Science.gov

Sample records for 51sc effective charges

  1. Effective Topological Charge Cancelation Mechanism

    NASA Astrophysics Data System (ADS)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  2. Effective Topological Charge Cancelation Mechanism

    PubMed Central

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  3. Effective Topological Charge Cancelation Mechanism.

    PubMed

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant "impurities" (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  4. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  5. Effects Of Environmental Electrical Charges On Spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1993-01-01

    Handbook presents information on three kinds of disruptive effects of environmental electrical charges upon operations of electronic circuits and other sensitive equipment in spacecraft. Addresses surface and internal charging and discharging, single-event upsets, and related design issues.

  6. Effects of induced charge in the kinestatic charge detector.

    PubMed

    Wagenaar, D J; Terwilliger, R A

    1995-05-01

    The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803

  7. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  8. Charge multiplication effect in thin diamond films

    NASA Astrophysics Data System (ADS)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  9. Space charge effect in isochronous rings

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.

    2008-08-25

    Cyclotrons, rings for precise nuclear mass spectrometry, and some light sources with extremely short bunches are operated or planned to be operated in the isochronous or almost isochronous regime. Also, many hadron synchrotrons run in the isochronous regime for a short period of time during transition crossing. The longitudinal motion is frozen in the isochronous regime that leads to accumulation of the integral of the longitudinal space charge force. In low-gamma hadron machines, this can cause a fast growth of the beam energy spread even at modest beam intensities. Additionally, the transverse component of the space charge effectively modifies the dispersion function and the slip factor shifting the isochronous (transition) point. In this paper, we discuss space charge effects in the isochronous regime and present experimental results obtained in the Small Isochronous Ring, developed at Michigan State University specifically for studies of space charge in the isochronous regime.

  10. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  11. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  12. Effective dynamics of a classical point charge

    SciTech Connect

    Polonyi, Janos

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.

  13. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  14. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  15. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    SciTech Connect

    Zhao, Mingtian; Li, Baohui E-mail: baohui@nankai.edu.cn; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai E-mail: baohui@nankai.edu.cn

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  16. Effect of charge memory in organic composites

    NASA Astrophysics Data System (ADS)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  17. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  18. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  19. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  20. Droplet Charging Effects in the Space Environment

    SciTech Connect

    Joslyn, Thomas B.; Ketsdever, Andrew D.

    2011-05-20

    Several applications exist for transiting liquid droplets through the near-Earth space environment. Numerical results are presented for the charging of liquid droplets of trimethyl pentaphenyl siloxane (DC705) in three different plasma environments: ionosphere, auroral, and geosynchronous Earth orbit (GEO). Nominal and high geomagnetic activity cases are investigated. In general, high levels of droplet charging (>100 V) exist only in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silicon-oil droplets due to photoemission. The photoemission yield in the 120-200 nm wavelength range was found to be approximately 0.06.

  1. Morphology Effects on Space Charge Characteristics of Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhou; Yuanxiang; Wang; Yunshan; Zahn, Markus; Wang; Ninghua; Sun; Qinghua; Liang; Xidong; Guan; Zhichen

    2011-01-01

    Low density polyethylene (LDPE) film samples with different morphology were prepared by three kinds of annealing methods which were different in cooling rates in this study. A pulsed electro-acoustic (PEA) space charge measurement system was improved to solve the surface discharge problems for small samples applied with a high voltage. Negative direct current (DC) fields from 50 to above 220 kV/mm were applied to the samples. The influences of morphologies on space charge and space charge packet characteristics were measured by the improved high voltage withstand (HVW) PEA system. Mobility and trap depth of released charges were calculated by space charge decay. It was found that there is a different probability of space charge packet initiation under applied field from -60 to -100 kV/mm. Average velocity and mobility of the space charge packets were calculated by space charge packet dynamics. It was found that the lower cooling rate samples have higher crystallinity, more homo-charge accumulation, lower mobility and deeper trap depth. The mechanism of morphological effects on space charge phenomena have been presumed to give a plausible explanation for their inherent relationships. The morphology in the metal-dielectric interface and in the bulk is convincingly suggested to be responsible for the injection and propagation processes of space charge. A model of positive space charge initiation in LDPE samples was also suggested and analyzed. The mechanism of morphological effects and the charge injection model are well fit with the injection and propagation processes of space charge. The different effects of morphology in the metal-dielectric interface and in the bulk of polymers are stressed.

  2. Understanding the effect of space charge on instabilities

    SciTech Connect

    Blaskiewicz, M.; Chao, A.; Chin, Y. H.

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  3. Studies of space-charge effects in ultrashort electron bunches

    SciTech Connect

    Fubiani, Gwenael; Leemans, Wim; Esarey, Eric

    2000-06-01

    Laser-driven plasma-based accelerators are capable of producing ultrashort electron bunches in which the longitudinal size is much smaller than the transverse size. We present theoretical studies of the transport of such electron bunches in vacuum. Space charge forces acting on the bunch are calculated using an ellipsoidal bunch shape model. The effects of space charge forces and energy spread on longitudinal and transverse bunch properties are evaluated for various bunch lengths energies and amount of charge.

  4. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  5. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William H.

    2009-12-01

    Experiments were conducted in a 23 m3 closed chamber using a charge encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included case/charge mass ratio, charge diameter and charge type (i.e., detonation energy and pressure). The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, significant pressure rises versus the steel-cased and bare charges indicated combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products gave an expression for burnt casing mass as a function of Gurney velocity and charge diameter. The equivalent bare charge mass that yields the same explosion pressure as the cased charge increased with case/charge mass ratio and reached 2.5 times charge mass at the ratio of 1.75.

  6. Longitudinal space charge effects near transition

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.C.

    2009-05-04

    Experimental and numerical studies of the longitudinal beam dynamics in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast, space-charge driven instability that did not fit the model of the negative mass instability. This paper proposes a simple analytical model explaining these results. Also, the paper compares the model to result s of experimental and numerical studies of the longitudinal beam dynamics in SIR.

  7. Anisotropic charge Kondo effect in a triple quantum dot.

    PubMed

    Yoo, Gwangsu; Park, Jinhong; Lee, S-S B; Sim, H-S

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity. PMID:25526143

  8. Anisotropic Charge Kondo Effect in a Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S.-S. B.; Sim, H.-S.

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity.

  9. Effect of thermal fluctuations on a charged dilatonic black Saturn

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Faizal, Mir

    2016-04-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  10. Space-Charge Effects in a Gas Detector

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    Discussion of space-charge effects in a photoluminescence cell that will be used as a nondisruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  11. High-Resolution Field Effect Sensing of Ferroelectric Charges

    SciTech Connect

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  12. High resolution field effect sensing of ferroelectric charges.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D.-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-03-04

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  13. High-resolution field effect sensing of ferroelectric charges.

    PubMed

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-04-13

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 μs. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 μC/cm(2), which is equivalent to 1/20 electron per nanometer square at room temperature. PMID:21375284

  14. Quantum gravity effects on charged microblack holes thermodynamics

    NASA Astrophysics Data System (ADS)

    Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.

    2016-08-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  15. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  16. Impact of charging efficiency variations on the effectiveness of variable-rate-based charging strategies for electric vehicles

    NASA Astrophysics Data System (ADS)

    Amoroso, Francesco A.; Cappuccino, Gregorio

    The huge energy demand coming from the increasing diffusion of plug-in electric vehicles (PEVs) poses a significant challenge to electricity utilities and vehicle manufacturers in developing smart charging systems interacting in real time with distribution grids. These systems will have to implement smart charging strategies for PEV batteries on the basis of negotiation phases between the user and the electric utility regarding information about battery chemistries, tariffs, required energy and time available for completing the charging. Strategies which adapt the charging current to grid load conditions are very attractive. Indeed, they allow full exploitation of the grid capacity, with a consequent greater final state of charge and higher utility financial profits with respect to approaches based on a fixed charging rate. The paper demonstrates that the charging current should be chosen also taking into account the effect that different charging rates may have on the charging efficiency. To this aim, the performances of two smart variable-rate-based charging strategies, taken as examples, are compared by considering possible realistic relationships between the charging efficiency and the charging rate. The analysis gives useful guidelines for the development of smart charging strategies for PEVs as well as for next-generation battery charging and smart grid management systems.

  17. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  18. Effect of the surface charge on ion transport through nanoslits

    NASA Astrophysics Data System (ADS)

    Schoch, Reto B.; van Lintel, Harald; Renaud, Philippe

    2005-10-01

    A description of ion transport through geometrically defined nanoslits is presented. It is characterized by the effective surface charge density and was obtained by impedance spectroscopy measurements of electrolytes with different physicochemical properties. The fluid channels were fabricated in a Pyrex-Pyrex field assisted bonding process with an intermediate layer of amorphous silicon. The height of the nanoslits was defined by the 50nm thickness of the amorphous silicon layer. Two microfluidic channels, containing electrodes for the characterization of the nanoslits, maintained fresh liquid on both sides of the nanoapertures. By changing the KCl concentration of the electrolyte, a conductance plateau (in log-log scale) was observed due to the dominance of the effective surface charge density, resulting in an excess of mobile counterions in the nanoslits at low salt concentrations. The effective surface charge density of the Pyrex nanoslits could be modified by changing the pH of the solution. It was verified that at higher pH values the nanoslit conductance increased. Field-effect experiments allowed changing the effective surface charge density as well. The polarity of the external voltage could be chosen such that the effective surface charge density was increased or decreased, resulting in a higher or lower nanoslit conductance. This regulation of ionic flow can be exploited for the fabrication of nanofluidic devices.

  19. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  20. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  1. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Charging effects in passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.

    1995-02-01

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.

  3. Study of the effect of the space charge using SYNCH

    SciTech Connect

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-04-25

    The interparticle repulsion, or space charge, limits the density of charged-particle beams that can be obtained in storage rings. In this report the authors study the effect of increasing the space charge, with an exact computation of the lattice parameters using SYNCH. Systematically increasing the ion density by decreasing the emittance with cooling techniques lowers the betatron tune, until the lower half-integral stopband resonance -- also induced by the beam -- is reached. In the simple model described in the report, the amount of ``cooling`` is limited by the encountered stopband of the lattice. Therefore, machines with a higher tune and larger periodicity are better suited to store beams with high space charge.

  4. Effects of kinematic cuts on net electric charge fluctuations

    NASA Astrophysics Data System (ADS)

    Karsch, Frithjof; Morita, Kenji; Redlich, Krzysztof

    2016-03-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multicomponent gas of Boltzmann particles with different charges, masses, and degeneracies. Cumulants of net electric charge fluctuations χnQ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, ptmin≤pt≤ptmax , weakens the effects of Bose statistics, i.e., contributions of effectively multicharged states to higher order moments. Consequently, cuts in pt modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data from the STAR and PHENIX Collaborations. We find that the different momentum cuts of ptmin=0.2GeV (STAR) and pt min=0.3 GeV (PHENIX) are responsible for more than 30% of the difference between these two data sets. We argue that the pt cuts imposed on charged particles will influence the normalized kurtosis κQσQ2=χ4Q/χ2Q of the electric charge fluctuations. In particular, the reduction of κQσQ2 with increasing pt min will lead to differences between PHENIX and STAR data of O (6 %) , which currently are buried under large statistical and systematic errors. We furthermore introduce the relation between momentum cutoff and finite volume effects, which is of relevance for the comparison between experimental data and lattice QCD calculations.

  5. Large Seebeck effect by charge-mobility engineering

    PubMed Central

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M.; Strydom, A.M.; Søndergaard, M.; Iversen, Bo B.; Steglich, Frank

    2015-01-01

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials. PMID:26108283

  6. Resist charging effect correction function qualification for photomasks production

    NASA Astrophysics Data System (ADS)

    Sidorkin, Vadim; Finken, Michael; Wandel, Timo; Nakayamada, Noriaki; Cantrell, G. R.

    2014-10-01

    We quantitatively evaluate Nuflare's latest resist charging effect correction (CEC) model for advanced photomask production using e-beam lithography. Functionality of this CEC model includes the simulation of static and timedependent charging effects together with an improved calibration method. CEC model calibration is performed by polynomial fitting of image placement distortions induced by various beam scattering effects on a special test design with writing density variations. CEC model parameters can be fine tuned for different photomask blank materials facilitating resist charging compensation maps for different product layers. Application of this CEC model into production yields a significant reduction in photomask image placement (IP), as well as improving photomask overlay between critical neighbouring layers. The correlations between IP improvement facilitated by this CEC model and single mask parameters are presented and discussed. The layer design specifics, resist and blank materials, coupled with their required exposure parameters are observed to be the major influences on CEC model performance.

  7. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  8. Space-Charge Effects in the Gas Detector

    SciTech Connect

    Ryutov, D; Hau-Riege, S; Bionta, R

    2007-09-24

    Discussion of space-charge effects in a photoluminescence cell that will be used as a non-disruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  9. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data.

  10. Phonon effects on spin-charge separation in one dimension.

    PubMed

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-21

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data. PMID:16712177

  11. Compressibility effects in shaped charge jet penetration

    NASA Astrophysics Data System (ADS)

    Haugstad, B. S.

    1981-03-01

    Among other hypotheses, the classical theory of high-speed penetration assumes the incompressibility of both the projectile and target. Employing a simple Murnaghan equation of state, we show here that direct compressibility effects (pv-work) on penetration depth are at most on the order of 10-15% for projectile speeds as high as 104 ms-1. Our results agree closely with similar results by Coombs (private communication, Royal Air Force Research Establishment, 1978), who used a more complex five-parameter equation of state. This indicates that rather simple equations of state may adequately represent essential thermodynamic features of high-speed penetration phenomena. The equation of state employed here furthermore allows approximate analytical results to be derived for both small and large projectile velocities.

  12. Space charge effects in ultrafast electron diffraction and imaging

    SciTech Connect

    Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-15

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  13. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  14. Effective charges and virial pressure of concentrated macroion solutions

    PubMed Central

    Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; Olvera de la Cruz, Monica

    2015-01-01

    The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin−Landau−Verwey−Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arise in concentrated suspensions. We show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion−macroion spatial correlation and the virial pressure obtained with the EPC model. Our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements. PMID:26170315

  15. Effects of ionizing radiation on charge-coupled imagers

    NASA Technical Reports Server (NTRS)

    Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.

    1975-01-01

    The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.

  16. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  17. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  18. Longitudinal emittance growth due to nonlinear space charge effect

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.

    2012-03-01

    Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.

  19. Secondary Electron Emission from Dust and Its Effect on Charging

    SciTech Connect

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-11-29

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  20. Charge Kondo effect in a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S. S.-B.; Sim, H.-S.

    2014-03-01

    We predict that the charge Kondo effect appears in a triangular triple quantum dot. The system has two-fold degenerate ground-state charge configurations, interdot Coulomb interactions, lead-dot electron tunnelings, but no interdot electron tunneling. We show, using bosonization and refermionization, that the system is described by the anisotropic Kondo model. The anisotropy can be tuned by changing lead-dot electron tunneling strength, which allows one to experimentally explore the transition between the ferromagnetic non-Fermi liquid and antiferromagnetic Kondo phases in the Kondo phase diagram. Using numerical renormalization group method, we demonstrate that the transition is manifested in electron conductances through the dot.

  1. Charge effect in point projection images of carbon fibres

    PubMed

    Prigent; Morin

    2000-09-01

    Nanometre-sized carbon fibres across holes have been observed in a lensless point projection field-emission microscope operating between 100 and 300 eV. At sufficiently high magnification fringe patterns appear; with the help of simulations we show that they are strongly dependent on the charge density of the fibres. These patterns are characterized by an odd number of fringes with a central fringe that becomes very bright as the charge increases. Average diameter and linear charge density have been obtained with remarkable precision from analysis of fringes. Charge distribution from the middle to the edge of fibres has been investigated as well as narrowings at localized places on the fringe pattern. From these two examples, the limits of the models used for the simulations and those of the data acquisition system are discussed. Finally, this work emphasizes the fact that the fringe pattern masks the actual form of the fibre and that it is necessary to take account of the charge effect to interpret this diffraction pattern. PMID:10971800

  2. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  3. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  4. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  7. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  8. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  9. Effective dynamics of an electrically charged string with a current

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  10. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  11. Charge Effects on Mechanical Properties of Elastomeric Proteins

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  12. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  13. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    PubMed

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-01

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508

  14. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Qin; Ning, Wen-Qiang; Zhao, Hui; Lin, Hai-Qing

    2006-03-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. A signature of electrons pairing in weak interaction regimes was found to be consistent with the existence of a metallic phase proposed recently by Clay and Hardikar [Phys. Rev. Lett. 95, 096401 (2005)]. By a comparison between our result and the experimental data of TTF-TCNQ, it is observed that electron-phonon interaction must be taken into account even in the strongly correlated system.

  15. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  16. Charge carrier coherence and Hall effect in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  17. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  18. Effective Reduction of Coulomb Repulsion in Charged Granular Matter

    NASA Astrophysics Data System (ADS)

    Scheffler, T.; Werth, J.; Wolf, D. E.

    2000-04-01

    This paper is an extension to a previous article by Scheffler and Wolfs.6 We study the rate of energy dissipation due to inelastic collisions in a charged granular gas. One observes that the electrostatic repulsion of two particles is effectively reduced by nearest neighbor interactions in a dense granular gas. We study the radial distribution function for dense systems, which leads to a better expression for the reduced energy barrier.

  19. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  20. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  1. Effect of Ionic Strength and Surface Charge on Convective Deposition.

    PubMed

    Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael D; Gilchrist, James F

    2015-11-17

    Particle-particle and particle-substrate interactions play a crucial role in capillary driven convective self-assembly for continuous deposition of particles. This systematic study demonstrates the nontrivial effects of varying surface charge and ionic strength of monosized silica microspheres in water on the quality of the deposited monolayer. Increase in particle surface charge results a broader range of parameters that result in monolayer deposition which can be explained considering the particle-substrate electrostatic repulsion in solution. Resulting changes in the coating morphology and microstructure at different solution conditions were observed using confocal microscopy enabling correlation of order to disorder transitions with relative particle stability. These results, in part, may explain similar results seen by Muangnapoh et al., 2013 in vibration-assisted convective deposition. PMID:26501996

  2. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  3. Substituent effects on charge transport in films of Au nanocrystals.

    PubMed

    Stansfield, Gemma L; Thomas, P John

    2012-07-25

    Charge transport (CT) in films of arylthiol-capped Au nanocrystals (NCs) exhibits strong substituent effects, with electron-donating substituents markedly decreasing conductivity. Films suited for measurements were obtained by ligand-exchange reactions on AuNCs grown at the water/toluene interface. Detailed analysis suggests the NCs interact with the ligands by resonance rather than inductive effects. The films were characterized by TEM, SEM, XPS, UV/vis, and AFM. CT characteristics were studied between 15 and 300 K. PMID:22746531

  4. Evidence for a discrete charge effect within lipid bilayer membranes.

    PubMed Central

    Wang, C C; Bruner, L J

    1978-01-01

    A high amplitude voltage step technique has been used to meausre the surface density of dipicrylamine anions adsorbed at the surfaces of lipid bilayer membranes. Accompanying low amplitude measurements have determined the relaxation time for transient current flow across the membranes, a parameter governed by the height of the central energy barrier which dipicrylamine anions must cross in moving from one membrane surface to the other. Measured relaxation times and surface charge densities have been related by a quasi-continuum model of the discrete charge effect, which predicts that the membrane central barrier height will increase with increasing density of adsorbed surface charge. The experimentally determined relationship is in satisfactory agreement with the predictions of the model. The model does not provide a complete description of the membrane/solution interface, however, because it cannot be applied to the description of previously measured isotherms for the adsorption of dipicrylamine anions onto bilayer membranes surfaces. Possible reasons for this discrepancy are discussed. PMID:737286

  5. Detergent solubilization of phospholipid vesicle. Effect of electric charge.

    PubMed Central

    Urbaneja, M A; Alonso, A; Gonzalez-Mañas, J M; Goñi, F M; Partearroyo, M A; Tribout, M; Paredes, S

    1990-01-01

    In order to explore the effect of electric charge on detergent solubilization of phospholipid bilayers, the interaction of nine electrically charged surfactants with neutral or electrically charged liposomes has been examined. The detergents belonged to the alkyl pyridinium, alkyl trimethylammonium or alkyl sulphate families. Large unilamellar liposomes formed by egg phosphatidylcholine plus or minus stearylamine or dicetyl phosphate were used. Solubilization was assessed as a decrease in light-scattering of the liposome suspensions. The results suggest that electrostatic forces do not play a significant role in the formation of mixed micelles and that hydrophobic interactions are by far the main forces involved in solubilization. In addition, from the study of thirty different liposome-surfactant systems, we have derived a series of empirical rules that may be useful in predicting the behaviour of untested surfactants: (i) the detergent concentration producing the onset of solubilization (Don) decreases as the alkyl chain length increases; the decrease follows a semi-logarithmic pattern in the case of alkyl pyridinium compounds; (ii) for surfactants with critical micellar concentrations (cmc) less than 6 x 10(-3) M, Don. is independent of the nature of the detergent and the bilayer composition; for detergents having cmc greater than 6 x 10(-3) M, Don. increases linearly with the cmc; and (iii) Don. varies linearly with the surfactant concentration that produces maximum solubilization. PMID:2400390

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  7. Analysis of Longitudinal Space Charge Effects With Radial Dependence

    SciTech Connect

    Wu, Juhao; Huang, Z.; Emma, P.; /SLAC

    2005-09-30

    Longitudinal space charge (LSC) force can be a main effect driving the microbunching instability in the linac for an x-ray free-electron laser (FEL). In this paper, the LSC-induced beam modulation is studied using an integral equation approach that takes into account the transverse (radial) variation of LSC field for both the coasting beam limit and bunched beam. Changes of beam energy and the transverse beam size can be also incorporated. We discuss the validity of this approach and compare it with other analyses as well as numerical simulations.

  8. Space charge effects for multipactor in coaxial lines

    SciTech Connect

    Sorolla, E.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  9. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.

    PubMed

    Blake, Mike

    2016-08-26

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by D_{c}=Cv_{B}^{2}/(2πT), where v_{B} is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos. PMID:27610842

  10. Space Charge Effects in a Gas Filled Penning Trap

    NASA Astrophysics Data System (ADS)

    Beck, D.; Ames, F.; Beck, M.; Bollen, G.; Delauré, B.; Schuurmans, P.; Schwarz, S.; Schmidt, P.; Severijns, N.; Forstner, O.

    2001-01-01

    Mass selective buffer gas cooling is a technique used for ions that are stored in a Penning trap. The technique can be applied to all elements and the mass resolving power achieved has proven to be sufficient to resolve isobars. When not only a few but 106 and more ions are stored at the same time, space charge starts to play a dominant role for the spatial distribution. In addition, the observed cyclotron frequency is shifted. This work investigates these effects by numerical calculations.

  11. Space charge and quantum effects on electron emission

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Lebowitz, Joel; Lau, Y. Y.; Luginsland, John

    2012-03-01

    Space charge effects reduce electron emission by altering the surface barrier via two effects: increasing the barrier height (Schottky factor) and width to electron emission by lowering the surface field and changing the magnitude of the dipole associated with electron density variation. A one-dimensional emission model using a transit time argument to account for charge in the anode-cathode (AK) gap and an analytical model of the dipole is used to approximate the effects of each factor on the current density. The transit time model is compared to the experimental data of Longo [J. Appl. Phys. 94, 6966 (2003)] for thermal emission. Changes in the dipole contribution are primarily associated with tunneling and therefore field emission. The transit time plus dipole modification is compared to the experimental data of Barbour et al. [Phys. Rev. 92, 45 (1953)] for field emission. The model's application to thermal-field, and photoemission in general is discussed, with the former corresponding to continuous current limit and the latter to a pulsed current limit of the model.

  12. Isotope mass and charge effects in tokamak plasmas

    SciTech Connect

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-15

    The effect of primary ion species of differing charge and mass - specifically, deuterium, hydrogen, and helium - on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  13. Isotope mass and charge effects in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-01

    The effect of primary ion species of differing charge and mass—specifically, deuterium, hydrogen, and helium—on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  14. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  15. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    PubMed Central

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  16. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Feng

    2015-09-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  17. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges.

    PubMed

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  18. Single Electron Charging and Quantum Effects in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Foxman, Ethan Bradley

    1993-01-01

    We present an experimental study of a small region (~0.3 times 0.3 mum^2) of two-dimensional electron gas in a GaAs/rm Al_{x}Ga_{1-x}As heterostructure. The small electron gas is coupled to electrical leads through tunnel barriers formed by negatively biased Schottky gates on the surface of the heterostructure. Electron transport is studied as a function of gate voltage, magnetic field, temperature, bias voltage and tunneling barrier height. We observe a rich interplay between single electron charging and quantum effects. The conductance of such systems was known to consist of a series of nearly periodic conductance peaks.^{1,2} We further investigate this behavior and show that our observations are consistent with a model that synthesizes classical single electron charging and a discrete tunneling density of states.^{3,4}. We investigate the nature and origin of this tunneling density of states. The spectrum of states is determined through current-voltage measurements and low-bias conductance measurements. The tunneling density of states is mapped as a function of gate voltage and magnetic field. In the latter case, we show that our observations can be understood through a self-consistent model of single electron charging in the quantum Hall regime.^5. Lastly, we report conductance measurements in the regime where the conductance across the tunnel barriers separating the small electron gas from its leads becomes of order e^2/h. We observe that in this regime single electron charging effects are quenched. This effect is shown to arise from an increased capacitance across one of the barriers and from the increased lifetime broadening of states in the small electron gas. ^6 (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.) ftn^1J. H. F. Scott -Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989). ^2U. Meirav, M. A. Kastner, and S. J. Wind

  19. Free charge localization and effective dielectric permittivity in oxides

    NASA Astrophysics Data System (ADS)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  20. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  1. [Galactic heavy charged particles damaging effect on biological structures].

    PubMed

    Grigor'ev, A I; Krasavin, E A; Ostrovskiĭ, M A

    2013-03-01

    A concept of the radiation risk of the manned interplanetary flights is proposed and substantiated. Heavy charged particles that are a component of the galactic cosmic rays (GCR) have a high damaging effect on the biological structures as great amount of energy is deposited in heavy particle tracks. The high biological effectiveness of heavy ions is observed in their action on cell genetic structures and the whole organism, including the brain structures. The hippocampus is the part of the central nervous system that is the most sensitive to radiation--first of all, to heavy charged particles. Irradiation of animals with accelerated iron ions at doses corresponding to the real fluxes of GCR heavy nuclei, to which Mars mission crews can be exposed, leads to marked behavioral function disorders in the post-irradiation period. To evaluate the radiation risk for the interplanetary flight crews, the concept of successful mission accomplishment is introduced. In these conditions, the central nervous system structures can be the critical target of GCR heavy nuclei. Their damage can modify the higher integrative functions of the brain and cause disorders in the crew members' operator performances. PMID:23789432

  2. Effects of reliability screens of MOS charge trapping

    SciTech Connect

    Shanneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.; Schwank, J.R.; Reber, R.A. Jr.

    1995-09-01

    The effects of pre-irradiation elevated-temperature bias stresses on the radiation hardness of field-oxide transistors have been investigated as a function of stress temperature, time, and bias. Both the stress temperature and time are found to have a significant impact on radiation-induced charge buildup in these transistors. Specifically, an increase in either the stress temperature or time causes a much larger negative shift (towards depletion) in the I-V characteristics of the n-channel field-oxide transistors. This increased shift in the transistor I-V characteristics with stress temperature and time suggests that the mechanisms responsible for the stress effects are thermally activated. An activation energy of {approximately}0.38 eV was measured. The stress bias was found to have no impact on radiation-induced charge buildup in these transistors. The observed stress temperature, time, and bias dependencies appears to be consistent with the diffusion of molecular hydrogen during a given stress period. These results have important implications for the development of hardness assurance test methods.

  3. Effective charge and effective radius of water droplet in dropwise cluster

    SciTech Connect

    Shavlov, A. V.; Romanyuk, S. N.; Dzhumandzhi, V. A.

    2013-02-15

    A particle with large electric charge Z (Z Much-Greater-Than 1) and radius R{sub 0} inserted into plasma is surrounded by a plasma shell, which is stable to weak and short-term external exposures. As a result, during experiments the particle can reveal an effective charge Z* lower than the true one (Z*{<=} Z), and an effective radius R* larger than the true one (R*{>=} R{sub 0}). The effective electric charge and the effective radius of a water droplet in a dropwise cluster have been calculated using the Poisson-Boltzmann equation. It has been recognized that these parameters are not the function of a droplet's true charge, but are the function of a droplet's true size and the Debye's radius of the plasma. Experimental data on the droplet properties in a dropwise cluster have been explained.

  4. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGESBeta

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  5. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    NASA Astrophysics Data System (ADS)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  6. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  7. Hall effect in quantum critical charge-cluster glass

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  8. Double Photoionization of Beryllium atoms using Effective Charge approximation

    NASA Astrophysics Data System (ADS)

    Saha, Haripada

    2016-05-01

    We plan to report the results of our investigation on double photoionization K-shell electrons from Beryllium atoms. We will present the results of triple differential cross sections at excess energy of 20 eV using our recently extended MCHF method. We will use multiconfiguration Hartree Fock method to calculate the wave functions for the initial state. The final state wave functions will be obtained in the angle depended Effective Charge approximation which accounts for electron correlation between the two final state continuum electrons. We will discuss the effect of core correlation and the valence shell electrons in the triple differential cross section. The results will be compared with the available accurate theoretical calculations and experimental findings.

  9. Effects of cytosine methylation on DNA charge transport

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  10. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that

  11. The effect of additives on charge decay in electron-beam charged polypropylene films

    NASA Astrophysics Data System (ADS)

    Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X; Behrendt, N; von Salis-Soglio, C; Erhard, D P; Altstädt, V; Schmidt, H-W

    2009-03-01

    The charge decay in isotactic polypropylene (i-PP) films of 50 µm thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 µm. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 °C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.

  12. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  13. Effects of space charge in beams for heavy ion fusion

    SciTech Connect

    Sharp, W.M.; Friedman, A.; Grote, D.P.

    1995-09-01

    A new analytic model is presented that accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson`s equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models. The model has been implemented in the fluid/envelope code CIRCE and used to study longitudinal confinement in beams with a variety of axial profiles. The effects of errors in the longitudinal-control fields are presented.

  14. Effective ionic charge polarization using typical supporting electrolyte and charge injection phenomena in molecularly doped polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yamashita, Takanori; Miyairi, Keiichi

    2002-11-01

    An effective method of enhancing charge injection and electroluminescence efficiency of polymer-based light-emitting diodes is introduced. Spin-coated films of poly (N-vinylcarbazole) blended with electron-transport material (Bu-PBD), laser dye (Coumarin6), and the typical supporting electrolyte [tetraethylammonium perchlorate (TEAP)] were examined and it was found that the injection current and luminance of the light emitting diodes doped with TEAP were enhanced dramatically after heat treatment at 80 degC and appropriate biasing in an external electric field of 1.5 x108 V/m at this temperature. A charge injection model based on Fowler-Nordheim tunneling is proposed, taking into account electric field distortion due to the accumulation of ionic space charges at the electrode/film interface. The relaxation time of ionic polarization is found to be related to the cation size of the electrolyte.

  15. EFFECTS OF CHARGED PARTICLES ON CASCADE IMPACTOR CALIBRATIONS

    EPA Science Inventory

    The report gives results of a determination of collection characteristics for charged and uncharged particles in cascade impactors. Impaction collection efficiency was shown to be as much as 20 percent greater for charged particles than for uncharged particles with certain substr...

  16. Solar Cycle Effects on Geosynchronous Satellite Surface Charging

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Chun, F. K.; Cooke, D. L.; Putz, V. B.; Ray, K. P.

    2005-05-01

    Spacecraft in geosynchronous Earth orbit (GEO) frequently undergo surface charging following injection of energetic (E ~ 10 keV) electrons into the environment, especially within the post-midnight sector. Charging data from the GEO spacecraft Defense Satellite Communication System (DSCS-III) B-7 have been recorded over one half solar cycle. The Charge Control Experiment (CCE) aboard DSCS-III B-7 recorded incident fluxes of energetic electrons, ion spectra for determining frame-to-plasma potentials, and dielectric surface-to-frame (differential) charging levels; additionally, it incorporated a Xe plasma contactor for neutralization of charged components. Previous studies have shown 1) a general correlation between geomagnetic activity indices and the severity of frame charging, and 2) a general correlation between the intensity of energetic electron fluxes and differential charging severity. However, it was also shown that the event-specific correlations contain enough variance to cast doubt on the utility of these correlations for a predictive system. With this study, we present both a principle components analysis and a multiple linear regression of the data which incorporate a combination of factors leading to both frame and differential charging, including the geomagnetic activity indices and intensities of the energetic electron fluxes.

  17. Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry

    NASA Astrophysics Data System (ADS)

    Bistoni, Giovanni; Rampino, Sergio; Tarantelli, Francesco; Belpassi, Leonardo

    2015-02-01

    We recently devised a simple scheme for analyzing on quantitative grounds the Dewar-Chatt-Duncanson donation and back-donation in symmetric coordination complexes. Our approach is based on a symmetry decomposition of the so called Charge-Displacement (CD) function quantifying the charge flow, upon formation of a metal (M)-substrate (S) bond, along the M-S interaction axis and provides clear-cut measures of donation and back-donation charges in correlation with experimental observables [G. Bistoni et al., Angew. Chem., Int. Ed. 52, 11599 (2013)]. The symmetry constraints exclude of course from the analysis most systems of interest in coordination chemistry. In this paper, we show how to entirely overcome this limitation by taking advantage of the properties of the natural orbitals for chemical valence [M. Mitoraj and A. Michalak, J. Mol. Model. 13, 347 (2007)]. A general scheme for disentangling donation and back-donation in the CD function of both symmetric and non-symmetric systems is presented and illustrated through applications to M-ethyne (M = Au, Ni and W) coordination bonds, including an explicative study on substrate activation in a model reaction mechanism.

  18. Hall effect in quantum critical charge-cluster glass

    DOE PAGESBeta

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  19. Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries

    SciTech Connect

    J.T. Londergan; D.P. Murdock; A.W. Thomas

    2006-04-14

    Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.

  20. Quantum Hall Effect near the charge neutrality point in graphene

    NASA Astrophysics Data System (ADS)

    Leon, Jorge; Gusev, Guennadii; Plentz, Flavio

    2013-03-01

    The Quantum Hall effect (QHE) of a two-dimensional (2D) electron gas in a strong magnetic field is one of the most fascinating quantum phenomena discovered in condensed matter physics. In this work we propose to study the transport properties of the single layer and bilayer of graphene at the charge neutrality point (CNP) and compare it with random magnetic model developed in theoretical papers in which we argue that at CNP graphene layer is still inhomogeneous, very likely due to random potential of impurities. The random potential fluctuations induce smooth fluctuations in the local filling factor around ν = 0. In this case the transport is determined by special class of trajectories, ``the snake states'', propagating along contour ν = 0. The situation is very similar to the transport of a two-dimensional particles moving in a spatially modulated random magnetic field with zero mean value. We especially emphasize that our results may be equally relevant to the composite fermions description of the half-filled Landau level. The authors thank to CNPq and FAPESP for financial support for this work.

  1. The effect of space charges on conduction current in polymer by modified PEA method

    SciTech Connect

    Hwangbo, S.; Yun, D.H.; Yi, D.Y.; Han, M.K.

    1996-12-31

    Direct measurement of space charge and conduction current was carried out on low-density polyethylene degraded by ultra-violet using a pulsed electro-acoustic (PEA) method. Dominant hetero-charges were formed near both electrodes by high voltage application and was found to be deeply trapped. In this paper, the effect of temperature and electric field reversal on the detrapping and trapping of space charges was investigated and the role of space charge in electrical conduction was discussed quantitatively. The main mechanism for detrapping and trapping of space charges was Poole-Frenkel model.

  2. Effect of charge fluctuation on two dimensional dust clusters in elliptical confinement

    SciTech Connect

    Rouaiguia, L.; Djebli, M.; Drir, M.

    2009-03-15

    The structural and melting properties of two dimensional clusters consisting of finite positively charged dust particles are studied. The particles interact through a screened Coulomb potential in an elliptical confinement where Monte Carlo numerical simulation is performed for two different situations. The first one is dealing with constant dust charge and the second one with the charge fluctuation. It is showed that a ground state configuration and a transition from zigzag configuration to linear chain depend on the anisotropic parameter and the number of particles. The effect of charge fluctuation is found to be significant for lower positively charged dust particles. A comparison is made with numerical and experimental results.

  3. Effect of electric charging on the velocity of water flow in CNT.

    PubMed

    Abbasi, Hossein Reza; Karimian, S M Hossein

    2016-09-01

    The role of electrical charge in controlling the velocity of water molecules in a finite single-walled carbon nanotube (CNT) was studied in detail using molecular dynamics simulation. Different test cases were examined to determine the parameters affecting the control of water-flow velocity in CNT upon electrically charging the surface of a CNT. The results showed that charge magnitude and volume, as well as the charging scenario, are the parameters having greatest effect. The implementation of electric charge on the surface of a CNT was demonstrated to decrease the resistance of CNT to incoming water flow at the entrance, but to increase friction-type resistance to flow along the CNT. Therefore, through controlling the magnitude of electric charge, water flow through the CNT may be accelerated, or decelerated. The results show that the velocity of molecular flow in the CNT increases to a maximum value, and then decreases with electric charge regardless of its sign. In the case studied here, this maximum velocity occurs at electric charging of ±0.25e/atom. It was also shown that, to reach similar flow velocities in a CNT, it is not sufficient to merely implement equal volumes of electric charge, where the volume of electric charging is defined as charge magnitude × charging time. In fact , both magnitude of charging and volume of electric charging must be equal to each other. These findings, together with options to implement scenarios with alternative charging, provide the means to effectively adjust desired velocities in a CNT. PMID:27488104

  4. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  5. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface. PMID:23683055

  6. Isotope effect in charge transport of LuB12

    NASA Astrophysics Data System (ADS)

    Sluchanko, N. E.; Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Kuznetsov, A. V.; Lyubshov, K. S.; Filippov, V. B.; Shitsevalova, N. Yu.

    2010-08-01

    The galvanomagnetic properties of single-crystal samples with various isotopic boron compositions have been investigated for the first time for the normal state of superconductor LuB12 ( T c ≈ 0.44 K). Precision measurements of the resistivity, Hall coefficient, and magnetic susceptibility have been performed over a wide temperature range of 2-300 K in magnetic fields up to 80 kOe. A change of the charge transport regime in this nonmagnetic compound with metallic conduction is shown to occur near T* ≈ 50-70 K. As a result, a sharp peak with significantly different amplitudes for Lu10B12 and Lu11B12 is recorded in the temperature dependences of the Hall coefficient R H( T) near T*. A significant (about 10%) difference (in absolute value) of the Hall coefficients R H for the Lu10B12 and Lu11B12 compounds at helium and intermediate temperatures has been found and the patterns of behavior of the dependence R H( H) for T < T* in an external magnetic field H ≤ 80 kOe for Lu10B12 and Lu11B12 are shown to differ significantly. Analysis of the Curie-Weiss contribution to the magnetic susceptibility χ( T) leads to the conclusion about the formation of magnetic moments μeff ≈ (0.13-0.19)μB in each unit cell of the fcc structure of LuB12 compounds with various isotopic compositions. The possibility of the realization of an electronic topological 2.5-order transition near T* and the influence of correlation effects in the 5 d-band on the formation of a spin polarization near the rare-earth ions in LuB12 is discussed.

  7. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  8. Colloidal Brazil-nut effect in sediments of binary charged suspensions

    NASA Astrophysics Data System (ADS)

    Esztermann, A.; Löwen, H.

    2004-10-01

    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density-functional theory. For deionized samples, we predict a colloidal "Brazil nut" effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.

  9. User charges in health care: Evidence of effect on service utilization & equity from north India

    PubMed Central

    Prinja, Shankar; Aggarwal, Arun Kumar; Kumar, Rajesh; Kanavos, Panos

    2012-01-01

    Background & objectives: User charges have been advocated on efficiency grounds despite the widespread criticism about their adverse effect on equity. We assessed the effect of user charges on inpatient hospitalizations rate and equity in Haryana State. Methods: The inpatient department (IPD) statistics of the public sector facilities in Yamuna Nagar district where user charges had been introduced were analysed and compared with Rohtak district which did not have user charge between 2000 and 2006. National Sample Survey data of Haryana for the 2004-2005 period were analyzed to compare utilization of public sector facilities for hospitalization, cost of hospitalization, and prevalence of catastrophic out-of-pocket (OOP) expenditure by income quintiles in three districts which had user charges and 17 districts of Haryana which did not levy user charges. Results: During 2000 and 2006, hospital admissions declined by 23.8 per cent in Yamuna Nagar district where user charges had been introduced compared to an almost static hospitalization rate in Rohtak district which did not have user charges (P<0.01). Public sector hospital utilization for inpatient services had a pro-rich (concentration index 0.144) distribution in the three districts with user charges and pro-poor (concentration index -0.047) in the 17 districts without user charges. Significantly higher prevalence of catastrophic health expenditure was observed in public sector institutions with user charges (48%) compared to those without user charges (35.4%) (P<0.001). Interpretation & conclusions: The findings of our study showed that user charges had a negative influence on hospitalizations in Haryana especially among the poor. Public policies for revenue generation should avoid user charges. PMID:23287137

  10. Effect of charges on the interaction of water with hematite

    NASA Astrophysics Data System (ADS)

    Negreiros Ribeiro, Fabio; Pedroza, Luana; Dalpian, Gustavo

    Hematite is one of the many types of iron oxide that is easily found in nature. It is most commonly used in catalysis and it is rarely present in its pristine form. The influence of charged defects in its properties is very important for the correct geometrical/electronic characterization in more realistic operative conditions, but very few studies focus explicitly on these defects in this system. In this work we perform first principles DFT+U calculations to determine the properties of a hematite slab when both dopant and electrons/holes are added. We focus on the differences between the geometrical/electronic properties between the neutral/charged surfaces and also study their interaction with water (molecule and liquid) by performing molecular dynamics simulations at room temperature. Our results indicate that electric charges strongly influence the properties of these surfaces, changing the binding energies and the molecular arrangement of the water molecules adsorbed on hematite. Negative charges induce a larger binding and favor the partial water dissociation, whereas positive charges weaken the binding energy. We will provide comparative results for different configurations of this system. FAPESP.

  11. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    PubMed

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. PMID:12115440

  12. Effects of mixed discrete surface charges on the electrical double layer.

    PubMed

    Jiménez-Ángeles, Felipe

    2012-08-01

    Adsorption of surface coions and charge reversal are induced at the electrical double layer of a wall charged with positive and negative surface sites next to an electrolyte solution. While for the considered surface charge density these effects are found over a wide range of conditions, they are not observed for the typically employed surface models in equivalent conditions. Important consequences in electrophoresis experiments for different colloids with equal effective surface charge density are foreseen. This study is carried out by means of molecular dynamics simulations. PMID:23005771

  13. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  14. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  15. Study on temperature distribution effect on internal charging by computer simulation

    NASA Astrophysics Data System (ADS)

    Yi, Zhong

    2016-07-01

    Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.

  16. Effects of charging and electric field on graphene functionalized with titanium.

    PubMed

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. PMID:23774307

  17. The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle.

    PubMed Central

    Etter, E F

    1990-01-01

    1. The effects of the arginine-specific protein-modifying reagent, phenylglyoxal, on contraction and intramembrane charge movement were studied in cut single fibres from frog skeletal muscle, using the double-Vaseline-gap voltage clamp technique. 2. The strength-duration curve for pulses which produced microscopically just-detectable contractions was shifted to more positive potentials and longer durations following treatment of fibres with phenylglyoxal. Caffeine-induced contractures were not blocked. 3. The amount of charge moved by large depolarizing pulses from -100 mV holding potential (charge 1) declined during the phenylglyoxal treatment with a single-exponential time course (tau = 7 min). Linear capacitance did not change significantly over the entire experiment. Inhibition of charge movement was predominantly irreversible. 4. Slow bumps (Q gamma) observed in charge movement current transients recorded before phenylglyoxal treatment, using either large test pulses or small steps superimposed on test pulses, were absent from currents recorded after treatment. The current removed by phenylglyoxal contained the bump (Q gamma) and a small fast transient (Q beta). 5. The amount of charge moved by large depolarizing pulses from -100 mV was reduced 20-50% following phenylglyoxal treatment. Charge moved by pulses to potentials more negative than -40 mV was relatively unaffected. The magnitude and voltage range of this inhibitory effect were the same whether the reagent was applied at -100 mV or at 0 mV holding potential. 6. A phenylglyoxal-sensitive component of charge was isolated which had a much steeper voltage dependence than the total charge movement or the charge remaining after treatment. 7. Charge recorded during hyperpolarizing pulses from 0 mV holding potential (charge 2) was reduced very little (less than 5%) at any potential by phenylglyoxal treatments at either 0 or -100 mV. 8. The phenylglyoxal reaction with charge 2 was kinetically different from the

  18. A temperature dependent study on charge dynamics in organic molecular device: Effect of shallow traps on space charge limited behavior

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. K.; Kavala, A. K.

    2014-04-01

    Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.

  19. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    SciTech Connect

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-23

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  20. HIGH CHARGE EFFECTS IN SILICON DRIFT DETECTORS WITH LATERAL CONFINEMENT OF ELECTRONS.

    SciTech Connect

    CASTOLDI,A.; REHAK,P.

    1995-10-21

    A new drift detector prototype which provides suppression of the lateral diffusion of electrons has been tested as a function of the signal charge up to high charge levels, when electrostatic repulsion is not negligible. The lateral diffusion of the electron cloud has been measured for injected charges up to 2 {center_dot} 10{sup 5} electrons. The maximum number of electrons for which the suppression of the lateral spread is effective is obtained.

  1. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  2. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  3. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua; Longest, Worth

    2014-01-01

    Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN) k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges. PMID:24481172

  4. Molecular dynamics study of charged dendrimers in salt-free solution: Effect of counterions

    NASA Astrophysics Data System (ADS)

    Gurtovenko, Andrey A.; Lyulin, Sergey V.; Karttunen, Mikko; Vattulainen, Ilpo

    2006-03-01

    Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer's terminal beads positively charged. Solvent molecules as well as counterions were explicitly included as interacting beads. We find that the size of the charged dendrimer depends nonmonotonically on the strength of electrostatic interactions demonstrating a maximum when the Bjerrum length equals the diameter of a bead. Many other structural and dynamic characteristics of charged dendrimers are also found to follow this pattern. We address such a behavior to the interplay between repulsive interactions of the charged terminal beads and their attractive interactions with oppositely charged counterions. The former favors swelling at small Bjerrum lengths and the latter promotes counterion condensation. Thus, counterions can have a dramatic effect on the structure and dynamics of charged dendrimers and, under certain conditions, cannot be treated implicitly.

  5. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    SciTech Connect

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-03-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length.

  6. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    SciTech Connect

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  7. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  8. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  9. Lattices with minimal space charge effects for crystalline beams

    SciTech Connect

    Channell, P.J.; Neri, F.R.

    1995-12-31

    There are numerous techniques for cooling beams of charged particles including stochastic cooling, electron beam cooling, ionization (foil) cooling (for lepton beams only), and laser cooling which works only with ions with some electrons still attached. The successful implementation of laser cooling at Aarhus, has led to interest in crystalline beams, and it certainly seems that crystallization of small numbers of stored particles should be possible. There are limits, however, that may restrict the total number of charged particles stored; these include the limit on the space-charge tune shift, {vert_bar}{triangle}{nu}{vert_bar} < 0.25 (though the precise number is subject to debate) and intrabeam scattering. In this paper we will be concerned with the possibility of intense crystalline beams; for simplicity we treat only the nonrelativistic case, though the relativistic case is a simple extension of this work. In the next section we review the limits on the number of particles stored and observe that the beam size scaling with beam temperature is the important dependence that determines the limits on the stored current as a function of beam temperature. In section 3 we use a general formalism to determine the beam size scaling and apply it to various kinds of focusing lattices and determine the relevant limits. In section 4 we use simulations that include lattice elements, a cooling model, and an N-body space-charge model to confirm the predictions of section 3 and to explore the details of various schemes. In the final section we summarize and discuss our results.

  10. Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes.

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.; Rohrbaugh, R. P.; Hei, M.; Beard, K. V.

    2000-07-01

    Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. However, it had been assumed that the aerosols would have only a few elementary charges on them, whereas it is now known that at the tops of nonthunderstorm clouds the evaporating droplets may have several hundred elementary charges on them and that much of this charge remains on the residual aerosol for 5 min or so after the evaporation. Also, most previous calculations neglected image charge forces that provide strong attraction at close range even when droplet and aerosol have charges of the same sign and of comparable magnitude.The authors present numerical calculations showing that electrical effects dominate collision rates for charged evaporation aerosols. The calculations are for the size range of 0.1- to 1.0-m radius with the collision efficiency compared to that for phoretic and Brownian effects being greater by up to a factor of 30 greater for droplets from 18.6- to 106-m radius with relative humidity in the range 95%-100% and only 50 elementary charges on the aerosol. The results imply that electrical effects can be important for the scavenging of evaporation aerosol particles in the size range of the Greenfield gap.The authors call this process `electroscavenging.' Electroscavenging of charged particles, when the particles are mostly of the same sign, is a previously unrecognized droplet charging process. Electroscavenging also provides a pathway for contact ice nucleation when charged aerosol particles from evaporated charged droplets collide with supercooled droplets. Ice nucleation can occur because aerosol particles from the evaporation of cloud droplets have been found to be more effective as ice forming nuclei than other aerosol particles that have not been processed through droplets.

  11. Schwinger effect in (A)dS and charged black hole

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  12. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    NASA Astrophysics Data System (ADS)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  13. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  14. Sintering behaviour of feldspar and influence of electric charge effects

    NASA Astrophysics Data System (ADS)

    Gallala, W.; Gaied, M. E.

    2011-04-01

    The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The microstructure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.

  15. Effects of undercharge and internal loss on the rate dependence of battery charge storage efficiency

    NASA Astrophysics Data System (ADS)

    Krieger, Elena M.; Arnold, Craig B.

    2012-07-01

    Battery charge efficiency across a range of input powers is an important performance parameter in variable charging systems. Here we use equivalent circuit theory to model the inherent trade-off between battery charging power and energy stored and compare our model to the existing Ragone model for discharge power and energy. An additional parameter is included to account for undercharge and underdischarge of the battery due to premature arrival at the battery's voltage limits. At a given power, energy efficiency is predicted to be higher for charging than discharging when only accounting for energy dissipated by internal resistance. We experimentally determine charge and discharge energy-power curves for lithium-ion batteries and find they exhibit a reduction in energy stored or withdrawn as power increases. We isolate the effects of undercharge and underdischarge from energy lost to internal resistance, and find the former outweighs the latter effect. Furthermore, the shallow shape of the voltage curve near the charge voltage cutoff results in a more limited range of charging powers than discharging powers. The model is expected to help inform operational parameters for battery charging for variable power sources.

  16. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  17. Properties and effects on stellar burning of fractionally charged nuclei

    SciTech Connect

    Boyd, R.N.; Turner, R.E.; Rybarcyk, L.; Joseph, C.

    1985-02-01

    The consequences of unconfined quarks which may have been left over from the big bang, especially as to how they might participate in nucleosynthesis, are examined. Possible properties of the fractionally charged nuclei (Q-nuclei) thus produced, including ..beta..-decay half-lives, binding energies, energy level densities, and thermonnuclear reaction rates, are studied. Stellar burning cycles are suggested by these considerations in which the Q-nuclei could contribute significantly to stellar nucleosynthesis, even at an extremely low abundance level, provided that they satisfy some constraints. A model is suggested which accommodates all the constraints thus imposed. Possible implications of the existence of Q-nuclei for stellar evolution are considered, adn the results of a calculation are presented which confirm that no obvious conflicts with the known parameters of the Sun are encountered. The significance of the possible existence of Q-nuclei for future searches for free fractionally charged entities is discussed. Finally, it is noted that any particle which, when added to a nucleus, increases the nucleon binding energy somewhat could perform stellar burning cycles similar to those described in this paper. Subject headings: elementary particles-neutrinos-nuclear reactions:nucleosynthesis-stars: interiors

  18. Effect of Conformation in Charge Transport for Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew

    2014-03-01

    Current models for the electronic properties of semiconducting conjugated polymers do not include the hierarchical connectivity between charge transport units that results from the physical makeup of the materials. Concepts like on-chain vs. interchain mobility anisotropy have been known for a long time, yet they must be artificially incorporated into simulations. Models that achieve remarkable predictive power but provide limited physical insight when applied to this new class of materials are of limited use for the rational design of new conjugated polymers. Here we present a new model in which the morphology of individual polymer chains is determined by well-known statistical models and the electronic coupling between units is described using Marcus theory. Combining knowledge from polymer physics and semiconducting materials into an analytical and computational model that realistically incorporates the structural and electronic properties of conjugated polymers, it is possible to explain observations that previously relied on phenomenological models. The multi-scale behavior of charges in these materials (high mobility at short scales, low mobility at long scales) can be naturally described with our framework.

  19. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  20. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-05-17

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  1. Effects of surface charge on the anomalous light extinction from metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sijercic, Edin; Leung, P. T.

    2016-07-01

    The effects of extraneous surface charges on the anomalous extinction from metallic nanoparticles are studied via an application of the extended Mie theory by Bohren and Hunt. Due to the sensitivity of the higher multipolar resonance on the surface charges, it is found that quenching of the anomalous resonance can be observed with presence of only a modest amount of charges on these particles. The observed effects thus provide a rather sensitive mechanism for the monitoring of the neutrality of these nanoparticles using far field scattering approaches.

  2. Mixing and space-charge effects in free-electron lasers

    SciTech Connect

    Peter, E.; Endler, A.; Rizzato, F. B.; Serbeto, A.

    2013-12-15

    The present work revisits the subjects of mixing, saturation, and space-charge effects in free-electron lasers. Use is made of the compressibility factor, which proves to be a helpful tool in the related systems of charged beams confined by static magnetic fields. The compressibility allows to perform analytical estimates of the elapsed time until the onset of mixing, which in turn allows to estimate the saturated amplitude of the radiation field. In addition, the compressibility helps to pinpoint space-charge effects and the corresponding transition from Compton to Raman regimes.

  3. Heavy ion charge-state distribution effects on energy loss in plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  4. Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-01-01

    We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.

  5. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  6. Memory and nonlinear transport effects in charging-discharging of a supercapacitor

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Ambrozevich, A. S.; Sibatov, R. T.; Ambrozevich, S. A.; Morozova, E. V.

    2016-02-01

    We report on the results of analysis of the kinetics of charge-discharge current of Panasonic supercapacitors in a wide range of time from 10-1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper-oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.

  7. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  8. Spacecraft power system architecture to mitigate spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Manner, David B. (Inventor)

    1997-01-01

    A power system architecture for a spacecraft and a method of a power supply for a spacecraft are presented which take advantage of the reduced plasma interaction associated with positive ground high voltage photovoltaic arrays and provide a negative ground power supply for electrical loads of the spacecraft. They efficiently convert and regulate power to the load bus and reduce power system mass and complexity. The system and method ground the positive terminal of the solar arrays to the spacecraft hull, and using a power converter to invert the electric sign, permit a negative ground for the electrical distribution bus and electrical components. A number of variations including a load management system and a battery management system having charging and recharging devices are presented.

  9. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    NASA Astrophysics Data System (ADS)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EI<100 eV and EII=4850 eV. At a given energy and under a low current density J ≤100 nA/cm2, the yield varies with the electron fluence from its intrinsic value σ0 up to the value corresponding to the self-regulated regime for which σ =1. This variation is independent of J. The fluence dependence of the yield σ(D ) is due to the internal field produced by the accumulation of charges that blocks the emission when the charging is positive and enhances it when it is negative. At room temperature, the relaxation time of stored charges is estimated to be of the order of 250 s for holes and 150 s for electrons. Three current density effects have been observed when J ≥400 nA/cm2. (i) The variation of σ(D ) with the fluence D depends on J. (ii) Negative charging is obtained at high current density in the energy range (EI, EII) where the material is normally positively charged at low current density. (iii) Electron exoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  10. The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; de la Cruz, M. Olvera

    2011-07-01

    The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.

  11. The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes.

    PubMed

    Markowitz; Dunn; Chow; Zhang

    1999-02-01

    The effect of vesicle membrane structure and charge on the synthesis of gold nanoparticles was investigated. The vesicle membranes were comprised of either negatively charged soy lipids or mixtures of charge neutral and negatively charged soy lipids. Palladium ions bound to the membranes served as the catalyst for metal particle synthesis using an electroless metallization procedure. The size range of particles synthesized using membranes comprised of only negatively charged lipids (5-15 nm) was significantly smaller than those synthesized using mixtures of negatively charged and charge-neutral lipids (2-180 nm). X-ray diffraction revealed that the average crystallite size decreased with increasing palladium ion content of the membranes. It also showed that the average crystallite size was smaller for particles synthesized using vesicles comprised of only soy phoshohydroxyethanol lipids than for particles synthesized using vesicles comprised of only soy phosphatidic acid lipids. Particles synthesized with membranes comprised of only negatively charged lipids were encapsulated within the resulting lipid membrane matrix. FT-IR of the lipid matrix indicated that the matrix was formed as the result of ionic bridging of the lipid phosphate headgroups with gold ions. Copyright 1999 Academic Press. PMID:9924109

  12. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  13. Effect of synergists on organic pigment particle charging in apolar media.

    PubMed

    Gacek, Matthew M; Berg, John C

    2014-07-01

    The current work investigates the apolar charging behavior of organic pigment particles and the role that synergists play in regard to particle charging. Organic pigments are often used in apolar paints, inks, and most recently electrostatic lithography. For electrolithography to work, the particles must be both stable and possess the correct polarity and magnitude of charge. It is therefore important to better understand the charging behavior and potential charging mechanisms of these particles that have received little or no attention in the literature. Unfortunately, these already complex systems are further complicated by the fact that the stability of organic pigments is often improved through the use of synergists. Synergists are designed to enhance the adsorption of steric stabilizers to the particles. However, their effect on particle charging has not been previously published. In this study, the particle zeta potential is determined for apolar dispersions of magenta and cyan particles in heptane (with and without synergist present). The particles are dispersed with three different surfactants commonly used in apolar charging studies: Span 80, Aerosol-OT, and OLOA 11000. Acid-base interactions appear to play an important role, particularly for cyan. However, due to the complexity of these systems, any general rule must be applied with caution as the particle, surfactant, and synergist chemistry all determine the nature of the particle charge. PMID:24488726

  14. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  15. Effect of gaseous void on bipolar charge transport in layered polymer film

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2014-02-01

    This paper describes a hybrid algorithm to study the effect of a gaseous void on bipolar charge transport in layered polymer film. This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method to solve the Poisson equation and a fourth order Runge-Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant-Friedrichs-Levy stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions. This hybrid technique caters to bipolar charge injection, field-dependent mobility transport, recombination, and trapping/de-trapping in the bulk and at material and physical interfaces. The resulting charge map is the taxonomy of the different charge types and their abundance, and presents a dynamic view of the temporal and spatial distributions. The paper is motivated by images of breakdown experiments that point to the role of gaseous void in delamination growth. For the test configuration, the high field at the edge of the gaseous void act as a sink first for positive and then negative charge. The net effect is to increase delamination stress at the edge leading to further growth of the defect and increasing the potential for partial discharge within the void.

  16. Effect of Amount of Fluid Charge in Thermal Performance of Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Onogawa, Ei; Nagano, Housei; Fukuyoshi, Fuyuko; Ogawa, Hiroyuki; Nagai, Hiroki

    Loop Heat Pipes (LHPs) are two-phase thermal control system, which works only by heat from its cooling target. In order to utilize the LHPs in various fields, it is requested to be smaller, more reliable, and higher performance. In the present study, a miniature LHP has been fabricated, and the effect of amount of working fluid charged on thermal performance of the LHPs has been investigated. Tests were conducted including start-up, power step up, as function of amount of working fluid. The test results showed that under-charging of working fluid caused start-up failure, while over-charging of working fluid made the LHP less stable.

  17. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit

    SciTech Connect

    Okonechnikov, Konstantin; Amundson, James; Macridin, Alexandru; /Fermilab

    2009-09-01

    This paper describes a transverse space charge effect calculation algorithm, developed in the context of accelerator modeling toolkit Synergia. The introduction to the space charge problem and the Synergia modeling toolkit short description are given. The developed algorithm is explained and the implementation is described in detail. As a result of this work a new space charge solver was developed and integrated into the Synergia toolkit. The solver showed correct results in comparison to existing Synergia solvers and delivered better performance in the regime where it is applicable.

  18. Adsorption and stabilizing effects of highly-charged latex nanoparticles in dispersions of weakly-charged silica colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-07-01

    An experimental study was undertaken to determine the effectiveness of using highly-charged nanoparticles as stabilizers for colloidal dispersions. The specific systems used here involved cationic (amidine) and anionic (sulfate) polystyrene latex nanoparticles with an approximate diameter of 20 nm and silica microparticles of diameter 1.0 μm, and experiments were conducted at the isoelectric point of the silica. It was found that while both types of nanoparticles adsorbed to the silica microparticles and increased the zeta potential to values where stability was expected, long term stability was not achieved, even at bulk nanoparticle concentrations as high as 0.5 vol.%. It is theorized that the incomplete coverage of the microparticles by the nanoparticles (i.e., surface coverage never exceeded 50%) allowed either direct contact between bare patches of the underlying microparticles or, alternatively, for nanoparticles adsorbed on one microparticle to bridge to bare spots on a neighboring microparticle. PMID:25498877

  19. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets.

    PubMed

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-21

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments. PMID:25796249

  20. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Hwang, J. George; Zahn, Markus; O'Sullivan, Francis M.; Pettersson, Leif A. A.; Hjortstam, Olof; Liu, Rongsheng

    2010-01-01

    Transformer oil-based nanofluids with conductive nanoparticle suspensions defy conventional wisdom as past experimental work showed that such nanofluids have substantially higher positive voltage breakdown levels with slower positive streamer velocities than that of pure transformer oil. This paradoxical superior electrical breakdown performance compared to that of pure oil is due to the electron charging of the nanoparticles to convert fast electrons from field ionization to slow negatively charged nanoparticle charge carriers with effective mobility reduction by a factor of about 1×105. The charging dynamics of a nanoparticle in transformer oil with both infinite and finite conductivities shows that this electron trapping is the cause of the decrease in positive streamer velocity, resulting in higher electrical breakdown strength. Analysis derives the electric field in the vicinity of the nanoparticles, electron trajectories on electric field lines that charge nanoparticles, and expressions for the charging characteristics of the nanoparticles as a function of time and dielectric permittivity and conductivity of nanoparticles and the surrounding transformer oil. This charged nanoparticle model is used with a comprehensive electrodynamic analysis for the charge generation, recombination, and transport of positive and negative ions, electrons, and charged nanoparticles between a positive high voltage sharp needle electrode and a large spherical ground electrode. Case studies show that transformer oil molecular ionization without nanoparticles cause an electric field and space charge wave to propagate between electrodes, generating heat that can cause transformer oil to vaporize, creating the positive streamer. With nanoparticles as electron scavengers, the speed of the streamer is reduced, offering improved high voltage equipment performance and reliability.

  1. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    NASA Astrophysics Data System (ADS)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  2. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-12-12

    This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.

  3. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. PMID:25470772

  4. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.

    PubMed

    Das, Pradipta Kr

    2016-01-01

    Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant. PMID:26530465

  5. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte.

    PubMed

    González-Mozuelos, P

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  6. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    NASA Astrophysics Data System (ADS)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  7. Charged Kaon Mass Measurement using the Cherenkov Effect

    SciTech Connect

    Graf, N.; Lebedev, A.; Abrams, R.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Beverly, L.; Bujak, A.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  8. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-01

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294

  9. Kinetic theory for charge-exchange spectroscopy: Effects of magnetic and electric fields on the distribution function after charge-exchange

    SciTech Connect

    Burrell, K. H.; Munoz Burgos, J. M.

    2012-07-15

    In plasmas equipped with neutral beam injection, excitation of atomic spectral lines via charge-exchange with neutral atoms is the basis of one of the standard plasma diagnostic techniques for ion density, temperature, and velocity. In order to properly interpret the spectroscopic results, one must consider the effects of the energy dependence of the charge-exchange cross-section as well as the motion of the ion after charge-exchange during the period when it is still in the excited state. This motion is affected by the electric and magnetic fields in the plasma. The present paper gives results for the velocity distribution function of the excited state ions and considers in detail the cross-section and ion motion effects on the post charge-exchange velocity. The expression for this velocity in terms of the charge-exchange cross-section and the pre charge-exchange velocity allows that latter velocity to be determined. The present paper is the first to consider the effect of the electric as well as the magnetic field and demonstrates that electric field and diamagnetic terms appear in the expression for the inferred velocity. The present formulation also leads to a novel technique for assessing the effect of the energy dependence of the charge-exchange cross-section on the inferred ion temperature.

  10. Effect of dielectric interface on charge aggregation in the voltage-gated K+ ion channel

    PubMed Central

    Adhya, Lipika; Mapder, Tarunendu; Adhya, Samit

    2015-01-01

    Background: There is experimental evidence of many cases of stable macromolecular conformations with charged amino-acids facing lipid, an arrangement thought to be energetically unfavourable. Methods and Objectives: Employing classical electrostatics, we show that, this is not necessarily the case and studied the physical basis of the specific role of proximity of charges to the dielectric interface between two different environments. We illustrate how self and induced energies due to the dielectric medium polarization, on either side of the interface, contribute differentially to the stability of a pair of charges and hence the mutual conformation of the S3b-S4 α-helix pair of the voltage-gated K+ channel. Results and Conclusion: We show that (1) a pair of opposite charges on either side of lipid-protein interface confers significant stability; (2) hydrophobic media has an important role in holding together two similar repelling charges; (3) dielectric interface has stabilizing effect on a pair of charges, when an ion is closer to its interface than its neighboring charge; (4) in spite of the presence of dielectric interface, there is a nonexistence of any dielectric effect, when an ion is equidistant from its image and neighboring charge. We also demonstrate that, variation in dielectric media of the surrounding environment confers new mutual conformations to S3b-S4 α-helices of voltage sensor domain at zero potential, especially lipid environment on the helix side, which improved stability to the configuration by lowering the potential energy. Our results provide an answer to the long standing question of why charges face hydrophobic lipid membranes in the stable conformation of a protein. PMID:25810659

  11. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  12. Effect of positron space charge on operation of an antihydrogen trap.

    PubMed

    Ordonez, C A

    2007-07-01

    Experimental conditions have recently been reported [G. Andresen, Phys. Rev. Lett. 98, 023402 (2007)] that are relevant to the prospect of trapping antihydrogen atoms. An analysis of the experimental conditions indicates that positron space charge can have an important effect. The fraction of antiprotons that have an energy suitable for antihydrogen trapping can be reduced by drifts caused by the presence of positron space charge. PMID:17677605

  13. Evaluating Born and Local Effective Charges in Nanoscale MnO

    SciTech Connect

    Sun, Qi; Xu, Xiaoshan; Baker, Sheila N; Christianson, Andrew D; Musfeldt, J. L.

    2011-01-01

    Phonons are exquisitely sensitive to finite-length scale effects in complex materials because they are intimately connected to charge, polarizability, and structure, and a quantitative analysis of their behavior can reveal microscopic aspects of chemical bonding. To investigate these effects in a model correlated oxide, we measured the infrared vibrational properties of 8-nm particles of MnO, compared the results with the analogous bulk material, and quantified the phonon confinement with a calculation of the Born effective charge. Our analysis reveals that the Born effective charge decreases by {approx}20%, compared to the bulk material. Moreover, this change impacts both ionicity and polarizability. Specifically, we find that MnO nanoparticles are {approx}12% less ionic than the corresponding bulk. This discovery is important for understanding finite-length scale effects in this simple binary oxide and the more complicated functional oxides that emanate from this parent compound.

  14. Dust Effects on Surface Charging in Plasmas: Laboratory and Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Chou, K.; Wang, J.; Yu, W.; Han, D.

    2014-12-01

    There are many situations that a spacecraft surface would be covered by a layer of dusts, such as that around a comet and and on the surfaces of the Moon and asteroids. Previous studies of surface charging in plasmas have mostly considered a "clean" conducting or dielectric surface. On the other hand, studies of dust charging in plasmas have mostly considered that of single, isolated dust grains (the "dust-in-plasma" condition), where a dust grain is electrically isolated from its neighboring dusts. This paper considers the charging of a surface covered by a layer of dust grains (the "dusty-surface" condition), where the inter-dust distance is almost zero but the dust grains do not form a solid surface. Under such a condition, the sheath of each individual dust particles overlap to form one single sheath and the charging of individual dust grains is strongly affected by that of the neighboring dust grains and the surface. Experiments and numerical simulations are carried out to understand the charging of both conducting and dielectric dusty surfaces. Surface charging measurements will be presented for different dust layer thickness, dust grain size, dust density, and different ambient plasma conditions. The effect of the existence of a dusty layer on surface potential as well as the difference between charging of a single dust-in-plasma and that of a dust grain as part of a dusty surface will also be discussed.

  15. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  16. The effect of dust charge fluctuations in the near-Enceladus plasma

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Victoria; Luehr, Hermann

    The geologically active moon Enceladus feeds the most extended, Saturns’ E ring by dust particles and creates a specific multispecies plasma environment -the Enceladus plasma torus. The key process of dust-plasma interactions is dust charging. The grain electrostatic potential in space is usually calculated from the so called orbit-motion limited (OML) model [1]. It is valid for a single particle immersed into collisionless plasmas with Maxwellian electron and ion distributions. Such a parameter regime cannot be directly applied to the conditions relevant for the Enceladus plasma environment and especially, for the dense plume region, where the dust density is high, sometimes even exceeding the plasma number density. Generalizing the OML formalism, we examine several new factors that can significantly affect the equilibrium grain charging: (a) multispecies composition of the core plasma, including hot electrons and newborn cold ions; (b) effect of high dust number density (c) the role of dust size distributions. We also focus on such a specific peculiarity of dust charging as charge fluctuations. Since the grain charges are not fixed and can fluctuate, this introduces the crucial difference between ordinary plasma species (electrons and ions) and charged dust particles. There are two reasons for such fluctuations. The charging of the grains depends on the local plasma characteristics, and thus some temporal or spatial variations in the plasma parameters ultimately modify numbers of charges acquired by a grain. Some of these effects related to the near-Enceladus plasma environment have recently been discussed [2]. A second reason for charge fluctuations is the discrete nature of the charge carriers. Electrons and ions are absorbed or emitted by the grain surface randomly thus leading to stochastic fluctuations of the dust net charge. These fluctuations exist always even in a steady-state uniform plasma, and we discuss the statistical characteristics of random dust

  17. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  18. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    SciTech Connect

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  19. The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Moore, Thomas E.

    1992-01-01

    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

  20. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  1. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  2. Effects of Surface Charges on Dental Implants: Past, Present, and Future

    PubMed Central

    Guo, Cecilia Yan; Matinlinna, Jukka Pekka; Tang, Alexander Tin Hong

    2012-01-01

    Osseointegration is a major factor influencing the success of dental implantation. To achieve rapid and strong, durable osseointegration, biomaterial researchers have investigated various surface treatment methods for dental subgingival titanium (Ti) implants. This paper focuses on surface-charge modification on the surface of titanium dental implants, which is a relatively new and very promising methodology for improving the implants' osseointegration properties. We give an overview on both theoretical explanations on how surface-charge affects the implants' osseointegration, as well as a potential surface charge modification method using sandblasting. Additionally, we discuss insights on the important factors affecting effectiveness of surface-charge modification methods and point out several interesting directions for future investigations on this topic. PMID:23093962

  3. Electrostatic Simulation of Charge Trapping in Carbon Nanotube Vertical Organic Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Crawford, Jennifer; Rinzler, Andrew; Hershfield, Selman

    The carbon nanotube vertical organic field effect transistor is a vertical sequence consisting of a gate electrode, gate dielectric, thin nanotube network source electrode, organic semiconducting channel and finally the drain electrode. The drain current is modulated by the gate voltage which varies a Schottky barrier between source and channel layers. Hysteresis in the current-voltage characteristic has been observed when a electret charge trapping layer is placed between the nanotube source and the gate dielectric. We provide a model for charge injection into a trapping layer placed in contact with the carbon nanotube film and solve self-consistently for the electrostatics and the occupancy of the traps. For a range of applied gate voltages the simulations demonstrate hysteresis of the carbon nanotubes' charge as a result of the electric field produced by the trapped charge. This affects the current by modulating the Schottky barrier. This work was supported by the NSF Grant DMR-1461019.

  4. Charge-correlation effects in calculations of atomic short-range order in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pinski, F. J.; Staunton, J. B.; Johnson, D. D.

    1998-06-01

    The ``local'' chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only ``band-energy'' contributions.

  5. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  6. Investigation of charge transport and electromagnetic effects in advanced microelectronics and optoelectronics

    SciTech Connect

    Kwan, T.; Booth, T.; Gray, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The next generation of electronic microchips will utilize components with sub-micron feature size and optoelectronic devices with picosecond response time. Fundamental understanding of the device performance can only be obtained through first principles physics modeling of charge transport and electromagnetic effects in realistic geometries with material interfaces and dispersive properties. We have developed a general model incorporating important physics such as charge transport processes in materials with multilevel band structures and electromagnetic effects to simulate device characteristics. Accurate treatment of material interfaces and boundaries is included. The Monte Carlo charge transport is coupled self-consistently to Maxwell`s equations to accurately model scattering processes in the presence of an externally biased potential. This detailed multidimensional simulation capability is compared with and verified by experimental data, and could become an industrial standard for benchmarking and improving the {open_quotes}reduced model{close_quotes} codes used for semiconductor design. Specific tasks are the extension of existing capabilities in particle-in-cell plasma simulation technique and Monte Carlo charge transport to study the physics of charged particle dynamics in realistic microelectronic devices, such as bipolar semiconductors, heterojunction transistors, and optoelectronic switches. Our approach has been based on the coupled particle-in-cell/Monte Carlo technique, which can simultaneously treat both electromagnetic wave propagation and charged-particle transport.

  7. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Oktel, M. O.

    2016-05-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component couples to the AMF with a different charge. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. We investigate the superconducting (SC) transition of a system formed by such pairs as a function of the field strength. We consider a homogeneous two-component Fermi gas of unequal charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual equal charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  8. Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru

    2011-11-01

    Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.

  9. Charging effect simulation model used in simulations of plasma etching of silicon

    NASA Astrophysics Data System (ADS)

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Cooke, Mike; Rangelow, Ivo W.

    2012-10-01

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  10. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  11. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-01

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  12. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors.

    PubMed

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  13. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    NASA Astrophysics Data System (ADS)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  14. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    PubMed Central

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  15. Space-charge perturbation effects in photonic tubes under high irradiation

    SciTech Connect

    Kalibjian, R.; Peterson, G.G.

    1982-06-01

    Potential perturbation effects at the cathode region of a photonic tube can occur at high intensity due to space-charge. Using appropriate photoelectron energy distribution functions, the electric field at the cathode is calculated and its effect upon the spatial/temporal resolution is examined.

  16. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    EPA Science Inventory

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  17. Studies of Space Charge Effects in the Proposed CERN PS2

    SciTech Connect

    Qiang, Ji; Ryne, Robert; De Maria, Riccardo; Macridin, Alexandru; Spentzouris, Panagiotis; Papaphilippou, Yannis; Wienands, Ulrich; /SLAC

    2012-06-22

    A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.

  18. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  19. SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction

    SciTech Connect

    Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.

  20. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  1. Tunneling current noise in the fractional quantum Hall effect: When the effective charge is not what it appears to be

    NASA Astrophysics Data System (ADS)

    Snizhko, Kyrylo

    2016-01-01

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle's effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  2. Effect of blood storage on erythrocyte/wall interactions: implications for surface charge and rigidity.

    PubMed

    Godin, C; Caprani, A

    1997-01-01

    In this report, we study, under flow conditions, the interactions of stored erythrocytes with an artificial surface: a microelectrode whose charge density ranges from -15 to +27 microC/cm2. Interactions consist of red cells slowly circulating on the microelectrode and exerting a real contact with the electrode. Interaction is detected and measured by transient fluctuations of the electrolyte resistance obtained by impedance measurement of the microelectrode. Effects of aging induced by storage of whole blood at 4 degrees C show that the surface charge of erythrocytes rapidly decreases when blood is stored for more than 6 days under our experimental conditions. In comparison with trypsin-treated erythrocytes, an eight day storage induces a 60% decrease in the surface charge of red cells. After two weeks of storage, red cells are no longer negatively charged, presumably because of removal of sialic acid. Cells rigidity is significant after 6 days of storage and influences the electrical contact. Membrane rigidity increase could arise from the surface charge decrease. Finally the surface charge decrease could be importance in the use of stored blood. PMID:9232845

  3. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  4. Dielectric Interface Effects on Surface Charge Accumulation and Collection towards High-Efficiency Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Che; Zang, Huidong; Ivanov, Ilia; Xu, Tao; Lu, Luyao; Yu, Luping; Hu, Bin

    2014-04-01

    This paper reports the experimental studies on the effects of dielectric thin-film on surface-charge accumulation and collection by using capacitance-voltage (C-V) measurements under photoexcitation. The dielectric thin-films with different surface polarizations are used with inverted device architecture based on the common photovoltaic PTB7:PC71BM film. In the C-V measurements, the peak-voltage shift with light intensity, namely, Vpeak shift, is particularly used to determine the surface-charge accumulation. We find that the Vpeak shows a smaller shift with light intensity when a higher surface polarization of dielectric thin-film is used. This means that a higher surface polarization of dielectric thin-film can decrease the surface-charge accumulation at electrode interface. However, a lower surface polarization of dielectric thin-film leads to a larger shift with light intensity. This implies that a lower surface polarization of dielectric thin-film corresponds to a larger surface-charge accumulation. This experimental finding indicates that dielectric thin-film plays an important role in the surface-charge accumulation and collection in the generation of photocurrent in organic solar cells. We demonstrate that the device performance can reach the power conversion efficiency of 8.7% when a higher dielectric PFN is used to enhance the surface-charge collection based on the inverted design of ITO/PFN/PTB7:PC71BM/MoO3/Ag.

  5. Surface charge effects on the 2D conformation of supercoiled DNA.

    PubMed

    Schmatko, Tatiana; Muller, Pierre; Maaloum, Mounir

    2014-04-21

    We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar trends: at low surface charge density or low bulk salt concentration, the internal electrostatic repulsion forces plasmids to adopt completely opened structures, while at high surface charge density or higher bulk salt concentration, usual supercoiled plectonemes are observed. We experimentally demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions. At low to medium screening, the electrostatic repulsion at plasmid crossings is predominant, leading to a number of crossovers decreasing linearly with the characteristic screening length. We compare our data with an analytical 2D-equilibrated model developed recently for the system and extract the DNA effective charge density when strands are adsorbed at the surface. PMID:24647451

  6. Effect of alkyl functionalization on charging of colloidal silica in apolar media.

    PubMed

    Poovarodom, Saran; Poovarodom, Sathin; Berg, John C

    2010-11-15

    The present work examines the effect of alkyl-silane treatment on the charging of colloids in apolar solvent using two otherwise identical 250 nm diameter, spherical silica particles, one with untreated surface and the other treated with hexadecyltrimethoxysilane (C16), dispersed in an apolar isoparaffin solvent (Isopar-L) containing one of three oil-soluble surfactants: Aerosol-OT, OLOA 11,000, and zirconyl 2-ethyl hexanoate. The electrophoretic mobility of each dispersion was determined using phase angle light scattering (PALS). It was found that at sufficiently high surfactant concentration, i.e., where micelles begin to form in the bulk, the particle surfaces could be electrically charged. All three surfactants studied imparted a negative surface charge to the untreated silica particles. In all cases, the C16-treated particles were also found to be negatively charged but had a much higher magnitude of mobility than the untreated silica. Although the increase in magnitude of mobility as a result of the alkyl functionalization was surprising, it could be attributed to the increase in the number of surface hydroxyl groups arising from the hydrolysis of unbound methoxy groups of the silane molecules. The added hydroxyl groups provided additional potential acid-base interaction sites, resulting in higher particle mobility. It was also found that further increases in surfactant concentration lowered the particle mobility, attributed to the increasing concentration of electrically charged micelles, which may partially neutralize the surface charge or compress the electrical double layer. PMID:20728088

  7. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-15

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index {kappa} increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  8. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field.

    PubMed

    Ünal, F Nur; Oktel, M Ö

    2016-01-29

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics. PMID:26871343

  9. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.

    PubMed

    Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C

    2016-03-01

    Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology. PMID:26866446

  10. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Oktel, M. Ö.

    2016-01-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  11. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    2015-10-07

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

  12. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  13. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.

    2016-07-01

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  14. Effects of space charge on the acceptance of brightness measuring devices

    SciTech Connect

    Caporaso, G.J.

    1985-08-14

    Attempts to measure high electron beam brightness at low values of beam energy are plagued by the effects of space charge forces. These forces can substantially lower the phase space acceptance of various brightness measuring devices. This report considers several models for the effects of space charge upon the acceptance of both the field free, double aperture system and the magnetic ''emittance selector'' and compares them for some recent experiments on ATA and the High Brightness Test Stand. Reasonably conservative correction factors for the acceptances of these devices are derived.

  15. Effect of charged particle multiplicity fluctuations on flow harmonics in event-by-event hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A. K.

    2013-03-01

    In nucleon-nucleon collisions, a charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collisions in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte Carlo Glauber model of initial condition is generalized to include the fluctuations. Explicit simulations with the generalized Monte Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have a large effect on the flow harmonics.

  16. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  17. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  18. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  19. The role of acid-base effects on particle charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    charging in the context of the many other factors that are important to the phenomenon, including the presence of water, of other components (e.g., synergists and contaminants), and of electric field effects. The goal is the construction of a road map describing the anticipated particle charging behavior in a wide variety of systems, assisting in the choice or development of materials for specific applications. PMID:25891860

  20. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    NASA Astrophysics Data System (ADS)

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  1. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    PubMed

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. PMID:24463476

  2. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor

  3. Interplay of space-charge and beam-beam effects in a collider

    SciTech Connect

    Fedotov, A.V.; Blaskiewicz, M.; Fischer, W.; Satogata, T.; Tepikian, S.

    2010-09-27

    Operation of a collider at low energy or use of cooling techniques to increase beam density may result in luminosity limitation due to the space-charge effects. Understanding of such limitation became important for Low-Energy RHIC physics program with heavy ions at the center of mass energies of 5-20 GeV/nucleon. For a collider, we are interested in a long beam lifetime, which limits the allowable space-charge tune shift. An additional complication comes from the fact that ion beams are colliding, which requires careful consideration of the interplay of direct space-charge and beam-beam effects. This paper summarizes the initial observations during experimental studies in RHIC at low energies.

  4. Spin-orbit coupling and electronic charge effects in Mott insulators

    SciTech Connect

    Zhu, Shan; Li, You -Quan; Batista, Cristian D.

    2014-11-04

    We derive the effective charge- and current-density operators for the strong-coupling limit of a single-band Mott insulator in the presence of spin-orbit coupling and show that the spin-orbit contribution to the effective charge density leads to novel mechanisms for multiferroic behavior. In some sense, these mechanisms are the electronic counterpart of the ionic-based mechanisms, which have been proposed for explaining the electric polarization induced by spiral spin orderings. In addition, the new electronic mechanisms are illustrated by considering cycloidal and proper-screw magnetic orderings on sawtooth and kagome lattices. As for the isotropic case, geometric frustration is crucial for achieving this purely electronic coupling between spin and charge degrees of freedom.

  5. Spin-orbit coupling and electronic charge effects in Mott insulators

    DOE PAGESBeta

    Zhu, Shan; Li, You -Quan; Batista, Cristian D.

    2014-11-04

    We derive the effective charge- and current-density operators for the strong-coupling limit of a single-band Mott insulator in the presence of spin-orbit coupling and show that the spin-orbit contribution to the effective charge density leads to novel mechanisms for multiferroic behavior. In some sense, these mechanisms are the electronic counterpart of the ionic-based mechanisms, which have been proposed for explaining the electric polarization induced by spiral spin orderings. In addition, the new electronic mechanisms are illustrated by considering cycloidal and proper-screw magnetic orderings on sawtooth and kagome lattices. As for the isotropic case, geometric frustration is crucial for achieving thismore » purely electronic coupling between spin and charge degrees of freedom.« less

  6. Effects of metal oxide nanoparticles on the stability of dispersions of weakly charged colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-05-01

    The stability behavior of dispersions of weakly charged silica colloids was studied in the presence of highly charged metal oxide nanoparticles. Experiments were performed using 5 nm zirconia as well as 10 nm alumina nanoparticles (both positively charged), which were added to 0.1 vol % suspensions of 1.0 μm silica microparticles at the silica IEP. Both types of nanoparticles provided effective stabilization of the silica; i.e., the silica suspensions were stabilized for longer than the observation period (greater than 12 h). Stability was observed at zirconia concentrations as low as 10(-4) vol % and at an alumina concentration of 10(-2) vol %. The nanoparticles adsorbed onto the microparticle surfaces (confirmed via SEM imaging), which increased the zeta-potential of the silica. Force profile measurements performed with colloidal probe atomic force microscopy showed that the adsorption was effectively irreversible. PMID:25860256

  7. Lorentz Force Effects on the Orbit of a Charged Artificial Satellite: A New Approach

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia A.

    2007-02-01

    A charged artificial satellite moving relative to a magnetic field accelerates in a direction perpendicular to its velocity and the magnetic field due to the Lorentz force. The geomagnetic field is considered as a multipole potential field and the satellite electrical charged is supposed to be constant. The study is provided to compute Lorentz force acceleration of a charged satellite in Earth's magnetic field as a function of orbital elements of the satellite. Periodic perturbations in the orbital elements of the satellite are derived using Lagrange planetary equations. Numerical results for a chosen satellites orbit shows the most effects of Lorentz force are in semi major axis, eccentricity, and the longitude of the satellite, but there aren't any effects of the force on the inclination and the argument of the perigee of the satellite elements.

  8. Understanding charge transport in organometal halide field effect transistors

    NASA Astrophysics Data System (ADS)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Sadhanala, Aditya; Friend, Richard, Prof. _., Sir; Sirrnighaus, Henning, , Prof.

    Organometal halide based perovskite are emerging materials for wide range of electronic applications. A range of optoelectronic applications like high efficiency solar cells, color pure LEDs and optical pumped lasers have been demonstrated. Here, we report the demonstration of a high performance field effect transistor fabricated from iodide perovskite material at room temperature. The devices exhibit clean saturation behavior with electron μFET >3 cm2V-1s-1 and current modulation in the range of 106 - 107 which are till date the best performance achieved with these class of materials. This high performance is attributed to a combination of novel film fabrication technique and device engineering strategies. Detailed understanding of the observed band-like transport phenomenon is developed by tuning the different sources of dynamic and static disorder prevalent in the system. These finding are expected to pave way for developing next generation electronic application from perovskite materials. Authors acknowledge EPSRC for funding and SPS acknowledges Royal Society Newton Fellowship.

  9. Effect of Surface Charge on Laser-induced Neutral Atom Desorption

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2010-10-01

    When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well-documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges.[1] In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures.[2] We report here that such surface charging strongly impacts even neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution.

  10. Isotope effect in charge-transfer collisions of H with He{sup +}

    SciTech Connect

    Loreau, J.; Dalgarno, A.; Ryabchenko, S.

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.