Science.gov

Sample records for 51sc effective charges

  1. Effective Topological Charge Cancelation Mechanism

    NASA Astrophysics Data System (ADS)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  2. Effective Topological Charge Cancelation Mechanism

    PubMed Central

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  3. Effective Topological Charge Cancelation Mechanism.

    PubMed

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant "impurities" (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  4. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  5. Effects Of Environmental Electrical Charges On Spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1993-01-01

    Handbook presents information on three kinds of disruptive effects of environmental electrical charges upon operations of electronic circuits and other sensitive equipment in spacecraft. Addresses surface and internal charging and discharging, single-event upsets, and related design issues.

  6. Effects of induced charge in the kinestatic charge detector.

    PubMed

    Wagenaar, D J; Terwilliger, R A

    1995-05-01

    The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803

  7. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  8. Charge multiplication effect in thin diamond films

    NASA Astrophysics Data System (ADS)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  9. Space charge effect in isochronous rings

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.

    2008-08-25

    Cyclotrons, rings for precise nuclear mass spectrometry, and some light sources with extremely short bunches are operated or planned to be operated in the isochronous or almost isochronous regime. Also, many hadron synchrotrons run in the isochronous regime for a short period of time during transition crossing. The longitudinal motion is frozen in the isochronous regime that leads to accumulation of the integral of the longitudinal space charge force. In low-gamma hadron machines, this can cause a fast growth of the beam energy spread even at modest beam intensities. Additionally, the transverse component of the space charge effectively modifies the dispersion function and the slip factor shifting the isochronous (transition) point. In this paper, we discuss space charge effects in the isochronous regime and present experimental results obtained in the Small Isochronous Ring, developed at Michigan State University specifically for studies of space charge in the isochronous regime.

  10. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  11. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  12. Effective dynamics of a classical point charge

    SciTech Connect

    Polonyi, Janos

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.

  13. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  14. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    SciTech Connect

    Zhao, Mingtian; Li, Baohui E-mail: baohui@nankai.edu.cn; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai E-mail: baohui@nankai.edu.cn

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  15. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  16. Effect of charge memory in organic composites

    NASA Astrophysics Data System (ADS)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  17. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  18. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  19. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  20. Droplet Charging Effects in the Space Environment

    SciTech Connect

    Joslyn, Thomas B.; Ketsdever, Andrew D.

    2011-05-20

    Several applications exist for transiting liquid droplets through the near-Earth space environment. Numerical results are presented for the charging of liquid droplets of trimethyl pentaphenyl siloxane (DC705) in three different plasma environments: ionosphere, auroral, and geosynchronous Earth orbit (GEO). Nominal and high geomagnetic activity cases are investigated. In general, high levels of droplet charging (>100 V) exist only in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silicon-oil droplets due to photoemission. The photoemission yield in the 120-200 nm wavelength range was found to be approximately 0.06.

  1. Morphology Effects on Space Charge Characteristics of Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhou; Yuanxiang; Wang; Yunshan; Zahn, Markus; Wang; Ninghua; Sun; Qinghua; Liang; Xidong; Guan; Zhichen

    2011-01-01

    Low density polyethylene (LDPE) film samples with different morphology were prepared by three kinds of annealing methods which were different in cooling rates in this study. A pulsed electro-acoustic (PEA) space charge measurement system was improved to solve the surface discharge problems for small samples applied with a high voltage. Negative direct current (DC) fields from 50 to above 220 kV/mm were applied to the samples. The influences of morphologies on space charge and space charge packet characteristics were measured by the improved high voltage withstand (HVW) PEA system. Mobility and trap depth of released charges were calculated by space charge decay. It was found that there is a different probability of space charge packet initiation under applied field from -60 to -100 kV/mm. Average velocity and mobility of the space charge packets were calculated by space charge packet dynamics. It was found that the lower cooling rate samples have higher crystallinity, more homo-charge accumulation, lower mobility and deeper trap depth. The mechanism of morphological effects on space charge phenomena have been presumed to give a plausible explanation for their inherent relationships. The morphology in the metal-dielectric interface and in the bulk is convincingly suggested to be responsible for the injection and propagation processes of space charge. A model of positive space charge initiation in LDPE samples was also suggested and analyzed. The mechanism of morphological effects and the charge injection model are well fit with the injection and propagation processes of space charge. The different effects of morphology in the metal-dielectric interface and in the bulk of polymers are stressed.

  2. Understanding the effect of space charge on instabilities

    SciTech Connect

    Blaskiewicz, M.; Chao, A.; Chin, Y. H.

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  3. Studies of space-charge effects in ultrashort electron bunches

    SciTech Connect

    Fubiani, Gwenael; Leemans, Wim; Esarey, Eric

    2000-06-01

    Laser-driven plasma-based accelerators are capable of producing ultrashort electron bunches in which the longitudinal size is much smaller than the transverse size. We present theoretical studies of the transport of such electron bunches in vacuum. Space charge forces acting on the bunch are calculated using an ellipsoidal bunch shape model. The effects of space charge forces and energy spread on longitudinal and transverse bunch properties are evaluated for various bunch lengths energies and amount of charge.

  4. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  5. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William H.

    2009-12-01

    Experiments were conducted in a 23 m3 closed chamber using a charge encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included case/charge mass ratio, charge diameter and charge type (i.e., detonation energy and pressure). The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, significant pressure rises versus the steel-cased and bare charges indicated combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products gave an expression for burnt casing mass as a function of Gurney velocity and charge diameter. The equivalent bare charge mass that yields the same explosion pressure as the cased charge increased with case/charge mass ratio and reached 2.5 times charge mass at the ratio of 1.75.

  6. Longitudinal space charge effects near transition

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.C.

    2009-05-04

    Experimental and numerical studies of the longitudinal beam dynamics in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast, space-charge driven instability that did not fit the model of the negative mass instability. This paper proposes a simple analytical model explaining these results. Also, the paper compares the model to result s of experimental and numerical studies of the longitudinal beam dynamics in SIR.

  7. Anisotropic charge Kondo effect in a triple quantum dot.

    PubMed

    Yoo, Gwangsu; Park, Jinhong; Lee, S-S B; Sim, H-S

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity. PMID:25526143

  8. Anisotropic Charge Kondo Effect in a Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S.-S. B.; Sim, H.-S.

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity.

  9. Effect of thermal fluctuations on a charged dilatonic black Saturn

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Faizal, Mir

    2016-04-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  10. Space-Charge Effects in a Gas Detector

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    Discussion of space-charge effects in a photoluminescence cell that will be used as a nondisruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  11. High-Resolution Field Effect Sensing of Ferroelectric Charges

    SciTech Connect

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  12. High resolution field effect sensing of ferroelectric charges.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D.-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-03-04

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  13. High-resolution field effect sensing of ferroelectric charges.

    PubMed

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-04-13

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 μs. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 μC/cm(2), which is equivalent to 1/20 electron per nanometer square at room temperature. PMID:21375284

  14. Quantum gravity effects on charged microblack holes thermodynamics

    NASA Astrophysics Data System (ADS)

    Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.

    2016-08-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  15. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  16. Impact of charging efficiency variations on the effectiveness of variable-rate-based charging strategies for electric vehicles

    NASA Astrophysics Data System (ADS)

    Amoroso, Francesco A.; Cappuccino, Gregorio

    The huge energy demand coming from the increasing diffusion of plug-in electric vehicles (PEVs) poses a significant challenge to electricity utilities and vehicle manufacturers in developing smart charging systems interacting in real time with distribution grids. These systems will have to implement smart charging strategies for PEV batteries on the basis of negotiation phases between the user and the electric utility regarding information about battery chemistries, tariffs, required energy and time available for completing the charging. Strategies which adapt the charging current to grid load conditions are very attractive. Indeed, they allow full exploitation of the grid capacity, with a consequent greater final state of charge and higher utility financial profits with respect to approaches based on a fixed charging rate. The paper demonstrates that the charging current should be chosen also taking into account the effect that different charging rates may have on the charging efficiency. To this aim, the performances of two smart variable-rate-based charging strategies, taken as examples, are compared by considering possible realistic relationships between the charging efficiency and the charging rate. The analysis gives useful guidelines for the development of smart charging strategies for PEVs as well as for next-generation battery charging and smart grid management systems.

  17. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  18. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  19. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  20. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  1. Effect of the surface charge on ion transport through nanoslits

    NASA Astrophysics Data System (ADS)

    Schoch, Reto B.; van Lintel, Harald; Renaud, Philippe

    2005-10-01

    A description of ion transport through geometrically defined nanoslits is presented. It is characterized by the effective surface charge density and was obtained by impedance spectroscopy measurements of electrolytes with different physicochemical properties. The fluid channels were fabricated in a Pyrex-Pyrex field assisted bonding process with an intermediate layer of amorphous silicon. The height of the nanoslits was defined by the 50nm thickness of the amorphous silicon layer. Two microfluidic channels, containing electrodes for the characterization of the nanoslits, maintained fresh liquid on both sides of the nanoapertures. By changing the KCl concentration of the electrolyte, a conductance plateau (in log-log scale) was observed due to the dominance of the effective surface charge density, resulting in an excess of mobile counterions in the nanoslits at low salt concentrations. The effective surface charge density of the Pyrex nanoslits could be modified by changing the pH of the solution. It was verified that at higher pH values the nanoslit conductance increased. Field-effect experiments allowed changing the effective surface charge density as well. The polarity of the external voltage could be chosen such that the effective surface charge density was increased or decreased, resulting in a higher or lower nanoslit conductance. This regulation of ionic flow can be exploited for the fabrication of nanofluidic devices.

  2. Charging effects in passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.

    1995-02-01

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.

  3. Study of the effect of the space charge using SYNCH

    SciTech Connect

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-04-25

    The interparticle repulsion, or space charge, limits the density of charged-particle beams that can be obtained in storage rings. In this report the authors study the effect of increasing the space charge, with an exact computation of the lattice parameters using SYNCH. Systematically increasing the ion density by decreasing the emittance with cooling techniques lowers the betatron tune, until the lower half-integral stopband resonance -- also induced by the beam -- is reached. In the simple model described in the report, the amount of ``cooling`` is limited by the encountered stopband of the lattice. Therefore, machines with a higher tune and larger periodicity are better suited to store beams with high space charge.

  4. Effects of kinematic cuts on net electric charge fluctuations

    NASA Astrophysics Data System (ADS)

    Karsch, Frithjof; Morita, Kenji; Redlich, Krzysztof

    2016-03-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multicomponent gas of Boltzmann particles with different charges, masses, and degeneracies. Cumulants of net electric charge fluctuations χnQ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, ptmin≤pt≤ptmax , weakens the effects of Bose statistics, i.e., contributions of effectively multicharged states to higher order moments. Consequently, cuts in pt modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data from the STAR and PHENIX Collaborations. We find that the different momentum cuts of ptmin=0.2GeV (STAR) and pt min=0.3 GeV (PHENIX) are responsible for more than 30% of the difference between these two data sets. We argue that the pt cuts imposed on charged particles will influence the normalized kurtosis κQσQ2=χ4Q/χ2Q of the electric charge fluctuations. In particular, the reduction of κQσQ2 with increasing pt min will lead to differences between PHENIX and STAR data of O (6 %) , which currently are buried under large statistical and systematic errors. We furthermore introduce the relation between momentum cutoff and finite volume effects, which is of relevance for the comparison between experimental data and lattice QCD calculations.

  5. Resist charging effect correction function qualification for photomasks production

    NASA Astrophysics Data System (ADS)

    Sidorkin, Vadim; Finken, Michael; Wandel, Timo; Nakayamada, Noriaki; Cantrell, G. R.

    2014-10-01

    We quantitatively evaluate Nuflare's latest resist charging effect correction (CEC) model for advanced photomask production using e-beam lithography. Functionality of this CEC model includes the simulation of static and timedependent charging effects together with an improved calibration method. CEC model calibration is performed by polynomial fitting of image placement distortions induced by various beam scattering effects on a special test design with writing density variations. CEC model parameters can be fine tuned for different photomask blank materials facilitating resist charging compensation maps for different product layers. Application of this CEC model into production yields a significant reduction in photomask image placement (IP), as well as improving photomask overlay between critical neighbouring layers. The correlations between IP improvement facilitated by this CEC model and single mask parameters are presented and discussed. The layer design specifics, resist and blank materials, coupled with their required exposure parameters are observed to be the major influences on CEC model performance.

  6. Large Seebeck effect by charge-mobility engineering

    PubMed Central

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M.; Strydom, A.M.; Søndergaard, M.; Iversen, Bo B.; Steglich, Frank

    2015-01-01

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials. PMID:26108283

  7. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  8. Space-Charge Effects in the Gas Detector

    SciTech Connect

    Ryutov, D; Hau-Riege, S; Bionta, R

    2007-09-24

    Discussion of space-charge effects in a photoluminescence cell that will be used as a non-disruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  9. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data.

  10. Phonon effects on spin-charge separation in one dimension.

    PubMed

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-21

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data. PMID:16712177

  11. Compressibility effects in shaped charge jet penetration

    NASA Astrophysics Data System (ADS)

    Haugstad, B. S.

    1981-03-01

    Among other hypotheses, the classical theory of high-speed penetration assumes the incompressibility of both the projectile and target. Employing a simple Murnaghan equation of state, we show here that direct compressibility effects (pv-work) on penetration depth are at most on the order of 10-15% for projectile speeds as high as 104 ms-1. Our results agree closely with similar results by Coombs (private communication, Royal Air Force Research Establishment, 1978), who used a more complex five-parameter equation of state. This indicates that rather simple equations of state may adequately represent essential thermodynamic features of high-speed penetration phenomena. The equation of state employed here furthermore allows approximate analytical results to be derived for both small and large projectile velocities.

  12. Space charge effects in ultrafast electron diffraction and imaging

    SciTech Connect

    Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-15

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  13. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  14. Effective charges and virial pressure of concentrated macroion solutions

    PubMed Central

    Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; Olvera de la Cruz, Monica

    2015-01-01

    The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin−Landau−Verwey−Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arise in concentrated suspensions. We show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion−macroion spatial correlation and the virial pressure obtained with the EPC model. Our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements. PMID:26170315

  15. Effects of ionizing radiation on charge-coupled imagers

    NASA Technical Reports Server (NTRS)

    Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.

    1975-01-01

    The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.

  16. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  17. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  18. Secondary Electron Emission from Dust and Its Effect on Charging

    SciTech Connect

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-11-29

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  19. Longitudinal emittance growth due to nonlinear space charge effect

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.

    2012-03-01

    Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.

  20. Charge Kondo effect in a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S. S.-B.; Sim, H.-S.

    2014-03-01

    We predict that the charge Kondo effect appears in a triangular triple quantum dot. The system has two-fold degenerate ground-state charge configurations, interdot Coulomb interactions, lead-dot electron tunnelings, but no interdot electron tunneling. We show, using bosonization and refermionization, that the system is described by the anisotropic Kondo model. The anisotropy can be tuned by changing lead-dot electron tunneling strength, which allows one to experimentally explore the transition between the ferromagnetic non-Fermi liquid and antiferromagnetic Kondo phases in the Kondo phase diagram. Using numerical renormalization group method, we demonstrate that the transition is manifested in electron conductances through the dot.

  1. Charge effect in point projection images of carbon fibres

    PubMed

    Prigent; Morin

    2000-09-01

    Nanometre-sized carbon fibres across holes have been observed in a lensless point projection field-emission microscope operating between 100 and 300 eV. At sufficiently high magnification fringe patterns appear; with the help of simulations we show that they are strongly dependent on the charge density of the fibres. These patterns are characterized by an odd number of fringes with a central fringe that becomes very bright as the charge increases. Average diameter and linear charge density have been obtained with remarkable precision from analysis of fringes. Charge distribution from the middle to the edge of fibres has been investigated as well as narrowings at localized places on the fringe pattern. From these two examples, the limits of the models used for the simulations and those of the data acquisition system are discussed. Finally, this work emphasizes the fact that the fringe pattern masks the actual form of the fibre and that it is necessary to take account of the charge effect to interpret this diffraction pattern. PMID:10971800

  2. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  3. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  4. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  7. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  8. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  9. Effective dynamics of an electrically charged string with a current

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  10. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  11. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    PubMed

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-01

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508

  12. Charge Effects on Mechanical Properties of Elastomeric Proteins

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  13. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  14. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Qin; Ning, Wen-Qiang; Zhao, Hui; Lin, Hai-Qing

    2006-03-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. A signature of electrons pairing in weak interaction regimes was found to be consistent with the existence of a metallic phase proposed recently by Clay and Hardikar [Phys. Rev. Lett. 95, 096401 (2005)]. By a comparison between our result and the experimental data of TTF-TCNQ, it is observed that electron-phonon interaction must be taken into account even in the strongly correlated system.

  15. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  16. Charge carrier coherence and Hall effect in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  17. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  18. Effective Reduction of Coulomb Repulsion in Charged Granular Matter

    NASA Astrophysics Data System (ADS)

    Scheffler, T.; Werth, J.; Wolf, D. E.

    2000-04-01

    This paper is an extension to a previous article by Scheffler and Wolfs.6 We study the rate of energy dissipation due to inelastic collisions in a charged granular gas. One observes that the electrostatic repulsion of two particles is effectively reduced by nearest neighbor interactions in a dense granular gas. We study the radial distribution function for dense systems, which leads to a better expression for the reduced energy barrier.

  19. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  20. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  1. Effect of Ionic Strength and Surface Charge on Convective Deposition.

    PubMed

    Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael D; Gilchrist, James F

    2015-11-17

    Particle-particle and particle-substrate interactions play a crucial role in capillary driven convective self-assembly for continuous deposition of particles. This systematic study demonstrates the nontrivial effects of varying surface charge and ionic strength of monosized silica microspheres in water on the quality of the deposited monolayer. Increase in particle surface charge results a broader range of parameters that result in monolayer deposition which can be explained considering the particle-substrate electrostatic repulsion in solution. Resulting changes in the coating morphology and microstructure at different solution conditions were observed using confocal microscopy enabling correlation of order to disorder transitions with relative particle stability. These results, in part, may explain similar results seen by Muangnapoh et al., 2013 in vibration-assisted convective deposition. PMID:26501996

  2. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  3. Substituent effects on charge transport in films of Au nanocrystals.

    PubMed

    Stansfield, Gemma L; Thomas, P John

    2012-07-25

    Charge transport (CT) in films of arylthiol-capped Au nanocrystals (NCs) exhibits strong substituent effects, with electron-donating substituents markedly decreasing conductivity. Films suited for measurements were obtained by ligand-exchange reactions on AuNCs grown at the water/toluene interface. Detailed analysis suggests the NCs interact with the ligands by resonance rather than inductive effects. The films were characterized by TEM, SEM, XPS, UV/vis, and AFM. CT characteristics were studied between 15 and 300 K. PMID:22746531

  4. Detergent solubilization of phospholipid vesicle. Effect of electric charge.

    PubMed Central

    Urbaneja, M A; Alonso, A; Gonzalez-Mañas, J M; Goñi, F M; Partearroyo, M A; Tribout, M; Paredes, S

    1990-01-01

    In order to explore the effect of electric charge on detergent solubilization of phospholipid bilayers, the interaction of nine electrically charged surfactants with neutral or electrically charged liposomes has been examined. The detergents belonged to the alkyl pyridinium, alkyl trimethylammonium or alkyl sulphate families. Large unilamellar liposomes formed by egg phosphatidylcholine plus or minus stearylamine or dicetyl phosphate were used. Solubilization was assessed as a decrease in light-scattering of the liposome suspensions. The results suggest that electrostatic forces do not play a significant role in the formation of mixed micelles and that hydrophobic interactions are by far the main forces involved in solubilization. In addition, from the study of thirty different liposome-surfactant systems, we have derived a series of empirical rules that may be useful in predicting the behaviour of untested surfactants: (i) the detergent concentration producing the onset of solubilization (Don) decreases as the alkyl chain length increases; the decrease follows a semi-logarithmic pattern in the case of alkyl pyridinium compounds; (ii) for surfactants with critical micellar concentrations (cmc) less than 6 x 10(-3) M, Don. is independent of the nature of the detergent and the bilayer composition; for detergents having cmc greater than 6 x 10(-3) M, Don. increases linearly with the cmc; and (iii) Don. varies linearly with the surfactant concentration that produces maximum solubilization. PMID:2400390

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  6. Evidence for a discrete charge effect within lipid bilayer membranes.

    PubMed Central

    Wang, C C; Bruner, L J

    1978-01-01

    A high amplitude voltage step technique has been used to meausre the surface density of dipicrylamine anions adsorbed at the surfaces of lipid bilayer membranes. Accompanying low amplitude measurements have determined the relaxation time for transient current flow across the membranes, a parameter governed by the height of the central energy barrier which dipicrylamine anions must cross in moving from one membrane surface to the other. Measured relaxation times and surface charge densities have been related by a quasi-continuum model of the discrete charge effect, which predicts that the membrane central barrier height will increase with increasing density of adsorbed surface charge. The experimentally determined relationship is in satisfactory agreement with the predictions of the model. The model does not provide a complete description of the membrane/solution interface, however, because it cannot be applied to the description of previously measured isotherms for the adsorption of dipicrylamine anions onto bilayer membranes surfaces. Possible reasons for this discrepancy are discussed. PMID:737286

  7. Space Charge Effects in a Gas Filled Penning Trap

    NASA Astrophysics Data System (ADS)

    Beck, D.; Ames, F.; Beck, M.; Bollen, G.; Delauré, B.; Schuurmans, P.; Schwarz, S.; Schmidt, P.; Severijns, N.; Forstner, O.

    2001-01-01

    Mass selective buffer gas cooling is a technique used for ions that are stored in a Penning trap. The technique can be applied to all elements and the mass resolving power achieved has proven to be sufficient to resolve isobars. When not only a few but 106 and more ions are stored at the same time, space charge starts to play a dominant role for the spatial distribution. In addition, the observed cyclotron frequency is shifted. This work investigates these effects by numerical calculations.

  8. Space charge effects for multipactor in coaxial lines

    SciTech Connect

    Sorolla, E.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  9. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.

    PubMed

    Blake, Mike

    2016-08-26

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by D_{c}=Cv_{B}^{2}/(2πT), where v_{B} is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos. PMID:27610842

  10. Analysis of Longitudinal Space Charge Effects With Radial Dependence

    SciTech Connect

    Wu, Juhao; Huang, Z.; Emma, P.; /SLAC

    2005-09-30

    Longitudinal space charge (LSC) force can be a main effect driving the microbunching instability in the linac for an x-ray free-electron laser (FEL). In this paper, the LSC-induced beam modulation is studied using an integral equation approach that takes into account the transverse (radial) variation of LSC field for both the coasting beam limit and bunched beam. Changes of beam energy and the transverse beam size can be also incorporated. We discuss the validity of this approach and compare it with other analyses as well as numerical simulations.

  11. Isotope mass and charge effects in tokamak plasmas

    SciTech Connect

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-15

    The effect of primary ion species of differing charge and mass - specifically, deuterium, hydrogen, and helium - on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  12. Isotope mass and charge effects in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-01

    The effect of primary ion species of differing charge and mass—specifically, deuterium, hydrogen, and helium—on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  13. Space charge and quantum effects on electron emission

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Lebowitz, Joel; Lau, Y. Y.; Luginsland, John

    2012-03-01

    Space charge effects reduce electron emission by altering the surface barrier via two effects: increasing the barrier height (Schottky factor) and width to electron emission by lowering the surface field and changing the magnitude of the dipole associated with electron density variation. A one-dimensional emission model using a transit time argument to account for charge in the anode-cathode (AK) gap and an analytical model of the dipole is used to approximate the effects of each factor on the current density. The transit time model is compared to the experimental data of Longo [J. Appl. Phys. 94, 6966 (2003)] for thermal emission. Changes in the dipole contribution are primarily associated with tunneling and therefore field emission. The transit time plus dipole modification is compared to the experimental data of Barbour et al. [Phys. Rev. 92, 45 (1953)] for field emission. The model's application to thermal-field, and photoemission in general is discussed, with the former corresponding to continuous current limit and the latter to a pulsed current limit of the model.

  14. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  15. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    PubMed Central

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  16. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Feng

    2015-09-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  17. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges.

    PubMed

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  18. Single Electron Charging and Quantum Effects in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Foxman, Ethan Bradley

    1993-01-01

    We present an experimental study of a small region (~0.3 times 0.3 mum^2) of two-dimensional electron gas in a GaAs/rm Al_{x}Ga_{1-x}As heterostructure. The small electron gas is coupled to electrical leads through tunnel barriers formed by negatively biased Schottky gates on the surface of the heterostructure. Electron transport is studied as a function of gate voltage, magnetic field, temperature, bias voltage and tunneling barrier height. We observe a rich interplay between single electron charging and quantum effects. The conductance of such systems was known to consist of a series of nearly periodic conductance peaks.^{1,2} We further investigate this behavior and show that our observations are consistent with a model that synthesizes classical single electron charging and a discrete tunneling density of states.^{3,4}. We investigate the nature and origin of this tunneling density of states. The spectrum of states is determined through current-voltage measurements and low-bias conductance measurements. The tunneling density of states is mapped as a function of gate voltage and magnetic field. In the latter case, we show that our observations can be understood through a self-consistent model of single electron charging in the quantum Hall regime.^5. Lastly, we report conductance measurements in the regime where the conductance across the tunnel barriers separating the small electron gas from its leads becomes of order e^2/h. We observe that in this regime single electron charging effects are quenched. This effect is shown to arise from an increased capacitance across one of the barriers and from the increased lifetime broadening of states in the small electron gas. ^6 (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.) ftn^1J. H. F. Scott -Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989). ^2U. Meirav, M. A. Kastner, and S. J. Wind

  19. Free charge localization and effective dielectric permittivity in oxides

    NASA Astrophysics Data System (ADS)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  20. [Galactic heavy charged particles damaging effect on biological structures].

    PubMed

    Grigor'ev, A I; Krasavin, E A; Ostrovskiĭ, M A

    2013-03-01

    A concept of the radiation risk of the manned interplanetary flights is proposed and substantiated. Heavy charged particles that are a component of the galactic cosmic rays (GCR) have a high damaging effect on the biological structures as great amount of energy is deposited in heavy particle tracks. The high biological effectiveness of heavy ions is observed in their action on cell genetic structures and the whole organism, including the brain structures. The hippocampus is the part of the central nervous system that is the most sensitive to radiation--first of all, to heavy charged particles. Irradiation of animals with accelerated iron ions at doses corresponding to the real fluxes of GCR heavy nuclei, to which Mars mission crews can be exposed, leads to marked behavioral function disorders in the post-irradiation period. To evaluate the radiation risk for the interplanetary flight crews, the concept of successful mission accomplishment is introduced. In these conditions, the central nervous system structures can be the critical target of GCR heavy nuclei. Their damage can modify the higher integrative functions of the brain and cause disorders in the crew members' operator performances. PMID:23789432

  1. Effects of reliability screens of MOS charge trapping

    SciTech Connect

    Shanneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.; Schwank, J.R.; Reber, R.A. Jr.

    1995-09-01

    The effects of pre-irradiation elevated-temperature bias stresses on the radiation hardness of field-oxide transistors have been investigated as a function of stress temperature, time, and bias. Both the stress temperature and time are found to have a significant impact on radiation-induced charge buildup in these transistors. Specifically, an increase in either the stress temperature or time causes a much larger negative shift (towards depletion) in the I-V characteristics of the n-channel field-oxide transistors. This increased shift in the transistor I-V characteristics with stress temperature and time suggests that the mechanisms responsible for the stress effects are thermally activated. An activation energy of {approximately}0.38 eV was measured. The stress bias was found to have no impact on radiation-induced charge buildup in these transistors. The observed stress temperature, time, and bias dependencies appears to be consistent with the diffusion of molecular hydrogen during a given stress period. These results have important implications for the development of hardness assurance test methods.

  2. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  3. Effective charge and effective radius of water droplet in dropwise cluster

    SciTech Connect

    Shavlov, A. V.; Romanyuk, S. N.; Dzhumandzhi, V. A.

    2013-02-15

    A particle with large electric charge Z (Z Much-Greater-Than 1) and radius R{sub 0} inserted into plasma is surrounded by a plasma shell, which is stable to weak and short-term external exposures. As a result, during experiments the particle can reveal an effective charge Z* lower than the true one (Z*{<=} Z), and an effective radius R* larger than the true one (R*{>=} R{sub 0}). The effective electric charge and the effective radius of a water droplet in a dropwise cluster have been calculated using the Poisson-Boltzmann equation. It has been recognized that these parameters are not the function of a droplet's true charge, but are the function of a droplet's true size and the Debye's radius of the plasma. Experimental data on the droplet properties in a dropwise cluster have been explained.

  4. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGESBeta

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  5. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    NASA Astrophysics Data System (ADS)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  6. Hall effect in quantum critical charge-cluster glass

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  7. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  8. Double Photoionization of Beryllium atoms using Effective Charge approximation

    NASA Astrophysics Data System (ADS)

    Saha, Haripada

    2016-05-01

    We plan to report the results of our investigation on double photoionization K-shell electrons from Beryllium atoms. We will present the results of triple differential cross sections at excess energy of 20 eV using our recently extended MCHF method. We will use multiconfiguration Hartree Fock method to calculate the wave functions for the initial state. The final state wave functions will be obtained in the angle depended Effective Charge approximation which accounts for electron correlation between the two final state continuum electrons. We will discuss the effect of core correlation and the valence shell electrons in the triple differential cross section. The results will be compared with the available accurate theoretical calculations and experimental findings.

  9. Effects of cytosine methylation on DNA charge transport

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  10. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that

  11. The effect of additives on charge decay in electron-beam charged polypropylene films

    NASA Astrophysics Data System (ADS)

    Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X; Behrendt, N; von Salis-Soglio, C; Erhard, D P; Altstädt, V; Schmidt, H-W

    2009-03-01

    The charge decay in isotactic polypropylene (i-PP) films of 50 µm thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 µm. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 °C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.

  12. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  13. Effects of space charge in beams for heavy ion fusion

    SciTech Connect

    Sharp, W.M.; Friedman, A.; Grote, D.P.

    1995-09-01

    A new analytic model is presented that accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson`s equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models. The model has been implemented in the fluid/envelope code CIRCE and used to study longitudinal confinement in beams with a variety of axial profiles. The effects of errors in the longitudinal-control fields are presented.

  14. Effective ionic charge polarization using typical supporting electrolyte and charge injection phenomena in molecularly doped polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yamashita, Takanori; Miyairi, Keiichi

    2002-11-01

    An effective method of enhancing charge injection and electroluminescence efficiency of polymer-based light-emitting diodes is introduced. Spin-coated films of poly (N-vinylcarbazole) blended with electron-transport material (Bu-PBD), laser dye (Coumarin6), and the typical supporting electrolyte [tetraethylammonium perchlorate (TEAP)] were examined and it was found that the injection current and luminance of the light emitting diodes doped with TEAP were enhanced dramatically after heat treatment at 80 degC and appropriate biasing in an external electric field of 1.5 x108 V/m at this temperature. A charge injection model based on Fowler-Nordheim tunneling is proposed, taking into account electric field distortion due to the accumulation of ionic space charges at the electrode/film interface. The relaxation time of ionic polarization is found to be related to the cation size of the electrolyte.

  15. EFFECTS OF CHARGED PARTICLES ON CASCADE IMPACTOR CALIBRATIONS

    EPA Science Inventory

    The report gives results of a determination of collection characteristics for charged and uncharged particles in cascade impactors. Impaction collection efficiency was shown to be as much as 20 percent greater for charged particles than for uncharged particles with certain substr...

  16. Solar Cycle Effects on Geosynchronous Satellite Surface Charging

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Chun, F. K.; Cooke, D. L.; Putz, V. B.; Ray, K. P.

    2005-05-01

    Spacecraft in geosynchronous Earth orbit (GEO) frequently undergo surface charging following injection of energetic (E ~ 10 keV) electrons into the environment, especially within the post-midnight sector. Charging data from the GEO spacecraft Defense Satellite Communication System (DSCS-III) B-7 have been recorded over one half solar cycle. The Charge Control Experiment (CCE) aboard DSCS-III B-7 recorded incident fluxes of energetic electrons, ion spectra for determining frame-to-plasma potentials, and dielectric surface-to-frame (differential) charging levels; additionally, it incorporated a Xe plasma contactor for neutralization of charged components. Previous studies have shown 1) a general correlation between geomagnetic activity indices and the severity of frame charging, and 2) a general correlation between the intensity of energetic electron fluxes and differential charging severity. However, it was also shown that the event-specific correlations contain enough variance to cast doubt on the utility of these correlations for a predictive system. With this study, we present both a principle components analysis and a multiple linear regression of the data which incorporate a combination of factors leading to both frame and differential charging, including the geomagnetic activity indices and intensities of the energetic electron fluxes.

  17. Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry

    NASA Astrophysics Data System (ADS)

    Bistoni, Giovanni; Rampino, Sergio; Tarantelli, Francesco; Belpassi, Leonardo

    2015-02-01

    We recently devised a simple scheme for analyzing on quantitative grounds the Dewar-Chatt-Duncanson donation and back-donation in symmetric coordination complexes. Our approach is based on a symmetry decomposition of the so called Charge-Displacement (CD) function quantifying the charge flow, upon formation of a metal (M)-substrate (S) bond, along the M-S interaction axis and provides clear-cut measures of donation and back-donation charges in correlation with experimental observables [G. Bistoni et al., Angew. Chem., Int. Ed. 52, 11599 (2013)]. The symmetry constraints exclude of course from the analysis most systems of interest in coordination chemistry. In this paper, we show how to entirely overcome this limitation by taking advantage of the properties of the natural orbitals for chemical valence [M. Mitoraj and A. Michalak, J. Mol. Model. 13, 347 (2007)]. A general scheme for disentangling donation and back-donation in the CD function of both symmetric and non-symmetric systems is presented and illustrated through applications to M-ethyne (M = Au, Ni and W) coordination bonds, including an explicative study on substrate activation in a model reaction mechanism.

  18. Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries

    SciTech Connect

    J.T. Londergan; D.P. Murdock; A.W. Thomas

    2006-04-14

    Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.

  19. Hall effect in quantum critical charge-cluster glass

    DOE PAGESBeta

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  20. Quantum Hall Effect near the charge neutrality point in graphene

    NASA Astrophysics Data System (ADS)

    Leon, Jorge; Gusev, Guennadii; Plentz, Flavio

    2013-03-01

    The Quantum Hall effect (QHE) of a two-dimensional (2D) electron gas in a strong magnetic field is one of the most fascinating quantum phenomena discovered in condensed matter physics. In this work we propose to study the transport properties of the single layer and bilayer of graphene at the charge neutrality point (CNP) and compare it with random magnetic model developed in theoretical papers in which we argue that at CNP graphene layer is still inhomogeneous, very likely due to random potential of impurities. The random potential fluctuations induce smooth fluctuations in the local filling factor around ν = 0. In this case the transport is determined by special class of trajectories, ``the snake states'', propagating along contour ν = 0. The situation is very similar to the transport of a two-dimensional particles moving in a spatially modulated random magnetic field with zero mean value. We especially emphasize that our results may be equally relevant to the composite fermions description of the half-filled Landau level. The authors thank to CNPq and FAPESP for financial support for this work.

  1. The effect of space charges on conduction current in polymer by modified PEA method

    SciTech Connect

    Hwangbo, S.; Yun, D.H.; Yi, D.Y.; Han, M.K.

    1996-12-31

    Direct measurement of space charge and conduction current was carried out on low-density polyethylene degraded by ultra-violet using a pulsed electro-acoustic (PEA) method. Dominant hetero-charges were formed near both electrodes by high voltage application and was found to be deeply trapped. In this paper, the effect of temperature and electric field reversal on the detrapping and trapping of space charges was investigated and the role of space charge in electrical conduction was discussed quantitatively. The main mechanism for detrapping and trapping of space charges was Poole-Frenkel model.

  2. Effect of charge fluctuation on two dimensional dust clusters in elliptical confinement

    SciTech Connect

    Rouaiguia, L.; Djebli, M.; Drir, M.

    2009-03-15

    The structural and melting properties of two dimensional clusters consisting of finite positively charged dust particles are studied. The particles interact through a screened Coulomb potential in an elliptical confinement where Monte Carlo numerical simulation is performed for two different situations. The first one is dealing with constant dust charge and the second one with the charge fluctuation. It is showed that a ground state configuration and a transition from zigzag configuration to linear chain depend on the anisotropic parameter and the number of particles. The effect of charge fluctuation is found to be significant for lower positively charged dust particles. A comparison is made with numerical and experimental results.

  3. Effect of electric charging on the velocity of water flow in CNT.

    PubMed

    Abbasi, Hossein Reza; Karimian, S M Hossein

    2016-09-01

    The role of electrical charge in controlling the velocity of water molecules in a finite single-walled carbon nanotube (CNT) was studied in detail using molecular dynamics simulation. Different test cases were examined to determine the parameters affecting the control of water-flow velocity in CNT upon electrically charging the surface of a CNT. The results showed that charge magnitude and volume, as well as the charging scenario, are the parameters having greatest effect. The implementation of electric charge on the surface of a CNT was demonstrated to decrease the resistance of CNT to incoming water flow at the entrance, but to increase friction-type resistance to flow along the CNT. Therefore, through controlling the magnitude of electric charge, water flow through the CNT may be accelerated, or decelerated. The results show that the velocity of molecular flow in the CNT increases to a maximum value, and then decreases with electric charge regardless of its sign. In the case studied here, this maximum velocity occurs at electric charging of ±0.25e/atom. It was also shown that, to reach similar flow velocities in a CNT, it is not sufficient to merely implement equal volumes of electric charge, where the volume of electric charging is defined as charge magnitude × charging time. In fact , both magnitude of charging and volume of electric charging must be equal to each other. These findings, together with options to implement scenarios with alternative charging, provide the means to effectively adjust desired velocities in a CNT. PMID:27488104

  4. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  5. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface. PMID:23683055

  6. Isotope effect in charge transport of LuB12

    NASA Astrophysics Data System (ADS)

    Sluchanko, N. E.; Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Kuznetsov, A. V.; Lyubshov, K. S.; Filippov, V. B.; Shitsevalova, N. Yu.

    2010-08-01

    The galvanomagnetic properties of single-crystal samples with various isotopic boron compositions have been investigated for the first time for the normal state of superconductor LuB12 ( T c ≈ 0.44 K). Precision measurements of the resistivity, Hall coefficient, and magnetic susceptibility have been performed over a wide temperature range of 2-300 K in magnetic fields up to 80 kOe. A change of the charge transport regime in this nonmagnetic compound with metallic conduction is shown to occur near T* ≈ 50-70 K. As a result, a sharp peak with significantly different amplitudes for Lu10B12 and Lu11B12 is recorded in the temperature dependences of the Hall coefficient R H( T) near T*. A significant (about 10%) difference (in absolute value) of the Hall coefficients R H for the Lu10B12 and Lu11B12 compounds at helium and intermediate temperatures has been found and the patterns of behavior of the dependence R H( H) for T < T* in an external magnetic field H ≤ 80 kOe for Lu10B12 and Lu11B12 are shown to differ significantly. Analysis of the Curie-Weiss contribution to the magnetic susceptibility χ( T) leads to the conclusion about the formation of magnetic moments μeff ≈ (0.13-0.19)μB in each unit cell of the fcc structure of LuB12 compounds with various isotopic compositions. The possibility of the realization of an electronic topological 2.5-order transition near T* and the influence of correlation effects in the 5 d-band on the formation of a spin polarization near the rare-earth ions in LuB12 is discussed.

  7. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  8. Effect of charges on the interaction of water with hematite

    NASA Astrophysics Data System (ADS)

    Negreiros Ribeiro, Fabio; Pedroza, Luana; Dalpian, Gustavo

    Hematite is one of the many types of iron oxide that is easily found in nature. It is most commonly used in catalysis and it is rarely present in its pristine form. The influence of charged defects in its properties is very important for the correct geometrical/electronic characterization in more realistic operative conditions, but very few studies focus explicitly on these defects in this system. In this work we perform first principles DFT+U calculations to determine the properties of a hematite slab when both dopant and electrons/holes are added. We focus on the differences between the geometrical/electronic properties between the neutral/charged surfaces and also study their interaction with water (molecule and liquid) by performing molecular dynamics simulations at room temperature. Our results indicate that electric charges strongly influence the properties of these surfaces, changing the binding energies and the molecular arrangement of the water molecules adsorbed on hematite. Negative charges induce a larger binding and favor the partial water dissociation, whereas positive charges weaken the binding energy. We will provide comparative results for different configurations of this system. FAPESP.

  9. Colloidal Brazil-nut effect in sediments of binary charged suspensions

    NASA Astrophysics Data System (ADS)

    Esztermann, A.; Löwen, H.

    2004-10-01

    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density-functional theory. For deionized samples, we predict a colloidal "Brazil nut" effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.

  10. User charges in health care: Evidence of effect on service utilization & equity from north India

    PubMed Central

    Prinja, Shankar; Aggarwal, Arun Kumar; Kumar, Rajesh; Kanavos, Panos

    2012-01-01

    Background & objectives: User charges have been advocated on efficiency grounds despite the widespread criticism about their adverse effect on equity. We assessed the effect of user charges on inpatient hospitalizations rate and equity in Haryana State. Methods: The inpatient department (IPD) statistics of the public sector facilities in Yamuna Nagar district where user charges had been introduced were analysed and compared with Rohtak district which did not have user charge between 2000 and 2006. National Sample Survey data of Haryana for the 2004-2005 period were analyzed to compare utilization of public sector facilities for hospitalization, cost of hospitalization, and prevalence of catastrophic out-of-pocket (OOP) expenditure by income quintiles in three districts which had user charges and 17 districts of Haryana which did not levy user charges. Results: During 2000 and 2006, hospital admissions declined by 23.8 per cent in Yamuna Nagar district where user charges had been introduced compared to an almost static hospitalization rate in Rohtak district which did not have user charges (P<0.01). Public sector hospital utilization for inpatient services had a pro-rich (concentration index 0.144) distribution in the three districts with user charges and pro-poor (concentration index -0.047) in the 17 districts without user charges. Significantly higher prevalence of catastrophic health expenditure was observed in public sector institutions with user charges (48%) compared to those without user charges (35.4%) (P<0.001). Interpretation & conclusions: The findings of our study showed that user charges had a negative influence on hospitalizations in Haryana especially among the poor. Public policies for revenue generation should avoid user charges. PMID:23287137

  11. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    PubMed

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. PMID:12115440

  12. Effects of mixed discrete surface charges on the electrical double layer.

    PubMed

    Jiménez-Ángeles, Felipe

    2012-08-01

    Adsorption of surface coions and charge reversal are induced at the electrical double layer of a wall charged with positive and negative surface sites next to an electrolyte solution. While for the considered surface charge density these effects are found over a wide range of conditions, they are not observed for the typically employed surface models in equivalent conditions. Important consequences in electrophoresis experiments for different colloids with equal effective surface charge density are foreseen. This study is carried out by means of molecular dynamics simulations. PMID:23005771

  13. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  14. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  15. Study on temperature distribution effect on internal charging by computer simulation

    NASA Astrophysics Data System (ADS)

    Yi, Zhong

    2016-07-01

    Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.

  16. Effects of charging and electric field on graphene functionalized with titanium.

    PubMed

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. PMID:23774307

  17. The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle.

    PubMed Central

    Etter, E F

    1990-01-01

    1. The effects of the arginine-specific protein-modifying reagent, phenylglyoxal, on contraction and intramembrane charge movement were studied in cut single fibres from frog skeletal muscle, using the double-Vaseline-gap voltage clamp technique. 2. The strength-duration curve for pulses which produced microscopically just-detectable contractions was shifted to more positive potentials and longer durations following treatment of fibres with phenylglyoxal. Caffeine-induced contractures were not blocked. 3. The amount of charge moved by large depolarizing pulses from -100 mV holding potential (charge 1) declined during the phenylglyoxal treatment with a single-exponential time course (tau = 7 min). Linear capacitance did not change significantly over the entire experiment. Inhibition of charge movement was predominantly irreversible. 4. Slow bumps (Q gamma) observed in charge movement current transients recorded before phenylglyoxal treatment, using either large test pulses or small steps superimposed on test pulses, were absent from currents recorded after treatment. The current removed by phenylglyoxal contained the bump (Q gamma) and a small fast transient (Q beta). 5. The amount of charge moved by large depolarizing pulses from -100 mV was reduced 20-50% following phenylglyoxal treatment. Charge moved by pulses to potentials more negative than -40 mV was relatively unaffected. The magnitude and voltage range of this inhibitory effect were the same whether the reagent was applied at -100 mV or at 0 mV holding potential. 6. A phenylglyoxal-sensitive component of charge was isolated which had a much steeper voltage dependence than the total charge movement or the charge remaining after treatment. 7. Charge recorded during hyperpolarizing pulses from 0 mV holding potential (charge 2) was reduced very little (less than 5%) at any potential by phenylglyoxal treatments at either 0 or -100 mV. 8. The phenylglyoxal reaction with charge 2 was kinetically different from the

  18. A temperature dependent study on charge dynamics in organic molecular device: Effect of shallow traps on space charge limited behavior

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. K.; Kavala, A. K.

    2014-04-01

    Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.

  19. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    SciTech Connect

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-23

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  20. HIGH CHARGE EFFECTS IN SILICON DRIFT DETECTORS WITH LATERAL CONFINEMENT OF ELECTRONS.

    SciTech Connect

    CASTOLDI,A.; REHAK,P.

    1995-10-21

    A new drift detector prototype which provides suppression of the lateral diffusion of electrons has been tested as a function of the signal charge up to high charge levels, when electrostatic repulsion is not negligible. The lateral diffusion of the electron cloud has been measured for injected charges up to 2 {center_dot} 10{sup 5} electrons. The maximum number of electrons for which the suppression of the lateral spread is effective is obtained.

  1. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  2. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  3. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua; Longest, Worth

    2014-01-01

    Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN) k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges. PMID:24481172

  4. Molecular dynamics study of charged dendrimers in salt-free solution: Effect of counterions

    NASA Astrophysics Data System (ADS)

    Gurtovenko, Andrey A.; Lyulin, Sergey V.; Karttunen, Mikko; Vattulainen, Ilpo

    2006-03-01

    Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer's terminal beads positively charged. Solvent molecules as well as counterions were explicitly included as interacting beads. We find that the size of the charged dendrimer depends nonmonotonically on the strength of electrostatic interactions demonstrating a maximum when the Bjerrum length equals the diameter of a bead. Many other structural and dynamic characteristics of charged dendrimers are also found to follow this pattern. We address such a behavior to the interplay between repulsive interactions of the charged terminal beads and their attractive interactions with oppositely charged counterions. The former favors swelling at small Bjerrum lengths and the latter promotes counterion condensation. Thus, counterions can have a dramatic effect on the structure and dynamics of charged dendrimers and, under certain conditions, cannot be treated implicitly.

  5. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    SciTech Connect

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-03-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length.

  6. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    SciTech Connect

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  7. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  8. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  9. Lattices with minimal space charge effects for crystalline beams

    SciTech Connect

    Channell, P.J.; Neri, F.R.

    1995-12-31

    There are numerous techniques for cooling beams of charged particles including stochastic cooling, electron beam cooling, ionization (foil) cooling (for lepton beams only), and laser cooling which works only with ions with some electrons still attached. The successful implementation of laser cooling at Aarhus, has led to interest in crystalline beams, and it certainly seems that crystallization of small numbers of stored particles should be possible. There are limits, however, that may restrict the total number of charged particles stored; these include the limit on the space-charge tune shift, {vert_bar}{triangle}{nu}{vert_bar} < 0.25 (though the precise number is subject to debate) and intrabeam scattering. In this paper we will be concerned with the possibility of intense crystalline beams; for simplicity we treat only the nonrelativistic case, though the relativistic case is a simple extension of this work. In the next section we review the limits on the number of particles stored and observe that the beam size scaling with beam temperature is the important dependence that determines the limits on the stored current as a function of beam temperature. In section 3 we use a general formalism to determine the beam size scaling and apply it to various kinds of focusing lattices and determine the relevant limits. In section 4 we use simulations that include lattice elements, a cooling model, and an N-body space-charge model to confirm the predictions of section 3 and to explore the details of various schemes. In the final section we summarize and discuss our results.

  10. Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes.

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.; Rohrbaugh, R. P.; Hei, M.; Beard, K. V.

    2000-07-01

    Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. However, it had been assumed that the aerosols would have only a few elementary charges on them, whereas it is now known that at the tops of nonthunderstorm clouds the evaporating droplets may have several hundred elementary charges on them and that much of this charge remains on the residual aerosol for 5 min or so after the evaporation. Also, most previous calculations neglected image charge forces that provide strong attraction at close range even when droplet and aerosol have charges of the same sign and of comparable magnitude.The authors present numerical calculations showing that electrical effects dominate collision rates for charged evaporation aerosols. The calculations are for the size range of 0.1- to 1.0-m radius with the collision efficiency compared to that for phoretic and Brownian effects being greater by up to a factor of 30 greater for droplets from 18.6- to 106-m radius with relative humidity in the range 95%-100% and only 50 elementary charges on the aerosol. The results imply that electrical effects can be important for the scavenging of evaporation aerosol particles in the size range of the Greenfield gap.The authors call this process `electroscavenging.' Electroscavenging of charged particles, when the particles are mostly of the same sign, is a previously unrecognized droplet charging process. Electroscavenging also provides a pathway for contact ice nucleation when charged aerosol particles from evaporated charged droplets collide with supercooled droplets. Ice nucleation can occur because aerosol particles from the evaporation of cloud droplets have been found to be more effective as ice forming nuclei than other aerosol particles that have not been processed through droplets.

  11. Schwinger effect in (A)dS and charged black hole

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  12. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    NASA Astrophysics Data System (ADS)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  13. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  14. Sintering behaviour of feldspar and influence of electric charge effects

    NASA Astrophysics Data System (ADS)

    Gallala, W.; Gaied, M. E.

    2011-04-01

    The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The microstructure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.

  15. Effects of undercharge and internal loss on the rate dependence of battery charge storage efficiency

    NASA Astrophysics Data System (ADS)

    Krieger, Elena M.; Arnold, Craig B.

    2012-07-01

    Battery charge efficiency across a range of input powers is an important performance parameter in variable charging systems. Here we use equivalent circuit theory to model the inherent trade-off between battery charging power and energy stored and compare our model to the existing Ragone model for discharge power and energy. An additional parameter is included to account for undercharge and underdischarge of the battery due to premature arrival at the battery's voltage limits. At a given power, energy efficiency is predicted to be higher for charging than discharging when only accounting for energy dissipated by internal resistance. We experimentally determine charge and discharge energy-power curves for lithium-ion batteries and find they exhibit a reduction in energy stored or withdrawn as power increases. We isolate the effects of undercharge and underdischarge from energy lost to internal resistance, and find the former outweighs the latter effect. Furthermore, the shallow shape of the voltage curve near the charge voltage cutoff results in a more limited range of charging powers than discharging powers. The model is expected to help inform operational parameters for battery charging for variable power sources.

  16. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  17. Effect of Conformation in Charge Transport for Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew

    2014-03-01

    Current models for the electronic properties of semiconducting conjugated polymers do not include the hierarchical connectivity between charge transport units that results from the physical makeup of the materials. Concepts like on-chain vs. interchain mobility anisotropy have been known for a long time, yet they must be artificially incorporated into simulations. Models that achieve remarkable predictive power but provide limited physical insight when applied to this new class of materials are of limited use for the rational design of new conjugated polymers. Here we present a new model in which the morphology of individual polymer chains is determined by well-known statistical models and the electronic coupling between units is described using Marcus theory. Combining knowledge from polymer physics and semiconducting materials into an analytical and computational model that realistically incorporates the structural and electronic properties of conjugated polymers, it is possible to explain observations that previously relied on phenomenological models. The multi-scale behavior of charges in these materials (high mobility at short scales, low mobility at long scales) can be naturally described with our framework.

  18. Properties and effects on stellar burning of fractionally charged nuclei

    SciTech Connect

    Boyd, R.N.; Turner, R.E.; Rybarcyk, L.; Joseph, C.

    1985-02-01

    The consequences of unconfined quarks which may have been left over from the big bang, especially as to how they might participate in nucleosynthesis, are examined. Possible properties of the fractionally charged nuclei (Q-nuclei) thus produced, including ..beta..-decay half-lives, binding energies, energy level densities, and thermonnuclear reaction rates, are studied. Stellar burning cycles are suggested by these considerations in which the Q-nuclei could contribute significantly to stellar nucleosynthesis, even at an extremely low abundance level, provided that they satisfy some constraints. A model is suggested which accommodates all the constraints thus imposed. Possible implications of the existence of Q-nuclei for stellar evolution are considered, adn the results of a calculation are presented which confirm that no obvious conflicts with the known parameters of the Sun are encountered. The significance of the possible existence of Q-nuclei for future searches for free fractionally charged entities is discussed. Finally, it is noted that any particle which, when added to a nucleus, increases the nucleon binding energy somewhat could perform stellar burning cycles similar to those described in this paper. Subject headings: elementary particles-neutrinos-nuclear reactions:nucleosynthesis-stars: interiors

  19. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-05-17

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  20. Effects of surface charge on the anomalous light extinction from metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sijercic, Edin; Leung, P. T.

    2016-07-01

    The effects of extraneous surface charges on the anomalous extinction from metallic nanoparticles are studied via an application of the extended Mie theory by Bohren and Hunt. Due to the sensitivity of the higher multipolar resonance on the surface charges, it is found that quenching of the anomalous resonance can be observed with presence of only a modest amount of charges on these particles. The observed effects thus provide a rather sensitive mechanism for the monitoring of the neutrality of these nanoparticles using far field scattering approaches.

  1. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  2. Mixing and space-charge effects in free-electron lasers

    SciTech Connect

    Peter, E.; Endler, A.; Rizzato, F. B.; Serbeto, A.

    2013-12-15

    The present work revisits the subjects of mixing, saturation, and space-charge effects in free-electron lasers. Use is made of the compressibility factor, which proves to be a helpful tool in the related systems of charged beams confined by static magnetic fields. The compressibility allows to perform analytical estimates of the elapsed time until the onset of mixing, which in turn allows to estimate the saturated amplitude of the radiation field. In addition, the compressibility helps to pinpoint space-charge effects and the corresponding transition from Compton to Raman regimes.

  3. Heavy ion charge-state distribution effects on energy loss in plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  4. Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-01-01

    We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.

  5. Memory and nonlinear transport effects in charging-discharging of a supercapacitor

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Ambrozevich, A. S.; Sibatov, R. T.; Ambrozevich, S. A.; Morozova, E. V.

    2016-02-01

    We report on the results of analysis of the kinetics of charge-discharge current of Panasonic supercapacitors in a wide range of time from 10-1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper-oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.

  6. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  7. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  8. Spacecraft power system architecture to mitigate spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Manner, David B. (Inventor)

    1997-01-01

    A power system architecture for a spacecraft and a method of a power supply for a spacecraft are presented which take advantage of the reduced plasma interaction associated with positive ground high voltage photovoltaic arrays and provide a negative ground power supply for electrical loads of the spacecraft. They efficiently convert and regulate power to the load bus and reduce power system mass and complexity. The system and method ground the positive terminal of the solar arrays to the spacecraft hull, and using a power converter to invert the electric sign, permit a negative ground for the electrical distribution bus and electrical components. A number of variations including a load management system and a battery management system having charging and recharging devices are presented.

  9. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    NASA Astrophysics Data System (ADS)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EI<100 eV and EII=4850 eV. At a given energy and under a low current density J ≤100 nA/cm2, the yield varies with the electron fluence from its intrinsic value σ0 up to the value corresponding to the self-regulated regime for which σ =1. This variation is independent of J. The fluence dependence of the yield σ(D ) is due to the internal field produced by the accumulation of charges that blocks the emission when the charging is positive and enhances it when it is negative. At room temperature, the relaxation time of stored charges is estimated to be of the order of 250 s for holes and 150 s for electrons. Three current density effects have been observed when J ≥400 nA/cm2. (i) The variation of σ(D ) with the fluence D depends on J. (ii) Negative charging is obtained at high current density in the energy range (EI, EII) where the material is normally positively charged at low current density. (iii) Electron exoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  10. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  11. The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes.

    PubMed

    Markowitz; Dunn; Chow; Zhang

    1999-02-01

    The effect of vesicle membrane structure and charge on the synthesis of gold nanoparticles was investigated. The vesicle membranes were comprised of either negatively charged soy lipids or mixtures of charge neutral and negatively charged soy lipids. Palladium ions bound to the membranes served as the catalyst for metal particle synthesis using an electroless metallization procedure. The size range of particles synthesized using membranes comprised of only negatively charged lipids (5-15 nm) was significantly smaller than those synthesized using mixtures of negatively charged and charge-neutral lipids (2-180 nm). X-ray diffraction revealed that the average crystallite size decreased with increasing palladium ion content of the membranes. It also showed that the average crystallite size was smaller for particles synthesized using vesicles comprised of only soy phoshohydroxyethanol lipids than for particles synthesized using vesicles comprised of only soy phosphatidic acid lipids. Particles synthesized with membranes comprised of only negatively charged lipids were encapsulated within the resulting lipid membrane matrix. FT-IR of the lipid matrix indicated that the matrix was formed as the result of ionic bridging of the lipid phosphate headgroups with gold ions. Copyright 1999 Academic Press. PMID:9924109

  12. Effect of synergists on organic pigment particle charging in apolar media.

    PubMed

    Gacek, Matthew M; Berg, John C

    2014-07-01

    The current work investigates the apolar charging behavior of organic pigment particles and the role that synergists play in regard to particle charging. Organic pigments are often used in apolar paints, inks, and most recently electrostatic lithography. For electrolithography to work, the particles must be both stable and possess the correct polarity and magnitude of charge. It is therefore important to better understand the charging behavior and potential charging mechanisms of these particles that have received little or no attention in the literature. Unfortunately, these already complex systems are further complicated by the fact that the stability of organic pigments is often improved through the use of synergists. Synergists are designed to enhance the adsorption of steric stabilizers to the particles. However, their effect on particle charging has not been previously published. In this study, the particle zeta potential is determined for apolar dispersions of magenta and cyan particles in heptane (with and without synergist present). The particles are dispersed with three different surfactants commonly used in apolar charging studies: Span 80, Aerosol-OT, and OLOA 11000. Acid-base interactions appear to play an important role, particularly for cyan. However, due to the complexity of these systems, any general rule must be applied with caution as the particle, surfactant, and synergist chemistry all determine the nature of the particle charge. PMID:24488726

  13. The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; de la Cruz, M. Olvera

    2011-07-01

    The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.

  14. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  15. Effect of gaseous void on bipolar charge transport in layered polymer film

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2014-02-01

    This paper describes a hybrid algorithm to study the effect of a gaseous void on bipolar charge transport in layered polymer film. This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method to solve the Poisson equation and a fourth order Runge-Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant-Friedrichs-Levy stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions. This hybrid technique caters to bipolar charge injection, field-dependent mobility transport, recombination, and trapping/de-trapping in the bulk and at material and physical interfaces. The resulting charge map is the taxonomy of the different charge types and their abundance, and presents a dynamic view of the temporal and spatial distributions. The paper is motivated by images of breakdown experiments that point to the role of gaseous void in delamination growth. For the test configuration, the high field at the edge of the gaseous void act as a sink first for positive and then negative charge. The net effect is to increase delamination stress at the edge leading to further growth of the defect and increasing the potential for partial discharge within the void.

  16. Effect of Amount of Fluid Charge in Thermal Performance of Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Onogawa, Ei; Nagano, Housei; Fukuyoshi, Fuyuko; Ogawa, Hiroyuki; Nagai, Hiroki

    Loop Heat Pipes (LHPs) are two-phase thermal control system, which works only by heat from its cooling target. In order to utilize the LHPs in various fields, it is requested to be smaller, more reliable, and higher performance. In the present study, a miniature LHP has been fabricated, and the effect of amount of working fluid charged on thermal performance of the LHPs has been investigated. Tests were conducted including start-up, power step up, as function of amount of working fluid. The test results showed that under-charging of working fluid caused start-up failure, while over-charging of working fluid made the LHP less stable.

  17. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit

    SciTech Connect

    Okonechnikov, Konstantin; Amundson, James; Macridin, Alexandru; /Fermilab

    2009-09-01

    This paper describes a transverse space charge effect calculation algorithm, developed in the context of accelerator modeling toolkit Synergia. The introduction to the space charge problem and the Synergia modeling toolkit short description are given. The developed algorithm is explained and the implementation is described in detail. As a result of this work a new space charge solver was developed and integrated into the Synergia toolkit. The solver showed correct results in comparison to existing Synergia solvers and delivered better performance in the regime where it is applicable.

  18. Adsorption and stabilizing effects of highly-charged latex nanoparticles in dispersions of weakly-charged silica colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-07-01

    An experimental study was undertaken to determine the effectiveness of using highly-charged nanoparticles as stabilizers for colloidal dispersions. The specific systems used here involved cationic (amidine) and anionic (sulfate) polystyrene latex nanoparticles with an approximate diameter of 20 nm and silica microparticles of diameter 1.0 μm, and experiments were conducted at the isoelectric point of the silica. It was found that while both types of nanoparticles adsorbed to the silica microparticles and increased the zeta potential to values where stability was expected, long term stability was not achieved, even at bulk nanoparticle concentrations as high as 0.5 vol.%. It is theorized that the incomplete coverage of the microparticles by the nanoparticles (i.e., surface coverage never exceeded 50%) allowed either direct contact between bare patches of the underlying microparticles or, alternatively, for nanoparticles adsorbed on one microparticle to bridge to bare spots on a neighboring microparticle. PMID:25498877

  19. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets.

    PubMed

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-21

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments. PMID:25796249

  20. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Hwang, J. George; Zahn, Markus; O'Sullivan, Francis M.; Pettersson, Leif A. A.; Hjortstam, Olof; Liu, Rongsheng

    2010-01-01

    Transformer oil-based nanofluids with conductive nanoparticle suspensions defy conventional wisdom as past experimental work showed that such nanofluids have substantially higher positive voltage breakdown levels with slower positive streamer velocities than that of pure transformer oil. This paradoxical superior electrical breakdown performance compared to that of pure oil is due to the electron charging of the nanoparticles to convert fast electrons from field ionization to slow negatively charged nanoparticle charge carriers with effective mobility reduction by a factor of about 1×105. The charging dynamics of a nanoparticle in transformer oil with both infinite and finite conductivities shows that this electron trapping is the cause of the decrease in positive streamer velocity, resulting in higher electrical breakdown strength. Analysis derives the electric field in the vicinity of the nanoparticles, electron trajectories on electric field lines that charge nanoparticles, and expressions for the charging characteristics of the nanoparticles as a function of time and dielectric permittivity and conductivity of nanoparticles and the surrounding transformer oil. This charged nanoparticle model is used with a comprehensive electrodynamic analysis for the charge generation, recombination, and transport of positive and negative ions, electrons, and charged nanoparticles between a positive high voltage sharp needle electrode and a large spherical ground electrode. Case studies show that transformer oil molecular ionization without nanoparticles cause an electric field and space charge wave to propagate between electrodes, generating heat that can cause transformer oil to vaporize, creating the positive streamer. With nanoparticles as electron scavengers, the speed of the streamer is reduced, offering improved high voltage equipment performance and reliability.

  1. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    NASA Astrophysics Data System (ADS)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  2. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-12-12

    This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.

  3. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.

    PubMed

    Das, Pradipta Kr

    2016-01-01

    Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant. PMID:26530465

  4. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. PMID:25470772

  5. Charged Kaon Mass Measurement using the Cherenkov Effect

    SciTech Connect

    Graf, N.; Lebedev, A.; Abrams, R.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Beverly, L.; Bujak, A.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  6. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    NASA Astrophysics Data System (ADS)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  7. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte.

    PubMed

    González-Mozuelos, P

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  8. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-01

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294

  9. Kinetic theory for charge-exchange spectroscopy: Effects of magnetic and electric fields on the distribution function after charge-exchange

    SciTech Connect

    Burrell, K. H.; Munoz Burgos, J. M.

    2012-07-15

    In plasmas equipped with neutral beam injection, excitation of atomic spectral lines via charge-exchange with neutral atoms is the basis of one of the standard plasma diagnostic techniques for ion density, temperature, and velocity. In order to properly interpret the spectroscopic results, one must consider the effects of the energy dependence of the charge-exchange cross-section as well as the motion of the ion after charge-exchange during the period when it is still in the excited state. This motion is affected by the electric and magnetic fields in the plasma. The present paper gives results for the velocity distribution function of the excited state ions and considers in detail the cross-section and ion motion effects on the post charge-exchange velocity. The expression for this velocity in terms of the charge-exchange cross-section and the pre charge-exchange velocity allows that latter velocity to be determined. The present paper is the first to consider the effect of the electric as well as the magnetic field and demonstrates that electric field and diamagnetic terms appear in the expression for the inferred velocity. The present formulation also leads to a novel technique for assessing the effect of the energy dependence of the charge-exchange cross-section on the inferred ion temperature.

  10. Effect of dielectric interface on charge aggregation in the voltage-gated K+ ion channel

    PubMed Central

    Adhya, Lipika; Mapder, Tarunendu; Adhya, Samit

    2015-01-01

    Background: There is experimental evidence of many cases of stable macromolecular conformations with charged amino-acids facing lipid, an arrangement thought to be energetically unfavourable. Methods and Objectives: Employing classical electrostatics, we show that, this is not necessarily the case and studied the physical basis of the specific role of proximity of charges to the dielectric interface between two different environments. We illustrate how self and induced energies due to the dielectric medium polarization, on either side of the interface, contribute differentially to the stability of a pair of charges and hence the mutual conformation of the S3b-S4 α-helix pair of the voltage-gated K+ channel. Results and Conclusion: We show that (1) a pair of opposite charges on either side of lipid-protein interface confers significant stability; (2) hydrophobic media has an important role in holding together two similar repelling charges; (3) dielectric interface has stabilizing effect on a pair of charges, when an ion is closer to its interface than its neighboring charge; (4) in spite of the presence of dielectric interface, there is a nonexistence of any dielectric effect, when an ion is equidistant from its image and neighboring charge. We also demonstrate that, variation in dielectric media of the surrounding environment confers new mutual conformations to S3b-S4 α-helices of voltage sensor domain at zero potential, especially lipid environment on the helix side, which improved stability to the configuration by lowering the potential energy. Our results provide an answer to the long standing question of why charges face hydrophobic lipid membranes in the stable conformation of a protein. PMID:25810659

  11. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  12. Effect of positron space charge on operation of an antihydrogen trap.

    PubMed

    Ordonez, C A

    2007-07-01

    Experimental conditions have recently been reported [G. Andresen, Phys. Rev. Lett. 98, 023402 (2007)] that are relevant to the prospect of trapping antihydrogen atoms. An analysis of the experimental conditions indicates that positron space charge can have an important effect. The fraction of antiprotons that have an energy suitable for antihydrogen trapping can be reduced by drifts caused by the presence of positron space charge. PMID:17677605

  13. Evaluating Born and Local Effective Charges in Nanoscale MnO

    SciTech Connect

    Sun, Qi; Xu, Xiaoshan; Baker, Sheila N; Christianson, Andrew D; Musfeldt, J. L.

    2011-01-01

    Phonons are exquisitely sensitive to finite-length scale effects in complex materials because they are intimately connected to charge, polarizability, and structure, and a quantitative analysis of their behavior can reveal microscopic aspects of chemical bonding. To investigate these effects in a model correlated oxide, we measured the infrared vibrational properties of 8-nm particles of MnO, compared the results with the analogous bulk material, and quantified the phonon confinement with a calculation of the Born effective charge. Our analysis reveals that the Born effective charge decreases by {approx}20%, compared to the bulk material. Moreover, this change impacts both ionicity and polarizability. Specifically, we find that MnO nanoparticles are {approx}12% less ionic than the corresponding bulk. This discovery is important for understanding finite-length scale effects in this simple binary oxide and the more complicated functional oxides that emanate from this parent compound.

  14. Dust Effects on Surface Charging in Plasmas: Laboratory and Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Chou, K.; Wang, J.; Yu, W.; Han, D.

    2014-12-01

    There are many situations that a spacecraft surface would be covered by a layer of dusts, such as that around a comet and and on the surfaces of the Moon and asteroids. Previous studies of surface charging in plasmas have mostly considered a "clean" conducting or dielectric surface. On the other hand, studies of dust charging in plasmas have mostly considered that of single, isolated dust grains (the "dust-in-plasma" condition), where a dust grain is electrically isolated from its neighboring dusts. This paper considers the charging of a surface covered by a layer of dust grains (the "dusty-surface" condition), where the inter-dust distance is almost zero but the dust grains do not form a solid surface. Under such a condition, the sheath of each individual dust particles overlap to form one single sheath and the charging of individual dust grains is strongly affected by that of the neighboring dust grains and the surface. Experiments and numerical simulations are carried out to understand the charging of both conducting and dielectric dusty surfaces. Surface charging measurements will be presented for different dust layer thickness, dust grain size, dust density, and different ambient plasma conditions. The effect of the existence of a dusty layer on surface potential as well as the difference between charging of a single dust-in-plasma and that of a dust grain as part of a dusty surface will also be discussed.

  15. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  16. The effect of dust charge fluctuations in the near-Enceladus plasma

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Victoria; Luehr, Hermann

    The geologically active moon Enceladus feeds the most extended, Saturns’ E ring by dust particles and creates a specific multispecies plasma environment -the Enceladus plasma torus. The key process of dust-plasma interactions is dust charging. The grain electrostatic potential in space is usually calculated from the so called orbit-motion limited (OML) model [1]. It is valid for a single particle immersed into collisionless plasmas with Maxwellian electron and ion distributions. Such a parameter regime cannot be directly applied to the conditions relevant for the Enceladus plasma environment and especially, for the dense plume region, where the dust density is high, sometimes even exceeding the plasma number density. Generalizing the OML formalism, we examine several new factors that can significantly affect the equilibrium grain charging: (a) multispecies composition of the core plasma, including hot electrons and newborn cold ions; (b) effect of high dust number density (c) the role of dust size distributions. We also focus on such a specific peculiarity of dust charging as charge fluctuations. Since the grain charges are not fixed and can fluctuate, this introduces the crucial difference between ordinary plasma species (electrons and ions) and charged dust particles. There are two reasons for such fluctuations. The charging of the grains depends on the local plasma characteristics, and thus some temporal or spatial variations in the plasma parameters ultimately modify numbers of charges acquired by a grain. Some of these effects related to the near-Enceladus plasma environment have recently been discussed [2]. A second reason for charge fluctuations is the discrete nature of the charge carriers. Electrons and ions are absorbed or emitted by the grain surface randomly thus leading to stochastic fluctuations of the dust net charge. These fluctuations exist always even in a steady-state uniform plasma, and we discuss the statistical characteristics of random dust

  17. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  18. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    SciTech Connect

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  19. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  20. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  1. The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Moore, Thomas E.

    1992-01-01

    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

  2. Electrostatic Simulation of Charge Trapping in Carbon Nanotube Vertical Organic Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Crawford, Jennifer; Rinzler, Andrew; Hershfield, Selman

    The carbon nanotube vertical organic field effect transistor is a vertical sequence consisting of a gate electrode, gate dielectric, thin nanotube network source electrode, organic semiconducting channel and finally the drain electrode. The drain current is modulated by the gate voltage which varies a Schottky barrier between source and channel layers. Hysteresis in the current-voltage characteristic has been observed when a electret charge trapping layer is placed between the nanotube source and the gate dielectric. We provide a model for charge injection into a trapping layer placed in contact with the carbon nanotube film and solve self-consistently for the electrostatics and the occupancy of the traps. For a range of applied gate voltages the simulations demonstrate hysteresis of the carbon nanotubes' charge as a result of the electric field produced by the trapped charge. This affects the current by modulating the Schottky barrier. This work was supported by the NSF Grant DMR-1461019.

  3. Effects of Surface Charges on Dental Implants: Past, Present, and Future

    PubMed Central

    Guo, Cecilia Yan; Matinlinna, Jukka Pekka; Tang, Alexander Tin Hong

    2012-01-01

    Osseointegration is a major factor influencing the success of dental implantation. To achieve rapid and strong, durable osseointegration, biomaterial researchers have investigated various surface treatment methods for dental subgingival titanium (Ti) implants. This paper focuses on surface-charge modification on the surface of titanium dental implants, which is a relatively new and very promising methodology for improving the implants' osseointegration properties. We give an overview on both theoretical explanations on how surface-charge affects the implants' osseointegration, as well as a potential surface charge modification method using sandblasting. Additionally, we discuss insights on the important factors affecting effectiveness of surface-charge modification methods and point out several interesting directions for future investigations on this topic. PMID:23093962

  4. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Oktel, M. O.

    2016-05-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component couples to the AMF with a different charge. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. We investigate the superconducting (SC) transition of a system formed by such pairs as a function of the field strength. We consider a homogeneous two-component Fermi gas of unequal charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual equal charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  5. Charge-correlation effects in calculations of atomic short-range order in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pinski, F. J.; Staunton, J. B.; Johnson, D. D.

    1998-06-01

    The ``local'' chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only ``band-energy'' contributions.

  6. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  7. Investigation of charge transport and electromagnetic effects in advanced microelectronics and optoelectronics

    SciTech Connect

    Kwan, T.; Booth, T.; Gray, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The next generation of electronic microchips will utilize components with sub-micron feature size and optoelectronic devices with picosecond response time. Fundamental understanding of the device performance can only be obtained through first principles physics modeling of charge transport and electromagnetic effects in realistic geometries with material interfaces and dispersive properties. We have developed a general model incorporating important physics such as charge transport processes in materials with multilevel band structures and electromagnetic effects to simulate device characteristics. Accurate treatment of material interfaces and boundaries is included. The Monte Carlo charge transport is coupled self-consistently to Maxwell`s equations to accurately model scattering processes in the presence of an externally biased potential. This detailed multidimensional simulation capability is compared with and verified by experimental data, and could become an industrial standard for benchmarking and improving the {open_quotes}reduced model{close_quotes} codes used for semiconductor design. Specific tasks are the extension of existing capabilities in particle-in-cell plasma simulation technique and Monte Carlo charge transport to study the physics of charged particle dynamics in realistic microelectronic devices, such as bipolar semiconductors, heterojunction transistors, and optoelectronic switches. Our approach has been based on the coupled particle-in-cell/Monte Carlo technique, which can simultaneously treat both electromagnetic wave propagation and charged-particle transport.

  8. Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru

    2011-11-01

    Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.

  9. Charging effect simulation model used in simulations of plasma etching of silicon

    NASA Astrophysics Data System (ADS)

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Cooke, Mike; Rangelow, Ivo W.

    2012-10-01

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  10. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  11. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-01

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  12. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors.

    PubMed

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  13. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    NASA Astrophysics Data System (ADS)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  14. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    PubMed Central

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  15. Space-charge perturbation effects in photonic tubes under high irradiation

    SciTech Connect

    Kalibjian, R.; Peterson, G.G.

    1982-06-01

    Potential perturbation effects at the cathode region of a photonic tube can occur at high intensity due to space-charge. Using appropriate photoelectron energy distribution functions, the electric field at the cathode is calculated and its effect upon the spatial/temporal resolution is examined.

  16. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    EPA Science Inventory

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  17. Studies of Space Charge Effects in the Proposed CERN PS2

    SciTech Connect

    Qiang, Ji; Ryne, Robert; De Maria, Riccardo; Macridin, Alexandru; Spentzouris, Panagiotis; Papaphilippou, Yannis; Wienands, Ulrich; /SLAC

    2012-06-22

    A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.

  18. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  19. SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction

    SciTech Connect

    Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.

  20. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  1. Dielectric Interface Effects on Surface Charge Accumulation and Collection towards High-Efficiency Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Che; Zang, Huidong; Ivanov, Ilia; Xu, Tao; Lu, Luyao; Yu, Luping; Hu, Bin

    2014-04-01

    This paper reports the experimental studies on the effects of dielectric thin-film on surface-charge accumulation and collection by using capacitance-voltage (C-V) measurements under photoexcitation. The dielectric thin-films with different surface polarizations are used with inverted device architecture based on the common photovoltaic PTB7:PC71BM film. In the C-V measurements, the peak-voltage shift with light intensity, namely, Vpeak shift, is particularly used to determine the surface-charge accumulation. We find that the Vpeak shows a smaller shift with light intensity when a higher surface polarization of dielectric thin-film is used. This means that a higher surface polarization of dielectric thin-film can decrease the surface-charge accumulation at electrode interface. However, a lower surface polarization of dielectric thin-film leads to a larger shift with light intensity. This implies that a lower surface polarization of dielectric thin-film corresponds to a larger surface-charge accumulation. This experimental finding indicates that dielectric thin-film plays an important role in the surface-charge accumulation and collection in the generation of photocurrent in organic solar cells. We demonstrate that the device performance can reach the power conversion efficiency of 8.7% when a higher dielectric PFN is used to enhance the surface-charge collection based on the inverted design of ITO/PFN/PTB7:PC71BM/MoO3/Ag.

  2. Surface charge effects on the 2D conformation of supercoiled DNA.

    PubMed

    Schmatko, Tatiana; Muller, Pierre; Maaloum, Mounir

    2014-04-21

    We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar trends: at low surface charge density or low bulk salt concentration, the internal electrostatic repulsion forces plasmids to adopt completely opened structures, while at high surface charge density or higher bulk salt concentration, usual supercoiled plectonemes are observed. We experimentally demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions. At low to medium screening, the electrostatic repulsion at plasmid crossings is predominant, leading to a number of crossovers decreasing linearly with the characteristic screening length. We compare our data with an analytical 2D-equilibrated model developed recently for the system and extract the DNA effective charge density when strands are adsorbed at the surface. PMID:24647451

  3. Effect of blood storage on erythrocyte/wall interactions: implications for surface charge and rigidity.

    PubMed

    Godin, C; Caprani, A

    1997-01-01

    In this report, we study, under flow conditions, the interactions of stored erythrocytes with an artificial surface: a microelectrode whose charge density ranges from -15 to +27 microC/cm2. Interactions consist of red cells slowly circulating on the microelectrode and exerting a real contact with the electrode. Interaction is detected and measured by transient fluctuations of the electrolyte resistance obtained by impedance measurement of the microelectrode. Effects of aging induced by storage of whole blood at 4 degrees C show that the surface charge of erythrocytes rapidly decreases when blood is stored for more than 6 days under our experimental conditions. In comparison with trypsin-treated erythrocytes, an eight day storage induces a 60% decrease in the surface charge of red cells. After two weeks of storage, red cells are no longer negatively charged, presumably because of removal of sialic acid. Cells rigidity is significant after 6 days of storage and influences the electrical contact. Membrane rigidity increase could arise from the surface charge decrease. Finally the surface charge decrease could be importance in the use of stored blood. PMID:9232845

  4. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  5. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-15

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index {kappa} increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  6. Effect of alkyl functionalization on charging of colloidal silica in apolar media.

    PubMed

    Poovarodom, Saran; Poovarodom, Sathin; Berg, John C

    2010-11-15

    The present work examines the effect of alkyl-silane treatment on the charging of colloids in apolar solvent using two otherwise identical 250 nm diameter, spherical silica particles, one with untreated surface and the other treated with hexadecyltrimethoxysilane (C16), dispersed in an apolar isoparaffin solvent (Isopar-L) containing one of three oil-soluble surfactants: Aerosol-OT, OLOA 11,000, and zirconyl 2-ethyl hexanoate. The electrophoretic mobility of each dispersion was determined using phase angle light scattering (PALS). It was found that at sufficiently high surfactant concentration, i.e., where micelles begin to form in the bulk, the particle surfaces could be electrically charged. All three surfactants studied imparted a negative surface charge to the untreated silica particles. In all cases, the C16-treated particles were also found to be negatively charged but had a much higher magnitude of mobility than the untreated silica. Although the increase in magnitude of mobility as a result of the alkyl functionalization was surprising, it could be attributed to the increase in the number of surface hydroxyl groups arising from the hydrolysis of unbound methoxy groups of the silane molecules. The added hydroxyl groups provided additional potential acid-base interaction sites, resulting in higher particle mobility. It was also found that further increases in surfactant concentration lowered the particle mobility, attributed to the increasing concentration of electrically charged micelles, which may partially neutralize the surface charge or compress the electrical double layer. PMID:20728088

  7. Tunneling current noise in the fractional quantum Hall effect: When the effective charge is not what it appears to be

    NASA Astrophysics Data System (ADS)

    Snizhko, Kyrylo

    2016-01-01

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle's effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  8. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Oktel, M. Ö.

    2016-01-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  9. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    2015-10-07

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

  10. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field.

    PubMed

    Ünal, F Nur; Oktel, M Ö

    2016-01-29

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics. PMID:26871343

  11. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  12. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.

    PubMed

    Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C

    2016-03-01

    Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology. PMID:26866446

  13. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.

    2016-07-01

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  14. Effects of space charge on the acceptance of brightness measuring devices

    SciTech Connect

    Caporaso, G.J.

    1985-08-14

    Attempts to measure high electron beam brightness at low values of beam energy are plagued by the effects of space charge forces. These forces can substantially lower the phase space acceptance of various brightness measuring devices. This report considers several models for the effects of space charge upon the acceptance of both the field free, double aperture system and the magnetic ''emittance selector'' and compares them for some recent experiments on ATA and the High Brightness Test Stand. Reasonably conservative correction factors for the acceptances of these devices are derived.

  15. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  16. Effect of charged particle multiplicity fluctuations on flow harmonics in event-by-event hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A. K.

    2013-03-01

    In nucleon-nucleon collisions, a charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collisions in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte Carlo Glauber model of initial condition is generalized to include the fluctuations. Explicit simulations with the generalized Monte Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have a large effect on the flow harmonics.

  17. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  18. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  19. The role of acid-base effects on particle charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    charging in the context of the many other factors that are important to the phenomenon, including the presence of water, of other components (e.g., synergists and contaminants), and of electric field effects. The goal is the construction of a road map describing the anticipated particle charging behavior in a wide variety of systems, assisting in the choice or development of materials for specific applications. PMID:25891860

  20. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    NASA Astrophysics Data System (ADS)

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  1. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    PubMed

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. PMID:24463476

  2. Effects of metal oxide nanoparticles on the stability of dispersions of weakly charged colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-05-01

    The stability behavior of dispersions of weakly charged silica colloids was studied in the presence of highly charged metal oxide nanoparticles. Experiments were performed using 5 nm zirconia as well as 10 nm alumina nanoparticles (both positively charged), which were added to 0.1 vol % suspensions of 1.0 μm silica microparticles at the silica IEP. Both types of nanoparticles provided effective stabilization of the silica; i.e., the silica suspensions were stabilized for longer than the observation period (greater than 12 h). Stability was observed at zirconia concentrations as low as 10(-4) vol % and at an alumina concentration of 10(-2) vol %. The nanoparticles adsorbed onto the microparticle surfaces (confirmed via SEM imaging), which increased the zeta-potential of the silica. Force profile measurements performed with colloidal probe atomic force microscopy showed that the adsorption was effectively irreversible. PMID:25860256

  3. Interplay of space-charge and beam-beam effects in a collider

    SciTech Connect

    Fedotov, A.V.; Blaskiewicz, M.; Fischer, W.; Satogata, T.; Tepikian, S.

    2010-09-27

    Operation of a collider at low energy or use of cooling techniques to increase beam density may result in luminosity limitation due to the space-charge effects. Understanding of such limitation became important for Low-Energy RHIC physics program with heavy ions at the center of mass energies of 5-20 GeV/nucleon. For a collider, we are interested in a long beam lifetime, which limits the allowable space-charge tune shift. An additional complication comes from the fact that ion beams are colliding, which requires careful consideration of the interplay of direct space-charge and beam-beam effects. This paper summarizes the initial observations during experimental studies in RHIC at low energies.

  4. Spin-orbit coupling and electronic charge effects in Mott insulators

    SciTech Connect

    Zhu, Shan; Li, You -Quan; Batista, Cristian D.

    2014-11-04

    We derive the effective charge- and current-density operators for the strong-coupling limit of a single-band Mott insulator in the presence of spin-orbit coupling and show that the spin-orbit contribution to the effective charge density leads to novel mechanisms for multiferroic behavior. In some sense, these mechanisms are the electronic counterpart of the ionic-based mechanisms, which have been proposed for explaining the electric polarization induced by spiral spin orderings. In addition, the new electronic mechanisms are illustrated by considering cycloidal and proper-screw magnetic orderings on sawtooth and kagome lattices. As for the isotropic case, geometric frustration is crucial for achieving this purely electronic coupling between spin and charge degrees of freedom.

  5. Spin-orbit coupling and electronic charge effects in Mott insulators

    DOE PAGESBeta

    Zhu, Shan; Li, You -Quan; Batista, Cristian D.

    2014-11-04

    We derive the effective charge- and current-density operators for the strong-coupling limit of a single-band Mott insulator in the presence of spin-orbit coupling and show that the spin-orbit contribution to the effective charge density leads to novel mechanisms for multiferroic behavior. In some sense, these mechanisms are the electronic counterpart of the ionic-based mechanisms, which have been proposed for explaining the electric polarization induced by spiral spin orderings. In addition, the new electronic mechanisms are illustrated by considering cycloidal and proper-screw magnetic orderings on sawtooth and kagome lattices. As for the isotropic case, geometric frustration is crucial for achieving thismore » purely electronic coupling between spin and charge degrees of freedom.« less

  6. Lorentz Force Effects on the Orbit of a Charged Artificial Satellite: A New Approach

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia A.

    2007-02-01

    A charged artificial satellite moving relative to a magnetic field accelerates in a direction perpendicular to its velocity and the magnetic field due to the Lorentz force. The geomagnetic field is considered as a multipole potential field and the satellite electrical charged is supposed to be constant. The study is provided to compute Lorentz force acceleration of a charged satellite in Earth's magnetic field as a function of orbital elements of the satellite. Periodic perturbations in the orbital elements of the satellite are derived using Lagrange planetary equations. Numerical results for a chosen satellites orbit shows the most effects of Lorentz force are in semi major axis, eccentricity, and the longitude of the satellite, but there aren't any effects of the force on the inclination and the argument of the perigee of the satellite elements.

  7. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor

  8. Understanding charge transport in organometal halide field effect transistors

    NASA Astrophysics Data System (ADS)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Sadhanala, Aditya; Friend, Richard, Prof. _., Sir; Sirrnighaus, Henning, , Prof.

    Organometal halide based perovskite are emerging materials for wide range of electronic applications. A range of optoelectronic applications like high efficiency solar cells, color pure LEDs and optical pumped lasers have been demonstrated. Here, we report the demonstration of a high performance field effect transistor fabricated from iodide perovskite material at room temperature. The devices exhibit clean saturation behavior with electron μFET >3 cm2V-1s-1 and current modulation in the range of 106 - 107 which are till date the best performance achieved with these class of materials. This high performance is attributed to a combination of novel film fabrication technique and device engineering strategies. Detailed understanding of the observed band-like transport phenomenon is developed by tuning the different sources of dynamic and static disorder prevalent in the system. These finding are expected to pave way for developing next generation electronic application from perovskite materials. Authors acknowledge EPSRC for funding and SPS acknowledges Royal Society Newton Fellowship.

  9. Effect of Surface Charge on Laser-induced Neutral Atom Desorption

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2010-10-01

    When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well-documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges.[1] In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures.[2] We report here that such surface charging strongly impacts even neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution.

  10. Isotope effect in charge-transfer collisions of H with He{sup +}

    SciTech Connect

    Loreau, J.; Dalgarno, A.; Ryabchenko, S.

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  11. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface.

    PubMed

    Seijo, Marianne; Ulrich, Serge; Filella, Montserrat; Buffle, Jacques; Stoll, Serge

    2008-06-15

    It is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach is used to calculate the interaction potentials between the discrete charged sites. Homogeneous, heterogeneous, and patch site distributions are considered to reproduce the various titrating site distributions at the solid/solution interface of spherical NPs. By considering Coulomb, salt, and image charges effects, results show that for different ionic concentrations, modifications of the dielectric constant of NPs having homogeneous and heterogeneous site distributions have little effect on their charging process. Thus, the reaction field, due to the presence of image charges, fully counterbalances the Coulomb interactions. This is not the case for patch distributions, where Coulomb interactions are not completely counterbalanced by the reaction field. Application of the present model to pyrogenic silica is also performed and comparison is made with published experimental data of titration curves at various ionic concentrations. PMID:18387618

  12. An exact method to obtain effective electrostatic interactions from computer simulations: The case of effective charge amplification

    NASA Astrophysics Data System (ADS)

    González-Mozuelos, P.; Guerrero-García, G. I.; Olvera de la Cruz, M.

    2013-08-01

    We discuss here an exact method to determine the parameters regulating the screened Coulomb interactions among spherical macroions immersed in a simple electrolyte. This approach provides rigorous definitions for the corresponding screening length, effective permittivity, and renormalized charges, and can be employed for precise and reliable calculations of these parameters within any scheme. In particular, we introduce a simple procedure for extracting this information from computer simulations. The viability of this approach is demonstrated by applying it to a three-component model system which includes anionic nanoparticles and monovalent cations and anions. The mean forces between nanoparticles are determined directly from simulations with two macroions, plus small ions, inside a single cell with periodic boundary conditions. The values of the parameters of interest, on the other hand, are gathered from two separate sets of computer simulations: one set provides information about the short-range correlations among the small ions, which in turn determine the screening length and effective permittivity; the second set supplies the short-range components of the ionic distribution around one isolated macroion, which also determine its renormalized charge. The method presented here thus avoids the uncertain fitting of these parameters from the asymptotic tail of the mean force and allows us to investigate in detail this connection between the renormalized charge of the macroion and the short-range (virtual) part of the ionic cloud surrounding it. Using the standard prescription to extract an effective charge from the corresponding renormalized value, we then proceed to clarify the mechanisms behind the possibility of effective charge amplification (i.e., an effective charge larger than the bare macroion charge). Complementarily, we report results for the corresponding bridge functions too.

  13. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.

    PubMed

    Hynninen, A-P; Dijkstra, M; van Roij, R

    2004-06-01

    We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet potentials that were obtained from a numerical Poisson-Boltzmann study [Phys. Rev. E 66, 011402 (2002)

  14. Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2009-01-01

    This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.

  15. Dynamic aperture and space charge effect studies for the Recycler ring for Project-X

    SciTech Connect

    Xiao, M.; Vorobiev, L.G.; Johnson, D.E.; /Fermilab

    2010-09-01

    A simplified Recycler lattice was created to fine tune injection straight, ring tune, and phase trombone. In this paper, we will present detailed modifications for further optimization of Recycler lattice which requires the investigation of tune footprint and dynamic aperture based on higher order momentum components of the magnetic fields, together with the space charge effects.

  16. Charge Effects for Differentiation of Oligodeoxynucleotide Isomers Containing 8-oxo-dG Residues

    SciTech Connect

    Luo, Hai; Lipton, Mary S.; Smith, Richard D.

    2002-02-01

    Dissociation reactions of a series of multiply charged oligonucleotides anions were studied using an ion trap mass spectrometer. These mixed-nucleobase 12-mers fragment first by loss of a nucleobase (A, G, C and/or 5-methyl-cytosine) followed by cleavage at 3' C-O bond of the sugar from which the base is lost to produce the complementary sequence ions, i.e. a-B and w type of ions. No detectable loss of 8-oxo-guanine and/or thymine from these 12-mers is observed for the gentle collision conditions in the ion trap. The primary loss of a nucleobase and the subsequent backbone cleavage to generate sequence ions strongly depend on the charge state of the parent molecular ion. For low charge states (-2 and ?3), product ions due to the loss of a neutral guanine base and related sequence ions are dominant in the tandem mass spectra. However, preferential loss of a neutral adenine becomes the primary reaction channel from the ?5 charge state of the molecular ion. Such charge state dependent fragmentation behavior was utilized to determine the sites of 8-oxo-dG residue in a series of structural isomers. The position of 8-oxo-dG residue can be simply determined from the fragmentation pattern of ?3 charge state, but not of ?5 charge state. The strategy illustrated here for positional mapping of damaged residues in oligonucleotides is highly sensitive due to effective dynamic range enhancement in the product ion spectra by accessing the sequence informative reaction channels.

  17. Shock wave in magnetized dusty plasmas with dust charging and nonthermal ion effects

    SciTech Connect

    Zhang Liping; Xue Jukui

    2005-04-15

    The effects of the external magnetized field, nonadiabatic dust charge fluctuation, and nonthermally distributed ions on three-dimensional dust acoustic shock wave in dusty plasmas have been investigated. By using the reductive perturbation method, a Korteweg-de Vries (KdV) Burger equation governing the dust acoustic shock wave is derived. The results of numerical integrations of KdV Burger equation show that the external magnetized field, nonthermally distributed ions, and nonadiabatic dust charge fluctuation have strong influence on the shock structures.

  18. Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas

    SciTech Connect

    Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.

    2015-07-31

    In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.

  19. Simulation of space charge effects and transition crossing in the Fermilab Booster

    SciTech Connect

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem.

  20. Charge and Hydrophobicity Effects of NIR Fluorophores on Bone-Specific Imaging

    PubMed Central

    Bao, Kai; Nasr, Khaled A.; Hyun, Hoon; Lee, Jeong Heon; Gravier, Julien; Gibbs, Summer L.; Choi, Hak Soo

    2015-01-01

    Recent advances in near-infrared (NIR) fluorescence imaging enabled real-time intraoperative detection of bone metastases, bone growth, and tissue microcalcification. Pamidronate (PAM) has been widely used for this purpose because of its high binding affinity toward bone and remarkable therapeutic effects. Herein we describe the development of a series of PAM-conjugated NIR fluorophores that varied in net charges and hydrophobicity, and compared their bone targeting efficiency, biodistribution, and blood clearance. Since the targeting moiety, PAM, is highly negatively charged but small, the overall in vivo bone targeting and biodistribution were mediated by the physicochemical properties of conjugated fluorophores. PMID:25825600

  1. Room-temperature single charge sensitivity in carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Peng, H. B.; Hughes, M. E.; Golovchenko, J. A.

    2006-12-01

    Electrical current fluctuation studies are reported for coaxial p-type and n-type single-wall carbon nanotube field-effect transistors (FETs). Abrupt discrete switching of the source-drain current is observed at room temperature. The authors attribute these random telegraph signals to charge fluctuating electron traps near the FET conduction channels. Evolution of the current-switching behavior associated with the occupancy of individual electron traps is demonstrated and analyzed statistically. The result strongly indicates room temperature single charge sensitivity in carbon nanotube FETs, which may offer potential applications for single molecule sensors based on suitably prepared FET devices.

  2. Significant curvature effects of partially charged carbon nanotubes on electrolyte behavior investigated using Monte Carlo simulations.

    PubMed

    Ohba, T

    2016-06-01

    Carbon nanotubes and graphene are among the major nanomaterials in nanoscience and technology. Despite having π electrons, these nanocarbon allotropes have been simply considered as neutral in classical calculations. In this study, the effects of partial charges on graphene and curved interfaces on molecular adsorption were investigated using Monte Carlo simulations of N2 and NaCl aqueous solutions on graphene and carbon nanotubes. The simulated N2 adsorption behavior and adsorption potential on partially charged and non-charged graphene coincided with each other. The adsorption potentials suggested that partially charged graphene attracted Na ions and repelled Cl ions. However, those tendencies were not present in NaCl aqueous solutions on graphene. Conversely, in partially charged carbon nanotube models, a preference for Na ions and repulsion of Cl ions in the internal nanospaces were observed in the adsorption potentials using Monte Carlo simulations. Curved interfaces in the internal nanospaces of carbon nanotubes enhanced these properties, suggesting significant electrostatic interactions in a curved π-conjugated system. PMID:27181336

  3. Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Romero-Urbina, Dulce; Velazquez-Salazar, J. Jesus; Lara, Humberto H.; Arellano-Jimenez, Josefina; Larios, Eduardo; Yuan, Tony T.; Hwang, Yoon; Desilva, Mauris N.; Jose-Yacaman, Miguel

    2015-03-01

    The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus(MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA. This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

  4. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  5. Space charge enhanced plasma gradient effects on satellite electric field measurements

    NASA Technical Reports Server (NTRS)

    Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.

    1991-01-01

    It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.

  6. Isospin effects via Coulomb forces on the onset of multifragmentation in light and heavily charged systems

    NASA Astrophysics Data System (ADS)

    Sharma, Arun; Bharti, Arun

    2016-03-01

    We concurrently study the isospin effects via Coulomb forces and the nuclear equation of state and its momentum dependence on the onset of multifragmentation, i.e., critical energy point, in the light and heavily charged reactions of 40Ar + 45Sc and 84Kr + 197Au , respectively, using the isospin-dependent quantum molecular dynamics model. We find that Coulomb forces influence the onset of multifragmentation and result in the shift of the critical energy point towards lower and higher incident energies with and without their presence, respectively. Also, we observe that the critical energy point is sharper for the heavily charged system of 84Kr + 197Au when compared with the light charged system of 40Ar + 45Sc , where a small dip is observed and thus leads to the dependence of onset of multifragmentation, i.e., the critical energy point, on the reaction asymmetry as well as on the Coulomb forces.

  7. Effect of electron nonthermality on nonlinear electrostatic solitary waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Boumezoued, Ghania

    2008-05-15

    The effect of nonthermal electrons with excess of fast energetic electrons on large amplitude electrostatic solitary waves is investigated in a charge varying dusty plasma. The correct nonthermal electron charging is investigated based on the orbit-motion-limited approach. It is found that the nonlinear localized potential structure shrinks when the electrons deviate from isothermality. The dust particles are locally expelled and pushed out the region of the soliton localization as the electrons evolve far away from their thermodynamic equilibrium. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the value of the electron nonthermal parameter {alpha} increases.

  8. Quantum size effects in competing charge and spin orderings of dangling bond wires on Si(001)

    SciTech Connect

    Lee, Ji Young; Cho, Jun-Hyung; Zhang, Zhenyu

    2009-01-01

    Using spin-polarized density-functional theory calculations, we investigate the competition between charge and spin orderings in dangling-bond DB wires of increasing lengths fabricated on an H-terminated Si 001 surface. For wires containing less than ten DBs as studied in recent experiments, we find antiferromagnetic AF ordering to be energetically much more favorable than charge ordering. The energy preference of AF ordering shrinks in an oscillatory way as the wire length increases and preserves its sign even for DB wires of infinite length. The oscillatory behavior can be attributed to quantum size effects as the DB electrons fill discrete quantum levels. The predicted AF ordering is in startling contrast with the prevailing picture of charge ordering due to Jahn-Teller distortion or Peierls instability for wires of finite or infinite lengths, respectively.

  9. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. PMID:25256478

  10. Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves

    SciTech Connect

    Rubab, N.; Murtaza, G.; Mushtaq, A.

    2006-11-15

    The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave.

  11. Effect of Charge Noise on Landau-Zener Interferometry in double quantum dots

    NASA Astrophysics Data System (ADS)

    Qi, Zhenyi; Friesen, Mark; Coppersmith, Susan; Vavilov, Maxim

    We study the effect of charge noise on the dynamics of semiconductor quantum dot qubits. Recent experiments have demonstrated relatively long coherence times in these systems; however at the same time, the visibility of the Landau-Zener interference pattern is relatively low. We argue that the electromagnetic noise of the environment affects the coherence of the qubit near the charge degeneracy point, including the singlet-triplet avoided level crossing, and results in the reduced visibility of the Landau-Zener interferometry when the singlet-triplet avoided level crossing happens in the vicinity of the charge degeneracy point. Using a master equation, we describe the evolution of the density matrix for the qubit assuming weak coupling of the quantum dot to its electromagnetic environment and compare our results to experimental data.

  12. The effects of charge cloud size and digitisation on the SPAN anode

    NASA Astrophysics Data System (ADS)

    Breeveld, A. A.; Edgar, M. L.; Lapington, J. S.; Smith, Alan

    1992-10-01

    Microchannel plate (MCP) detectors are often used with charge division anode readouts, such as the spiral-anode (SPAN) anode, to provide high position resolution. This paper discusses the effect on image quality, of digitization (causing fixed patterning), electronic noise, pulse height distribution (PHD) and charge cloud size. The discussion is supported by experimental data obtained from a 1D SPAN anode. Results from a computer model of this detector, and from a charge cloud simulation model, are also included. The SPAN anode normally has three sinusoidal electrodes with phase differences of 120 deg. An alternative configuration is to use a phase difference of 90 deg. This paper compares the advantages and disadvantages of these arrangements.

  13. Band bending effect induced by gate voltage on the charge loss behavior of charge trap flash memory devices

    NASA Astrophysics Data System (ADS)

    Chang, M.; Hwang, H.; Jeon, S.

    2010-02-01

    We found that the polarity of the gate voltage (Vg) during the retention characteristics for a SiO2/Si3N4/Al2O3 (ONA) stack can affect the charge loss direction, due to band bending. Positive Vg could induce electron de-trapping through Al2O3, while a negative Vg could induce the same through SiO2. Consequently, the charge loss rates exhibited a hairpin curve with Vg. We clearly observed that increases of the SiO2 thickness of the ONA stack induced negative shifts of hairpin curve. This result suggests that the dominant charge loss path could be changed from SiO2 to Al2O3 by increasing the SiO2 thickness without Vg.

  14. Study of the impurity composition and effective plasma charge in the GOL-3 facility

    SciTech Connect

    Sorokina, N. V. Burdakov, A. V.; Ivanov, I. A.; Polosatkin, S. V.; Postupaev, V. V.; Rovenskikh, A. F.; Shoshin, A. A.

    2015-07-15

    Heating and confinement of plasma in a multimirror magnetic configuration have been studied at the GOL-3 facility (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk). The experiments are aimed at estimating the densities and charge states of the main impurities in the GOL-3 plasma and determining their contribution to the effective plasma charge. Plasma with a density of ∼10{sup 15} cm{sup −3} was heated by a relativistic electron beam (1 MeV, 8 μs, ⩽200 kJ). At the end of electron beam injection, the plasma temperature reached 1 keV. The densities of impurities were determined using VUV and visible spectroscopy, as well as mass spectrometry of the residual vacuum. To determine the effective plasma charge, the experimental data were compared with the results of numerical simulations of the ionization balance of impurities. It is shown that the effective plasma charge calculated with allowance for the contributions from the main impurities does not exceed Z{sub eff} = 1.8, which cannot explain the experimentally observed improved confinement of low-density plasma.

  15. Effect of ion compensation of the beam space charge on gyrotron operation

    SciTech Connect

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  16. Effect of ion compensation of the beam space charge on gyrotron operation

    NASA Astrophysics Data System (ADS)

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-01

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  17. Specific ion effects induced by mono-valent salts in like charged aggregates in water.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Liu, Jun; Wei, Shenghui; Li, Liangbin; Wu, Ziyu

    2014-06-28

    While salt mediated association between similarly charged poly-electrolytes occurs in a broad range of biological and colloidal systems, the effects of mono-valent salts remains little known experimentally. In this communication we systematically study influences of assorted mono-valent salts on structures of and interactions in two dimensional ordered bundles of charged fibrils assembled in water using Small Angle X-ray Scattering (SAXS). By quantitatively analyzing the scattering peak features, we discern two competing effects with opposite influences due to partitioning of salts in the aqueous complex. While electrostatic effects from salts residing between the fibrils suppress attraction between fibrils and expand the bundles, it is compensated by external osmotic pressure from peripheral salts in the aqueous media. The balance between the two effects varies for different salts and gives rise to ion-specific equilibrium behavior as well as structure of ordered bundles in salty water. The specific ions effects in like charged aggregates can be attributed to preferential distribution of ions inside or outside the bundles, correlated to the ranking of ions in Hofmeister series for macromolecules. Unlike conventional studies on Hofmeister effects by thermodynamic measurements relying on modeling for data interpretation, our study is based directly on structural analysis and is model-insensitive. PMID:24828119

  18. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection.

    PubMed

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time. Graphical Abstract ᅟ. PMID:27080008

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  20. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  1. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  2. Infrared study of charge injection in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang

    2008-03-01

    We present a systematic infrared (IR) spectroscopic study of charge injection in organic field-effect transistors (FET). These experiments have revealed new unexpected aspects of both polymers and molecular crystals. IR spectromicroscopy was employed to image the charges in poly(3-hexylthiophene) (P3HT) FETs. The charge density profile in the conducting channel uncovers a density-dependent mobility in P3HT due to disorder effects. Our IR studies of single crystal rubrene based FETs show that charge transport in these devices at room temperature is governed by light quasiparticles in molecular orbital bands. This result is at variance with the common beliefs of polaron formation in molecular solids. The above experiments have demonstrated the unique potential of IR spectroscopy for investigating physical phenomena at the nanoscale occurring at the semiconductor-insulator interface in FET devices. This work is in collaboration with G. M. Wang, D. Moses, A. J. Heeger (UCSB), V. Podzorov, M.E. Gershenson (Rutgers), Z. Hao, M. C. Martin (ALS), N. Sai, A. D. Meyertholen, M. M. Fogler, M. Di Ventra and D. N. Basov (UCSD).

  3. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  4. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-03-08

    This report summarizes the work done during the fifth quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Fabrication of porous samaria-doped ceria (SDC) and investigation of the effect of thermal treatment on its conductivity. The model developed accounts for transport through three regions: (a) Transport through the bulk of the grain, RI, which includes parallel transport through space charge region. (b) Transport through the space charge region adjacent to the neck (grain boundary), RII. (c) Transport through the structural part of the neck (grain boundary), RIII. The work on the model development involves calculation RI, RII, RIII, and the sum of these three terms, which is the total resistance, as a function of the grain radius ranging between 0.5 and 5 microns and as a function of the relative neck size, described in terms of the angle theta, ranging between 5 and 45{sup o}. Three values of resistivity of the space charge region were chosen; space charge resistivity greater than grain resistivity, equal to grain resistivity, and lower than grain resistivity. Experimental work was conducted on samaria (Sm{sub 2}O{sub 3})-doped ceria (SDC) samples of differing porosity levels, before and after thermal treatment at 1200 C. The conductivity in the annealed samples was lower, consistent with enhanced Debye length. This shows the important role of space charge on ionic transport, and its implications concerning cathode polarization.

  5. The effects of charge transfer inefficiency (CTI) on galaxy shape measurements

    SciTech Connect

    Rhodes, Jason; Leauthaud, Alexie; Stoughton, Chris; Massey, Richard; Dawson, Kyle; Kolbe, William; Roe, Natalie; /LBL, Berkeley

    2010-02-01

    We examine the effects of charge transfer inefficiency (CTI) during CCD readout on the demanding galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage in space-based detectors. We verify our simulations on real data from fully depleted p-channel CCDs that have been deliberately irradiated in a laboratory. We show that only charge traps with time constants of the same order as the time between row transfers during readout affect galaxy shape measurements. We simulate deep astronomical images and the process of CCD readout, characterizing the effects of CTI on various galaxy populations. Our code and methods are general and can be applied to any CCDs, once the density and characteristic release times of their charge trap species are known. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, {Delta}e, will increase at a rate of (2.65 {+-} 0.02) x 10{sup -4} yr{sup -1} at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission surveying the entire extragalactic sky within about 4 yr of accumulated radiation damage. However, software mitigation techniques demonstrated elsewhere can reduce this by a factor of {approx}10, bringing the effect well below mission requirements. This conclusion is valid only for the p-channel CCDs we have modeled; CCDs with higher CTI will fare worse and may not meet the requirements of future dark energy missions. We also discuss additional ways in which hardware could be designed to further minimize the impact of CTI.

  6. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions.

    PubMed

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter; Kronik, Leeor; Neaton, Jeffrey B; Natelson, Douglas

    2016-02-10

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrational Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C60 junctions. PMID:26814562

  7. Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2.

    PubMed

    Chen, Chin-Cheng; Cheng, Hsiu-Chin

    2007-01-21

    The effects of size and charge on the condensation of a supersaturated water vapor on monodisperse nanoparticles of SiO(2) were investigated in a flow cloud chamber. The dependences of the critical supersaturation S(cr) on particle size at diameters of 10, 12, and 15 nm as well as on charge and charge polarity are determined experimentally. A novel electrospray aerosol generator was developed to generate a high concentration of SiO(2) nanoparticles of less than 10 nm by electrospraying silicon tetraethoxide (STE) ethanol solution followed by the thermal decomposition of STE. The effects of liquid flow rate, liquid concentration, flow rate of carrier gas, and liquid conductivity on the particle size distribution and concentration were examined. For charged particles, the nucleation occurs at a critical supersaturation S(cr) lower than that on neutral particles, and the charge effect fades away as particle size increases. The charge effect is stronger than the theoretical predictions. In addition, a sign preference is detected, i.e., water vapor condenses more readily on negatively charged particle, a trend consistent with those observed on ions. However, both effects of charge and charge polarity on S(cr) are stronger than that predicted by Volmer's theory for ion-induced nucleation. PMID:17249890

  8. Charge transport properties of graphene: Effects of Cu-based gate electrode

    NASA Astrophysics Data System (ADS)

    Tang, Qide; Zhang, C. X.; He, Chaoyu; Tang, Chao; Zhong, Jianxin

    2016-07-01

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  9. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    NASA Astrophysics Data System (ADS)

    Marciante, Mathieu; Calvo, Florent

    2015-05-01

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

  10. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    SciTech Connect

    Marciante, Mathieu; Calvo, Florent

    2015-05-07

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

  11. Space-charge effects of positive ions on the development of pulses in parallel-plate avalanche counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2015-02-01

    The effects of the space-charge of positive ions on the development of α-particle induced pulses in a parallel-plate avalanche counter (PPAC) were studied by using pulse-shape analysis techniques. The analyses were separately carried out on the electron and the positive ion components of the pulses, reflecting the space-charge effects during and after the multiplication of charges in an external uniform electric field. Some calculations of the space-charge electric field and the first Townsend coefficient were carried out to explain the experimental waveforms. The dependence of the shape of the pulses to the amount of primary ionization is particularly discussed.

  12. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    PubMed

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis. PMID:8589550

  13. Effects of trace water on charging of silica particles dispersed in a nonpolar medium.

    PubMed

    Gacek, Matthew; Bergsman, David; Michor, Edward; Berg, John C

    2012-08-01

    This paper presents an investigation of the effects of trace water on the charging of silica (SiO(2)) particles dispersed in a nonpolar medium. There are a growing number of applications that seek to use electrostatic effects in apolar media to control particle movement and aggregation stability in such systems. One factor that is often overlooked in the preparation of nonpolar colloidal dispersions is the amount of water that is introduced to the system by hygroscopic particles and surfactants. The amount and location of this water can have significant effects on the electrical properties of these systems. For nonpolar surfactant solutions it has been shown that water can affect the conductivity, and it has been speculated that this is due to swelling of the polar cores of inverse micelles, increasing the fraction of them that are charged. Some studies have suggested that particle surface charging may also be sensitive to water content, but a clear mechanism for the process has not been fully developed. The situation with particles is further complicated by the fact that it is often unclear whether the water resides on the particle surfaces or in the polar cores of inverse micelles. The current work explores not only the effect of water content on reverse micelle and particle charging but seeks to differentiate between water bound to the particles and water located in the micelles. This is accomplished by measuring the solution conductivity and the electrophoretic mobility of silicon dioxide particles dispersed in solutions of Isopar-L and OLOA 11000. The water content is determined for both the dispersion and the supernatant after centrifuging the particles out. It is found that at equilibrium the majority of the water in the system adsorbs to the surface of the hygroscopic silica particles. In addition, the effect of water on particle electrophoretic mobility is found to be dependent on surfactant concentration. At small OLOA concentrations, additional water

  14. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  15. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration. PMID:25822908

  16. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    PubMed

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions. PMID:27373802

  17. The effect of the electrical double layer on the membrane charging process

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao

    2010-11-01

    The electrical charging process of a lipid membrane immersed in electrolytic solutions is of significance to a variety of applications including electroporation and electrodeformation. In these phenomena, the build-up of a potential difference across the membrane (the so-called transmembrane potential, or TMP) induces pore formation and membrane permeabilization (in electroporation) or deformation (in electrodeformation). The classical model treats the membrane as an equivalent capacitor-resistor system which is valid in the zero-thickness electrical double layer (EDL) limit. In this work, the effects of a finite EDL on the charging dynamics are investigated. Starting from the Nernst-Planck equations governing ionic transport, the membrane charging problem is solved in both planar and spherical geometries, and using both analytical and numerical methods. The results demonstrate that the effects of the EDL become more significant as the electrical conductivity of the electrolytic solution decreases, which is a natural consequence of an increased Debye length. The steric effect, which often arises in the limit of large zeta-potentials, is shown to be insignificant for physiological applications. The effective circuit equivalence of the EDL is calculated and validated. The results are discussed in comparison with experimental data on electroporation from the literature.

  18. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  19. Charging effects in an electron bombarded Ar matrix and the role of chemiluminescence-driven relaxation.

    PubMed

    Savchenko, Elena V; Khyzhniy, Ivan V; Uyutnov, Sergey A; Gumenchuk, Galina B; Ponomaryov, Alexey N; Beyer, Martin K; Bondybey, Vladimir E

    2011-06-30

    The relaxation processes in pure and doped Ar films preirradiated by an electron beam are studied with the focus on charging effects. Correlated real time measurements have been performed applying current and optical activation spectroscopy methods. Thermally stimulated exoelectron emission and thermally stimulated luminescence are detected in the vacuum ultraviolet and visible range. An appreciable accumulation of electrons in the matrix is found, and prerequisites for negative space charge formation are ascertained. The part played by pre-existing and radiation-induced defects as well as dopants is considered and the temperature range of the electron trap stability is elucidated. It is shown that laser-induced electron detachment from O(-) centers results in an enhancement of electron detrapping via the chemiluminescence mechanism, viz. neutralized and thermally mobilized O atoms recombine. Formation of O(2)* results in the emission of visible photons. These photons act as a stimulating factor for electron release and transport, terminating in exoelectron emission and charge recombination. Chemiluminescence therefore plays an important role in the decay of charged centers. PMID:21604736

  20. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: effect of surface charge.

    PubMed

    Velpula, Ashok; Jukanti, Raju; Janga, Karthik Yadav; Sunkavalli, Sharath; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-12-01

    The primary goal of the present study was to investigate the combined prospective of proliposomes and surface charge for the improved oral delivery of raloxifene hydrochloride (RXH). Keeping this objective, the present systematic study was focused to formulate proliposomes by varying the ratio of hydrogenated soyphosphatidylcholine and cholesterol. Furthermore, to assess the role of surface charge on improved absorption of RXH, anionic and cationic vesicles were prepared using dicetyl phosphate and stearylamine, respectively. The formulations were characterized for size, zeta potential and entrapment efficiency. The improved dissolution characteristics assessed from dissolution efficiency, mean dissolution rate were higher for proliposome formulations. The solid state characterization studies indicate the transformation of native crystalline form of the drug to amorphous and/or molecular state. The higher effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of proliposomes and cationic surface charge for augment in absorption across gastro intestinal barrier. To draw the conclusions, in vivo pharmacokinetic study carried out in rats indicate a threefold enhancement in the rate and extent of absorption of RXH from cationic proliposome formulation which unfurl the potential of proliposomes and role of cationic charge for improved oral delivery of RXH. PMID:22458264

  1. Effects of the net charge on abundance and stability of supramolecular surfactant aggregates in gas phase.

    PubMed

    Bongiorno, David; Ceraulo, Leopoldo; Giorgi, Gianluca; Indelicato, Serena; Ferrugia, Mirella; Ruggirello, Angela; Liveri, Vincenzo Turco

    2011-02-01

    Self-assembling of amphiphilic molecules under electrospray ionization (ESI) conditions is characterized by quite unexpected phenomenology. The noticeable differences with respect to the condensed phase are attributable to the absence of the surfactant-solvent interactions, the presence of net charge in the aggregates, and the strong deviation from equilibrium conditions. Aiming to investigate the effects of the net charge on abundance and stability of supramolecular surfactant aggregates, positively and negatively charged aggregates of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium methane sulfonate (MetS), butane sulfonate (ButS) and octane sulfonate (OctS) have been studied by ESI mass spectrometry, energy resolved mass spectrometry and density functional theory calculations. The negatively charged aggregates are found to be less stable than their positive counterparts. The results are consistent with a self-assembling pattern dominated by electrostatic interactions involving the counterions and head groups of the investigated amphiphilic compounds while the alkyl chains point outwards, protecting the aggregates from unlimited growth processes. PMID:21259391

  2. Effect of charge on the dynamics of an acoustically forced bubble

    NASA Astrophysics Data System (ADS)

    Hongray, Thotreithem; Ashok, B.; Balakrishnan, J.

    2014-06-01

    The effect of charge on the dynamics of a gas bubble undergoing forced oscillations in a liquid due to incidence of an ultrasonic wave is theoretically investigated. The limiting values of the possible charge a bubble may physically carry are obtained. The presence of charge influences the regime in which the bubble's radial oscillations fall. The extremal compressive and expansive dimensions of the bubble are also studied as a function of the amplitude of the driving pressure. It is shown that the limiting value of the bubble charge is dictated both by the minimal value reachable of the bubble radius as well as the amplitude of the driving ultrasonic pressure wave. A non-dimensional ratio ζ is defined that is a comparative measure of the extremal values the bubble can expand or contract to, and we find the existence of an unstable regime for ζ as a function of the driving pressure amplitude, Ps. This unstable regime is gradually suppressed with increasing bubble size. The Blake and the upper transient pressure thresholds for the system are then discussed.

  3. Dielectric many-body effects in arrays of charged cylindrical macromolecules

    NASA Astrophysics Data System (ADS)

    Sinkovits, Daniel W.; Barros, Kipton; Dobnikar, Jure; Kandu&{Caron; C}, Matej; Naji, Ali; Podgornik, Rudolf; Luijten, Erik

    2012-02-01

    Nonuniform dielectric constants are a ubiquitous aspect of condensed-matter systems, but nevertheless widely ignored in simulations. Analytical work suggests that the polarization effects resulting from these inhomogeneities can produce many-body interactions that qualitatively alter the behavior of systems driven by electrostatic interactions, but such work relies on approximations. Recently, we have developed an algorithm that computes the fluctuating polarization charge at the interface between dielectric materials during a molecular dynamics simulation, without approximation. Here, we apply this approach to investigate arrays of charged cylindrical macromolecules in the presence of explicit counterions. We study the dielectric many-body effects as a function of separation, dielectric constant variation, and counterion valency. Our findings have implications for the aggregation of polyelectrolytes such as F-actin or DNA.

  4. Reactive Charged Droplets for Reduction of Matrix Effects in Electrospray Ionization Mass Spectrometry.

    PubMed

    Kulyk, Dmytro S; Miller, Colbert F; Badu-Tawiah, Abraham K

    2015-11-01

    A new quantitative contained-electrospray (ES) process is described here that employs a movable ES emitter to control the reactivity of charged microdroplets by varying their exposure time with acid vapor. The method allows elimination of ion suppression effects caused by the presence of various surface active compounds that coelute with the analyte. For mixtures, contained-ESI mass spectrometric analysis produces relative ion intensities that reflect the true concentrations of analytes in solution. The mechanism for this effect has been elucidated and ascribed to the generation of fine initial droplets in the presence of a high abundance of protons; together, these two factors eliminate competition for charge and space during ion formation. Examples of analytes tested include steroids, phospholipids, phosphopeptides, and sialylated glycans. At least 1 order of magnitude improvement in detection limits, sensitivity, and accuracy of detection was observed when compared to conventional electrospray. PMID:26437455

  5. Charge Transport in Thin Organic Semiconducting Films: Seebeck and Field Effect Studies

    NASA Astrophysics Data System (ADS)

    Böhm, W.; Fritz, T.; Leo, K.

    1997-03-01

    We have investigated the charge transport properties of vapor-deposited thin organic films, using the Seebeck effect for determining conduction type and Fermi energy and the field effect to measure mobility and total charge carrier density. We show that the combination of both techniques gives a complete picture of the electrical properties of the films. Wir untersuchen den Ladungsträgertransport in aufgedampften dünnen organischen Schichten, wobei der Seebeck-Effekt zur Bestimmung des Leitfähigkeitstyps und der Lage des Ferminiveaus und der Feldeffekt zur Bestimmung der Leitfähigkeit und der gesamten Ladungsträgerdichte benutzt wird. Es wird gezeigt, daß durch die Kombination beider Methoden ein geschlossenes Bild der elektrischen Eigenschaften erhalten wird.

  6. A Model of Charge-Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects.

    PubMed

    Lee, Chee Kong; Shi, Liang; Willard, Adam P

    2016-06-16

    In this Letter, we explore how the microscopic dynamics of charge-transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay, we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a stochastic coarse-grained model of charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials. PMID:27237448

  7. Kinetic Alfven waves in a homogeneous dusty magnetoplasma with dust charge fluctuation effects

    SciTech Connect

    Zubia, K.; Rubab, N.; Shah, H. A.; Salimullah, M.; Murtaza, G.

    2007-03-15

    Kinetic Alfven waves with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external/ambient magnetic field. Two-potential theory has been applied for these electromagnetic waves and the dispersion relation is derived which shows a cutoff frequency at the dust-lower-hybrid frequency due to the hybrid motion of magnetized ions and cold and unmagnetized dust dynamics. The dust charge fluctuation effect was analyzed for finding the damping of the electromagnetic kinetic Alfven waves, which arises on account of the electrostatic parallel component of the waves. The dust charge fluctuation damping is seen to be contributed dominantly by the perpendicular motion of electrons and ions in the dusty magnetoplasma.

  8. Effect of energetic electrons on dust charging in hot cathode filament discharge

    SciTech Connect

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-15

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  9. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  10. Space-Charge Effects in the Super B-Factory LER

    SciTech Connect

    Venturini, Marco

    2007-01-31

    Space-charge effects in the low-energy ring of the proposedSuper-B Factory are studied using a weak-strong model of dynamics asimplemented in the code Marylie/Impact (MLI). The impact of space chargeappears noticeable but our results suggest the existence of workableregions of the tune space where the design emittance is minimallyaffected. However, additional studies are recommended to fullysubstantiate this conclusion.

  11. Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.

    2013-09-01

    Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.

  12. Charged Fermions Tunnel from the Kerr-Newman Black Hole Influenced by Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Ren, Ruyi; Chen, Deyou; Pu, Jin

    2016-03-01

    Taking into account quantum gravity effects, we investigate the tunnelling radiation of charged fermions in the Kerr-Newman black hole. The result shows that the corrected Hawking temperature is determined not only by the parameters of the black hole, but also by the energy, angular momentum and mass of the emitted fermion. Meanwhile, an interesting found is that the temperature is affected by the angle 𝜃. The quantum gravity correction slows down the evaporation.

  13. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    NASA Technical Reports Server (NTRS)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  14. Electrostatic correlations in colloidal suspensions: Density profiles and effective charges beyond the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Diehl, Alexandre; Levin, Yan

    2009-03-01

    A theory is proposed which allows us to calculate the distribution of the multivalent counterions around a colloidal particle using the cell model. The results are compared with the Monte Carlo simulations and are found to be very accurate in the two asymptotic regimes, close to the colloidal particle and far from it. The theory allows to accurately calculate the osmotic pressure and the effective charge of colloidal particles with multivalent counterions.

  15. Longitudinal Space Charge Effects in the JLAB IR FEL SRF LINAC

    SciTech Connect

    C. Hernandez-Garcia; K. Beard; C. Behre; S. Benson; G. Biallas; J. Boyce; D. Douglas; H. F. Dylla; R. Evans; A. Grippo; J. Gubeli; D. Hardy; K. Jordan; L. Merminga; G. Neil; J. Preble; Michelle D. Shinn; T. Siggins; R. Walker; G. P. Williams; B. Yunn; S. Zhang

    2004-09-01

    Observations of energy spread asymmetry when operating the Linac on either side of crest and longitudinal emittance growth have been confirmed by extending PARMELA simulations from the injector to the end of the first SRF Linac module. The asymmetry can be explained by the interaction of the accelerating electric field with that from longitudinal space charge effects within the electron bunch. This can be a major limitation to performance in FEL accelerators.

  16. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    PubMed

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event. PMID:26327272

  17. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces.

    PubMed

    Frano, A; Blanco-Canosa, S; Schierle, E; Lu, Y; Wu, M; Bluschke, M; Minola, M; Christiani, G; Habermeier, H U; Logvenov, G; Wang, Y; van Aken, P A; Benckiser, E; Weschke, E; Le Tacon, M; Keimer, B

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ∼ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides. PMID:27322824

  18. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  19. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces

    NASA Astrophysics Data System (ADS)

    Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

  20. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    SciTech Connect

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  1. The ionization instability and resonant acoustic modes suppression by charge space effects in a dusty plasma

    SciTech Connect

    Conde, L.

    2006-03-15

    The large wavenumber suppression of unstable modes by space charge effects of the ionization instability in a weakly ionized and unmagnetized dusty plasma is investigated. The charge losses in the initial equilibrium state are balanced by electron impact ionizations originated by both the thermal electron populations and an additional monoenergetic electron beam. The multifluid dimensionless equations are deduced by using the time and length scales for elastic collisions between ions and neutral atoms and the Poisson equation relates the plasma potential fluctuations with charged particle densities instead of the quasineutral approximation. A general dimensionless dispersion relation is obtained from the linearized transport equations, where the ratios between the characteristic velocities, as the dust ion acoustic (IA), dust acoustic (DA), ion sound, and thermal speeds permits us to evaluate the weight of the different terms. In the long wavelength limit the results obtained using the quasineutral approximation are recovered. The differences found between roots of both dispersion equations are discussed, as well as those of previous models. The unstable mode of the linear ionization instability is originated by the imbalance between ion and electron densities in the rest state caused by the negative charging of dust grains. Contrary to dust free plasmas, the unstable mode exists, even in the absence of the ionizing electron beam. The numerical calculations of the roots of the full dispersion equation present a maximum unstable wavenumber not predicted by the quasineutral approximation, which is related with the minimum allowed length for space charge fluctuations within a fluid model. This upper limit of unstable wave numbers hinders the predicted resonant coupling in the long wavenumber regime between the DA and DIA waves.

  2. Phase Behavior of Charged Colloids and the Effect of External Fields

    NASA Astrophysics Data System (ADS)

    Hynninen, A.-P.

    2005-12-01

    Colloids are particles with a size in the nano- to micrometer range that are dispersed in a solvent, and that due to collisions from the solvent molecules, undergo Brownian motion. In most cases, the surface of the colloid acquires a net charge due to dissociation of chemical groups at the surface. In this thesis, we present results of computer simulations on the phase behavior of charged colloidal suspensions using various levels of description: Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, DLVO theory with effective many-body interactions, and the primitive model. We make two attempts to amend the DLVO theory to include many-body interactions: (i) density-dependent truncation and (ii) three-body interactions. In the case of three-body interactions, we find at low salt concentration a very broad coexistence between a fluid and a dense face-centered-cubic (fcc) phase, while at intermediate salt concentration a broad body-centered-cubic (bcc)-fcc coexistence regime appears. However, in our primitive model calculations, we did not find any broad coexistence regions or any other manifestations of three-body interactions. Thus, the effective Hamiltonian of charged colloids seems to be better described by the standard pairwise DLVO potential, than by a Hamiltonian including a density-dependent truncation or three-body interactions. We study the gas-liquid critical point of asymmetric electrolyte mixtures consisting of large multivalent macroions and small monovalent co- and counterions. The system can be seen as a binary mixture of colloids with their counterions and salt at strong electrostatic coupling. We calculate the critical point locus that connects the salt-free state consisting of macroions and counterions with the pure salt state. We calculate the ground-state phase diagram of a mixture of large and small (size ratio 0.31) oppositely charged colloids. The phase diagram displays novel structures, but also colloidal analogs of simple-salt structures and of

  3. Study on effect of charge on inertial particle motion in turbulence by using holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Particles in turbulence flows, either natural or artificial, can be charged. According to the previous research, electrical charge on particles has an influence on both rain enhancement and particle clustering in turbulent flow. Due to the Lorenz effect of unipolar or bipolar charged particles, particles tend to attract or repel to each other. Moreover, it is well known that electrical field exists in the atmosphere that has an effect on charged particles, especially droplets. As a result, the dynamic behaviors of charged particles can be rather different from uncharged particles, which, to date, are not systematically studied yet. In order to systematically investigate the charged particles, we developed a method involving holographic particle tracking velocimetry (HPTV) technique to study the kinetic behavior of charged particles in flow. Theoretical analysis was also carried out to correlate kinetic behavior of particles and charge amount on them. This thesis also validated the feasibility of this method. The results of the validation experiment show that this method is capable to measure the velocity and acceleration of particles. By means of the second-order polynomial regression of particles' motion, the average acceleration, initial position and initial velocity of particles were obtained. With the mathematical model of a product of two normally distributed variables, the error bounds in measurement of particle kinetics can be acquired. Therefore, combining with the electrical field and diameter range of particles, we can quantitatively study the dynamic behavior of charged particles in flow. In order to verify this, some experiments were designed and performed. We applied this method to quantitatively measure the behavior of particles to acquire the charge amount on particles from an enclosed chamber used in turbulence experiments. The result showed that although the charge amount was very low, most particles were charged with positive charge in the

  4. Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Öberg, S.; Adjizian, J.-J.; Erbahar, D.; Rio, J.; Humbert, B.; Dossot, M.; Soldatov, A.; Lefrant, S.; Mevellec, J.-Y.; Briddon, P.; Rayson, M. J.; Ewels, C. P.

    2016-01-01

    While changes in resonant Raman scattering measurements are commonly used to measure the effect of chemical functionalization on single-walled carbon nanotubes, the precise effects of functionalization on these spectra have yet to be clearly identified. In this density functional theory study, we explore the effects of functionalization on both the nanotube resonance energy and frequency shifts in radial breathing mode. Charge transfer effects cause a shift in the first Van Hove singularity spacings, and hence resonance excitation energy, and lead to a decrease in the radial breathing mode frequency, notably when the Fermi level decreases. By varying stochastically the effective mass of carbon atoms in the tube, we simulate the mass effect of functionalization on breathing mode frequency. Finally, full density functional calculations are performed for different nanotubes with varying functional group distribution and concentration using fluorination and hydrogenation, allowing us to determine overall effect on radial breathing mode and charge transfer. The results concur well with experiment, and we discuss the importance when using Raman spectroscopy to interpret experimental functionalization treatments.

  5. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having Negatively or Positively Charged Side Chains

    PubMed Central

    De Costa, N. Tilani S.; Heemstra, Jennifer M.

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  6. Evaluating the effect of ionic strength on duplex stability for PNA having negatively or positively charged side chains.

    PubMed

    De Costa, N Tilani S; Heemstra, Jennifer M

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  7. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  8. Missing derivative discontinuity of the exchange-correlation energy for attractive interactions: The charge Kondo effect

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Stefanucci, G.

    2012-08-01

    We show that the energy functional of ensemble density functional theory (DFT) [Perdew , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1691 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence the exchange-correlation (XC) potential is not discontinuous for all N. We highlight the importance of this exact result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened. We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.

  9. Non-Gaussian signatures and collective effects in charge noise affecting a dynamically decoupled qubit

    NASA Astrophysics Data System (ADS)

    Ramon, Guy

    2015-10-01

    The effects of a collection of classical two-level charge fluctuators on the coherence of a dynamically decoupled qubit are studied. Distinct dynamics is found at different qubit working positions. Exact analytical formulas are derived at pure dephasing and approximate solutions are found at the general working position, for weakly and strongly coupled fluctuators. Analysis of these solutions, combined with numerical simulations of the multiple random telegraph processes, reveal the scaling of the noise with the number of fluctuators and the number of control pulses, as well as dependence on other parameters of the qubit-fluctuators system. These results can be used to determine potential microscopic models for the charge environment by performing noise spectroscopy.

  10. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    NASA Technical Reports Server (NTRS)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  11. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force in the beam combined with elegant [4] and explore the limitation of the 1D model often used

  12. Charge storage mechanisms in electrochemical capacitors: Effects of electrode properties on performance

    NASA Astrophysics Data System (ADS)

    Dupont, Madeleine F.; Donne, Scott W.

    2016-09-01

    The capacitive behaviour of four commonly studied electrochemical capacitor systems has been analyzed using the step potential electrochemical spectroscopy (SPECS) method. Electrode-electrolyte combinations with different charge storage mechanisms were characterized, including activated carbon in aqueous (H2SO4) and organic (TEABF4 in acetonitrile) electrolytes, manganese dioxide (Na2SO4) and anhydrous ruthenium oxide (H2SO4). The SPECS method was used to separate the charge storage contributions from double layer capacitance (CDL) and diffusion-limited pseudo-capacitance (CD) at scan rates ranging from 0.08 to 125 mV/s. The relative contributions from each process are related to the physicochemical properties of the electrode. Additionally, the effects of these electrode properties on the overall performance of each system, in terms of specific power and energy, are identified.

  13. Longitudinal Space Charge Effects in Bunched Electron Beams Travelling through a Malmberg-Penning Trap

    SciTech Connect

    Rome, M.; Cavaliere, F.; De Luca, F.; Pozzoli, R.; Cavenago, M.; Maero, G.; Paroli, B.

    2010-06-16

    Nanosecond pulsed electron beams in the 1-10 keV energy range have been characterized by means of an electrostatic diagnostic in the Malmberg-Penning trap ELTRAP. The beam length has been inferred through the numerical analysis of the signals measured across the overall load impedance of a planar charge collector. The presence of space charge effects leading to a longitudinal spread of the beam during its transport are evidenced at low injection energies. This feature has also been tested with the use of a one-dimensional fluid model and with two-dimensional, cylindrically-symmetric Particle-In-Cell simulations, whose results are compared to the experimental observations.

  14. Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems

    NASA Astrophysics Data System (ADS)

    Gainullin, I. K.; Sonkin, M. A.

    2015-08-01

    Resonant charge transfer (RCT) between negative ions and a metallic nanosystem was investigated by means of a high-performance ab initio three-dimensional (3D) numerical solver. During RCT, an electron was shown to occupy succesively nanosystem eigenstates along the z , ρ , and φ coordinates. Electron tunneling into a nanosystem is a reversible process, because after some time the electron propagates back to the ion. RCT efficiency in a nanosystem was found to exhibit quantum-size effects as well as lateral ion position dependence. This means that during ion-surface interaction, the nanosystem's size and the ion trajectory strongly influence the final charge state of the ion. In the case of real 3D systems (without cylindrical symmetry), the electron density currents form quantum vortices; this result is rather nontrivial for static systems. In addition, the limits of the adiabatic approximation (rate equation) for the RCT calculation with nanosystems are defined.

  15. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  16. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    PubMed

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance. PMID:27314747

  17. Novel Polymyxin Derivatives Carrying Only Three Positive Charges Are Effective Antibacterial Agents ▿

    PubMed Central

    Vaara, Martti; Fox, John; Loidl, Günther; Siikanen, Osmo; Apajalahti, Juha; Hansen, Frank; Frimodt-Møller, Niels; Nagai, Junya; Takano, Mikihisa; Vaara, Timo

    2008-01-01

    The lack of novel antibiotics against gram-negative bacteria has reinstated polymyxins as the drugs of last resort to treat serious infections caused by extremely multiresistant gram-negative organisms. However, polymyxins are nephrotoxic, and this feature may complicate therapy or even require its discontinuation. Like that of aminoglycosides, the nephrotoxicity of polymyxins might be related to the highly cationic nature of the molecule. Colistin and polymyxin B carry five positive charges. Here we show that novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. NAB739 has a cyclic peptide portion identical to that of polymyxin B, but in the linear portion of the peptide, it carries the threonyl-d-serinyl residue (no cationic charges) instead of the diaminobutyryl-threonyl-diaminobutyryl residue (two cationic charges). The MICs of NAB739 for 17 strains of Escherichia coli were identical, or very close, to those of polymyxin B. Furthermore, NAB739 was effective against other polymyxin-susceptible strains of Enterobacteriaceae and against Acinetobacter baumannii. At subinhibitory concentrations, it dramatically sensitized A. baumannii to low concentrations of antibiotics such as rifampin, clarithromycin, vancomycin, fusidic acid, and meropenem. NAB739 methanesulfonate was a prodrug analogous to colistin methanesulfonate. NAB740 was the most active derivative against Pseudomonas aeruginosa. NAB7061 (linear portion of the peptide, threonyl-aminobutyryl) lacked direct antibacterial activity but sensitized the targets to hydrophobic antibiotics by factors up to 2,000. The affinities of the NAB compounds for isolated rat kidney brush border membrane were significantly lower than that of polymyxin B. PMID:18591267

  18. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats

    PubMed Central

    Campos-Martorell, Mireia; Cano-Sarabia, Mary; Simats, Alba; Hernández-Guillamon, Mar; Rosell, Anna; Maspoch, Daniel; Montaner, Joan

    2016-01-01

    Background and aims Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. Materials and methods In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt) surgery and treated (intravenous [IV]) with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS® Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV) administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. Results Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes were able to reach the brain and accumulate specifically in the infarcted area. Moreover, neutral liposomes exhibited higher bioavailability in plasma 4 hours after being administered. The detection of simvastatin by ultra-high-protein liquid chromatography confirmed its ability to cross the blood–brain barrier, when administered either as a free drug or encapsulated into liposomes. Conclusion This study confirms that liposome charge is critical to promote its accumulation in the brain infarct after MCAOt. Furthermore, simvastatin can be delivered after being encapsulated. Thus, simvastatin encapsulation might be a promising

  19. Testing the relevance of effective interaction potentials between highly-charged colloids in suspension

    NASA Astrophysics Data System (ADS)

    Dobnikar, J.; Castañeda-Priego, R.; von Grünberg, H. H.; Trizac, E.

    2006-11-01

    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behaviour, pressure and compressibility of highly-charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models.

  20. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-11-03

    This report summarizes the work done during the third quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries, and its relationship to cathode polarization. Included indirectly through the grain boundary effect is the effect of space charge. (2) Synthesis of LSC + SDC composite cathode powders by combustion synthesis. (3) Fabrication and testing of anode-supported single cells made using synthesized LSC + ScDC composite cathodes.

  1. Study the Effects of Charged Particle Radiation on Gravitational Sensors in Space

    NASA Technical Reports Server (NTRS)

    Lipa, John A.

    1999-01-01

    a good conductor. This effectively wires a resistor to each individual tip, providing a current limit and thus greatly reducing the possibility of destructive arcing through an individual tip. An issue with this resistive layer is its range of operating temperatures. From the experience with the GP-B system, we hypothesized about using secondary electron emission for control of net charge transfer to an object. An important goal of the testing described below was to demonstrate the ability to apply both positive and negative charges to the test object from a single emitter.

  2. Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma

    SciTech Connect

    Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant

    2012-01-15

    Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{sub i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion

  3. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  4. Emergence of constant curvature spacetimes with an effective charge and cosmological constant in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Joe, Anton; Dadhich, Naresh; Singh, Parampreet

    2015-04-01

    The loop quantum dynamics of Kantowski-Sachs and the interior of higher genus black hole spacetimes with cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmolgy. As in the other cases, though the quantum geometric effects resolve the singularity and result in a bounce, after the bounce a spacetime with small spacetime curvature does not emerge at late times. Instead, asymptotically the spacetime has constant spacetime curvature with a product manifold. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, the effective metric of these spacetimes is a solution to the Einstein field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski-Sachs spacetimes lead to an effective charged Nariai, and, the higher genus black hole interior lead to an anti Bertotti-Robinson spacetime with an effective tachyonic charge. The asymptotic spacetimes have an effective cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantwoski-Sachs and higher genus black hole metrics.

  5. Potential of mean force between like-charged nanoparticles: Many-body effect

    PubMed Central

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-01-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles. PMID:26997415

  6. The effects of nonadiabatic dust charge variation and ultraviolet irradiation on the modulational instability of dust ion acoustic waves

    SciTech Connect

    Wang Yunliang; Guo Chunxia; Ni Xiaodong; Qian Ping; Shen Jiang; Jiang Xiangqian; Zhou Zhongxiang

    2010-11-15

    The effects of nonadiabatic dust charge fluctuation on the nonlinear propagation of the dust ion acoustic (DIA) waves in the dusty plasma with positively charged dust grains have been investigated. By using the reductive perturbation technique, a three-dimensional modified nonlinear Schroedinger equation (mNLSE) governing the nonlinear envelope DIA waves was derived and the approximate solitary wave solution of the mNLSE was also obtained in the weak effect of nonadiabatic dust charge fluctuation limit, which shows that the amplitude of the DIA solitary wave exponentially decreases with time due to the collisionless dissipation caused by the nonadiabatic dust charge variation. The frequency, instability growth rate, and the critical modulational wave number of the small amplitude modulation are all dependent on photoelectron generated by ultraviolet irradiation and time due to the presence of nonadiabatic dust charge variation. The transverse perturbation plays an important role in the modulational instability region.

  7. Effects of structural properties of the Stern layer on the electrophoretic migration of a highly charged spherical macroion.

    PubMed

    Rezaei, Majid; Azimian, Ahmad Reza

    2015-12-01

    The electrophoretic migration of a highly charged spherical macroion suspended in an aqueous solution of NaCl is studied using the molecular dynamic method. The objective is to examine the effects of the colloidal surface charge density on the electrophoretic mobility (μ) of the spherical macroion. The bare charge and the size of the macroion are varied separately to induce changes in the colloidal surface charge density. Our results indicate that μ depends on colloidal surface charge density in a nonmonotonic manner, but that this relationship is independent of the way the surface charge density is varied. It is found that an increase in colloidal surface charge density may lead to the formation of new sublayers in the Stern layer. The μ profile is also found to have a local maximum for a bare charge at which a new sublayer is formed in the Stern layer, and a local minimum for a bare charge at which the outer sublayer becomes relatively dense. Finally, the electrophoretic flow caused by the migration of the spherical macroion is studied to find that one decisive factor causing the electrophoretic flow is the ability of the macroion to carry anions in the electrolyte solution. PMID:26456026

  8. Effect of surface charge state on the surface stress of a microcantilever.

    PubMed

    Zhang, Neng-Hui; Wu, Jun-Zheng; Meng, Wei-Lie; Tan, Zou-Qing

    2016-04-01

    The surface charge state at a liquid-solid interface is important to the variations in the physical/chemical properties of adsorbate film such as surface stress and the ensuing tip deflection of the microcantilever. The well-known Stoney's equation, derived more than 100 years ago, conceals the film electrical properties with the replacement of substrate deformation induced by adsorptions of particles. This implicit expression provides a shortcut to circumvent the difficulty in identifying some film properties, however, it limits the capacity to ascertain the relation between surface stress variation and the surface charge state. In this paper, we present an analytical expression to quantify the cantilever deflection/surface stress and the film potential difference by combining the piezoelectric theory and Poisson-Boltzmann equation for electrolyte solution. This updated version indicates that the two linear correlations between surface stress and surface charge density or the bias voltage are not contradictory, but two aspects of one thing under different conditions. Based on Parsegian's mesoscopic interaction potential, a multiscale prediction for the piezoelectric coefficient of double-stranded DNA (dsDNA) film is done, and the results show that the distinctive size effect with variations in salt concentration and nucleotide number provides us with an opportunity to obtain a more sensitive potential-actuated microcantilever sensor by careful control of packing conditions. PMID:26916422

  9. Regulating charge injection in ambipolar organic field-effect transistors by mixed self-assembled monolayers.

    PubMed

    Xu, Yong; Baeg, Kang-Jun; Park, Won-Tae; Cho, Ara; Choi, Eun-Young; Noh, Yong-Young

    2014-08-27

    We report on a technique using mixed self-assembled monolayers (SAMs) to finely regulate ambipolar charge injection in polymer organic field-effect transistors. Differing from the other works that employ single SAM specifically for efficient charge injection in p-type and n-type transistors, we blend two different SAMs of alkyl- and perfluoroalkyl thiols at different ratios and apply them to ambipolar OFETs and inverter. Thanks to the utilization of ambipolar semiconductor and one SAM mixture, the device and circuit fabrications are facile with only one step for semiconductor deposition and another for SAM treatment. This is much simpler with respect to the conventional scheme for the unipolar-device-based complementary circuitry that demands separate deposition and processing for individual p-channel and n-channel transistors. Our results show that the mixed-SAM treatments not only improve ambipolar charge injection manifesting as higher hole- and electron-mobility and smaller threshold voltage but also gradually tune the device characteristics to reach a desired condition for circuit application. Therefore, this simple but useful approach is promising for ambipolar electronics. PMID:25093699

  10. Secondary charging effects due to icy dust particle impacts on rocket payloads

    NASA Astrophysics Data System (ADS)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  11. Effect of Cooling Rate on Microstructure and Charge Transport in Semiconducting Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Kang, Evan; Kim, Eunseong; CenterSupersolid; Quantum Matter Research Team

    2011-03-01

    Thermal annealing of polymer thin films often enhances charge carrier mobility which can be attributed to self-healing of the film morphology. We have investigated the effect of cooling rate following the annealing treatment on the thin film microstructure and the charge transport properties using a high performance semiconducting polymer, poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). The cooling rate plays a key role in determining the microstructure and performance of polymer thin films. Differential scanning calorimeter measurement shows that fast cooling suppresses the crystallization process. The microstructure of thin films is investigated by using 2D X-ray diffraction and atomic force microscopy. Slow cooling results in well-connected large domains with enhanced three dimensional ordering whereas fast cooling leads to misalignment of small domains with relatively rough surface. Transport characteristics at various temperatures show increase in the charge carrier mobility and decrease in the activation energy when the cooling rate is slowed. This change in the mobility and activation energy becomes saturated with cooling rate below 15 °C/min. E. S. H. K. and E. K. gratefully acknowledge financial support from the National Research Foundation of Korea through the Creative Research Initiatives (CSQR).

  12. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors.

    PubMed

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-12

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm(2) v(-1) s(-1)), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability. PMID:27363543

  13. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current‑voltage and transient current‑time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v‑1 s‑1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  14. An Experimental Investigation of the Effects of Charging on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schneider, Todd; Carruth, M. Ralph; Finckenor, Miria; Vaughn, Jason; Ferguson, Dale; Heard, John

    2001-01-01

    An experimental investigation has been undertaken to determine the effects associated with operating the International Space Station (ISS) without a Plasma Contactor Unit (PCU). The role of the PCU is to maintain the potential of the ISS to within 40 volts of the ambient plasma potential. In the event of a PCU failure, ISS structure may charge to - 160 volts with respect to the Low Earth Orbit (LEO) plasma, due to the use of high voltage photovoltaic solar arrays. Operation without a PCU will result in the charging of the oxide layers on anodized aluminum components facing into the RAM direction. In this investigation, arcs were observed as a result of anodized materials charging in a plasma environment. Actual ISS materials were used in the investigation. The materials included meteoroid and debris shield samples, as well as components from the Extravehicular Mobility Unit (EMU). Results show that the occurrence of arcs was dependent on several factors including material composition and applied voltage. The breakdown thresholds for the materials tested will be shown, as well as the voltage and current waveforms during an arc event. The damage resulting from an arc will also be described. In addition, a description of associated operational hazards resulting from arcing on the spacecraft will be provided.

  15. Wiggler taper optimization for free-electron-laser amplifiers with moderate space-charge effects

    SciTech Connect

    Jong, R.A.; Scharlemann, E.T.; Fawley, W.M.

    1987-01-01

    The standard synchronous tapering method used to design the wiggler magnetic field for free-electron-laser (FEL) amplifiers operating in the Compton regime will not work for amplifier systems where space-charge effects are important. The space-charge effects lower the overall gain in the amplifier system and, even more importantly, shift the peak in the gain curve to magnetic field values that are significantly less than the synchronous magnetic field value. As a result, the overall predicted gain using the synchronous tapering method is too low. Moreover, the synchronous magnetic field corresponds to the peak in the gain curve for a frequency below the fundamental frequency. Consequently, shot noise at frequencies below the fundamental frequency can grow to levels that may prevent amplification of the fundamental. We have developed a new tapering strategy that improves the predicted amplifier gain and circumvents the shot-noise growth for systems with moderate space-charge effects. For this new strategy, we hold the wiggler magnetic field constant at a value below the synchronous value but near the peak of the gain curve for the fundamental frequency, for some optimized length at the front end of the wiggler. Beyond this constant wiggler section, the field is tapered using the standrd synchronous tapering algorithm. This new tapering scheme results in significant improvement in predicted amplifier gains and limits the growth of shot noise to insignificant levels. We demonstrate the effectiveness of this new tapering algorithm using the tapered wiggler design for the proposed microwave heating experiment (MTX) at the Lawrence Livermore National Laboratory (LLNL). 4 refs., 8 figs.

  16. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory.

    PubMed

    Ling, Haifeng; Lin, Jinyi; Yi, Mingdong; Liu, Bin; Li, Wen; Lin, Zongqiong; Xie, Linghai; Bao, Yan; Guo, Fengning; Huang, Wei

    2016-07-27

    Despite remarkable advances in the development of organic field-effect transistor (OFET) memories over recent years, the charge trapping elements remain confined to the critical electrets of polymers, nanoparticles, or ferroelectrics. Nevertheless, rare reports are available on the complementary advantages of different types of trapping elements integrated in one single OFET memory. To address this issue, we fabricated two kinds of pentacene-based OFET memories with solution-processed amorphous and β-phase poly(9,9-dioctylfluorene) (PFO) films as charge trapping layers, respectively. Compared to the amorphous film, the β-PFO film has self-doped nanostructures (20-120 nm) and could act as natural charge trapping elements, demonstrating the synergistic effects of combining both merits of polymer and nanoparticles into one electret. Consequently, the OFET memory with β-PFO showed nearly 26% increment in the storage capacity and a pronounced memory window of ∼45 V in 20 ms programming time. Besides, the retention time of β-PFO device extended 2 times to maintain an ON/OFF current ratio of 10(3), indicating high bias-stress reliability. Furthermore, the β-PFO device demonstrated good photosensitivity in the 430-700 nm range, which was attributed to the additive effect of smaller bandgap and self-doped nanostructures of β-phase. In this regard, the tuning of molecular conformation and aggregation in a polymer electret is an effective strategy to obtain a high performance OFET memory. PMID:27363281

  17. Effects of constant-current/constant-voltage charge parameters on lead-acid traction cell performance

    SciTech Connect

    Deluca, W.H.; Biwer, R.L.; Yao, N.P.

    1981-01-01

    A factor described for the application of battery systems for electric vehicle propulsion is the methodology of charging. It was quantitatively determined that both the total charge cycle time and the maximum charging rate (constant-current level) are limited by battery charge acceptance. The test system and procedures are outlined, acquired battery parameter data presented, and conclusions discussed.

  18. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects.

    PubMed

    Chen, Guang; Das, Siddhartha

    2016-07-14

    In this article, we model the structure and configuration of the end-charged polyelectrolyte (PE) brushes grafted on the inner walls of a nanochannel. When the confinement effect is weak, that is, d0 < h/2 (d0 is the PE brush height without electrostatic effects and h is the nanochannel half-height), d < d0 (d is the brush height with the electrostatic effects), that is, the brushes shrink due to the electrostatic effects. Furthermore, for this case, an increase in salt concentration increases d. On the contrary, for the case in which the confinement effect is strong (i.e., d0 > h/2), d > d0 (i.e., the electrostatic effects swell the brushes), and an increase in salt concentration decreases the brush height. These findings reveal that the behavior of the end-charged brushes shows three unique differences when compared to that of the standard PE brushes with charges along their entire backbone. These differences are (a) the presence of a distinct role of the confinement in dictating how the electrostatic effects mediated by the electric double layer govern the height of end-charged brushes, (b) electrostatic-effect-driven shrinking of end-charged brushes for d0 < h/2 (for backbone-charged brushes, the electrostatic effects always swell the brushes), and (c) swelling of end-charged brushes with an increase in salt concentration for d0 < h/2 (backbone-charged brushes always shrink with an increase in salt concentration). Such unique effects of confinement and electrostatics on PE brushes have not been reported previously, and we anticipate that these findings will shed new light on the structure and properties of PE-brush-functionalized nanochannels with implications in applications such as fabrication of functionalized-nanochannel-based nanofluidic diodes, valves, biosensors, current rectifiers, and so forth. PMID:27322913

  19. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.

  20. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  1. Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-05-01

    Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.

  2. Point-Mutation Effects on Charge-Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.

    2008-01-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to noncancerous mutations, mutation hot spots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  3. Measurement and Simulation of Space Charge Effects in a Multi-Beam Electron Bunch from an RF Photoinjector

    SciTech Connect

    Rihaoui, M.M.; Piot, P.; Power, J.G.; Yusof, Z.; Gai, W.; /Argonne

    2009-05-01

    We report on a new experimental study of the space charge effect in a space-charge-dominated multi-beam electron bunch. A 5 MeV electron bunch, consisting of a variable number of beamlets separated transversely, was generated in a photoinjector and propagated in a drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space charge effects and its comparison with three-dimensional particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  4. On the theory of the noncoalescence effect for oppositely charged droplets

    SciTech Connect

    Saranin, V. A.

    2011-05-15

    A theory is proposed and numerical simulation is conducted for oppositely charged mutually approaching droplets of an aqueous electrolytic solution in silicon oil. It is shown that at small distances between droplets, a conductive bridge leveling out the potentials of the droplets may form between them due to electrohydrodynamic instability of the equilibrium surface of one of the droplets. As a result, the droplets start to repel each other and may drift apart without coagulation. The proposed theory is confirmed by the effect of nonconfluent droplets observed in experiments [W.D. Ristenpart, J.C. Bird, A. Belmonte, et al., Nature 461, 377 (2009)].

  5. Space charge effects on the active region of a planar organic photodetector

    NASA Astrophysics Data System (ADS)

    Agostinelli, T.; Caironi, M.; Natali, D.; Sampietro, M.; Biagioni, P.; Finazzi, M.; Duò, L.

    2007-06-01

    Planar organic photodetectors represent a simple, cheap, and versatile alternative to devices built in sandwich configuration. The nonuniform electric field distribution in these structures has significant consequences on the extent of the device active region, because photogeneration of free carriers in organic semiconductors is a field-assisted phenomenon. By means of microscopy mapping of the photocurrent in a poly(p-phenylene vinylene) based planar device, we show that due to the deep trapping of photogenerated electrons leading to negative space charge accumulation, exciton dissociation occurs only close to the positively biased electrode. The effect of large leakage currents in defining the device active region is also analyzed and discussed.

  6. Effect of charge accumulation on the stability of PEDOT:PSS during device operation

    NASA Astrophysics Data System (ADS)

    Teguh, Jefri S.; Sum, Tze Chien; Yeow, Edwin K. L.

    2014-06-01

    The effect of charge imbalance and accumulation on the stability of the hole transporting layer PEDOT:PSS in devices is studied during device operation. The principal Raman peak of PEDOT at around 1420-1430 cm-1 is weakened and undergoes band broadening cum shift due to oxidation by holes injected from the ITO anode (doping). Upon suspending the applied potential, the oxidized PEDOT converts back to its as-prepared state. The oxidation of PEDOT is found to be reversible as long as the applied potential is kept relatively low as higher potential would induce PEDOT decomposition.

  7. The effect of interfacial layers on charge transport in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  8. Light-induced effects in dye-doped liquid crystals: role of space charges

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.

    2014-10-01

    We report the experimental demonstration that both the extra-ordinarily large nonlinear response and the light-induced permanent reorientation in liquid crystals doped by the azo-dye Methyl-Red originates from the modification of the charge density on the irradiated surface. By recording the sample response by applying dc or ac voltage, it is shown that in the latter case no permanent anchoring is possible. It is also demonstrated the limited role of photo-isomerization that gives a contribution to the nonlinear reorientation process only in the high dose regime. The effects on light-induced tuning of the Freedericksz transition are also reported.

  9. Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking

    NASA Astrophysics Data System (ADS)

    Gersten, A.; Thomas, A. W.; Weyrauch, M.

    1990-04-01

    We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.

  10. Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer.

    PubMed

    Liu, Xiaogang; Qiao, Qinglong; Tian, Wenming; Liu, Wenjuan; Chen, Jie; Lang, Matthew J; Xu, Zhaochao

    2016-06-01

    Replacing conventional dialkylamino substituents with a three-membered aziridine ring in naphthalimide leads to significantly enhanced brightness and photostability by effectively suppressing twisted intramolecular charge transfer formation. This replacement is generalizable in other chemical families of fluorophores, such as coumarin, phthalimide, and nitrobenzoxadiazole dyes. In highly polar fluorophores, we show that aziridinyl dyes even outperform their azetidinyl analogues in aqueous solution. We also proposed one simple mechanism that can explain the vulnerability of quantum yield to hydrogen bond interactions in protonic solvents in various fluorophore families. Such knowledge is a critical step toward developing high-performance fluorophores for advanced fluorescence imaging. PMID:27203847

  11. [Effect of the interphase surface charge on the structure and activity of trypsin in inverted micelles].

    PubMed

    Valiullina, Iu A; Stupishina, E A; Vylegzhanina, N N; Idiiatullin, B Z; Zuev, Iu F

    2008-01-01

    The effect of the sign and value of the charge of the interphase surface on the catalytic activity of trypsin in systems of inverted mycelles was investigated. n-Butanol was used for the modification of the phase interface in dispersions of inverted mycelles based on anionic sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cationic cetyltrimethylammonium bromide (CTAB). A direct correlation between changes in the state of inverted mycelles and the structure of solubilized enzyme under the action of butanol was obtained. It was shown that the enzyme activity is determined by the quantity of butanol solubilized by the inverted mycelles. PMID:18672691

  12. Target-charge dependence of the breakup coupling effects in the elastic scattering of 8B

    NASA Astrophysics Data System (ADS)

    Kucuk, Y.; Aciksoz, E.

    2016-04-01

    We perform continuum discretized coupled-channels calculations for the elastic scattering of 8B on different targets to trace where the Coulomb-nuclear breakup coupling effects start to be dominant in the interaction of the proton halo nuclei. We observe a qualitative difference in angular distributions when the charge of the target increases as seen in the case of neutron halos, but the Coulomb-nuclear interference peak begins to disappear clearly at a relatively smaller value of Z T for the proton halos.

  13. EDITORIAL: The effects of spin-orbit interaction on charge transport The effects of spin-orbit interaction on charge transport

    NASA Astrophysics Data System (ADS)

    Molenkamp, Laurens; Nitta, Junsaku

    2009-05-01

    As the information and communications technology industries continue to demand smaller and more powerful electronic devices, it is becoming clear that the technologies which we currently rely upon to store, process and encode data are no longer sufficient. Over the past two decades, the field of spintronics has emerged as a promising source of the new technologies that will help to meet these needs. Following the discovery of giant magnetoresistance in the late 1980s research originally focused on achieving larger and larger magnetoresistance effects in metal-based systems. The resulting devices have already found widespread applications (as read heads in hard drives, for example) and more recent developments (spin torque, domain wall effects) demonstrate a similarly large potential. The development of semiconductor spintronic devices, which promise an even more enhanced functionality, has proved a tougher challenge to researchers. While the physics of spin injection in semiconductors is well understood by now, we presently still do not have a reliable and robust means for spin detection. Moreover, while ferromagnetic semiconductors have shown a wealth of novel device physics, the applicability of these concepts is limited because the community still has not found a material that demonstrates robust ferromagnetism at and above room temperature. Because of this, a growing number of researchers has turned to the utilization of spin--orbit interaction as a tool to manipulate spin behaviour within semiconductors. This cluster of articles reflects this trend in spintronics research and the blend of reviews and novel research provides a good overview of the current status of investigation into spin--orbit interaction and its effect on charge transport. The collection includes review papers on the theory of the impact of spin-orbit effects on weak localization in semiconductor heterostructures (Glazov and Golub) and of shot noise in 2DEG devices (Nikolic and Dragomirova

  14. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  15. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup −}, and I{sup −}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  16. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    SciTech Connect

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding; Min, Guangwei; Kim, Chul; Murkhejee, Bipasha; Larabell, Carolyn; Keasling, Jay D.; Chen,Fanqing Frank

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resulting metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7

  17. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  18. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lim, Youbong; Choe, Wonho; Park, Sanghoo; Seon, Jongho

    2015-04-01

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe4+ are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  19. [Experimental studies of the relative biological effectiveness of accelerated charged particles varying in energy].

    PubMed

    Fedorenko, B S; Petrov, V M; Smirnova, O A; Vorozhtsova, S V; Abrosimova, A N

    2006-01-01

    Experimental results and literary data were analyzed for the relative biological effectiveness of heavy charged particles in a broad range of energy and LET to cells of humans and other mammals in culture, whole body of laboratory animals, microorganisms, bacteriophages, and plants. Analyzed were data obtained with the use of a diversity of tests of acute and delayed lesions induced by ionizing radiation, cancers and cataracts, specifically. Non-parametric methods are applied in parallel to the classic method of calculating the coefficients of relative biological effectiveness by correlating the equal-effective doses of the standard and a given radiation. Consideration is given to factors that may modify RBE values estimated for different types of radiation. PMID:17193971

  20. Cytogenetic effects of heavy charged particles of galactic cosmic radiation in experiments aboard Cosmos-1129 biosatellite

    SciTech Connect

    Nevzgodina, L.V.; Maksimova, Y.N.

    1982-08-01

    An experiment was carried out on lettuce (Lactuca sativa) seeds flown in a biocontainer equipped with plastic detectors to record heavy charged particles (HCP). The purpose of the experiment was to determine the yield of aberrant cells as a result of irradiation, and to identify this effect as a function of HCP topography in the seed. The cytogenetic examination of flight seedlings revealed a significant difference between the seeds which were hit with HCP and those that remained intact. This indicates a significant contribution of the heavy component of galactic cosmic radiation into the radiobiological effect. The relationship between the radiobiological effect and the HCP topography in the seed was established: zones of the root and stem meristem proved to be the most sensitive targets.

  1. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    NASA Astrophysics Data System (ADS)

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    2016-01-01

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, ϒ . The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Many simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. This mode coupling/decoupling behavior creates the stopband structures.

  2. Removal of pollutants by enhanced coagulation combined PAC with variable charge soils: flocs' properties and effect of pH.

    PubMed

    Wang, Yu-Jie; Wu, Chun-De; Duan, Yan; Zhang, Zhi-Lin

    2016-09-01

    This study investigated the properties of flocs and effects of the solution pH on removal of representative pollutants by enhanced coagulation with variable charge soils of South China and polyaluminum chloride (PAC). The results demonstrated that the removal efficiency of turbidity was larger and the aggregated flocs had a faster growth rate, bigger size, denser structure and faster settling rate than those generated by PAC alone, when variable charge soil was used in conjunction with PAC. Additionally, initial solutions pH had meaningful effects on removal of pollutants. With the increase in the pH of the solution, the removal efficiencies of turbidity, algae and heavy metal ions significantly increased. Besides, charge neutralization together with physical entrapment of colloids was the dominant mechanism in enhanced coagulation, and variable charge soil displayed a great adsorption effect. PMID:26829123

  3. Systematic adjustment of charge densities and size of polyglycerol amines reduces cytotoxic effects and enhances cellular uptake.

    PubMed

    Hellmund, Markus; Achazi, Katharina; Neumann, Falko; Thota, Bala N S; Ma, Nan; Haag, Rainer

    2015-11-01

    Excessive cationic charge density of polyplexes during cellular uptake is still a major hurdle in the field of non-viral gene delivery. The most efficient cationic vectors such as polyethylene imine (PEI) or polyamidoamine (PAMAM) can be highly toxic and may induce strong side effects due to their high cationic charge densities. Alternatives like polyethylene glycol (PEG) are used to 'shield' these charges and thus to reduce the cytotoxic effects known for PEI/PEG-core-shell architectures. In this study, we compared the ability of hyperbranched polyglycerol amines (hPG amines) with different amine densities and molecular weights as non-viral cationic vectors for DNA delivery. By adjusting the hydroxyl to amine group ratio on varying molecular weights, we were able to perform a systematic study on the cytotoxic effects caused by the effective charge density in correlation to size. We could demonstrate that carriers with moderate charge density have a higher potential for effective DNA delivery as compared to high/low charged ones independent of their size, but the final efficiency can be optimized by the molecular weight. We analyzed the physicochemical properties and cellular uptake capacity as well as the cytotoxicity and transfection efficiency of these new vector systems. PMID:26244171

  4. Effect of temperature and UV illumination on charge transport mechanisms in DNA

    NASA Astrophysics Data System (ADS)

    Narenji, Alaleh G.; Goshi, Noah; Bui, Chris; Mokili, John; Kassegne, Sam

    2015-04-01

    Research into the use of DNA molecules as building blocks for nanoelectronics as well as nanosystems continues. Recently, our group has reported significant electrical conductivity in λ-DNA through direct and in-direct measurements involving high-aspect ratio electrodes that eliminate the effect of the substrate. Our results demonstrate that, at moderate to high frequencies, λ-DNA molecular wires show low impedance. In addition, to prove that the conductivity is indeed from DNA bridge, we studied the effect of temperature and UV irradiation on DNA molecular wires. The temperature results indicate that λ-DNA molecular wires have differing impedance responses at two temperature regimes: impedance increases between 4°C - 40°C, then decreases from 40°C to the melting point (~110°C) at which λ-DNA denatures resulting in a complete loss of current transduction. This hysteric and bi-model behavior makes DNA a candidate for nanoelectronics components such as thermal transistors and switches. The data from UV exposure experiments indicates decreased conductivity of λ-DNA molecular wires after UV exposure, due to damage to GC base pairs and phosphate groups reducing the path available for both charge hopping and short-range electron tunneling mechanisms. The lessons learned from these conductivity experiments along with our knowledge of different charge transport mechanisms within DNA can be applied to the design of synthetic molecular wires for the construction of nanoelectronic devices.

  5. Non-Abelian states in Fractional Quantum Hall effect in charge carrier hole systems

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    Quasiparticle excitations obeying non-Abelian statistics represent the key element of topological quantum computing. Crossing of levels and strong coupling between angular momentum and orbital motion, described by Luttinger Hamiltonian, make properties of charge carrier holes different from those of electrons. Peculiarities of hole spectrum in magnetic field provide an opportunity for controlling Landau level mixing in charge carier hole systems. In order to describe Fractional Quantum Hall effect for holes, we propose a method to map hole spectrum and wavefunctions using a spherical shell. We investigate the experimentally observed ν = 1 / 2 state in spherical geometry. Haldane pseudopotentials are computed and the effect of Landau level mixing is evaluated. Exact diagonalization of Coulomb interaction in systems with eight to fourteen holes is performed. We determine that the ground state superposition with Abelian 331 state is very small and the overlap with Moore-Read state is significant. The quasihole and quasielectron excitations are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  6. The effect of dimensionality on the charge-density-wave phase in layered dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Goli, Pradyumna; Balandin, Alexander; Lake, Roger

    2013-03-01

    Transition-metal dichalcogenides exhibit a variety of conducting phases, which includes a charge-density wave state (CDW). Exfoliation of these layered materials allows the effect of dimensionality on the CDW state to be studied. CDW collective states are currently being considered as an alternative state variable for information processing. 2H-TaSe2 and 1T-TiSe2 are examples of layered transition metal dichalcogenides that undergo a CDW transition. Our recent experiments demonstrated an increase in the CDW transition temperature of TiSe2 with a decrease in film thickness. This increase in temperature was attributed to the negative coefficient of the CDW transition temperature-pressure relationship. Here we present a density-functional theory investigation of the CDW instability in bulk, single and few-layer 1T-TiSe2 and other layered dichalcogenide materials. The effect of the film thickness on the atomic structure, electronic structure, electron-phonon coupling and the CDW transition temperature will be discussed for each material. NSF and SRC-NRI project 2204.001:Charge-Density-Wave Computational Fabric (NSF-1124733)

  7. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    NASA Astrophysics Data System (ADS)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  8. Spin-charge order and excitonic effects in sawtooth-like graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wu, Sha; Lu, Wengang; Qi, Jingshan

    2016-09-01

    In this paper we systematically study electronic structures and excitonic effects in one type of the sawtooth-like graphene nanoribbons. A main feature is that the local magnetism is developed for the certain width and changes with the increase of width. A variety of magnetic orders root in the competition of the short range interaction between the same spin-electrons and long range exchange interaction between opposite spin-electrons. For excitonic effects, the binding energy of degenerate spin-triplets T1 and T-1 is higher than that of T0 for all studied nanoribbons and is size dependent. We reveal the underlying physical mechanism from the charge distributions of excitons and its correlation with the spin-resolved charge density distributions in the ground state. We find that the electrons and holes in degenerate spin-triplets T1 and T-1 are closer together and thus the interaction between them is more strong, while the distribution of electrons and holes is relatively more disperse for T0, indicating the weaker interaction. We hope that these interesting results are able to be detected in the experiment and these multi-performance samples are better utilized in future device applications.

  9. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  10. Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio.

    PubMed

    Kayitmazer, A B; Koksal, A F; Kilic Iyilik, E

    2015-11-28

    Hyaluronic acid (HA) and chitosan (CH) can form nanoparticles, hydrogels, microspheres, sponges, and films, all with a wide range of biomedical applications. This variety of phases reflects the multiple pathways available to HA/CH complexes. Here, we use turbidimetry, dynamic light scattering, light microscopy and zeta potential measurements to show that the state of the dense phase depends on the molar ratio of HA carboxyl to CH amines, and is strongly dependent on their respective degrees of ionization, α and β. Due to the strong charge complementarity between HA and CH, electrostatic self-assembly takes place at very acidic pH, but is almost unobservable at ionic strength (I) ≥ 1.5 M NaCl. All systems display discontinuity in the I-dependence of the turbidity, corresponding to a transition from coacervates to flocculates. An increase in either polymer chain length or charge density enhances phase separation. Remarkably, non-stoichiometric coacervate suspensions form at zeta potentials far away from zero. This result is attributed to the entropic effects of chain semi-flexibility as well as to the charge mismatch between the two biopolymers. PMID:26406548

  11. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.

    PubMed

    Li, Yifan; Bhushan, Bharat

    2015-10-14

    The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed. PMID:26303742

  12. Effects of Emotionally Charged Auditory Stimulation on Gait Performance in the Elderly: A Preliminary Study

    PubMed Central

    Rizzo, John-Ross; Raghavan, Preeti; McCrery, J.R.; Oh-Park, Mooyeon; Verghese, Joe

    2015-01-01

    Objectives To evaluate the effect of a novel divided attention task—walking under auditory constraints—on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Design Validation cohort. Setting General community. Participants Ambulatory older adults without dementia (N=104). Interventions Not applicable. Main Outcome Measures In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. Results The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; P<.001) as compared with trials without auditory stimulation. In contrast, older adults with minimal cognitive impairment (Blessed test score, 5–10; n=8) showed an average reduction of 5.45cm/s in gait velocity (F1.87,190.83=5.62; P=.005) and an average reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both auditory stimulation conditions. Neither baseline fall history nor performance of activities of daily living accounted for these differences. Conclusions Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait

  13. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    NASA Astrophysics Data System (ADS)

    Ali, S.; Nasim, M. H.; Murtaza, G.

    2003-11-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential.

  14. Effect of dust-charge fluctuations on dust acoustic solitary waves in an inhomogeneous dusty plasma with nonextensive electrons

    SciTech Connect

    El-Labany, S. K.; Selim, M. M. E-mail: mselim2000@yahoo.com; Al-Abbasy, O. M.; El-Bedwehy, N. A.

    2015-02-15

    The effects of adiabatic dust grain charge fluctuation and inhomogeneity on the nonlinear properties of dust acoustic (DA) solitary waves are studied. The plasma under consideration is a hot magnetized dusty plasma consisting of negatively charged dust particles, Boltzmann ions, and nonextensive electrons. A modified Zakharov-Kusnetsov equation, which admits a solitary wave solution, is derived using the reductive perturbation theory. It is found that the charge fluctuation of the dust grain modifies the nature of DA solitary structures. The numerical results may be useful to understand phenomena in laboratory and astrophysical plasmas.

  15. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGESBeta

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  16. Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Leprat, D.; Glattli, D. C.; Schopfer, F.; Poirier, W.

    2012-04-01

    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2 substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3 K), the Hall resistance is measured by comparison with a GaAs-based quantum resistance standard using a cryogenic current comparator. In the low-dissipation limit, it is found quantized within 5 parts in 107 (one standard deviation, 1σ) at the expected rational fractions of the von Klitzing constant, respectively, RK/2 and RK/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10-9 accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasielastic inter-Landau-level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau-level transition rate and cause small breakdown currents.

  17. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  18. Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge

    PubMed Central

    2011-01-01

    We analyze the effect of doping on photoelectron kinetics in quantum dot [QD] structures and find two strong effects of the built-in-dot charge. First, the built-in-dot charge enhances the infrared [IR] transitions in QD structures. This effect significantly increases electron coupling to IR radiation and improves harvesting of the IR power in QD solar cells. Second, the built-in charge creates potential barriers around dots, and these barriers strongly suppress capture processes for photocarriers of the same sign as the built-in-dot charge. The second effect exponentially increases the photoelectron lifetime in unipolar devices, such as IR photodetectors. In bipolar devices, such as solar cells, the solar radiation creates the built-in-dot charge that equates the electron and hole capture rates. By providing additional charge to QDs, the appropriate doping can significantly suppress the capture and recombination processes via QDs. These improvements of IR absorption and photocarrier kinetics radically increase the responsivity of IR photodetectors and photovoltaic efficiency of QD solar cells. PMID:22060635

  19. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    PubMed Central

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute

  20. Emittance growth in heavy ion rings due to effects of space charge and dispersion

    SciTech Connect

    Barnard, J.J., LLNL

    1998-06-03

    We review the derivation of moment equations which include the effects of space charge and dispersion in bends first presented in ref [1]. These equations generalize the familiar envelope equations to include the dispersive effects of bends. We review the application of these equations to the calculation of the change in emittance resulting from a sharp transition from a straight section to a bend section, using an energy conservation constraint. Comparisons of detailed 2D and 3D simulations of intense beams in rings using the WARP code (refs [2,3]) are made with results obtained from the moment equations. We also compare the analysis carried out in ref [1], to more recent analyses, refs [4,5]. We further examine self-consistent distributions of beams in bends and discuss the relevance of these distributions to the moment equation formulation.

  1. Observation of space-charge effects in the Los Alamos Proton Storage Ring

    SciTech Connect

    Neuffer, D.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.S.

    1991-01-01

    In recent operation of the Los Alamos Proton Storage Ring (PSR), the vertical and horizontal tunes have been moved closer to the integers (v{sub y} = 2.12, v{sub x} = 3.17) due to enlarge the low-los working region. In this region, the beam can be significantly affected by space charge. The first observed effects are a nondestructive distortion of the beam profile and vertical growth of beam size sufficient to keep the shifted tunes from crossing the integer, but without large beam loss. At higher intensities, or with tunes closer to the integer, beam blow-up, accompanied by beam losses, can occur. In this paper, we report recent observations of this intensity-dependent effect and discuss implications for future PSR operation. 4 refs., 2 figs., 1 tab.

  2. Salt effects on lamellar repeat distance depending on head groups of neutrally charged lipids.

    PubMed

    Hishida, Mafumi; Yamamura, Yasuhisa; Saito, Kazuya

    2014-09-01

    Change in lamellar repeat distances of neutrally charged lipids upon addition of monovalent salts was measured with small-angle X-ray scattering for combinations of two lipids (PC and PE lipids) and six salts. Large dependence on lipid head group is observed in addition to those on added cation and anion. The ion and lipid dependences have little correlation with measured surface potentials of lipid membranes. These results indicate that the lamellar swelling by salt is not explained through balance among interactions considered previously (van der Waals interaction, electrostatic repulsion emerged by ion binding, etc.). It is suggested that effect of water structure, which is affected by not only ions but also lipid itself, should be taken into account for understanding membrane-membrane interactions, as in the Hofmeister effect. PMID:25126900

  3. The compensation of quadrupole errors and space charge effects by using trim quadrupoles

    NASA Astrophysics Data System (ADS)

    An, YuWen; Wang, Sheng

    2011-12-01

    The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.

  4. Space-Charge and Fringe-Field Effects in Simulations of Non-Scaling FFAGs

    NASA Astrophysics Data System (ADS)

    Abell, Dan; Bell, George; Sobol, Andrey; Ruggiero, Alessandro; Trbojevic, Dejan; Forest, Etienne

    2009-05-01

    Recent simulations of non-scaling fixed-field alternating gradient accelerators (FFAGs) suggest that magnet fringe-field effects are of signal importance. In addition, non-scaling FFAGs are sensitive to a slew of resonances during the acceleration ramp. We present simulations of possible non-scaling FFAG designs, focusing especially on the effects fringe-fields and space-charge, using newly developed capabilities in the code PTC. In particular, we study how fringe extent and other parameters affect important measures of machine performance. An important consideration---because it affects the amount of rf power required---will be the speed at which resonances must be crossed. E. Forest, Y. Nogiwa, F. Schmidt, ``The FPP and PTC Libraries'', Proc. ICAP'2006.

  5. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  6. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    SciTech Connect

    Torii, Hajime

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  7. Direct Measurement of the Effective Rate Constant for Primary Charge Separation in Isolated Photosystem II Reaction Centers

    SciTech Connect

    Greenfield, S. R.; Seibert, M.; Govindjee; Wasielewski, M. R.

    1997-03-27

    Transient absorption measurements of the pheophytin a anion band and Qx band bleach region using preferential excitation of P680 are performed on isolated photosystem II reaction centers to determine the effective rate constant for charge separtion. A novel analysis of the Qx band bleach region explicity takes the changing background into account in order to directly measure the rate of growth of the bleach. Both spectral regions reveal biphasic kinetics, with a ca. (8 ps)-1 rate constant for the faster component, and a ca. (50 ps)-1 rate constant for the slower component. We propose that the fster component corresponds to the effective rate constant for charge separation from within the equilibrated reaction center core and provides a lower limit for the intrinsic rate constant for charge separation. The slower component corresponds to charge separation that is limited by slow energy transfer from a long-wavelength accessory chlorophyll a.

  8. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    PubMed Central

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  9. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    PubMed

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region. PMID:27451615

  10. Space charge in proton linacs

    SciTech Connect

    Wangler, T. P.; Merrill, F.; Rybarcyk, L.; Ryne, R.

    1998-11-05

    Space charge effects on beam dynamics in linear accelerators are discussed. Practical linac beam dynamics calculation methods which include space charge effects are discussed. Also, the status of beam performance experiments including space charge studies are summarized.

  11. Effects of low charge injection densities on corrosion responses of pulsed 316LVM stainless steel electrodes.

    PubMed

    Riedy, L W; Walter, J S

    1996-06-01

    The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling. PMID:8987272

  12. Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Gurugubelli, Vijaya Kumar; Karmalkar, Shreepad

    2016-01-01

    We develop an Effective Medium Theory for the electrostatics of the Space-Charge Region (SCR) of Schottky and p-n junctions in arrays of nanofilms (NFs), nanowires (NWs), and nanotubes (NTs) in a dielectric ambient. The theory captures the effects of electric fields in both the semiconductor, i.e., NF/NW/NT, and the dielectric media of the array. It shows that the depletion width and the screening length characterizing the SCR tail in the array correspond to those in a bulk junction with an effective semiconductor medium, whose permittivity and doping are their weighted averages over the cross-sectional areas of the semiconductor and dielectric; the shapes of the cross-sections are immaterial. Further, the reverse bias 1 /C2 -V behavior of junctions in NF/NW/NT arrays is linear, as in bulk junctions, and is useful to extract from measurements the built-in potential, effective doping including the semiconductor-dielectric interface charge, and NF/NW/NT length. The theory is validated with numerical simulations, is useful for the experimentalist, and yields simple formulas for nano-device design which predict the following. In the limiting case of a single sheet-like NF, the junction depletion width variation with potential drop is linear rather than square-root (as in a bulk junction). In arrays of symmetric silicon p-n junctions in oxide dielectric where NF/NW thickness and separation are 5% and 100% of the bulk depletion width, respectively, the junction depletion width and the screening length are scaled up from their bulk values by the same factor of ˜2 for NF and ˜10 for NW array.

  13. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  14. HATCN-based charge recombination layers as effective interconnectors for tandem organic solar cells.

    PubMed

    Wang, Rong-Bin; Wang, Qian-Kun; Xie, Hao-Jun; Xu, Lu-Hai; Duhm, Steffen; Li, Yan-Qing; Tang, Jian-Xin

    2014-09-10

    A comprehensive understanding of the energy-level alignment at the organic heterojunction interfaces is of paramount importance to optimize the performance of organic solar cells (OSCs). Here, the detailed electronic structures of organic interconnectors, consisting of cesium fluoride-doped 4,7-diphenyl-1,10-phenanthroline and hexaazatriphenylene-hexacarbonitrile (HATCN), have been investigated via in situ photoemission spectroscopy, and their impact on the charge recombination process in tandem OSCs has been identified. The experimental determination shows that the HATCN interlayer plays a significant role in the interface energetics with a dramatic decrease in the reverse built-in potential for electrons and holes from stacked subcells, which is beneficial to the charge recombination between HATCN and the adjacent layer. In accordance with the energy-level alignments, the open-circuit voltage of tandem OSC incorporating a HATCN-based interconnector is almost 2 times that of a single-cell OSC, revealing the effectiveness of the HATCN-based interconnectors in tandem organic devices. PMID:25141159

  15. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  16. The effects of the geosynchronous energetic particle radiation environment on spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Reagan, J. B.; Imhof, W. L.; Gaines, E. E.

    1977-01-01

    The energetic electron environment at the geosynchronous orbit is responsible for a variety of adverse charging effects on spacecraft components. The most serious of these is the degradation and failure of a complementary-metal-oxide-semiconductor (CMOS) electronic components as a result of internal charge-buildup induced by the energetic electrons. Efforts to accurately determine the expected lifetime of these components in this orbit are hampered by the lack of detailed knowledge of the electron spectrum and intensity, particularly of the more penetrating energies greater than 1.5 MeV. This problem is illustrated through the calculation of the dose received by a CMOS device from the energetic electrons and associated bremsstrahlung as a function of aluminum shielding thickness using the NASA AE-6 and the Aerospace measured electron environments. Two computational codes which were found to be in good agreement were used to perform the calculations. For a given shielding thickness the dose received with the two radiation environments differ by as much as a factor of seven with a corresponding variation in lifetime of the CMOS.

  17. The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy S.; Bennetti, Andrea; Pearson, Chris; Simmons, Nick; Reid, Concha; Manzo, Michelle

    2007-01-01

    Batteries are critical components for spacecraft, supplying power to all electrical systems during solar eclipse. These components must be lightweight due to launch vehicle limitations and the desire to fly heavier, more capable payloads, and must show excellent capacity retention with age to support the ever growing durations of space missions. ABSL's heritage Lithium Ion cell, the ABSL 18650HC, is an excellent low mass solution to this problem that has been proven capable of supporting long mission durations. The NASA Glenn Research Center recently proposed and initiated a test to study the effects of reduced end of charge voltage on aging of the ABSL 18650HC and other Lithium Ion cells. This paper presents the testing details, a method to analyze and compare capacity fade between the different cases, and a preliminary analysis of the to-date performance of ABSL s cells. This initial analysis indicates that employing reduced end of charge techniques could double the life capabilities of the ABSL 18650HC cell. Accordingly, continued investigation is recommended, particularly at higher depths of discharge to better assess the method s potential mass savings for short duration missions.

  18. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    PubMed

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). PMID:20696596

  19. Non-Condon effect on charge transport in dithiophene-tetrathiafulvalene crystal

    SciTech Connect

    Zhang Weiwei; Liang Wanzhen; Zhao Yi

    2010-07-14

    Combining first-principles calculations and non-Condon charge transfer rates proposed by us recently [Y. Zhao and W. Z. Liang, J. Chem. Phys. 130, 034111 (2009)], we investigated non-Condon effect on charge carrier mobility of organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF) crystal. The first-principles results reveal that only several high-frequency intramolecular vibrational modes dominate the reorganization energy, and the nuclear-coordinate dependence of electronic coupling prefers to perform an exponential or Gaussian property for most intermolecular modes rather than a linear one as assumed in conventional models. Furthermore, the electronic coupling of an isolated DT-TTF dimer is indeed affected by the surrounding molecules. The predicted non-Condon mobilities with use of the obtained structure parameters are always greater than those from Condon approximation, and the non-Condon dynamic disorder is not important for DT-TTF, which is also confirmed by molecular dynamics simulation. More interestingly, the bandlike property can be predicted under the hopping mechanism when the nuclear tunneling is incorporated.

  20. Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.

    Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.

  1. Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold

    PubMed Central

    Golberg, Alex; Rae, Chris S.; Rubinsky, Boris

    2012-01-01

    Genetically engineered cells with mutations of relevance to electroporation, cell membrane permeabilization by electric pulses, can become a promising new tool for fundamental research on this important biotechnology. Listeria monocytogenes mutants lacking DltA or MprF and assayed for sensitivity to the cathelicidin like anti-microbial cationic peptide (mCRAMP), were developed to study the effect of cell wall charge on electroporation. Working in the irreversible electroporation regime (IRE), we found that application of a sequence of 50 pulses, each 50 μs duration, 12.5 kV/cm field, delivered at 2 Hz led to 2.67±0.29 log reduction in wild-type L. monocytogenes, log 2.60±0.19 in the MprF-minus mutant, and log 1.33±0.13 in the DltA-minus mutant. The experimental observation that the DltA-minus mutant was highly susceptible to cationic mCRAMP and resistant to IRE suggests that the charge on the bacterial cell wall affects electroporation and shows that this approach may be promising for fundamental studies on electroporation. PMID:22100748

  2. Effect of hydration on lung interstitial conductivity response to electrically charged solutions.

    PubMed

    Qiu, X L; Brown, L V; Lai-Fook, S J

    1997-09-01

    In interstitial segments of rabbit lung, we compared the flow of a solution containing cationic protamine sulfate (0.08 mg/ml) or cationic dextran (0.1%) to that of Ringer or neutral dextran solution. Also compared, were the flow of solutions containing anionic dextran (0.1 or 1.5%) to those containing neutral dextran and the flow of hyaluronidase solution (0.02%) to that of Ringer solution, at mean interstitial pressures (Pm) between -5 and 15 cmH2O. Driving pressure was set at 5 cmH2O. Cationic protamine or cationic dextran-to-Ringer flow ratio increased with Pm (presumably as hydration increased) but in nonedematous interstitium (-5 cmH2O Pm), flow ratio was 1, indicating a viscosity-dependent flow. In contrast, the flow of anionic dextran solution decreased relative to that of neutral dextran; this decrease was constant with hydration, but was greater at the higher concentration of dextran. Interstitial conductivity to the flow of hyaluronidase increased with hydration. However, this behavior was absent after the flow of 1.5% anionic dextran, indicating an inhibitory effect of the higher concentration of anionic dextran on the hyaluronidase response. A negative charge in microvascular filtrate may control fluid clearance in normal interstitium, while a positive charge would enhance clearance only in edema formation. PMID:9342803

  3. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge

    PubMed Central

    Arai, Shunto

    2015-01-01

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body’s internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process. PMID:26690133

  4. Base sequence dependence and backbone-induced effects on charge transport through DNA

    NASA Astrophysics Data System (ADS)

    Joe, Yong; Lee, Sun; Hedin, Eric

    2009-03-01

    We investigate quantum mechanical electron transmission along the long axis of the DNA molecule using a tight-binding model. Specifically, we use two different DNA models to study the charge transfer efficiency of synthetic ds-DNA. First, the generic form of a simple one-conduction channel model, called the fishbone model, is used. The sugar-phosphate backbone and the coupling amplitude between each site of the base and the backbone are incorporated into an energy-dependent on-site potential in the main DNA site. Here, individual sites represent a base-pair formed by either AT (TA) or GC (CG) pairs coupled via hydrogen bonds. Second, we employ a two-dimensional three-chain model where the backbone on-site energy, the coupling amplitude between the bases and the backbone, and a possible hopping of charge carriers between the successive backbone sites are used as key parameters. The overall transmission and the current-voltage characteristics are calculated to determine the influence of mismatch (impurity) effects in the DNA sequence. Finally, we discuss the transmission gap as a function of coupling between the bases and between the bases and the backbone. *One of the authors (E.R.H) is partially supported by a grant from the Center for Energy Research, Education, and Service (CERES) at Ball State University.

  5. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  6. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    NASA Astrophysics Data System (ADS)

    Rubín de Celis, Emilio

    2016-02-01

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature {κ ^p}_q. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if {κ p}p=κ <0 (ordinary matter) and attracted toward the shell if κ >0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q=-κ r_e, with r_e the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q_{∓}^{wh}/q=-1/ (κ_{wh} r_{± }).

  7. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    NASA Astrophysics Data System (ADS)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  8. The inertial and electrical effects on aerosol sampling, charging, and size distribution

    SciTech Connect

    Wang, Chuenchung.

    1991-01-01

    An experimental study was conducted to investigate the effect of particle inertia on deposition behavior near the filter cassette sampler. Field sampling cassettes were tested in a subsonic wind tunnel for 0.2, 0.5 and 0.68 m/s wind speeds to simulate indoor air environment. Fluorescein aerosols of 2 and 5 {mu}m were generated from Berglund-Liu vibrating orifice generator as test material. Sampling tests were conducted in a subsonic wind tunnel with variables of particle size, wind speed, suction velocity and orientation of sampler examined to evaluate the combined effects. Sampling efficiencies were also examined. Electrostatic force is usually used as an effective method for removing, classifying and separating aerosols according to the electrical mobilities of the particulates. On the other hand, the aerosol charging theories possess differences in the ultrafine size range and need experimental verification. The present TSI's electrostatic aerosol analyzer has particle loss problem and cannot be used as a reliable tool in achieving efficient charging. A new unipolar charger with associated electronic circuits was designed, constructed and tested. The performance of the charger is tested in terms of particle loss, uncharged particles, and the collection efficiency of the precipitator. The results were compared with other investigator's data. The log-Beta distribution function is considered to be more versatile in representing size distribution. This study discussed the method in determining the size parameters under different conditions. Also the mutability of size distribution was evaluated when particles undergo coagulation or classification processes. Comparison of evolution between log-Beta and lognormal distributions were made.

  9. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  10. Multilevel nonvolatile flexible organic field-effect transistor memories employing polyimide electrets with different charge-transfer effects.

    PubMed

    Yu, An-Dih; Tung, Wei-Yao; Chiu, Yu-Cheng; Chueh, Chu-Chen; Liou, Guey-Sheng; Chen, Wen-Chang

    2014-06-01

    The electrical memory characteristics of the n-channel organic field-effect transistors (OFETs) employing diverse polyimide (PI) electrets are reported. The synthesized PIs comprise identical electron donor and three different building blocks with gradually increasing electron-accepting ability. The distinct charge-transfer capabilities of these PIs result in varied type of memory behaviors from the write-one-read-many (WORM) to flash type. Finally, a prominent flexible WORM-type transistor memory is demonstrated and shows not only promising write-many-read-many (WMRM) multilevel data storage but also excellent mechanical and retention stability. PMID:24700508

  11. Charge Pumping Profiling Technique for the Evaluation of Plasma-Charging-Enhanced Hot-Carrier Effect in Short-N-Channel Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Shang-Jr; Chung, Steve Shao-Shiun; Lin, Horng-Chih

    2002-07-01

    Plasma etching of poly-silicon in a metal-oxide-semiconductor field-effect transistor (MOSFET) during the gate definition process induces edge damage at the gate-drain overlap edge. This edge damage will be further enhanced by the antenna effect and cause a more serious hot-carrier (HC) effect, particularly in short-channel devices. We call this phenomenon the plasma-charging-enhanced HC effect. In this paper, this plasma-charging-enhanced HC effect is evaluated by the charge pumping (CP) profiling technique, in which the enhanced damage at the gate-drain overlap gate oxide region can be identified. A three-phase plasma damage mechanism is then proposed to explain the observed effect. According to experimental results, it was shown that the interface traps generated at the gate-drain overlap edge are mainly attributed to the plasma-charging-enhanced HC effect. These interface traps (Nit) become the dominant mechanism of the drain current (ID) degradation, which increases with a reducing channel length (L). Again, the enhanced HC-effect-induced-degradation will dominate the device reliability under long-term operations.

  12. Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect

    NASA Astrophysics Data System (ADS)

    Kwon, Inyong; Kang, Taehoon; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2015-06-01

    This paper describes an integrated circuit design for a modified charge-sensitive amplifier (CSA) that compensates for the effect of capacitance presented by nuclear radiation detectors and other sensors. For applications that require large area semiconductor detectors or for those semiconductor sensors derived from high permittivity materials such as PbSe, the detector capacitance can degrade the system gain and bandwidth of a front-end preamplifier, resulting in extended rise times and attenuated output voltage signals during pulse formation. In order to suppress the effect of sensor capacitance, we applied a bootstrap technique into a traditional CSA. The technique exploits the Miller effect by reducing the effective voltage difference between the two sides of a radiation detector which minimizes the capacitance presented to the differential common-source amplifier. This new configuration is successfully designed to produce effective gain even at high detector capacitance. The entire circuit, including a core CSA with feedback components and a bootstrap amplifier, are implemented in a 0.18 μm CMOS process with a 3.3 V supply voltage.

  13. Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction.

    PubMed

    Yuan, Longfei; He, Yujian

    2013-01-21

    The polymerase chain reaction (PCR) has become an indispensable technique in molecular biology, however, it suffers from low efficiency and specificity problems. Developing suitable additives to effectively avoid nonspecific PCR reactions and explore the mechanism for PCR enhancing is a significant challenge. In this paper, we report three different modified gold nanoparticles (AuNPs) with different surface charge polarities and poly (diallyl dimethylammonium) chloride (PDDA) for use as novel PCR enhancers to improve the efficiency and specificity. These AuNPs included the positively charged PDDA protected AuNPs (PDDA-AuNPs), the neutral PDDA-AuNPs modified with excess chloride ion (PDDA.C-AuNPs), and the negatively charged sodium citrate (Na(3)Ct) protected AuNPs (Na(3)Ct-AuNPs). Our data clearly suggests that the positively charged PDDA-AuNPs with an optimum concentration as low as 1.54 pM could significantly enhance the specificity and efficiency of PCR, however, the optimum concentration of the negatively charged Na(3)Ct-AuNPs (2.02 nM) was more than 3 orders of magnitude higher than that of positively charged PDDA-AuNPs. The PCR specificity and efficiency are also improved by the neutral PDDA.C-AuNPs with an optimum concentration, much more than that of the PDDA-AuNPs. This suggests that there should be an electrostatic interaction between the positively charged PDDA-AuNPs and the negatively charged PCR components, and the surface charge polarities of PDDA-AuNPs may play an important role in improving the PCR specificity and efficiency. PMID:23170311

  14. Effect of body biasing on single-event induced charge collection in deep N-well technology

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Hu, Jian-Guo; Qin, Jun-Rui; Tan, Hong-Zhou

    2015-07-01

    As the device size decreases, the soft error induced by space ions is becoming a great concern for the reliability of integrated circuits (ICs). At present, the body biasing technique is widely used in highly scaled technologies. In the paper, using the three-dimensional technology computer-aided design (TCAD) simulation, we analyze the effect of the body biasing on the single-event charge collection in deep N-well technology. Our simulation results show that the body biasing mainly affects the behavior of the source, and the effect of body biasing on the charge collection for the nMOSFET and pMOSFET is quite different. For the nMOSFET, the RBB will increase the charge collection, while the FBB will reduce the charge collection. For the pMOSFET, the effect of RBB on the SET pulse width is small, while the FBB has an adverse effect. Moreover, the differenceof the effect of body biasing on the charge collection is compared in deep N-well and twin well.

  15. Effective charge on silicon atom in the metal silicides Mg{sub 2}Si and CaSi

    SciTech Connect

    Ishii, Hideshi; Karimov, Pavel; Kawai, Jun; Matsuo, Shuji; Tanaka, Koki

    2005-05-15

    The effective charges of Si in both magnesium (Mg{sub 2}Si) and calcium silicides (CaSi and Ca{sub 2}Si) have been investigated by measuring high-resolution Si K{alpha} x-ray fluorescence spectra. CaSi showed small but positive chemical shifts (+0.03 eV), while the chemical shift of Mg{sub 2}Si was negative (-0.14 eV), as expected from their electronegativity (Ca: 1.00; Mg: 1.31; Si: 1.90). The similarity of the chemical shift for the Fe silicides and the calculations for the free single Si atom suggested that the effective charge of Si for CaSi was positive. From the observations the effective charges on Si in CaSi and Mg{sub 2}Si were estimated to be +0.1 and -0.3 electrons. The discrete variation Hatree-Fock-Slater calculations for Mg{sub 2}Si and CaSi also showed opposite chemical shifts and effective charges: -0.09 eV and -0.35 electrons for Mg{sub 2}Si and +0.09 eV and +0.26 electrons for CaSi, respectively. The composition of the nearest-neighbor atoms of Si, which are Si in CaSi and Mg in Mg{sub 2}Si, cause the opposite effective charges between the two silicides.

  16. Effects of target size on the comparison of photon and charged particle dose distributions

    SciTech Connect

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs.

  17. Beam dynamics study of RFQ for CADS with a 3D space-charge-effect

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhang, Zhi-Lei; Qi, Xin; Xu, Xian-Bo; He, Yuan; Yang, Lei

    2014-03-01

    The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.

  18. Systematic studies on the effect of linear lattice optics for space-charge limited beams

    NASA Astrophysics Data System (ADS)

    Fitterer, M.; Carli, C.; Molodozhentsev, A.; Müller, A.-S.

    2015-12-01

    The HL-LHC (High Luminosity LHC) project aims to an increase of the luminosity of the LHC by a factor of 10. In order to realize this ambitious goal, the LHC itself has to undergo a major upgrade accompanied by an extensive upgrade of the complete injector complex referred to as LHC injector upgrade (LIU). In the framework of the LIU project, a new rapid cycling synchrotron (RCS) as an alternative to the energy upgrade of the existing PS Booster has been proposed. Motivated by the optics studies conducted for this RCS, the more general question of the influence of the linear optics on the machine performance has been raised. In this paper, we want to investigate this question by comparing different lattices with the final aim of identifying lattice characteristics advantageous under strong space-charge effects.

  19. Projectile charge state effects on electron emission in transfer ionization processes

    NASA Astrophysics Data System (ADS)

    Zhang, R. T.; Zhu, X. L.; Feng, W. T.; Guo, D. L.; Gao, Y.; Qian, D. B.; Li, B.; Yan, S. C.; Xu, S.; Zhang, P.; Ma, X.

    2015-07-01

    Electron emissions in transfer ionization processes were studied for 75 keV u-1 He2+, and 80 keV u-1 Ne8+on He collisions, using the well-developed reaction microscope techniques. Momentum distributions in the scattering plane, doubly differential distributions as a function of longitudinal momentum and emission angles of the ejected electrons were obtained. An apparent enhancement of electrons distributed around the projectile in the scattering plane was found for the Ne8+ incident case. Furthermore, we report the ratio of doubly differential distributions at the emission angle of 0° between these two transfer ionization processes, in which an abrupt rise is found at and above the electron capture to the continuum peak. This rise qualitatively agrees with the prediction within the framework of Dettmann’s theory. We conclude that this kind of enhancement was caused by the charge state effect of the projectile.

  20. Photocurrent microscopy of contact resistance and charge carrier traps in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liewald, C.; Reiser, D.; Westermeier, C.; Nickel, B.

    2016-08-01

    We use a pentacene transistor with asymmetric source drain contacts to test the sensitivity of scanning photocurrent microscopy (SPCM) for contact resistance and charge traps. The drain current of the device strongly depends on the choice of the drain electrode. In one case, more than 94% of the source drain voltage is lost due to contact resistance. Here, SPCM maps show an enhanced photocurrent signal at the hole-injecting contact. For the other bias condition, i.e., for ohmic contacts, the SPCM signal peaks heterogeneously along the channel. We argue from basic transport models that bright areas in SPCM maps indicate areas of large voltage gradients or high electric field strength caused by injection barriers or traps. Thus, SPCM allows us to identify and image the dominant voltage loss mechanism in organic field-effect transistors.

  1. Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry.

    PubMed

    Mondal, Prakash Chandra; Fontanesi, Claudio; Waldeck, David H; Naaman, Ron

    2015-03-24

    This work examines whether electrochemical redox reactions are sensitive to the electron spin orientation by examining the effects of magnetic field and molecular chirality on the charge transfer process. The working electrode is either a ferromagnetic nickel film or a nickel film that is coated with an ultrathin (5-30 nm) gold overlayer. The electrode is coated with a self-assembled monolayer that immobilizes a redox couple containing chiral molecular units, either the redox active dye toluidine blue O with a chiral cysteine linking unit or cytochrome c. By varying the direction of magnetization of the nickel, toward or away from the adsorbed layer, we demonstrate that the electrochemical current depends on the orientation of the electrons' spin. In the case of cytochrome c, the spin selectivity of the reduction is extremely high, namely, the reduction occurs mainly with electrons having their spin-aligned antiparallel to their velocity. PMID:25752750

  2. Cu charge radii reveal a weak sub-shell effect at N =40

    NASA Astrophysics Data System (ADS)

    Bissell, M. L.; Carette, T.; Flanagan, K. T.; Vingerhoets, P.; Billowes, J.; Blaum, K.; Cheal, B.; Fritzsche, S.; Godefroid, M.; Kowalska, M.; Krämer, J.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.

    2016-06-01

    Collinear laser spectroscopy on Cu-7558 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ A ,A' from the observed isotope shifts. A local minimum is observed in these radii differences at N =40 , providing evidence for a weak N =40 sub-shell effect. However, comparison of δ A ,A' with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N =40 .

  3. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  4. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, B.; Hardage, D.; Minor, J.

    2004-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  5. High-frequency, 'quantum' and electromechanical effects in quasi-one-dimensional charge density wave conductors

    NASA Astrophysics Data System (ADS)

    Pokrovskii, Vadim Ya; Zybtsev, Sergey G.; Nikitin, Maksim V.; Gorlova, Irina G.; Nasretdinova, Venera F.; Zaitsev-Zotov, Sergei V.

    2013-01-01

    Recent results (some previously unpublished) on the physics of charge density waves (CDWs) are reviewed. The synthesis conditions and unique properties of the quasi-one-dimensional compound {NbS_3}, with highly coherent room temperature CDWs, are described. A peculiar type of 'quantization' is discussed, which is observed in micro- and nanosamples of {K_{0.3}MoO_3} and {NbSe_3} due to the discrete nature of CDW wave vector values. The electric-field-induced torsional strain (TS) in quasi-one-dimensional conductors is considered. Research results on the TS of a noise character induced by sliding CDWs are presented, along with those on the inverse effect, the modulation of the voltage induced by externally driven TS. Results on the nonlinear conduction of {TiS_3}, a quasi-one-dimensional compound not belonging to the family of classical Peierls conductors, are also described.

  6. Neutralization of Space Charge Effects for Low Energy Ion Beams Using Field Emitters

    SciTech Connect

    Nicolaescu, D.; Sakai, S.; Matsuda, K.; Gotoh, Y.; Ishikawa, J.

    2008-11-03

    The paper presents models and computations for neutralization of space charge effects using electrons provided by field emitter arrays. Different ion species ({sup 11}B{sup +},{sup 31}P{sup +},{sup 75}As{sup +}) with energy in the range E{sub ion} = 200 eV-1 keV have been considered. The ion beam divergence is studied as a function of electron beam geometry and physical parameters (electron and ion energy, electron/ion current ratio I{sub el}/I{sub ion}). The electron beam geometry takes into account electron source positions and initial launching angles. It is shown that optimal ion beam neutralization occurs for low energy electrons emitted parallel to the ion beam.

  7. The effect of adiabatic focusing upon charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1975-01-01

    Charged particles propagating along the diverging lines of force of a spatially inhomogeneous guiding field were considered as they are scattered by random fields. Their longitudinal transport is described in terms of the eigenfunctions of a Sturm-Liouville operator incorporating the effect of adiabatic focussing along with that of scattering. The relaxation times and characteristic velocities are graphed and tabulated. The particle density is evaluated as a function of space and time for two different regimes. In the first regime (relatively weak focussing), a diffusive mode of propagation is dominant but coherent modes are also dominant. In the second regime (strong focussing), diffusion does not occur and the propagation is purely coherent. This supercoherent mode corresponds exactly to the so-called scatter-free propagation of kilovolt solar flare electrons. On a larger scale, focussed transport provides an interpretation of many observed characteristics of extragalactic radio sources.

  8. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; University of Chinese Academy of Sciences, Beijing 100049 ; Zhao, H. Y. Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-03-15

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  9. Dynamic Jahn-Teller Effect in Negatively Charged Nitrogen-Vacancy Center in Diamond

    NASA Astrophysics Data System (ADS)

    Abtew, Tesfaye; Zhang, Peihong

    2011-03-01

    The negatively charged nitrogen-vacancy (NV) center in diamond has attracted much research interest recently owing to its desirable optical properties and long spin coherent lifetime. The ground state of NV- center has a 3 A2 symmetry, which can be optically excited, to a 3 E state. The excited state is orbitally degenerate therefore should experience either static or dynamic Jahn-Teller (JT) effects. We use accurate first-principles methods to study structural and electronic properties of the NV- center in diamond both in the ground and excited states. Our results indicate that the excited state of the NV- center is indeed a dynamic JT system. We acknowledge the Center for Computational Research at the University at Buffalo, SUNY. This work is supported by the National Science Foundation under Grant No. DMR-0946404 and by the Department of Energy under GrantNo. DE-SC0002623.

  10. Optical and electrochemical methods for determining the effective area and charge density of conducting polymer modified electrodes for neural stimulation.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-01-01

    Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode geometry. This technique highlights that materials can have widely different charge densities but also large variation in performance. Measurement of charge density from an electroactive area may result in new materials and electrode geometries that improve patient outcomes and reduce side effects. PMID:25495574

  11. Dielectric interface-dependent spatial charge distribution in ambipolar polymer semiconductors embedded in dual-gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jiyoul; Roelofs, W. S. Christian; Janssen, Rene A. J.; Gelinck, Gerwin H.

    2016-07-01

    The spatial charge distribution in diketopyrrolopyrrole-containing ambipolar polymeric semiconductors embedded in dual-gate field-effect transistors (DGFETs) was investigated. The DGFETs have identical active channel layers but two different channel/gate interfaces, with a CYTOP™ organic dielectric layer for the top-gate and an octadecyltrichlorosilane (ODTS) self-assembled monolayer-treated inorganic SiO2 dielectric for the bottom-gate, respectively. Temperature-dependent transfer measurements of the DGFETs were conducted to examine the charge transport at each interface. By fitting the temperature-dependent measurement results to the modified Vissenberg-Matters model, it can be inferred that the top-channel interfacing with the fluorinated organic dielectric layers has confined charge transport to two-dimensions, whereas the bottom-channel interfacing with the ODTS-treated SiO2 dielectric layers has three-dimensional charge transport.

  12. Effect of spin-orbit nuclear charge density corrections due to the anomalous magnetic moment on halonuclei

    SciTech Connect

    Ong, A.; Berengut, J. C.; Flambaum, V. V.

    2010-07-15

    In this paper we consider the contribution of the anomalous magnetic moments of protons and neutrons to the nuclear charge density. We show that the spin-orbit contribution to the mean-square charge radius, which has been neglected in recent nuclear calculations, can be important in light halonuclei. We estimate the size of the effect in helium, lithium, and beryllium nuclei. It is found that the spin-orbit contribution represents a approx2% correction to the charge density at the center of the {sup 7}Be nucleus. We derive a simple expression for the correction to the mean-square charge radius due to the spin-orbit term and find that in light halonuclei it may be larger than the Darwin-Foldy term and comparable to finite size corrections. A comparison of experimental and theoretical mean-square radii including the spin-orbit contribution is presented.

  13. The effect of the charge density of microemulsion droplets on the bending elasticity of their amphiphilic film

    NASA Astrophysics Data System (ADS)

    Farago, B.; Gradzielski, M.

    2001-06-01

    Oil-in-water (O/W) microemulsion droplets have been investigated with respect to the effect of the electric charge density on the bending elasticity of the amphiphilic film. For this an originally uncharged microemulsion system became charged by the substitution of the nonionic by an ionic surfactant (up to 5 mol %). The sum of the bending constants, 2κ+κ¯, has been determined from the polydispersity index p of the droplets and alternatively from the macroscopic interfacial tension γ together with the maximum particle radius Rm. p and Rm were measured by means of small-angle neutron scattering (SANS) experiments in the shell contrast. Neutron spin echo (NSE) has been employed to measure directly the dynamics of the shape fluctuations of the droplets. This method enables a separate determination of κ on its own. It is found that the effect of the increasing charge density leads only to a fairly small increase for the sum of the bending constants 2κ+κ¯. Also the change of the ionic strength for a charged microemulsion system has almost no influence on this sum. NSE measurements show no measurable difference in the dynamics of the charged and uncharged system leading to the conclusion that not only the sum but separately the two bending constants stay within experimental error unchanged. This experimental observation is in contrast to simple electrostatic theories that would predict a much more pronounced influence of the electric charge density on the bending properties of the amphiphilic film.

  14. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles

    SciTech Connect

    Illes, E.; Tombacz, E.

    2006-03-01

    The pH-dependent adsorption of humic acid (HA) on magnetite and its effect on the surface charging and the aggregation of oxide particles were investigated. HA was extracted from brown coal. Synthetic magnetite was prepared by alkaline hydrolysis of iron(II) and iron(III) salts. The pH-dependent particle charge and aggregation, and coagulation kinetics at pH around to 4 were measured by laser Doppler electrophoresis and dynamic light scattering. The charge of pure magnetite reverses from positive to negative at pH around 8, which may consider as isoelectric point (IEP). Near this pH, large aggregates form, while stable sols exist further from it. In the presence of increasing HA loading, the IEP shifts to lower pH, then at higher loading, magnetite becomes negatively charged even at low pHs, which indicate the neutralization and gradual recharging positive charges on surface. In acidic region, the trace HA amounts are adsorbed on magnetite surface as oppositely charged patches, systems become highly unstable due to heterocoagulation. Above the adsorption saturation, however, the nanoparticles are stabilized in a way of combined steric and electrostatic effects. The HA coated magnetite particles form stable colloidal dispersion, particle aggregation does not occur in a wide range of pH and salt tolerance is enhanced.

  15. On the height variation of the E-region cowling conductivity - effect of charged dust particles

    NASA Astrophysics Data System (ADS)

    Muralikrishna, P.; Kulkarni, V. H.

    2006-11-01

    Height profiles of the Cowling conductivity in the electrojet region, estimated using the atmospheric parameters given by the existing models like CIRA or MSIS and measured electron density profiles, consistently show the heights of the electrojet current intensity peak to be more than 3 km below those estimated from in-situ measurements using magnetometers on board sounding rockets. Kulkarni and Muralikrishna (2005) attempted to explain this to be due to the effect of neutral dust particles. They reported that neutral dust particles, when they exist in sufficient numbers, can modify the collision parameters, especially in the lower E-region, where dust particles of meteoric origin are known to exist in large numbers, and thereby can modify the Cowling conductivity profile in the electrojet region. This work is extended here to include the effect of charged dust particles. Dust particles can become charged negatively by the attachment of ambient free electrons, and can thus reduce the number density of free electrons especially below the electrojet peak. This can alter the vertical profile of the east-west Hall current driven by the vertical Hall polarization field, thereby causing a net reduction in the electrojet current. Such a decrease in the electrojet current may be observed on the ground magnetograms. This mechanism, as proposed here, can operate only during periods of strong meteor shower activity, when the dust particle density at the assumed deposit height of 103 km can reach extreme values (for example, 5×104 cm-3 of 1-µm diameter dust particles). Such a dense dust layer may even cause a reversal in the normally upward vertical Hall polarization field, within the dust layer, causing a reversal of the electrojet currents below the current peak.

  16. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-07-01

    The current work examines the role of surfactant hydrophile-lipophile balance (HLB) on the ability for surfactant reverse micelles to impart charge to particles dispersed in an apolar medium, a study motivated by a number of applications that seek to maximize particle charge in such systems. Previous investigations have shown that relative acid-base properties of the particles and surfactants, as well as surfactant concentration and trace water content, all play a major role in the particle charge obtained. However, the ability of a surfactant to stabilize charge in reverse micelles is also an important aspect of creating charge on a particle surface. It has been previously shown that surfactant HLB value is an important parameter in assessing the size of the polar core of the reverse micelles, thereby impacting the total charge that is generated in the bulk solution as determined by conductivity. In the current study, this theory is extended to investigate the impact on particle charging. To accomplish this, the electrophoretic mobility is determined for a series of mineral oxides dispersed in Isopar-L with either Span 20, Span 80, or Span 85. These three surfactants all have the same head group chemistry, but their HLB value ranges from 1.8 to 8.6. It is found that the maximum observed particle electrophoretic mobility does scale directly with the HLB of the accompanying surfactant. This indicates that there is a direct correlation between a surfactant's ability to stabilize charge and its ability to impart charge to a particle. However, the largest HLB surfactant, Span 20, also exhibited a large amount of charge screening or neutralization at larger surfactant concentrations. This highlights the competition between particle charging and micelle-micelle charging that remains one of the largest obstacles to maximizing particle charge in apolar systems. PMID:25528174

  17. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity CdZnTe

    SciTech Connect

    Kamieniecki, Emil

    2014-11-21

    The dominant problem limiting the energy resolution of compound semiconductor based radiation detectors is the trapping of charge carriers. The charge trapping affects energy resolution through the carrier lifetime more than through the mobility. Conventionally, the effective carrier lifetime is determined using a 2-step process based on measurement of the mobility-lifetime product (μτ) and determining drift mobility using time-of-flight measurements. This approach requires fabrication of contacts on the sample. A new RF-based pulse rise-time method, which replaces this 2-step process with a single non-contact direct measurement, is discussed. The application of the RF method is illustrated with high-resistivity detector-grade CdZnTe crystals. The carrier lifetime in the measured CdZnTe, depending on the quality of the crystals, was between about 5 μs and 8 μs. These values are in good agreement with the results obtained using conventional 2-step approach. While the effective carrier lifetime determined from the initial portion of the photoresponse transient combines both recombination and trapping in a manner similar to the conventional 2-step approach, both the conventional and the non-contact RF methods offer only indirect evaluation of the effect of charge trapping in the semiconductors used in radiation detectors. Since degradation of detector resolution is associated not with trapping but essentially with detrapping of carriers, and, in particular, detrapping of holes in n-type semiconductors, it is concluded that evaluation of recombination and detrapping during photoresponse decay is better suited for evaluation of compound semiconductors used in radiation detectors. Furthermore, based on previously reported data, it is concluded that photoresponse decay in high resistivity CdZnTe at room temperature is dominated by detrapping of carriers from the states associated with one type of point defect and by recombination of carriers at one type of

  18. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties

    PubMed Central

    Li, Fang; Weir, Michael D.; Chen, Jihua; Xu, Hockin H. K.

    2014-01-01

    Objectives Quaternary amine charge density is important because when the negatively-charged bacteria contact the positive quaternary amine charge, the electric balance is disturbed and the bacterium could be disrupted. There has been no report on the effects of charge density on the antibacterial efficacy of dental bonding agents. The objective of this study was to synthesize a new quaternary ammonium methacrylate, and investigate the effects of charge density of bonding agent on bacteria early-attachment, biofilm colony-forming units (CFU) and dentin bond strength. Methods Dimethylaminododecyl methacrylate (DMAHDM) with an alkyl chain length of 16 was synthesized and mixed into Scotchbond Multi-Purpose adhesive and primer (SBMP) at mass fractions of 0%, 2.5%, 5%, 7.5%, and 10%. A microtensile dentin bond test was performed. The density of quaternary ammonium groups was measured using a fluorescein dye method. Streptococcus mutans (S. mutans) early-attachment was examined at 4 hours, and biofilm colony-forming units (CFU) were measured at 2 days. Results All groups had similar microtensile bonding strengths (mean ± sd; n = 40) of about 60 MPa (p > 0.1). Quaternary amine charge density of bonding agents monotonically increased with increasing DMAHDM mass fraction. Bacteria early-attachment coverage greatly decreased with increasing DMAHDM content in the resin. Biofilm CFU at 10% DMAHDM was reduced by almost 5 log, compared to SBMP control. Charge density of bonding agent was inversely proportional to bacteria early-attachment coverage and biofilm CFU. Significance Increasing the quaternary amine charge density of dentin bonding agent resin was shown to greatly reduce S. mutans attachment and decrease biofilm CFU by four orders of magnitude, without compromising the dentin bond strength. The new DMAHDM is promising for use in bonding agents and other antibacterial restorative materials to inhibit caries. PMID:24534376

  19. Charge Transport in Molecular Junctions: A Study of Level-Alignment, Thermoelectric Properties, and Environmental Effects

    NASA Astrophysics Data System (ADS)

    Kotiuga, Michele

    Here, we use and develop first-principles methods based on density functional theory (DFT) and beyond to understand and predict charge transport phenomena in the novel class of nanostructured devices: molecular junctions. Molecular junctions, individual molecules contacted to two metallic leads, which can be systematically altered by modifying the chemistry of each component, serve as test beds for the study of transport at the nanoscale. To date, various experimental methods have been designed to reliably assemble and measure transport properties of molecular junctions. Furthermore, theoretical methods built on DFT designed to yield quantitative agreement with these experiments for certain classes of molecular junctions have been developed. In order to gain insight into a broader range of molecular junctions and environmental effects associated with the surrounding solution, this dissertation will employ, explore and extend first-principles DFT calculations coupled with approximate self-energy corrections known to yield quantitative agreement with experiments for certain classes of molecular junctions. To start we examine molecular junctions in which the molecule is strongly hybridized with the leads: a challenging limit for the existing methodology. Using a physically motivated tight-binding model, we find that the experimental trends observed for such molecules can be explained by the presence of a so-called "gateway" state associated with the chemical bond that bridges the molecule and the lead. We discuss the ingredients of a self-energy corrected DFT based approach to quantitatively predict conductance in the presence of these hybridization effects. We also develop and apply an approach to account for the surrounding environment on the conductance, which has been predominantly ignored in past transport calculations due to computational complexity. Many experiments are performed in a solution of non-conducting molecules; far from benign, this solution is known

  20. Long-distance coherent tunneling effect on the charge and heat currents in serially coupled triple quantum dots

    NASA Astrophysics Data System (ADS)

    Kuo, David M. T.; Chang, Yia-chung

    2014-03-01

    The effect of long-distance coherent tunneling (LDCT) on the charge and heat currents in serially coupled triple quantum dots (TQDs) connected to electrodes is illustrated by using a combination of the extended Hurbbard and Anderson models. The charge and heat currents are calculated with a closed-form Landauer expression for the transmission coefficient suitable for the Coulomb blockade regime. The physical parameters including bias-dependent quantum dot energy levels, electron Coulomb interactions, and electron hopping strengths are calculated in the framework of effective mass theory for semiconductor TQDs. We demonstrate that the effect of LDCT on the charge and heat currents can be robust. In addition, it is shown that prominent heat rectification behavior can exist in the TQD system with asymmetrical energy levels.

  1. Space charge memory effect in a-Si:H at low temperatures

    SciTech Connect

    Heck, S.; Stradins, P.; Fritzsche, H.

    1997-07-01

    Space charges build up near one or both electrodes of a photoconductor unless the thermoionic current balances the photocurrent. Space charges built up also when a voltage U is applied at low T to a semiconductor containing a nonequilibrium distribution of carriers. The presence of a space charge is observed as a relaxation-current transient when the sample is illuminated at zero bias. If one type of carrier is immobile the steady state photocurrent becomes zero.

  2. The effect of a direct current field on the microparticle charge in the plasma afterglow

    NASA Astrophysics Data System (ADS)

    Wörner, L.; Ivlev, A. V.; Couëdel, L.; Huber, P.; Schwabe, M.; Hagl, T.; Mikikian, M.; Boufendi, L.; Skvortsov, A.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Thomas, H. M.; Morfill, G. E.

    2013-12-01

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon "free decharging" conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between -10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  3. Characterization of charge motion in Poly(3-alkylthiophene) field effect transistors with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Moscatello, Jason P.; Patterson, Morgen; Davis, Andrew R.; Carter, Kenneth R.; Aidala, Katherine E.

    2014-03-01

    Poly(3-hexylthiophene) (P3HT) is a promising conductive organic polymer for applications such as organic FETs and photovoltaics. Key to proper utilization of P3HT is the understanding of how charges move and are trapped in the polymer, which directly affects the mobility of the charges as well as device efficiency. Scanning probe techniques, such as Kelvin Probe Force Microscopy, offer the advantage of being able to observe charges and local potentials down to the nano-scale. We present our work using scanning probe techniques to study charge injection and flow through P3HT FETs.

  4. The effect of a direct current field on the microparticle charge in the plasma afterglow

    SciTech Connect

    Wörner, L.; Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E.; Couëdel, L.; Schwabe, M.; Mikikian, M.; Boufendi, L.; Skvortsov, A.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.

    2013-12-15

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between −10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  5. Transungual iontophoretic transport of polar neutral and positively charged model permeants: effects of electrophoresis and electroosmosis.

    PubMed

    Hao, Jinsong; Li, S Kevin

    2008-02-01

    Transungual iontophoretic transport of model neutral permeants mannitol (MA), urea (UR), and positively charged permeant tetraethylammonium ion (TEA) across fully hydrated human nail plates at pH 7.4 were investigated in vitro. Four protocols were involved in the transport experiments with each protocol divided into stages including passive and iontophoresis transport of 0.1 and 0.3 mA. Water and permeant uptake experiments of nail clippings were also conducted to characterize the hydration and binding effects of the permeants to the nails. Iontophoresis enhanced the transport of MA and UR from anode to cathode, but this effect (electroosmosis) was marginal. The transport of TEA was significantly enhanced by anodal iontophoresis and the experimental enhancement factors were consistent with the Nernst-Planck theory predictions. Hindered transport was also observed and believed to be critical in transungual delivery. The barrier of the nail plates was stable over the time course of the study, and no significant electric field-induced alteration of the barrier was observed. The present results with hydrated nail plates are consistent with electrophoresis-dominant (the direct field effect) transungual iontophoretic transport of small ionic permeants with small contribution from electroosmosis. PMID:17683062

  6. Spin and charge Nernst effect in a four-terminal quantum dot ring.

    PubMed

    Yang, Xi; Zheng, Jun; Li, Chun-Lei; Guo, Yong

    2015-02-25

    Based on the Keldysh nonequilibrium Green's function technique, we study the spin and charge Nernst effect in a four-terminal quantum dot (QD) ring device, in which the Rashba spin-orbit interaction (RSOI) is taken into the QDs and the magnetic field penetrates the ring. We find that only with the assistance of RSOI, can the pure spin Nernst effect occur by applying a thermal bias without any magnetic field or ferromagnetic materials in the system. Under certain RSOI and magnetic field strengths, spin-down or spin-up currents can be driven from terminal 2 or 4. The sign and the magnitude of the spin currents or voltages can be modulated by adjusting the RSOI-induced phase factor and the magnetic flux. Moreover, the magnitude of the Nernst effect can be remarkably enhanced by the intra-dot Coulomb blockade. The Nernst coefficient is predicted to be more than two times larger than the case of zero Coulomb interaction. Our results indicate that such a four-terminal QD ring may be used as a manipulative thermoelectric generator. PMID:25629548

  7. Effect of surface roughness of charge hole on detonation propagation of emulsion explosive

    SciTech Connect

    Sumiya, Fumihiko; Hirosaki, Yoshikazu; Katoh, Yukio; Wada, Yuji; Ogata, Yuji; Katsuyama, Kunihisa

    1996-12-01

    In the present study, some experimental work was performed to investigate the effects of surface roughness of the charge hole on the velocity of the precursor air shock wave. Photographic observation was performed using rectangular PMMA tubes with sandpaper on inner wall to simulate surface roughness for various decoupling coefficients. The experimental results indicate that the increase of surface roughness of the tube wall reduces the precursor air shock wave velocity and prevents detonation failure. It is shown that detonation failure occurs when the ratio of the precursor air shock wave velocity to detonation velocity becomes greater than 1.21 in the case of a rectangular PMMA tube. Precursor air shock wave velocity and detonation velocity were measured using PVC pipes of various inner diameters with sandpaper on the inner wall to simulate actual charge hole roughness. Sample explosive confined in polyethylene tubes of 20 mm in diameter was placed on the inner wall of the PVC pipe. The experimental results show that the increase of surface roughness of the PVC pipe decreases the velocity of the precursor air shock wave and improves the detonation propagation of explosive in the PVC pipe. It is shown that detonation failure occurs when the ratio of the precursor air shock wave velocity to detonation velocity exceeds 1.1 times in the case of the PVC pipe. The difference observed between the experiments with a rectangular PMMA tube and those with a circular PVC pipe is due to the difference of precompression mode of unreacted explosive by precursor air shock waves.

  8. The Effects of Neutral Gas Release on Vehicle Charging: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Amatucci, W. E.; Bowles, J. H.; Fernsler, R. F.; Siefring, C. L.; Antoniades, J. A.; Keskinen, M. J.

    1998-11-01

    This paper describes an experimental and theoretical research effort related to the mitigation of spacecraft charging by Neutral Gas Release (NGR). The Space Power Experiments Aboard Rockets programs (SPEAR I and III) [Mandel et al., 1998; Berg et al., 1995] and other earlier efforts have demonstrated that NGR is an effective method of controlling discharges in space. The laboratory experimentswere conducted in the large volume Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory (NRL). A realistic near-earth space environment can be simulated in this device for whichminimumscalingneeds to be performedtorelate the data to space plasma regimes. This environment is similar to that encountered by LEO spacecraft, e.g., the Space Station, Shuttle, and high inclination satellites. The experimental arrangement consists of an aluminum cylinder which can be biased to high negative voltage (0.4 kVcharged to high voltage, the neutral gas is released, inducing a breakdown of the gas in the strong electric field about the cylinder. Collection of ions from the newly created dense plasma, along with secondary electron emission from the cylinder surface, provide the return current necessary for grounding the body. The theoretical treatment assumes a simple Townsend discharge along with the fundamental assumption of exponential electron growth in an avalanche fashion as one proceeds from the cathode toward the anode during neutral gas breakdown in the presence of high potentials. In addition the nozzle release of neutral gas is modeled and a simple linear spatial dependence of the applied potential is assumed. This basic model produces quite good results when compared to the experiment.

  9. Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams

    SciTech Connect

    Hong Qin

    2003-01-21

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.

  10. Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin.

    PubMed

    Yan, Mingquan; Korshin, Gregory V; Claret, Francis; Croué, Jean-Philippe; Fabbricino, Massimiliano; Gallard, Hervé; Schäfer, Thorsten; Benedetti, Marc F

    2014-08-01

    This study demonstrates that the deprotonation of dissolved organic matter (DOM) originating from a small creek characteristic for DOM-rich waters located in the Rio Negro basin can be quantified based on measurements of pH effects on its absorbance spectra. The method was ascertained by the data of Near-Edge X-Ray Absorbance Spectroscopy (NEXAFS), potentiometric titration to quantify the structural and compositional differences between the colloidal and hydrophobic fractions that contribute 91% of black-water creek DOM. Changes in the absorbance spectra of the DOM fractions caused by deprotonation quantified via numeric deconvolution which indicated the presence of six well-resolved Gaussian bands in the differential spectra. The emergence of these bands was determined to be associated with the engagement of carboxylic and phenolic functionalities and changes of inter-chromophore interactions in DOM molecules. Interpretation of the data based on the NICA-Donnan approach showed that behavior of DOM chromophores was consistent with results of potentiometric titrations. Similar trends were observed for changes of the spectral slope of the DOM absorbance spectra in the range of wavelengths 325-375 nm (DSlope325-375). The behavior of DSlope325-375 values was modeled based on the NICA-Donnan approach and correlated with potentiometrically-estimated charges attributed to the carboxylic and phenolic groups. The correlations between DSlope325-375 and charges of low- and high-affinity protonation-active groups in DOM were monotonic but not linear and had important differences between the colloidal and hydrophobic fractions. PMID:24793113

  11. Energetics of the Preyssler anion's molecular orbitals: quantifying the effect of the encapsulated-cation's charge.

    PubMed

    Chiang, Ming-Hsi; Antonio, Mark R; Soderholm, L

    2004-11-01

    The ground state electronic properties of metal-exchanged Preyssler heteropolyoxoanions [M(n+)P(5)W(30)O(110)](n-15), in which the encapsulated M(n+) ions are the spherical, diamagnetic ions Na(+), Ca(2+), Sr(2+), Y(3+), La(3+) and Th(4+), are studied using a combination of electrochemical, optical, and NMR experiments. We have designed experiments that focus on the influence of the charge (n) of the encapsulated cations, which themselves have no redox response, and its effect upon the W-O framework MOs. As n increases, the cluster anions accept electrons into their LUMOs with increasing ease, and their lowest-energy LMCT bands reveal a corresponding blue shift, which is indicative of an increase of the LUMO-HOMO energy splitting with increasing n. (183)W NMR spectra are used to identify the atomic origin of the LUMO states, which are shown to be composed primarily of orbitals from the ring of 5 W atoms near M(n+). The cation charge correlates directly and linearly with the half-wave potentials of the first redox couples, the LMCT band energies, and the W chemical shifts. We have combined this suite of experimental results to construct an energy level diagram of the frontier MOs for the Preyssler cluster anions. In so doing, we provide a fundamental perspective that is not otherwise available on the cation's role with specific regard to the electronic behavior of the W-O orbitals. These results are expected to provide benchmarking information as theorists begin to study these large POM systems. PMID:15510277

  12. Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

    SciTech Connect

    Splitter, Derek A; Reitz, Rolf; Wissink, martin; DelVescovo, Dan

    2014-01-01

    The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5 CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition. This allowed for the investigation of several combinations of intake temperature, intake pressure, and charge stratification at otherwise constant thermodynamic conditions. The results show that sources of engine inefficiency compete as functions of premixed and global equivalence ratios. Losses are minimized through proper balancing of intake pressure and temperature, such that the global equivalence ratio ( global) is as lean as possible without overly lean regions of the stratified charge causing an increase in incomplete combustion. The explored speed-load-phasing combination shows that losses are minimized at conditions where approximately 2/3 of the fuel is fully premixed. The results exhibit a pathway for achieving simultaneous increases in combustion and fuel efficiency through proper fuel reactivity and initial condition management.

  13. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  14. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.

    PubMed

    Huix-Rotllant, Miquel; Tamura, Hiroyuki; Burghardt, Irene

    2015-05-01

    Quantum-dynamical simulations are used to investigate the interplay of exciton delocalization and vibronically induced internal conversion processes in the elementary charge separation steps at regioregular donor-acceptor heterojunctions. Ultrafast internal conversion leads to efficient deexcitation within the excitonic and charge transfer manifolds, thus modifying the charge separation dynamics. We address a model donor-acceptor junction representative of regioregular P3HT-PCBM, using high-dimensional quantum dynamics simulations by multiconfigurational methods. While partial trapping into an interfacial charge separated state occurs, long-range charge-separated states are accessed as previously demonstrated in the work of Tamura and Burghardt [J. Am. Chem. Soc. 2013, 135, 16364]. For an H-aggregate type, stacked donor species, the initial bright state undergoes ultrafast internal conversion within the excitonic manifold, creating multiple charge transfer pathways before reaching the lowest-energy dark exciton, which is uncoupled from the charge transfer manifold. This process profoundly affects the charge separation mechanism and efficiency. For small energetic offsets between the interfacial excitonic and charge transfer states, a delocalized initial bright state proves less prone to electron-hole capture by the interfacial trap than a localized, vibronic wavepacket close to the interface. For both delocalized and localized initial states, a comparable yield of free carriers is obtained, which is found to be optimal for energetic offsets of the order of the Coulomb barrier to charge separation. Interfacial trapping is significantly reduced as the barrier height decreases with fullerene aggregation. Despite the high-dimensional nature of the system, charge separation is an ultrafast coherent quantum process exhibiting oscillatory features as observed in recent experiments. PMID:26263337

  15. The effect of temperature on the asymmetrical charge movement in squid giant axons.

    PubMed Central

    Kimura, J E; Meves, H

    1979-01-01

    1. Asymmetrical displacement currents ('gating currents') have been recorded in intracellularly perfused squid giant axons by averaging the currents associated with depolarizing and hyperpolarizing voltage pulses. The effect of temperature on 'gating currents' was studied and compared with the effect of temperature on Na currents. 2. Increasing the temperature in seven steps from 0 to 15 degrees C increased the area under the on- and off-response (Qon, Qoff). The average Q10 values for Qon and Qoff (measured with depolarizing pulses to 0 to 20 mV) were 1.41 and 1.62, respectively. 3. The on- and the off-response were described mathematically by the sum of two exponentials. The first component of the on-response, Qon 1, represented 80% or more of the total charge movement associated with 2.5 msec pulses; the Q10 of Qon 1 was similar to that of total Qon. The first component of the off-response, Qoff 1, represented 50--70% of total Qoff; its Q10 was smaller than that of total Qoff. 4. The temperature dependence of the rate constants (tauon 1)-1 and (tauoff 1)-1 was stronger at temperatures below 6--8 degrees C (Q10 = 3.1--6.4) than at higher temperatures (Q10 = 2.0--3.3). In an Arrhenius plot two lines of different slope were required to fit the data. 5. The effect of increasing the temperature on the Q vs. V curve can be described as an increase of Qmax or, alternatively, as a shift of the curve to more negative potentials. 6. Increasing the temperature from 0 to 15 degrees C increased the peak of the Na current (recorded in sea water with a fifth of the normal Na concentration), increased the rate constants taum-1 and tauh-1 and shifted the m3infinity and hinfinity curves to more positive potentials. 7. The Q10 of the rate constant taum-1 varied between 2.04 and 2.61 and was independent of temperature. In an Arrhenius plot the values for taum-1 could be fitted by a single line. 8. The results support the view that 'gating current' does not simply reflect changes of

  16. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-02-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

  17. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    PubMed Central

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  18. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2.

    PubMed

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  19. Effect of surface material on electrostatic charging of houseflies (Musca domestica L).

    PubMed

    McGonigle, Daniel F; Jackson, Chris W

    2002-04-01

    Houseflies (Musca domestica L) accumulated electrostatic charges when walking over clean, uncharged dielectric surfaces. The charges elicited on a walking housefly by a range of materials were quantified, allowing a triboelectric series to be determined relative to M domestica. This ranged from surfaces that charged individuals positively, e.g. Correx (corrugated polypropylene) [.1 (+/- 4.2)pC], to those that applied a negative charge, e.g. clear cast acrylic [-14.9 (+/- 2.9)pC]. Maximum positive and negative charges accumulated by individual M domestica were +73 and -27 pC. Replicate measurements on the same fly and surface showed little variation. Variation between individuals was not related to sex and was not consistent between surfaces. Different materials charged M domestica significantly differently and individual flies had significantly different charging properties. Variation in temperature between 21.3 degrees C and 24.7 degrees C and humidity between 24% and 41% RH significantly affected charge accumulated by M domestica on some surfaces, although further experimentation is needed to confirm this. The implications of this work are discussed in relation to insect trap design and pollination biology. PMID:11975185

  20. The effect of interfaces on charge transport and recombination in polymeric solar cells

    NASA Astrophysics Data System (ADS)

    Osterbacka, Ronald; Sanden, Simon; Xu, Qian; Sandberg, Oskar; Nyman, Mathias; Smatt, Jan-Henrik; Juska, Gytis

    2013-03-01

    Charge-carrier transport and recombination in hybrid TiO2/P3HT:PCBM bulk-heterojunction solar cells (BHSCs) have been measured using photo-CELIV. We have fabricated hybrid devices in the form of indium tin oxide/titanium dioxide/P3HT:PCBM/Cu) to clarify the impact of the TiO2/P3HT:PCBM interface on the charge transport using the charge extraction by linearly increasing voltage (CELIV) technique. We found that a large equilibrium charge reservoir is accumulated at negative offsets at the TiO2/P3HT:PCBM interface leading to space charge limited extraction current (SCLC) transients. We show analytically the SCLC transient response and compare the experimental data to calculated SCLC in a linearly increasing voltage. The theoretical calculations indicate that the large charge reservoir at negative offset voltages is due to thermally generated charges combined with poor hole extraction at the ITO/TiO2 contact, due to the hole blocking character of TiO2. In this presentation we will discuss how interfaces, both metal-organic but also organic-organic interfaces affect charge carrier transport and recombination measurements. Laboratory of Physical Chemistry

  1. The two-nucleon electromagnetic charge operator in chiral effective field theory ($\\chi$EFT) up to one loop

    SciTech Connect

    S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani

    2011-08-01

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.

  2. Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects

    NASA Astrophysics Data System (ADS)

    Vimala, P.; Balamurugan, N. B.

    2013-11-01

    An analytical model for surrounding gate metal—oxide—semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poissonand Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

  3. An effective-charge model for the trapping of impurities of fluids in channels with nanostructured walls

    PubMed Central

    2013-01-01

    We present model equations for the trapping and accumulation of particles in a cylindrical channel with nanostructured inner walls when a fluid passes through, carrying a moderate load of impurities. The basic ingredient of the model is the introduction of a phenomenological ‘effective-charge density’ of the walls, related to the electrical charges exposed in the nanotexture. The effective charge is gradually reduced as the flow runs through the channel and the trapped impurities cover the internal walls. Based on the proposed equations, the position and time dependence of the areal density of trapped impurities, and the filtration performance, may be calculated. It is proposed that experimentally testing these results may help to understand the enhanced trapping capability observed in many diverse nanotextured channel structures. PMID:23302600

  4. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.

    PubMed

    Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin

    2010-09-01

    The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A. PMID:20707324

  5. The effects of charge transfer on the properties of liquid water

    SciTech Connect

    Lee, Alexis J.; Rick, Steven W.

    2011-05-14

    A method for treating charge transfer interactions in classical potential models is developed and applied to water. In this method, a discrete amount of charge is transferred for each hydrogen bond formed. It is designed to be simple to implement, to be applicable to a variety of potential models, and to satisfy various physical requirements. The method does not transfer charge at large intramolecular distances, it does not result in a conductive liquid, and it can be easily parameterized to give the correct amount of charge transfer. Two charge transfer models are developed for a polarizable and a non-polarizable potential. The models reproduce many of the properties of liquid water, including the structure, the diffusion constant, and thermodynamic properties over a range of temperatures.

  6. Effects of Transverse Physics on Nonlinear Evolution of Longitudinal Space-Charge Waves in Beams

    SciTech Connect

    K. Tian, I. Haber, R.A. Kishek, P.G. O'Shea, M. Reiser, D. Stratakis

    2009-05-01

    Longitudinal space-charge waves can introduce energy perturbations into charge particle beams and degrade the beam quality, which is critical to many modern applications of particle accelerators. Although many longitudinal phenomena arising from small perturbations can be explained by a one-dimensional cold fluid theory, nonlinear behavior of space-charge waves observed in experiments has not been well understood. In this paper, we summarize our recent investigation by means of more detailed measurements and self-consistent simulations. Combining the numerical capability of a PIC code, WARP, with the detailed initial conditions measured by our newly developed time resolved 6-D phase space mapping technique, we are able to construct a self consistent model for studying the complex physics of longitudinal dynamics of space-charge dominated beams. Results from simulation studies suggest that the unexplained nonlinear behavior of space-charge waves may be due to transverse mismatch or misalignment of beams.

  7. WFC3: Understanding and Mitigating UVIS Charge Transfer Efficiency Losses and IR Persistence Effects

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Anderson, J.; Long, K. S.; MacKenty, J. W.; Noeske, K.; Biretta, J. A.; WFC3 Team

    2014-01-01

    A panchromatic instrument, Wide Field Camera 3 (WFC3) contains a UVIS channel with a 4096x4096 pixel e2v CCD array as well as an IR channel with a 1014x1014 Rockwell Scientific HgCdTe focal plane array (FPA). Both detectors have been performing well on-orbit since the installation of the instrument in the Hubble Space Telescope (HST) in May 2009. However, as expected, the harsh low-earth orbit environment has been damaging the UVIS CCDs, resulting in a progressive loss of charge transfer efficiency (CTE) over time. We summarize the magnitude of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. The IR FPA does not suffer from accumulating radiation damage but it does exhibit persistence i.e. an after-glow from sources in previous exposures, an anomaly commonly seen in these types of IR arrays. We summarize the characteristics of persistence in WFC3, suggest methods for reducing the effects during observation planning, and describe the calibration products which are available via the Mikulski Archive for Space Telescopes (MAST) for addressing persistence in IR science data.

  8. The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Simmons, Nick; Bennetti, Andrea; Pearson, Chris; Reid, Concha

    2007-01-01

    ABSL Space Products is the world leading supplier of Lithium-ion batteries for space applications and has pioneered the use of small capacity COTS cells within large arrays. This small-cell approach has provided many benefits to space application designers through increased flexibility and reliability over more traditional battery designs. The ABSL 18650HC cell has been used in most ABSL space battery applications to date and has a recommended End Of Charge Voltage (EOCV) of 4.2V per cell. For all space applications using the ABSL 18650HC so far, this EOCV has been used at all stages of battery life from ground checkout to in orbit operations. ABSL and NASA have identified that, by using a lower EOCV for the same equivalent Depth Of Discharge (DOD), battery capacity fade could be reduced. The intention of this paper is to compare battery performance for systems with fixed and variable EOCV. In particular, the effect of employing the blanket value of 4.2V per cell versus utilizing a lower EOCV at Beginning Of Life (BOL) before gradually increasing it (as the effects of capacity fade drive the End Of Discharge Voltage closer to the acceptable system level minimum) is analyzed. Data is compared from ABSL in-house and NASA GRC tests that have been run under fixed and variable EOCV conditions. Differences in capacity fade are discussed and projections are made as to potential life extension capability by utilizing a variable EOCV strategy.

  9. Interpretation of infrared intensities. I. Mass-weighted squared effective charges.

    NASA Astrophysics Data System (ADS)

    Person, Willis B.; KuBulat, KuHalim

    Relationships between atomic polar tensors (APTs) and experimental infrared intensities are reviewed. The invariant known as the square of the effective charge on the αth atom and its relationship to the intensity sum allow the definition of the atomic contribution to the sum of all vibrational and rotational infrared intensities for the molecule, and the contribution to the experimental dipole moment derivative (∂μ x/∂Q s) from each atom in the molecule. It is seen that this atomic contribution to the intensity sum (≡ the mass-weighted squared effective change, 3χ 2α/m α) has very interesting properties. For one thing, values calculated from an abinitio molecular orbital calculation for a number of atoms appear to be relatively transferable for atoms in the same chemical bond in different molecules. Furthermore, the sum of intensities (or sum of 3χ 2α/m α values) are found to be constant for different tautomeric forms of a molecule. These interesting relationships are discussed briefly.

  10. Instanton effects in ABJM theory with general R-charge assignments

    NASA Astrophysics Data System (ADS)

    Nosaka, Tomoki

    2016-03-01

    We study the large N expansion of the partition function of the quiver superconformal Chern-Simons theories deformed by two continuous parameters which correspond to general R-charge assignment to the matter fields. Though the deformation breaks the conformal symmetry, we find that the partition function shares various structures with the superconformal cases, such as the Airy function expression of the perturbative expansion in 1 /N with the overall constant A(k) related to the constant map in the ABJM case through a simple rescaling of k. We also identify five kinds of the non-perturbative effects in 1 /N which correspond to the membrane instantons. The instanton exponents and the singular structure of the coefficients depend on the continuous deformation parameters, in contrast to the superconformal case where all the parameters are integers associated with the orbifold action on the moduli space. This implies that the singularity of the instanton effects would be observable also in the gravity side.

  11. Effects of Amines on the Surface Charge Poperties of Iron Oxides.

    SciTech Connect

    Benezeth, Pascale; Wesolowski, David J; Palmer, Donald; Machesky, Michael L.

    2009-07-01

    Specific studies detailing the effects of amines, used as pH control agents for corrosion inhibition in power plants, on the surface charge of iron oxides provide data to assess the mechanism of how these amines impact deposition rate. The current study was undertaken in order to determine accurately the dissociation constants of the relevant amines at Pressurized Water Reactor (PWR) operating conditions and to investigate the effect of sorption of two of these amines (morpholine and dimethylamine) by magnetite. The acid-dissociation equilibria of morpholine (MOR), dimethylamine (DMA) and ethanolamine (ETA) were measured potentiometrically with a hydrogen-electrode concentration cell (HECC) from 0 to 290 C in sodium trifluoromethanesulfonate (NaTr) solutions at ionic strengths up to 1 mol {center_dot} kg{sup -1}. Magnetite surface titrations were performed at an ionic strength of 0.03 mol {center_dot} kg{sup -1} (NaTr medium) in the presence or absence of morpholine and dimethylamine buffers over a wide range of pH and total amine concentrations at 150-250 C.

  12. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  13. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  14. Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots

    PubMed Central

    Liu, Qiangqiang; Li, Hongxia; Xia, Qiyue; Liu, Ying; Xiao, Kai

    2015-01-01

    The growing potential of quantum dots (QDs) in biomedical applications has provoked the urgent need to thoroughly address their interaction with biological systems. However, only limited studies have been performed to explore the effects of surface charge on the biological behaviors of QDs. In the present study, three commercially available QDs with different surface coatings were used to systematically evaluate the effects of surface charge on the cellular uptake, cytotoxicity, and in vivo biodistribution of QDs. Our results demonstrated that charged QDs entered both cancer cells and macrophages more efficiently than neutral ones, while negative QDs internalized mostly. Upon entry into cells, QDs were localized in different subcellular compartments (eg, cytoplasm and lysosomes) depending on the surface charge. Interestingly, inconsistent with the result of internalization, positive QDs but not negative QDs exhibited severe cytotoxicity, which was likely due to their disruption of cell membrane integrity, and production of reactive oxygen species. Biodistribution studies demonstrated that negative and neutral QDs preferentially distributed in the liver and the spleen, whereas positive QDs mainly deposited in the kidney with obvious uptake in the brain. In general, surface charge plays crucial roles in determining the biological interactions of QDs. PMID:26604757

  15. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    SciTech Connect

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  16. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors.

    PubMed

    Bauer, Thilo; Jäger, Christof M; Jordan, Meredith J T; Clark, Timothy

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves. PMID:26233114

  17. A study on the effects of relativistic heavy charged particles on the cellular microenvironment

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain Vincent

    This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this

  18. The effect of charge separation on the phase behavior of dipolar colloidal rods.

    PubMed

    Rutkowski, David M; Velev, Orlin D; Klapp, Sabine H L; Hall, Carol K

    2016-06-14

    Colloids with anisotropic shape and charge distribution can assemble into a variety of structures that could find use as novel materials for optical, photonic, electronic and structural applications. Because experimental characterization of the many possible types of multi-shape and multipolar colloidal particles that could form useful structures is difficult, the search for novel colloidal materials can be enhanced by simulations of colloidal particle assembly. We have simulated a system of dipolar colloidal rods at fixed aspect ratio using discontinuous molecular dynamics (DMD) to investigate how the charge separation of an embedded dipole affects the types of assemblies that occur. Each dipolar rod is modeled as several overlapping spheres fixed in an elongated shape to represent excluded volume and two smaller, embedded spheres to represent the charges that make up the extended dipole. Large charge separations predominately form structures where the rods link head-to-tail while small charge separations predominately form structures where the rods stack side-by-side. Rods with small charge separations tend to form dense aggregates while rods with large charge separations tend to form coarse gel-like structures. Structural phase boundaries between fluid, string-fluid, and "gel" (networked) phases are mapped out and characterized as to whether they have global head-to-tail or global side-by-side order. A structural coarsening transition is observed for particles with large charge separations in which the head-tail networks thicken as temperature is lowered due to an increased tendency to form side-by-side structures. Triangularly connected networks form at small charge separations; these may be useful for encapsulating smaller particles. PMID:27151445

  19. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  20. Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass

    EPA Science Inventory

    Loblolly pine (Pinus taeda) was combusted at different charge sizes, fuel moisture, and chlorine content to determine the effect on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated diberizofurans (PCDDslFs) as well as co-pollutants CO, PM, and total hydrocarbons...