Terminal Sliding Modes In Nonlinear Control Systems
NASA Technical Reports Server (NTRS)
Venkataraman, Subramanian T.; Gulati, Sandeep
1993-01-01
Control systems of proposed type called "terminal controllers" offers increased precision and stability of robotic operations in presence of unknown and/or changing parameters. Systems include special computer hardware and software implementing novel control laws involving terminal sliding modes of motion: closed-loop combination of robot and terminal controller converge, in finite time, to point of stable equilibrium in abstract space of velocity and/or position coordinates applicable to particular control problem.
Sliding Mode Control of Steerable Needles
Rucker, D. Caleb; Das, Jadav; Gilbert, Hunter B.; Swaney, Philip J.; Miga, Michael I.; Sarkar, Nilanjan; Webster, Robert J.
2014-01-01
Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527
Sliding Mode Control of Steerable Needles.
Rucker, D Caleb; Das, Jadav; Gilbert, Hunter B; Swaney, Philip J; Miga, Michael I; Sarkar, Nilanjan; Webster, Robert J
2013-10-01
Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527
Fuzzy fractional order sliding mode controller for nonlinear systems
NASA Astrophysics Data System (ADS)
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
Robust sliding mode control applied to double Inverted pendulum system
Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical
2009-03-05
A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.
Sliding Mode Thermal Control System for Space Station Furnace Facility
NASA Technical Reports Server (NTRS)
Jackson Mark E.; Shtessel, Yuri B.
1998-01-01
The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.
Active Suppression of the Transonic Flutter Using Sliding Mode Control
NASA Astrophysics Data System (ADS)
Degaki, Takanori; Suzuki, Shinji
This paper describes two-dimensional active flutter suppression to cope with the transonic dip using the sliding mode control. The airfoil model has plunge and pitch degrees of freedom with leading and trailing edge control surfaces. The aerodynamic forces acting on the airfoil, lift and pitching moment, are calculated by solving Euler's equations using computational fluid dynamics. At a specific altitude, flutter occurs between Mach number of 0.7 and 0.88, which corresponds to the transonic dip. The sliding mode control makes the airfoil to be stable all through the Mach number including the transonic dip. The sliding mode controller gives wider flutter margin than a linear quadratic regulator. These characteristics indicate that the sliding mode control is useful for active flutter suppression in the transonic flight.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Sliding mode controllers for a tempered glass furnace.
Almutairi, Naif B; Zribi, Mohamed
2016-01-01
This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results. PMID:26614678
Second-order sliding mode control with experimental application.
Eker, Ilyas
2010-07-01
In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability. PMID:20413118
Tensor product model transformation based decoupled terminal sliding mode control
NASA Astrophysics Data System (ADS)
Zhao, Guoliang; Li, Hongxing; Song, Zhankui
2016-06-01
The main objective of this paper is to propose a tensor product model transformation based decoupled terminal sliding mode controller design methodology. The methodology is divided into two steps. In the first step, tensor product model transformation is applied to the single-input-multi-output system and a parameter-varying weighted linear time-invariant system is obtained. Then, decoupled terminal sliding mode controller is designed based on the linear time-invariant systems. The main novelty of this paper is that the nonsingular terminal sliding mode control design is based on a numerical model rather than an analytical one. Finally, simulations are tested on cart-pole system and translational oscillations with a rotational actuator system.
Fuzzy logic sliding mode control for command guidance law design.
Elhalwagy, Y Z; Tarbouchi, M
2004-04-01
Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control. PMID:15098583
Robust sliding mode continuous control of an IM drive
Jezernik, K.; Hren, A.; Drevensek, D.
1995-12-31
A control approach for robust trajectory tracking of IM servodrive based on the variable structure systems (VSS) is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the control input, thus eliminating chattering which has been considering as serious obstacles for applications of VSS. A unified control approach for current, torque and motion control based on the discrete-time sliding mode for application in indirect vector control of an IM drive is developed. The sliding mode approach can be applied to the control of an Im drive due to the replacement of the hysteresis controller with widely used PWM technique. All the theoretical issues are verified by experiment. The experimental system consists of a transputer and a microcontroller, thus allowing parallel processing.
Application of partial sliding mode in guidance problem.
Shafiei, M H; Binazadeh, T
2013-03-01
In this paper, the problem of 3-dimensional guidance law design is considered and a new guidance law based on partial sliding mode technique is presented. The approach is based on the classification of the state variables within the guidance system dynamics with respect to their required stabilization properties. In the proposed law by using a partial sliding mode technique, only trajectories of a part of states variables are forced to reach the partial sliding surfaces and slide on them. The resulting guidance law enables the missile to intercept highly maneuvering targets within a finite interception time. Effectiveness of the proposed guidance law is demonstrated through analysis and simulations. PMID:23260528
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Robust Neural Sliding Mode Control of Robot Manipulators
Nguyen Tran Hiep; Pham Thuong Cat
2009-03-05
This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.
Anomaly Detection in Test Equipment via Sliding Mode Observers
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Drakunov, Sergey V.
2012-01-01
Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control
Neuro-sliding mode multivariable control of a powered wheelchair.
Nguyen, Nghia; Nguyen, Hung T; Su, Steven
2008-01-01
This paper proposes a neuro-sliding mode multivariable control approach for the control of a powered wheelchair system. In the first stage, a systematic decoupling technique is applied to the wheelchair system in order to reduce the multivariable control problem into two independent scalar control problems. Then two Neuro-Sliding Mode Controllers (NSMCs) are designed for these independent subsystems to guarantee system robustness under model uncertainties and unknown external disturbances. Both off-line and on-line trainings are involved in the second stage. Real-time experimental results confirm that robust performance for this multivariable wheelchair control system under model uncertainties and unknown external disturbances can indeed be achieved. PMID:19163456
Chattering-Free Sliding Mode Control with Unmodeled Dynamics
NASA Technical Reports Server (NTRS)
Krupp, Don; Shtessel, Yuri B.
1999-01-01
Sliding mode control systems are valued for their robust accommodation of uncertainties and their ability to reject disturbances. In this paper, a design methodology is proposed to eliminate the chattering phenomenon affecting sliding mode controlled plants with input unmodeled actuator dynamics of second order or greater. The proposed controller design is based on the relative degrees of the plant and the unmodeled actuator dynamics and the ranges of the uncertainties of the plant and actuator. The controller utilizes the pass filter characteristics of the physical actuating device to provide a smoothing effect on the discontinuous control signal rather than introducing any artificial dynamics into the controller design thus eliminating chattering in the system's output response.
Permanent Magnet DC Motor Sliding Mode Control System
NASA Astrophysics Data System (ADS)
Vaez-Zadeh, S.; Zamanian, M.
2000-09-01
In this paper a sliding mode controller (SMC) is designed for a permanent magnet, direct current (PMDC) motor to enhance the motor performance in the presence of unwanted uncertainties. Both the electrical and mechanical signals are used as the inputs to the SMC. The complete motor control system is simulated on a personal computer with different design parameters and desirable system performance is obtained. The experimental implementation of the motor control system is also presented. The test results confirm the simulation results and validate the proposed control system.
Sliding Mode Control of a Slewing Flexible Beam
NASA Technical Reports Server (NTRS)
Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III
1997-01-01
An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.
Control of nonlinear systems using terminal sliding modes
NASA Technical Reports Server (NTRS)
Venkataraman, S. T.; Gulati, S.
1992-01-01
The development of an approach to control synthesis for robust robot operations in unstructured environments is discussed. To enhance control performance with full model information, the authors introduce the notion of terminal convergence and develop control laws based on a class of sliding modes, denoted as terminal sliders. They demonstrate that terminal sliders provide robustness to parametric uncertainty without having to resort to high-frequency control switching, as in the case of conventional sliders. It is shown that the proposed method leads to greater guaranteed precision in all control cases discussed.
Sliding Mode Control Applied to Reconfigurable Flight Control Design
NASA Technical Reports Server (NTRS)
Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)
2002-01-01
Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.
Compensation of significant parametric uncertainties using sliding mode online learning
NASA Astrophysics Data System (ADS)
Schnetter, Philipp; Kruger, Thomas
An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.
Sliding mode control of electromagnetic tethered satellite formation
NASA Astrophysics Data System (ADS)
Hallaj, Mohammad Amin Alandi; Assadian, Nima
2016-08-01
This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.
Adaptive backstepping slide mode control of pneumatic position servo system
NASA Astrophysics Data System (ADS)
Ren, Haipeng; Fan, Juntao
2016-06-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Real-time misfire detection via sliding mode observer
NASA Astrophysics Data System (ADS)
Wang, Yunsong; Chu, Fulei
2005-07-01
A new method to detect misfire in internal combustion engines is presented. It is based on the estimation of the cylinder deviation torque by using sliding mode observer. The input estimation problem is transformed into the control tracking problem. The sliding controller is utilised to continuously track the measured varying crank speed by changing the estimated deviation torque. During the process of tracking, the speed estimation errors decrease and the gradual stability of the dynamics is assured. The mean deviation torque during the power stroke derived from the estimated deviation torque can be employed to detect easily engine misfires. Experimental results for a four-cylinder engine indicate that the method is a suitable tool for real-time misfire detection on board vehicle under various working conditions.
Sliding Mode Control of a Thermal Mixing Process
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2004-01-01
In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.
Sliding mode control method having terminal convergence in finite time
NASA Technical Reports Server (NTRS)
Venkataraman, Subramanian T. (Inventor); Gulati, Sandeep (Inventor)
1994-01-01
An object of this invention is to provide robust nonlinear controllers for robotic operations in unstructured environments based upon a new class of closed loop sliding control methods, sometimes denoted terminal sliders, where the new class will enforce closed-loop control convergence to equilibrium in finite time. Improved performance results from the elimination of high frequency control switching previously employed for robustness to parametric uncertainties. Improved performance also results from the dependence of terminal slider stability upon the rate of change of uncertainties over the sliding surface rather than the magnitude of the uncertainty itself for robust control. Terminal sliding mode control also yields improved convergence where convergence time is finite and is to be controlled. A further object is to apply terminal sliders to robot manipulator control and benchmark performance with the traditional computed torque control method and provide for design of control parameters.
Adaptive sliding mode control - convergence and gain boundedness revisited
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Khayati, Karim
2016-04-01
This paper reviews the main adaptive sliding mode controller (ASMC) designs for nonlinear systems with finite uncertainties of unknown bounds. Different statements of convergence referring to uniformly ultimate boundedness (UUB), asymptotic convergence (AC) and finite-time convergence (FTC) for ASMC shown in recent papers are analysed. Weaknesses and incomplete proofs apropos FTC are pointed out. Thereafter, a new approach is proposed to successfully demonstrate FTC of the so-called sliding variable. We identify a compensating phase and a reaching phase during the ASMC process. A new explicit form for estimating the upper-bound reaching time is provided for any bounded perturbation. An amended form of the real ASMC is recalled showing improved accuracy and chattering reduction. Finally, numerical and experimental applications are performed to convey the discussed results.
A novel sliding-mode control of induction motor using space vector modulation technique.
Fu, Tian-Jun; Xie, Wen-Fang
2005-10-01
This paper presents a novel sliding-mode control method for torque control of induction motors. The control principle is based on sliding-mode control combined with space vector modulation technique. The sliding-mode control contributes to the robustness of induction motor drives, and the space vector modulation improves the torque, flux, and current steady-state performance by reducing the ripple. The Lyapunov direct method is used to ensure the reaching and sustaining of sliding mode and stability of the control system. The performance of the proposed system is compared with those of conventional sliding-mode controller and classical PI controller. Finally, computer simulation results show that the proposed control scheme provides robust dynamic characteristics with low torque ripple. PMID:16294775
Sliding mode control of magnetic suspensions for precision pointing and tracking applications
NASA Technical Reports Server (NTRS)
Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl
1991-01-01
A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.
Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers
NASA Astrophysics Data System (ADS)
Kapoor, Neha; Ohri, Jyoti
2016-06-01
Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.
Second order sliding mode control for a quadrotor UAV.
Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang
2014-07-01
A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method. PMID:24751475
Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive
NASA Astrophysics Data System (ADS)
Bounadja, M.; Belarbi, A. W.; Belmadani, B.
2010-05-01
This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.
Zhao, Guoliang; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. PMID:25277626
Robust Second Order Sliding mode Observer for the Estimation of the Vehicle States
NASA Astrophysics Data System (ADS)
Chaibet, A.; Nouveliere, L.; Hima, S.; Mammar, S.
2008-06-01
This paper is dedicated to the observation of non measurable variables for automotive systems. A non linear observer, based on a sliding mode approach, is presented for the estimation of the dynamic states of the vehicle. The considered technique is applied to the estimation problem for an automated vehicle following. Both the simulation and the experimental results are addressed to demonstrate the effectiveness of the sliding mode observer for different maneuvers, in terms of performances and robustness.
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Xiaoqian; Misra, Arun K.
2014-03-01
Minimum Sliding Mode Error Feedback Control (MSMEFC) is proposed to improve the control precision of spacecraft formations based on the conventional sliding mode control theory. This paper proposes a new approach to estimate and offset the system model errors, which include various kinds of uncertainties and disturbances, as well as smoothes out the effect of nonlinear switching control terms. To facilitate the analysis, the concept of equivalent control error is introduced, which is the key to the utilization of MSMEFC. A cost function is formulated on the basis of the principle of minimum sliding mode error; then the equivalent control error is estimated and fed back to the conventional sliding mode control. It is shown that the sliding mode after the MSMEFC will approximate to the ideal sliding mode, resulting in improved control performance and quality. The new methodology is applied to spacecraft formation flying. It guarantees global asymptotic convergence of the relative tracking error in the presence of J2 perturbations. In addition, some fault tolerant situations such as thruster failure for a period of time, thruster degradation and so on, are also considered to verify the effectiveness of MSMEFC. Numerical simulations are performed to demonstrate the efficacy of the proposed methodology to maintain and reconfigure the satellite formation with the existence of initial offsets and J2 perturbation effects, even in the fault-tolerant cases.
Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé
2014-05-01
This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. PMID:24530194
NASA Astrophysics Data System (ADS)
Wu, Zhenhui; Dong, Chaoyang
2006-11-01
Because of nonlinearity and strong coupling of reaction-jet and aerodynamics compound control missile, a missile autopilot design method based on adaptive fuzzy sliding mode control (AFSMC) is proposed in this paper. The universal approximation ability of adaptive fuzzy system is used to approximate the nonlinear function in missile dynamics equation during the flight of high angle of attack. And because the sliding mode control is robustness to external disturbance strongly, the sliding mode surface of the error system is constructed to overcome the influence of approximation error and external disturbance so that the actual overload can track the maneuvering command with high precision. Simulation results show that the missile autopilot designed in this paper not only can track large overload command with higher precision than traditional method, but also is robust to model uncertainty and external disturbance strongly.
Adaptive sliding mode control of tri-layer conjugated polymer actuators
NASA Astrophysics Data System (ADS)
Wang, Xiangjiang; Alici, Gursel; Nguyen, Chuc Huu
2013-02-01
This paper proposes an adaptive sliding mode control methodology to enhance the positioning ability of conducting polymer actuators typified by tri-layer conjugated polymer actuators. This is motivated by the search for an effective control strategy to command such actuators to a desired configuration in the presence of parametric uncertainties and unmodeled disturbances. After analyzing the stability of the adaptive sliding mode control system, experiments were conducted to demonstrate its satisfactory tracking ability, based on a series of experimental results. Implementation of the control law requires a valid model of the conducting polymer actuator and boundaries of the uncertainties and disturbances. Based on the theoretical and experimental results presented, the adaptive sliding mode control methodology is very attractive in the field of smart actuators which contain significant uncertainties and disturbances.
Sliding mode control for multi-agent systems under a time-varying topology
NASA Astrophysics Data System (ADS)
Dong, Lijing; Chai, Senchun; Zhang, Baihai; Kiong Nguang, Sing
2016-07-01
This paper addresses the tracking problem of a class of multi-agent systems under uncertain communication environments which has been modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sliding mode control method is applied to solve this nonlinear tracking problem under a time-varying topology. The controller of each tracking agent has been designed by using only its own and neighbours' information. Sufficient conditions for the existence of a sliding mode control tracking strategy have been provided by the solvability of linear matrix inequalities. At the end of this work, numerical simulations are employed to demonstrate the effectiveness of the proposed sliding mode control tracking strategy.
Adaptive sliding mode control of tethered satellite deployment with input limitation
NASA Astrophysics Data System (ADS)
Ma, Zhiqiang; Sun, Guanghui
2016-10-01
This paper proposes a novel adaptive sliding mode tension control method for the deployment of tethered satellite, where the input tension limitation is taken into account. The underactuated governing equations of the tethered satellites system are firstly derived based on Lagrangian mechanics theory. Considering the fact that the tether can only resist axial stretching, the tension input is modelled as input limitation. New adaptive sliding mode laws are addressed to guarantee the stability of the tethered satellite deployment with input disturbance, meanwhile to eliminate the effect of the limitation features of the tension input. Compared with the classic control strategy, the newly proposed adaptive sliding mode control law can deploy the satellite with smaller overshoot of the in-plane angle and implement the tension control reasonably and effectively in engineering practice. The numerical results validate the effectiveness of the proposed methods.
Ding, Zhixia; Shen, Yi
2016-04-01
This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results. PMID:26874968
Decoupled thermal control for space station furnace facility using sliding mode techniques
NASA Astrophysics Data System (ADS)
Jackson, Mark E.; Shtessel, Yuri B.
1996-03-01
The Space Station Furnace Facility (SSFF) provides the necessary core systems to operate various material processing furnaces. The Thermal Control System (TCS) is defined as one of the core systems and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the whole TCS by coupled nonlinear differential equations in flow and pressure. The paper formulates the system equations and develops the sliding mode controllers that cause the interconnected subsystems to operate in the local sliding modes, resulting in control system invariance to interaction disturbances. The desired de-coupled flow rate profile tracking is achieved by optimization of the local linear sliding mode equations. Extensive digital simulation results are presented to show the flow rate tracking robustness and invariance to plant nonlinearities and variations of the pump pressure supplied to the controlled subsystems.
Higher-order sliding mode control of leg power in paraplegic FES-cycling.
Farhoud, Aidin; Erfanian, Abbas
2010-01-01
In this paper, we propose a robust control methodology based on high order sliding mode (HOSM) for control of the leg power in FES-Cycling. A major obstacle to the development of control systems for functional electrical stimulation (FES) has been the highly non-linear, time-varying properties of neuromusculoskeletal systems. A useful and powerful control scheme to deal with the uncertainties, nonlinearities, and bounded external disturbances is the sliding mode control (SMC). The main drawback of the classical sliding mode is mostly related to the so-called chattering which is dangerous for FES applications. To avoid chattering, HOSM approaches were proposed. Keeping the main advantages of the original approach, at the same time they totally remove the chattering effect and provide for even higher accuracy in realization. The results of simulation studies and experiments on two paraplegic subjects show the superior performance of the leg power control during different conditions of operation using HOSM control scheme. PMID:21096932
Multi-mode sliding mode control for precision linear stage based on fixed or floating stator
NASA Astrophysics Data System (ADS)
Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei
2016-02-01
This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.
Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method
NASA Astrophysics Data System (ADS)
Chen, Bei; Jia, Tinggang; Niu, Yugang
2016-07-01
This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, XiaoQian; Sheng, Tao
2013-06-01
The Attitude Control System (ACS) plays a pivotal role in the whole performance of the spacecraft on the orbit; therefore, it is vitally important to design the control system with the performance of rapid response, high control precision and insensitive to external perturbations. In the first place, this paper proposes two adaptive nonlinear control algorithms based on the sliding mode control (SMC), which are designed for small satellite attitude control system. The nonlinear dynamics describing the attitude of small satellite is considered in a circle reference orbit, and the stability of the closed-loop system in the presence of external perturbations is investigated. Then, in order to account for accidental or degradation fault in satellite actuators, the fault-tolerant control schemes are presented. Hence, two adaptive fault-tolerant control laws (continuous sliding mode control and non-singular terminal sliding mode control) are developed by adopting the nonlinear analytical model to describe the system, which can guarantee global asymptotic convergence of the attitude control error with the existence of unknown external perturbations. The nonlinear hyperplane based Terminal sliding mode is introduced into the control law design; therefore, the system convergence performance improves and the control error is convergent in "finite time". As a result, the study on the non-singular terminal sliding mode control is the emphasis and the continuous sliding mode control is used to compare with the non-singular terminal sliding mode control. Meanwhile, an adaptive fuzzy algorithm has been proposed to suppress the chattering phenomenon. Moreover, several numerical examples are presented to demonstrate the efficacy of the proposed controllers by correcting for the external perturbations. Simulation results confirm that the suggested methodologies yield high control precision in control. In addition, actuator degradation, actuator stuck and actuator failure for a
Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques
NASA Technical Reports Server (NTRS)
Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)
2002-01-01
A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.
Unknown Input and Sensor Fault Estimation Using Sliding-Mode Observers
Kalsi, Karanjit; Hui, Stefen; Zak, Stanislaw
2011-06-29
Sliding-mode observers are used to construct unknown input estimators. Then, these unknown input estimators are combined with sensor fault estimation schemes into one architecture that employs two sliding-mode observers for simultaneously estimating the plant’s actuator faults (part of the unknown input) and detecting sensor faults. Closed form expressions are presented for the estimates of unknown inputs and sensor faults. A benchmark example of a controlled inverted pendulum system from the literature is utilized in the simulation study. The study shows that the observers analyzed in this paper generate good estimates of the unknown input and sensor faults signals in noisy environments for nonlinear plants.
Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Yu, Wen
2016-04-01
Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.
Fully magnetic sliding mode control for acquiring three-axis attitude
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.; Tkachev, S. S.; Mashtakov, Y. V.
2016-04-01
Satellite equipped with purely magnetic attitude control system is considered. Sliding mode control is used to achieve three-axis satellite attitude. Underactuation problem is solved for transient motion. Necessary attitude is acquired by proper sliding manifold construction. Satellite motion on the manifold is executed with magnetic control system. One manifold construction approach is proposed and discussed. Numerical examples are provided.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches. PMID:24718584
Sliding Mode Control of the X-33 with an Engine Failure
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.
2000-01-01
Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles
NASA Astrophysics Data System (ADS)
Ablay, Gunyaz
Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.
Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems
NASA Technical Reports Server (NTRS)
Wells, Scott R.
2002-01-01
Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.
NASA Astrophysics Data System (ADS)
Boubakir, A.; Boudjema, F.; Boubakir, C.
2008-06-01
This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.
Fan, Quan-Yong; Yang, Guang-Hong
2016-01-01
This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method. PMID:26357411
Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.
Camacho, Oscar; De la Cruz, Francisco
2004-04-01
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations. PMID:15098585
Vibration suppression in flexible structures via the sliding-mode control approach
NASA Technical Reports Server (NTRS)
Drakunov, S.; Oezguener, Uemit
1994-01-01
Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive.
Microgravity Isolation Control System Design Via High-Order Sliding Mode Control
NASA Technical Reports Server (NTRS)
Shkolnikov, Ilya; Shtessel, Yuri; Whorton, Mark S.; Jackson, Mark
2000-01-01
Vibration isolation control system design for a microgravity experiment mount is considered. The controller design based on dynamic sliding manifold (DSM) technique is proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a vibrating base or directly generated by the experiment, as well as to stabilize the internal dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-order sliding mode on the primary sliding manifold in the presence of uncertain actuator dynamics of second order. The primary DSM is designed for the closed-loop system in sliding mode to be a filter with given characteristics with respect to the input external disturbances.
Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.
Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour
2015-09-01
The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. PMID:26243440
Zahiripour, Seyed Ali; Jalali, Ali Akbar
2014-09-01
A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. PMID:24954808
Neuro-sliding mode control with its applications to seesaw systems.
Tsai, Chun-Hsien; Chung, Hung-Yuan; Yu, Fang-Ming
2004-01-01
This paper proposes an approach of cooperative control that is based on the concept of combining neural networks and the methodology of sliding mode control (SMC). The main purpose is to eliminate the chattering phenomenon. Next, the system performance can be improved by using the method of SMC. In the present approach, two parallel Neural Networks are utilized to realize a neuro-sliding mode control (NSMC), where the equivalent control and the corrective control are the outputs of neural network 1 and neural network 2, respectively. Based on expressions of the SMC, the weight adaptations of neural network can be determined. Furthermore, the gradient descent method is used to minimize the control force so that the chattering phenomenon can be eliminated. Finally, experimental results are given to show the effectiveness and feasibility of the approach. PMID:15387253
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh; Bates, Declan G
2015-08-01
A fundamental aim of synthetic biology is to achieve the capability to design and implement robust embedded biomolecular feedback control circuits. An approach to realize this objective is to use abstract chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks. Here, we employ this approach to facilitate the implementation of a class of nonlinear feedback controllers based on sliding mode control theory. We show how a set of two-step irreversible reactions with ultrasensitive response dynamics can provide a biomolecular implementation of a nonlinear quasi sliding mode (QSM) controller. We implement our controller in closed-loop with a prototype of a biological pathway and demonstrate that the nonlinear QSM controller outperforms a traditional linear controller by facilitating faster tracking response dynamics without introducing overshoots in the transient response. PMID:26736420
Non-linear adaptive sliding mode switching control with average dwell-time
NASA Astrophysics Data System (ADS)
Yu, Lei; Zhang, Maoqing; Fei, Shumin
2013-03-01
In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.
Observation and sliding mode observer for nonlinear fractional-order system with unknown input.
Djeghali, Nadia; Djennoune, Said; Bettayeb, Maamar; Ghanes, Malek; Barbot, Jean-Pierre
2016-07-01
The main purpose of this paper is twofold. First, the observability and the left invertibility properties and the observable canonical form for nonlinear fractional-order systems are introduced. By using a transformation, we show that these properties can be deduced from an equivalent nonlinear integer-order system. Second, a step by step sliding mode observer for fault detection and estimation in nonlinear fractional-order systems is proposed. Starting with a chained fractional-order integrators form, a step by step first-order sliding mode observer is designed. The finite time convergence of the observer is established by using Lyapunov stability theory. A numerical example is given to illustrate the performance of the proposed approach. PMID:26961320
NASA Astrophysics Data System (ADS)
Yang, Chi-Ching; Ou, Chung-Jen
2013-03-01
Under the existence of system uncertainties, external disturbances, and input nonlinearity, complete synchronization and anti-synchronization between two chaotic gyros are achieved by introducing a novel adaptive terminal sliding mode (ATSM) controller. In the literature, by taking account of input nonlinearity, the magnitudes of bounded nonlinear dynamics of synchronous error system were required in the designed sliding mode controller. In this study, the proposed ATSM controller associated with time-varying feedback gains can tackle nonlinear dynamics according to the novel adaptive rules. These feedback gains are not necessary to be determined in advance but updated by the adaptive rules without known the magnitudes of bounded nonlinear dynamics, system uncertainties, and external disturbances. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem, and the numerical simulations are performed to verify the effectiveness of presented schemes.
Libration point orbit rendezvous using PWPF modulated terminal sliding mode control
NASA Astrophysics Data System (ADS)
Lian, Yijun; Tang, Guojian
2013-12-01
The near-range rendezvous problem of two libration point orbit spacecraft in the Earth-Moon system is studied using the terminal sliding mode control which enables a time-fixed process with the flight time prescribed a priori. The underlying dynamics are the full nonlinear equations of motion for a complete Solar System model. For practical purposes, two means of pulse-width pulse-frequency (PWPF) modulation are employed to realize the theoretical continuous control with a series of thrust pulses. Extensive simulations with major errors taken into account show that the sliding mode controller can successfully guide the chaser to a given staging node with the final position and velocity errors, on average, lower than 20 m and 1 mm/s, respectively. Compared with the glideslope guidance previously studied, the proposed approach outperforms the former by saving approximately 50-60% of total delta-v.
Output feedback sliding mode control for a linear multi-compartment lung mechanics system
NASA Astrophysics Data System (ADS)
Hou, Saing Paul; Meskin, Nader; Haddad, Wassim M.
2014-10-01
In this paper, we develop a sliding mode control architecture to control lung volume and minute ventilation in the presence of modelling system uncertainties. Since the applied input pressure to the lungs is, in general, nonnegative and cannot be arbitrarily large, as not to damage the lungs, a sliding mode control with bounded nonnegative control inputs is proposed. The controller only uses output information (i.e., the total volume of the lungs) and automatically adjusts the applied input pressure so that the system is able to track a given reference signal in the presence of parameter uncertainty (i.e., modelling uncertainty of the lung resistances and lung compliances) and system disturbances. Controllers for both matched and unmatched uncertainties are presented. Specifically, a Lyapunov-based approach is presented for the stability analysis of the system and the proposed control framework is applied to a two-compartment lung model to show the efficacy of the proposed control method.
Sliding mode control of the space nuclear reactor system TOPAZ II
Shtessel, Y.B.; Wyant, F.J.
1996-03-01
The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}
Classical and higher-order sliding mode attitude control for launch vehicle systems
NASA Astrophysics Data System (ADS)
Stott, James Edward, Jr.
In determining flight controls for launch vehicle systems, several things must be taken into account. Launch vehicle systems can be expendable or reusable, carry crew or cargo, etc. Each of these launch vehicles maneuvers through a wide range of flight conditions and different mission profiles. Crewed vehicles must adhere to human rating requirements which limit the angular rates. Reusable launch vehicle systems must take into account actuator saturation during entry. Wind disturbances and plant uncertainties are major perturbations to the nominal state of any launch vehicle. An ideal controller is one that is robust enough to handle these uncertainties and external disturbances with limited control authority. One major challenge that exists in the design of these vehicles is the updating of old autopilot technology to new robust designs while also taking into account the different type of launch vehicle system employed. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. This dissertation focuses on systematically studying and developing a 'toolbox' of classical and higher-order sliding mode attitude control algorithms for different types of launch vehicle systems operating in uncertain conditions, including model uncertainties, actuator malfunctions, and external perturbations such as wind gusts. The developed toolbox comprises of time-varying sliding variables, classical and higher-order sliding mode attitude control algorithms, and observer techniques that yield novel sliding mode attitude control architectures. The proposed control toolbox allows achieving even higher standards of performance, reliability, safety, operability, and cost for launch vehicles over the current state of the art. Case studies include controlling the X-33 and SLV-X Launch Vehicles studied under NASA's Space Launch Initiative (SLI
Mondal, Sanjoy; Mahanta, Chitralekha
2013-05-01
In this paper, a chattering free adaptive sliding mode controller (SMC) is proposed for stabilizing a class of multi-input multi-output (MIMO) systems affected by both matched and mismatched types of uncertainties. The proposed controller uses a proportional plus integral sliding surface whose gain is adaptively tuned to prevent overestimation. A vertical take-off and landing (VTOL) aircraft system is simulated to demonstrate the effectiveness of the proposed control scheme. PMID:23357555
Observer-based higher order sliding mode control for large optical astronomical telescopes
NASA Astrophysics Data System (ADS)
Zhou, Wangping; Ye, Xiaoling; Guo, Wei; Wu, Zhonghua
2009-05-01
In order to study more remote universe and the detailed structures of near stars, large-scale astronomical telescopes are very needed with the development of astronomy and astrophysics. In this trend, astronomical telescope becomes more and more huge, which leads its driving system to bear heavy nonlinear disturbances. The increased nonlinear disturbances especially caused by friction torque in the control system can easily bring tingle and stick-slip phenomena when the telescope tracks an object with an ultra-low velocity. However, conventional control approaches are difficult to realize high-precision controls and can decrease the quality of a telescope's observations. Therefore, it will be of significance in theory and in practice to develop an advanced new control method to restrain nonlinear disturbance and improve telescope's observation performance. Sliding mode approach has been applied in many other mechanical control systems since it is invariable to various disturbances. However, conventional sliding mode approach may cause dangerous high-frequency vibrations in corresponding control system, which may influence control performance or even lead the system unstable. To counteract the effect of above nuisance, a high-order sliding mode (HOSM) controller of third-order has been suggested in the large telescope's drive system through theoretic deduction and analysis. On account of that the HOSM approach needs all system states available, a sliding mode observer has then been designed in order to get the acceleration state of the drive system. Simulation results show that this approach can obtain high control precision and may satisfy the requirements of a telescope for a nicely ultra-low velocity.
Speed control of switched reluctance motor using sliding mode control strategy
John, G.; Eastham, A.R.
1995-12-31
A robust speed drive system for a switched reluctance motor (SRM) using sliding mode control strategy (SLMC) is presented. After reviewing the operation of an SRM drive, a SLMC based scheme is formulated to control the drive speed. The scheme is implemented using a micro-controller and a high resolution position sensor. The parameter insensitive characteristics are demonstrated through computer simulations and experimental verification.
X33 Reusable Launch Vehicle Control on Sliding Modes: Concepts for a Control System Development
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
1998-01-01
Control of the X33 reusable launch vehicle is considered. The launch control problem consists of automatic tracking of the launch trajectory which is assumed to be optimally precalculated. It requires development of a reliable, robust control algorithm that can automatically adjust to some changes in mission specifications (mass of payload, target orbit) and the operating environment (atmospheric perturbations, interconnection perturbations from the other subsystems of the vehicle, thrust deficiencies, failure scenarios). One of the effective control strategies successfully applied in nonlinear systems is the Sliding Mode Control. The main advantage of the Sliding Mode Control is that the system's state response in the sliding surface remains insensitive to certain parameter variations, nonlinearities and disturbances. Employing the time scaling concept, a new two (three)-loop structure of the control system for the X33 launch vehicle was developed. Smoothed sliding mode controllers were designed to robustly enforce the given closed-loop dynamics. Simulations of the 3-DOF model of the X33 launch vehicle with the table-look-up models for Euler angle reference profiles and disturbance torque profiles showed a very accurate, robust tracking performance.
NASA Astrophysics Data System (ADS)
Mallory, Nicolas Joseph
The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.
Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui
2015-01-01
This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258
Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai
2009-06-01
In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications. PMID:19423437
Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui
2015-01-01
This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258
Exact differentiator based sliding mode control for large optical astronomical telescopes
NASA Astrophysics Data System (ADS)
Zhou, Wangping; Xu, Xinqi; Dong, Zhiming
2007-12-01
Large astronomical optical telescopes are badly needed in order to learn more remote universe. There exist some key problems of the control systems of large astronomical optical telescopes. Since they have voluminous bodies that would encounter heavy external disturbance, one of the key problems is focused on how to accurately control them. Additionally, in order to get nicer ultra-low velocity performance and a steady field of view, friction drive is widely applied in contemporary large optical telescopes. One serious disadvantage of friction drive is that it will cause some nonlinear uncertainties to influence telescope controls because of the mechanical characteristics between the principal and subordinate friction wheels. These two aspects of external and internal disturbances will make a telescope very difficult to be controlled. In this paper, we introduce a method of higher order sliding modes (HOSM) to control telescopes, which overcome these two disadvantages of traditional Proportional-Integral-Derivative approach and can achieve excellent control performance. Conventional sliding mode approach has been applied in many other mechanical control systems owing to its high accuracy in anti-jamming. By discontinuous switching, it is invariable to disturbances based on keeping some constraints with a sufficiently energetic effort. However, such conventional sliding mode approach may cause dangerous high-frequency vibrations in the corresponding control system, which may influence systemic control performance or even lead the system unstable. In this work, we use the newly developed HOSM approach in the control systems of the large astronomical optical telescopes. The HOSM approach inherits the dominant merits of conventional sliding mode. Moreover, it acts on the higher order time derivatives of the system deviation from the constraint. And the discontinuous dynamics are restricted to the highest state while the counterpart in standard sliding mode is in first
NASA Astrophysics Data System (ADS)
Roopaei, M.; Zolghadri Jahromi, M.
2008-12-01
In this paper, an adaptive sliding mode control method for synchronization of a class of chaotic systems with fully unknown parameters is introduced. In this method, no knowledge of the bounds of parameters is required in advance and the parameters are updated through an adaptive control process. We use our proposed method to synchronize two chaotic gyros, which has been the subject of intense study during the recent years for its application in the navigational, aeronautical, and space engineering domains. The effectiveness of our method is demonstrated in simulation environment and the results are compared with some recent schemes proposed in the literature for the same task.
Drag-based composite super-twisting sliding mode control law design for Mars entry guidance
NASA Astrophysics Data System (ADS)
Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei
2016-06-01
In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.
Sliding Mode Control Technique: Application to a Four Rotors Mini-Flying Robot
NASA Astrophysics Data System (ADS)
Zemalache, K. M.; Tahar, M.; Omari, A.; Maaref, H.
2009-03-01
This paper presents the study of stabilization with motion planning of the four rotors mini-flying robot (helicopter with four rotors). The dynamic model involves four control inputs which are computed to stabilize the engine with predefined trajectories path. The tracking feedback controller is based on receding horizon point to point steering. It is clear that our device belongs to families of under-actuated systems. Our aim is to obtain control algorithms using the cascade sliding mode approach in order to stabilize the engine and to generate its trajectory.
NASA Astrophysics Data System (ADS)
Alipour, Hasan; Bagher Bannae Sharifian, Mohammad; Sabahi, Mehran
2014-12-01
This paper presents a novel sliding mode controller (SMC) and its application in the lateral stability control of a 4-wheel independent drive electric vehicle. The structure of the SMC is modified and online-tuned to ensure vehicle system stability, and to track the desired vehicle motion references when an in-wheel motor fault happens. The proposed controller is faster, more accurate, more robust, and with smaller chattering than common SMCs chatter. The effectiveness of the introduced approach is investigated through conducted simulations in the CARSIM and MATLAB software environments.
Two modified discrete PID-based sliding mode controllers for piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cao, Y.; Chen, X. B.
2014-01-01
Hysteresis is a nonlinear effect that can result in the degraded performance of piezoelectric actuators (PEAs). To counteract the effect, several control methods have been developed and reported in the literature. One promising method for compensation is the use of a proportional-integral-derivative (PID)-based sliding mode control (SMC), in which the PEA hysteresis is treated as an unknown disturbance to the PEA input. If the hysteresis can be modelled or partially modelled, the integration of the hysteresis models into the control schemes may lead to further improved performance. On this philosophy, this paper presents the development of two modified discrete PID-based sliding mode controllers (PID-SMCs) for the PEAs, namely an inversion-based PID-SMC and a disturbance-observer (DOB)-based PID-SMC, in which the PEA hysteresis is predicted or partially predicted through the use of existing models for the PEA hysteresis. Experiments were performed to verify the effectiveness of the proposed control schemes. The results were compared to those of the nominal PID-SMC. By employing the inversion hysteresis and the DOB, the PEA performance was greatly improved.
Analytical impact time and angle guidance via time-varying sliding mode technique.
Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong
2016-05-01
To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions. PMID:26952314
Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
Ho, Hung-Jung; Chen, Tien-Chi
2009-11-01
Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring. PMID:19439391
An investigation of the edge-sliding mode in fracture mechanics
NASA Technical Reports Server (NTRS)
Jones, D. L.; Chisholm, D. B.
1975-01-01
A boundary collocation procedure has been applied to the Williams stress function to determine the elastic stress distribution for the crack tip region of a finite, edge-cracked plate subjected to mode II loading at the crack tips. The asymmetric specimen selected was particularly suitable for the determination of plane strain fracture toughness for mode II loading. Numerical solutions for stress intensity factors for the edge-sliding mode obtained by the boundary collocation method were in close agreement with values obtained from photoelastic experiments. Fracture tests of several compact shear specimens of 2024-T4 aluminum were conducted in order to experimentally investigate the behavior of the edge-sliding mode. In each case a brittle shear failure was observed and mode II fracture toughness values were obtained. The average value for K-IIc obtained from two tests was 39.5 ksi radical (in). No K-Ic data for 2024-T4 were available for comparison purposes; however, K-Ic values for a similar alloy, 2024-T351, have been reported as 34 ksi radical (in) which is only about 15 per cent below the corresponding K-IIc value.
Sliding-Mode Control Applied for Robust Control of a Highly Unstable Aircraft
NASA Technical Reports Server (NTRS)
Vetter, Travis Kenneth
2002-01-01
An investigation into the application of an observer based sliding mode controller for robust control of a highly unstable aircraft and methods of compensating for actuator dynamics is performed. After a brief overview of some reconfigurable controllers, sliding mode control (SMC) is selected because of its invariance properties and lack of need for parameter identification. SMC is reviewed and issues with parasitic dynamics, which cause system instability, are addressed. Utilizing sliding manifold boundary layers, the nonlinear control is converted to a linear control and sliding manifold design is performed in the frequency domain. An additional feedback form of model reference hedging is employed which is similar to a prefilter and has large benefits to system performance. The effects of inclusion of actuator dynamics into the designed plant is heavily investigated. Multiple Simulink models of the full longitudinal dynamics and wing deflection modes of the forward swept aero elastic vehicle (FSAV) are constructed. Additionally a linear state space models to analyze effects from various system parameters. The FSAV has a pole at +7 rad/sec and is non-minimum phase. The use of 'model actuators' in the feedback path, and varying there design, is heavily investigated for the resulting effects on plant robustness and tolerance to actuator failure. The use of redundant actuators is also explored and improved robustness is shown. All models are simulated with severe failure and excellent tracking, and task dependent handling qualities, and low pilot induced oscillation tendency is shown.
Robust fuzzy neural network sliding mode control scheme for IPMSM drives
NASA Astrophysics Data System (ADS)
Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.
2014-07-01
This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.
Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems.
Shahriari kahkeshi, Maryam; Sheikholeslam, Farid; Zekri, Maryam
2013-05-01
This paper proposes novel adaptive fuzzy wavelet neural sliding mode controller (AFWN-SMC) for a class of uncertain nonlinear systems. The main contribution of this paper is to design smooth sliding mode control (SMC) for a class of high-order nonlinear systems while the structure of the system is unknown and no prior knowledge about uncertainty is available. The proposed scheme composed of an Adaptive Fuzzy Wavelet Neural Controller (AFWNC) to construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for implementing switching term to provide smooth control input. Asymptotical stability of the closed loop system is guaranteed, using the Lyapunov direct method. To show the efficiency of the proposed scheme, some numerical examples are provided. To validate the results obtained by proposed approach, some other methods are adopted from the literature and applied for comparison. Simulation results show superiority and capability of the proposed controller to improve the steady state performance and transient response specifications by using less numbers of fuzzy rules and on-line adaptive parameters in comparison to other methods. Furthermore, control effort has considerably decreased and chattering phenomenon has been completely removed. PMID:23453235
Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems
NASA Astrophysics Data System (ADS)
Bayramoglu, Husnu; Komurcugil, Hasan
2013-09-01
This paper presents a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two second-order subsystems which are referred to as the primary and secondary subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients which are computed by linear functions derived from the input-output mapping of the one-dimensional fuzzy rule base. Then, the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, a nonsingular terminal sliding mode control (NTSMC) method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system are given to show the effectiveness of the proposed method. It is seen that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.
Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter
2012-08-01
An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. PMID:22386784
NASA Astrophysics Data System (ADS)
Chen, Naijian; Song, Fangzhen; Li, Guoping; Sun, Xuan; Ai, Changsheng
2013-10-01
To solve disturbances, nonlinearity, nonholonomic constraints and dynamic coupling between the platform and its mounted robot manipulator, an adaptive sliding mode controller based on the backstepping method applied to the robust trajectory tracking of the wheeled mobile manipulator is described in this article. The control algorithm rests on adopting the backstepping method to improve the global ultimate asymptotic stability and applying the sliding mode control to obtain high response and invariability to uncertainties. According to the Lyapunov stability criterion, the wheeled mobile manipulator is divided into several stabilizing subsystems, and an adaptive law is designed to estimate the general nondeterminacy, which make the controller be capable to drive the trajectory tracking error of the mobile manipulator to converge to zero even in the presence of perturbations and mathematical model errors. We compare our controller with the robust neural network based algorithm in nonholonomic constraints and uncertainties, and simulation results prove the effectivity and feasibility of the proposed method in the trajectory tracking of the wheeled mobile manipulator.
Chen, Jiawang; Gu, Linyi
2014-01-01
For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time. PMID:24983004
Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed
2015-07-01
The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. PMID:25747198
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Junaid Khan, Muhammad; Cai, Ning
2014-05-01
In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.
Robust neuro-sliding mode multivariable control strategy for powered wheelchairs.
Nguyen, Tuan Nghia; Su, Steven W; Nguyen, Hung T
2011-02-01
This paper proposes an advanced robust multivariable control strategy for a powered wheelchair system. The new control strategy is based on a combination of the systematic triangularization technique and the robust neuro-sliding mode control approach. This strategy effectively copes with parameter uncertainties and external disturbances in real-time in order to achieve robustness and optimal performance of a multivariable system. This novel strategy reduces coupling effects on a multivariable system, eliminates chattering phenomena, and avoids the plant Jacobian calculation problem. Furthermore, the strategy can also achieve fast and global convergence using less computation. The effectiveness of the new multivariable control strategy is verified in real-time implementation on a powered wheelchair system. The obtained results confirm that robustness and desired performance of the overall system are guaranteed, even under parameter uncertainty and external disturbance effects. PMID:20805057
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2015-11-01
In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. PMID:26428878
Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control
NASA Astrophysics Data System (ADS)
Zhou, Jiawang; Zhou, Zude; Ai, Qingsong
As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.
A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Ji, Yunfeng; Guo, Konghui
2014-12-01
In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model 'UniTire'. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.
Sliding mode-based lateral vehicle dynamics control using tyre force measurements
NASA Astrophysics Data System (ADS)
Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward
2015-11-01
In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.
Analysis and design of sliding mode controller gains for boost power factor corrector.
Kessal, Abdelhalim; Rahmani, Lazhar
2013-09-01
This paper presents a systematic procedure to compute the gains of sliding mode controller based on an optimization scheme. This controller is oriented to drive an AC-DC converter operating in continuous mode with power factor near unity, and in order to improve static and dynamic performances with large variations of reference voltage and load. This study shows the great influence of the controller gains on the global performances of the system. Hence, a methodology for choosing the gains is detailed. The sliding surface used in this study contains two state variables, input current and output voltage; the advantage of this surface is getting reactions against various disturbances-at the power source, the reference of the output, or the value of the load. The controller is experimentally confirmed for steady-state performance and transient response. PMID:23735439
Flexible Modes Control Using Sliding Mode Observers: Application to Ares I
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.
2010-01-01
The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.
Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system
NASA Astrophysics Data System (ADS)
Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin
2016-10-01
Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.
NASA Astrophysics Data System (ADS)
Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping
2016-06-01
It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.
NASA Astrophysics Data System (ADS)
Spiers, Adam; Herrmann, Guido; Melhuish, Chris; Pipe, Tony; Lenz, Alexander
It has been shown that a task-level controller with minimal-effort posture control produces human-like motion in simulation. This control approach is based on the dynamic model of a human skeletal system superimposed with realistic muscle like actuators whose effort is minimised. In practical application, there is often a degree of error between the dynamic model of a system used for controller derivation and the actual dynamics of the system. We present a practical application of the task-level control framework with simplified posture control in order to produce life-like and compliant reaching motions for a redundant task. The addition of a sliding mode controller improves performance of the physical robot by compensating for unknown parametric and dynamic disturbances without compromising the human-like posture.
Sliding mode control of a spherical haptic device featuring electrorheological fluid
NASA Astrophysics Data System (ADS)
Han, Young-Min; Nguyen, Hung Quoc; Choi, Seung-Bok
2006-03-01
This paper presents force-feedback control performance of a new type of haptic device featuring spherical geometry and smart materials that can be used for minimally invasive surgery (MIS). A spherical electrorheological (ER) joint is designed and optimized based on the mathematical torque modeling. Force response of the manufactured ER joint is then experimentally evaluated. Subsequently, the 2-DOF force-feedback device is manufactured by integrating the spherical ER joint with AC motor. In order to achieve desired force trajectories of the haptic device, a sliding mode controller (SMC), which is robust to uncertainty, is formulated and experimentally realized. Tracking control performances for various force trajectories are presented in time domain, and their tracking errors are evaluated.
NASA Technical Reports Server (NTRS)
Wells, S. R.; Hess, R. A.
2002-01-01
A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.
Nonlinear adaptive observer-based sliding mode control for LAMOST mount driving
NASA Astrophysics Data System (ADS)
Zhou, Wang-Ping; Zheng, Yi; Guo, Wei; Yu, Li; Yang, Chang-Song
2010-01-01
Heavy disturbances caused mainly by wind and friction in the mount drive system greatly impair the pointing accuracy of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). To overcome this negative effect, a third order Higher Order Sliding Mode (HOSM) controller is proposed. The key part of this approach is to design an appropriate observer which obtains the acceleration state. A nonlinear adaptive observer is proposed in which a novel polynomial model is applied to estimate the internal disturbances of the mount drive system. Theoretical analysis demonstrates the stability of the proposed observer. Simulation results show that this nonlinear adaptive observer can obtain a high precision acceleration signal which completes the HOSM controller. Furthermore, the HOSM approach can easily satisfy the position tracking requirements of the LAMOST mount drive system.
Variable speed wind turbine control by discrete-time sliding mode approach.
Torchani, Borhen; Sellami, Anis; Garcia, Germain
2016-05-01
The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. PMID:26804750
Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing
2014-05-01
This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. PMID:24534328
Decentralized sliding-mode control for spacecraft attitude synchronization under actuator failures
NASA Astrophysics Data System (ADS)
Wu, Baolin; Wang, Danwei; Poh, Eng Kee
2014-12-01
This paper examines attitude synchronization and tracking problems with model uncertainties, external disturbances, actuator failures and control torque saturation. Two decentralized sliding mode control laws are proposed and analyzed based on algebraic graph theory. Using Barbalat's Lemma, it is shown that the control laws guarantee each spacecraft approaches the desired time-varying attitude and angular velocity while maintaining attitude synchronization among the other spacecraft in the formation. The first controller is designed in the presence of model uncertainties, external disturbances, and actuator failures. The results are extended to the case with control input saturation in the second controller. Both control laws do not require online identification of failures. Numerical simulations are presented to show the effectiveness of the proposed attitude synchronization and tracking approaches.
A fractographic study of the edge-sliding mode in fracture toughness testing
NASA Technical Reports Server (NTRS)
Jones, D. L.; Chisholm, D. B.
1976-01-01
A fractographic study of Mode II fracture surfaces has been conducted for the purpose of identifying the microstructural mechanisms responsible for fracture in the edge-sliding mode. A compact shear (CS) specimen was employed to generate the fracture surfaces and also to establish Mode II fracture toughness values for Ti-6Al-4V, A533-B steel, and several aluminum alloys. In all tests, one of the two edge cracks sustained complete Mode II fracture while the other exhibited only a limited amount of subcritical crack growth. Mode II fracture surfaces, which were unique in appearance, have been examined by optical and scanning electron microscopy. It was determined that shear (or parabolic) microvoid coalescence was the dominant mechanism for Mode II fracture. It was also established that most of the surface abrasions were created by the relative sliding of the fracture surfaces during unstable fracture rather than the crack initiation process.
NASA Astrophysics Data System (ADS)
Hao, Lina; Chen, Yang; Sun, Zhiyong
2015-04-01
Ionic polymer metal composite (IPMC) is a novel smart material which has been widely implemented in MEMS, biomimetic mechanical and electrical integrated system and micro operation system. While the IPMC with different shapes and dimensions has been implemented in many different types of biomechanical integrated systems, one of its inherent properties called creep characteristic is difficult to be handled, which limits the further application of different IPMCs in integrated systems. A promising control method called sliding mode control (SMC) is proposed to resist the creep characteristics in this paper. The SMC controller can regulate IPMC actuators with different shapes and dimensions effectively to resist the creep characteristics without changing parameters of the control system. Experiments of four different types of IPMC actuators were conducted on the semi-physical SMC experimental platform. All the experimental results confirm the feasibility of the SMC control approach on regulating the multi-IPMCs with different shapes and dimensions based integrated system.
Semi-active sliding mode control of vehicle suspension with magneto-rheological damper
NASA Astrophysics Data System (ADS)
Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi
2015-01-01
The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.
NASA Astrophysics Data System (ADS)
Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori
2016-01-01
In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.
NASA Astrophysics Data System (ADS)
Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie
2016-05-01
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.
Adaptive sliding mode control on inner axis for high precision flight motion simulator
NASA Astrophysics Data System (ADS)
Fu, Yongling; Niu, Jianjun; Wang, Yan
2008-10-01
Discrete adaptive sliding mode control (ASMC) with exponential reaching law is proposed to alleviate the influence of the factors such as the periodical fluctuation torque of motor, nonlinear friction, and other disturbance which will deteriorate the tracking performance of a DC torque motor driven inner axis for a high precision flight motion simulator, considering the limited compensating ability of the ASMC for these uncertainty, an equivalent friction advance compensator based on Stribeck model is also presented for extra-low speed servo of the system. Firstly, the way direct using the available parts of the inner axis itself to ascertain the parameters for Stribeck model is listed. Secondly, adaptive approach is used to overcome the difficulty of choice the key parameter for exponential reaching law, and the stability of the algorithm is analyzed. Lastly, comparable experiments are carried out to verify the valid of the combined approach. The experiments results show with a stable 0.00006°/s speed response, 95% of time the tracking error is within 0.0002°, other servos such as sine wave tracking are also with high precision.
Li, Lebao; Sun, Lingling; Zhang, Shengzhou
2016-05-01
A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. PMID:26899554
Active following fuzzy output feedback sliding mode control of real-vehicle semi-active suspensions
NASA Astrophysics Data System (ADS)
Liu, H.; Nonami, K.; Hagiwara, T.
2008-07-01
Many semi-active suspension systems have been investigated in various literatures in order to achieve lower energy consumption and as good performance as full-active suspension systems. Full-active suspension systems can achieve a good ride quality by actuators; however, their implementation equipments are expensive. The full-active suspensions are perfect from the point of view of control; hence, semi-active control laws with performance similar to full-active controls have attracted the engineering community for their ease and lower cost of implementation. This paper presents a new active following fuzzy output feedback sliding mode control for a real-vehicle semi-active suspension system. The performance of the proposed controller has been verified by comparing it with passive control and also with the full-active target semi-active approximation control method. In the experiment, it was shown that the proposed method has the effectiveness in stabilizing heave, roll and pitch movement of the car body.
Sliding mode control of continuous time systems with reaching law based on exponential function
NASA Astrophysics Data System (ADS)
Gamorski, Piotr
2015-11-01
In this paper a pseudo-sliding mode control is proposed by introducing a continuous and smooth input signal in order to guarantee both chattering elimination and boundedness of sliding variable derivative in the presence of non-zero external disturbance. For this purpose, having fixed a suitable sliding manifold, a homogeneous differential equation describing the sliding variable evolution is considered. It is discussed later in this paper that the input signal formed on the basis of this equation provides asymptotic convergence of the sliding variable and its derivative to zero as well as the asymptotic stability of the non-linear system in the absence of external disturbance. The dynamics of the system affected by non-zero external disturbance make the state vector converge to domains in a vicinity of the origin at the exponential rate, as the norm of arbitrary trajectory is limited to decreasing exponential function. In order to expand the variety of controllers based on a reaching law and providing the above-mentioned properties, a certain class of functions is presented.
Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying
NASA Astrophysics Data System (ADS)
Wang, Jianying; Sun, Zhaowei
2012-04-01
This paper addresses the tracking control problem of the leader-follower spacecraft formation, by which we mean that the relative motion between the leader and the follower is required to track a desired time-varying trajectory given in advance. Using dual number, the six-degree-of-freedom motion of the follower spacecraft relative to the leader spacecraft is modeled, where the coupling effect between the translational motion and the rotational one is accounted. A robust adaptive terminal sliding mode control law, including the adaptive algorithms, is proposed to ensure the finite time convergence of the relative motion tracking errors despite the presence of model uncertainties and external disturbances, based on which a modified controller is furthermore developed to solve the dual-equilibrium problem caused by dual quaternion representation. In addition, to alleviate the chattering, hyperbolic tangent function is adopted to substitute for the sign function. And by theoretical analysis, it is proved that the tracking error in such case will converge to a neighborhood of the origin in finite time. Finally, numerical simulations are performed to demonstrate the validity of the proposed approaches.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
A coordinated MIMO control design for a power plant using improved sliding mode controller.
Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi
2014-03-01
For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. PMID:24112644
LQ optimal and reaching law-based sliding modes for inventory management systems
NASA Astrophysics Data System (ADS)
Ignaciuk, Przemysław; Bartoszewicz, Andrzej
2012-01-01
In this article, the theory of discrete sliding-mode control is used to design new supply strategies for periodic-review inventory systems. In the considered systems, the stock used to fulfil an unknown, time-varying demand can be replenished from a single supply source or from multiple suppliers procuring orders with different delays. The proposed strategies guarantee that demand is always entirely satisfied from the on-hand stock (yielding the maximum service level), and the warehouse capacity is not exceeded (which eliminates the cost of emergency storage). In contrast to the classical, stochastic approaches, in this article, we focus on optimising the inventory system dynamics. The parameters of the first control strategy are selected by minimising a quadratic cost functional. Next, it is shown how the system dynamical performance can be improved by applying the concept of a reaching law with the appropriately adjusted reaching phase. The stable, nonoscillatory behaviour of the closed-loop system is demonstrated and the properties of the designed controllers are discussed and strictly proved.
Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.
Asadi, Ali-Reza; Erfanian, Abbas
2012-07-01
During the last decade, intraspinal microstimulation (ISMS) has been proposed as a potential technique for restoring motor function in paralyzed limbs. A major challenge to restoration of a desired functional limb movement through the use of ISMS is the development of a robust control strategy for determining the stimulation patterns. Accurate and stable control of limbs by functional intraspinal microstimulation is a very difficult task because neuromusculoskeletal systems have significant nonlinearity, time variability, large latency and time constant, and muscle fatigue. Furthermore, the controller must be able to compensate the effect of the dynamic interaction between motor neuron pools and electrode sites during ISMS. In this paper, we present a robust strategy for multi-joint control through ISMS in which the system parameters are adapted online and the controller requires no offline training phase. The method is based on the combination of sliding mode control with fuzzy logic and neural control. Extensive experiments on six rats are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed method. Despite the complexity of the spinal neuronal networks, our results show that the proposed strategy could provide accurate tracking control with fast convergence and could generate control signals to compensate for the effects of muscle fatigue. PMID:22711783
Xingling, Shao; Honglun, Wang
2014-11-01
This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. PMID:25451817
State observer-based sliding mode control for semi-active hydro-pneumatic suspension
NASA Astrophysics Data System (ADS)
Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin
2016-02-01
This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.
A sliding-mode-based observer to identify faults in FBG sensors embedded in composite structures
NASA Astrophysics Data System (ADS)
Cazzulani, Gabriele; Cinquemani, Simone; Ronchi, Marco
2016-04-01
Optical strain gauges, such as Fiber Bragg Gratings (FBG), have a great potential for smart structures, thanks to their small transversal size and the possibility to make an array of many sensors. They can be embedded in composite structures and their effect on the structure is nearly negligible. These advantages make them very interesting in the field of active vibration suppression. Unfortunately their low reliability is an obstacle to their use in such applications. For this reason, this paper introduces a fault identification algorithm to identify online those sensors which are not working correctly. The algorithm is based on the use of a sliding mode observer to estimate the coherence of measurements, and then to highlight possible faults. Once identified, the corresponding sensors can be excluded from the feedback loop of the control algorithm to avoid unwanted behaviors or instabilities. Numerical and experimental tests have been carried out on a carbon fiber structure considering different fault conditions. Results show it is possible to identify the faulty sensors and thus improve the signals used in the feedback loop.
Sliding Mode Control of ER Seat Suspension Considering Human Vibration Model
NASA Astrophysics Data System (ADS)
Han, Y. M.; Jung, J. Y.; Choi, S. B.; Wereley, N. M.
This paper presents robust control performances of a semi-active electro-rheological (ER) seat suspension incorporating vibration model of human-body. A cylindrical type of ER seat damper is manufactured for a commercial vehicle seat suspension system and its field-dependent damping force is experimentally evaluated. A human-body model is then derived and integrated with the governing equations of the ER seat suspension system. The integrated seat-driver model featured by a high order degree-of-freedom (DOF) is reduced through a balanced model reduction to design robust controller. By imposing semi-active actuating conditions, a sliding mode controller which is very robust to external disturbances and parameter uncertainties is synthesized and experimentally realized with the state observer. In the experimental configuration, a driver directly sits on the controlled seat. Control results for ride quality considering response of each human body segment are evaluated in both time and frequency domains. In addition, a comparison of the proposed semi-active ER seat suspension to a conventional passive seat suspension system is undertaken.
Development of a sliding mode control model for quiet upright stance.
Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J
2016-02-01
Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions. PMID:26810735
Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes
Dr. Anatoly Shteynberg, PhD
2006-08-17
This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.
A Double-Wing Chaotic System Based on Ion Migration Memristor and Its Sliding Mode Control
NASA Astrophysics Data System (ADS)
Min, Guoqi; Duan, Shukai; Wang, Lidan
The ion migration memristor is a nonlinear element with memory function and nanoscale size, it is considered as a potential candidate to reduce system power consumption and circuit size. When it works as the nonlinear part of the chaotic system, rich nonlinear curves will be produced, and at the same time, the complexity of chaotic systems and the randomness of signals will be enhanced. So in this paper, by Matlab numerical simulation, a new double-wing chaotic system based on an ion migration memristor is designed. In reality, there are many systems interfered inevitably by random noise, so in this paper the random bounded noises are also considered. The power spectrum, Lyapunov exponent spectrum, Poincaré map and bifurcation diagram are used to investigate its complex dynamic characteristics. Then, a SPICE-based analog circuit is presented to verify the feasibility of the system, for which the simulation results are consistent with the numerical simulation. Finally, the sliding mode variable structure control is applied to overcome the shortcomings of traditional control method, so that the chaotic orbits can be controlled to any fixed points or periodic orbits, and this provides an insight into chaos control in power electronics systems.
Wai, Rong-Jong; Muthusamy, Rajkumar
2013-02-01
This paper presents the design and analysis of an intelligent control system that inherits the robust properties of sliding-mode control (SMC) for an n-link robot manipulator, including actuator dynamics in order to achieve a high-precision position tracking with a firm robustness. First, the coupled higher order dynamic model of an n-link robot manipulator is briefy introduced. Then, a conventional SMC scheme is developed for the joint position tracking of robot manipulators. Moreover, a fuzzy-neural-network inherited SMC (FNNISMC) scheme is proposed to relax the requirement of detailed system information and deal with chattering control efforts in the SMC system. In the FNNISMC strategy, the FNN framework is designed to mimic the SMC law, and adaptive tuning algorithms for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by DC servo motors are provided to justify the claims of the proposed FNNISMC system, and the superiority of the proposed FNNISMC scheme is also evaluated by quantitative comparison with previous intelligent control schemes. PMID:24808281
Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.
Efe, Mehmet Onder
2008-12-01
This paper presents a novel parameter adjustment scheme to improve the robustness of fuzzy sliding-mode control achieved by the use of an adaptive neuro-fuzzy inference system (ANFIS) architecture. The proposed scheme utilizes fractional-order integration in the parameter tuning stage. The controller parameters are tuned such that the system under control is driven toward the sliding regime in the traditional sense. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed adaptation scheme displays better tracking performance, and a very high degree of robustness and insensitivity to disturbances are observed. The claims are justified through some simulations utilizing the dynamic model of a 2-DOF direct-drive robot arm. Overall, the contribution of this paper is to demonstrate that the response of the system under control is significantly better for the fractional-order integration exploited in the parameter adaptation stage than that for the classical integer-order integration. PMID:19022726
Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui
2016-07-01
This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes. PMID:27156675
NASA Astrophysics Data System (ADS)
Yeganeh Fallah, Arash; Taghikhany, Touraj
2015-12-01
Recent decades have witnessed much interest in the application of active and semi-active control strategies for seismic protection of civil infrastructures. However, the reliability of these systems is still in doubt as there remains the possibility of malfunctioning of their critical components (i.e. actuators and sensors) during an earthquake. This paper focuses on the application of the sliding mode method due to the inherent robustness of its fault detection observer and fault-tolerant control. The robust sliding mode observer estimates the state of the system and reconstructs the actuators’ faults which are used for calculating a fault distribution matrix. Then the fault-tolerant sliding mode controller reconfigures itself by the fault distribution matrix and accommodates the fault effect on the system. Numerical simulation of a three-story structure with magneto-rheological dampers demonstrates the effectiveness of the proposed fault-tolerant control system. It was shown that the fault-tolerant control system maintains the performance of the structure at an acceptable level in the post-fault case.
Wang, Xingliang; Zhang, Youan; Wu, Huali
2016-03-01
The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations. PMID:26782929
Ajoudani, Arash; Erfanian, Abbas
2007-01-01
In this paper, we propose a control methodology which is based on synergistic combination of a single-neuron controller with sliding mode control (SMC) for control of knee-joint position in paraplegic subjects with quadriceps stimulation. The control law will be switched from the sliding mode control to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. The main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. The value of switching gain depends on the bounds of system uncertainties. The system with large uncertainties needs to use a higher switching gain. This will, however, result in the high-frequency control switching and chattering across the sliding surface. To avoid such a condition, it is necessary to decrease the system uncertainty. To decrease the uncertainty, an accurate model of the system is required. For this purpose, we present a modular approach to modeling the knee-joint dynamics. Extensive experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability and tracking accuracy of the neuro-SMC. The experimental results show that the neuro-SMC provides excellent tracking control for different reference trajectories and could generate control signals to compensate the muscle fatigue. PMID:18002483
Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system.
Lu, Chia-Hua; Hwang, Yean-Ren; Shen, Yu-Ta
2011-04-01
Air motors are increasingly being used in pneumatic related industries because of their advantages of low operating cost and low maintenance. The DSP controller and the backstepping sliding mode control method were utilized in this study to control an X-Y pneumatic table for tracking trajectory. Due to the effects of the compressibility of air, friction between the motor and ball screw table and the dead-zone effect caused by the proportional valve, the system will yield different responses even with the same inlet pressure and will chatter at low speed. Hence under certain conditions, this method of backstepping sliding mode control can be applied to achieve better results than with the PID controller, such as for tracking circle error and tracking error of the two axes. According to the results, a steady-state error of 0.5 μm can be achieved. The proposed method of backstepping sliding mode control can accomplish accurate tracking circle trajectory performance, offering an improvement in the tracking error of more than 50% over that of the PID controller. PMID:21272879
Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang; Zhang, Hua
2014-10-01
A Lorentz spacecraft is an electrostatically charged space vehicle that could actively modulate its surface charge to generate Lorentz force as it moves through the planetary magnetic field. The induced Lorentz force provides propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft hovering that the chaser thrusts continuously to create an equilibrium state at the desired position relative to the target. Due to the fact that the direction of Lorentz force is determined by the local magnetic field and the velocity of the spacecraft with respect to the local magnetic field, which does not necessarily coincide with that of the required control acceleration for hovering, thus, in most cases, the Lorentz force works as a means of auxiliary propulsion to reduce the expenditure of fuel onboard. And that is why it is called Lorentz-augmented hovering. A dynamical model for Lorentz-augmented hovering around elliptic orbits is developed based upon the assumption that the Earth's magnetic field could be modeled as a tilted dipole that corotates with Earth. Fuel-optimal open-loop control laws are then derived based on the proposed dynamical model, presenting the optimal trajectories of the required specific charge of Lorentz spacecraft and the thruster-generated control acceleration. Considering the external disturbances that may drift the desired hovering position, a closed-loop integral sliding mode controller is also designed to guarantee the tracking of optimal control trajectories, ensuring the robustness of the system against perturbations. Numerical simulations are presented to analyze the characteristics of Lorentz-augmented hovering around eccentric orbits and the results substantiate the validity of the proposed open-loop and closed-loop control methods.
RTDS implementation of an improved sliding mode based inverter controller for PV system.
Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M
2016-05-01
This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. PMID:26606852
An LMI approach for the Integral Sliding Mode and H∞ State Feedback Control Problem
NASA Astrophysics Data System (ADS)
Bezzaoucha, Souad; Henry, David
2015-11-01
This paper deals with the state feedback control problem for linear uncertain systems subject to both matched and unmatched perturbations. The proposed control law is based on an the Integral Sliding Mode Control (ISMC) approach to tackle matched perturbations as well as the H∞ paradigm for robustness against unmatched perturbations. The proposed method also parallels the work presented in [1] which addressed the same problem and proposed a solution involving an Algebraic Riccati Equation (ARE)-based formulation. The contribution of this paper is concerned by the establishment of a Linear Matrix Inequality (LMI)-based solution which offers the possibility to consider other types of constraints such as 𝓓-stability constraints (pole assignment-like constraints). The proposed methodology is applied to a pilot three-tank system and experiment results illustrate the feasibility. Note that only a few real experiments have been rarely considered using SMC in the past. This is due to the high energetic behaviour of the control signal. It is important to outline that the paper does not aim at proposing a LMI formulation of an ARE. This is done since 1971 [2] and further discussed in [3] where the link between AREs and ARIs (algebraic Riccati inequality) is established for the H∞ control problem. The main contribution of this paper is to establish the adequate LMI-based methodology (changes of matrix variables) so that the ARE that corresponds to the particular structure of the mixed ISMC/H∞ structure proposed by [1] can be re-formulated within the LMI paradigm.
Pashaei, Shabnam; Badamchizadeh, Mohammadali
2016-07-01
This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers. PMID:27108564
Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan
2016-03-01
This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. PMID:26777336
Huang, Y J; Way, H K
2001-01-01
This paper presents a robust control method for uncertain nonminimum phase systems with external disturbances. A systematic design algorithm is developed which links the sliding mode control and the root locus technique. Complete closed-loop pole placement is achieved in addition to the placement of the reduced order equivalent system poles. An integration function is employed in the sliding variable formulation. The output tracking error is guaranteed to vanish. The proposed method was successfully applied to control the angle of attack of a missile attitude control system. PMID:11577821
Hannen, Jennifer C.; Crews, John H.; Buckner, Gregory D.
2012-01-01
This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller. PMID:22962538
NASA Astrophysics Data System (ADS)
Kim, Minsung; Joe, Hangil; Kim, Jinwhan; Yu, Son-cheol
2015-10-01
We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.
NASA Astrophysics Data System (ADS)
Lincoln, N. K.; Veres, S. M.
2010-11-01
This article presents the application of two discrete-time sliding mode controllers, developed in conjunction with a potential function guidance method, to provide control in both position and attitude for a rigid, holonomic spacecraft body using thrusters only. Identification of mass and inertial matrix parameters is also included. Both controllers are demonstrated for their effectiveness under realistic actuator constraints. One of the controllers is also implemented on hardware in a representative 5 degrees of freedom (5DoF) testbed environment to show the practical performance of the methods.
NASA Astrophysics Data System (ADS)
Djemaï, M.; Busawon, K.; Benmansour, K.; Marouf, A.
2011-11-01
In this article, we present a high-order sliding mode controller of a DC motor drive connected to a multi-cellular converter. More specifically, we design a second-order (super-twisting) control algorithm for the speed regulation of a DC motor. For this, a switching control for the multi-cellular converter is derived in order to supply the correct reference value for the speed regulation. A practical implementation of the controller is realised using a laboratory set-up. The performance and the validity of the controller are shown experimentally.
NASA Astrophysics Data System (ADS)
Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih
2012-03-01
This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).
NASA Astrophysics Data System (ADS)
Otsuki, Masatsugu; Ushijima, Yumiko; Yoshida, Kazuo; Kimura, Hiroyuki; Nakagawa, Toshiaki
Transverse vibrations of ropes spanning a high-speed elevator are induced by resonance when a building sways because of an earthquake or wind force. Hence, an effective solution is demanded. In this study, we undertake to suppress the vibration of an elevator rope by using an input device placed in the vicinity of the upper boundary of the rope. This input device has gaps between an actuator and the rope to prevent the progression of their abrasion. A nonstationary control method is effective for the control of a time-varying system with which an elevator rope and a crane wire are categorized. In addition, a sliding mode controller is robust toward nonlinearity at the position where input is introduced. Thus, in this paper, we present a method of vibration control for the elevator rope, which is based on the nonstationary sliding mode control method using the input device with gaps. The effectiveness and robustness of the proposed controller are examined by numerical calculation that simulates input saturation, stroke limitation, gap-width expansion, and varying parameters, in the presence of model errors of the elevator rope. The results indicate effective vibration suppression and high robustness in the above cases except for the case of varying parameters.
Huang, Ting; Javaherian, Hossein; Liu, Derong
2011-06-01
This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved. PMID:21656924
NASA Astrophysics Data System (ADS)
Sun, Zhiyong; Hao, Lina; Chen, Wenlin; Li, Zhi; Liu, Liqun
2013-09-01
Ionic polymer-metal composite (IPMC), also called artificial muscle, is an EAP material which can generate a relatively large deformation with a low driving voltage (generally less than 5 V). Like other EAP materials, IPMC possesses strong nonlinear properties, which can be described as a hybrid of back-relaxation (BR) and hysteresis characteristics, which also vary with water content, environmental temperature and even the usage consumption. Nowadays, many control approaches have been developed to tune the IPMC actuators, among which adaptive methods show a particular striking performance. To deal with IPMCs’ nonlinear problem, this paper represents a robust discrete adaptive inverse (AI) control approach, which employs an on-line identification technique based on the BR operator and Prandtl-Ishlinskii (PI) hysteresis operator hybrid model estimation method. Here the newly formed control approach is called discrete adaptive sliding-mode-like control (DASMLC) due to the similarity of its design method to that of a sliding mode controller. The weighted least mean squares (WLMS) identification method was employed to estimate the hybrid IPMC model because of its advantage of insensitivity to environmental noise. Experiments with the DASMLC approach and a conventional PID controller were carried out to compare and demonstrate the proposed controller’s better performance.
Ebrahimkhani, Sadegh
2016-07-01
Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. PMID:27018145
Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung
2010-07-01
An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems. PMID:20639156
NASA Astrophysics Data System (ADS)
Lin, Tsung-Chih
2010-12-01
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
NASA Astrophysics Data System (ADS)
Chen, Xiaopeng; Shen, Weixiang; Cao, Zhenwei; Kapoor, Ajay
2014-01-01
In this paper, a novel approach for battery state of charge (SOC) estimation in electric vehicles (EVs) based on an adaptive switching gain sliding mode observer (ASGSMO) has been presented. To design the ASGSMO for the SOC estimation, the state equations based on a battery equivalent circuit model (BECM) are derived to represent dynamic behaviours of a battery. Comparing with a conventional sliding mode observer, the ASGSMO has a capability of minimising chattering levels in the SOC estimation by using the self-adjusted switching gain while maintaining the characteristics of being able to compensate modelling errors caused by the parameter variations of the BECM. Lyapunov stability theory is adopted to prove the error convergence of the ASGSMO for the SOC estimation. The lithium-polymer battery (LiPB) is utilised to conduct experiments for determining the parameters of the BECM and verifying the effectiveness of the proposed ASGSMO in various discharge current profiles including EV driving conditions in both city and suburban.
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Chen, Hung-Yi; Liang, Jin-Wei; Wu, Jia-Wei
2013-01-01
This paper presents an intelligent control strategy to overcome nonlinear and time-varying characteristics of a diaphragm-type pneumatic vibration isolator (PVI) system. By combining an adaptive rule with fuzzy and sliding-mode control, the method has online learning ability when it faces the system's nonlinear and time-varying behaviors during an active vibration control process. Since the proposed scheme has a simple structure, it is easy to implement. To validate the proposed scheme, a composite control which adopts both chamber pressure and payload velocity as feedback signal is implemented. During experimental investigations, sinusoidal excitation at resonance and random-like signal are input on a floor base to simulate ground vibration. Performances obtained from the proposed scheme are compared with those obtained from passive system and PID scheme to illustrate the effectiveness of the proposed intelligent control. PMID:23820746
NASA Astrophysics Data System (ADS)
Iskander, Boulaabi; Anis, Sellami; Fayçal, Ben Hmida; Moncef, Gossa
2009-03-01
This paper presents a design method of a Sliding Mode Observer (SMO) for robust sensor faults reconstruction of systems with matched uncertainty. This class of uncertainty requires a known upper bound. The basic idea is to use the H∞ concept to design the observer, which minimizes the effect of the uncertainty on the reconstruction of the sensor faults. Specifically, we applied the equivalent output error injection concept from previous work in Fault Detection and Isolation (FDI) scheme. Then, these two problems of design and reconstruction can be expressed and numerically formulate via Linear Matrix Inequalities (LMIs) optimization. Finally, a numerical example is given to illustrate the validity and the applicability of the proposed approach.
Sliding-mode control of a six-phase series/parallel connected two induction motors drive.
Abjadi, Navid R
2014-11-01
In this paper, a parallel configuration is proposed for two quasi six-phase induction motors (QIMs) to feed them from a single six-phase voltage source inverter (VSI). A direct torque control (DTC) based on input-output feedback linearization (IOFL) combined with sliding mode (SM) control is used for each QIM in stationary reference frame. In addition, an adaptive scheme is employed to solve the motor resistances mismatching problem. The effectiveness and capability of the proposed method are shown by practical results obtained for two QIMs in series/parallel connections supplied from a single VSI. The decoupling control of QIMs and the feasibility of their torque and flux control are investigated. Moreover, a complete comparison between series and parallel connections of two QIMs is given. PMID:25264286
Han, Yaozhen; Liu, Xiangjie
2016-05-01
This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. PMID:26920085
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Muñoz, C; Young, H; Antileo, C; Bornhardt, C
2009-01-01
This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs). PMID:19923760
Iskander, Boulaabi; Faycal, Ben Hmida; Moncef, Gossa; Anis, Sellami
2009-03-05
This paper presents a design method of a Sliding Mode Observer (SMO) for robust sensor faults reconstruction of systems with matched uncertainty. This class of uncertainty requires a known upper bound. The basic idea is to use the H{sub {infinity}} concept to design the observer, which minimizes the effect of the uncertainty on the reconstruction of the sensor faults. Specifically, we applied the equivalent output error injection concept from previous work in Fault Detection and Isolation (FDI) scheme. Then, these two problems of design and reconstruction can be expressed and numerically formulate via Linear Matrix Inequalities (LMIs) optimization. Finally, a numerical example is given to illustrate the validity and the applicability of the proposed approach.
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-01-01
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-01-01
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081
NASA Astrophysics Data System (ADS)
Cao, Zhengcai; Yin, Longjie; Fu, Yili
2013-01-01
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
NASA Astrophysics Data System (ADS)
Aghababa, Mohammad Pourmahmood
2012-03-01
The aim of this note is to point out some comments to the article [Delavari H, Ghaderi R, Ranjbar A, Momani S. Fuzzy fractional order sliding mode controller for nonlinear systems, Commun Nonlinear Sci Numer Simulat 15 (2010) 963-978].
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo
2016-05-01
In this paper, self- and controlled synchronizations of three eccentric rotors (ERs) in line driven by induction motors rotating in the same direction in a vibrating system are investigated. The vibrating system is a typical underactuated mechanical-electromagnetic coupling system. The analysis and control of the vibrating system convert to the synchronization motion problem of three ERs. Firstly, the self-synchronization motion of three ERs is analyzed according to self-synchronization theory. The criterions of synchronization and stability of self-synchronous state are obtained by using a modified average perturbation method. The significant synchronization motion of three ERs with zero phase differences cannot be implemented according to self-synchronization theory through analysis and simulations. To implement the synchronization motion of three ERs with zero phase differences, an adaptive sliding mode control (ASMC) algorithm based on a modified master-slave control strategy is employed to design the controllers. The stability of the controllers is verified by using Lyapunov theorem. The performances of the controlled synchronization system are presented by simulations to demonstrate the effectiveness of controllers. Finally, the effects of reference speed and non-zero phase differences on the controlled system are discussed to show the strong robustness of the proposed controllers. Additionally, the dynamic responses of the vibrating system in different synchronous states are analyzed.
NASA Astrophysics Data System (ADS)
Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki
One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.
NASA Astrophysics Data System (ADS)
Hu, Qinglei
2010-09-01
This paper presents a dual-stage control system design method for the rotational maneuver control and vibration stabilization of a flexible spacecraft. In this design approach, the sub-systems of attitude control and vibration suppression are designed separately using the low order model. Based on the sliding mode control (SMC) theory, a discontinuous attitude control law in the form of the input voltage of the reaction wheel is derived to control the orientation of the spacecraft, incorporating the L 2-gain performance criterion constraint. The resulting closed-loop system is proven to be uniformly ultimately bounded stability and the effect of the external disturbance on both attitude quaternion and angular velocity can be attenuated to the prescribed level as well. In addition, an adaptive version of the control law is designed for adapting the unknown upper bounds of the lumped disturbance such that the limitation of knowing the bound of the disturbance in advance is released. For actively suppressing the induced vibration, strain rate feedback control method is also investigated by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance and uncertainty.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. PMID:26686458
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2016-01-01
In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. PMID:26704719
NASA Astrophysics Data System (ADS)
Meo, Santolo; Sorrentino, Vincenzo
2015-03-01
In the paper a new discrete-time integral sliding mode control (DISMC) with disturbances compensation and reduced chattering for grid-connected inverter is proposed for active and reactive power regulation. Differently by many SMC proposed in literature that have a time-continuous formulation in spite have been implemented with digital processor, the proposed DISMC is fully formulated in discrete-time, taking into account the effects introduced by a microprocessor-based implementation. As will be demonstrated such approach consents to reduce the chattering about the sliding manifold within a boundary layer of O(T2) thickness instead of O(T) (being T the sampling period of the control algorithm). Moreover it introduces a correction of the control vector which eliminates the influence of modeling error and external disturbances improving stability and robustness of the controlled system. Constant converter switching frequency is achieved by using space vector modulation, which eases the design of the ac harmonic filter. In the paper, after a detailed formalization of the proposed control algorithm, several numerical and experimental results on a three-phase grid-connected inverter prototype are shown, proving the effectiveness of the control strategy.
NASA Astrophysics Data System (ADS)
Boiko, I. M.
2012-01-01
The modified second-order sliding mode algorithm is used for controller tuning. Namely, the modified suboptimal algorithm-based test (modified SOT) and non-parametric tuning rules for proportional-integral-derivative (PID) controllers are presented in this article. In the developed method of test and tuning, the idea of coordinated selection of the test parameters and the controller tuning parameters is introduced. The proposed approach allows for the formulation of simple non-parametric tuning rules for PID controllers that provide desired amplitude or phase margins exactly. In the modified SOT, the frequency of the self-excited oscillations can be generated equal to either the phase crossover frequency or the magnitude crossover frequency of the open-loop system frequency response (including a future PID controller) - depending on the tuning method choice. The first option will provide tuning with specification on gain margin, and the second option will ensure tuning with specification on phase margin. Tuning rules for a PID controller and simulation examples are provided.
NASA Astrophysics Data System (ADS)
Li, Boyuan; Du, Haiping; Li, Weihua
2016-05-01
Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.
NASA Astrophysics Data System (ADS)
Yoshimura, Toshio
2016-02-01
This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Laghrouche, Salah; Wack, Maxime
2014-06-01
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.
Bayramoglu, Husnu; Komurcugil, Hasan
2014-07-01
A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods. PMID:24913067
NASA Astrophysics Data System (ADS)
Zhong, Fuli; Li, Hui; Zhong, Shouming; Zhong, Qishui; Yin, Chun
2015-07-01
A state of charge (SOC) estimation approach based on an adaptive sliding mode observer (SMO) and a fractional order equivalent circuit model (FOECM) for lithium-ion batteries is proposed in this paper. In order to design the adaptive sliding mode observer (SMO) for the SOC estimation, the state equations based on a FOECM of battery are derived. A new self-adjusting strategy for the observer gains is presented to adjust the observer in the estimating process, which helps to reduce chattering and convergence time. Furthermore, a continuous and smooth function called hyperbolic tangent function is applied to balance the chattering affection and the disturbance. At last, a battery simulation model is established to test the SOC estimation performance of the designed SMOs, and the results show the proposed approach is feasible and effective.
NASA Astrophysics Data System (ADS)
Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua
2014-04-01
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.
Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh
2015-01-01
Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin–blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results. PMID:26284169
NASA Astrophysics Data System (ADS)
Hasheminejad, Seyyed M.; Nezami, M.; Aryaee Panah, M. E.
2012-04-01
Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler-Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin-Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm-1). The classical Runge-Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the Rayleigh
Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control
NASA Astrophysics Data System (ADS)
Lian, Yijun; Gómez, Gerard; Masdemont, Josep J.; Tang, Guojian
2014-10-01
In this work, station-keeping of real Earth-Moon libration point orbits is studied using discrete-time sliding mode control (DSMC). For comparison, a discrete linear quadratic regulator (DLQR) controller is also considered. The libration orbits are termed “real” in the sense that they are obtained in a complete Solar System model, taking into account all the gravitational forces of the planets, the Moon, and the Sun. This is a key point for any station-keeping study, that the use of far from real orbits as nominal ones increases unnecessarily the station-keeping cost. The resulting controlled system, linearised with respect to some nominal orbit, takes a discrete-time form suitable for applying impulsive maneuvers. The DSMC controller is designed by the reaching law with the parameters chosen in an adaptive way. A method for designing the sliding surface is proposed. In order to assess and compare the performance of the two controllers, simulations are done for six libration point orbits around the L2 point (three halo orbits and three Lissajous ones) during a time span of 10 years. Several practical constraints are also considered in the simulations. Extensive Monte Carlo results show that the proposed DSMC approach is able to maintain the spacecraft within a close vicinity of the nominal orbits with a maneuver cost less than 2 m/s per year, and it outperforms the DLQR approach in terms of the position controllability. Some comparison with previous results obtained by other authors with different procedures is also given.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Choi, Seung-Bok
2015-02-01
In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.
NASA Astrophysics Data System (ADS)
Chen, Qiang; Nan, Yu-Rong; Zheng, Heng-Huo; Ren, Xue-Mei
2015-11-01
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61403343 and 61433003), the Scientific Research Foundation of Education Department of Zhejiang Province, China (Grant No. Y201329260), and the Natural Science Foundation of Zhejiang University of Technology, China (Grant No. 1301103053408).
NASA Astrophysics Data System (ADS)
Pamosoaji, Anugrah K.; Thuong Cat, Pham; Hong, Keum-Shik
2014-12-01
An obstacle avoidance problem of rear-steered wheeled vehicles in consideration of the presence of uncertainties is addressed. Modelling errors and additional uncertainties are taken into consideration. Controller designs for driving and steering motors are designed. A proportional-derivative-type driving motor controller and a sliding-mode steering controller combined with radial basis function neural network (RBFNN) based estimators are proposed. The convergence properties of the RBFNN-based estimators are proven by the Stone-Weierstrass theorem. The stability of the proposed control law is proven using Lyapunov stability analysis. The obstacle avoidance strategy utilising the sliding surface adjustment to an existing navigation method is presented. It is concluded that the driving velocity and steering-angle performances of the proposed control system are satisfactory.
Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi
2016-03-01
As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. PMID:26704720
Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing
2015-09-01
A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. PMID:26303957
NASA Astrophysics Data System (ADS)
Zhou, Di; Zhang, Yong-An; Duan, Guang-Ren
The two-step filter has been combined with a modified Sage-Husa time-varying measurement noise statistical estimator, which is able to estimate the covariance of measurement noise on line, to generate an adaptive two-step filter. In many practical applications such as the bearings-only guidance, some model parameters and the process noise covariance are also unknown a priori. Based on the adaptive two-step filter, we utilize multiple models in the first-step filtering as well as in the time update of the second-step filtering to handle the uncertainties of model parameters and process noise covariance. In each timestep of the multiple model filtering, probabilistic weights punishing the estimates of first-step state from different models, and their associated covariance matrices are acquired according to Bayes’ rule. The weighted sum of the estimates of first-step state and that of the associated covariance matrices are extracted as the ultimate estimate and covariance of the first-step state, and are used as measurement information for the measurement update of the second-step state. Thus there is still only one iteration process and no apparent enhancement of computation burden. A motion tracking sliding-mode guidance law is presented for missiles with non-negligible delays in actual acceleration. This guidance law guarantees guidance accuracy and is able to enhance observability in bearings-only tracking. In bearings-only cases, the multiple model adaptive two-step filter is applied to the motion tracking sliding-mode guidance law, supplying relative range, relative velocity, and target acceleration information. In simulation experiments satisfactory filtering and guidance results are obtained, even if the filter runs into unknown target maneuvers and unknown time-varying measurement noise covariance, and the guidance law has to deal with a large time lag in acceleration.
Ajoudani, Arash; Erfanian, Abbas
2009-07-01
During the past several years, several strategies have been proposed for control of joint movement in paraplegic subjects using functional electrical stimulation (FES), but developing a control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, muscle fatigue, and external disturbances, and to be easy to apply without any re-identification of plant dynamics during different experiment sessions is still an open problem. In this paper, we propose a novel control methodology that is based on synergistic combination of neural networks with sliding-mode control (SMC) for controlling FES. The main advantage of SMC derives from the property of robustness to system uncertainties and external disturbances. However, the main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. To eliminate the chattering, we couple two neural networks with online learning without any offline training into the SMC. A recurrent neural network is used to model the uncertainties and provide an auxiliary equivalent control to keep the uncertainties to low values, and consequently, to use an SMC with lower switching gain. The second neural network consists of a single neuron and is used as an auxiliary controller. The control law will be switched from the SMC to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. Extensive simulations and experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed neuroadaptive SMC. The results show that the neuro-SMC provides accurate tracking control with fast convergence for different reference trajectories and could generate control signals to compensate the muscle fatigue and reject the external disturbance. PMID
Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid
2016-06-13
Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361
NASA Astrophysics Data System (ADS)
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-08-01
A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
2002-01-01
In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.
NASA Astrophysics Data System (ADS)
Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva
2013-08-01
In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.
NASA Astrophysics Data System (ADS)
Chiang, Mao-Hsiung; Chien, Yu-Wei
Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.
Implantable CMOS Biomedical Devices
Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko
2009-01-01
The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo
2016-05-01
In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.
NASA Astrophysics Data System (ADS)
Waltham, Nick
The charge-coupled device (CCD) has been developed primarily as a compact image sensor for consumer and industrial markets, but is now also the preeminent visible and ultraviolet wavelength image sensor in many fields of scientific research including space-science and both Earth and planetary remote sensing. Today"s scientific or science-grade CCD will strive to maximise pixel count, focal plane coverage, photon detection efficiency over the broadest spectral range and signal dynamic range whilst maintaining the lowest possible readout noise. The relatively recent emergence of complementary metal oxide semiconductor (CMOS) image sensor technology is arguably the most important development in solid-state imaging since the invention of the CCD. CMOS technology enables the integration on a single silicon chip of a large array of photodiode pixels alongside all of the ancillary electronics needed to address the array and digitise the resulting analogue video signal. Compared to the CCD, CMOS promises a more compact, lower mass, lower power and potentially more radiation tolerant camera.
Regenerative switching CMOS system
Welch, J.D.
1998-06-02
Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.
Regenerative switching CMOS system
Welch, James D.
1998-01-01
Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.
SOI CMOS Imager with Suppression of Cross-Talk
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao
2009-01-01
A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.
Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza
2015-09-01
To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. PMID:25983065
NASA Astrophysics Data System (ADS)
Turchetta, R.; Guerrini, N.; Sedgwick, I.
2011-01-01
CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.
CMOS Integrated Carbon Nanotube Sensor
Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.
2009-05-23
Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.
NASA Astrophysics Data System (ADS)
Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.
2016-07-01
High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.
CMOS output buffer wave shaper
NASA Technical Reports Server (NTRS)
Albertson, L.; Whitaker, S.; Merrell, R.
1990-01-01
As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.
Fabrication of CMOS image sensors
NASA Astrophysics Data System (ADS)
Malinovich, Yacov; Koltin, Ephie; Choen, David; Shkuri, Moshe; Ben-Simon, Meir
1999-04-01
In order to provide its customers with sub-micron CMOS fabrication solutions for imaging applications, Tower Semiconductor initiated a project to characterize the optical parameters of Tower's 0.5-micron process. A special characterization test chip was processed using the TS50 process. The results confirmed a high quality process for optical applications. Perhaps the most important result is the process' very low dark current, of 30-50 pA/cm2, using the entire window of process. This very low dark current characteristic was confirmed for a variety of pixel architectures. Additionally, we have succeeded to reduce and virtually eliminate the white spots on large sensor arrays. As a foundry Tower needs to support fabrication of many different imaging products. Therefore we have developed a fabrication methodology that is adjusted to the special needs of optical applications. In order to establish in-line process monitoring of the optical parameters, Tower places a scribe line optical test chip that enables wafer level measurements of the most important parameters, ensuring the optical quality and repeatability of the process. We have developed complementary capabilities like in house deposition of color filter and fabrication of very large are dice using sub-micron CMOS technologies. Shellcase and Tower are currently developing a new CMOS image sensor optical package.
CMOS downsizing toward sub-10 nm
NASA Astrophysics Data System (ADS)
Iwai, Hiroshi
2004-04-01
Recently, CMOS downsizing has been accelerated very aggressively in both production and research level, and even transistor operation of a 6 nm gate length p-channel MOSFET was reported in a conference. However, many serious problems are expected for implementing such small-geometry MOSFETs into large scale integrated circuits, and it is still questionable whether we can successfully introduce sub-10 nm CMOS LSIs into the market or not. In this paper, limitation and its possible causes for the downscaling of CMOS towards sub-10 nm are discussed with consideration of past CMOS predictions for the limitation.
Nanosecond monolithic CMOS readout cell
Souchkov, Vitali V.
2004-08-24
A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.
NASA Technical Reports Server (NTRS)
Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)
2002-01-01
A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.
Accelerated life testing effects on CMOS microcircuit characteristics
NASA Technical Reports Server (NTRS)
1977-01-01
Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.
Carbon Nanotube Integration with a CMOS Process
Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto
2010-01-01
This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330
Biosensing with integrated CMOS nanopores
NASA Astrophysics Data System (ADS)
Uddin, Ashfaque; Yemenicioglu, Sukru; Chen, Chin-Hsuan; Corgliano, Ellie; Milaninia, Kaveh; Xia, Fan; Plaxco, Kevin; Theogarajan, Luke
2012-10-01
This paper outlines our recent efforts in using solid-state nanopores as a biosensing platform. Traditionally biosensors concentrate mainly on the detection platform and not on signal processing. This decoupling can lead to inferior sensors and is exacerbated in nanoscale devices, where device noise is large and large dynamic range is required. This paper outlines a novel platform that integrates the nano, micro and macroscales in a closely coupled manner that mitigates many of these problems. We discuss our initial results of DNA translocation through the nanopore. We also briefly discuss the use of molecular recognition properties of aptamers with the versatility of the nanopore detector to design a new class of biosensors in a CMOS compatible platform.
Flexible packaging and integration of CMOS IC with elastomeric microfluidics
NASA Astrophysics Data System (ADS)
Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.
2013-05-01
We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.
Nanopore-CMOS Interfaces for DNA Sequencing.
Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim
2016-01-01
DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529
Ion traps fabricated in a CMOS foundry
Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.
2014-07-28
We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.
Characterization and reliability of CMOS microstructures
NASA Astrophysics Data System (ADS)
Fedder, Gary K.; Blanton, Ronald D. S.
1999-08-01
This paper provides an overview of high-aspect-ratio CMOS micromachining, focusing on materials characterization, reliability, and fault analysis. Composite microstrutural beam widths and gaps down to 1.2 micrometers are etched out of conventional CMOS dielectric, aluminum, and gate-polysilicon thin films using post-CMOS dry etching for both structural sidewall definition and for release from the substrate. Differences in stress between the multiple metal and dielectric layers cause vertical stress gradients and curl, while misalignment between layers causes lateral stress gradients and curl. Cracking is induced in a resonant fatigue structures at 620 MPa of repetitive stress after over 50 million cycles. Beams have withstood over 1.3 billion cycles at 124 MPa stress levels induced by electrostatic actuation. Failures due to process defects are classified according to the geometrical features of the defective structures. Relative probability of occurrence of each defect type is extracted from the process simulation results.
Resistor Extends Life Of Battery In Clocked CMOS Circuit
NASA Technical Reports Server (NTRS)
Wells, George H., Jr.
1991-01-01
Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.
Low power, CMOS digital autocorrelator spectrometer for spaceborne applications
NASA Technical Reports Server (NTRS)
Chandra, Kumar; Wilson, William J.
1992-01-01
A 128-channel digital autocorrelator spectrometer using four 32 channel low power CMOS correlator chips was built and tested. The CMOS correlator chip uses a 2-bit multiplication algorithm and a full-custom CMOS VLSI design to achieve low DC power consumption. The digital autocorrelator spectrometer has a 20 MHz band width, and the total DC power requirement is 6 Watts.
High-temperature Complementary Metal Oxide Semiconductors (CMOS)
NASA Technical Reports Server (NTRS)
Mcbrayer, J. D.
1981-01-01
The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.
End-of-fabrication CMOS process monitor
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.
1990-01-01
A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).
Low power SEU immune CMOS memory circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Whitaker, Sterling
1992-01-01
The authors report a design improvement for CMOS static memory circuits hardened against single event upset (SEU) using a recently proposed logic/circuit design technique. This improvement drastically reduces static power consumption, reduces the number of transistors required in a D flip-flop design, and eliminates the possibility of capturing an upset state in the slave section during a clock transition.
Fully CMOS-compatible titanium nitride nanoantennas
NASA Astrophysics Data System (ADS)
Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.; Baum, Brian K.; Goldhaber-Gordon, David; Dionne, Jennifer A.
2016-02-01
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.
NASA Technical Reports Server (NTRS)
Bobin, V.; Whitaker, S.
1990-01-01
This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered.
Radiation Tolerance of 65nm CMOS Transistors
Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.
2015-12-11
We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.
SEU hardening of CMOS memory circuit
NASA Technical Reports Server (NTRS)
Whitaker, S.; Canaris, J.; Liu, K.
1990-01-01
This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.
Low energy CMOS for space applications
NASA Technical Reports Server (NTRS)
Panwar, Ramesh; Alkalaj, Leon
1992-01-01
The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.
CMOS preamplifiers for detectors large and small
O`Connor, P.
1997-12-31
We describe four CMOS preamplifiers developed for multiwire proportional chambers (MWPC) and silicon drift detectors (SDD) covering a capacitance range from 150 pF to 0.15 pF. Circuit techniques to optimize noise performance, particularly in the low-capacitance regime, are discussed.
Low energy CMOS for space applications
NASA Astrophysics Data System (ADS)
Panwar, Ramesh; Alkalaj, Leon
The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.
Low-Power SOI CMOS Transceiver
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.
2003-01-01
The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS
Nabi, Jameel-Un; Sajjad, Muhammad
2007-11-15
Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus {sup 50}V by using the pn-QRPA theory. At present {sup 50}V is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a {sup 50}V(d, {sup 2}He){sup 50}Ti experiment, with the earlier work of Fuller, Fowler, and Newman (referred to as FFN) and subsequently with the large-scale shell model calculations. One curious finding of the paper is that the Brink's hypothesis, usually employed in large-scale shell model calculations, is not a good approximation to use at least in the case of {sup 50}V. SNe Ia model calculations performed using FFN rates result in overproduction of {sup 50}Ti, and were brought to a much acceptable value by employing shell model results. It might be interesting to study how the composition of the ejecta using presently reported QRPA rates compare with the observed abundances.
McCoy, K B; Derecho, I; Wong, T; Tran, H M; Huynh, T D; La Duc, M T; Venkateswaran, K; Mogul, R
2012-09-01
The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions. PMID:22917036
Graphene/Si CMOS Hybrid Hall Integrated Circuits
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-01-01
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222
Spectrum acquisition of detonation based on CMOS
NASA Astrophysics Data System (ADS)
Li, Yan; Bai, Yonglin; Wang, Bo; Liu, Baiyu; Xue, Yingdong; Zhang, Wei; Gou, Yongsheng; Bai, Xiaohong; Qin, Junjun; Xian, Ouyang
2010-10-01
The detection of high-speed dynamic spectrum is the main method to acquire transient information. In order to obtain the large amount spectral data in real-time during the process of detonation, a CMOS-based system with high-speed spectrum data acquisition is designed. The hardware platform of the system is based on FPGA, and the unique characteristic of CMOS image sensors in the rolling shutter model is used simultaneously. Using FPGA as the master control chip of the system, not only provides the time sequence for CIS, but also controls the storage and transmission of the spectral data. In the experiment of spectral data acquisition, the acquired information is transmitted to the host computer through the CameraLink bus. The dynamic spectral curve is obtained after the subsequent processing. The experimental results demonstrate that this system is feasible in the acquisition and storage of high-speed dynamic spectrum information during the process of detonation.
Ultralow-Loss CMOS Copper Plasmonic Waveguides.
Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S
2016-01-13
Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips. PMID:26654281
Noise in a CMOS digital pixel sensor
NASA Astrophysics Data System (ADS)
Chi, Zhang; Suying, Yao; Jiangtao, Xu
2011-11-01
Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS.
Cmos spdt switch for wlan applications
NASA Astrophysics Data System (ADS)
Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.
2015-04-01
WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.
IR CMOS: infrared enhanced silicon imaging
NASA Astrophysics Data System (ADS)
Pralle, M. U.; Carey, J. E.; Haddad, Homayoon; Vineis, C.; Sickler, J.; Li, X.; Jiang, J.; Sahebi, F.; Palsule, C.; McKee, J.
2013-06-01
SiOnyx has developed visible and infrared CMOS image sensors leveraging a proprietary ultrafast laser semiconductor process technology. This technology demonstrates 10 fold improvements in infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Furthermore, these sensitivity enhancements are achieved on a focal plane with state of the art noise performance of 2 electrons/pixel. By capturing light in the visible regime as well as infrared light from the night glow, this sensor technology provides imaging in daytime through twilight and into nighttime conditions. The measured 10x quantum efficiency at the critical 1064 nm laser node enables see spot imaging capabilities in a variety of ambient conditions. The spectral sensitivity is from 400 to 1200 nm.