Science.gov

Sample records for 59th international astronautical

  1. The Role of the International Astronautical Federation in Building Capacity

    NASA Astrophysics Data System (ADS)

    Steinberg, Marilyn

    The International Astronautical Federation (IAF) is an international non-governmental and non-profit organisation. The Federation was founded in London in the framework of the Second International Astronautical Congress (IAC). The Federation encourages the advancement of knowledge about space and the development and application of space assets for the benefit of humanity. It plays an important role in disseminating information, and in providing a significant worldwide network of experts in the development and utilisation of space. The IAF has 155 Members from 45 different countries. Members include: Astronautical societies and other professional societies, space agencies and international organisations, Space industries and companies, universities and research institutes, non-profit organisations with interests in space matters. Through its various Congresses, Workshops and Committees, the IAF offers emerging space nations at all levels of development a rich spectrum of opportunities to network, exchange information and enhance awareness awareness and interest in global space activities among students and young professionals.

  2. Motivational profile of astronauts at the International Space Station

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  3. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  4. NRAO Scientists on Team Receiving International Astronautics Award

    NASA Astrophysics Data System (ADS)

    2005-10-01

    The International Academy of Astronautics (IAA) is presenting an award to a pioneering team of scientists and engineers who combined an orbiting radio-astronomy satellite with ground-based radio telescopes around the world to produce a "virtual telescope" nearly three times the size of the Earth. The team, which includes two scientists from the National Radio Astronomy Observatory (NRAO), will receive the award in a ceremony Sunday, October 16, in Fukuoka, Japan. VSOP Satellite and Ground Telescopes Artist's conception of HALCA satellite and ground observatories together making "virtual telescope" (blue) about three times the size of Earth. CREDIT: ISAS, JAXA (Click on image for larger version) The IAA chose the VLBI Space Observatory Program (VSOP), an international collaboration, to receive its 2005 Laurels for Team Achievement Award, which recognizes "extraordinary performance and achievement by a team of scientists, engineers and managers in the field of Astronautics to foster its peaceful and international use." VSOP team members named in the IAA award include NRAO astronomers Edward Fomalont, of Charlottesville, Virginia, and Jonathan Romney, of Socorro, New Mexico. "This is a well-deserved award for an international team whose hard work produced a scientific milestone that yielded impressive results and provides a foundation for more advances in the future," said Dr. Fred K.Y Lo, NRAO Director. The VSOP program used a Japanese satellite, HALCA (Highly Advanced Laboratory for Communications and Astronomy), that included an 8-meter (26-foot) radio telescope. HALCA was launched in 1997 and made astronomical observations in conjunction with ground-based radio telescopes from 14 countries. Five tracking stations, including one at NRAO's Green Bank, West Virginia, facility, received data from HALCA which later was combined with data from the ground-based telescopes to produce images more detailed than those that could have been made by ground-based systems alone

  5. Mission X: Train Like an Astronaut. International Fitness Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  6. Current Psychological Support for US astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Sipes, Walter; Fiedler, Edna

    2007-01-01

    This viewgraph presentation describes the psychological support services that are offered to the United States astronauts on the International Space Station (ISS). The contents include: 1) Operational Psychology; 2) NASA Extreme Environment Mission Operation (NEEMO); and 3) ISS.

  7. Preflight and In-Flight Exercise Conditions for Astronauts on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guilliams, Mark E.; Nieschwitz, Bruce; Hoellen, David; Loehr, Jim

    2011-01-01

    The physiological demands of spaceflight require astronauts to have certain physical abilities. They must be able to perform routine and off-nominal physical work during flight and upon re-entry into a gravity environment to ensure mission success, such as an Extra Vehicular Activity (EVA) or emergency egress. To prepare the astronauts for their mission, a Wyle Astronaut Strength Conditioning and Rehabilitation specialist (ASCR) works individually with the astronauts to prescribe preflight strength and conditioning programs and in-flight exercise, utilizing Countermeasure Systems (CMS) exercise hardware. PURPOSE: To describe the preflight and in-flight exercise programs for ISS crewmembers. METHODS: Approximately 2 years before a scheduled launch, an ASCR is assigned to each astronaut and physical training (PT) is routinely scheduled. Preflight PT of astronauts consists of carrying out strength, aerobic and general conditioning, employing the principles of periodization. Exercise programs are prescribed to the astronauts to account for their individual fitness levels, planned mission-specific tasks, areas of concern, and travel schedules. Additionally, astronauts receive instruction on how to operate CMS exercise hardware and receive training for microgravity-specific conditions. For example, astronauts are scheduled training sessions for the International Space Station (ISS) treadmill (TVIS) and cycle ergometer (CEVIS), as well as the Advanced Resistive Exercise Device (ARED). In-flight programs are designed to maintain or even improve the astronauts pre-flight levels of fitness, bone health, muscle strength, power and aerobic capacity. In-flight countermeasure sessions are scheduled in 2.5 h blocks, six days a week, which includes 1.5 h for resistive training and 1 h for aerobic exercise. CONCLUSIONS: Crewmembers reported the need for more scheduled time for preflight training. During flight, crewmembers have indicated that the in-flight exercise is sufficient

  8. Post Flight Reconditioning for US Astronauts Returning from the International Space Station

    NASA Technical Reports Server (NTRS)

    Nieschwitz, Bruce; Guilliams, Mark E.; Hoellen, David; Loehr, Jim

    2011-01-01

    Prior to spaceflight, each astronaut undergoes medical requirement testing to establish a preflight baseline for physiologic functions. Astronauts returning from the International Space Station can experience deficits in all or some of the following areas: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. These losses occur from living in microgravity and are consistent with deficits seen in terrestrial, de-conditioning individuals. Since 2001, the Astronaut Strength, Conditioning and Rehabilitation (ASCR) specialists have administered a reconditioning program, focusing on all deficits, which improves the physical condition of all returning astronauts. In most cases, astronauts have reached or surpassed their preflight physical condition. Purpose: This presentation will describe and explain the postflight reconditioning program for returning astronauts. Methods: The postflight reconditioning program is designed to stress the body systems that affect the following: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. Postflight reconditioning begins on landing day, is scheduled for two hours per day, 7 days a week for 45 days and is tailored to the specific needs of the astronaut. Initially the program focuses on basic ambulation, cardiovascular endurance, strength, balance, flexibility and proprioception. The program advances through 45 days and specific attention is given to each astronaut s overall condition, testing results, medical status, and assigned duties after their mission. Conclusion: Astronauts will experience noticeable deficits in their physical condition after living in microgravity for an extended length of time. After completing postflight reconditioning, it is shown that astronauts have

  9. An overview of international issues in astronaut psychological selection.

    PubMed

    Santy, P A; Jones, D R

    1994-10-01

    The NASA Johnson Space Center Medical Sciences Division convened an In-House Working Group on Psychiatric and Psychological Selection of Astronauts in 1988. Working with the European Space Agency (ESA) and the National Space Development Agency (NASDA) of Japan, psychiatrists and psychologists experienced in selecting individuals for training as astronauts or analogous duties studied the development of appropriate criteria. Psychiatric criteria generally concern the detection of pathological conditions, and thus "select-out" applicants by disqualification. Psychological criteria may be used to identify specific affirmative criteria that make an individual particularly well-qualified for such duties, and thus concern "select-in" processes for operational crews. As space missions grow longer, and as crews become larger and more demographically diversified, the long-ignored questions, "What sort of healthy individuals should be selected for such missions," and "How do we know this?" will become more critical to the success of space exploration. The papers included in this Panel concern the results of these investigations, and represent long-needed quantification of these two selection processes, select-out and select-in, in several cultures. PMID:7832730

  10. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    VanderArk, Steve; Curtis, Kelly D.

    1999-01-01

    During the relatively short-duration Space Shuffle missions, a psychological support program for the astronauts has not been required. Such missions primarily require providing occasional communication with family members by means of audio, video or e-mail, and some diversions such as CD players. During the NASA-Mir Program, conducted from March 1995 through June 1998, mission duration increased to 4-6 months. As a result of these changes it was necessary for NASA to establish an operational Human Behavior and Performance Group (HBPG) to develop and implement a comprehensive program of psychological support. The Mir experience provided the opportunity to develop and implement a psychological support program for long-duration space missions. Many factors influence the support program, including individual preferences, mission duration, and environmental factors such as habitable and personal areas. Lessons learned from the Mir experience are being applied to improve the ISS psychological support program plan. This presentation will address which includes various preflight, in-flight, and post-flight support activities and tools that NASA's HBPG will provide to astronauts and their families for ISS missions.

  11. Evolution of the Health Canada astronaut biodosimetry program with a view toward international harmonization.

    PubMed

    Beaton-Green, Lindsay A; Lachapelle, Sylvie; Straube, Ulrich; Wilkins, Ruth C

    2015-11-01

    Biodosimetry of astronaut lymphocyte samples, taken prior to- and post-flight, provides an important in vivo measurement of radiation-induced damage incurred during space flight which can be included in the medical records of the astronauts. Health Canada has been developing their astronaut biodosimetry program since 2007 and since then has analyzed data from 7 astronauts. While multiple cytogenetic endpoints may be analyzed for the astronauts, the Fluorescent in situ hybridization (FISH) assay is considered to be key for detecting long-lasting stable damage. It is believed that this long-lasting damage is most likely to lead to an increased risk to the health of the astronauts during long-term flights (lasting 6 months or more). The complexity of damage that results from protracted, non-homogeneous radiation exposure, like that found in the space environment, requires a detailed scoring schematic to capture as much information as possible. To that end, this paper outlines the efforts to harmonize the manner in which Health Canada's FISH data are recorded to better facilitate the comparison of results with other international biodosimetry programs. PMID:26520379

  12. NASA Now: Biology: Astronaut Health on the International Space Station

    NASA Video Gallery

    The space environment is extreme. Hear how Stephanie Carrizales Flint, a biomedical engineer at NASA’s Johnson Space Center, and her team develop and monitor systems making the International Spac...

  13. NASA Now Minute: Astronaut Health on the International Space Station

    NASA Video Gallery

    The space environment is extreme. Hear how Stephanie Carrizales Flint,a biomedical engineer at NASA’s Johnson Space Center, and her teamdevelop and monitor systems making the International Spac...

  14. Five NASA astronauts and two international payload specialists take a break from a Shuttle duration

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Five NASA astronauts and two international payload specialists take a break from a Shuttle duration record-breaker flight to pose for the traditional inflight crew portrait. The photograph should be oriented with payload commander Susan J. Helms at bottom center. Others, clockwise, are French payload specialist Jean-Jacques Favier, Canadian payload specialist Robert B. Thirsk; and astronauts Kevin R. Kregel, pilot; and Charles J. (Chuck) Brady and Richard M. Linnehan, both mission specialists, and Terence T. (Tom) Henricks, mission commander. The crew chose the Life and Microgravity Spacelab (LMS-1) Science Module, situated in the Space Shuttle Columbias cargo bay, for the portrait setting.

  15. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  16. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  17. Physical and biological organ dosimetry analysis for international space station astronauts.

    PubMed

    Cucinotta, Francis A; Kim, Myung-Hee Y; Willingham, Veronica; George, Kerry A

    2008-07-01

    In this study, we analyzed the biological and physical organ dose equivalents for International Space Station (ISS) astronauts. Individual physical dosimetry is difficult in space due to the complexity of the space radiation environment, which consists of protons, heavy ions and secondary neutrons, and the modification of these radiation types in tissue as well as limitations in dosimeter devices that can be worn for several months in outer space. Astronauts returning from missions to the ISS undergo biodosimetry assessment of chromosomal damage in lymphocyte cells using the multicolor fluorescence in situ hybridization (FISH) technique. Individual-based pre-flight dose responses for lymphocyte exposure in vitro to gamma rays were compared to those exposed to space radiation in vivo to determine an equivalent biological dose. We compared the ISS biodosimetry results, NASA's space radiation transport models of organ dose equivalents, and results from ISS and space shuttle phantom torso experiments. Physical and biological doses for 19 ISS astronauts yielded average effective doses and individual or population-based biological doses for the approximately 6-month missions of 72 mSv and 85 or 81 mGy-Eq, respectively. Analyses showed that 80% or more of organ dose equivalents on the ISS are from galactic cosmic rays and only a small contribution is from trapped protons and that GCR doses were decreased by the high level of solar activity in recent years. Comparisons of models to data showed that space radiation effective doses can be predicted to within about a +/-10% accuracy by space radiation transport models. Finally, effective dose estimates for all previous NASA missions are summarized. PMID:18582161

  18. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  19. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  20. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station.

    PubMed

    Sugita, Takashi; Yamazaki, Takashi; Makimura, Koichi; Cho, Otomi; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki

    2016-03-01

    The International Space Station (ISS) is a huge manned construct located approximately 400 km above the earth and is inhabited by astronauts performing space experiments. Because the station is within a closed microgravity environment, the astronauts are subject to consistent stress. This study analyzed the temporal changes in the skin fungal microbiota of 10 astronauts using pyrosequencing and quantitative PCR assay before, during, and after their stay in the ISS. Lipophilic skin fungi, Malassezia predominated most samples regardless of the collection period, body site (cheek or chest), or subject. During their stay in the ISS, the level of Malassezia colonization changed by 7.6- ± 7.5-fold (mean ± standard deviation) and 9.5- ± 24.2-fold in cheek and chest samples, respectively. At the species level, M. restricta, M. globosa, and M. sympodialis were more abundant. In the chest samples, the ratio of M. restricta to all Malassezia species increased, whereas it did not change considerably in cheek samples. Fungal diversity was reduced, and the ratio of Malassezia to all fungal colonization increased during the astronauts' stay at the ISS. The ascomycetous yeast Cyberlindnera jadinii was detected in abundance in the in-flight sample of 5 of the 10 astronauts. The microorganism may have incidentally adhered to the skin during the preflight period and persisted on the skin thereafter. This observation suggests the ability of a specific or uncommon microorganism to proliferate in a closed environment. Our study is the first to reveal temporal changes in the skin fungal microbiota of ISS astronauts. These findings will provide information useful for maintaining the health of astronauts staying in the space environment for long periods and for preventing infection due to the human skin microbiota. PMID:26773135

  1. Training astronauts using three-dimensional visualisations of the international space station

    NASA Astrophysics Data System (ADS)

    Rycroft, M.; Houston, A.; Barker, A.; Dahlstron, E.; Lewis, N.; Maris, N.; Nelles, D.; Bagaoutdinov, R.; Bodrikov, G.; Borodin, Y.; Cheburkov, M.; Ivanov, D.; Karpunin, P.; Katargin, R.; Kiselyev, A.; Kotlayarevsky, Y.; Schetinnikov, a.; Tylerov, F.

    1999-06-01

    Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.

  2. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  3. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  4. Astronaut's organ doses inferred from measurements in a human phantom outside the international space station.

    PubMed

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Facius, Rainer; Hajek, Michael; Petrov, Vladislav; Puchalska, Monika; Zhou, Dazhuang; Bossler, Johannes; Akatov, Yury; Shurshakov, Vyacheslav; Olko, Pawel; Ptaszkiewicz, Marta; Bergmann, Robert; Fugger, Manfred; Vana, Norbert; Beaujean, Rudolf; Burmeister, Soenke; Bartlett, David; Hager, Luke; Pálfalvi, József; Szabó, Julianna; O'Sullivan, Denis; Kitamura, Hisashi; Uchihori, Yukio; Yasuda, Nakahiro; Nagamatsu, Aiko; Tawara, Hiroko; Benton, Eric; Gaza, Ramona; McKeever, Stephen; Sawakuchi, Gabriel; Yukihara, Eduardo; Cucinotta, Francis; Semones, Edward; Zapp, Neal; Miller, Jack; Dettmann, Jan

    2009-02-01

    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning. PMID:19267549

  5. Different Perspectives on Asthenia in Astronauts and Cosmonauts: International Research Literature

    NASA Technical Reports Server (NTRS)

    Sandoval, Luis; Shea, Camille; Otto, Christian; Leventon, Lauren

    2010-01-01

    The Behavioral Health and Performance (BHP) Element is one of the six elements within the NASA Human Research Program (HRP) and is responsible for managing four risks: a) The Risk of Performance Decrements due to inadequate Cooperation, Coordination, Communication and Psychological Adaptation within a Team (Team), b) the Risk of Performance Errors due to Sleep Loss, Circadian De-synchronization, Fatigue and Work Overload (Sleep), c) Risk of Behavioral Conditions (BMed), and d) the Risk of Psychiatric Disorders (BMed). The aim of this report is to address some of the recommendations made by the recent NASA HRP Standing Review Panel for the Behavioral Medicine Risk of Psychiatric Disorders. Such recommendations included: a) the inclusion of important national and international literature in English and non-English language materials; including journals, books, magazines, conference reports and b) an extensive literature review of certain types of psychological states to predict, detect, and assess adverse mental states that may negatively affect the psychological well being of the astronauts, specifically asthenia. This report was a collaborative international work effort focused on the evaluation and determination of the importance of continuing research on asthenia as a possible psychological problem that might affect the optimal psychological functioning among crewmembers during long-duration space flight missions. Russian medical personnel (flight surgeons and psychologist) have observed symptoms of asthenia (weakness, increased fatigue, irritability, and attention and memory disorders) in cosmonauts after four months in space (Myasnikov& Zamaleddinov1996; Grigorieve, 1996 ) and believe that asthenia is one of the greater risks that will affect crews? optimal psychological functioning.

  6. Space Radiation Risks for Astronauts on Multiple International Space Station Missions

    PubMed Central

    Cucinotta, Francis A.

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

  7. Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental Factors, Operational Impacts, and Implementation of Countermeasures

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Moomaw, R. C.; Johnston, S. L.

    2014-01-01

    Since 2000, US astronauts have been supporting missions up to a six month duration on the International Space Station (ISS). Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, and loss of the environmental cues of a gravity environment. Complicating the psychological stressors are environmental factors; distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, elevated CO2 levels, and an unusual sleep environment with schedules that impinge on pre-sleep periods. Physiological contributors to poor sleep and fatigue include a cephalad fluid shift and back pain. Restful sleep is further challenged due to a lack of gravity-related proprioceptive cues and need for restraints. The term "space fog" has been used by astronauts to describe a phenomenon of forgetfulness, slowed reaction time and transient confusion while trying to complete tasks. There is a distinct temporal correlation with arrival on the Space Station and the onset of slowed cognitive skills and a spontaneous resolution that may take up to 6 weeks. The Genesis of this phenomenon may be chronic fatigue secondary to transitioning from a planar environment to a 360deg microgravity perspective. Recently, countermeasures to improve sleep duration and quality in astronauts on the ISS have been instituted with moderate degrees of success as measured by self-reaction time (psychomotor vigilance task testing), actigraphy, and subjective reports. Judicious use of stimulants and hypnotics, light therapy, controlled sleep periods and sleep shifting and reducing ambient CO2 levels are a few of the most promising countermeasures being used in space to improve sleep and reduce fatigue.

  8. Shuttle Astronauts Play Chess

    NASA Video Gallery

    STS-134 astronauts Greg Johnson and Greg Chamitoff ponder their next move for the Earth vs. Space chess match. The shuttle crew members also discuss their activities aboard the International Space ...

  9. ISS Update: Astronaut's Perspective

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews veteran NASA astronaut Cady Coleman about what it's like to receive visitors on the International Space Station as well as her other experience...

  10. Astronauts Practice Station Spacewalk

    NASA Video Gallery

    Astronauts Cady Coleman and Suni Williams conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Space St...

  11. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  12. SAIP2014, the 59th Annual Conference of the South African Institute of Physics

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Chris; Karataglidis, Steven

    2015-04-01

    The International Celestial Reference Frame (ICRF) was adopted by the International Astronomical Union (IAU) in 1997. The current standard, the ICRF-2, is based on Very Long Baseline Interferometric (VLBI) radio observations of positions of 3414 extragalactic radio reference sources. The angular resolution achieved by the VLBI technique is on a scale of milliarcsecond to sub-milliarcseconds and defines the ICRF with the highest accuracy available at present. An ideal reference source used for celestial reference frame work should be unresolved or point-like on these scales. However, extragalactic radio sources, such as those that definevand maintain the ICRF, can exhibit spatially extended structures on sub-milliarsecond scalesvthat may vary both in time and frequency. This variability can introduce a significant error in the VLBI measurements thereby degrading the accuracy of the estimated source position. Reference source density in the Southern celestial hemisphere is also poor compared to the Northern hemisphere, mainly due to the limited number of radio telescopes in the south. In order to dene the ICRF with the highest accuracy, observational efforts are required to find more compact sources and to monitor their structural evolution. In this paper we show that the astrometric VLBI sessions can be used to obtain source structure information and we present preliminary imaging results for the source J1427-4206 at 2.3 and 8.4 GHz frequencies which shows that the source is compact and suitable as a reference source.

  13. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station.

    PubMed

    Smith, Scott M; Zwart, Sara R; Block, Gladys; Rice, Barbara L; Davis-Street, Janis E

    2005-03-01

    Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers. PMID:15735075

  14. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.; Block, Gladys; Rice, Barbara L.; Davis-Street, Janis E.

    2005-01-01

    Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.

  15. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  16. Female Astronauts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronauts Dr. N. Jan Davis (left) and Dr. Mae C. Jemison (right) were mission specialists on board the STS-47 mission. Born on November 1, 1953 in Cocoa Beach, Florida, Dr. N. Jan Davis received a Master degree in Mechanical Engineering in 1983 followed by a Doctorate in Engineering from the University of Alabama in Huntsville in 1985. In 1979 she joined NASA Marshall Space Flight Center as an aerospace engineer. A veteran of three space flights, Dr. Davis has logged over 678 hours in space since becoming an astronaut in 1987. She flew as a mission specialist on STS-47 in 1992 and STS-60 in 1994, and was the payload commander on STS-85 in 1997. In July 1999, she transferred to the Marshall Space Flight Center, where she became Director of Flight Projects. Dr. Mae C. Jemison, the first African-American woman in space, was born on October 17, 1956 in Decatur, Alabama but considers Chicago, Illinois her hometown. She received a Bachelor degree in Chemical Engineering (and completed the requirements for a Bachelor degree in African and Afro-American studies) at Stanford University in 1977, and a Doctorate degree in medicine from Cornell University in 1981. After receiving her doctorate, she worked as a General Practitioner while attending graduate engineering classes in Los Angeles. She was named an astronaut candidate in 1987, and flew her first flight as a science mission specialists on STS-47, Spacelab-J, in September 1992, logging 190 hours, 30 minutes, 23 seconds in space. In March 1993, Dr. Jemison resigned from NASA, thought she still resides in Houston, Texas. She went on to publish her memoirs, Find Where the Wind Goes: Moments from My Life, in 2001. The astronauts are shown preparing to deploy the lower body negative pressure (LBNP) apparatus in this 35mm frame taken in the science module aboard the Earth-orbiting Space Shuttle Endeavor. Fellow astronauts Robert L. Gibson (Commander), Curtis L. Brown (Junior Pilot), Mark C. Lee (Payload Commander), Jay Apt

  17. PREFACE: International Scientific and Research Conference on Topical Issues in Aeronautics and Astronautics (dedicated to the 55th anniversary from the foundation of SibSAU)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    The International Scientific and Research Conference ''Topical Issues in Aeronautics and Astronautics'' is one of the most significant scientific conferences arranged by the Reshetnev Siberian State Aerospace University (SibSAU) which is located in the Krasnoyarsk Region of Russian Federation. In April 2015 this Conference was dedicated to the 55th anniversary from the foundation of the University. Traditionally, the Conference is seen as emblematic of the University's specialty and is annually organized in April, when the first human travelled into space. This Conference is arranged for undergraduate, graduate and postgraduate students, scientists and lecturers, as well as developers, designers and constructors representing leading companies and enterprises of the aerospace sector to give opportunities to present their projects, research work and results. The Conference is a great chance to connect scientists and highly-qualified and skilled specialists with a new community of future scientists and practitioners in the aerospace sector. The Conference proceedings include papers presented by creative young specialists closely connected with aviation and space vehicles - design, production, problem-solving in space machine building and aerospace education, macro- and microeconomic development of the field, new approaches to solving philosophical and social problems, - experienced scientists and specialists, and all those who want to dedicate themselves to aeronautics and astronautics. The selected papers are presented in these proceedings to share University research results, innovations and cutting-edge technologies with the international community to develop aeronautics and astronautics on a global scale.

  18. National Association for Research in Science Teaching Annual Meeting, Abstracts of Presented Papers (59th, San Francisco, California, March 28-31, 1986).

    ERIC Educational Resources Information Center

    Blosser, Patricia E., Ed.; Helgeson, Stanley L., Ed.

    Abstracts of most of the papers, symposia, and poster sessions presented at the 59th conference of the National Association for Research in Science Teaching (NARST) are provided. Subject areas addressed include: instructional practices in secondary school science; research on computers in science learning; teacher's professional knowledge and…

  19. Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental factors, Operational Impacts, and Implementation of Countermeasures

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Moomaw, R. C.; Johnston, S. L.

    2015-01-01

    Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as: heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, unusual sleep environment with schedules that impinge on pre-sleep periods.

  20. Astronaut 'Checks In' From Space Station

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  1. Astronauts Exercising in Space Video

    NASA Technical Reports Server (NTRS)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  2. Proceedings of the 2010 CIAE Pre-Conference (59th, Clearwater Beach, Florida, October 24-26, 2010)

    ERIC Educational Resources Information Center

    Commission for International Adult Education (NJ1), 2010

    2010-01-01

    The 2010 International Pre-Conference of the Commission on International Adult Education (CIAE), American Association for Adult & Continuing (AAACE), was successfully conducted from October 24-26, at the Hilton Clearwater Beach Resort, Clearwater Beach, Florida. This publication includes the papers presented during the conference. These are: (1)…

  3. Astronaut Virgil Grissom and Astronaut John Glenn

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil Grissom chats with Astronaut John Glenn prior to entering the Liberty Bell 7 capsule for the MR-4 Mission. The MR-4 mission was the second manned suborbital flight using the Mercury-Redstone booster, which was developed by the Marshall Space Flight Center.

  4. Astronaut Curbeam in Quest Airlock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, smiles for the camera in the Quest Airlock of the International Space Station (ISS). Curbeam had just completed the mission's first space walk in which the P6 truss installation was conducted.

  5. Astronaut John H. Glenn

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  6. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  7. Students Speak With NASA Astronaut Mike Foreman

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

  8. Students Speak With NASA Astronaut Mario Runco

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

  9. Astronaut Doug Wheelock Speaks with Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Doug Wheelock participates in a Digital Learning Network (DLN) event with students at Clark Creek STEM Academy in Acwo...

  10. Astronaut Alvin Drew Speaks With Phoenix Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Alvin Drew participates in a Digital Learning Network (DLN) event with students at Monterey Park in Phoenix. The DLN c...

  11. Space Campers Speak With Astronaut Mike Fossum

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students at a space camp at the Kennedy Space ...

  12. NASA Astronaut Mike Fossum Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA Astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students from Clark Creek STEM Academy in Ackw...

  13. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  14. Astronaut Clay Anderson Speaks With S.C. Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Clay Anderson participates in a Digital Learning Network (DLN) event with students at Crayton Middle School, Columbia,...

  15. New Jersey Students Speak With Astronaut Mario Runco

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students at Memorial Deptford High School in Deptfo...

  16. Protecting Astronaut Health at First Entry into Vehicles Visiting the international Space Station: Insights from Whole-Module Offgas Testing

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2014-01-01

    NASA has accumulated considerable experience in offgas testing of whole modules prior to their docking with the International Space Station (ISS). Since 1998, the Space Toxicology Office has performed offgas testing of the Lab module, both MPLM modules, US Airlock, Node 1, Node 2, Node 3, ATV1, HTV1, and three commercial vehicles. The goal of these tests is twofold: first, to protect the crew from adverse health effects of accumulated volatile pollutants when they first enter the module on orbit, and secondly, to determine the additional pollutant load that the ISS air revitalization systems must handle. In order to predict the amount of accumulated pollutants, the module is sealed for at least 1/5th the worst-case time interval that could occur between the last clean air purge and final hatch closure on the ground and the crew's first entry on orbit. This time can range from a few days to a few months. Typically, triplicate samples are taken at pre-planned times throughout the test. Samples are then analyzed by gas chromatography and mass spectrometry, and the rate of accumulation of pollutants is then extrapolated over time. The analytical values are indexed against 7-day spacecraft maximum allowable concentrations (SMACs) to provide a prediction of the total toxicity value (T-value) at the time of first entry. This T-value and the toxicological effects of specific pollutants that contribute most to the overall toxicity are then used to guide first entry operations. Finally, results are compared to first entry samples collected on orbit to determine the predictive ability of the ground-based offgas test.

  17. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  18. Astronaut Virgil I. Grissom

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut Virgil I. 'Gus' Grissom, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MR-4 mission, boosted by the Mercury-Redstone vehicle, made the second marned suborbital flight. The capsule, Liberty Bell 7, sank into the sea after the splashdown.

  19. Astronauts' menu problem.

    NASA Technical Reports Server (NTRS)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  20. Astronauts Working in Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  1. Building An Astronaut Core

    NASA Video Gallery

    Train to improve the strength in your abdominal and back muscles by performing the "Commander Crunch" and "Pilot Plank" exercises. The Train Like an Astronaut project uses the excitement of explora...

  2. Astronaut John Young's Career

    NASA Video Gallery

    John Young served as a NASA astronaut for over four decades, flying on Gemini, Apollo and the Space Shuttle. He walked on the moon during Apollo 16 in 1972 and commanded the first shuttle mission, ...

  3. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station

    PubMed Central

    Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi

    2015-01-01

    Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. Methods HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). Results The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR

  4. Astronaut Richard M. Linnehan prepares to draw blood from astronaut Charles J. Brady.

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Richard M. Linnehan prepares to draw blood from astronaut Charles J. Brady. The two mission specialists ultimately joined three other NASA astronauts and two international payload specialists for almost 17-days of research in the Life and Microgravity Spacelab (LMS-1) Science Module in the Space Shuttle Columbias cargo bay. Part of a battery of metabolic studies, blood draws, along with fecal and urine samples of each crew member, are used to measure calcium loss and to determine how and where this loss occurs during spaceflight.

  5. EAC: The European Astronauts Centre

    NASA Astrophysics Data System (ADS)

    Ripoll, Andres

    The newly established European Astronauts Centre (EAC) in Cologne represents the European Astronauts Home Base and will become a centre of expertise on European astronauts activities. The paper gives an overview of the European approach to man-in-space, describes the European Astronauts Policy and presents the major EAC roles and responsibilities including the management of selection, recruitment and flight assignment of astronauts; the astronauts support and medical surveillance; the supervision of the astronauts' non-flight assignments; crew safety; the definition of the overall astronauts training programme; the scheduling and supervision of the training facilities; the implementation of Basic Training; the recruitment, training and certification of instructors, and the interface to NASA in the framework of the Space Station Freedom programme. An overview is given on the organisation of EAC, and on the European candidate astronauts selection performed in 1991.

  6. Assessments of astronaut effectiveness

    NASA Technical Reports Server (NTRS)

    Rose, Robert M.; Helmreich, Robert L.; Fogg, Louis; Mcfadden, Terry J.

    1993-01-01

    This study examined the reliability and convergent validity of three methods of peer and supervisory ratings of the effectiveness of individual NASA astronauts and their relationships with flight assignments. These two techniques were found to be reliable and relatively convergent. Seniority and a peer-rated Performance and Competence factor proved to be most closely associated with flight assignments, while supervisor ratings and a peer-rated Group Living and Personality factor were found to be unrelated. Results have implications for the selection and training of astronauts.

  7. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  8. Astronaut James Wetherbee briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut James D. Wetherbee, STS-63 mission commander, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  9. Astronaut Bernard Collins prepares to use Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Bernard A. Harris, Jr., STS-63 payload commander, prepares to make use of a Sky Genie device used in emergency egress training. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  10. Astronaut Eileen Collins is briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Eileen M. Collins, STS-63 mission pilot, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  11. Astronaut Conrad tweaks Astronaut Cooper's beard for the cameramen

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Charles Conrad Jr. tweaks Astronaut L. Gordon Cooper's eight-day growth of beard for the cameramen while onboard the prime recovery vessel after their Gemini 5 flight. The NASA Headquarter alternative photo number is 65-H-680.

  12. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  13. Astronaut Peggy Whitson and Lemonade Droplet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson is having fun with a blob of lemonade on the International Space Station (ISS). A Fluids physicist, however, sees much more than just a blob of lemonade floating around. Using sound waves and air flows, technology development to shape and position liquid droplets for containerless processing or fluid clean up is possible.

  14. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  15. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  16. STS-96 Astronauts Adjust Unity Hatch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.

  17. Astronaut Administrator Richard Truly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard H. Truly, pilot of the Space Shuttle Columbia on mission STS-2 and Commander of Shuttle Challenger on mission STS-8, became NASA's eighth Administrator on July 1, 1989. One day earlier he concluded a 30 year Naval career retiring as a Vice Admiral. He was the first astronaut to head the nation's civilian space agency. Truly became Deputy Associate Administrator for Space Flight on February 20, 1986. In this position, he led the painstaking rebuilding of the Space Shuttle program less than one month after the Challenger disaster. This was highlighted by the much heralded 'Return to Flight' on September 29, 1988 with the launch of Shuttle Discovery, 32 months after Challenger's final flight. On February 12th, 1992 Richard Truly resigned as NASA Administrator at the request of President George Bush.

  18. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  19. STS-133 Astronauts Rehearse Launch Day During TCDT

    NASA Video Gallery

    The six astronauts who will fly space shuttle Discovery to the International Space Station on STS-133 spent four days at NASA’s Kennedy Space Center to participate in a launch countdown dress reh...

  20. Why does astronaut Reid Wiseman use social media?

    NASA Video Gallery

    Astronaut Reid Wiseman, who is living and working on the International Space Station, has taken everyone along on the incredible journey using social media. But why does he use social media? Find o...

  1. Space Station Live: Veteran Astronaut Talks Crew Orientation

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with NASA astronaut Cady Coleman, who lived aboard the International Space Station as Expedition 27/27 crew member from December...

  2. Students Speak With NASA Astronaut Dottie Metcalf-Lindenburger

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Dottie Metcalf-Lindenburger participates in a Digital Learning Network (DLN) event with students at Heritage Middle S...

  3. Astronaut Charles Conrad trims hair of Astronaut Paul Weitz

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, trims the hair of Astronaut Paul J. Weitz, Skylab 2 pilot, during the 28-day Skylab 2 mission in Earth orbit. They are in the crew quarters wardroom of the Orbital Workshop of the Skylab 1 and 2 space station. Weitz is holding a vacuum hose in his right hand. This picture was taken by Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot.

  4. STS-35: Astronaut Departure

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was the round-the-clock observations of the celestial sphere in ultraviolet and X ray astronomy with ASTRO-1. The mission was commanded by Vance D. Brand. The crew consisted of the pilot Guy S. Gardner, the mission Specialists Jeffery Hoffman, John Lounge, and Robert Parker, and the payload specialists Samuel Durrance, and Ronald Parise. This videotape shows the astronauts leaving the Kennedy Space Center after one of the attempts to launch the mission was scrubbed due to hydrogen leaks aboard the shuttle Columbia.

  5. Astronaut training manual

    NASA Technical Reports Server (NTRS)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  6. Astronaut Sharnon Lucid in Mir Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this photograph, Astronaut Shannon W. Lucid, Ph.D., communicates with the ground support team inside the Core Module of the Mir Space Station. Launched aboard the STS-76, the third Shuttle/Mir docking mission, in March 1996, to join the Mir crew in the orbiting laboratory, Astronaut Lucid returned to Earth aboard STS-79 in September 1996. Astronaut Lucid made the U.S. longest record of 188 days in space. Prior to this endeavor, Astronaut Lucid served as a mission specialist on STS-51G in June 1985, STS-34 in October 1989, STS-43 in August 1991, and STS-58 in October 1993. She had logged 5,354 hours (223 days) in space and holds both an international record for the most flight hours in orbit by any non-Russian, and the record for the most flight hours in orbit by any woman in the world. In February 2002. Dr. Lucid was selected as NASA's Chief Scientist at NASA Headquarters in Washington D.C., with responsibility for developing and communicating the agency's science and research objectives to the outside world.

  7. Neuropsychological Testing of Astronauts

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher; Vander Ark, Steve; Eksuzian, Daniel; Sipes, Walter; Kane, Robert; Vanderploeg, Rodney; Retzlaff, Paul; Elsmore, Tim; Moore, Jeffrey

    2004-01-01

    The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a computer program that administers a battery of five timed neuro-cognitive tests. WinSCAT was developed to give astronauts an objective and automated means of assessing their cognitive functioning during space flight, as compared with their own baseline performances measured during similar prior testing on the ground. WinSCAT is also intended for use by flight surgeons to assess cognitive impairment after exposure of astronauts to such cognitive assaults as head trauma, decompression sickness, and exposure to toxic gas. The tests were selected from among a group of tests, denoted the Automated Neuropsychological Assessment Metrics, that were created by the United States Navy and Army for use in evaluating the cognitive impairment of military personnel who have been subjected to medication or are suspected to have sustained brain injuries. These tests have been validated in a variety of clinical settings and are now in the public domain. The tests are presented in a Microsoft Windows shell that facilitates administration and enables immediate reporting of test scores in numerical and graphical forms.

  8. Astronaut Clothing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  9. Astronaut Pedro Duque Watches A Water Bubble

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  10. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  11. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  12. Astronaut Virgil Grissom with Astronaut Walter Schirra in ready room

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Virgil I. Grissom (right), the command pilot of the Gemini-Titan 3 three-orbit mission, is shown with Astronaut Walter M. Schirra Jr., in the ready room at Pad 16. The GT-3 was launched from Pad 19 the same day. Schirra was the command pilot of the backup crew.

  13. Astronaut Bruce McCandless tests astronaut maneuvering unit

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Bruce McCandless II, backup pilot for Skylab 2, tests the balance and control of an astronaut maneuvering unit (AMU) test model at Martin Marietta Corporation's Denver division. The jet-powered backpack can fly for 30 minutes and can be worn over normal clothing or space suit.

  14. Educating Astronauts About Conservation Biology

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  15. Universal values of Canadian astronauts

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  16. Astronauts Visit LaRC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Linda M. Godwin, trains with the Mir Environmental Effects Payload (MEEP) in a NASA Langley Research Center clean room. During a space walk in late March 1996, STS-76 astronauts Godwin and Michael R. Clifford will attach the four MEEP experiments to handrails on the shuttle docking module of the Russian space station Mir. Once they have attached the four MEEP experiment containers to Mir, Godwin and Clifford will open the containers to expose the experiment materials to space and orbital debris. MEEP will remain attached to Mir until late 1997, when the four experiment containers will be retrieved by another space shuttle crew (STS-86) and returned to Earth for study. The four experiment containers that make up MEEP will be attached to the outside of the Russian space station to study how often space debris strike the station and the effects of those collisions. MEEP will study both human-made and natural debris. MEEP will also expose selected and proposed International Space Station materials to the effects of space and orbital debris. These materials include paint samples, glass coatings, multi-layer insulation and a variety of metallic samples. Flying MEEP aboard Mir is the best way to test materials for the International Space Station because the new space station will be placed in approximately the same Earth orbit as Mir. The four MEEP experiments are contained in four separate Passive Experiment Carriers (PEC). Each PEC consists of a sidewall carrier for attachment to the payload bay of Atlantis (STS-76), a handrail clamp for attachment to the Mir shuttle docking module, and the experiment container to house the individual experiment. The four PEC handrail clamps will be stored in a Spacehab locker aboard Atlantis and will be used to orient the MEEP experiments during the spacewalk. The PECs were designed and built at NASA Langley Research Center. NASA Langley, which manages the MEEP project, was also responsible for ensuring that the MEEP

  17. Space Shuttle Era: Astronaut Support Personnel

    NASA Video Gallery

    Astronauts rely on other astronauts on launch day to help them get rady for liftoff and the misison ahead. The helpful cadre are known formally as Astronaut Support Personnel but are called ASPs or...

  18. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  19. Train Like an Astronaut Educational Outreach

    NASA Technical Reports Server (NTRS)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  20. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) take a close look at the Saturn V rocket on display. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  1. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Some of the 1998 astronaut candidate class (group 17) take a close look at displays in the Apollo/Saturn V Center at KSC. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  2. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) line up for a photo while standing under the engines of the Saturn V rocket on display. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  3. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) line up for a photo during a tour of facilities at KSC. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF and the crew headquarters.

  4. Astronaut Paul Weitz gets physical examination from Astronaut Joseph Kerwin

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, Skylab 2 pilot, gets a physical examination by a fellow crewman during the 28-day Skylab 2 mission. Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot and a doctor of medicine, uses a stethoscope to check the Weitz's heartbeat. They are in the Orbital Workshop crew quarters of the Skylab 1 and 2 space station in Earth orbit. This photograph was taken by Charles Conrad Jr., Skylab 2 commander.

  5. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the forward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  6. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  7. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  8. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  9. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  10. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  11. Johnson Space Center Astronaut and Flight Surgeon Survey Report (January 2008)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In early 2007, an incident involving former astronaut, Lisa Nowak, led NASA to conduct several reviews including internal and external evaluations of astronaut behavioral health and medical care. The internal NASA review, led by Johnson Space Center (JSC), focused on two elements: 1) current astronaut behavioral medicine practices and 2) a review of relevant records and information to determine whether any leading indicators that could have averted the incident were missed. The external review, conducted by the NASA Astronaut Health Care System Review Committee (comprised of external experts from the behavioral health and aerospace medical communities), focused on space medicine operations at JSC.

  12. International Academy of Astronautics 5th cosmic study--preparing for a 21st century program of integrated, Lunar and Martian exploration and development (executive summary).

    PubMed

    Koelle, H H; Stephenson, D G

    2003-04-01

    This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector. PMID:12602367

  13. International Academy of Astronautics 5th cosmic study—preparing for a 21st century program of integrated, Lunar and Martian exploration and development (executive summary)

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.; Stephenson, D. G.

    2003-04-01

    This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector.

  14. Automatic georeferencing of astronaut auroral photography

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Walsh, Andrew P.; Gerst, Alexander; Taylor, Matthew G. G. T.

    2016-07-01

    Astronauts on board the International Space Station (ISS) have taken thousands of high-resolution colour photographs of the aurora, which could be made useful for research if their pointing information could be reconstructed. We describe a method to do this using the star field in the images, and how the reconstructed pointing can then be used to georeference the images to a similar level of accuracy in existing all-sky camera images. We have used this method to make georeferenced auroral images taken from the ISS available and here describe the resulting data set, processing software, and how to access them.

  15. Astronautics and psychology. Recommendations for the psychological training of astronauts

    NASA Astrophysics Data System (ADS)

    Haupt, Gerhard F.

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  16. Philosophy on astronaut protection: Perspective of an astronaut

    SciTech Connect

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  17. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deployment of the early Apollo scientific experiments package is photographed by Astronaut Neil A. Armstrong during the Apollo 11 EVA. Here, Astronaut Aldrin is deploying the passive seismic experiments package. Already deployed is the Lunar ranging retro- reflector, which can be seen to the left and farther in the background. In the right background is the Lunar Module (LM). A flag of the United States is deployed near the LM. In the far left background is the deployed black and white lunar surface television camera. Armstrong took this picture with the 70mm lunar surface camera.

  18. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). He is wearing a pressure suit for this run of the M509 experiment, but other ASMU tests are done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  19. NASA Astronaut Urinary Conditions Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Cole, Richard; Young, Millennia H.; Mason, Sara

    2016-01-01

    INTRODUCTION: Spaceflight is associated with many factors which may promote kidney stone formation, urinary retention, and/or Urinary Tract Infection (UTI). According to ISS mission predictions supplied by NASA's Integrated Medical Model, kidney stone is the second and sepsis (urosepsis as primary driver) the third most likely reason for emergent medical evacuation from the International Space Station (ISS). METHODS: Inflight and postflight medical records of NASA astronauts were reviewed for urinary retention, UTI and kidney stones during Mercury, Gemini, Apollo, Mir, Shuttle, and ISS expeditions 1-38. RESULTS: NASA astronauts have had 7 cases of kidney stones in the 12 months after flight. Three of these cases occurred within 90 to 180 days after landing and one of the seven cases occurred in the first 90 days after flight. There have been a total of 16 cases (0.018 events per person-flights) of urinary retention during flight. The event rates per mission are nearly identical between Shuttle and ISS flights (0.019 vs 0.021 events per person-flights). In 12 of the 16 cases, astronauts had taken at least one space motion sickness medication. Upon further analysis, it was determined that the odds of developing urinary retention in spaceflight is 3 times higher among astronauts who took promethazine. The female to male odds ratio for inflight urinary retention is 11:14. An astronaut with urinary retention is 25 times more likely to have a UTI with a 17% infection rate per mission. There have been 9 reported UTIs during spaceflight. DISCUSSION: It is unclear if spaceflight carries an increased post-flight risk of kidney stones. Regarding urinary retention, the female to male odds ratio is higher during flight compared to the general population where older males comprise almost all cases due to prostatic hypertrophy. This female prevalence in spaceflight is even more concerning given the fact that there have been many more males in space than females. Terrestrial

  20. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  1. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  2. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  3. Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS) on the flight deck of the Earth-orbiting Space Shuttle Columbia. Cheli, representing the European Space Agency (ESA), joined four other astronauts and an international payload specialists for 16 days of scientific research in Earth-orbit.

  4. Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA),

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA), set up an experiment at the glovebox on the Space Shuttle Columbias mid-deck. The two mission specialists joined three other astronauts and an international payload specialist for more than 16 days of research aboard Columbia.

  5. Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the flight deck of the Space Shuttle Columbia. Allen was joined by four other astronauts and an international payload specialist for more than 16 days of research aboard Columbia. The photograph was taken with a 70mm handheld camera.

  6. Astronaut C. Michael Foale is briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut C. Michael Foale, STS-63 mission specialist, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  7. Astronautics and aeronautics, 1972. [a chronology of events

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  8. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  9. Astronaut Thomas Stafford and Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Thomas P. Stafford, commander of the Apollo 10 lunar orbit mission, takes time out from his preflight training activities to have his picture made with Snoopy, the character from Charles Schulz's syndicated comic strip, 'Peanuts'. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules.

  10. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  11. Astronaut Gordon Cooper After Recovery

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Gordon Cooper leaves the Faith 7 (MA-9) spacecraft after a successful recovery operation. The MA-9 mission, the last flight of the Mercury Project, was launched on May 15, 1963, orbited the Earth 22 times, and lasted for 1-1/2 days.

  12. Origins of astronautics in Switzerland

    NASA Technical Reports Server (NTRS)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  13. Astronaut space suit communication antenna

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F., III; Nason, G. H.

    1968-01-01

    Astronaut space suit communication antenna consists of a spring steel monopole in a blade-type configuration. This antenna is mounted in a copper cup filled with a potting compound that is recessed in the center to facilitate bending the blade flat for stowing when not in use.

  14. Astronaut Susan Helms in the ISS Unity Node

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  15. Hall Opens Doors to Astronaut Heroes

    NASA Video Gallery

    Space shuttle astronauts Bonnie Dunbar, Curt Brown and Eileen Collins joined an elite group of American space heroes as they were inducted into the U.S. Astronaut Hall of Fame on April 20, during a...

  16. Official portrait of astronaut Charles J. Precourt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Official portrait of astronaut Charles J. Precourt. Precourt, a member of Astronaut Class 13 and United States Air Force (USAF), wears blue flight suit and poses with space shuttle orbiter model with a United States flag creating the backdrop.

  17. Astronaut Virgil Grissom preparing for centrifuge training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury pressure suit, is preparing for centrifuge training. He is talking with Astronaut L. Gordon Cooper and two others before the training session.

  18. An Astronaut's View of Jewel-toned Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts onboard the International Space Station often observe small, otherwise unnoticed water bodies on the ground due to their unusual colors. For example, the Little Blue Run Dam and reservoir is located in western Pennsylvania, just south of the Ohio River. It is owned by Pennsylvania Power Company and used for industrial sludge impoundment. The materials suspended in the water give it a striking, turquoise color. Another lake with color linked commercial activity is Lake Gribben, just southeast of Palmer in Michigan's Upper Peninsula. Iron ore is extracted from New Richmond Mine visible just north of the lake. Images ISS004-E-10472 (Little Blue Run, April 4, 2002) and ISS004-E-10319 (Gribben, April 22, 2002) were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  19. Biological Dosimetry in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2007-01-01

    Biodosimetry data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. Moreover, chromosome damage maybe reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize excess health risk incurred by crewmembers. Cytogenetic biodosimetry methods have been used extensively for assessing terrestrial radiation exposures, and remain the most sensitive in vivo indicator of dose available to date. The main cellular radiation target is the DNA, and radiation-induced damage in the DNA molecule can be visualized as aberrations in the chromosomes (breaks in the chromosomes or exchanges of DNA material between different chromosomes). Normal chromosomes contain a single condensed and constricted area called a centromere that helps the chromosome number to remain stable when a cell divides.

  20. JSC Astronaut corps, STS-3 vehicle integration test team and others

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Members of the JSC astronaut corps, STS-3 vehicle integration test (VIT) team and other personnel pose for photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center. Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W.S. Abbey, Director of Flight Operations at JSC; Astronaut John H. Young, Chief of the Astronaut Office at JSC; Jack Fleming of Rockwell International; Mission Specialist-Astronaut John M. Lounge; Astronaut Daniel C. Brandenstein; Mission Specialist-Astronaut James D. Van Hoften; Astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; Mission Specialist-Astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and Astronaut Donald E. Williams. The Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire emergency escape system is visible in the picture.

  1. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  2. The Challenges and Opportunities of a Commercial Astronaut Mission to the ISS

    NASA Astrophysics Data System (ADS)

    Mirra, C.; Carl, S.

    2002-01-01

    ISS flight opportunities for ESA astronauts are considered as a vital source to meet the objectives (utilisation, operation and political), which Europe has established in participating to the International Space Station programme. Recent internal ESA assessments have demonstrated that, in order to satisfy the objectives drawn in the ESA ISS Exploitation programme, a rate of three flights per year for European Astronauts should be maintained as minimum objective. Since the establishment of a single European Astronaut Corps and having regard of the ISS flight opportunities provided through national space agencies, the current European astronauts flight rate is rather lower than the above three flights per year. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, the Agency contracted Intospace to develop the conditions for the establishment of ESA astronaut missions with the financial support of both ESA and the private sector or, in future, the latter only. The study led to the definition of a "commercial astronaut", as a member of the European Astronaut Corp that will be assigned the responsibility to perform research and commercial space projects in a given ISS mission scenario. This paper will present the recent outcomes of a detailed study phase, including highlights on possible implementation of a private sector-supported astronaut mission to the ISS.

  3. ISS Update: Astronaut Shannon Walker – 07.17.2012

    NASA Video Gallery

    In the International Space Station flight control room at NASA’s Johnson Space Center, Houston, ISS Update commentator Amiko Kauderer interviewed Shannon Walker, NASA astronaut and Expedition 24 ...

  4. Automatic Georeferencing of Astronaut Auroral Photography

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Riechert, M.; Taylor, M. G.

    2014-12-01

    Astronauts on board the International Space Station have taken thousands of high quality photographs of the aurorae borealis and australis with a high temporal and spatial resolution. A barrier to these photographs being used in research is that the cameras do not have a fixed orientation and the images therefore do not have any pointing information associated with them. Using astrometry.net and other open source libraries we have developed a software toolkit to automatically reconstruct the pointing of the images from the visible starfield and hence project the auroral images in geographic and geomagnetic coordinates. Here we explain the technique and the resulting data products, which will soon be publically available through the project website.

  5. STS-49 INTELSAT VI-R WETF exercise with astronauts Musgrave, Clifford, Voss

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, International Telecommunications Satellite Organization (INTELSAT) VI-R simulation at JSC's Weightless Environment Training Facility (WETF) Bldg 29 was conducted with extravehicular mobility unit (EMU) suited astronauts F. Story Musgrave, Michael R. U. Clifford, and James S. Voss. Astronauts practiced a three person extravehicular activity (EVA) procedure for INTELSAT capture. Ground based exercises were conducted after five failed INTELSAT capture attempts during the STS-49 mission. In this underwater group portrait, eleven SCUBA-equipped divers pose with the three trouble shooting astronauts. Astronauts are (left to right) Clifford, Musgrave, and Voss. Test results provided input for orbiting STS-49 crewmembers on possible alternate INTELSAT capture procedures. Three OV-105 astronauts will attempt to capture the INTELSAT again on 05-13-92. Portrait made by NASA JSC contract photographer Scott A. Wickes.

  6. Astronaut Health Participant Summary Application

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy; Krog, Ralph; Rodriguez, Seth; Wear, Mary; Volpe, Robert; Trevino, Gina; Eudy, Deborah; Parisian, Diane

    2011-01-01

    The Longitudinal Study of Astronaut Health (LSAH) Participant Summary software captures data based on a custom information model designed to gather all relevant, discrete medical events for its study participants. This software provides a summarized view of the study participant s entire medical record. The manual collapsing of all the data in a participant s medical record into a summarized form eliminates redundancy, and allows for the capture of entire medical events. The coding tool could be incorporated into commercial electronic medical record software for use in areas like public health surveillance, hospital systems, clinics, and medical research programs.

  7. Pharmacologic considerations for Shuttle astronauts

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Bungo, Michael W.

    1991-01-01

    Medication usage by crewmembers in the preflight and inflight mission periods is common in the Shuttle Program. The most common medical reports for which medication is used are: space motion sickness (SMS), sleeplessness, headache, and backache. A number of medications are available in the Shuttle Medical Kit to treat these problems. Currently, astronauts test all frequently used medications before mission assignment to identify potential side-effects, problems related to performance, personal likes/dislikes, and individual therapeutic effect. However, microgravity-induced changes in drug pharmacokinetics, in combination with multiple operational factors, may significantly alter crewmember responses inflight. This article discusses those factors that may impact pharmacologic efficacy during Shuttle missions.

  8. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  9. Exposure fluctuations of astronauts due to orientation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Wood, James S.; Qualls, Gary; Atwell, William; Shinn, Judy L.; Simonsen, Lisa C.

    1993-01-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  10. Exposure fluctuations of astronauts due to orientation

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Wood, J.S.; Qualls, G.; Atwell, W.; Shinn, J.L.; Simonsen, L.C.

    1993-09-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  11. Shoulder Injury Incidence Rates in NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  12. Designing Interfaces for Astronaut Autonomy in Space

    NASA Technical Reports Server (NTRS)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  13. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Attired in a training version of the Extravehicular Mobility Unit (EMU) space suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, is about to begin a training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center in preparation for the STS-115 mission. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  14. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wearing a training version of the shuttle launch and entry suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, puts the final touches on her suit donning process prior to the start of a water survival training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  15. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Attired in a training version of the Extravehicular Mobility Unit (EMU) space suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, is submerged into the waters of the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center for training in preparation for the STS-115 mission. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  16. Television transmission of Astronauts Cernan and Schmitt sending greetings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronauts Eugene A. Cernan (on left) and Harrison H. Schmitt pay their respects and send their best wishes to the members of the International Youth Science Tour, who were visiting the Manned Spacecraft Center, in brief ceremonies near the close of the third Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture is a reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle.

  17. Astronaut Jean-Francois Clervoy chats with STS-66 crewmates

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jean-Francois Clervoy (center), STS-66 international mission specialist, chats with payload crew mates during a training session on emergency egress procedures. Wearing training versions of the launch and entry suits, the crew members are, left to right, Scott E. Parazynski, Joseph P. Tanner, Clervoy and Ellen Ochoa. Ochoa is the payload commander, Tanner and Parazynski are NASA mission specialists and Clervoy represents the European Space Agency (ESA) as a mission specialist.

  18. U.S. Secretary of State chats with astronaut

    NASA Technical Reports Server (NTRS)

    1998-01-01

    U.S. Secretary of State Madeleine Albright (right) talks with astronaut Jim Voss following the successful launch of Endeavour on Mission STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Voss is a member of the STS- 100 crew, the eighth ISS assembly team.

  19. STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  20. Apollo Project - Astronaut Roger Chaffee

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Roger Chaffee on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil, described the simulator as follows: 'When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377; A.W. Vigil, 'Discussion of Existing

  1. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    NASA Technical Reports Server (NTRS)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  2. Astronauts Jeffrey A. Hoffman (left) and Franklin R. Chang-Diaz hold up a sign to celebrate the fact

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronauts Jeffrey A. Hoffman (left) and Franklin R. Chang-Diaz hold up a sign to celebrate the fact that each has surpassed the 1,000-hour mark in space during the flight. The two mission specialists joined three other astronauts and an international payload specialist for 16 days of scientific research aboard the Space Shuttle Columbia.

  3. Robonaut: A Robotic Astronaut Assistant

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Diftler, Myron A.

    2001-01-01

    NASA's latest anthropomorphic robot, Robonaut, has reached a milestone in its capability. This highly dexterous robot, designed to assist astronauts in space, is now performing complex tasks at the Johnson Space Center that could previously only be carried out by humans. With 43 degrees of freedom, Robonaut is the first humanoid built for space and incorporates technology advances in dexterous hands, modular manipulators, lightweight materials, and telepresence control systems. Robonaut is human size, has a three degree of freedom (DOF) articulated waist, and two, seven DOF arms, giving it an impressive work space for interacting with its environment. Its two, five fingered hands allow manipulation of a wide range of tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems.

  4. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility (SSPF), members of the 1998 astronaut candidate class (group 17) are shown future components of the International Space Station, such as the Multi- Purpose Logistics Module at right. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSPF. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  5. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  6. Astronaut Virgil Grissom Entering Liberty Bell 7

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Assisted by Astronaut John Glenn, Astronaut Virgil Grissom enters the Mercury capsule, Liberty Bell 7, for the MR-4 mission on July 21, 1961. Boosted by the Mercury-Redstone vehicle, the MR-4 mission was the second manned suborbital flight.

  7. Astronaut Leroy Chiao, assigned as mission specialist for the mission, prepares to ascend stairs to

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-72 TRAINING VIEW --- Astronaut Leroy Chiao, assigned as mission specialist for the mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Chiao will join an international mission specialist and four other NASA astronauts aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  8. Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-72 TRAINING VIEW --- Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Duffy will be joined by four other NASA astronauts and an international mission specialist aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  9. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer.

  10. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  11. Behind the Scenes: Astronauts Keep Trainers in BBQ Bliss

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, astronaut Mike Massimino talks with astronaut Terry Virts as well as Stephanie Turner, one of the people who keeps the astronaut corps in line. Mass also ...

  12. Small robot will give astronauts a big hand.

    PubMed

    Flinn, E D

    2000-02-01

    Now being built at NASA-Ames is a small robot that will work independently alongside astronauts in space. About the size of a softball, the 5-in.-diam. Personal Satellite Assistant (PSA) will serve as an intelligent robot, providing another set of eyes and ears and an extra nose to the crew and ground support personnel. The device will move and operate on its own in the microgravity environment of space-based vehicles. Yuri Gawdiak, principal investigator for the projects, expects astronauts to fly a demonstration model of the device aboard a Space Shuttle in about two years. The first crew to use PSAs will test the examine safety issues. Those tests, if successful, will lead to a demonstration aboard the International Space Station. Gawdiak says the project has an annual budget of about $500,000. PMID:11542871

  13. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, members of the 1998 astronaut candidate class (group 17) learn about the thermal protection system on the orbiters, such as Atlantis overhead. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  14. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Clayton C. Anderson practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  15. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 3, members of the 1998 astronaut candidate class (group 17) get a close-up view of the tiles, part of the thermal protection system, on the underside of the orbiter Atlantis overhead. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  16. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the 1998 astronaut candidate class (group 17) look at the aft of a Space Shuttle Main Engine (SSME) (right). The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  17. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Ron Woods (left) shows members of the 1998 astronaut candidate class (group 17) an Apollo-style space suit and how it differs from the current suits. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  18. 1998 astronaut candidates tour CCAS facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Cape Canaveral Air Station, members of the 1998 astronaut candidate class (Group 17) pose in front of the Project Mercury monument at Launch Complex 14 during a tour of the station's facilities. This 13-foot-high astronomical symbol for the planet Mercury was constructed by General Dynamics, the Atlas airframe contractor, and dedicated in 1964 in honor of those who flew in the Mercury 7 capsule. The class is at Kennedy Space Center taking part in training activities, including a flight awareness program, as well as touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  19. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the 1998 astronaut candidate class (group 17) learn about the use of the Space Shuttle Main Engine (SSME) Processing Facility. At left is one of the main shuttle engines. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  20. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The 1998 astronaut candidate class (group 17) gather in the Space Shuttle Main Engine Processing (SSMEP) Facility. In the foreground is one of the main shuttle engines. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  1. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On a raised platform in the Orbiter Processing Facility bay 3, members of the 1998 astronaut candidate class (group 17) look at the aft fuselage of the orbiter Atlantis. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  2. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Tracy E. Caldwell (Ph.D.) practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  3. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 3, Larry Osheim (right), who is with United Space Alliance, shows members of the 1998 astronaut candidate class (group 17) a sample of Felt Reusable Surface Insulation (FRSI) blankets used on the orbiters. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  4. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) take part in fire training. The class is taking part in training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  5. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Sunita L. Williams practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  6. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch a demonstration as part of fire training. The class is taking part in training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  7. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On their tour of KSC, members of the 1998 astronaut candidate class (group 17) stop at the Space Shuttle Main Engine (SSME) Processing Facility for a close up look at a main shuttle engine. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  8. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Patricia C. Hilliard (M.D.) practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  9. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, 1998 astronaut candidates (ASCAN) Barbara R. Morgan, Patricia C. Hilliard (M.D.) and Bjarni V. Tryggvason look at the hardware exhibits, such as the engine actuator on the table. Tryggvason is with the Canadian Space Agency. The 1998 ASCAN class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. Other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the other international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, and Marcos Pontes.

  10. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Alan G. Poindexter practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  11. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  12. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    NASA Astrophysics Data System (ADS)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  13. NASA Now: Path of an Astronaut

    NASA Video Gallery

    Mike Foreman is one of the shuttle astronauts who has lived and worked on the ISS. He flew on space shuttle Endeavour in March of 2008, and he returned to the station in on space shuttle Atlantis i...

  14. Behind the Scenes: Astronauts Get Float Training

    NASA Video Gallery

    In this episode of "NASA Behind the Scenes," astronaut Mike Massimino continues his visit with safety divers and flight doctors at the Johnson Space Center's Neutral Buoyancy Laboratory as they com...

  15. ISS Update: NASA Astronaut Mike Fincke

    NASA Video Gallery

    NASA Public Affairs Officer Rob Navias talks with NASA Astronaut Mike Fincke inside the Mission Control Center at Johnson Space Center. They discuss the current activities taking place aboard the I...

  16. Astronaut Neil Armstrong participates in simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  17. Astronaut Suni Williams on Value of Education

    NASA Video Gallery

    In this public service announcement, NASA astronaut Suni Williams stresses the importance of studying science, technology, engineering and math. What you learn in school today will help you reach f...

  18. Portrait of Astronaut Richard F. Gordon Jr.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Richard F. Gordon Jr., Prime Crew Command Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  19. Portrait of Astronaut Alan L. Bean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Alan L. Bean, Prime Crew Lunar Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  20. Official portrait of astronaut Richard N. Richards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Official portrait of Richard N. Richards, United States Navy (USN) Captain, member of Astronaut Class 9 (1980), and space shuttle pilot. Richards wears a blue pressure suit with space shuttle orbiter model displayed on table on his left.

  1. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  2. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Gennadiy M. Strekalov (right), Mir-18 flight engineer, is briefed on medical supplies by Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Strekalov and a number of other cosmonauts and astronauts participating in

  3. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT).

  4. Official portrait Astronaut Ellison S. Onizuka

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Official portrait of Astronaut Ellison S. Onizuka in the blue shuttle flight suit with an American flag in the background. There is a small model of the shuttle and a helmet on the table in front of him.

  5. Astronaut Charles Conrad using the bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, during an exercise session on the bicycle ergometer in the crew quarters of the Skylab Orbital Workshop (OWS) in the Skylab 2 space station cluster in Earth orbit.

  6. Astronaut Virgil Grissom during water egress training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury Space Suit, stands outside of a mock-up of the Mercury capsule on the deck of a ship taking him to emergency water egress training activities.

  7. Astronauts Meade tests SAFER system during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Carl J. Meade tests the new Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles above Earth. The end of the Remote Manipulator System's (RMS) robot arm, with an unoccupied foot restraint attached, is at frame's edge.

  8. Astronauts Call Tucson for Educational Event

    NASA Video Gallery

    Commander Mark Kelly, Pilot Greg Johnson and Expedition 28 Flight Engineer Ron Garan participate from space in a community gathering in Tucson, Ariz. The three astronauts answer questions about the...

  9. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Norman E. Thagard (left), guest researcher, signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as his Mir 18 crew mates members look on. Cosmonauts Vladimir Dezhurov (center), misson com

  10. Philadelphia Eagles Honor NASA Astronaut Chris Ferguson

    NASA Video Gallery

    NASA astronaut Chris Ferguson returned to his hometown on Nov. 7 to serve as the Philadelphia Eagles' Honorary Captain during the NFL's "Monday Night Football" game. The Eagles hosted the Chicago B...

  11. Astronaut Neil Armstrong during thermovacuum training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  12. Latent Herpes Viral Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  13. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  14. Mission X: Train Like an Astronaut Pilot Study

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  15. Astronaut Mike Fossum With SHERE

    NASA Video Gallery

    Flight Engineer Mike Fossum aboard the International Space Station takes a moment to demonstrate the Shear History Extensional Rheology Experiment. Known as SHERE, the experiment investigates the e...

  16. Families learn what it's like to be a geoscientist astronaut

    NASA Astrophysics Data System (ADS)

    Adamec, Bethany Holm

    2012-02-01

    Astronaut and AGU member Andrew Feustel delivered the 2011 Public Lecture on Sunday, 4 December. Feustel gave a fun and engaging talk full of amazing photos about his two space missions: STS-125, during which he and his fellow crew members extended the life of the Hubble Space Telescope, and STS-134, the space shuttle Endeavour's final mission, which delivered the Alpha Magnetic Spectrometer (AMS) to the International Space Station (ISS). AMS is a state-of- the-art instrument designed to study matter and the origin and structure of the universe. Regular Eos readers will remember a July 2011 article about Eos in space, complete with a photo of an issue of Eos floating in front of the ISS window (Eos, 92(28), 236, doi:10.1029/2011EO2800 08). As the enthusiastic AGU member who took that issue into space, Feustel spoke from the unique perspective of someone who was trained in the geosciences before becoming an astronaut. Thus, he discussed the role of astronauts as explorers of Earth from space as well as the importance of geological observations on the Moon and the exploration of the cosmos. To thank him for his dedication, AGU president Mike McPhaden joined more than 160 other attendees at the Public Lecture and presented Feustel with a framed picture of the article featuring Eos in space.

  17. First Class of Female Astronauts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. Shannon W. Lucid was born on January 14, 1943 in Shanghai, China but considers Bethany, Oklahoma to be her hometown. She spent many years at the University of Oklahoma, receiving a Bachelor in chemistry in 1963, a Master in biochemistry in 1970, and a Doctorate in biochemistry in 1973. Dr. Lucid flew on the STS-51G Discovery, STS-34 Atlantis, STS-43 Atlantis, and STS-58 Columbia shuttle missions, setting the record for female astronauts by logging 838 hours and 54 minutes in space. She also currently holds the United States single mission space flight endurance record for her 188 days on the Russian Space Station Mir. From February 2002 to September 2003, she served as chief scientist at NASA Headquarters before returning to JSC to help with the Return to Flight program after the STS-107 accident. Born November 8, 1947, in Murfreesboro, Tennessee, Margaret Rhea Seddon received a Doctorate of Medicine in 1973 from the University of Tennessee. She flew on space missions STS-51 Discovery, STS-40 Columbia, and STS-58 Columbia for a total of over 722 hours in space. Dr. Seddon retired from NASA in November 1997, taking on a position as the Assistant Chief Medical Officer of the Vanderbilt Medical Group in Nashville, Tennessee. Kathryn Sullivan was born October 3, 1951 in Patterson, New Jersey but considers Woodland Hills, California to be her hometown. She received a Bachelor in Earth Sciences from the University of California, Santa Cruz in 1973 and a Doctorate in Geology from Dalhousie University in Halifax, Nova Scotia in 1978. She flew on space missions STS-41G, STS-31, and STS-45 and logged a total of 532 hours in space. Dr. Sullivan left NASA in August 1992 to

  18. The Lifetime Surveillance of Astronaut Health Newsletter

    NASA Technical Reports Server (NTRS)

    Lee, Lesley

    2011-01-01

    The June 2010 LSAH newsletter introduced the change from the Longitudinal Study of Astronaut Health research study to the new Lifetime Surveillance of Astronaut Health program (An Overview of the New Occupational Surveillance Program for the Astronaut Corps). Instead of performing research-focused retrospective analyses of astronaut medical data compared to a JSC civil servant control population, the new program is focused on prevention of disease and prospective identification and mitigation of health risks in each astronaut due to individual exposure history and the unique occupational exposures experienced by the astronaut corps. The new LSAH program has 5 primary goals: (1) Provide a comprehensive medical exam for each LSAH participant; (2) Conduct occupational surveillance; (3) Improve communication, data accessibility, integrity and storage; (4) Support operational and healthcare analyses; and (5) Support NASA research objectives. This article will focus primarily on the first goal, the comprehensive medical exam. Future newsletters will outline in detail the plans and processes for addressing the remaining program goals.

  19. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  20. Astronauts Access Web from Space

    NASA Video Gallery

    Aboard the International Space Station, Expedition 22 Commander Jeff Williams and Flight Engineers Soichi Noguchi and T.J. Creamer share their thoughts about Internet access from space and post a r...

  1. Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix

    NASA Technical Reports Server (NTRS)

    Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.

    2014-01-01

    Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.

  2. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  3. Astronaut-Induced Disturbances to the Microgravity Environment of the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.; Amir, Amir R.; Beck, Sherwin M.

    2001-01-01

    In preparation for the International Space Station, the Enhanced Dynamic Load Sensors Space Flight Experiment measured the forces and moments astronauts exerted on the Mir Space Station during their daily on-orbit activities to quantify the astronaut-induced disturbances to the microgravity environment during a long-duration space mission. An examination of video recordings of the astronauts moving in the modules and using the instrumented crew restraint and mobility load sensors led to the identification of several typical astronaut motions and the quantification or the associated forces and moments exerted on the spacecraft. For 2806 disturbances recorded by the foot restraints and hand-hold sensor, the highest force magnitude was 137 N. For about 96% of the time, the maximum force magnitude was below 60 N, and for about 99% of the time the maximum force magnitude was below 90 N. For 95% of the astronaut motions, the rms force level was below 9.0 N. It can be concluded that expected astronaut-induced loads from usual intravehicular activity are considerably less than previously thought and will not significantly disturb the microgravity environment.

  4. Video- Astronaut Don Pettit Discusses His Saturday Morning Science Demonstrations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. This video clip is an interview with Pettit after his mission in which he discusses his Saturday Morning Science demonstrations. This series of experiments offer a rich opportunity for laymen to peek into the fascinating world on orbit, and a valuable opportunity for active or potential space researchers to see research opportunities and pitfalls.

  5. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  6. STS-117 Astronauts John Olivas and Jim Reilly During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Jim Reilly (center frame), and John 'Danny' Olivas (bottom center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  7. Astronaut Mike Fincke Conducts Fluid Merging Viscosity Measurement (FMVM) Experiment

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  8. STS-116 Astronauts Curbeam and Fuglesang Perform Space Walk

    NASA Technical Reports Server (NTRS)

    2006-01-01

    STS-116 astronaut and mission specialist, Robert Curbeam, along with the European Space Agency's (ESA) Christer Fuglesang (partially out of the frame), are anchored to the International Space Station's Canadarm2 foot restraints. The two were working on the port overhead solar array wing on the Station's P6 truss during the mission's fourth session of Extra Vehicular Activity (EVA). For 6 hours and 38 minutes, the space walkers used specially prepared, tape insulated tools to guide the array wing neatly inside its blanket box.

  9. Astronauts Share the Art and Science of Earth, in their Photographs from Space

    NASA Astrophysics Data System (ADS)

    Barstow, D. W.

    2013-12-01

    extend their scientific and artistic value. The session will include hellos and messages about Earth photography from current astronauts on the International Space Station, either pre-recorded, or if logistics work out (pending NASA approval), in a live downlink from ISS. Daniel Barstow, the presenter, is the Principal Investigator of Windows on Earth, and works closely with the astronauts on Earth photography.

  10. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts. PMID:11604058

  11. Space Shuttle Underside Astronaut Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  12. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    in 1993. Foale has conducted extravehicular activities from both the Space Shuttle and the Russian Mir space station. Grunsfeld has two previous spaceflights to his credit. For Nicollier, who was selected by ESA in 1978 in the first group of European astronauts, it will be the fourth flight into space, more than any other European astronaut to date. Prior to taking part in the first Hubble servicing mission in December 1993, he was a mission specialist on the August 1992 STS-46 mission during which Eureca - the European retrievable experiment platform - was deployed and the first Tethered Satellite System test flight conducted. In February 1996 he participated in STS-75, which carried the US Microgravity Payload experiments and the second flight test of the Tethered Satellite System. Nicollier, who is delighted and honoured to be reassigned to a Hubble servicing mission, points out: "obviously, it makes sense to take advantage of our previous training and mission-specific experience to increase the likelihood of success, but it will nevertheless be a complex and demanding flight. 'Routine' is a word that has no place in astronaut's vocabulary." With three previous space missions, Nicollier is thoroughly experienced in the operation of the Shuttle's robotic arm and the procedures associated with meeting, capturing and redeploying free-flying platforms from the US Space Shuttle. Regular contacts with European development engineers ensure that Nicollier's experience from the Shuttle missions will also flow into the development of European elements for the International Space Station, most notably the Automated Transfer Vehicle and the European Robotic Arm. "Together with the selection of Pedro Duque for the STS-95 mission in October this year, and others we confidently expect in the future, the selection of Claude Nicollier, who is one of ESA's most experienced astronauts, is a clear signal of the high esteem in which NASA holds high professional skills and human

  13. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  14. Psychological training of German science astronauts

    NASA Astrophysics Data System (ADS)

    Manzey, Dietrich; Schiewe, Albrecht

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  15. The Digital Astronaut Project Bone Remodeling Model

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.

    2014-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.

  16. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a media conference in the Apollo/Saturn V Center, former Apollo astronaut Edwin 'Buzz' Aldrin, who flew on Apollo 11, the launch to the moon, demonstrates a point in his comment for the press. Joining him in the conference are other Apollo astronauts Neil A. Armstrong (left), who also flew on Apollo 11 and was the first man to set foot on the moon; Gene Cernan (right), who flew on Apollo 10 and 17; and Walt Cunningham (back to camera), who flew on Apollo 7. In the background is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  17. Management of Asymptomatic Renal Stones in Astronauts

    NASA Technical Reports Server (NTRS)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  18. Changes in Monocyte Functions of Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.

  19. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Photographers and cameramen fill the stands of the Apollo/Saturn V Center for a press conference with former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  20. Cytogenetic Biodosimetry Using the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Rhone, J.; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic analysis of blood lymphocytes remains the most sensitive and reliable method available for in vivo assessment of the biological effects of exposure to radiation and provides the most informative measurement of radiation induced health risks. To date chromosome damage has been assessed in lymphocytes from more than 30 astronauts before and after they participated in long-duration space missions of three months or more on board the International Space Station. For all individuals, the frequency of chromosome damage measured within a month of return from space was higher than their prefight yield and biodosimetry estimates lie within the range expected from physical dosimetry. Biodosimetry data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. In addition, chromosome damage is reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize excess health risk incurred by crewmembers. A review of astronaut biodosimetry data will be presented along with recent findings on the persistence of space radiation induced chromosome damage and the cytogenetic effects of repeat long duration missions

  1. Anthropometric survey of the astronaut applicants and astronauts from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.

    1993-01-01

    The Anthropometry and Biomechanics Laboratory at the Johnson Space Center has been collecting anthropometric data from astronaut applicants since 1977. These anthropometric measurements had been taken from 473 applicants. Based on the position they applied for, these applicants were classified as either mission specialists, payload specialists, pilots, or observers. The main objective was to document the variations among these applicants and tabulate the percentile data for each anthropometric dimension. The percentile and the descriptive statistics data were tabulated and graphed for the whole astronaut candidate population; for the male and female groups; for each subject classification such as pilot, mission specialist, and payload specialist; and finally, for those who were selected as astronauts.

  2. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard Space Shuttle Columbia (STS-65) Payload Specialist Chiaki Mukai is ready to begin one of her busy twelve hour shifts as she enters the International Microgravity Laboratory 2 (IML-2) spacelab science module via the spacelab turnel (note hatch opening behind her). The tunnel connects the IML-2 module with the Orbiter Vehicle's (OV) crew compartment. Mounted on a rack handrail and on a forward end cone bracket are video cameras that will record the two weeks of experimenting inside the module. Mukai is a representative from the National Space Development Agency (NASDA) of Japan.

  3. Astronaut Gordon Fullerton first pilot for Shuttle Approach and Landing Test

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Astronaut C. Gordon Fullerton, pilot of the first crew for the Space Shuttle Approach and Landing Tests (ALT), is photographed at the Rockwell International Space Division's Orbiter assembly facility at Palmdale, California on the day of the rollout of the Shuttle Orbiter 101 'Enterprise' spacecraft. The DC-9 size airplane-like Orbiter 101 is in the background.

  4. Astronaut Richard Truly, second pilot for Shuttle Approach and Landing Test

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Astronaut Richard H. Truly, pilot of the second crew for the Space Shuttle Approach and Landing Tests (ALT), is photographed at the Rockwell International Space Division's Orbiter assembly facility at Palmdale, California on the day of the rollout of the Shuttle Orbiter 101 'Enterprise' spacecraft. The DC-9 size airplane-like Orbiter 101 is in the background.

  5. Astronaut Gordon Cooper in centrifuge for tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  6. Astronaut John Glenn Enters Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  7. Astronaut Glenn in the Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  8. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  9. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  10. Astronaut James Buchli wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).

  11. Astronaut Bonnie Dunbar wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.

  12. STS-118 Astronaut Tracy Caldwell During Training

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, listens as a crew trainer briefs her on the usage of parachute gear during an emergency egress training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit

  13. Astronaut Gordon Cooper smiles for recovery crew

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., has a smile for the recovery crew of the U.S.S. Kearsarge, after he is on board from a successful 22 orbit mission of the earth in his spacecraft 'Faith 7'. Cooper is still sitting in his capsule, with his helmet off.

  14. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  15. Official portrait of Astronaut Vance D. Brand

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Official portrait of Astronaut Vance D. Brand. Brand is in the dark blue shuttle flight suit with his helmet under his arm and an American flag behind him. Above and to the right of his head is a view of the shuttle flying.

  16. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  17. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT) (48403-4); Collins looks out the aft flight deck window in the Shuttle mockup trainer (48405).

  18. SPEECH DURATIONS OF ASTRONAUT AND GROUND COMMUNICATOR.

    PubMed

    MATARAZZO, J D; WIENS, A N; SASLOW, G; DUNHAM, R M; VOAS, R B

    1964-01-10

    Laboratory studies suggest that an interviewer can influence the speech duration of an interviewee by modifications in his own speech duration. What appears to be a related association between the speech duration of communicators on the ground and an astronaut in orbital flight was found. PMID:14075727

  19. Original 7 Astronauts Inspect Mercury Model

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The original seven Mercury astronauts were from left, front row: Virgil 'Gus' Grissom. Scott Carpenter, Donald 'Deke' Slayton and Gordon Cooper; back row: Alan Shepard, Walter Schirra and John Glenn. The Mercury 7 astronauts were introduced to the American public in April 1959. The seven criteria for selection were as follows: 1. less than 40 years old; 2. less than 5 foot 11 inches tall: 3. excellent physical condition; 4. bachelor's degree in engineering or equivalent; 5. test-pilot school graduate; 6. minimum of 1,500 hours flying time; 7. qualified jet pilot. However, the process of choosing the first astronauts was elaborate and rigorous. The Langley Space Task Group believed that one of the most important prerequisites was being a test pilot. Langley engineer Charles Donlan and test pilot Robert Champine played important roles in the screening and selection process. Once selected, the astronauts began their training program at Langley. This included a 'little of everything' ranging from a graduate-level course in introductory space science to simulator training and scuba-diving. Training continued until the Langley Space Task Group was transferred to Houston, Texas.

  20. Apollo 11 Astronauts During Press Conference

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The night before launch day, Apollo 11 crew members (R-L) Michael Collins, Neil Armstrong, and Edwin Aldrin, participated in a closed circuit press conference the night before they began their historic lunar landing mission. At far left is chief astronaut and director of flight crew operations, Donald K. Slayton. The press conference with questions via intercom, was held under semi-isolation conditions to avoid exposing the astronauts to possible illness at the last minute. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Astronaut Gordon Cooper during flight tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  2. Astronaut Virgil Grissom preparing for centrifuge training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury pressure suit, is preparing for centrifuge training. He is receiving assistance in adjusting the breathing apparatus which is attached to a data recording device at his feet. Assisting him is Dr. Jackson.

  3. STS-120 Astronaut Stephanie D. Wilson

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Attired in a training version of her shuttle launch and entry suit, astronaut Stephanie D. Wilson, STS-120 mission specialist, awaits the start of a training session in the Space Vehicle Mockup Facility at Johnson Space Center. Wilson was preparing for her launch aboard Space Shuttle Discovery which occurred on October 23, 2007.

  4. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Norman E. Thagard (seated, left), guest researcher, watches as Vladimir N. Dezhurov (seated, center), signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as his Mir 18 crew mates and the

  5. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Bonnie J. Dunbar (left), STS-71 mission specialist, signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as her STS-71 crew mates members look on. Cosmonauts Anatoliy Y. Solovyov (center),

  6. Astronaut Scott Parazynski during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (partially visible in foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  7. Astronauts Ochoa and Tanner during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Wearing the training versions of the launch and entry suits, astronauts Ellen Ochoa, STS-66 payload commander, and Joseph P. Tanner, STS-66 mission specialist, await the beginning of a training session on emergency egress procedures. The training was held in the crew compartment trainer (CCT) at JSC's Shuttle mock-up and integration laboratory.

  8. STS-120 Astronaut Pamela A. Melroy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    While seated at the commander's station, astronaut Pamela A. Melroy, STS-120 commander, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Preparing for the STS-120 mission which launched October 23, 2007, Melroy is wearing a training version of her shuttle launch and entry suit.

  9. Astronaut Scott Parazynski during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  10. STS-118 Astronaut Tracy Caldwell During Training

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, participates in a training session on the usage of a special device, used to lower oneself from a troubled shuttle, in the Space Vehicle Mockup Facility at the Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit.

  11. How Can "Weightless" Astronauts Be Weighed?

    ERIC Educational Resources Information Center

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  12. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  13. Atrial Arrhythmias in Astronauts - Summary of a NASA Summit

    NASA Technical Reports Server (NTRS)

    Barr, Yael R.; Watkins, Sharmila D.; Polk, J. D.

    2010-01-01

    Background and Problem Definition: To evaluate NASA s current standards and practices related to atrial arrhythmias in astronauts, Space Medicine s Advanced Projects Section at the Johnson Space Center was tasked with organizing a summit to discuss the approach to atrial arrhythmias in the astronaut cohort. Since 1959, 11 cases of atrial fibrillation, atrial flutter, or supraventricular tachycardia have been recorded among active corps crewmembers. Most of the cases were paroxysmal, although a few were sustained. While most of the affected crewmembers were asymptomatic, those slated for long-duration space flight underwent radiofrequency ablation treatment to prevent further episodes of the arrhythmia. The summit was convened to solicit expert opinion on screening, diagnosis, and treatment options, to identify gaps in knowledge, and to propose relevant research initiatives. Summit Meeting Objectives: The Atrial Arrhythmia Summit brought together a panel of six cardiologists, including nationally and internationally renowned leaders in cardiac electrophysiology, exercise physiology, and space flight cardiovascular physiology. The primary objectives of the summit discussions were to evaluate cases of atrial arrhythmia in the astronaut population, to understand the factors that may predispose an individual to this condition, to understand NASA s current capabilities for screening, diagnosis, and treatment, to discuss the risks associated with treatment of crewmembers assigned to long-duration missions or extravehicular activities, and to discuss recommendations for prevention or management of future cases. Summary of Recommendations: The summit panel s recommendations were grouped into seven categories: Epidemiology, Screening, Standards and Selection, Treatment of Atrial Fibrillation Manifesting Preflight, Atrial Fibrillation during Flight, Prevention of Atrial Fibrillation, and Future Research

  14. Astronautics in past and future

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1974-01-01

    The contributions of Oberth in the development of rocket technology as a basis for the conduction of manned and unmanned space flights are considered, giving attention also to other rocket pioneers, including Ziolkowski, Ganswindt, von Hoefft, and Goddard. Early stages in rocket development in Germany, Russia, and the U.S. are examined. The launching of Sputnik I in October 1957 was the beginning of a new era in the history of mankind. The start of this new era of space exploration and space utilization comes at a time when the limited resources of the earth begin to impose severe restrictions upon the continuing growth of human technology and civilization. It is predicted that the new space technology will provide the means for overcoming these restrictions. Future space programs, which are partly based on the development of the space shuttle, are discussed, taking into account the international aspects of the new plans for the utilization and the study of space.

  15. Albedo protons and electrons at ISS - an important contribution to astronaut dose?

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Slaba, T. C.; Badavi, F. F.; Mertens, C. J.; Blattnig, S.

    2015-12-01

    Albedo particles, which are created by cosmic ray interactions in the atmosphere and are moving upwards away from the surface of the earth, are often considered a negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Models of astronaut exposure, however, consistently underestimate measurements onboard ISS when these albedo particles are neglected. Recent measurements by instruments on ISS (AMS, PAMELA, and SEDA-AP) hint that there are high energy protons and electrons which are not being modeled and that may contribute to radiation exposure on ISS. Estimates of the contribution of radiation exposure on ISS due to albedo particles, along with open questions, will be discussed.

  16. Astronaut Terence T. (Tom) Henricks, mission commander, shines a tiny flashlight onto some cables

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Among the Inflight Maintenance (IFM) chores that were handled by the crew members during their almost 17 days in space aboard the Space Shuttle Columbia was one that involved going into the bay beneath the floor of the Life and Microgravity Spacelab (LMS-1) Science Module. Astronaut Terence T. (Tom) Henricks, mission commander, shines a tiny flashlight onto some cables related to LMS-1 supported computer systems. As in the case of the other IFM chores, Henricks efforts were successful. He was joined by four other NASA astronauts and two international payload specialists for the Space Shuttle duration record-setting mission.

  17. Official portrait of 1987 astronaut candidate Bruce E. Melnick

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Official portrait of 1987 astronaut candidate Bruce E. Melnick. Melnick, a member of the United States Coast Guard (USCG) and Astronaut Class 12, wears navy blue flight suit and holds space shuttle orbiter model.

  18. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  19. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  20. A torque balance control moment gyroscope assembly for astronaut maneuvering

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Driskill, G. W.

    1972-01-01

    A control moment gyroscope assembly is described for use in an astronaut maneuvering research vehicle. This vehicle (backpack) will be used by astronauts inside the orbiting Skylab for evaluation of various maneuvering systems.

  1. Astronaut Richard Richards looks out of Discovery's flight deck window

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Richard N. Richards, mission commander, looks through one of the Space Shuttle Discovery's overhead flight deck windows to view the space walk activities of astronauts Carl J. Meade, who took this picture, and Mark C. Lee.

  2. Astronaut Richard Truly and Candidate Frederick Hauck in shuttle simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard Truly and Astronaut Candidate Frederick Hauck in the Shuttle Mission Simulator in bldg 5 (Mission Simulation and Training Facility).They are in the flight deck seated at the commander and pilots seats checking documentation before simulation begins.

  3. Astronaut William Gregory prepares to exit his sleep quarters

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, ejects a cassette and prepares to bail out of his sleep quarters aboard the Earth orbiting Space Shuttle Endeavour. The astronaut was about to begin a shift of support to the red team.

  4. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  5. Leisure time activities in space: A survey of astronauts and cosmonauts

    NASA Astrophysics Data System (ADS)

    Kelly, Alan D.; Kanas, Nick

    Questionnaires were returned from 54 astronauts and cosmonauts which addressed preferences for media and media-generated subjects that could be used to occupy leisure time in space. Ninety-three percent of the respondents had access to records or audio cassettes, and cosmonauts had greater access than astronauts to multiple media. Cosmonauts and long-duration space travelers reported that they missed various media more than their astronaut and short-duration counterparts. Media subjects that related to international events, national events and historical topics were rated as most preferable by all respondents and by several of the respondent groups. The findings are discussed in terms of their relevance for occupying free time during future long-duration manned space missions.

  6. STS-49 INTELSAT VI-R WETF exercise with astronauts Musgrave, Clifford, Voss

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, International Telecommunications Satellite Organization (INTELSAT) VI-R simulation at JSC's Weightless Environment Training Facility (WETF) Bldg 29 was conducted with extravehicular mobility unit (EMU) suited astronauts F. Story Musgrave, Michael R. U. Clifford, and James S. Voss. Astronauts practiced a three person extravehicular activity (EVA) procedure for INTELSAT capture and climbing into the airlock mockup. No apparent problems were identified in placing three astronauts in the airlock at one time. Ground based exercises were conducted after five failed INTELSAT capture attempts during the STS-49 mission. Left to right are, Clifford, Musgrave, and Voss. With Musgrave on the remote manipulator system (RMS) manipulator foot restraint (MFR) and Clifford on a portable foot restraint mounted on the payload bay sill longeron, and Voss on a PFR mounted on a strut with the PFR Attachment Device (PAD), the capture bar is maneuvered under the INT

  7. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of astronaut candidates....

  8. Component of astronauts survival equipment backpack - medical injectors

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The automatic medical injectors were carried on the Mercury-Atlas 9 flight. The injectors provide the astronaut with injection tubes of Tigan, for preventing motion sickness and Demerol, for relieving pain. The tubes encased in the block are stowed in the astronauts survival kit. The single injection tubes are placed in a pocket of the astronauts space suit.

  9. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    NASA Astrophysics Data System (ADS)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  10. Adaptation of autonomic heart rate regulation in astronauts after spaceflight

    PubMed Central

    Vandeput, Steven; Widjaja, Devy; Aubert, Andre E.; Van Huffel, Sabine

    2013-01-01

    Background Spaceflight causes changes in the cardiovascular control system. The aim of this study was to evaluate postflight recovery of linear and nonlinear neural markers of heart rate modulation, with a special focus on day-night variations. Material/Methods Twenty-four-hour Holter ECG recordings were obtained in 8 astronauts participating in space missions aboard the International Space Station (ISS). Data recording was performed 1 month before launch, and 5 and 30 days after return to Earth from short- and long-term flights. Cardiovascular control was inferred from linear and nonlinear heart rate variability (HRV) parameters, separately during 2-hour day and 2-hour night recordings. Results No remarkable differences were found in the postflight recovery between astronauts from short- and long-duration spaceflights. Five days after return to Earth, vagal modulation was significantly decreased compared to the preflight condition (day: p=0.001; night: p=0.019), while the sympathovagal balance was strongly increased, but only at night (p=0.017). A few nonlinear parameters were reduced early postflight compared to preflight values, but these were not always statistically significant. No significant differences remained after 30 days of postflight recovery. Conclusions Our results show that 5 days after return from both short- and long-duration space missions, neural mechanisms of heart rate regulation are still disturbed. After 1 month, autonomic control of heart rate recovered almost completely. PMID:23291736

  11. Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Gebelein, Jennifer

    1999-01-01

    This report is produced in accordance with the requirements outlined in the NASA Research Grant NAG9-1032 titled "Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery". This grant funds the Remote Sensing Research Unit of the University of California, Santa Barbara. This document summarizes the research progress and accomplishments to date and describes current on-going research activities. Even though this grant has technically expired, in a contractual sense, work continues on this project. Therefore, this summary will include all work done through and 5 May 1999. The principal goal of this effort is to test the accuracy of a sub-regional portion of an AVHRR-based land cover product. Land cover mapped to three different classification systems, in the southwestern United States, have been subjected to two specific accuracy assessments. One assessment utilizing astronaut acquired photography, and a second assessment employing Landsat Thematic Mapper imagery, augmented in some cases, high aerial photography. Validation of these three land cover products has proceeded using a stratified sampling methodology. We believe this research will provide an important initial test of the potential use of imagery acquired from Shuttle and ultimately the International Space Station (ISS) for the operational validation of the Moderate Resolution Imaging Spectrometer (MODIS) land cover products.

  12. STS-102 Astronaut Paul Richards Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  13. Astronaut Prepares for Mission With Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  14. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer

  15. Summary of astronaut inputs concerning automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    An assessment of the potential for increased productivity on Space Station Freedom through advanced automation and robotics was recently completed. Sponsored by the Office of Space Station, the study involved reviews of on-orbit operations experience documentation, interviews with 23 current and former astronauts/payload specialists as well as other NASA and contractor personnel, and a survey of 32 astronauts and payload specialists. Assessed areas of related on-orbit experience included Skylab, space shuttle, Spacelab, and the Soviet space program, as well as the U.S. nuclear submarine program and Antarctic research stations analogs. The survey questionnaire asked the respondents to rate the desirability of advanced automation, EVA robotics, and IVA robotics. They were also asked to rate safety impacts of automated fault diagnosis, isolation, and recovery (FDIR); automated exception reporting and alarm filtering; and an EVA retriever. The respondents were also asked to evaluate 26 specific applications of advanced automation and robotics related to perceived impact on productivity.

  16. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  17. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  18. Extravehicular mobility unit training and astronaut injuries

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  19. Astronaut Jack Lousma taking hot bath

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A closeup view of Astronaut Jack R. Lousma, Skylab 3 pilot, taking a hot bath in the crew quarters of the Orbital Workshop (OWS) of the Skylab space station cluster in Earth orbit. In deploying the shower facility, the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  20. Former Astronaut Neil A. Armstrong Visits MSFC

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  1. End effector with astronaut foot restraint

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  2. Enhancing astronaut performance using sensorimotor adaptability training.

    PubMed

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  3. Enhancing astronaut performance using sensorimotor adaptability training

    PubMed Central

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  4. Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011

    NASA Technical Reports Server (NTRS)

    Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.

    2011-01-01

    The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.

  5. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  6. Current and future translation trends in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Rowe, Timothy

    1986-01-01

    The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.

  7. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  8. STS-117 Astronauts John Olivas and Jim Reilly During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Jim Reilly (out of frame), and John 'Danny' Olivas (partially obscured, center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4). The horizon of Earth and a crescent moon are visible on the right.

  9. NBL Pistol Grip Tool for Underwater Training of Astronauts

    NASA Technical Reports Server (NTRS)

    Liszka, Michael; Ashmore, Matthew; Behnke, Mark; Smith, Walter; Waterman, Tod

    2011-01-01

    A document discusses a lightweight, functional mockup of the Pistol Grip Tool for use during underwater astronaut training. Previous training tools have caused shoulder injuries. This new version is more than 50 percent lighter [in water, weight is 2.4 lb (=1.1 kg)], and can operate for a six-hour training session after 30 minutes of prep for submersion. Innovations in the design include the use of lightweight materials (aluminum and Delrin(Registered TradeMark)), creating a thinner housing, and the optimization of internal space with the removal of as much excess material as possible. This reduces tool weight and maximizes buoyancy. Another innovation for this tool is the application of a vacuum that seats the Orings in place and has shown to be reliable in allowing underwater usage for up to six hours.

  10. U.S. Secretary of State chats with astronauts

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Following the successful launch of the STS-88 crew aboard Endeavour from Launch Pad 39A at 3:35:34 a.m. EST, U.S. Secretary of State Madeleine Albright (second from left) talks with astronauts (left to right) Jim Voss, Mark Polansky and Carl Walz. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Voss is a member of the STS- 100 crew which will be the eighth ISS assembly mission. Polansky is slated to fly on STS-98 which will be the sixth ISS assembly mission. Walz is currently assigned to fly on the ISS on the fourth long duration crew.

  11. Seeing Earth Through the Eyes of an Astronaut

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa

    2014-01-01

    The Human Exploration Science Office within the ARES Directorate has undertaken a new class of handheld camera photographic observations of the Earth as seen from the International Space Station (ISS). For years, astronauts have attempted to describe their experience in space and how they see the Earth roll by below their spacecraft. Thousands of crew photographs have documented natural features as diverse as the dramatic clay colors of the African coastline, the deep blues of the Earth's oceans, or the swirling Aurora Borealis of Australia in the upper atmosphere. Dramatic recent improvements in handheld digital single-lens reflex (DSLR) camera capabilities are now allowing a new field of crew photography: night time-lapse imagery.

  12. Instrument for Measuring the Body Mass of Astronaut

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Shimada, Kazuhito; Maru, Koichi; Yokota, Masayuki; Hashimoto, Seiji; Nagai, Norihiro; Sugita, Yoichi

    The accuracy and the efficiency of the prototype of the Space Scale, which has been proposed as a practical and lightweight instrument for measuring the mass of astronauts under microgravity conditions in the International Space Station (ISS), have been evaluated by the parabolic flight tests. 2 series of the parabolic flight tests, in which the rigid metal structure and the human subject are used for the mass to be measured, have been conducted. The standard uncertainty of the mass measurement of the rigid object is estimated to be approximately 2.1 % for single measurement and 0.7 % for the average of 12 measurements. The present status and the future status of the Space Scale are discussed.

  13. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    NASA Technical Reports Server (NTRS)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and

  14. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  15. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  16. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment in the OWS

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment, as seen in this photographic reproduction taken from a television transmission made by a color television camera in the Orbital Workshop (OWS) of the Skylab space station in Earth orbit. Bean is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  17. Validation of astronaut psychological select-in criteria

    NASA Technical Reports Server (NTRS)

    Rose, R. M.; Helmreich, R. L.; Mcfadden, T.; Santy, P. A.; Holland, A. W.

    1992-01-01

    An optional astronaut selection strategy would select-in individuals on the basis of personality attributes associated with superior performance. Method: A test battery, the Astronaut Personal Characteristics Inventory (ASTROPCI) was developed which assesses positive and negative components of achievement, motivation, and interpersonal orientations and skills. The battery was administered to one hundred three astronaut candidates and sixty-six current U.S. Shuttle astronauts. To determine performance, a series of conceptual areas related to space flight performance were defined. Astronauts rated their peers on each of these dimensions. Ratings were obtained on all eighty-four current astronauts (excluding those selected in 1990). In addition to peer ratings, supervisor assessments of the same dimensions were obtained for each astronaut. Results: Cluster and factor analysis techniques were employed to isolate subgroups of astronauts. Those astronauts with both high achievement needs and interpersonal skills were most often rated among the top five by their peers and least often rated among the lowest five. A number of scales discriminated between astronauts rated high and low on one or more performance dimensions. Conclusions: The results parallel findings from the personality assessment of individuals in other demanding professions, including aircraft pilots and research scientists, suggesting that personality factors are significant determinants to performance in the space environment.

  18. Latent Virus Reactivation in Space Shuttle Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  19. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  20. The astronaut of 1988. [training and selection

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  1. Latent Herpes Viruses Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  2. Astronaut Story Musgrave during STS-6 EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and orbital maneuvering system (OMS) pod are seen backdropped against the blackness of space. The gold-foil protected object on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite (TDRS).

  3. Food kit used by Mercury astronauts

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Food kit used by Mercury astronauts. Some is dehydrated and needs water, other packets are ready to eat. Size is measured relative to a ruler. Included are packets of mushroom soup, orange-grapefruit juice, cocoa beverage, pineapple juice, chicken with gravy, pears, strawberries, beef and vegetables and other assorted food containers (08742-3); mechanism for connecting water dispensor to dehydrated food containers to facilitate rehydration (08744); Group packets of ready to eat space food, with size being measured by a ruler (8745).

  4. Astronaut Tamara Jernigan during WETF training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Tamara E. Jernigan, STS-52 mission specialist, waves to her training staff prior to being submerged in a 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF). Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Jernigan joined another STS-52 crew member in using the pool to rehearse contingency space walk chores. She was later named payload commander for the STS-67 mission aboard the Space Shuttle Endeavour.

  5. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts meet with the media at the Apollo/Saturn V Center prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. From left are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  6. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, identifies a reporter to pose a question to one of the former Apollo astronauts seated next to her. From left, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  7. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, relays a question from the media to former Apollo astronaut Neil A. Armstrong. Beside Armstrong are Edwin 'Buzz' Aldrin, Gene Cernan, and Walt Cunningham, all of whom also flew on Apollo missions. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  8. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  9. 43rd Congress of the International Astronautical Federation

    SciTech Connect

    Appelbaum, J.; Landis, G.A.

    1992-08-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  10. Astronaut Stephen Oswald and fellow crew members on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  11. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, checks Astronaut James A. Lovell Jr., Gemini 7 prime crew pilot, follwoing workout on exercise machine. Results will be compared with those obtained during space flight for evaluation (60602); Astronaut Frank Borman, Gemini 7 command pilot, sits as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness (60603).

  12. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  13. Astronaut Thuot during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Space Vehicle Mockup Facility, astronaut Pierre J. Thuot retrieves gear to rehearse a suit donning exercise on the middeck. Thuot's realistic environs are provided by the shuttle crew compartment trainer (CCT). Thuot, mission specialist, and four other NASA astronauts will spend two weeks in space aboard the Space Shuttle Columbia in March of 1994. He and astronaut Andrew M. Allen have been rehearsing contingency space walks. There is no scheduled extravehicular activity (EVA) for the STS-62 flight.

  14. Apollo 11 astronaut Buzz Aldrin appears relaxed before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 astronaut Edwin E. Aldrin Jr. appears to be relaxed during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  15. Astronaut James Lovell prior to entering Gemini Mission Simulator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut James A. Lovell Jr., prime crew command pilot of the Gemini 12 space flight, in Building 5, Mission Simulation and Training Facility, Houston, Texas. This photo was taken prior to his entering the Gemini Mission Simulator for flight training (45578); Astronaut Lovell (right) talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division (45579); Astronaut Lovell prepares to enter Gemini Mission Simulator (45580).

  16. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals

    NASA Technical Reports Server (NTRS)

    Struster, Jack

    2010-01-01

    Personal journals maintained by NASA astronauts during six-month expeditions onboard the International Space Station were analyzed to obtain information concerning a wide range of behavioral and human factors issues. Astronauts wrote most about their work, followed by outside communications (with mission control, family, and friends), adjustment to the conditions, interactions with crew mates, recreation/leisure, equipment (installation, maintenance), events (launches, docking, hurricanes, etc.), organization/management, sleep, and food. The study found evidence of a decline in morale during the third quarters of the missions and identified key factors that contribute to sustained adjustment and optimal performance during long-duration space expeditions. Astronauts reported that they benefited personally from writing in their journals because it helped maintain perspective on their work and relations with others. Responses to questions asked before, during, and after the expeditions show that living and working onboard the ISS is not as difficult as the astronauts anticipate before starting their six-month tours of duty. Recommendations include application of study results and continuation of the experiment to obtain additional data as crew size increases and operations evolve.

  17. Comprehensive visual field test & diagnosis system in support of astronaut health and performance

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Clark, Jonathan B.; Reisman, Garrett E.; Tarbell, Mark A.

    Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.

  18. Skylab Astronauts' Neutral Buoyancy Simulator Training

    NASA Technical Reports Server (NTRS)

    1970-01-01

    After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.

  19. Cytogenetic biodosimetry using the blood lymphocytes of astronauts

    NASA Astrophysics Data System (ADS)

    George, Kerry A.; Rhone, Jordan; Chappell, Lori J.; Cucinotta, Francis A.

    2013-11-01

    Cytogenetic analysis of peripheral blood lymphocytes is the most sensitive and reliable method currently available for in vivo assessment of the biological effects of exposure to radiation and provides the most informative measurement of radiation induced health risks. Data indicates that space missions of a few months or more can induce measureable increases in the yield of chromosome damage in the blood lymphocytes of astronauts that can be used to estimate an organ dose equivalent, and biodosimetry estimates lie within the range expected from physical dosimetry. Space biodosimetry poses some unique challenges compared to terrestrial biological assessments of radiation exposures, but data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. Moreover if chromosome damage persists in the blood for many years, results can be used for retrospective dose reconstruction. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. In addition, chromosome damage is reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize health risk incurred by crewmembers. The current paper presents a review of astronaut biodosimetry data, along with recently derived data on the relative cancer risk estimated using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database.

  20. The Astronaut-Athlete: Optimizing Human Performance in Space.

    PubMed

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response). PMID:26595138

  1. Probabilistic assessment of radiation risk for astronauts in space missions

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; De Angelis, Giovanni; Cucinotta, Francis A.

    2011-04-01

    Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ϕ. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions. Internal documentation of NASA Constellation Trade Study (F.A. Cucinotta, personal communication).

  2. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Wearing a training version of a partial pressure suit, Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  3. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  4. The International Space Station: Together is the Future

    NASA Video Gallery

    As the International Space Station Program completes 10 years of continuous human presence, former crewmembers discuss its past, present and future. The first residents, astronaut Bill Shepherd and...

  5. The Digital Astronaut: An integrated modeling and database system for space biomedical research and operations

    NASA Astrophysics Data System (ADS)

    White, Ronald J.; McPhee, Jancy C.

    2007-02-01

    The Digital Astronaut is an integrated, modular modeling and database system that will support space biomedical research and operations in a variety of fundamental ways. This system will enable the identification and meaningful interpretation of the medical and physiological research required for human space exploration, a determination of the effectiveness of specific individual human countermeasures in reducing risk and meeting health and performance goals on challenging exploration missions and an evaluation of the appropriateness of various medical interventions during mission emergencies, accidents and illnesses. Such a computer-based, decision support system will enable the construction, validation and utilization of important predictive simulations of the responses of the whole human body to the types of stresses experienced during space flight and low-gravity environments. These simulations will be essential for direct, real-time analysis and maintenance of astronaut health and performance capabilities. The Digital Astronaut will collect and integrate past and current human data across many physiological disciplines and simulations into an operationally useful form that will not only summarize knowledge in a convenient and novel way but also reveal gaps that must be filled via new research in order to effectively ameliorate biomedical risks. Initial phases of system development will focus on simulating ground-based analog systems that are just beginning to collect multidisciplinary data in a standardized way (e.g., the International Multidisciplinary Artificial Gravity Project). During later phases, the focus will shift to development and planning for missions and to exploration mission operations. Then, the Digital Astronaut system will enable evaluation of the effectiveness of multiple, simultaneously applied countermeasures (a task made difficult by the many-system physiological effects of individual countermeasures) and allow for the prescription of

  6. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  7. Feeding the Astronauts During Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    This slide presentation reviews the issues surrounding feeding astronauts during long duration missions. There is a brief history from the food and food packaging available during Project Mercury through the current food requirements. It shows the packaging and the requirements that have been used. The current food system includes thermostabilized and irradiated foods to reduce the potential of harmful microorganisms. There is an explanation of drinks available, rehydratable foods, and natural forms of food, (i.e., commercially available foods that are packaged in individual serving sizes). There is also discussion of the requirements for future missions, and the research gap for requirements for food that will last 5 years, with packaging and nutrients intact.

  8. Astronaut Foale is reunited with his family

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronaut C. Michael Foale is reunited with his family after an approximate four-and-a-half-month stay aboard the Russian Space Station Mir. Wife Rhonda, 5-year-old Jenna and 3-year-old Ian stayed up for the late-night homecoming after the Oct. 6 landing of the Space Shuttle orbiter Atlantis on the STS-86 mission. Foale, a member of the Mir 24 crew, was dropped off on the Russian space station during the STS-84 mission in mid-May. He joined the STS-86 crew aboard Atlantis for the return trip to Earth. STS-86 was the seventh docking of the Space Shuttle with the Mir. STS-86 Mission Specialist David A. Wolf replaced Foale on the Russian station.

  9. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, waits for photographers to take photos of former Apollo astronauts (left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  10. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone, chief of KSC's Media Services branch, identifies a reporter in the stands to pose a question to one of the former Apollo astronauts seated next to her. From left to right, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. Behind them on the lower floor are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  11. Astronaut Training in the Neutral Buoyancy Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  12. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  13. Astronaut Jerry Linenger with sheet of TIPS correspondence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With scissors in hand, astronaut Jerry M. Linenger, mission specialist, prepares to cut off a lengthy sheet of correspondence from ground controllers. Called the Thermal Imaging Printing System (TIPS), the message occupies a stowage locker on Discovery's middeck. Astronaut L. Blaine Hammond, pilot, retrieves a clothing item from a nearby locker.

  14. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  15. Astronaut James Lovell hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Astronaut Frank Borman, command pilot, waits in the raft to be hoisted aboard the helicopter.

  16. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  17. Undergraduate Astronautics at the United States Naval Academy.

    ERIC Educational Resources Information Center

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  18. Astronauts Armstrong and Aldrin study rock samples during field trip

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  19. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  20. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, uses a 35mm camera to take a picture of fellow astronaut Carl E. Walz (out of frame) in Discovery's cargo bay. The two were engaged in an extravehicular activity (EVA) to test equipment to be used on future EVA's. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  1. Astronauts Newman, Walz and Bursch change out lithium hydroxide canister

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Three members of the astronaut class of 1990 change out a lithium hydroxide canister beneath Discovery's middeck during STS-51 mission. Left to right are astronauts James H. Newman, Carl E. Walz and Daniel W. Bursch, all mission specialists. Note the lithium hydroxide canister floating between them.

  2. Astronauts Conrad and Kerwin practice Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Scientist-Astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC.

  3. Astronaut Gordon Cooper backs out of his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper backs out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  4. Astronaut Gordon Cooper is assisted from his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper stands supported by strong hands after climbing out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  5. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  6. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which Astronauts Charles Conrad Jr., commander, and Bean participated. Connrad, who took this picture, is reflected in the helmet visor of the lunar module pilot.

  7. Astronauts Weitz and Conrad suit up during prelaunch activity

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, prime crew pilot of the first manned Skylab mission, is suited up in bldg 5 at JSC during prelaunch training activity. He is assisted by Astronaut Charles Conrad Jr., prime crew commander. The man in the left background is wearing a face mask to insure that Conrad, Joseph Kerwin, and Weitz are not exposed to disease prior to launch.

  8. Astronaut Richard Covey in the Crew Compartment trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Richard O. Covey sits at the pilot's station in the one-G Crew Compartment trainer (CCT) at JSC. Astronaut Frederick H. (Rick) Hauck (almost obscured at left) is in the commander's station. Covey was named as pilot for the STS 26 mission to be flown in 1988.

  9. Astronaut Story Musgrave in payload bay during EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman is reflected in the helmet visor of F. Story Musgrave as he photographs the veteran astronaut during one of the pair's three shared spacewalks. Beside Musgrave is the Wide Field/Planetary Camera (WF/PC II).

  10. Astronaut Harris checks response of muscles to microgravity

    NASA Technical Reports Server (NTRS)

    1995-01-01

    With astronaut Janice E. Voss, STS-63 mission specialist, as his test subject, astronaut Bernard A. Harris Jr., payload commander and a physician, uses a special biomedical harness/experiment to check the response of muscles to microgravity. They are on the middeck, where many of the Spacehab-3 experiments are located. The Spacehab-3 is in the cargo bay.

  11. Official portrait of astronaut Robert D.Cabana

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Official portrait of astronaut Robert D.Cabana, a colonel in the United States Marine Corps (USMC) and a member of the 1985 Astronaut Class 11. Cabana is wearing a blue flight suit and poses with an American flag and asmall model of the space shuttle orbiter.

  12. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  13. Astronaut Jack Lousma egresses Skylab 3 Command Module

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, U.S.S. New Orleans, during recovery operations in the Pacific Ocean. Note surgical masks on those assisting Lousma. This is to prevent the astronauts from contracting infections.

  14. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  15. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  16. The First Lunar Landing as Told by the Astronauts.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brochure contains a transcript of the Apollo 11 post-flight press conference, in which the astronauts discussed the scenes shown in 40 photographs taken during the mission. These photographs are included in the brochure. Most are in color. The conference concluded with a question and answer interview of the astronauts. (PR)

  17. 14 CFR § 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of astronaut candidates. § 1214.1106 Section § 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  18. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  19. Astronauts Readdy, Walz, and Newman in airlock after EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Discovery's airlock, astronaut William F. Readdy, pilot, holds up a STS-51 slogan -- 'Ace HST Tool Testers' -- for still and video cameras to record. Readdy is flanked by astronauts Carl E. Walz (left) and James H. Newman, who had just shared a lengthy period of extravehicular activity (EVA) in and around Discovery's cargo bay.

  20. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  1. The Lifetime Surveillance of Astronaut Health (LSAH) Project

    NASA Technical Reports Server (NTRS)

    Bopp, Eugenia; Wear, Mary L.; Lee, Lesley R.; VanBaalen, Mary

    2013-01-01

    From 1989-2010 NASA conducted a research study, the Longitudinal Study of Astronaut Health, to investigate the incidence of acute and chronic morbidity and mortality in astronauts and to determine whether their occupational exposures were associated with increased risk of death or disability. In 2004, the Institute of Medicine recommended that NASA convert the longitudinal study into an occupational health surveillance program and in 2010, NASA initiated the Lifetime Surveillance of Astronaut Health project. The new program collects data on astronaut workplace exposures, especially those occurring in the training and space flight environments, and conducts operational and health care analyses to look for trends in exposure and health outcomes. Astronaut selection and retention medical standards are rigorous, requiring an extensive clinical testing regimen. As a result, this employee population has contributed to a large set of health data available for analyses. Astronauts represent a special population with occupational exposures not typically experienced by other employee populations. Additionally, astronauts are different from the general population in terms of demographic and physiologic characteristics. The challenges and benefits of conducting health surveillance for an employee population with unique occupational exposures will be discussed. Several occupational surveillance projects currently underway to examine associations between astronaut workplace exposures and medical outcomes will be described.

  2. Astronaut Wendy Lawrence participates in training session in the CCT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  3. Astronaut Scott Carpenter examines protective material on pressure bulkhead

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury Astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead in the white room facility at Hanger S, Cape Canaveral, Florida. This is the spacecraft which will carry astronaut Carpenter on the nation's second manned orbital flight.

  4. Did Vertigo Kill America's Forgotten Astronaut?

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  5. Changes in Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  6. Cleanliness verification process at Martin Marietta Astronautics

    NASA Astrophysics Data System (ADS)

    King, Elizabeth A.; Giordano, Thomas J.

    1994-06-01

    The Montreal Protocol and the 1990 Clean Air Act Amendments mandate CFC-113, other chlorinated fluorocarbons (CFC's) and 1,1,1-Trichloroethane (TCA) be banned from production after December 31, 1995. In response to increasing pressures, the Air Force has formulated policy that prohibits purchase of these solvents for Air Force use after April 1, 1994. In response to the Air Force policy, Martin Marietta Astronautics is in the process of eliminating all CFC's and TCA from use at the Engineering Propulsion Laboratory (EPL), located on Air Force property PJKS. Gross and precision cleaning operations are currently performed on spacecraft components at EPL. The final step of the operation is a rinse with a solvent, typically CFC-113. This solvent is then analyzed for nonvolatile residue (NVR), particle count and total filterable solids (TFS) to determine cleanliness of the parts. The CFC-113 used in this process must be replaced in response to the above policies. Martin Marietta Astronautics, under contract to the Air Force, is currently evaluating and testing alternatives for a cleanliness verification solvent. Completion of test is scheduled for May, 1994. Evaluation of the alternative solvents follows a three step approach. This first is initial testing of solvents picked from literature searches and analysis. The second step is detailed testing of the top candidates from the initial test phase. The final step is implementation and validation of the chosen alternative(s). Testing will include contaminant removal, nonvolatile residue, material compatibility and propellant compatibility. Typical materials and contaminants will be tested with a wide range of solvents. Final results of the three steps will be presented as well as the implementation plan for solvent replacement.

  7. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  8. Is Autonomic Modulation Different between European and Chinese Astronauts?

    PubMed Central

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E.

    2015-01-01

    Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc. PMID:25799561

  9. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  10. Use of Astronaut Photography in Magnetospheric Research: A Proof of Concept Study

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Almond, N.; Murphy, K. R.

    2012-12-01

    Astronauts on the International Space Station often take spectacular image sequences of the Aurora Borealis and Australis, with high time and spatial resolution, during intervals of strong auroral activity. A barrier to the use of these images in research is that they do not often have accurate pointing information, and as such are difficult to put in context and use alongside data from other sources, both ground- and space-based. Here we use automated starfield recognition software to reconstruct the pointing of astronaut photographs of the aurora during an ISS pass over North America during early 2012, and assess the usefulness of the technique by comparing the resulting mapped images with data from the THEMIS and CARISMA arrays of ground-based magnetometers and all-sky imagers and magnetometers on the GOES-13 and GOES-15 spacecraft.

  11. STS-49 INTELSAT VI-R WETF exercise with astronauts Musgrave and Clifford

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, International Telecommunications Satellite Organization (INTELSAT) VI-R simulation at JSC's Weightless Environment Training Facility (WETF) Bldg 29 was conducted with extravehicular mobility unit (EMU) suited astronauts F. Story Musgrave and Michael R. U. Clifford. Astronauts evaluate techniques involving the capture of INTELSAT VI-R. Musgrave (left) and Clifford (right) practice installation of the capture bar to the INTELSAT mockup in the WETF pool. Ground based exercises were conducted after five failed INTELSAT capture attempts during the STS-49 mission. With Musgrave on a portable foot restraint (PFR) (mounted on a PFR Attachment Device) and Clifford on a PFR mounted on the payload bay (PLB) sill longeron, the capture bar is attached to the INTELSAT mockup. Test results provided input for orbiting STS-49 crewmembers on possible alternate INTELSAT capture procedures. SCUBA-equipped divers assist in and monitor simulation activities.

  12. STS-49 INTELSAT VI-R WETF exercise with astronauts Musgrave and Clifford

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, International Telecommunications Satellite Organization (INTELSAT) VI-R simulation at JSC's Weightless Environment Training Facility (WETF) Bldg 29 was conducted with extravehicular mobility unit (EMU) suited astronauts F. Story Musgrave and Michael R. U. Clifford. Ground based exercises were conducted after five failed INTELSAT capture attempts during the STS-49 mission. Musgrave (right) on portable foot restraint (PFR) mounted on the INTELSAT cradle and Clifford on a portable foot restraint (PFR) mounted on the payload bay (PLB) sill longeron get handholds on the INTELSAT mockup as the capture bar freefloats in the PLB (foreground). Once the astronauts stabilize the INTELSAT mockup, they will attach the capture bar. Test results provided input for orbiting STS-49 crewmembers on possible alternate INTELSAT capture procedures. SCUBA-equipped divers assist in and monitor the simulation activity.

  13. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  14. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  15. Robonaut: a telepresence-based astronaut assistant

    NASA Astrophysics Data System (ADS)

    Diftler, Myron; Jenks, Kenneth C.; Williams, Lorraine E. P.

    2002-02-01

    Robonaut, NASA's latest anthropomorphic robot, is designed to work in the hazards of the space environment as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot is now performing complex tasks under telepresence control in the Dexterous Robotics Laboratory at the Johnson Space Center that could previously only be carried out directly by humans. With 43 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. It has a three-DOF articulated waist and two seven-DOF arms, giving it an impressive work space for interacting with its environment. Its two five-fingered hands allow manipulation of a wide range of common tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems. Telepresence control is the main mode of operation for Robonaut. The teleoperator dons a variety of sensors to map hand, head, arm and body motions to control the robot. A distributed object-oriented network architecture links the various computers used to gather posture and joint angle data from the human operator, to control the robot, to generate video displays for the human operator and to recognize and generate human voice inputs and outputs. Distributed object-oriented software allows the same telepresence gear to be used on different robots and allows interchangable telepresence gear in the laboratory environment. New telepresence gear and new robots only need to implement a standard software interface. The Robonaut implementation is a two-tiered system using Java/Jini for distributed commands and a commercial-off-the-shelf data sharing protocol for high-speed data transmission. Experimental telepresence gear is being developed and evaluated. Force feedback devices and techniques are a focus, and their efforts on teleoperator performance of typical space operations tasks is being measured. Particularly, the augmentation of baseline

  16. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  17. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  18. Astronauts Truly and Engle engaged in on-board activity

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Joe H. Engle, STS-2 Commander, enjoying in-space exercise session on a treadmill specially designed for astronauts in zero gravity. He is in the middeck area of the orbiter (39570); Engle prepares a beverage by using a space squirt-gun to fill a plastic, accordion-like receptacle while another one, already filled, floats around his left knee. He is wearing the onboard constant wear garment (39571); Astronaut Richard H. Truly, STS-2 Pilot, shaves in zero gravity atmosphere (39572); Engle shaves in zero gravity atmosphere. Behind him is a fire extinguisher and a picture of George Abbey (39573).

  19. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  20. Where Failure Is Not an Option -Personalized Medicine in Astronauts.

    PubMed

    Stingl, Julia C; Welker, Susanne; Hartmann, Gunther; Damann, Volker; Gerzer, Ruppert

    2015-01-01

    Drug safety and efficacy are highly variable among patients. Most patients will experience the desired drug effect, but some may suffer from adverse drug reactions or gain no benefit. Pharmacogenetic testing serves as a pre-treatment diagnostic option in situations where failure or adverse events should be avoided at all costs. One such situation is human space flight. On the international space station (ISS), a list of drugs is available to cover typical emergency settings, as well as the long-term treatment of common conditions for the use in self-medicating common ailments developing over a definite period. Here, we scrutinized the list of the 78 drugs permanently available at the ISS (year 2014) to determine the extent to which their metabolism may be affected by genetic polymorphisms, potentially requiring genotype-specific dosing or choice of an alternative drug. The purpose of this analysis was to estimate the potential benefit of pharmacogenetic diagnostics in astronauts to prevent therapy failure or side effects. PMID:26489089

  1. Quest Airlock Reflected in STS-113 Astronaut Herrington's Helmet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, STS-113 astronaut and mission specialist John B. Herrington participates in the mission's first space walk. The opened hatch of the Quest Airlock can be seen reflected in Herrington's helmet visor. The airlock, located on the starboard side of the Unity Node I on the International Space Station (ISS), makes it easier to perform space walks, and allows both Russian and American space suits to be worn when the Shuttle is not docked with the ISS. American suits will not fit through Russian airlocks at the Station. STS-113, the 16th American assembly flight and 112th overall American flight to the ISS, launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavour. The main mission objective was the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1.

  2. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  3. Effects of HZE particles on astronauts

    SciTech Connect

    Curtis, S.B. ); Townsend, L.W.; Wilson, J.W. )

    1991-01-01

    Outside the effective shielding provided by Earth's magnetic field, space travelers will experience penetrating high-energy galactic cosmic rays, which reach the orbit of earth isotropically and with fluxes that vary smoothly over an 11-yr interval that is related to the 11-yr cycle of solar activity. This radiation consists of protons (Z=1) up to uranium (Z=92). There is an abundance of even--over odd-Z nuclei, with several local peaks in abundance when plotted as a function of Z. A prominent peak occurs in the iron abundance (Z=26) and is presumably related to the richness of iron in the galactic cosmic ray sources. The iron component is particularly important in a biological assessment of risk. High-energy particles with Z>2 have been called (high Z and energy) (HZE) particles. These particles are a concern in the evaluation of radiation risk because (a) they are highly ionizing and cause considerable damage as they penetrate biological tissue, and (b) they undergo nuclear interactions within the spacecraft shielding and the bodies of the astronauts themselves to produce lighter, more penetrating and sometimes highly ionizing secondaries. Considerably more ground-based cellular and animal experimentation is in order with high-energy heavy-ion beams before definitive statements can be made on the risk of HZE particles to humans outside the geomagnetosphere.

  4. Official Portrait of Astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  5. Identification of Trends into Dose Calculations for Astronauts through Performing Sensitivity Analysis on Calculational Models Used by the Radiation Health Office

    NASA Technical Reports Server (NTRS)

    Adams, Thomas; VanBaalen, Mary

    2009-01-01

    The Radiation Health Office (RHO) determines each astronaut s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This code uses an approximation of the Boltzman transport formula. The purpose of the project is to run this code for various International Space Station (ISS) flight parameters in order to gain a better understanding of how this code responds to different scenarios. The project will determine how variations in one set of parameters such as, the point of the solar cycle and altitude can affect the radiation exposure of astronauts during ISS missions. This project will benefit NASA by improving mission dosimetry.

  6. Will Toxic Amounts of Lead be Released from Astronauts' Bones During Long Duration Missions?

    NASA Astrophysics Data System (ADS)

    Garcia, H. D.

    2012-01-01

    Toxic contaminants in the air, water, or food are a source of concern, both on Earth and in spacecraft. In microgravity, however, another source of potential toxicants can be introduced: astronauts' bones. Space toxicologists have been concerned about the possibility that crew members of long duration missions could suffer from lead poisoning due to the release of lead into their blood from stores of lead in their bones. If this occurs, NASA would be unable to set a Spacecraft Water Exposure Guideline (SWEG) for permissible lead concentrations in spacecraft drinking water that would be protective of astronaut health. Lead ingested earlier in life is stored in the bones where it can remain for many years without causing toxicity unless something happens to cause the release of lead into the blood. Microgravity is known to accelerate bone resorption, leading to the release of calcium and lead from bones into the blood. Relatively small increases in the concentration of lead in the blood can cause toxic effects in a variety of organ systems including the brain and kidneys. One mathematical model [1] of the rate of release of lead from bones in microgravity predicts that blood lead levels (BLLs) exceeding the current level of concern for adults (25 µg/dL) could be achieved within about 100 days in microgravity in some astronauts. Another, more complex mathematical model [2], however, predicts a much more limited release of lead, such that clinically significant concentrations of lead in the blood are not achieved. To determine which of these predictions is more accurate, BLL measurements were taken in a sample of astronauts before and after stays of at least 150 days on the International Space Station. BLLs measured before flight and compared to BLLs upon landing confirmed that no measurable increases in BLLs are observed in crew members of long-duration missions. In all astronauts tested, BLLs were below the U.S. population average of about 2 μg/dL both before and

  7. Astronauts Need Their Rest Too: Sleep-Wake Actigraphy and Light Exposure During Space Flight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The success and effectiveness of human space flight depends on astronauts' ability to maintain a high level of cognitive performance and vigilance. This alert state ensures the proper operation of sophisticated instrumentation. An important way for humans to remedy fatigue and maintain alertness is to get plenty of rest. Astronauts, however, commonly experience difficulty sleeping while in space. During flight, they may also experience disruption of the body's circadian rhythm - the natural phases the body goes through every day as we oscillate between states of high activity during the waking day and recuperation, rest, and repair during nighttime sleep. Both of these factors are associated with impairment of alertness and performance, which could have important consequences during a mission in space. The human body was designed to sleep at night and be alert and active during the day. We receive these cues from the time of day or amount of light, such as the rising or setting of the sun. However, in the environment of the Space Shuttle or the International Space Station where light levels are highly variable, the characteristics of a 24-hour light/dark cycle are not present to cue the astronauts' bodies about what time of the day it is. Astronauts orbiting Earth see a sunset and sunrise every 90 minutes, sending potentially disruptive signals to the area of the brain that regulates sleep. On STS-107, researchers will measure sleep-wake activity with state-of-the-art technology to quantify how much sleep astronauts obtain in space. Because light is the most powerful time cue to the body's circadian system, individual light exposure patterns of the astronauts will also be monitored to determine if light exposure is associated with sleep disruption. The results of this research could lead to the development of a new treatment for sleep disturbances, enabling crewmembers to avoid the decrements in alertness and performance due to sleep deprivation. What we learn

  8. Astronaut James van Hoften working with Syncom IV-3 satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James D. van Hoften gives a shove to the previously troubled Syncom IV-3 communications satellite. Dr. van Hoften stands on a foot restraint/extension to the remote manipulator system (RMS) arm.

  9. Astronaut Daniel Bursch with CPCG experiment on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Daniel W. Bursch, mission specialist, is pictured on Discovery's middeck with the Commercial Protein Crystal Growth (CPCG) experiment. This experiment is designed to explore the structure of specific protein molecules in space-grown crystals.

  10. Astronaut John Glenn in a State of Weightlessness During Friendship

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn photographed in space by an automatic sequence motion picture camera during his flight on 'Friendship 7.' Glenn was in a state of weightlessness traveling at 17,500 mph as these pictures were taken.

  11. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  12. Astronauts Schirra and Stafford congratulate each other on mission completion

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Walter M. Schirra Jr. (right), command pilot, and Thomas P. Stafford, pilot, shake each other's hand as they arrive aboard the aircraft carrier U.S.S. Wasp to conclude their 25 hour, 52 minute Gemini 6 space flight.

  13. Astronaut Edwin Aldrin during zero gravity ingress and egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin E. Aldrin Jr., prime crew pilot of the Gemini 12 space flight, undergoes zero gravity ingress and egress training aboard an Air Force KC-135 aircraft. He practices using camera equipment.

  14. Astronauts Crippen and Payload specialist Garneau in front of SMS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Robert Crippen, left, crew commander, and Payload Specialist Marc Garneau stand in front of the Shuttle Mission Simulator (SMS) in the mockup and integration laboratory during a press conference prior to their STS 41-G mission.

  15. Astronaut Sally Ride responds to question from interviewer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Sally K. Ride, mission specialist for STS-7, responds to a question from an interviewer during a taping session for ABC's Night Line. Dr. Ride is in the shuttle mockup and integration laboratory.

  16. Astronaut John Glenn running as part of physical training program

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida.

  17. Space Station Live: Astronaut Photos Highlight Earth Month

    NASA Video Gallery

    Melissa Dawson, an Earth scientist with NASA’s Johnson Space Center, recently spoke by phone with Public Affairs Officer Nicole Cloutier-Lemasters to discuss the importance of astronaut photograp...

  18. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stowe, R. P.; Feiveson, A. H.; Tyring, S. K.; Pierson, D. L.

    2000-01-01

    The reactivation of cytomegalovirus (CMV) in 71 astronauts was investigated, using polymerase chain reaction. A significantly greater (P<.0001) shedding frequency was found in urine samples from astronauts before spaceflight (10.6%) than in urine from the healthy control subject group (1.2%). Two of 4 astronauts studied during spaceflight shed CMV in urine. A significant increase (P<.0001) in CMV antibody titer, compared with baseline values, was also found 10 days before spaceflight. CMV antibody titer was further increased (P<.001) 3 days after landing, compared with 10 days before the mission. Significant increases in stress hormones were also found after landing. These results demonstrate that CMV reactivation occurred in astronauts before spaceflight and indicate that CMV may further reactivate during spaceflight.

  19. Astronaut Neil A. Armstrong during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Neil A. Armstrong, Gemini 5 backup crew command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  20. Astronaut Neil Armstrong participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  1. Astronaut Neil Armstrong studies rock samples during geological field trip

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  2. Astronauts Armstrong and Scott during photo session outside KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  3. How Can We Protect Our Astronauts in Space?

    NASA Video Gallery

    Richard Wilkins, director for the Center for Radiation Engineering and Science for Space Exploration, or CRESSE, at Prairie View A&M University, explains mitigation procedures to protect astronauts...

  4. Forty Years of Psychological and Psychiatric Selection of NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.

    2000-01-01

    The purpose of this presentation is to chronicle the history and development of the psychological selection process for NASA astronauts. For over 40 years, astronaut applicants have undergone rigorous medical testing to qualify for candidacy. Psychological selection has an equally long history, dating back to 1958, when psychological requirements were established for astronauts during the Mercury program. However, for many years, psychological selection consisted of psychiatric screening for psychopathology. As we approach the day in which the first ISS crew will live and work in space for months at a time, it becomes clear that both the psychological criteria and the selection system to detect said criteria have changed. This presentation discusses the events that led to the current, dual-phase selection system that is used to select individuals into the astronaut corps. Future directions for psychological selection will also be addressed.

  5. Astronaut Hoffman replaces fuse plugs on Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman sees to the replacement of fuse plugs on the Hubble Space Telescope (HST) during the first of five space walks. Thunderclouds are all that is visible on the dark earth in the background.

  6. Astronaut Eileen Collins during phone interview with news media

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in a telephone interview with an out of town media representative after having been announced as the pilot on NASA's STS-63 mission aboard the Space Shuttle Discovery.

  7. Astronaut Terry Hart in orbiter training in the SAIL

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, 'punches up' a display in an orbiter trainer in the JSC Shuttle Avionics Integration Laboratory (SAIL). The scenes Hart controls here appear in the 'windows' of the trainer.

  8. Astronaut Scott Carpenter and technician Joe Schmidt during suiting exercise

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Mercury Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, and Crew Equipment Specialist Joe Schmidt are before a suiting exercise. Schmidt is seen checking the gloves on the Carpenter's pressure suit.

  9. Astronaut James Newman with latch hook for tether device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, shows off a latch hook for a tether device used during the STS-51 extravehicular activity (EVA) on September 16, 1993. Newman, on Discovery's middeck, appears surrounded by sleep restraints.

  10. Behind the Scenes: Astronauts Pockets Deep in Mystery

    NASA Video Gallery

    Host Mike Massimino returns to the pre-launch suit up room at the Kennedy Space Center to reexamine the question: what's inside all those pockets of the astronauts' big orange suits? Find out on "N...

  11. Astronauts L. Gordon Cooper Jr. hoisted up to Navy helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr. is hoisted up to a Navy helicopter during recovery operations in the Atlantic Ocean of the Gemini 5 spacecraft. The NASA Headquarter alternative photo number is 65-H-688.

  12. Astronaut L. Gordon Cooper Jr. during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr., Gemini 5 command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  13. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  14. Astronaut Gordon Cooper walks to elevator to spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr. waited inside the transfer van for several minutes and then leaving the transfer van walked to the elevator which took him to the spacecraft 'Faith 7' atop the Atlas vehicle for his mission.

  15. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  16. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  17. Astronauts Stafford and Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two American ASTP crewmen, Astronauts Thomas P. Stafford (foreground) and Vance D. Brand are seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  18. Astronaut Vance Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Vance D. Brand, command module pilot of the American ASTP crew, is seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  19. [Safety analysis for astronaut and the personal protective equipment].

    PubMed

    Chen, J D; Sun, J B; Shi, H P; Sun, H L

    1999-12-01

    Objective. To analyze and study astronaut and his personal equipment safety. Method. Three of the most widely used approaches, failure mode and effect analysis (FMEA), fault tree analysis (FTA) and system hazards analysis (SHA) were used. Result. It was demonstrated that astronaut and the personal equipment are subjected to various potential hazards, such as human errors, astronaut illness, fire or space suit emergency decompression, etc. Their causes, mechanisms, possible effects and criticality of some critical potential hazards were analyzed and identified in more details with considerations of the historic accidents of manned spaceflight. And the compensating provisions and preventive measures for each hazard were discussed. Conclusion. The analysis study may be helpful in enhancing the safety of the astronaut and its personal protective equipment. PMID:12434807

  20. Astronaut Robert Gibson prepares to use motion picture camera

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Robert L. Gibson, STS 61-C mission commander, partially floats on the aft flight deck of the Shuttle Columbia while preparing to use a motion picture camera. The windows overlooking the cargo bay are visible in the background.

  1. Astronaut Richard Covey with control box for bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Richard O. Covey, mission commander, is seen with the control box for bicycle ergometer on Endeavour. During the eleven-day STS-61 mission, crew members not performing spacewalks found the ergometer to provide much needed exercise.

  2. Astronaut Richard Covey working in the Crew Compartment Trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Richard O. Covey retrieves a helmet from a stowed extravehicular mobility unit (EM) spacesuit in the airlock of the one-G crew compartment trainer (CCT) at JSC. Covey was training for the STS 26 flight.

  3. Astronaut Richards initiates thruster firing during SPIFEX operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    At the commander's station on the Space Shuttle Discovery's forward flight deck, astronaut Richard N. Richards, mission commander, initiates a thruster firing of the spacecraft during operations with the Shuttle Plume Impingement Flight Experiment (SPIFEX).

  4. Behind the Scenes: Rolling Room Greets Returning Astronauts

    NASA Video Gallery

    Have you ever wondered what is the first thing the shuttle crews see after they land? In this episode of NASA Behind the Scenes, astronaut Mike Massimino takes you into the Crew Transport Vehicle, ...

  5. Astronaut Karl Henize with soft drink in middeck area

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Karl Henize drinks from a special carbonated beverage dispenser labeled Pepsi while floating in the middeck area of the shuttle Challenger. Note the can appears to have its own built in straw.

  6. Astronaut James D. van Hoften examines student experiment on Challenger

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut James D. van Hoften, 41-C mission specialist, holds an aluminum box full of honeybees. The experiment in earth orbit is duplicated with another colony of the bees on earth. This is an experiment submitted by student researchers.

  7. Astronaut Michael Collins inspects camera during prelaunch activity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Michael Collins (left), Gemini 10 prime crew pilot, inspects camera during prelaunch activity at Cape Kennedy, Florida. In center background is Dr. Donald K. Slayton, Manned Spacecraft Center (MSC) Director of Flight Crew Operations.

  8. Astronaut's tool for withdrawing/replacing computer cards

    NASA Technical Reports Server (NTRS)

    West, R. L.

    1969-01-01

    Symmetrical tool allows astronauts to withdraw and replace Apollo Telescope Mount control computer cards. It is easily manipulated by a gloved hand, provides positive locking of a withdrawn card, and has a visible locking device.

  9. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  10. Astronauts Culbertson and Bursch brush their teeth on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Frank L. Culbertson (right), mission commander, and Daniel W. Bursch, mission specialist, brush their teeth on Discovery's middeck. Two sleep restraints form part of the backdrop for the photograph.

  11. Astronaut Gerald Carr sits on the bicycle ergometer during prelaunch

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 mission commander, sits on the bicycle ergometer as he takes part in the body mass measurement experiment during a prelaunch physical examination for the crew of the third manned mission.

  12. Astronaut Virgil Grissom and family at Patrick AFB airport

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom and his family are shown at the airport at Patrick Air Force Base facing a crowd of news media representatives. Grissom is speaking into microphones for the news media.

  13. Astronaut Gerald Carr trains with Earth Resources Experiments Package

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 commander, changes a dial on the control and display panel for the Earth Resources Experiments package (EREP) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at JSC.

  14. ISS Update: Astronaut Participates in Autonomous Mission Operations Test

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with astronaut Alvin Drew who is participating in the Autonomous Mission Operations test, which looks at how communication delays will affect future de...

  15. ISS Update: Diagnosing Astronauts in Space From Here on Earth

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly interviews Ed Powers, NASA Flight Surgeon, about how flight doctors work with the crew members on board, diagnosing astronauts in space from Earth and impact...

  16. Astronaut John Fabian show off signs on aft flight deck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut John Fabian, payload specialist, show off a series of signs on the aft flight deck of Discovery, from whose payload bay three communications satellites were deployed. The sign reads 'We deliver and deliver and deliver...'

  17. Astronaut Allen during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the JSC Space Vehicle Mockup Facility, astronaut Andrew M. Allen retrieves gear to rehearse a suit-donning exercise on the middeck. Allen's very realistic environs are provided by the shuttle crew compartment trainer (CCT).

  18. Apollo 11 astronaut Buzz Aldrin takes photos during training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Flying in a KC-135 aircraft, Apollo 11 Lunar Module Pilot Edwin E. Aldrin Jr. takes pictures during training for the upcoming first manned lunar landing with astronauts Neil A. Armstrong Jr. and Michael Collins.

  19. Astronaut Bruce McCandless modeling the EMU/MMU

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Astronaut Bruce McCandless II modeling NASA's extravehicular mobility unit (EMU) spacesuit for shuttle and the backpack unit called the manned maneuvering unit (MMU). McCandless is in JSC's laboratory support facility.

  20. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    NASA Technical Reports Server (NTRS)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  1. Astronauts van Hoften and Nelson conduct pre-breathing exercise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts James D. van Hoften and George D. Nelson, wearing Shuttle launch and entry helmets, conduct a pre-breathing exercise on the forward flight deck of the shuttle Challenger during the STS 41-C mission.

  2. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  3. Space Station Live: Astronaut Don Pettit on Earth Photography

    NASA Video Gallery

    In observance of Earth Day, Space Station Live commentator Pat Ryan talks with NASA astronaut Don Pettit, who along with his fellow Expedition 30/31 crew members captured more than a half a million...

  4. Unimpaired Neuro-Adaptive Plasticity in an Elderly Astronaut

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey; Dawson, David L. (Technical Monitor)

    1999-01-01

    Quantitative analyses of a 77 year old astronaut's balance control performances on a standardized test battery revealed few differences between his neuro-adaptive responses to space flight and those of a group of younger astronauts tested following missions of similar duration. This finding suggests that the physiological changes associated with age do not necessarily impair adaptive plasticity in the human following removal and subsequent reintroduction of gravity.

  5. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.

  6. Astronauts Hoffman and Musgrave pose in aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two of Endeavour's busy team of astronauts share a rare moment of leisure in the aft flight deck captured by an Electronic Still Camera (ESC). Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave also are sharing three of the mission's five planned sessions of extravehicular activity (EVA). Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  7. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  8. Apollo 11 astronaut Neil Armstrong looks over flight plans

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  9. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  10. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  11. Astronaut John W. Young during water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut John W. Young, prime crew command pilot for the Gemini 10 space flight, sits in Static Article 5 during water egress training activity on board the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and Astronaut Michael Collins, will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division.

  12. Astronaut Alan Bean assisted with egressing command module after landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, is assisted with egressing the Apollo 12 Command Module by a U.S. Navy underwater demolition team swimmer during recovery operations in the Pacific Ocean. Already in the life raft are Astronauts Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot. The Apollo 12 splashdown occured at 2:58 p.m., November 24, 1969 near American Samoa.

  13. Astronaut Charles Duke photographed collecting lunar samples at Station 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  14. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  15. Three STS 26 astronauts training in the Crew Compartment trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Three astronauts named in January 1987 as part of a five-member crew for NASA's first flight since the Challenger accident are shown in a photo session of July 1986. Left to right are Astronauts John M. (Mike) Lounge, Richard O. Covey and David C. Hilmers. Lounge and Hilmers will serve as Mission specialists for the STS 26 flight and Covey will serve as pilot. The three are on the middeck of JSC's one-G Crew Compartment Trainer (CCT).

  16. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  17. Astronaut Edward Gibson trains with Earth Resources Experiments Package

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Edward G. Gibson, Skylab 4 science pilot, turns on a switch on the control box of the S190B camera, one of the components of the Earth Resources Experiments Package (EREP). The single lens Earth Terrain Camera takes five-inch photographs. Behind Gibson is the stowed suits of Astronaut Gerald P. Carr, commander for the third manned mission. The exercise took place in the Orbital Workshop one-G trainer at JSC.

  18. Astronaut Assembly of a 14-Meter-Diameter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronaut Jerry Ross is shown assembling a portion of a 14-meter-diameter truss structure in NASAs Neutral Buoyancy Simulator at the Marshall Space Flight Center. The structure is part of a large microwave antenna designed for space-based monitoring of soil moisture levels and ocean temperatures. The underwater assembly tests demonstrated that two astronauts could construct the large antenna in approximately 4-6 hours in space.

  19. Astronaut Richard Truly seen working with Apollo docking mechanism model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Richard H. Truly, an Apollo Soyuz Test Project (ASTP) spacecraft communicator, is seen working with an Apollo docking mechanism in the Mission Control Center during the joint U.S.-USSR ASTP docking in Earth orbit mission. Astronaut Truly, a member of the American ASTP crew support team, was working on the docking probe problem. The crew had notified ground control that there was a problem with removing the probe from the tunnel of the Apollo Command Module.

  20. Astronaut Alan Shepard walks toward MET during first EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Alan B. Shepard Jr., foreground, Apollo 14 commander, walks toward the Modularized Equipment Transporter (MET), out of view at right, during the first Apollo 14 extravehicular activity (EVA-1). An EVA checklist is attached to Shepard's left wrist. Astronaut Edgar D. Mitchell, lunar module pilot, is in the background working at a subpackage of the Apollo Lunar Surface Experiments Package (ALSEP). The cylindrical keg-like object directly under Mitchell's extended left hand is the Passive Seismic Experiment (PSE).

  1. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  2. Latent and lytic Epstein-Barr virus gene expression in the peripheral blood of astronauts.

    PubMed

    Stowe, Raymond P; Kozlova, Elena V; Sams, Clarence F; Pierson, Duane L; Walling, Dennis M

    2011-06-01

    Epstein-Barr virus (EBV) latent and replicative gene transcription was analyzed in peripheral blood B-lymphocytes from astronauts who flew on short-duration (∼11 days) Shuttle missions and long-duration (∼180 days) International Space Station (ISS) missions. Latent, immediate-early, and early gene replicative viral transcripts were detected in samples from six astronauts who flew on short-duration Shuttle missions, whereas viral gene transcription was mostly absent in samples from 24 healthy donors. Samples from six astronauts who flew on long-duration ISS missions were characterized by expanded expression of latent, immediate-early, and early gene transcripts and new onset expression of late replicative transcription upon return to Earth. These data indicate that EBV-infected cells are no longer expressing the restricted set of viral genes that characterize latency but are expressing latent and lytic gene transcripts. These data also suggest the possibility of EBV-related complications in future long-duration missions, in particular interplanetary travel. PMID:21503923

  3. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  4. Memoirs of an armchair astronaut (retired)

    NASA Astrophysics Data System (ADS)

    Clarke, Arthur C.

    1993-11-01

    According to my biographer Neil McAleer, who now knows far more about me than I have any wish to, I joined the British Interplanetary Society (BIS) in the summer of 1934, when it was one year old and I was approaching seventeen. Much of the next two years was spent bombarding the Society's patient secretary, Leslie Johnson, with technical queries which he did his best to answer, and which I am sure would make embarrassing reading today. During this period I also made contact with another active BIS member, the science-fiction writer Eric Frank Russell, to whom I owe a great debt of gratitude for early encouragement. I wish I still possessed his amusing and often bawdy letters, written in the most beautiful script I have ever encountered. In 1936, escaping from the uncharted wilds of rural Somerset to the genteel environs of Whitehall (literally - my office was next door to Downing Street) I made contact with the London members of the BIS, as well as the local s.f. fans. There was a 90% overlap between the two groups, and until the outbreak of war rocketry and science fiction dominated my life, with H.M. Civil Service a very poor third. A quarter of a century later, I looked back on those days in an essay which appeared in Holiday Magazine (May, 1963) and which has since been reprinted in Voices from the Sky (1965), Astounding Days (1989) and By Space Possessed (1993). Any attempt to update it would now be both impossible and absurd: it preserves the spirit of the early Space Age like a fly in amber. Here, exactly as originally published, are 'Memoirs of an Armchair Astronaut (Retired)'.

  5. Geological trainings for analogue astronauts: Lessons learned from MARS2013 expedition, Morocco

    NASA Astrophysics Data System (ADS)

    Orgel, C.; Achorner, I.; Losiak, A.; Gołębiowska, I.; Rampey, M.; Groemer, G.

    2013-09-01

    The Austrian Space Forum (OeWF) is a national organisation for space professionals and space enthusiasts. In collaboration with internal partner organisations, the OeWF focuses on Mars analogue research with their space volunteers and organises space-related outreach/education activities and conducts field tests with the Aouda.X and Aouda.S spacesuit simulators in Mars analogue environment. The main project of OeWF is called "PolAres" [1]. As the result of lessons learned from the Río Tinto 2011 expedition [4], we started to organise geological training sessions for the analogue astronauts. The idea was to give them basic geological background to perform more efficiently in the field. This was done in close imitation of the Apollo astronaut trainings that included theoretical lectures (between Jan. 1963-Nov. 1972) about impact geology, igneous petrology of the Moon, geophysics and geochemistry as well as several field trips to make them capable to collect useful samples for the geoscientists on Earth [3] [5]. In the last year the OeWF has organised three geoscience workshops for analogue astronauts as the part of their "astronaut" training. The aim was to educate the participants to make them understand the fundamentals in geology in theory and in the field (Fig. 1.). We proposed the "Geological Experiment Sampling Usefulness" (GESU) experiment for the MARS2013 simulation to improve the efficiency of the geological trainings. This simulation was conducted during February 2013, a one month Mars analogue research was conducted in the desert of Morocco [2] (Fig. 2.).

  6. An Update on Mortality in the U.S. Astronaut Corps: 1959-2009

    NASA Technical Reports Server (NTRS)

    Amirian, E.; Clark, April; Halm, Melissa; Hartnett, Heather

    2009-01-01

    Although it has now been over 50 years since mankind first ventured into space, the long-term health impacts of human space flight remain largely unknown. Identifying factors that affect survival and prognosis among those who participate in space flight is vitally important, as the era of commercial space flight approaches and NASA prepares for missions to Mars. The Longitudinal Study of Astronaut Health is a prospective study designed to examine trends in astronaut morbidity and mortality. The purpose of this analysis was to describe and explore predictors of overall and cause-specific mortality among individuals selected for the U.S. astronaut corps. All U.S. astronauts (n=321), regardless of flight status, were included in this analysis. Death certificate searches were conducted to ascertain vital status and cause of death through April 2009. Data were collected from medical records and lifestyle questionnaires. Multivariable Cox regression modeling was used to calculate the mortality hazard associated with embarking on space flight, adjusted for sex, race, and age at selection. Between 1959 and 2009, there were 39 (12.1%) deaths. Of these deaths, 18 (42.2%) were due to occupational accidents; 7 (17.9%) were due to other accidents; 6 (15.4%) were attributable to cancer; 6 (15.4%) resulted from cardiovascular/circulatory diseases; and 2 (5.1%) were from other causes. Participation in space flight did not significantly increase mortality hazard over time (adjusted hazard ratio=0.57; 95% confidence interval=0.26-1.26. Because our results are based on a small sample size, future research that includes payload specialists, other space flight participants, and international crew members is warranted to maximize statistical power.

  7. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  8. Station Astronauts Do Experiment for 'Cosmos'

    NASA Video Gallery

    Aboard the International Space Station, Expedition 38 Commander Koichi Wakata of the Japan Aerospace Exploration Agency and Flight Engineer Rick Mastracchio of NASA help 'Cosmos' host Neil deGrasse...

  9. Astronaut Jeff Williams Answers Your Questions

    NASA Video Gallery

    Expedition 22 Commander Jeff Williams, aboard the International Space Station 220 miles above Earth, responds to questions posted on YouTube concerning the station's orientation, life in space and ...

  10. Outer space law: A problem of astronautics

    NASA Technical Reports Server (NTRS)

    Mandl, V.

    1984-01-01

    The theory of space law is discussed from the point of view of similarities and differences between hypothetical space law and current (1932) aviation law. International legal aspects and economic and cultural effects are also addressed.

  11. Close Shave for Astronaut Chris Cassidy

    NASA Video Gallery

    Using a hair trimmer and a vacuum aboard the International Space Station, Flight Engineer Chris Cassidy gives himself a serious haircut in preparation for the arrival of fellow Expedition 36 crewma...

  12. Epstein-Barr virus shedding by astronauts during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  13. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    PubMed Central

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p < 0·0001 for each) Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p < 0·0001). Seventy-eight percent (61/78) of shuttle mission-crewmembers reported taking a dose of sleep-promoting medications on 52% of nights (500/963) and 2 doses on 17% of nights during flight (87/500); 75% of ISS crewmembers (12/16) reported using sleep-promoting medications. Interpretation Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also

  14. STS-49 INTELSAT VI-R mass simulator exercise with astronaut F. Story Musgrave

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, International Telecommunications Satellite Organization (INTELSAT) VI-R mass simulator exercise with astronaut F. Story Musgrave using the Errant Satellite Simulator in the Mockup and Integration Laboratory Bldg 9NE. Ground-based exercises were conducted after several failed INTELSAT capture attempts during the STS-49 mission. Musgrave uses the capture bar to grapple INTELSAT (35413, 35414, 35415) and a telescopic pole to slow INTELSAT spin (35416, 35417). Test results provided input for orbiting STS-49 crewmembers on possible alternate INTELSAT capture procedures.

  15. Astronaut Sunita L. Williams Submerges Into Waters of the Neutral Buoyancy Laboratory (NBL)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronauts Sunita L. Williams, Expedition 14 flight engineer, and Robert L. Curbeam (partially obscured), STS-116 mission specialist, are about to be submerged in the waters of the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Williams and Curbeam are attired in training versions of the Extravehicular Mobility Unit (EMU) space suit. SCUBA-equipped divers are in the water to assist the crew members in their rehearsal intended to help prepare them for work on the exterior of the International Space Station (ISS).

  16. STS-102 Astronaut James Voss Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  17. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  18. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation. PMID:15133283

  19. Latent Virus Reactivation in Astronauts and Shingles Patients

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  20. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.