Justin R; Pearson, Andrew; DeVoss, James J; Graham, Sandra E; Gillam, Elizabeth M J

    2004-04-01

    CYP2C9 is distinguished by a preference for substrates bearing a negative charge at physiological pH. Previous studies have suggested that CYP2C9 residues R97 and K72 may play roles in determining preference for anionic substrates by interaction at the active site or in the access channel. The aim of the present study was to assess the role of these two residues in determining substrate selectivity. R97 and K72 were substituted with negative, uncharged polar and hydrophobic residues using a degenerate polymerase chain reaction-directed strategy. Wild-type and mutant enzymes were expressed in bicistronic format with human cytochrome P450 reductase in Escherichia coli. Mutation of R97 led to a loss of holoenzyme expression for R97A, R97V, R97L, R97T, and R97E mutants. Low levels of hemoprotein were detected for R97Q, R97K, R97I, and R97P mutants. Significant apoenzyme was observed, suggesting that heme insertion or protein stability was compromised in R97 mutants. These observations are consistent with a structural role for R97 in addition to any role in substrate binding. By contrast, all K72 mutants examined (K72E, K72Q, K72V, and K72L) could be expressed as hemoprotein at levels comparable to wild-type. Type I binding spectra were obtained with wild-type and K72 mutants using diclofenac and ibuprofen. Mutation of K72 had little or no effect on the interaction with these substrates, arguing against a critical role in determining substrate specificity. Thus, neither residue appears to play a role in determining substrate specificity, but a structural role for R97 can be proposed consistent with recently published crystallographic data for CYP2C9 and CYP2C5. PMID:15039296

  3. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality.

    PubMed

    Shen, Linyuan; Chen, Lei; Zhang, Shunhua; Zhang, Yi; Wang, Jingyong; Zhu, Li

    2016-06-01

    MicroRNAs (miRNAs) are non-coding small RNAs that participate in the regulation of a variety of biological processes. Muscle fiber types were very important to meat quality traits, however, the molecular mechanism by which miRNAs regulate the muscle fiber type composition is not fully understood. The aim of this study was to investigate whether miRNA-23a can affect muscle fiber type composition. Luciferase reporter assays proved that miRNA-23a directly targets the 3' untranslated region (UTRs) of MEF2c. Overexpression of miRNA-23a significantly suppressed the expression of MEF2c both in mRNA and protein levels, thus caused down-regulation of the expression of some key downstream genes of MEF2c (PGC1-α, NRF1 and mtTFA). More interestingly, overexpression of miRNA-23a significantly restrained the myogenic differentiation and decreased the ratio of slow myosin heavy chain in myoblasts (p<0.05). Our findings hinted a novel role of miRNA-23a in the epigenetic regulation of meat quality via decreasing the ratio of slow myosin heavy chain isoforms. PMID:26897085

  4. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans.

    PubMed

    Limdi, Na; Goldstein, Ja; Blaisdell, Ja; Beasley, Tm; Rivers, Ca; Acton, Rt

    2007-05-01

    BACKGROUND: Cytochrome P4502C9 (CYP2C9) plays a vital role in drug metabolism. There has been an increased effort to identify polymorphisms within the gene and determine their clinical consequences. However, most of these efforts have focused on populations of European descent. Herein we report the influence of CYP2C9 genotype on warfarin dose among European American and African American patients. We also identify two new mutations; one in the coding region and one in the non-coding region of the CYP2C9 gene. METHODS: Patients (≥20 years of age) are enrolled after obtaining medical, lifestyle and concomitant medication history. Changes in International Normalized Ratio (INR), warfarin dose, co-medications, diet, physical activity and the occurrence of complications are documented. CYP2C9 genotype was determined using PCR-RFLP and pyrosequencing. Differences in genotype frequencies and HWE assumptions were assessed using χ(2) statistics and exact tests. The genotype dose association was evaluated using multivariable linear regression. RESULTS: This report includes 490 patients (mean age 60.6 ± 15.6, 51.3% men). African American patients comprise 48.9% of the cohort with mean follow-up of 13.5 (±10.6) months. Both the CYP2C9 *2 and *3 allele were more frequent in European Americans (11.24%, 5.1%) compared to African Americans (1.1% and 1.8%). CYP2C9 *5 (0.9%), *6 (0.4%), and *11 (1.1%) variants were only observed in African Americans. The variant genotype is more frequent among European Americans compared to African Americans (29.8% vs. 9.73%, p<0.0001). Warfarin dose was significantly related to CYP2C9 genotype (p<0.0001) both in univariate and multivariate analyses. Multivariable race-specific analyses highlight the contribution of CYP2C9 genotype among European American but not among African American patients. CONCLUSION: The variant CYP2C9 genotype is more frequent among European Americans compared to African Americans. Among African Americans the variant

  5. Preclinical toxicity evaluation of a novel immunotoxin, D2C7-(scdsFv)-PE38KDEL, administered via intracerebral convection-enhanced delivery in rats.

    PubMed

    Bao, Xuhui; Chandramohan, Vidyalakshmi; Reynolds, Randall P; Norton, John N; Wetsel, William C; Rodriguiz, Ramona M; Aryal, Dipendra K; McLendon, Roger E; Levin, Edward D; Petry, Neil A; Zalutsky, Michael R; Burnett, Bruce K; Kuan, Chien-Tsun; Pastan, Ira H; Bigner, Darell D

    2016-04-01

    D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel immunotoxin that reacts with wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFRvIII proteins overexpressed in glioblastomas. This study assessed the toxicity of intracerebral administration of D2C7-IT to support an initial Food and Drug Administration Investigational New Drug application. After the optimization of the formulation and administration, two cohorts (an acute and chronic cohort necropsied on study days 5 and 34) of Sprague-Dawley (SD) rats (four groups of 5 males and 5 females) were infused with the D2C7-IT formulation at total doses of 0, 0.05, 0.1, 0.4 μg (the acute cohort) and 0, 0.05, 0.1, 0.35 μg (the chronic cohort) for approximately 72 h by intracerebral convection-enhanced delivery using osmotic pumps. Mortality was observed in the 0.40 μg (5/10 rats) and 0.35 μg (4/10 rats) high-dose groups of each cohort. Body weight loss and abnormal behavior were only revealed in the rats treated with high doses of D2C7-IT. No dose-related effects were observed in clinical laboratory tests in either cohort. A gross pathologic examination of systemic tissues from the high-dose and control groups in both cohorts exhibited no dose-related or drug-related pathologic findings. Brain histopathology revealed the frequent occurrence of dose-related encephalomalacia, edema, and demyelination in the high-dose groups of both cohorts. In this study, the maximum tolerated dose of D2C7-IT was determined to be between 0.10 and 0.35 μg, and the no-observed-adverse-effect-level was 0.05 μg in SD rats. Both parameters were utilized to design the Phase I/II D2C7-IT clinical trial. PMID:26728879

  6. Association between cytochrome P450 (CYP) 2C19 polymorphisms and harm avoidance in Japanese.

    PubMed

    Yasui-Furukori, Norio; Kaneda, Ayako; Iwashima, Kumiko; Saito, Manabu; Nakagami, Taku; Tsuchimine, Shoko; Kaneko, Sunao

    2007-09-01

    Polymorphic enzyme cytochrome P450 (CYP) 2C19 is expressed not only in the liver but also in the brain and mediates the biotransformation of 5-hydroxytriptamine (5-HT). We investigated possible association between genetic polymorphism of CYP2C19 and individual personality traits, possibly influenced by neurotransmitters. Mentally and physically healthy Japanese subjects were enrolled in this study (n = 352). Temperament and Character Inventory (TCI) and CYP2C19 genotyping were performed in all subjects. We detected CYP2C19*2 and *3 (http://www.imm.ki.se/CYPalleles/) using Amplichip CYP450 DNA tip. The number of genotypes classified as homozygous extensive metabolizer (EM), heterozygous EM, and poor metabolizer were 113, 181, and 58, respectively. Significant difference was found in TCI score in harm avoidance (HA; F = 3.138, P < 0.05). Post hoc analysis showed that TCI score in harm avoidance in homozygous EM was significantly lower than that in heterozygous EM (P < 0.05) or PM (P < 0.05). In sub-item analyses, HA3 (shyness with strangers, P < 0.01) and HA1 (anticipatory worry, P < 0.05) of TCI scores were significantly different among CYP2C19 genotypes. Meanwhile, there were no differences in TCI scores of novelty seeking (NS; F = 0.350, n.s.), reward dependence (RD; F = 1.080, n.s.), or persistence (P; F = 0.786, n.s.) among CYP2C19 genotypes. This study demonstrated that a significant association between CYP2C19 activity and HA is present in Japanese. PMID:17357148

  7. Identification of CYP2C19 inhibitors from phytochemicals using the recombinant human enzyme model.

    PubMed

    Kong, L M; Xu, S Y; Hu, H H; Zhou, H; Jiang, H D; Yu, L S; Zeng, S

    2014-05-01

    The aim of the present study was to develop the recombinant insect cell-expressed protein as an in vitro model for inhibitors screening for human cytochrome P450 2C19 (CYP2C19), and to use the model to investigate the inhibition effect of three phytochemicals on CYP2C19 in vitro. Omeprazole was applied as the probe substrate. The estimated inhibitory constant (K(i)) of ticlopidine and fluvoxamine were 0.64 +/- 0.025 microM and 0.29 +/- 0.090 microM, respectively. After co-incubation with ticlopidine or fluvoxamine, the mean omeprazole Michaelis-Menten constant (K(m)) increased from 4.99 +/- 0.22 microM to 16.25 +/- 1.22 microM or 19.20 +/- 1.73 microM, respectively, while omeprazole's mean V(max) did not vary much. Both ticlopidine and fluvoxamine were competitive inhibitors of CYP2C19. The IC50 of three phytochemicals, isoalantolactone, curcumol and schisandrin A was determined as 38.91 microM, 121.0 microM and 86.41 microM, and the K(i) as 5.02 +/- 1.04 microM, 35.84 +/- 8.95 microM, and 4.46 +/- 0.017 microM, respectively. The in vitro model for inhibitor screening established using recombinant CYP2C19 could be used to assess the inhibition potential of drug candidates. Isoalantolactone and schisandrin A are potent inhibitors of CYP2C19, while curcumol is a moderate potent inhibitor of CYP2C19. PMID:24855828

  8. HDAC inhibitor sodium butyrate augments the MEF2C enhancement of Nampt expression under hypoxia.

    PubMed

    Yan, Shao-Fei; You, Hong-Jie; Xing, Tian-Yu; Zhang, Chen-Guang; Ding, Wei

    2014-01-01

    Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme for the salvage biosynthesis of nicotinamide adenine dinucleotide (NAD). Although elevated level of Nampt expression has been observed in various cancers, the involvement of Nampt promoter regulation was not well understood. We have identified a cluster of MEF2 recognition sites upstream of the functional hypoxia response elements (HREs) within the human Nampt promoter, and demonstrated that the two MEF2 sites at -1272 and -1200 were functional to upregulate the promoter activity by luciferase reporter assays. The Nampt promoter was able to be activated cooperatively following hypoxic stimulation by CoCl₂ treatment with associated MEF2C overexpression. During the investigation on MEF2C regulation of endogenous Nampt expression in HeLa cells, the most significant enhancement of Nampt expression observed was by overexpression of MEF2C in combination with sodium butyrate exposure. By chromatin immunoprecipitation with a MEF2C anti-body, we found that MEF2C indeed interacted with endogenous Nampt promoter. The requirement of HDAC inhibition for the MEF2C enhancement of Nampt transcription was verified by RNAi of HDAC. Our results were in support of reports indicating that MEF2 family transcription factors interacted with HDACs and regulated downstream gene expression at the epigenetic levels. Our study provided important evidence to demonstrate the sophisticated mechanism of endogenous Nampt promoter regulation, and therefore, will help to better understand the Nampt overexpression in cancer progression, especially in the context of MEF2C upregulation which frequently occurred in cancer development and drug resistance. PMID:23888946

  9. Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells.

    PubMed

    Niu, Wenyan; Bilan, Philip J; Ishikura, Shuhei; Schertzer, Jonathan D; Contreras-Ferrat, Ariel; Fu, Zhengxiang; Liu, Jie; Boguslavsky, Shlomit; Foley, Kevin P; Liu, Zhi; Li, Jinru; Chu, Guilan; Panakkezhum, Thomas; Lopaschuk, Gary D; Lavandero, Sergio; Yao, Zhi; Klip, Amira

    2010-05-01

    Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C(2)C(12) myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl-p-toluenesulfonamide. The gain in surface GLUT4myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 beta-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic. PMID:20159855

  10. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    PubMed Central

    Kim, Jeffrey; Carlson, Morgan E.; Watkins, Bruce A.

    2014-01-01

    Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts. PMID:24711795

  11. Inhibition of the acetylcholine receptor by histrionicotoxin.

    PubMed Central

    Anwyl, R.; Narahashi, T.

    1980-01-01

    1 The action of C5-decahydrohistrionicotoxin (C5-HTX) has been investigated on the extrajunctional acetylcholine (ACh) receptors of denervated rat muscle. 2 C5-HTX causes both a rapid and slow reduction in amplitude of iontophoretic ACh potentials evoked at all frequencies from the extrajunctional receptors. 3 C5-HTX also causes a time-dependent inhibition of the iontophoretic potentials evoked at frequencies greater than 0.02 Hz. This inhibition was observed either alone or superimposed upon desensitization, and may be caused by a similar mechanism to desensitization. PMID:7378635

  12. Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models.

    PubMed

    Cheng, Jianjun; Giguere, Patrick M; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Huang, Xi-Ping; Zhu, Hu; McCorvy, John D; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2016-01-28

    A series of novel compounds with two halogen substituents have been designed and synthesized to further optimize the 2-phenylcyclopropylmethylamine scaffold in the quest for drug-like 5-HT2C agonists. Compound (+)-22a was identified as a potent 5-HT2C receptor agonist, with good selectivity against the 5-HT2B and the 5-HT2A receptors. ADMET assays showed that compound (+)-22a possessed desirable properties in terms of its microsomal stability, and CYP and hERG inhibition, along with an excellent brain penetration profile. Evaluation of (+)-22a in animal models of schizophrenia-related behaviors revealed that it had a desirable activity profile, as it reduced d-amphetamine-stimulated hyperlocomotion in the open field test, it restored d-amphetamine-disrupted prepulse inhibition, it induced cognitive improvements in the novel object recognition memory test in NR1-KD animals, and it produced very little catalepsy relative to haloperidol. These data support the further development of (+)-22a as a drug candidate for the treatment of schizophrenia. PMID:26704965

  13. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Guderyon, Michael; Yun, Chul-Ho; Moran, Jeffery H; Miller, Grover P

    2010-05-17

    Coumadin (R/S-warfarin) anticoagulant therapy poses a risk to over 50 million Americans, in part due to interpersonal variation in drug metabolism. Consequently, it is important to understand how metabolic capacity is influenced among patients. Cytochrome P450s (P450 or CYP for a specific isoform) catalyze the first major step in warfarin metabolism to generate five hydroxywarfarins for each drug enantiomer. These primary metabolites are thought to reach at least 5-fold higher levels in plasma than warfarin. We hypothesized that hydroxywarfarins inhibit the hydroxylation of warfarin by CYP2C9, thereby limiting enzymatic capacity toward S-warfarin. To test this hypothesis, we investigated the ability of all five racemic hydroxywarfarins to block CYP2C9 activity toward S-warfarin using recombinant enzyme and human liver microsomes. We initially screened for the inhibition of CYP2C9 by hydroxywarfarins using a P450-Glo assay to determine IC(50) values for each hydroxywarfarin. Compared to the substrate, CYP2C9 bound its hydroxywarfarin products with less affinity but retained high affinity for 10- and 4'-hydroxywarfarins, products from CYP3A4 reactions. S-Warfarin steady-state inhibition studies with recombinant CYP2C9 and pooled human liver microsomes confirmed that hydroxywarfarin products from CYP reactions possess the capacity to competitively inhibit CYP2C9 with biologically relevant inhibition constants. Inhibition of CYP2C9 by 7-hydroxywarfarin may be significant given its abundance in human plasma, despite its weak affinity for the enzyme. 10-Hydroxywarfarin, which has been reported as the second most abundant plasma metabolite, was the most potent inhibitor of CYP2C9, displaying approximately 3-fold higher affinity than S-warfarin. These results indicate that hydroxywarfarin metabolites produced by CYP2C9 and other CYPs may limit metabolic capacity toward S-warfarin through competitive inhibition. Subsequent processing of hydroxywarfarins to secondary

  14. CYP2C19 polymorphisms in acute coronary syndrome patients undergoing clopidogrel therapy in Zhengzhou population.

    PubMed

    Guo, Y M; Zhao, Z C; Zhang, L; Li, H Z; Li, Z; Sun, H L

    2016-01-01

    The goal of this study was to explore the polymorphisms of CYP2C19 (CYP2C19*2, CYP2C19*3) in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) on clopidogrel therapy in Zhengzhou city for guidance on clinical medication and reduction in the incidence of thromboembolic events. Two hundred and thirty-four ACS patients undergoing PCI were included in the study, including 171 males (average age = 64.13 ± 12 years) and 63 females (average age = 67.86 ± 10.20 years). Pyrosequencing analysis detected CYP2C19*2/*3 genotypes, which were divided into wild-type homozygous C/C, mutant heterozygous C/T, and mutant homozygous T/T. This study further explored the relationship between CYP2C19 polymorphisms and clopidogrel resistance in ACS patients. Gene frequencies of C/C, C/T, and T/T for CYP2C19*2 were 39.74, 50, and 10.26%, respectively, while the frequencies of C/C, C/T, and T/T for CYP2C19*3 were 94.02, 5.55, and 0.43%, respectively. According to platelet aggregation analysis, 203 cases normally responded to clopidogrel (86.8%) and 31 cases were clopidogrel resistant (13.2%). There was a correlation between gender and genotype distribution but none between age and genotype. In addition, patients with clopidogrel resistance were treated with ticagrelor antiplatelet therapy instead of clopidogrel, and only 1 case in all patients suffered thrombotic events during a 3-12 month follow-up. In conclusion, CYP2C19*2/*3 polymorphisms may be associated with clopidogrel resistance. Wild-type homozygote and single mutant heterozygote of CYP2C19*2/*3 can be given a normal dose of clopidogrel, while carriers with single mutant homozygote or double mutant heterozygote require ticagrelor antiplatelet therapy as an alternative. PMID:27323099

  15. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

    PubMed

    Shou, H; Eloyan, A; Lee, S; Zipunnikov, V; Crainiceanu, A N; Nebel, N B; Caffo, B; Lindquist, M A; Crainiceanu, C M

    2013-12-01

    This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods. PMID:24022791

  16. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes

    PubMed Central

    Wein, Marc N.; Spatz, Jordan; Nishimori, Shigeki; Doench, John; Root, David; Babij, Philip; Nagano, Kenichi; Baron, Roland; Brooks, Daniel; Bouxsein, Mary; Pajevic, Paola Divieti; Kronenberg, Henry M.

    2014-01-01

    Osteocytes secrete paracrine factors that regulate the balance between bone formation and destruction. Among these molecules, sclerostin (encoded by the gene SOST) inhibits osteoblastic bone formation, and is an osteoporosis drug target. The molecular mechanisms underlying SOST expression remain largely unexplored. Here we report that histone deacetylase 5 (HDAC5) negatively regulates sclerostin levels in osteocytes in vitro and in vivo. HDAC5 shRNA increases, whereas HDAC5 overexpression decreases SOST expression in the novel murine Ocy454 osteocytic cell line. HDAC5 knockout mice show increased levels of SOST mRNA, more sclerostin-positive osteocytes, decreased Wnt activity, low trabecular bone density, and reduced bone formation by osteoblasts. In osteocytes, HDAC5 binds and inhibits the function of MEF2C, a crucial transcription factor for SOST expression. Using chromatin immunoprecipitation, we have mapped endogenous MEF2C binding in the SOST gene to a distal intergenic enhancer 45 kB downstream from the transcription start site. HDAC5 deficiency increases SOST enhancer MEF2C chromatin association and H3K27 acetylation and decreases recruitment of co-repressors NCoR and HDAC3. HDAC5 associates with and regulates the transcriptional activity of this enhancer, suggesting direct regulation of SOST gene expression by HDAC5 in osteocytes. Finally, increased sclerostin production achieved by HDAC5 shRNA is abrogated by simultaneous knockdown of MEF2C, indicating that MEF2C is a major target of HDAC5 in osteocytes. PMID:25271055

  17. Contribution of CYP2C9 to variability in vitamin K antagonist metabolism.

    PubMed

    Daly, Ann K; King, Barry P

    2006-02-01

    CYP2C9 is the third most important cytochrome P450 (CYP) in terms of number of drugs metabolised. A considerable amount of information on this isoform is now available with respect to its structural biology, the mechanisms by which it can be induced and the existence of a range of variant alleles, which are often functionally significant. CYP2C9 makes a very important contribution to metabolism of vitamin K antagonist anticoagulants, and is the main oxidising enzyme for S-warfarin and S-acenocoumarol as well as contributing to phenprocoumon metabolism. A large number of studies have now shown that CYP2C9 genotype predicts dose requirement for both warfarin and acenocoumarol, with a possible contribution for phenprocoumon. Patients with variant alleles are likely to require a lower dose and may be at risk of overcoagulation and resultant bleeding, especially during the induction phase of therapy. Although CYP2C9 genotype is clearly a predictor of vitamin K antagonist dose requirement, especially in Caucasian populations in whom variant alleles are common, a number of recent studies have shown that age, genotype for the gene encoding the target gene vitamin K epoxide reductase and concomitant drugs are equally important factors in determining dose. There is a need for prospective studies to assess the value of predicting dose requirement on the basis of all these factors, including the CYP2C9 genotype. PMID:16863464

  18. Clinical Application of CYP2C19 Pharmacogenetics Toward More Personalized Medicine

    PubMed Central

    Lee, Su-Jun

    2013-01-01

    More than 30 years of genetic research on the CYP2C19 gene alone has identified approximately 2,000 reference single nucleotide polymorphisms (rsSNPs) containing 28 registered alleles in the P450 Allele Nomenclature Committee and the number continues to increase. However, knowledge of CYP2C19 SNPs remains limited with respect to biological functions. Functional information on the variant is essential for justifying its clinical use. Only common variants (minor allele frequency >5%) that represent CYP2C19*2, *3, *17, and others have been mostly studied. Discovery of new genetic variants is outstripping the generation of knowledge on the biological meanings of existing variants. Alternative strategies may be needed to fill this gap. The present study summarizes up-to-date knowledge on functional CYP2C19 variants discovered in phenotyped humans studied at the molecular level in vitro. Understanding the functional meanings of CYP2C19 variants is an essential step toward shifting the current medical paradigm to highly personalized therapeutic regimens. PMID:23378847

  19. Electronic spectra and magnetic properties of RB6, RB12 and RB2C2 borides

    NASA Astrophysics Data System (ADS)

    Baranovskiy, A. E.; Grechnev, G. E.; Logosha, A. V.; Svechkarev, I. V.; Filippov, V. B.; Shitsevalova, N. Yu.; Oga, O. J.; Eriksson, O.

    2006-01-01

    The electronic structures of R B6, R B12 and R B2C2 borides are studied ab initio by using the full-potential linear muffin-tin orbital method. This study includes the promising materials for spin electronics with reported high temperature ferromagnetism, namely, doped divalent hexaborides CaB6, SrB6, BaB6, and the CaB2C2 compound, as well as Kondo semiconductors, SmB6 and YbB12. For CaB6 and SrB6 a semiconducting band structure has been obtained, whereas a semimetallic ground state is revealed for CaB2C2 and doped hexaborides. For YB6, LaB6, CaB2C2 and the semimetallic Ba1-x Lax B6 alloys we have performed spin-polarized band structure calculations in an external field to evaluate the induced spin and orbital magnetic moments. These calculations indicate a feasibility of the field-induced weak ferromagnetic phase in CaB2C2 and the La doped hexaborides. The LSDA and GGA calculations for different spin configurations of YbB12 point to a possibility of antiferromagnetic coupling between Yb3+ ions. For SmB6 and YbB12 our LSDA, GGA, and LSDA+U calculations have not revealed the hybridization gap for configurations with trivalent Sm3+ and Yb3+.

  20. Critical behavior and magnetocaloric effect in layered structure Tb2C

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Matsuishi, Satoru; Hosono, Hideo

    2016-08-01

    The critical behavior and magnetocaloric effects of the layered structure Tb2C have been investigated using magnetization measurements around the Curie temperature. Analyzing temperature and field dependence of magnetization reveals that the Tb2C system undergoes a second-order magnetic phase transition at T C  =  266 K. Critical exponents obtained from modified Arrott, Kouvel–Fisher (KF) and scaling plots are consistent with each other. The critical exponents suggest that the magnetic phase transition in Tb2C can be described by the mean-field model. The exchange energy declines as J(r) ~ r ‑4.547, indicating that long-range interaction dominates the exchange interaction. Consequently, the field dependence magnetic entropy change (ΔS M) of Tb2C, calculated using the Maxwell relation, clearly demonstrates that the relationship between  ‑ΔS M and (H/T C)2/3 obeys the mean-field theory, supporting our conclusion of the ferromagnetism phase transition in Tb2C following the mean-field theory.

  1. Genetic polymorphisms analysis of drug-metabolizing enzyme CYP2C9 in the Uyghur population.

    PubMed

    Jin, Tianbo; Xun, Xiaojie; Du, Shuli; Geng, Tingting; Wang, Hong; Feng, Tian; Chen, Chen; Yuan, Dongya; Kang, Longli

    2016-08-01

    Genetic variations in cytochrome P450 2C9 are known to contribute to interindividual and interethnic variability in response to clinical drugs, but little is known about the genetic variation of CYP2C9 in the Uyghur population. We directly sequenced the whole CYP2C9 gene in 96 unrelated, healthy Uyghur from Xinjiang Uygur Autonomous Region of China and screened for genetic variants in the promoter, exons, introns and 3'-UTR. Thirty five previously reported alleles and six genotypes were detected in this study. The allele frequencies of CYP2C9*1, *2, *11, *12, *29 and *33 were 89.58, 7.81, 0.52, 0.52, 1.04 and 0.52%, respectively. We detected one non-synonymous novel variant at position 329 from Arg to Cys and this mutation is predicted to be intolerant by SIFT. Our results provide basic information about CYP2C9 alleles in Uyghur, which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group. PMID:26610168

  2. Tricyclic Pyrazoles. Part 5. Novel 1,4-Dihydroindeno[1,2-c]pyrazole CB2 Ligands Using Molecular Hybridization Based on Scaffold Hopping

    PubMed Central

    Murineddu, Gabriele; Asproni, Battistina; Ruiu, Stefania; Deligia, Francesco; Falzoi, Matteo; Pau, Amedeo; Thomas, Brian F; Zhang, Yanan; Pinna, Gérard A; Pani, Luca; Lazzari, Paolo

    2012-01-01

    In search of new selective CB2 ligands, the synthesis and preliminary biological evaluation of novel 1,4-dihydroindeno[1,2-c]pyrazole hybrids of the highly potent prototypicals 5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-fenchyl-1H-pyrazole-3-carboxamide 1 and 1-(2,4-dichlorophenyl)-6-methyl-N-(piperidin-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 2 are detailed. We postulated that the introduction of those pharmacophoric elements essential for activity of 1 in the tricyclic core of 2 might provide CB2 ligands with further improved receptor selectivity and biological activity. Among the compounds, 6-chloro-7-methyl-1-(2,4-dichlorophenyl)-N-fenchyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide (22) exhibited low two digit nanomolar affinity for the cannabinoid CB2R and maintained a high level of CB2-selectivity. PMID:22876271

  3. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells.

    PubMed Central

    Kang, Q; Cao, Y; Zolkiewska, A

    2000-01-01

    ADAM 12, a member of the ADAM (protein containing a disintegrin and metalloprotease) family of metalloprotease-disintegrins, has been implicated in the differentiation and fusion of skeletal myoblasts, and its expression is dramatically up-regulated in many cancer cells. While the extracellular portion of ADAM 12 contains an active metalloprotease and a cell-adhesion domain, the function of the cytoplasmic portion is much less clear. In this paper, we show that the cytoplasmic tail of ADAM 12 mediates interactions with the non-receptor protein tyrosine kinase Src. The interaction is direct, specific, and involves the N-terminal proline-rich region in the cytoplasmic tail of ADAM 12 and the Src homology 3 (SH3) domain of Src. ADAM 12 and Src co-immunoprecipitate from transfected C2C12 cells, suggesting that the two proteins form a complex in vivo. Co-expression of Src and ADAM 12, but not ADAM 9, in C2C12 cells results in activation of the recombinant Src. Moreover, endogenous ADAM 12 associates with and activates endogenous Src in differentiating C2C12 cells. These results indicate that ADAM 12 may mediate adhesion-induced signalling during myoblast differentiation. PMID:11104699

  4. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain.

    PubMed

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2015-03-01

    Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics. PMID:25504503

  5. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes.

    PubMed

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5'-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. PMID:25983323

  6. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms.

    PubMed

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-09-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  7. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  8. Orbiting GPS Receiver Modified to Track New L2C Signal

    NASA Technical Reports Server (NTRS)

    Meehan, Tom K.; Robison, David; Munson, Tim N.; Young, Larry E.; Stoyanov, Stephen

    2006-01-01

    The L2C signal is a great step forward for civil applications of GPS, enabling high-accuracy dual-frequency measurements. Engineers from the Jet Propulsion Laboratory and ITT teamed to reprogram FPGA firmware and add tracking software on an orbiting receiver to track the new GPS L2C signal from SAC-C. SAC-C is an Argentinean science satellite and was launched in November 2000 with a BlackJack GPS receiver. This is a dual-frequency digital receiver with 48 tracking channels and four antennas. On SAC-C, it provides precise orbits, atmospheric occultation data, tests of GPS surface reflections, and serves as an orbiting test bed for new GPS development such as the L2C tracking reported here.

  9. First principle investigation of the electronic and thermoelectric properties of Mg2C

    NASA Astrophysics Data System (ADS)

    Kulwinder, Kaur; Ranjan, Kumar

    2016-02-01

    In this paper, electronic and thermoelectric properties of Mg2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters, bulk modulus, band gap and thermoelectric properties (Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor (PF) increases with temperature. The thermoelectric properties of Mg2C have been calculated in a temperature range of 100 K-1200 K. Kulwinder Kaur thanks Council of Scientific & Industrial Research (CSIR), India for providing fellowship.

  10. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  11. Activation of Methane Promoted by Adsorption of CO on Mo2 C2 (-) Cluster Anions.

    PubMed

    Liu, Qing-Yu; Ma, Jia-Bi; Li, Zi-Yu; Zhao, Chongyang; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui

    2016-05-01

    Atomic clusters are being actively studied for activation of methane, the most stable alkane molecule. While many cluster cations are very reactive with methane, the cluster anions are usually not very reactive, particularly for noble metal free anions. This study reports that the reactivity of molybdenum carbide cluster anions with methane can be much enhanced by adsorption of CO. The Mo2 C2 (-) is inert with CH4 while the CO addition product Mo2 C3 O(-) brings about dehydrogenation of CH4 under thermal collision conditions. The cluster structures and reactions are characterized by mass spectrometry, photoelectron spectroscopy, and quantum chemistry calculations, which demonstrate that the Mo2 C3 O(-) isomer with dissociated CO is reactive but the one with non-dissociated CO is unreactive. The enhancement of cluster reactivity promoted by CO adsorption in this study is compared with those of reported systems of a few carbonyl complexes. PMID:27060286

  12. Prenatal detection of 5q14.3 duplication including MEF2C and brain phenotype.

    PubMed

    Cesaretti, Claudia; Spaccini, Luigina; Righini, Andrea; Parazzini, Cecilia; Conte, Giorgio; Crosti, Francesca; Redaelli, Serena; Bulfamante, Gaetano; Avagliano, Laura; Rustico, Mariangela

    2016-05-01

    The 5q14.3 duplication is a rare condition comprising speech and developmental delay, microcephaly, and mild ventriculomegaly. The region 5q14.3 contains several genes but the predominant role for the onset of the neurodevelopmental phenotype has been attributed to MEF2C. We describe the prenatal identification of 5q14.3 duplication, including MEF2C, in a monochorionic twin pregnancy with corpus callosum anomalies, confirmed by autopsy. To the best of our knowledge, this cerebral finding has been observed for the first time in 5q14.3 duplication patients, possibly widening the neurological picture of this scarcely known syndrome. A pathogenetic role of MEF2C overexpression in brain development may be assumed, but further studies are needed. © 2016 Wiley Periodicals, Inc. PMID:26864752

  13. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells.

    PubMed

    Liang, Rui; Dong, Wei; Shen, Xiaopeng; Peng, Xiaoping; Aceves, Angie G; Liu, Yu

    2016-01-01

    Myotonic dystrophy 1 (DM1) is a common form of muscular dystrophy. Although several animal models have been established for DM1, myoblast cell models are still important because they offer an efficient cellular alternative for studying cellular and molecular events. Though C2C12 myoblast cells have been widely used to study myogenesis, resistance to gene transfection, or viral transduction, hinders research in C2C12 cells. Here, we describe an optimized protocol that includes daily maintenance, transfection and transduction procedures to introduce genes into C2C12 myoblasts and the induction of myocyte differentiation. Collectively, these procedures enable best transfection/transduction efficiencies, as well as consistent differentiation outcomes. The protocol described in establishing DM1 myoblast cell models would benefit the study of myotonic dystrophy, as well as other muscular diseases. PMID:27501221

  14. Superconductivity and magnetism in (Ho xY 1- x)Ni 2B 2C

    NASA Astrophysics Data System (ADS)

    Eversmann, K.; Handstein, A.; Fuchs, G.; Cao, L.; Müller, K.-H.

    1996-02-01

    Superconducting and magnetic properties of polycrystalline samples of the pseudoquarternary system (Ho xY 1- x)Ni 2B 2C have been investigated by resistance and susceptibility measurements. A linear depression of the superconducting transition temperature with increasing magnetic ordering temperatures was found by variation of the Ho content providing evidence for magnetic pair breaking. This behaviour is analogous to the known scaling with the de Gennes factor of the rare earth elements in the family of quaternary RNi 2B 2C compounds. Both cases are described by a common scaling behaviour including the superconducting and magnetic transition temperatures. A reetrrant behaviour observed for Ho contents x>0.5 results in maximum in the temperature dependence of the upper critical field Hc2( T). These results are compared with Hc2( T) data of the RNi 2B 2C family ( R=Tm,Er).

  15. Superconductivity in RNi 2B 2C (R = rare earth) compounds

    NASA Astrophysics Data System (ADS)

    Tomy, C. V.; Chang, L. J.; Balakrishnan, G.; Paul, D. M. c.K.

    1994-12-01

    A series of compounds in the recently discovered RNi 2B 2C family of superconductors have been prepared in order to investigate their magnetic and transport properties. Compounds of the form (Y 1-xA x)Ni 2B 2C (A=Sm,Dy) were examined to study the effects of magnetic pair breaking. Resistance measurements show that the lighter rare earth Sm depresses T c faster than the heavier rare earth Dy. Solid solutions of the type (Er 1-xHo x)Ni 2B 2C have also been studied for the possible coexistence of superconductivity and magnetism in these compounds. Even though the magnetic ordering of the rare earth moments can be deduced from our susceptibility measurements, resistance measurements showed no reetrant behavior in any of these compounds down to 1.2 K.

  16. Vibrational structure of C 84 and Sc 2@C 84 analyzed by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulman, M.; Pichler, T.; Kuzmany, H.; Zerbetto, F.; Yamamoto, E.; Shinohara, H. N.

    1997-06-01

    The isomer III of Sc 2@C 84 was separated by multi-cycle HPLC purification. We present temperature dependent IR absorption measurements of Sc 2@C 84 which have been performed between 50 and 300 K and between 400 and 5000 cm -1, respectively. The vibrational structure of the endohedral compound is compared to the structure of unfilled C 84. We find a strong overall broadening of the vibrational modes in Sc 2@C 84. Also some of the vibrational absorption lines are strongly enhanced if compared to the spectrum for the empty cage. With decreasing temperature, a dramatic narrowing of the lines in the spectral range between 700 and 800 cm -1 is observed.

  17. E2C(R2) Periodic Benefit-Risk Evaluation Report and E2C(R2) Periodic Benefit-Risk Evaluation Report--Questions and Answers; International Council for Harmonisation; Guidances for Industry; Availability. Notice.

    PubMed

    2016-07-19

    The Food and Drug Administration (FDA or Agency) is announcing the availability of guidances for industry entitled ``E2C(R2) Periodic Benefit-Risk Evaluation'' (E2C(R2) guidance) and ``E2C(R2) Periodic Benefit-Risk Evaluation Report--Questions and Answers'' (E2C(R2) Q&A guidance). These guidances were prepared under the auspices of the International Council for Harmonisation (ICH), formerly the International Conference on Harmonisation. The E2C(R2) draft guidance, issued April 11, 2012, updated and combined two ICH guidances, ``E2C Clinical Safety Data Management: Periodic Safety Update Reports for Marketed Drugs'' (E2C guidance) and ``Addendum to E2C Clinical Safety Data Management: Periodic Safety Update Reports for Marketed Drugs'' (addendum to the E2C guidance). The E2C(R2) guidance is intended to describe the format, content, and timing of a Periodic Benefit-Risk Evaluation Report (PBRER) for an approved drug or biologic, and it finalizes the draft guidance. The E2C(R2) Q&A guidance is a supplementary guidance that is intended to clarify key issues in the E2C(R2) guidance. PMID:27459749

  18. The Viral E8^E2C Repressor Limits Productive Replication of Human Papillomavirus 16

    PubMed Central

    Straub, Elke; Dreer, Marcel; Fertey, Jasmin; Iftner, Thomas

    2014-01-01

    Productive replication of human papillomavirus type 16 (HPV16) occurs only in differentiated keratinocyte cells. In addition to the viral E2 activator protein, HPV16 and related HPV types express transcripts coding for an E8^E2C fusion protein, which limits genome replication in undifferentiated keratinocytes. To address E8^E2C's role in productive replication of HPV16, stable keratinocyte cell lines containing wild-type (wt), E8^E2C knockout (E8−), or E8 KWK mutant (mt) genomes, in which conserved E8 residues were inactivated, were established. Copy numbers of E8− and E8 KWK mt genomes and amounts of early and late viral transcripts were greatly increased compared to those for the wt in undifferentiated keratinocytes, suggesting that HPV16 E8^E2C activities are highly dependent upon the E8 part. Upon differentiation in organotypic cultures, E8 mt genomes displayed higher early viral transcript levels, but no changes in cellular differentiation or virus-induced cellular DNA replication in suprabasal cells were observed. E8 mt genomes were amplified to higher copy numbers and showed increased L1 transcripts compared to wt genomes. Furthermore, the number of cells expressing the viral late protein E4 or L1 or amplifying viral genomes was greatly increased in E8 mt cell lines. In wild-type cells, E8^E2C transcript levels did not decrease by differentiation. Our data indicate that the E8^E2C repressor limits viral transcription and replication throughout the complete life cycle of HPV16. PMID:24198405

  19. Enzyme Source Effects on CYP2C9 Kinetics and Inhibition

    PubMed Central

    Kumar, Vikas; Rock, Dan A.; Warren, Chad J.; Tracy, Timothy S.; Wahlstrom, Jan L.

    2008-01-01

    When choosing a recombinant P450 enzyme system for in vitro studies, it is critical to understand the strengths, limitations, and applicability of the enzyme system to the study design. While literature kinetic data may be available to assist in enzyme system selection, comparison of data from separate laboratories is often confounded by differences in experimental conditions and bioanalytical techniques. We measured the Michaelis-Menten kinetic parameters for four CYP2C9 substrates (diclofenac, (S)-warfarin, tolbutamide, and (S)-flurbiprofen) using four recombinant CYP2C9 enzyme systems (Supersomes™, Baculosomes®, RECO® system, and in-house purified, reconstituted enzyme) to determine if the enzyme systems exhibited kinetic differences in metabolic product formation rates under uniform experimental conditions. The purified, reconstituted enzyme systems exhibited higher Km values, reduced substrate affinity, and lower calculated intrinsic clearance values compared to baculovirus microsomal preparations. Six to twenty five-fold differences in predicted intrinsic clearance values were calculated for each substrate depending on the enzyme system-substrate combination. Results suggest that P450 reductase interactions with the CYP2C9 protein and varying ratios of CYP2C9/P450 reductase in the enzyme preparations may play a role in these observed differences. Additionally, when (S)-flurbiprofen was used as a substrate probe to determine CYP2C9 inhibition with a set of twelve inhibitors, decreased inhibition potency was observed across eleven of those inhibitors in the RECO® purified, reconstituted enzyme as compared to the Supersomes™ baculovirus microsomal preparation and pooled human liver microsomes. Considering these differences, consistent use of enzyme source is an important component in producing comparable and reproducible kinetics and inhibition data with CYP2C9. PMID:16928789

  20. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.

    PubMed

    Manabe, Yasuko; Miyatake, Shouta; Takagi, Mayumi; Nakamura, Mio; Okeda, Ai; Nakano, Taemi; Hirshman, Michael F; Goodyear, Laurie J; Fujii, Nobuharu L

    2012-01-01

    A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺) transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt), 5' AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38), and c-Jun NH2-terminal kinase (JNK)1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise), in situ (hindlimb muscles in an anesthetized animal), and invitro (dissected muscle tissues in incubation buffer) by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction. PMID:23300713

  1. H-T Phase Diagram of Flux Line Lattice Structure in YNi2B2C

    NASA Astrophysics Data System (ADS)

    Sakiyama, N.; Tsukagoshi, H.; Yano, F.; Nagata, T.; Kawano-Furukawa, H.; Yoshizawa, H.; Yethiraj, M.; Takeya, H.; Suzuki, J.

    2006-09-01

    The detailed flux line lattice (FLL) structure in YNi2B2C was investigated using small angle neutron scattering and the complete H-T phase diagram was determined. The FLL in YNi2B2C shows a change of symmetry only in the low magnetic field region between 0.05 to 0.2 T. The observed square lattice is governed by an anisotropic Fermi velocity. Contrary to the theoretical prediction, a square lattice driven by an anisotropic superconducting gap does not appear below 5 T.

  2. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  3. First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain.

    PubMed

    Decaro, N; Martella, V; Desario, C; Bellacicco, A L; Camero, M; Manna, L; d'Aloja, D; Buonavoglia, C

    2006-12-01

    Canine parvovirus type 2 (CPV-2), the aetiological agent of haemorrhagic enteritis in dogs, includes three antigenic variants, types 2a, 2b and 2c. CPV-2c has been detected initially in Italy and subsequently in Vietnam. We report the first identification of this novel antigenic variant in Spain, where it caused an outbreak of fatal enteritis in basset hound pups in association with canine coronavirus type I and type II. We suggest that this new antigenic variant of CPV-2 could spread throughout Europe and that there is a subsequent need to update current CPV vaccines. PMID:17123424

  4. TEM characterization of Mo/sub 2/C precipitates in molybdenum

    SciTech Connect

    Lang, J M

    1982-04-01

    Semicoherent platelets of hcp Mo/sub 2/C in a bcc Mo matrix were analysed. The habit plane was found to be the (301) Mo planes; the precipitate broad faces are covered by one set of dislocations lying along (anti 113) Mo direction; this direction is the calculated line which remains invariant in the transformation from the bcc to the hcp lattice. The Orientation Relationship is close to the Burgers orientation relationship with an additional rotation bringing (101)(Mo) and (anti 1011)Mo/sub 2/C into coincidence. Due to this rotation two variants are in twin relation and it was found that these two variants grew together.

  5. Magnetic and superconducting phase diagrams in ErNi2B2C

    SciTech Connect

    Galvis, J.A.; Crespo, M.; Guillamon, I.; Suderow, Hermann; Vieira, S.; Garcia Hernandez, M.; Budko, Serguei; Canfield, Paul

    2012-03-30

    We present measurements of the superconducting upper critical field Hc2(T) and the magneticphasediagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconductingphasediagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.

  6. Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce

    NASA Astrophysics Data System (ADS)

    Gutowska, Anna; Sloane, Andrew

    This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.

  7. Competition of superconductivity and antiferromagnetism in RNi2B2C (R = Tm, Dy, Ho, Er)

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Panda, B. N.

    2015-06-01

    The co-existence of superconductivity (SC) and antiferromagnetism (AFM) in RNi2B2C (R = Tm, Dy, Ho, Er) is reported in this paper. A mean field Hamiltonian model is taken for the system. The order parameters corresponding to SC and AFM are determined and their variation with temperature are studied for these borocarbide superconductors. The interplay of SC and AFM shows BCS type of two gaps in the quasi-particle density of states. Our theoretical study is an attempt to reveal how far the s-wave pairing taken in our model could explain the coexistence properties of SC and AFM in RNi2B2C.

  8. DOPEX-1D2C: A one-dimensional, two-constraint radiation shield optimization code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1973-01-01

    A one-dimensional, two-constraint radiation sheild weight optimization procedure and a computer program, DOPEX-1D2C, is described. The DOPEX-1D2C uses the steepest descent method to alter a set of initial (input) thicknesses of a spherical shield configuration to achieve a minimum weight while simultaneously satisfying two dose-rate constraints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. Code input instruction, a FORTRAN-4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is less than 1/2 minute on an IBM 7094.

  9. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  10. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans. PMID:25948712

  11. Superconductivity and magnetism and their interplay in quaternary borocarbides RNi2B2C

    NASA Astrophysics Data System (ADS)

    Gupta, L. C.

    2006-12-01

    Since 1986, most of the interest in superconductivity became focused on high-Tc cuprates. The discovery of the superconducting quaternary borocarbide system Y Ni B C with Tc as high as ˜12 K inspired research into intermetallic superconductors (IMS) once again. Several reasons can be attributed to this revival of interest in IMS: (i) In the tetragonal quaternary magnetic superconductors RNi2B2C, superconductivity and magnetism occur with Tc and TN ˜ 10 K, thereby allowing studies of exotic phenomena associated with, and arising from, the interplay of superconductivity and magnetism. (ii) High TN's and a variety of commensurate and incommensurate magnetic structures in RNi2B2C (Fermi surface nesting playing a central role) strongly suggest that R-spins are coupled via the RKKY-exchange interaction. Hence, unlike in most other magnetic superconductors known so far, conduction electrons take part in superconductivity and magnetism. (iii) Quaternary borocarbides open up new pathways to try and synthesize multicomponent intermetallic superconductors. Their remarkable intrinsic superconducting and magnetic properties and the availability of high quality samples (bulk polycrystalline, large single crystals and thin films) make RNi2B2C particularly special to investigate. Several unusual phenomena have been reported, such as, to name a few, dramatic phonon mode softening at Tc, Hc2(T) exhibiting a positive curvature near Tc and a four-fold anisotropy in the basal plane; a variety of exceptional and fascinating flux line lattice (FLL) related effects — FLL-symmetry transformations and alignments with the underlying crystal lattice as a function of applied field (manifestation of nonlocal electrodynamics despite high κ ˜ 10, and thermal fluctuation effects even though Tc, ˜ 16 K, is not too high) and a four-fold symmetric star-shaped (in real space) vortex core. RNi2B2C are strong coupling s-wave BCS superconductors and, remarkably, have a

  12. User-Interface Design Characteristics of Fortune 500 B2C E-Commerce Sites and Industry Differences

    ERIC Educational Resources Information Center

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.

    2006-01-01

    This study examined the user-interface design characteristics of 107 Fortune 500 B2C e-commerce Web sites and industry differences. Data were collected from corporate homepages, B2C product/service pages, B2C interactive shopping pages, as well as customer satisfaction of 321 online shoppers. The findings indicate that (a) to attract online…

  13. 77 FR 2573 - International Product Change-Global Plus 1C and 2C Negotiated Service Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... International Product Change--Global Plus 1C and 2C Negotiated Service Agreements AGENCY: Postal Service TM... Regulatory Commission to add Global Plus 1C and 2C Negotiated Service Agreements to the Competitive Products... of United States Postal Service to Add Global Plus 1C and 2C Negotiated Service Agreements to...

  14. The Development of B2C E-Commerce in Greece: Current Situation and Future Potential.

    ERIC Educational Resources Information Center

    Kardaras, Dimitris; Papathanassiou, Eleutherios

    2000-01-01

    Reports on the results of a survey of 120 companies in Greece that evaluated the potential of business to customer (B2C) Internet applications and investigated how the Internet and e-commerce can offer new opportunities for businesses to improve their customers' satisfaction. Discusses electronic commerce problems and future technology. (Contains…

  15. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  16. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.

  17. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    PubMed

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations. PMID:27065100

  18. Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C.

    PubMed

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-06-01

    In this paper, Ni/β-Mo2C(S) and Ni/β-Mo2C(G) were prepared from solution-derived precursor with two different carbon sources (starch and glucose) and tested as anodic noble-metal-free catalysts in air-cathode microbial fuel cells (MFCs). The carburized catalyst samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the electrocatalyst towards the oxidation of several common microbial fermentation products (formate, lactate, and ethanol) was studied for MFC based on Klebsiella pneumoniae conditions. The composite MFC anodes were fabricated, and their catalytic behavior was investigated. With different carbon sources, the crystalline structure does not change and the crystallinity and surface area increase. The electrocatalytic experiments show that the Ni/β-Mo2C(G) gives the better bio- and electrocatalytic performance than Ni/β-Mo2C(S) due to its higher crystallinity and BET surface area. PMID:25877400

  19. Surface morphology of orthorhombic Mo2C catalyst and high coverage hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tian, Xinxin; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Beller, Matthias; Jiao, Haijun

    2016-09-01

    High coverage hydrogen adsorption on twenty two terminations of orthorhombic Mo2C has been systematically studied by using density functional theory and ab initio thermodynamics. Hydrogen stable coverage on the surfaces highly depends on temperatures and H2 partial pressure. The estimated hydrogen desorption temperatures under ultra-high vacuum condition on Mo2C are in reasonable agreement with the available temperature-programmed desorption data. Obviously, hydrogen adsorption can affect the surface stability and therefore modify the surface morphology of Mo2C. Upon increasing the chemical potential of hydrogen which can be achieved by increasing the H2 partial pressure and/or decreasing the temperature, the proportions of the (001), (010), (011) and (100) surfaces increase, while those of the (101), (110) and (111) surfaces decrease. Among these surfaces, the (100) surface is most sensitive upon hydrogen adsorption and the (111) surface is most exposed under a wide range of conditions. Our study clearly reveals the role of hydrogen on the morphology of orthorhombic Mo2C catalyst in conjugation with hydro-treating activity.

  20. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  1. A functional genomic analysis of Arabidopsis thaliana PP2C clade D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the reference dicot plant Arabidopsis thaliana, the PP2C family of P-protein phosphatases includes the products of 80 genes that have been separated into 10 multi-protein clades plus six singletons. Clade D includes the products of nine genes distributed among 3 chromosomes (PPD1, At3g12620; PPD2...

  2. C-axis Transport Properties of DyNi2 B2 C

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    2014-03-01

    The resistivity along c-axis ρc(H,T) of DyNi2B2C have been measured with the applied magnetic field H perpendicular and parallel to c-axis, 0 kG 2C for the c-axis were constructed for each magnetic fields and our HC2(T) curves from ρc(H,T) measurement have been compared with those from previous known ρab(H,T) results. Since RNi2N2C (R = non magnetic rare earth element) has isotropic electronic structure and properties, the anisotropy in HC2(T) curves of the magnetic DyNi2N2C, which has the superconducting transition temperature, TC, is lower than the Néel temperatures, TN, is thought to be originated from the anisotropic magnetic Dy +3 sublattice.

  3. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  4. The MEF2C-Related and 5q14.3q15 Microdeletion Syndrome

    PubMed Central

    Zweier, M.; Rauch, A.

    2012-01-01

    Disorders related to the autosomal transcription factor MEF2C located in 5q14.3 were first described in 2009 and have since evolved to one of the more common microdeletion syndromes. Mutational screening in a larger cohort revealed heterozygous de novo mutations of MEF2C in about 1% of patients with moderate to severe intellectual disability, and the phenotype is similar in patients with intragenic deletions and multigenic microdeletions. Clinically, MEF2C-related disorders are characterized by severe intellectual disability with absent speech and limited walking abilities, hypotonia, seizures, and a variety of minor brain anomalies. The majority of patients show a similar facial gestalt with broad forehead, flat nasal bridge, hypotonic mouth, and small chin, as well as strabismus, but this phenotype is clinically not well recognized. The course of the disease is generally quite uniform, but patients with point mutations and smaller deletions seem to have a higher chance of walking skills and a lower risk of refractory seizures. Patients in whom the microdeletion also includes the RASA1 gene show features of the respective capillary and arterio-venous malformations and fistula syndrome. The phenotypic overlap with Rett syndrome is explained by a shared pathway and, accordingly, diminished MECP2 and CDKL5 expression is measureable in patients with MEF2C defects. Further research of this pathway may therefore eventually lead to a common therapeutic target. PMID:22670137

  5. First-principles investigation of novel polymorphs of Mg2C.

    PubMed

    Fan, Changzeng; Li, Jian

    2015-05-21

    On the basis of the evolutionary methodology for crystal structure prediction, the potential crystal structures of magnesium carbide with a chemical composition of Mg2C are explored. Except the known cubic phase (Fm3̅m), two novel tetragonal structures (P42/mnm and I41/Amd) and two novel hexagonal structures (P63/mmc and P6̅M2) of Mg2C are found. All these four new phases are mechanically and dynamically stable by the calculated elastic constants and phonon dispersions. Furthermore, the effects of pressure and temperature on the phase transitions among different Mg2C polymorphs are investigated, implying that some new phases especially the P42/mnm phase may be synthesized in future. The ratio values of B/G are also calculated in order to analyze the brittle and ductile nature of these Mg2C phases. In addition, electronic structure calculations suggest that the I41/Amd phase is semimetallic and the other three new phases are all metallic, which is different from the previously proposed magnesium carbides. Meanwhile, the calculated electronic density maps reveal that strong ionic bonding exists between the Mg and C atoms. PMID:25913098

  6. The Pharmacogenetic Control of Antiplatelet Response: Candidate Genes and CYP2C19

    PubMed Central

    Yang, Yao; Lewis, Joshua P.; Hulot, Jean-Sébastien; Scott, Stuart A.

    2016-01-01

    Introduction Aspirin, clopidogrel, prasugrel and ticagrelor are antiplatelet agents for the prevention of ischemic events in patients with acute coronary syndromes (ACS), percutaneous coronary intervention (PCI), and other indications. Variability in response is observed to different degrees with these agents, which can translate to increased risks for adverse cardiovascular events. As such, potential pharmacogenetic determinants of antiplatelet pharmacokinetics, pharmacodynamics and clinical outcomes have been actively studied. Areas covered This article provides an overview of the available antiplatelet pharmacogenetics literature. Evidence supporting the significance of candidate genes and their potential influence on antiplatelet response and clinical outcomes are summarized and evaluated. Additional focus is directed at CYP2C19 and clopidogrel response, including the availability of clinical testing and genotype-directed antiplatelet therapy. Expert opinion The reported aspirin response candidate genes have not been adequately replicated and few candidate genes have thus far been implicated in prasugrel or ticagrelor response. However, abundant data supports the clinical validity of CYP2C19 and clopidogrel response variability among ACS/PCI patients. Although limited prospective trial data are available to support the utility of routine CYP2C19 testing, the increased risks for reduced clopidogrel efficacy among ACS/PCI patients that carry CYP2C19 loss-of-function alleles should be considered when genotype results are available. PMID:26173871

  7. Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul

    2015-09-01

    In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

  8. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.; Wade, Rebecca C.

    2011-08-11

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.

  9. "Expectations to Change" ((E2C): A Participatory Method for Facilitating Stakeholder Engagement with Evaluation Findings

    ERIC Educational Resources Information Center

    Adams, Adrienne E.; Nnawulezi, Nkiru A.; Vandenberg, Lela

    2015-01-01

    From a utilization-focused evaluation perspective, the success of an evaluation is rooted in the extent to which the evaluation was used by stakeholders. This paper details the "Expectations to Change" (E2C) process, an interactive, workshop-based method designed to engage primary users with their evaluation findings as a means of…

  10. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  11. Accelerating MP2C dispersion corrections for dimers and molecular crystals

    NASA Astrophysics Data System (ADS)

    Huang, Yuanhang; Shao, Yihan; Beran, Gregory J. O.

    2013-06-01

    The MP2C dispersion correction of Pitonak and Hesselmann [J. Chem. Theory Comput. 6, 168 (2010)], 10.1021/ct9005882 substantially improves the performance of second-order Møller-Plesset perturbation theory for non-covalent interactions, albeit with non-trivial computational cost. Here, the MP2C correction is computed in a monomer-centered basis instead of a dimer-centered one. When applied to a single dimer MP2 calculation, this change accelerates the MP2C dispersion correction several-fold while introducing only trivial new errors. More significantly, in the context of fragment-based molecular crystal studies, combination of the new monomer basis algorithm and the periodic symmetry of the crystal reduces the cost of computing the dispersion correction by two orders of magnitude. This speed-up reduces the MP2C dispersion correction calculation from a significant computational expense to a negligible one in crystals like aspirin or oxalyl dihydrazide, without compromising accuracy.

  12. Magnetic structures in RNi{sub 2}B{sub 2}C (R = Ho, Er) superconductors

    SciTech Connect

    Stassis, C.; Goldman, A.I.; Dervenagas, P.; Zarestky, J.; Canfield, P.C.; Cho, B.K.; Johnston, D.C.; Sternlieb, B.; Sternlieb, B.

    1994-12-31

    Single crystal neutron diffraction techniques have been employed to study the evolution of magnetic structures in RNi{sub 2}B{sub 2}C compounds in an attempt to understand the relationship between magnetic ordering and superconductivity in several members of this series. For HoNi{sub 2}B{sub 2}C, below the superconducting transition (T{sub c} = 8 K), an incommensurate magnetic structure characterized by two wave vectors (0.585 a* and 0.915 c*) is found in a narrow temperature range between 4.7 K and 6 K. This is the same temperature range where bulk measurements find a deep minimum in the upper critical field, H{sub c2}. Below 4.7 K, HoNi{sub 2}B{sub 2}C is a simple collinear antiferromagnet. ErNi{sub 2}B{sub 2}C ({Tc} = 11 K) orders in an incommensurate modulated antiferromagnetic state characterized by an ordering wave vector 0.553 a* below 7 K, which coexists with superconductivity.

  13. Electron-phonon interaction in hole-doped Mg B2 C2

    NASA Astrophysics Data System (ADS)

    Spanò, E.; Bernasconi, M.; Kopnin, E.

    2005-07-01

    Based on density functional perturbation theory, we predict that hole-doped MgB2C2 , which is isoelectronic and structurally similar to MgB2 , has a strong electron-phonon coupling constant. By substituting Mg atoms with alkali metals (Li,Na), pristine insulating MgB2 turns metallic with holes in the σ bands at the Fermi level. Calculation of the formation enthalphies show that hole-doped LixMg(1-x)B2C2 or NaxMg(1-x)B2C2 for x=0.125-0.25 might be synthesized experimentally under conditions of Mg deficiencies. We find that the contribution of the σ bands to the electron-phonon coupling constant of Li0.125Mg0.875B2C2 is Λσσ=0.91 , due to the modulation of the σ bands produced by stretching modes of the borocarbide hexagonal planes. Based on ab initio phonons and electron-phonon coupling constants, we estimate from the McMillan formula a value for superconductive Tc of 67 K (for μ*=0.1 ), higher than that of MgB2 mainly because of larger phonon frequencies (ωln=777cm-1) .

  14. Electronic structure of the layered diboride dicarbide superconductor Y B2C2

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, S.; Mohn, P.; Redinger, J.; Michor, H.

    2005-04-01

    The electronic structure of the layered diboride dicarbide superconductor Y B2C2 is calculated using the full potential LAPW method within the framework of ab initio density functional theory. Our results confirm that the crystal structure with P4/mbm symmetry is more stable than the originally claimed P\\overline {4}2c structure, which is in accordance with recent interpretations of the diffraction patterns of other related compounds of LaB2C2-type. It is found that the metallic conductivity in the stable P4/mbm structure is due to Y d-bands partially hybridized with pz-states from the B-C planes. Thus the structure of the conduction bands differs from those found in MgB2. However, a large portion of the Fermi surface of Y B2C2 exhibits distinctive two-dimensional features, which can make this compound interesting for experimental studies on superconductivity connected to effects of strong electronic structure anisotropy.

  15. High-throughput radiometric CYP2C19 inhibition assay using tritiated (S)-mephenytoin.

    PubMed

    Di Marco, Annalise; Cellucci, Antonella; Chaudhary, Ashok; Fonsi, Massimiliano; Laufer, Ralph

    2007-10-01

    A rapid and sensitive radiometric assay for assessing the potential of drugs to inhibit cytochrome P450 (P450) 2C19 in human liver microsomes is described. The new assay, which does not require high-performance liquid chromatography (HPLC) separation or mass spectrometric detection, is based on the release of tritium as tritiated water that occurs upon CYP2C19-mediated 4'-hydroxylation of (S)-mephenytoin labeled with tritium in the 4' position. Because this reaction is subject to an NIH shift, tritium was also introduced into the 3'- and 5'-positions of the tracer to enhance formation of a tritiated water product. Tritiated water was separated from the substrate using 96-well solid-phase extraction plates. The reaction is NADPH-dependent and sensitive to CYP2C19 inhibitors. IC(50) values for 15 diverse drugs differed less than 2.5-fold from those determined by quantification of the unlabeled 4'-hydroxy-(S)-mephenytoin product, using HPLC coupled to mass spectrometric detection. All of the steps of the new assay, namely incubation, product separation, and radioactivity counting, are performed in a 96-well format and can be automated. This assay represents a non-HPLC, high-throughput version of the classic (S)-mephenytoin 4'-hydroxylation assay, which is the most widely used method to assess the potential for CYP2C19 inhibition of new chemical entities. PMID:17600081

  16. Nonsuperconductivity and magnetic features of the intermetallic borocarbide HoCo2B2C

    NASA Astrophysics Data System (ADS)

    Rapp, R. E.; Massalami, M. El

    1999-08-01

    Intrigued by the exotic features of the low-temperature superconducting and magnetic phase diagram of HoNi2B2C, this work searched for similar features in the isomorphous HoCo2B2C [LuNi2B2C-type structure, a=3.500(3) Å, c=10.590(9) Å]. In contrast to the former, no superconductivity is observed down to 30 mK, indicative of a relative lattice stiffening and a reduction in N(EF). The magnetic ordering of the Ho sublattice sets in at TN=5.4(1) K (Co-sublattice carries no magnetic moment). The magnetic entropy up to 10 K is suggestive of an electronic ground-state doublet. No field-induced cascade of magnetic phase transitions was observed in the range 1.8 K2C and Ho metal. The T1 event, evident also in χac(T), is probably a manifestation of an order-to-order magnetic phase transition.

  17. First Astronomical Detection of the Carbene Chain H2C6

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Kuiper, T. B. H.; McCarthy, M. C.; Travers, M. J.; Kovacs, A.; Gottlieb, C. A.; Thaddeus, P.

    1996-01-01

    The cumulene carbenes are important components of hydrocarbon chemistry in low mass star forming cores. Here we report the first astronomical detection of the long chain cumulene carbene H(sub 2)C(sub 6), in the insterstellar cloud TMC1, from observations of two of its rotational transitions:...

  18. High reflectance and low stress Mo2C/Be multilayers

    DOEpatents

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  19. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    PubMed

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  20. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been re...

  1. Identification of novel GH-regulated genes in C2C12 cells.

    PubMed

    Resmini, E; Morte, B; Sorianello, E; Gallardo, E; de Luna, N; Illa, I; Zorzano, A; Bernal, J; Webb, S M

    2011-12-01

    Growth hormone (GH) is the main regulator of longitudinal growth before puberty, and treatment with human recombinant (rh) GH can increase muscle strength. Nevertheless, molecular mechanisms responsible remain mostly unknown. Many physiological effects of GH require hormone-mediated changes in gene expression. In an attempt to gain insight into the mechanism of GH action in muscle cells we evaluated the effects of rhGH on gene expression profile in a murine skeletal muscle cell line C2C12. The objective of the work was to identify changes in gene expression in the murine skeletal muscle cell line C2C12 after rGH treatment using microarray assays. C2C12 murine skeletal muscle cell cultures were differentiated during 4 days. After 16 h growing in serum-free medium, C2C12 myotubes were stimulated during 6 h with 500 ng/ml rhGH. Four independent sets of experiments were performed to identify GH-regulated genes. Total RNA was isolated and subjected to analysis. To validate changes candidate genes were analyzed by real-time quantitative polymerase chain reaction. One hundred and fifty-four differentially expressed genes were identified; 90 upregulated and 64 downregulated. Many had not been previously identified as GH-responsive. Real-time PCR in biological replicates confirmed the effect of rGH on 15 genes: Cish, Serpina3g, Socs2, Bmp4, Tnfrsf11b, Rgs2, Tgfbr3, Ugdh, Npy1r, Gbp6, Tgfbi, Tgtp, Btc, Clec3b, and Bcl6. This study shows modifications in the gene expression profile of the C2C12 cell line after rhGH exposure. In vitro and gene function analysis revealed genes involved in skeletal and muscle system as well as cardiovascular system development and function. PMID:22072432

  2. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels. PMID:9612228

  3. 1-Aminobenzotriazole coincubated with (S)-warfarin results in potent inactivation of CYP2C9.

    PubMed

    Sodhi, Jasleen K; Ford, Kevin A; Mukadam, Sophie; Wong, Susan; Hop, Cornelis E C A; Khojasteh, S Cyrus; Halladay, Jason S

    2014-05-01

    1-Aminobenzotriazole (ABT) is a nonselective, mechanism-based inactivator of cytochrome P450 (P450) and a useful tool compound to discern P450- from non-P450-mediated metabolism. ABT effectively inactivates major human P450 isoforms, with the notable exception of CYP2C9. Here we propose that ABT preferentially binds to the warfarin-binding pocket in the CYP2C9 active-site cavity; thus, ABT bioactivation and subsequent inactivation is not favored. Therefore, coincubation with (S)-warfarin would result in displacement of ABT from the warfarin-binding pocket and subsequent binding to the active site, converting ABT into a potent inactivator of CYP2C9. To test this hypothesis, in vitro studies were conducted using various coincubation combinations of ABT and (S)-warfarin or diclofenac to modulate the effectiveness of CYP2C9 inactivation by ABT. Coincubation of ABT with (S)-warfarin (diclofenac probe substrate) resulted in potent inactivation, whereas weak inactivation was observed following coincubation of ABT with diclofenac [(S)-warfarin probe substrate]. The kinetic parameters of time-dependent inhibition of ABT for CYP2C9 in the absence and presence of (S)-warfarin (20 μM) were 0.0826 and 0.273 min(-1) for kinact and 3.49 and 0.157 mM for KI, respectively. In addition, a 73.4-fold shift was observed in the in vitro potency (kinact/KI ratio), with an increase from 23.7 ml/min/mmol (ABT alone) to 1740 ml/min/mmol [ABT with (S)-warfarin (20 μM)]. These findings were supported by in silico structural modeling, which showed ABT preferentially binding to the warfarin-binding pocket and the displacement of ABT to the active site in the presence of (S)-warfarin. PMID:24550229

  4. The challenge of precise orbit determination for STSAT-2C using extremely sparse SLR data

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul; Kim, Byoungsoo

    2016-03-01

    The Science and Technology Satellite (STSAT)-2C is the first Korean satellite equipped with a laser retro-reflector array for satellite laser ranging (SLR). SLR is the only on-board tracking source for precise orbit determination (POD) of STSAT-2C. However, POD for the STSAT-2C is a challenging issue, as the laser measurements of the satellite are extremely sparse, largely due to the inaccurate two-line element (TLE)-based orbit predictions used by the SLR tracking stations. In this study, POD for the STSAT-2C using extremely sparse SLR data is successfully implemented, and new laser-based orbit predictions are obtained. The NASA/GSFC GEODYN II software and seven-day arcs are used for the SLR data processing of two years of normal points from March 2013 to May 2015. To compensate for the extremely sparse laser tracking, the number of estimation parameters are minimized, and only the atmospheric drag coefficients are estimated with various intervals. The POD results show that the weighted root mean square (RMS) post-fit residuals are less than 10 m, and the 3D day boundaries vary from 30 m to 3 km. The average four-day orbit overlaps are less than 20/330/20 m for the radial/along-track/cross-track components. The quality of the new laser-based prediction is verified by SLR observations, and the SLR residuals show better results than those of previous TLE-based predictions. This study demonstrates that POD for the STSAT-2C can be successfully achieved against extreme sparseness of SLR data, and the results can deliver more accurate predictions.

  5. Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of [Ag2(C10H10N3O3S)2(C5H5N)3

    NASA Astrophysics Data System (ADS)

    Tailor, Sanjay M.; Patel, Urmila H.

    2015-05-01

    Silver complex of 4-Amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide (sulfamethoxazole) (SMX) has been synthesized and characterized by elemental analysis, infrared, UV and NMR spectroscopy. The title compound, [Ag2(C10H10N3O3S)2(C5H5N)3] crystallizes in the orthorhombic space group Pna21 with lattice parameters a = 17.9527(5), b = 8.6529(3), c = 25.1621(7) Å and Z = 4. The structure is solved by direct method and refined to a final R = 0.0567 for 6732 reflections with I ⩾ 2σ(I). The results of IR, 1H NMR and 13C NMR spectral data suggest the binding of silver atom to the sulfonamide ligand which is in agreement with the crystal structure determination. X-ray analysis revealed that in the title compound, one silver atom is surrounded by three N atoms and one Ag atom leading to a distorted tetrahedral geometry and another silver atom is surrounded by four N atoms and one Ag atom leading to a slightly distorted square pyramid geometry with Ag⋯Ag separation distance of 3.026 Å. The dihedral angle between phenyl and isoxazole ring is 85.7(4)°. In the crystal structure, the molecules are linked via Nsbnd H⋯O, Csbnd H⋯O intermolecular and Csbnd H⋯O intramolecular interactions. Silver complex of sulfamethoxazole has been studied by electrical and thermal analysis. Silver sulfamethoxazole presents different antibacterial behavior against Escherichia coli and Staphylococcus aureus strains.

  6. The Effect of Genetic Polymorphism on the Inhibition of Azole Antifungal Agents Against CYP2C9-Mediated Metabolism.

    PubMed

    Niwa, Toshiro; Hata, Tomomi

    2016-03-01

    We investigated the effect of cytochrome P450 (CYP) 2C9 polymorphism on the inhibition of methylhydroxylation activity of tolbutamide, a typical CYP2C9 substrate, by triazole antifungal agents, fluconazole and voriconazole. Although the Michaelis constants (Km), maximal velocities (Vmax), and Vmax/Km values for CYP2C9.1 (wild type) and CYP2C9.2 (Arg144Cys) were similar and CYP2C9.3 (Ile359Leu) had a higher Km and a lower Vmax than CYP2C9.1 and CYP2C9.2, the inhibition constants of fluconazole and voriconazole against CYP2C9.2 were lower than that against CYP2C9.1 and CYP2C9.3. These results suggest that more careful administration of azole antifungals to patients with the CYP2C9*2 allele might be required because of the strong inhibitory effects. PMID:26886310

  7. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients.

    PubMed

    de Vos, A; van der Weide, J; Loovers, H M

    2011-10-01

    Polymorphisms in genes coding for drug metabolizing enzymes, such as the cytochrome P450 enzymes CYP2C19 and CYP2D6, can lead to therapy failure and side effects. In earlier studies, the novel variant CYP2C19*17 increased metabolism of several CYP2C19 substrates. The objective of this study was to evaluate the impact of CYP2C19*17 on the metabolism of amitriptyline (AT), citalopram (CIT), and clomipramine (CLOM). Six-hundred and seventy-eight patients were included in this study, based on availability of DNA and serum levels of parent drug and main metabolite. We investigated the relationship between CYP2C19 genotypes and metabolic parameters, including serum levels corrected for dose and metabolic ratio (MR). The CYP2C19*17 allele was significantly associated with decreased MR for CIT (CYP2C19*1/*17 mean MR=2.3, compared with CYP2C19*1/*1 mean MR=2.8) and AT (CYP2C19*17/*17 mean MR=0.8, compared with CYP2C19*1/*1 mean MR=3.7 in the CYP2D6*1/*1 subgroup). Furthermore, significant association of CYP2D6 genotype with AT, CIT, and CLOM metabolism was observed. No clear correlation was found between CYP2C19 genotype and CLOM metabolism. This study confirms the increased activity of the CYP2C19*17 allele and shows increased metabolism of drugs that are metabolized by CYP2C19, including AT and CIT. However, the clinical relevance of CYP2C19*17 is probably limited for AT, CIT, and CLOM. PMID:20531370

  8. Novel Polycarbo-Substituted Imidazo[1,2-c]quinazolines: Synthesis and Cytotoxicity Study.

    PubMed

    Khoza, Tebogo Ankie; Makhafola, Tshepiso Jan; Mphahlele, Malose Jack

    2015-01-01

    Amination of the 2-aryl-6-bromo-4-chloro-8-iodoquinazolines with 2-aminoethanol followed by acid-promoted cyclodehydration of the incipient 2-((6,8-dihalo-2-phenylquinazolin-4-yl)amino)ethanols afforded the corresponding novel 5-aryl-9-bromo-7-iodo-2,3-dihydro-2H-imidazo[1,2-c]quinazolines. The latter were, in turn, subjected to sequential (Sonogashira and Suzuki-Miyaura) and one-pot two-step (Sonogashira/Stille) cross-coupling reactions to afford diversely functionalized polycarbo-substituted 2H-imidazo[1,2-c]quinazolines. The imidazoquinazolines were screened for in vitro cytotoxicity against human breast adenocarcinoma (MCF-7) cells and human cervical cancer (HeLa) cells. PMID:26694336

  9. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    PubMed

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d. PMID:26364219

  10. Warfarin dose requirements in a patient with the CYP2C9*14 allele.

    PubMed

    Lee, Yee Ming; Eggen, Jessica; Soni, Vinay; Drozda, Katarzyna; Nutescu, Edith A; Cavallari, Larisa H

    2014-05-01

    We describe a 64-year-old male of Indian descent with a history of atrial fibrillation who was started on warfarin after hospital admission for acute stroke. He received genotype-guided warfarin dosing as per the standard-of-care at our hospital, with daily dose recommendations provided by the pharmacogenetics service. Genotyping revealed the rare CYP2C9*1/*14 genotype and warfarin insensitive VKORC1 -1639GG and CYP4F2 433Met/Met genotypes. The patient received an initial warfarin loading dose of 4 mg for 2 days, followed by 2-3 mg/day for the following 11 days. He reached a therapeutic international normalized ratio on day 5, which was maintained over the following week. This report adds to the limited data of the effects of the CYP2C9*14 allele on warfarin dose requirements. PMID:24956244

  11. First-principles study of electronic states in Mg2C

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Paliwal, U.; Joshi, K. B.

    2016-05-01

    The electronic properties of magnesium methanide Mg2C are reported. Investigations are carried out applying the linear combination of atomic orbitals method. After settling ground state of the antifluorite structure the electronic band structure calculations are undertaken using PBE-GGA exchange and correlation functional and PBE0 hybrid functional. All calculations show that Mg2C has indirect band gap with conduction band minimum at Γ and valence band maximum at the X point. The values of band gap from PBE and the PBE0 are 2.05 and 3.46 eV respectively. In comparison to beryllium methanide the electronic bands are flat suggesting ionic nature of bonding.

  12. Electronic shell structures of Russian-doll-style Sc 4C 2@C 80

    NASA Astrophysics Data System (ADS)

    Chen, Zhifan; Kah, Cherno B.; Wang, Xiao-Qian

    2011-04-01

    We have studied the electronic properties of a 'Russian-doll'-style endohedral fullerene Sc 4C 2@C 80 based on first-principles density-functional calculations coupled with many-body GW correction. Our calculation results yield a GW rectified gap of 1.8 eV for the 'Russian doll' structured Sc 4C 2@C 80, in very good conformity with experimental observed value of 1.6 eV. The calculated electronic characteristics of the Russian-doll fullerene reveal distinct shell structures, which are embellished in the GW approach. The analysis of vibrational frequency demonstrates profound hybridizations associated with the interactions between the Sc 4C 2 core and C 80 shell.

  13. Capacitance behavior of nanostructured ɛ-MnO2/C composite electrode using different carbons matrix

    NASA Astrophysics Data System (ADS)

    Tran, Van Man; Ha, An The; Loan Phung Le, My

    2014-06-01

    In this work nanostructured ɛ-MnO2/C composite electrode was synthesized via the reduction reaction of potassium permanganate. A wide range of carbons such as mesoporous carbon (MC), graphite (GC), super P carbon (super P) and Vulcan carbon (VC) were used in order to enhance the interfacial electrical conductivity and the electrochemical capacitance of the composite electrodes. Physical properties, structure and specific surface area of electrode materials were investigated by scanning electron microscopy (SEM), x-ray diffraction and nitrogen adsorption measurements. The capacitance behavior of MnO2/C materials was studied in aqueous and non-aqueous solution using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. The composite electrode exhibits the highest capacitance at 30 wt% activated carbon. Among different carbons used, the maximum capacitance of MnO2/super P electrode is as high as 205 F g-1 at 50 mV s-1 and retains 98% after 300 cycles.

  14. CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment

    PubMed Central

    Newbury, Dianne F.; Winchester, Laura; Addis, Laura; Paracchini, Silvia; Buckingham, Lyn-Louise; Clark, Ann; Cohen, Wendy; Cowie, Hilary; Dworzynski, Katharina; Everitt, Andrea; Goodyer, Ian M.; Hennessy, Elizabeth; Kindley, A. David; Miller, Laura L.; Nasir, Jamal; O'Hare, Anne; Shaw, Duncan; Simkin, Zoe; Simonoff, Emily; Slonims, Vicky; Watson, Jocelynne; Ragoussis, Jiannis; Fisher, Simon E.; Seckl, Jonathon R.; Helms, Peter J.; Bolton, Patrick F.; Pickles, Andrew; Conti-Ramsden, Gina; Baird, Gillian; Bishop, Dorothy V.M.; Monaco, Anthony P.

    2009-01-01

    Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition. PMID:19646677

  15. Alpha2C-adrenoceptors play a prominent role in sympathetic constriction of porcine pulmonary arteries.

    PubMed

    Jantschak, Florian; Pertz, Heinz H

    2012-06-01

    Enhanced pulmonary vasoconstriction in response to injuries of the central nervous system and hypoxia result in pulmonary edema due to increased sympathetic activation. This study aimed to characterize α(2)-adrenoceptor (AR)-mediated responses in porcine pulmonary arteries. α(2)-AR-mediated vasoconstriction was studied using a tissue bath protocol. α(2)-AR protein was determined by Western blotting. UK14304 (α(2)-AR agonist) elicited only a slight contraction in pulmonary arteries compared to veins. Verapamil (voltage-operated Ca(2+) channel blocker), 2-APB (store-operated Ca(2+) channel inhibitor), and P1075 (K(ATP) channel opener) induced a marked decrease of the basal tone in veins, but not in arteries. The UK14304-induced contraction in arteries was enhanced by (S)-(-)-Bay K 8644 (L-type Ca(2+) channel activator), N (ω)-nitro-L: -arginine methyl ester hydrochloride (L-NAME, eNOS inhibitor), and (S)-(-)-Bay K 8644 plus L-NAME to the same extent. Endothelium denudation failed to affect the UK14304 response. (S)-(-)-Bay K 8644 did not increase the maximal noradrenaline (non-selective α-AR agonist) or phenylephrine (α(1)-AR agonist) response. The rightward shift of the concentration-response curve to noradrenaline by prazosin (α(1)-AR antagonist) plus (S)-(-)-Bay K 8644 was smaller and non-parallel compared to that in the presence of prazosin alone. UK14304 responses were inhibited by MK912 (α(2C)-AR antagonist). Affinity of MK912 (pA(2) 9.76) and Western blotting analysis argue for an involvement of α(2C)-ARs in noradrenaline-induced contraction of pulmonary arteries. It is concluded that postjunctional α(2C)-ARs predominantly mediate contraction in porcine pulmonary arteries when the cytosolic Ca(2+) concentration is elevated. α(2C)-AR antagonists may be beneficial in the treatment of pulmonary edema. PMID:22371269

  16. 11. 'Erection Plan, 1 208'101/2' C. to C. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 'Erection Plan, 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing Sacramento River, Pacific System, Southern Pacific Company, The Phoenix Bridge Co., C.O. 836D, Drawing No. 13, Scale 1/8' = 1'0', Engineer, B.M. Krohn, Draftsman, W.L. Clegg, Date, May 25th 1901' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  17. Measurements of selected C2-C5 hydrocarbons in the troposphere - Latitudinal, vertical, and temporal variations

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Viezee, William; Salas, Louis J.

    1988-01-01

    The tropospheric distribution of 1077 C2-C5 hydrocarbon samples was determined. Shipboard measurements obtained over the eastern Pacific Ocean reveal large north-to-south gradients for most nonmethane hydrocarbons (NMHCs). The results show that NMHC concentrations can decrease by a factor of two or more during the passage of cold fronts in winter and spring, and that upper tropospheric concentrations were lower than those in the lower troposphere.

  18. Gender and functional CYP2C and NAT2 polymorphisms determine the metabolic profile of metamizole.

    PubMed

    Martínez, Carmen; Andreu, Inmaculada; Amo, Gemma; Miranda, Miguel A; Esguevillas, Gara; Torres, María José; Blanca-López, Natalia; Blanca, Miguel; García-Martín, Elena; Agúndez, José A G

    2014-12-01

    Metamizole is a pain-killer drug that has been banned in some countries because of its toxicity, but it is still used in many countries due to its effective analgesic and antispasmodic properties. Although large variability in the biodisposition and adverse effects of metamizole are known, factors underlying this variability are poorly understood. We analyzed the urinary recovery of metabolites, as well as the association of these profiles with genetic and non-genetic factors, in a group of 362 healthy individuals. Gender and functional polymorphisms are strongly related to metabolic profiles. N-demethylation of the active metabolite MAA is diminished in carriers of the CYP2C19*2 allele and in NAT2-slow acetylators. Acetylation of the secondary metabolite AA is decreased in men, in drinkers and in NAT2-slow acetylators with a differential effect of NAT2*5 and NAT2*6 alleles. The formylation of MAA is diminished in older subjects and in carriers of defect CYP2C9 and CYP2C19 alleles. Two novel arachidonoyl metabolites were identified for the first time in humans. Women and NAT2-slow acetylators show higher concentrations, whereas the presence of the rapid CYP2C19*17 allele is associated with lower concentrations of these metabolites. All genetic associations show a gene-dose effect. We identified for the first time genetic and non-genetic factors related to the oxidative metabolism of analgesic drug metamizole, as well as new active metabolites in humans. The phenotypic and genetic factors identified in this study have a potential application as biomarkers of metamizole biotransformation and toxicity. PMID:25241292

  19. Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons

    NASA Astrophysics Data System (ADS)

    He, Yan-Ping; Zhou, Nan; Tan, Yan-Xi; Wang, Fei; Zhang, Jian

    2016-06-01

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m2/g and exhibits high separation capacity on C2/C1 hydrocarbons.

  20. Spectrum of the Dirac operator on Gr{sub 2}(C{sup m+2})

    SciTech Connect

    Milhorat, J.

    1998-01-01

    The spectrum of the Dirac operator, acting on the quaternion-Kaehler spin symmetric space Gr{sub 2}(C{sup m+2}), is explicitly computed by harmonic analysis methods: in particular `branching rules` for irreducible representations of the Lie group SU(m+2) and its subgroup S(U(m){times}U(2)), are given. {copyright} {ital 1998 American Institute of Physics.}

  1. Ferromagnetic instability of interlayer floating electrons in the quasi-two-dimensional electride Y2C

    NASA Astrophysics Data System (ADS)

    Inoshita, Takeshi; Hamada, Noriaki; Hosono, Hideo

    2015-11-01

    Ab initio electronic structure calculations show that the recently identified quasi-two-dimensional electride Y2C is a weak itinerant ferromagnet or is at least close to a ferromagnetic instability. The ferromagnetism is induced by the electride electrons, which are loosely bound around interstitial sites and overlap with each other to form two-dimensional interlayer conduction bands. The semimetallicity and two-dimensionality of the band structure are the keys to understanding this ferromagnetic instability.

  2. 12. 'Portal Strut for 1 208'101/2' C. to C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 'Portal Strut for 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing of Sacramento River, So. Pac. Co., The Phoenix Bridge Co., C.O. 836D, Drawing No. 12, Scale - 1' = 1', Engineer - B.M. Krohn, May 22nd `01, J.C.S.' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  3. 13. 'Transverse Bracing for 1 208'101/2' C. to C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. 'Transverse Bracing for 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing of Sacramento River, So. Pac. Co., The Phoenix Bridge Co., C.O. 836D, Drawing No. 7, Scale - 1' = 1', Engineer - B.M. Krohn, May 11th `01, Slaughter' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  4. Recombinant adenoviral microRNA-206 induces myogenesis in C2C12 cells

    PubMed Central

    Zhang, Weiwei; Wang, Tao; Su, Yongping; Li, Wang; Frame, Lynn T.; Ai, Guoping

    2011-01-01

    Summary Background The expression of microRNA-206 (miR-206) is high in skeletal muscle but low in most other tissues. The expression of miR-206 is increased in muscular dystrophy, suggesting its involvement in the pathogenesis of muscle diseases. To determine the role of miR-206 in muscle cell differentiation and explore a possible gene therapy vector, we constructed a miR-206 adenoviral expression vector (AdvmiR-206) and tested for transfection into C2C12 stem cells. Material/Methods A 355-bp PCR amplicon from C57B6 mouse skeletal muscle genomic DNA was inserted into the adenoviral shuttle vector pAdTrack-CMV, which was then co-transformed with the adenoviral backbone plasmid pAdEasy-1 into competent E. coli BJ5183 bacteria. The specificity and function of this recombinant adenoviral MiR-206 were studied in C2C12 cells by Northern blot, immunofluorescence, Western blot, and flow cytometry. Results Increased expression of miR-206 in AdvmiR-206 transfected C2C12 cells (P<0.001) and resulted in morphological and biochemical changes over time that were similar to serum deprivation, including elongated cells and increased myosin heavy chain proteins. Even in the absence of serum deprivation, miR-206 overexpression accounted for a 50% reduction of S-phase cells (P<0.01). Moreover, in untransfected C2C12 cells, the introduction of miR-206-specific antisense oligoribonucleotides inhibited the normal response to serum deprivation. Twenty-four hours after lipofection of antisense oligoribonucleotides, the number of elongated cells was reduced by half (P<0.01). Conclusions Collectively, these data support a role for miR-206 in myoblast differentiation. We foresee potential applications for the AdvmiR-206 vector in research and therapy. PMID:22129894

  5. Lorcaserin (APD356), a selective 5-HT(2C) agonist, reduces body weight in obese men and women.

    PubMed

    Smith, Steven R; Prosser, Warren A; Donahue, David J; Morgan, Michael E; Anderson, Christen M; Shanahan, William R

    2009-03-01

    Lorcaserin (APD356) is a potent, selective 5-HT(2C) agonist with ~15-fold and 100-fold selectivity vs. 5-HT(2A) and 5-HT(2B) receptors, respectively. This study evaluated the safety and efficacy of lorcaserin for weight reduction in obese patients during a 12-week period. The randomized, double-blind, placebo-controlled, parallel-arm study enrolled 469 men and women between ages 18 and 65 and with BMI 30-45 kg/m(2). Patients received placebo, lorcaserin 10 mg q.d., lorcaserin 15 mg q.d., or lorcaserin 10 mg b.i.d. for 12 weeks, and were counseled to maintain their usual diet and activity. The primary end point was change in weight from baseline to day 85 by completer analysis. Safety analyses included echocardiograms at Screening and day 85/study exit. Lorcaserin was associated with progressive weight loss of 1.8 kg, 2.6 kg, and 3.6 kg at 10 mg q.d., 15 mg q.d., and 10 mg b.i.d., respectively, compared to placebo weight loss of 0.3 kg (P < 0.001 for each group). Similar results were seen by intent-to-treat last observation-carried forward (ITT-LOCF) analysis. The proportions of completers achieving > or =5% of initial body weight were 12.8, 19.5, 31.2, and 2.3% in the 10 mg q.d., 15 mg q.d., 10 mg b.i.d., and placebo groups, respectively. The most frequent adverse events (AEs) were transient headache, nausea, and dizziness. Echocardiograms showed no apparent drug-related effects on heart valves or pulmonary artery pressure (PAP). Lorcaserin was well tolerated and efficacious for weight reduction in this 12-week study. Longer-term trials employing behavior modification will be needed to more fully assess its safety and efficacy. PMID:19057523

  6. Capric Acid Up-Regulates UCP3 Expression without PDK4 Induction in Mouse C2C12 Myotubes.

    PubMed

    Abe, Tomoki; Hirasaka, Katsuya; Kohno, Shohei; Tomida, Chisato; Haruna, Marie; Uchida, Takayuki; Ohno, Ayako; Oarada, Motoko; Teshima-Kondo, Shigetada; Okumura, Yuushi; Choi, Inho; Aoyama, Toshiaki; Terao, Junji; Nikawa, Takeshi

    2016-01-01

    Uncoupling protein 3 (UCP3) and pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle are key regulators of the glucose and lipid metabolic processes that are involved in insulin resistance. Medium-chain fatty acids (MCFAs) have anti-obesogenic effects in rodents and humans, while long-chain fatty acids (LCFAs) cause increases in body weight and insulin resistance. To clarify the beneficial effects of MCFAs, we examined UCP3 and PDK4 expression in skeletal muscles of mice fed a MCFA- or LCFA-enriched high-fat diet (HFD). Five-week feeding of the LCFA-enriched HFD caused high body weight gain and induced glucose intolerance in mice, compared with those in mice fed the MCFA-enriched HFD. However, the amounts of UCP3 and PDK4 transcripts in the skeletal muscle of mice fed the MCFA- or LCFA-enriched HFD were similar. To further elucidate the specific effects of MCFAs, such as capric acid (C10:0), on lipid metabolism in skeletal muscles, we examined the effects of various FAs on expression of UCP3 and PDK4, in mouse C2C12 myocytes. Although palmitic acid (C16:0) and lauric acid (C12:0) significantly induced expression of both UCP3 and PDK4, capric acid (C10:0) upregulated only UCP3 expression via activation of peroxisome proliferator-activated receptor-δ. Furthermore, palmitic acid (C16:0) disturbed the insulin-induced phosphorylation of Akt, while MCFAs, including lauric (C12:0), capric (C10:0), and caprylic acid (C12:0), did not. These results suggest that capric acid (C10:0) increases the capacity for fatty acid oxidation without inhibiting glycolysis in skeletal muscle. PMID:27117849

  7. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Vasei, Mitra; Das, Paramita; Cherfouh, Hayet; Marsan, Benoit; Claverie, Jerome

    2014-07-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  8. Enhancement of anti-OVA IgG2c production in vivo by enalapril

    PubMed Central

    Almeida, L.C.; Muraro, L.S.; Albuquerque, D.A.

    2016-01-01

    Angiotensin-converting enzyme (ACE) inhibitors have non-hemodynamic, pleiotropic effects on the immune response. The effects of ACE inhibitors on the production of cytokines and T-cell functions are well established. However, little is known on the effects of these medicines on humoral response to foreign antigens. In this study, we investigated the effect of enalapril treatment on ovalbumin (OVA)-specific IgG1 and IgG2c production in mice determined by ELISA. Two groups of 8-week-old C57BL/6 females mice (3–4/group) were subcutaneously immunized with OVA (10 μg/animal) in presence of Alhydrogel (1 mg/mouse) and boosted at day 21. The mice were treated with enalapril (5 mg/kg daily, po) or were left without treatment for one month. The animals were bled from the orbital plexus on days 0, 7, 14, 21, and 28 after the first immunization and the sera were stored at –20°C until usage. OVA-specific serum IgG1 and IgG2c were determined by ELISA using serum from each individual animal. The results showed that enalapril significantly increased anti-OVA serum IgG2c in the secondary response without affecting IgG1 synthesis. These data expand our understanding on the properties of enalapril on the immune response, including antibody production. PMID:27409332

  9. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the LPA analog cyclic phosphatidic acid (cPA) had no effect on the expression and secretion of MCP-1. LPA, although similar in structure to cPA, had potent inducing effects on MCP-1 expression in C2C12 cells. In this study, we showed that LPA enhanced MCP-1 mRNA expression and protein secretion in a dose-dependent manner. Taken together, these results suggest that LPA enhances MCP-1 secretion in C2C12 cells and thus may play an important role in cell proliferation. PMID:24049655

  10. Enhancement of anti-OVA IgG2c production in vivo by enalapril.

    PubMed

    Almeida, L C; Muraro, L S; Albuquerque, D A

    2016-07-11

    Angiotensin-converting enzyme (ACE) inhibitors have non-hemodynamic, pleiotropic effects on the immune response. The effects of ACE inhibitors on the production of cytokines and T-cell functions are well established. However, little is known on the effects of these medicines on humoral response to foreign antigens. In this study, we investigated the effect of enalapril treatment on ovalbumin (OVA)-specific IgG1 and IgG2c production in mice determined by ELISA. Two groups of 8-week-old C57BL/6 females mice (3-4/group) were subcutaneously immunized with OVA (10 μg/animal) in presence of Alhydrogel (1 mg/mouse) and boosted at day 21. The mice were treated with enalapril (5 mg/kg daily, po) or were left without treatment for one month. The animals were bled from the orbital plexus on days 0, 7, 14, 21, and 28 after the first immunization and the sera were stored at -20°C until usage. OVA-specific serum IgG1 and IgG2c were determined by ELISA using serum from each individual animal. The results showed that enalapril significantly increased anti-OVA serum IgG2c in the secondary response without affecting IgG1 synthesis. These data expand our understanding on the properties of enalapril on the immune response, including antibody production. PMID:27409332

  11. The toxofilin–actin–PP2C complex of Toxoplasma: identification of interacting domains

    PubMed Central

    Jan, Gaelle; Delorme, Violaine; David, Violaine; Revenu, Celine; Rebollo, Angelita; Cayla, Xavier; Tardieux, Isabelle

    2006-01-01

    Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser53, which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure–function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G- and F-actin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein–protein interactions that are important to parasite motility. PMID:17014426

  12. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  13. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C.

    PubMed

    Mulla, Sikandar I; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L(-1)) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the (13)C12-TCS was completely mineralized into CO2 and part of heavier carbon ((13)C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L(-1)) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  14. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C

    PubMed Central

    Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L−1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L−1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  15. Transport properties along c-axis of DyNi2B2C

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    2014-12-01

    We have measured the resistivity along c-axis ρc(H, T) of DyNi2B2C with the applied magnetic field H perpendicular to c-axis for 0 kG < H < 4 kG and temperature range 2 K < T < 300 K. From these, the superconducting upper critical field HC2(T) curve of DyNi2B2C for the c-axis was constructed and our HC2(T) curve from ρc(H, T) measurement has been compared with that from previous known ρab(H, T) result. With additional magnetization isotherms M(H, T) for H ⊥ c and H ∥ c-axis, the anisotropy in HC2(T) curves of the magnetic structure DyNi2N2C, which has the superconducting transition temperature TC is lower than the Néel temperatures TN, might be originated from the additional anisotropic magnetic Dy3+ sublattice.

  16. Gene Expression and Methylation Signatures of MAN2C1 are Associated with PTSD

    PubMed Central

    Uddin, Monica; Galea, Sandro; Chang, Shun-Chiao; Aiello, Allison E.; Wildman, Derek E.; de los Santos, Regina; Koenen, Karestan C.

    2011-01-01

    As potential regulators of DNA accessibility and activity, epigenetic modifications offer a mechanism by which the environment can moderate the effects of genes. To date, however, there have been relatively few studies assessing epigenetic modifications associated with post-traumatic stress disorder (PTSD). Here we investigate PTSD-associated methylation differences in 33 genes previously shown to differ in whole blood-derived gene expression levels between those with vs. without the disorder. Drawing on DNA samples similarly obtained from whole blood in 100 individuals, 23 with and 77 without lifetime PTSD, we used methylation microarray data to assess whether these 33 candidate genes showed epigenetic signatures indicative of increased risk for, or resilience to, PTSD. Logistic regression analyses were performed to assess the main and interacting effects of candidate genes’ methylation values and number of potentially traumatic events (PTEs), adjusting for age and other covariates. Results revealed that only one candidate gene–MAN2C1–showed a significant methylation x PTE interaction, such that those with both higher MAN2C1 methylation and greater exposure to PTEs showed a marked increase in risk of lifetime PTSD (OR 4.35, 95% CI: 1.07, 17.77, p = 0.04). These results indicate that MAN2C1 methylation levels modify cumulative traumatic burden on risk of PTSD, and suggest that both gene expression and epigenetic changes at specific loci are associated with this disorder. PMID:21508515

  17. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    PubMed

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries. PMID:26609636

  18. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Travis, Sue M.; Berger, Herbert A.; Welsh, Michael J.

    1997-01-01

    cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Cα is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Cα and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Cα inactivated CFTR Cl− channels; reactivation required readdition of kinase. Finally, coexpression of PP2Cα with CFTR in epithelia reduced the Cl− current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target. PMID:9380758

  19. Developmental regulation of hexosamine biosynthesis by protein phosphatases 2A and 2C in Blastocladiella emersonii.

    PubMed

    Etchebehere, L C; Simon, M N; Campanhã, R B; Zapella, P D; Véron, M; Maia, J C

    1993-08-01

    Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases. PMID:8394312

  20. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  1. miR-1301 promotes prostate cancer proliferation through directly targeting PPP2R2C.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2016-07-01

    Prostate cancer is the leading cause of cancer deaths among men in the worldwide, it's important to find new prognostic factors and therapeutic targets. microRNAs play critical roles in the development and progression of prostate cancer. Here we revealed miR-1301 promoted prostate cancer progression. miR-1301 was upregulated in prostate cancer tissues and cells, overexpression of miR-1301 promoted anchorage-dependent and -independent growth using MTT analysis, colony formation analysis and soft agar growth analysis, whereas knockdown of miR-1301 suppressed anchorage-dependent and -independent growth. We also found overexpression of miR-1301 inhibited p27 expression and promoted Cyclin D1 expression, whereas knockdown of miR-1301 reduced this effect, suggesting miR-1301 promoted the G1/S transition. These results suggested miR-1301 promoted cell proliferation of prostate cancer. microRNAs can inhibit target mRNA translation or/and induce mRNA degradation, we found tumor suppresser PPP2R2C was the target of miR-1301, simultaneous downregualtion of PPP2R2C and miR-1301 promoted anchorage-dependent and -independent growth. These findings suggested miR-1301 promoted prostate cancer proliferation by inhibiting PPP2R2C, and might a therapeutic target for prostate cancer. PMID:27261573

  2. The Missing Link: Rotational Spectrum and Geometrical Structure of Disilicon Carbide, Si_2C

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Baraban, Joshua H.; Changala, Bryan; Stanton, John F.; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Reilly, Neil J.; Gottlieb, Carl A.

    2015-06-01

    Disilicon carbide Si_2C is one of the most fascinating small molecules for both fundamental and applied reasons. Like C_3, it has a shallow bending angle, and may therefore also serve as a classic example of a quasilinear species. Si_2C is also thought to be quite stable. Mass spectrometric studies conclude that it is one of the most common gas-phase fragments in the evaporation of silicon carbide at high temperature. For these same reasons, it may be abundant in certain evolved carbon stars such as IRC+12016. Its electronic spectrum was recently studied by several of us, but its ground state geometry and rotational spectrum remain unknown until now. Using sensitive microwave techniques and high-level coupled cluster calculations, Si_2C has been detected in the radio band, and is found to be highly abundant. Its more common rare isotopic species have also be observed either in natural abundance or using isotopically-enriched samples, from which a highly precise semi-experimental structure has been derived. This talk will summarize recent work, and discuss the prospects for astronomical detection. Now that all four of the Si_mC_n clusters with m+n=3 has been detected experimentally, a rigorous comparison of their structure and chemical bonding can be made.

  3. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  4. CHEK2 c.1100delC allele is rarely identified in Greek breast cancer cases.

    PubMed

    Apostolou, Paraskevi; Fostira, Florentia; Papamentzelopoulou, Myrto; Michelli, Maria; Panopoulos, Christos; Fountzilas, George; Konstantopoulou, Irene; Voutsinas, Gerassimos E; Yannoukakos, Drakoulis

    2015-04-01

    The CHEK2 gene encodes a protein kinase that plays a crucial role in maintenance of genomic integrity and the DNA repair mechanism. CHEK2 germline mutations are associated with increased risk of breast cancer and other malignancies. From a clinical perspective, the most significant mutation identified is the c.1100delC mutation, which is associated with an approximately 25% lifetime breast cancer risk. The distribution of this mutation shows wide geographical variation; it is more prevalent in the Northern European countries and less common, or even absent, in Southern Europe. In order to estimate the frequency of the CHEK2 c.1100delC mutation in Greek breast cancer patients, we genotyped 2,449 patients (2,408 females and 41 males), which was the largest series ever tested for c.1100delC. The mean age of female and male breast cancer diagnosis was 49 and 59 years, respectively. All patients had previously tested negative for the Greek BRCA1 founder and recurrent mutations. The CHEK2 c.1100delC mutation was detected in 0.16% (4 of 2,408) of females, all of whom were diagnosed with breast cancer before the age of 50 years. Only one c.1100delC carrier was reported with breast cancer family history. The present study indicates that the CHEK2 c.1100delC mutation does not contribute substantially to hereditary breast cancer in patients of Greek descent. PMID:25835597

  5. A Possible Test of the J2c-2 General Relativistic Orbital Effects with Juno

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2014-03-01

    For the first time, the 1PN J2c-2 effects could be measured by the Juno mission in the gravitational field of Jupiter during its nearly yearlong science phase thanks to the high eccentricity (e = 0.947) of the spacecraft's orbit and to the huge oblateness of Jupiter (J2 = 1.47 × 10-2). A numerical analysis shows that the expected J2c-2 range-rate signal for Juno should be as large as ≈ 280 microns per second (μm s-1) during a typical 6 h pass at its closest approach to Jupiter. The radio science apparatus of Juno should reach an accuracy in Doppler range-rate measurements of ≈ 1 - 5 μm s-1 over such passes. The range-rate signature of the classical even zonal perturbations is different from the J2c-2 one. Thus, further investigations, based on covariance analyses of simulated Doppler data and dedicated parameters estimation, are worth of further consideration.

  6. Magnetism and superconductivity in (HoxY1-x)Ni2B2C

    NASA Astrophysics Data System (ADS)

    Müller, Karl-Hartmut; Fuchs, Günter; Handstein, Axel; Cao, Lei; Eversmann, Kathrin

    1996-02-01

    The pseudoquarternary system (HoxY1-x)Ni2B2C, has been investigated by resistance and magnetization measurements. A linear depression of the superconducting transition temperature Tc found with increasing Ho content is interpreted in the framework of the Abrikosov-Gor'kov theory which predicts also a linear scaling of Tc with the de Gennes factor of the rare earth elements R of the RNi2B2C family. We found that both cases follow a common linear scaling behaviour including the superconducting transition and the magnetic ordering temperature. A reentrant behaviour observed for Ho contents x≥0.5 results in maxima in the temperature dependence of the upper critical field Hc2(T), which are compared with Hc2(T) data of TmNi2B2C. In the paramagnetic range of field and temperature the sample magnetization can be described by a Brillouin function with a Ho-moment of 10.5 μ B.

  7. Preparation of mesoporous MnO2/C catalyst for n-hexyl acetate synthesis

    NASA Astrophysics Data System (ADS)

    Yang, Zeheng; Pan, Yanmei; Mei, Zhousheng; Zhang, Weixin

    2012-03-01

    A mesoporous MnO2/C composite was prepared by impregnating self-made porous carbon spheres with manganese nitrate aqueous solution and subsequently reacting with KMnO4 aqueous solution. It was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), the Brunauer-Emmett-Teller (BET) surface area and the Barrett-Joyner-Halenda (BJH) pore size distribution. The as-prepared mesoporous MnO2/C composite was used as catalyst for the synthesis of n-hexyl acetate, and the effects of MnO2 loading and esterification reaction parameters on the esterification rate were investigated. The results prove that MnO2 loading has a significant effect on the catalytic activity and that the mesoporous MnO2/C composite exhibits high catalytic activity with an esterification rate of 96.42% under the conditions below: MnO2 loading (73.09 wt%), catalyst dosage (0.1% in total weight), acetic acid/n-hexanol molar ratio (2:1), reaction temperature (130 °C) and reaction time (5 h).

  8. High-temperature ferromagnetism in CaB2C2.

    PubMed

    Akimitsu, J; Takenawa, K; Suzuki, K; Harima, H; Kuramoto, Y

    2001-08-10

    We report a high Curie-temperature ferromagnet, CaB2C2. Although the compound has neither transition metal nor rare earth ions, the ferromagnetic transition temperature Tc is about 770 Kelvin. Despite this high T(c), the magnitude of the ordered moment at room temperatures is on the order of 10(-4) Bohr magneton per formula unit. These properties are rather similar to those of doped divalent hexaborides, such as Ca(1-x)La(x)B6. The calculated electronic states also show similarity near the Fermi level between CaB2C2 and divalent hexaborides. However, there is an important difference: CaB2C2 crystallizes in a tetragonal structure, and there are no equivalent pockets in the energy bands for electrons and holes-in contrast with CaB6. Thus, the disputed threefold degeneracy, specific to the cubic structure, in the energy bands of divalent hexaborides turns out not to be essential for high-temperature ferromagnetism. It is the peculiar molecular orbitals near the Fermi level that appear to be crucial to the high-Tc ferromagnetism. PMID:11498587

  9. Expression and function of ryanodine receptors in nonexcitable cells.

    PubMed

    Bennett, D L; Cheek, T R; Berridge, M J; De Smedt, H; Parys, J B; Missiaen, L; Bootman, M D

    1996-03-15

    We have used reverse transcriptase-polymerase chain reaction to investigate the expression of ryanodine receptors in several excitable and nonexcitable cell types. Consistent with previous reports, we detected ryanodine receptor expression in brain, heart, and skeletal muscle. In addition, we detected ryanodine receptor expression in various other excitable cells including PC 12 and A7r5 cells. Several muscle cell lines (BC3H1, C2C12, L6, and Sol8) weakly expressed ryanodine receptor when undifferentiated but strongly expressed type 1 and type 3 ryanodine receptor isoforms when differentiated into a muscle phenotype. Only 2 (HeLa and LLC-PK1 cells) out of 11 nonexcitable cell types examined expressed ryanodine receptors. Expression of ryanodine receptors at the protein level in these cells was confirmed using [3H]ryanodine binding. We also investigated the function of ryanodine receptors in Ca2+ signaling in HeLa cells using single-cell Fura-2 imaging. Neither caffeine nor ryanodine caused a detectable elevation of cytoplasmic Ca2+ in single HeLa cells. However, ryanodine caused a significant decrease in the amplitude of Ca 2+ signals evoked by repetitive stimulation with ATP. These studies show that ryanodine receptors are expressed in some nonexcitable cell types and furthermore suggest that the ryanodine receptors may be involved in a subtle regulation of intracellular Ca2+ responses. PMID:8626432

  10. A ChIP-seq-defined genome-wide map of MEF2C binding reveals inflammatory pathways associated with its role in bone density determination.

    PubMed

    Johnson, Matthew E; Deliard, Sandra; Zhu, Fengchang; Xia, Qianghua; Wells, Andrew D; Hankenson, Kurt D; Grant, Struan F A

    2014-04-01

    Genome-wide association studies (GWAS) have demonstrated that genetic variation at the MADS box transcription enhancer factor 2, polypeptide C (MEF2C) locus is robustly associated with bone mineral density, primarily at the femoral neck. MEF2C is a transcription factor known to operate via the Wnt signaling pathway. Our hypothesis was that MEF2C regulates the expression of a set of molecular pathways critical to skeletal function. Drawing on our laboratory and bioinformatic experience with ChIP-seq, we analyzed ChIP-seq data for MEF2C available via the ENCODE project to gain insight in to its global genomic binding pattern. We aligned the ChIP-seq data generated for GM12878 (an established lymphoblastoid cell line) and, using the analysis package HOMER, a total of 17,611 binding sites corresponding to 8,118 known genes were observed. We then performed a pathway analysis of the gene list using Ingenuity. At 5 kb, the gene list yielded 'EIF2 Signaling' as the most significant annotation, with a P value of 5.01 × 10(-26). Moving further out, this category remained the top pathway at 50 and 100 kb, then dropped to just second place at 500 kb and beyond by 'Molecular Mechanisms of Cancer'. In addition, at 50 kb and beyond 'RANK Signaling in Osteoclasts' was a consistent feature and resonates with the main general finding from GWAS of bone density. We also observed that MEF2C binding sites were significantly enriched primarily near inflammation associated genes identified from GWAS; indeed, a similar enrichment for inflammation genes has been reported previously using a similar approach for the vitamin D receptor, an established key regulator of bone turnover. Our analyses point to known connective tissue and skeletal processes but also provide novel insights in to networks involved in skeletal regulation. The fact that a specific GWAS category is enriched points to a possible role of inflammation through which it impacts bone mineral density. PMID:24337390

  11. In-depth understanding of the chemical properties of rarely explored carbide cluster metallofullerenes: a case study of Sc2 C2 @C3v (8)-C82 that reveals a general rule.

    PubMed

    Cai, Wenting; Chen, Muqing; Bao, Lipiao; Xie, Yunpeng; Akasaka, Takeshi; Lu, Xing

    2015-02-16

    The chemical properties of carbide-cluster metallofullerenes (CCMFs) remain largely unexplored, although several new members of CCMFs have been discovered recently. Herein, we report the reaction between Sc2 C2 @C3v (8)-C82 , which is viewed as a prototypical CCMF because of its high abundance, and 3-triphenylmethyl-5-oxazolidinone (1) to afford the corresponding pyrrolidino derivative Sc2 C2 @C3v (8)-C82 (CH2 )2 NTrt (2; Trt=triphenylmethyl). Single-crystal X-ray crystallography studies of 2 revealed that the reaction takes place at a [6,6]-bond junction, which is directly over the encapsulated C2 unit and is far from either of the two scandium atoms. On the basis of theoretical calculations and by considering previously reports, we have found that a hexagonal carbon ring on the cage of Sc2 C2 @C3v (8)-C82 is highly reactive toward different reagents due to the overlap of high p-orbital axis vector (POAV) angles and large LUMO coefficients. We propose that this highly concentrated area of reactivity is generated by the encapsulation of the Sc2 C2 cluster because this region is absent from the empty fullerene C3v (8)-C82 . Moreover, the absorption and electrochemical results confirm that derivative 2 is more stable than pristine Sc2 C2 @C3v (8)-C82 , thus illuminating its potential applications. PMID:25640803

  12. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  13. Transgenic Overexpression of Tcfap2c/AP-2gamma Results in Liver Failure and Intestinal Dysplasia

    PubMed Central

    Woynecki, Tatiana; Egert, Angela; Becker, Astrid; Huss, Sebastian; Stabenow, Dirk; Zimmer, Andreas; Knolle, Percy; Tolba, René; Fischer, Hans-Peter; Schorle, Hubert

    2011-01-01

    Background The transcription factor Tcfap2c has been demonstrated to be essential for various processes during mammalian development. It has been found to be upregulated in various undifferentiated tumors and is implicated with poor prognosis. Tcfap2c is reported to impinge on cellular proliferation, differentiation and apoptosis. However, the physiological consequences of Tcfap2c-expression remain largely unknown. Methodology/Principal Findings Therefore we established a gain of function model to analyze the role of Tcfap2c in development and disease. Induction of the transgene led to robust expression in all tissues (except brain and testis) and lead to rapid mortality within 3–7 days. In the liver cellular proliferation and apoptosis was detected. Accumulation of microvesicular lipid droplets and breakdown of major hepatic metabolism pathways resulted in steatosis. Serum analysis showed a dramatic increase of enzymes indicative for hepatic failure. After induction of Tcfap2c we identified a set of 447 common genes, which are deregulated in both liver and primary hepatocyte culture. Further analysis showed a prominent repression of the cytochrome p450 system, PPARA, Lipin1 and Lipin2. These data indicate that in the liver Tcfap2c represses pathways, which are responsible for fatty acid metabolism. In the intestine, Tcfap2c expression resulted in expansion of Sox9 positive and proliferative active epithelial progenitor cells resulting in dysplastic growth of mucosal crypt cells and loss of differentiated mucosa. Conclusions The transgenic mice show that ectopic expression of Tcfap2c is not tolerated. Due to the phenotype observed, iTcfap2c-mice represent a model system to study liver failure. In intestine, Tcfap2c induced cellular hyperplasia and suppressed terminal differentiation indicating that Tcfap2c serves as a repressor of differentiation and inducer of proliferation. This might be achieved by the Tcfap2c mediated activation of Sox9 known to be expressed

  14. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  15. Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis.

    PubMed

    Shimo, Arata; Tanikawa, Chizu; Nishidate, Toshihiko; Lin, Meng-Lay; Matsuda, Koichi; Park, Jae-Hyun; Ueki, Tomomi; Ohta, Tomohiko; Hirata, Koichi; Fukuda, Mamoru; Nakamura, Yusuke; Katagiri, Toyomasa

    2008-01-01

    To elucidate the molecular mechanisms of mammary carcinogenesis and discover novel therapeutic targets for breast cancer, we previously carried out genome-wide expression profile analysis of 81 breast cancer cases by means of cDNA microarray coupled with laser microbeam microdissection of cancer cells. Among the dozens of transactivated genes, in the present study we focused on the functional significance of kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK) in the growth of breast cancer cells. Northern blot and immunohistochemical analyses confirmed KIF2C/MCAK overexpression in breast cancer cells, and showed that it is expressed at undetectable levels in normal human tissues except the testis, suggesting KIF2C/MCAK to be a cancer-testis antigen. Western blot analysis using breast cancer cell lines revealed a significant increase in the endogenous KIF2C/MCAK protein level and its phosphorylation in G(2)/M phase. Treatment of breast cancer cells with small interfering RNA against KIF2C/MCAK effectively suppressed KIF2C/MCAK expression and inhibited the growth of the breast cancer cell lines T47D and HBC5. In addition, we found that KIF2C/MCAK expression was significantly suppressed by ectopic introduction of p53. These findings suggest that overexpression of KIF2C/MCAK might be involved in breast carcinogenesis and is a promising therapeutic target for breast cancers. PMID:17944972

  16. Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: mediated tumorigenesis of osteosarcoma.

    PubMed

    Li, Xiaojiang; Dong, Shanshan

    2015-03-01

    JMJD2B and JMJD2C, histone demethylases, play crucial roles in cancer development and are up-regulated in many cancers. However, the actions of JMJD2B and JMJD2C in osteosarcoma remain unknown. The levels of JMJD2B or JMJD2C were evaluated in osteosarcoma cells and tissues via quantitative real-time PCR and Western Blot. JMJD2B and JMJD2C were up-regulated in osteosarcoma tissues when compared to paired adjacent non-tumor tissues. A higher level of JMJD2B or JMJD2C was related with metastasis of osteosarcoma cells. Fibroblast growth factor 2 (FGF2) is an important factor to maintain immaturity of cells and contributes to osteosarcoma aggressiveness. Elevated levels of FGF2 promoted the proliferation, migration, and invasion of osteosarcoma cell, while FGF2 was up-regulated by JMJD2B or JMJD2C. GST pull-down assay showed that JMJD2B or JMJD2C interacted with FGF2. Thus, JMJD2B and JMJD2C play an important role in the pathology of osteosarcoma via the up-regulation of FGF2. JMJD2B and JMJD2C should be developed potential targets for the therapy of osteosarcoma patients. PMID:25636512

  17. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  18. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  19. Anomalous quadrupole feature in the mixed state of YNi2B2C

    NASA Astrophysics Data System (ADS)

    Das, Pradip; Tomy, C. V.; Takeya, H.; Ramakrishnan, S.; Grover, A. K.

    2013-01-01

    We demonstrate the observation of paramagnetic-like anomaly in the mixed state of YNi2B2C crystal from the magnetization measurements for H ∼ 20 kOe. In the LuNi2B2C borocarbide superconductor, observation of such an anomaly was explained on the basis of symmetry reorientation transition of the flux line lattice; i.e., transition from square to triangular lattice due to non-local effects. However, a detailed magnetization study on YNi2B2C sample reveals that such a type of paramagnetic anomaly can arise in the magnetization measurements due to the admixture of a signal from quadrupolar moment with that from dipole moment of the mixed state, if the sample is not positioned precisely at the central position in a VSM coil. When we intentionally shifted the sample position from the centering position to preferentially record the quadrupole moment only, we noted that the merging of the forward and the reverse legs of the loop near the superconductor-normal boundary is much better defined in the Q-H measurements, rather than in the M-H measurements. The Q-H plots, thus, provide a more accurate recipe to determine the Hc2 values. We have also examined the timescale disorder experienced by the flux line lattice (FLL) during the field ramping process in isothermal M-H measurements. Our study revealed the existence of non-monotonic dependence of spatial disorder within FLL due to the change in the ramp rate. The field ramp rate acts as an additional source of disorder in the formation of the FLL.

  20. Superconductivity in Li{sub 3}Ca{sub 2}C{sub 6} intercalated graphite

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Mareche, Jean-Francois; Bellouard, Christine; Loupias, Genevieve; Lagrange, Philippe

    2006-04-15

    In this paper, we report the discovery of superconductivity in Li{sub 3}Ca{sub 2}C{sub 6}. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors [T. Enoki, S. Masatsugu, E. Morinobu, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003]. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li{sub 3}Ca{sub 2}C{sub 6} is a ternary GIC [S. Pruvost, C. Herold, A. Herold, P. Lagrange, Eur. J. Inorg. Chem. 8 (2004) 1661-1667], for which the intercalated sheets are very thick and poly layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC{sub 6} GIC [T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41; N. Emery, C. Herold, M. d'Astuto, V. Garcia, Ch. Bellin, J.F. Mareche, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95 (2005) 087003] (11.5 K). Both CaC{sub 6} and Li{sub 3}Ca{sub 2}C{sub 6} GICs possess currently the highest transition temperatures among all the GICs.