Science.gov

Sample records for 6b induces phosphorylation

  1. G6b-B inhibits constitutive and agonist-induced signaling by glycoprotein VI and CLEC-2.

    PubMed

    Mori, Jun; Pearce, Andrew C; Spalton, Jennifer C; Grygielska, Beata; Eble, Johannes A; Tomlinson, Michael G; Senis, Yotis A; Watson, Steve P

    2008-12-19

    Platelets play an essential role in wound healing by forming thrombi that plug holes in the walls of damaged blood vessels. To achieve this, platelets express a diverse array of cell surface receptors and signaling proteins that induce rapid platelet activation. In this study we show that two platelet glycoprotein receptors that signal via an immunoreceptor tyrosine-based activation motif (ITAM) or an ITAM-like domain, namely the collagen receptor complex glycoprotein VI (GPVI)-FcR gamma-chain and the C-type lectin-like receptor 2 (CLEC-2), respectively, support constitutive (i.e. agonist-independent) signaling in a cell line model using a nuclear factor of activated T-cells (NFAT) transcriptional reporter assay that can detect low level activation of phospholipase Cgamma (PLCgamma). Constitutive and agonist signaling by both receptors is dependent on Src and Syk family kinases, and is inhibited by G6b-B, a platelet immunoglobulin receptor that has two immunoreceptor tyrosine-based inhibitory motifs in its cytosolic tail. Mutation of the conserved tyrosines in the two immunoreceptor tyrosine-based inhibitory motifs prevents the inhibitory action of G6b-B. Interestingly, the inhibitory activity of G6b-B is independent of the Src homology 2 (SH2)-domain containing tyrosine phosphatases, SHP1 and SHP2, and the inositol 5'-phosphatase, SHIP. Constitutive signaling via Src and Syk tyrosine kinases is observed in platelets and is associated with tyrosine phosphorylation of GPVI-FcR gamma-chain and CLEC-2. We speculate that inhibition of constitutive signaling through Src and Syk tyrosine kinases by G6b-B may help to prevent unwanted platelet activation. PMID:18955485

  2. Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium.

    PubMed

    Ito, Masaki; Machida, Yasunori

    2015-05-01

    Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene. PMID:25694001

  3. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling.

    PubMed

    Link, Andrea S; Kurinna, Svitlana; Havlicek, Steven; Lehnert, Sandra; Reichel, Martin; Kornhuber, Johannes; Winner, Beate; Huth, Tobias; Zheng, Fang; Werner, Sabine; Alzheimer, Christian

    2016-08-01

    The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity. PMID:26215835

  4. The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G{sub 2}/M

    SciTech Connect

    Schleimann, Mariane H.; Hoberg, Søren; Solhøj Hansen, Aida; Bundgaard, Bettina; Witt, Christoffer T.; Kofod-Olsen, Emil; Höllsberg, Per

    2014-03-15

    HHV-6B infection inhibits cell proliferation in G{sub 2}/M, but no protein has so far been recognized to exert this function. Here we identify the protein product of direct repeat 6, DR6, as an inhibitor of G{sub 2}/M cell-cycle progression. Transfection of DR6 reduced the total number of cells compared with mock-transfected cells. Lentiviral transduction of DR6 inhibited host cell DNA synthesis in a p53-independent manner, and this inhibition was DR6 dose-dependent. A deletion of 66 amino acids from the N-terminal part of DR6 prevented efficient nuclear translocation and the ability to inhibit DNA synthesis. DR6-induced accumulation of cells in G{sub 2}/M was accompanied by an enhanced expression of cyclin B1 that accumulated predominantly in the cytoplasm. Pull-down of cyclin B1 brought down pCdk1 with the inactivating phosphorylation at Tyr15. Together, DR6 delays cell cycle with an accumulation of cells in G{sub 2}/M and thus might be involved in HHV-6B-induced cell-cycle arrest. - Highlights: • HHV-6B-encoded DR6 protein inhibits cell proliferation. • DR6 inhibits host cell DNA synthesis independent of p53. • DR6 delays the cell cycle in G{sub 2}/M. • An N-terminal sequence is necessary for DR6 function. • DR6 induces cytoplasmic accumulation of cyclin B1.

  5. A recurrent synonymous KAT6B mutation causes Say-Barber-Biesecker/Young-Simpson syndrome by inducing aberrant splicing.

    PubMed

    Yilmaz, Rüstem; Beleza-Meireles, Ana; Price, Susan; Oliveira, Renata; Kubisch, Christian; Clayton-Smith, Jill; Szakszon, Katalin; Borck, Guntram

    2015-12-01

    Mutations of the histone acetyltransferase-encoding KAT6B gene cause the Say-Barber-Biesecker/Young-Simpson (SBBYS) type of blepharophimosis-"mental retardation" syndromes and the more severe genitopatellar syndrome. The SBBYS syndrome-causing mutations are clustered in the large exon 18 of KAT6B and almost exclusively lead to predicted protein truncation. An atypical KAT6B mutation, a de novo synonymous variant located in exon 16 (c.3147G>A, p.(Pro1049Pro)) was previously identified in three unrelated patients. This exonic mutation was predicted in silico to cause protein truncation through aberrant splicing. Here, we report three additional unrelated children with typical SBBYS syndrome and the KAT6B c.3147G>A mutation. We show on RNA derived from patient blood that the mutation indeed induces aberrant splicing through the use of a cryptic exonic splice acceptor site created by the sequence variant. Our results thus identify the synonymous variant c.3147G>A as a splice site mutation and a mutational hot spot in SBBYS syndrome. PMID:26334766

  6. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity. PMID:19218245

  7. Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling

    NASA Technical Reports Server (NTRS)

    Degani, CH.; Kawatsuji, M.; Halmann, M.

    1975-01-01

    It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).

  8. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation.

    PubMed

    Ginter, Torsten; Bier, Carolin; Knauer, Shirley K; Sughra, Kalsoom; Hildebrand, Dagmar; Münz, Tobias; Liebe, Theresa; Heller, Regine; Henke, Andreas; Stauber, Roland H; Reichardt, Werner; Schmid, Johannes A; Kubatzky, Katharina F; Heinzel, Thorsten; Krämer, Oliver H

    2012-07-01

    Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation. PMID:22425562

  9. Stress Induces Pain Transition by Potentiation of AMPA Receptor Phosphorylation

    PubMed Central

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A.

    2014-01-01

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. PMID:25297100

  10. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  11. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  12. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  13. Functional diversity and mutational analysis of Agrobacterium 6B oncoproteins.

    PubMed

    Helfer, A; Pien, S; Otten, L

    2002-07-01

    Many Agrobacterium T-DNA genes belong to a diverse family of T-DNA genes, the rolB family. These genes cause various growth abnormalities but their modes of action remain largely unknown. So far, none of the RolB-like proteins has been subjected to mutational analysis. The RolB-like oncoprotein 6B, which induces tumours on species such as Nicotiana glauca and Kalanchoe tubiflora, was chosen to investigate the role of the most conserved amino acid residues within the RolB family. We first determined which of the natural 6B variants had the strongest oncogenic activity; to this end, six 6b coding sequences (A- 6b, AB- 6b, C- 6b, CG- 6b, S- 6b and T- 6b) were placed under the control of the strong constitutive 2x35S promoter and compared for tumour induction on N. glauca, N. tabacum and K. daigremontiana. Oncogenicity increased in the order C- 6b/CG- 6b, A- 6b/AB- 6b, and S- 6b/T- 6b. The most conserved amino acid residues in the strongly oncogenic T-6B protein were mutated and shown to be required for oncogenicity and accumulation of the T-6B protein in planta but not in bacteria. Hybrids between T-6B and the weakly oncogenic A-6B protein revealed an additional oncogenic determinant required for the formation of large tumours. PMID:12172796

  14. Ethanol-induced phosphorylation of cytokeratin in cultured hepatocytes

    SciTech Connect

    Kawahara, Hiromu; Cadrin, M.; French, S.W. )

    1990-01-01

    The authors studied the effect of ethanol on the phosphorylation of cytokeratins (CKs) in cultured hepatocytes since CK filaments are resulted by phosphorylation and they are abnormal in alcoholic liver disease. Hepatocytes were obtained from 14-day-old rats and cultured for 48 hrs. The hepatocytes were exposed to ethanol for 30 min. The residual insoluble cytoskeletons were analyzed by two-dimensional gel electrophoresis and autoradiography. 2D gel electrophoresis showed CK 55 and CK 49 or 8 and 18 and actin. The CKs had several isoelectric variants. The most basic spot was the dominant protein which was not phosphorylated. The more acidic spots were phosphorylated. After ethanol treatment, the phosphorylation of CK 55 and CK 49 were markedly increased over controls. They compared these results, with the effect of vasopressin, TPA and db-cAMP on the phosphorylation of CKs. Vasopressin and TPA caused the phosphorylation of CK 55 and 49 but db-cAMP did not.

  15. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  16. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  17. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage.

    PubMed

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-03-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  18. Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

    PubMed Central

    Sanguinetti, Amy R; Cao, Haiming; Corley Mastick, Cynthia

    2003-01-01

    Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex. PMID:12921535

  19. Stress-induced inhibition of translation independently of eIF2α phosphorylation.

    PubMed

    Knutsen, Jon Halvor Jonsrud; Rødland, Gro Elise; Bøe, Cathrine Arnason; Håland, Tine Weise; Sunnerhagen, Per; Grallert, Beáta; Boye, Erik

    2015-12-01

    Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution. PMID:26493332

  20. Stress-induced inhibition of translation independently of eIF2α phosphorylation

    PubMed Central

    Knutsen, Jon Halvor Jonsrud; Rødland, Gro Elise; Bøe, Cathrine Arnason; Håland, Tine Weise; Sunnerhagen, Per; Grallert, Beáta; Boye, Erik

    2015-01-01

    ABSTRACT Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution. PMID:26493332

  1. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit.

    PubMed

    Kamiyoshihara, Yusuke; Tieman, Denise M; Huber, Donald J; Klee, Harry J

    2012-09-01

    Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states. PMID:22797658

  2. OGlcNAcylation and Phosphorylation Have Opposing Structural Effects in tau: Phosphothreonine Induces Particular Conformational Order

    PubMed Central

    2015-01-01

    Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer’s disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174–251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196–209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean 3JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects. PMID

  3. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5.

    PubMed

    Matusiak, Magdalena; Van Opdenbosch, Nina; Vande Walle, Lieselotte; Sirard, Jean-Claude; Kanneganti, Thirumala-Devi; Lamkanfi, Mohamed

    2015-02-01

    The Nlrc4 inflammasome contributes to immunity against intracellular pathogens that express flagellin and type III secretion systems, and activating mutations in NLRC4 cause autoinflammation in patients. Both Naip5 and phosphorylation of Nlrc4 at Ser533 are required for flagellin-induced inflammasome activation, but how these events converge upon inflammasome activation is not known. Here, we showed that Nlrc4 phosphorylation occurs independently of Naip5 detection of flagellin because Naip5 deletion in macrophages abolished caspase-1 activation, interleukin (IL)-1β secretion, and pyroptosis, but not Nlrc4 phosphorylation by cytosolic flagellin of Salmonella Typhimurium and Yersinia enterocolitica. ASC speck formation and caspase-1 expression also were dispensable for Nlrc4 phosphorylation. Interestingly, Helicobacter pylori flagellin triggered robust Nlrc4 phosphorylation, but failed to elicit caspase-1 maturation, IL-1β secretion, and pyroptosis, suggesting that it retained Nlrc4 Ser533 phosphorylating-activity despite escaping Naip5 detection. In agreement, the flagellin D0 domain was required and sufficient for Nlrc4 phosphorylation, whereas deletion of the S. Typhimurium flagellin carboxy-terminus prevented caspase-1 maturation only. Collectively, this work suggests a biphasic activation mechanism for the Nlrc4 inflammasome in which Ser533 phosphorylation prepares Nlrc4 for subsequent activation by the flagellin sensor Naip5. PMID:25605939

  4. Caldesmon and heat shock protein 20 phosphorylation in nitroglycerin- and magnesium-induced relaxation of swine carotid artery.

    PubMed

    Rembold, C M; O'Connor, M

    2000-03-17

    Nitrovasodilators, high extracellular Mg(2+), and some other relaxing agents can cause smooth muscle relaxation without reductions in myosin regulatory light chain (MRLC) phosphorylation. Relaxations without MRLC dephosphorylation suggest that other regulatory systems, beyond MRLC phosphorylation, are present in smooth muscle. We tested whether changes in caldesmon phosphorylation, heat shock protein 20 (HSP20) phosphorylation, or intracellular pH (pH(i)) could be responsible for relaxation without MRLC dephosphorylation. In unstimulated tissues, caldesmon was phosphorylated 1.02+/-0.10 mol P(i)/mol caldesmon (mean+/-1 S.E.M.), HSP20 was phosphorylated 0.005+/-0.003 mol P(i)/mol HSP20, and estimated pH(i) was 7.21+/-0.07. Histamine stimulation induced a contraction, an intracellular acidosis, but did not significantly change caldesmon or HSP20 phosphorylation. Addition of nitroglycerin induced a relaxation, significantly increased HSP20 phosphorylation to 0.18+/-0.02 mol P(i)/mol HSP20, did not significantly change caldesmon phosphorylation, and pH(i) returned to near unstimulated values. Increase in extracellular Mg(2+) to 10 mM induced a relaxation, but did not significantly change HSP20 or caldesmon phosphorylation. These data suggest that changes in caldesmon phosphorylation, HSP20 phosphorylation, or pH(i) cannot be the sole explanation for relaxation without MRLC dephosphorylation. However, it is possible that HSP20 phosphorylation may be involved in nitroglycerin-induced relaxation without MRLC dephosphorylation. PMID:10699367

  5. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells.

    PubMed

    Lopachev, Alexander V; Lopacheva, Olga M; Osipova, Ekaterina A; Vladychenskaya, Elizaveta A; Smolyaninova, Larisa V; Fedorova, Tatiana N; Koroleva, Olga V; Akkuratov, Evgeny E

    2016-07-01

    Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-μM and 10-μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27338714

  6. Phosphorylation of McArdle phosphorylase induces activity.

    PubMed Central

    Cerri, C G; Willner, J H

    1981-01-01

    In McArdle disease, myophosphorylase deficiency, enzyme activity is absent but the presence of an altered enzyme protein can frequently be demonstrated. We have found that phosphorylation of this protein in vitro can result in catalytic activity. We studied muscle of four patients; all lacked myophosphorylase activity, but myophosphorylase protein was demonstrated by immunodiffusion or gel electrophoresis. Incubation of muscle homogenate supernatants with cyclic AMP-dependent protein kinase and ATP resulted in phosphorylase activity. The activated enzyme comigrated with normal human myophosphorylase in gel electrophoresis. Incubation with [gamma-32P]ATP resulted in incorporatin of 32P into the band possessing phosphorylase activity. Activation of phosphorylase by cyclic AMP-dependent protein kinase was inhibited by antibodies to normal human myophosphorylase or by inhibitory protein to cyclic AMP-dependent protein kinase. Incubation of muscle homogenates with phosphorylase b kinase and ATP also resulted in phosphorylase activity. After the action of cyclic AMP-dependent protein kinase, the resulting activity was similar to that of phosphorylase b. However, incubation with phosphorylase kinase resulted in activity similar to that of phosphorylase a. For several reasons, it is not likely that McArdle disease is due to lack of normal phosphorylation, but restoration of activity to the mutant protein by phosphorylation may provide a clue to understanding the mechanism of this genetic defect. Images PMID:6265901

  7. ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis

    PubMed Central

    Quast, S-A; Berger, A; Eberle, J

    2013-01-01

    The pathways of reactive oxygen species (ROS)-mediated apoptosis induction, of Bax activation and the sensitization of tumor cells for TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis are still largely elusive. Here, sensitization of melanoma cells for TRAIL by the PI3-kinase inhibitor wortmannin correlated to the activation of mitochondrial apoptosis pathways. Apoptosis was dependent on Bax and abrogated by Bcl-2 overexpression. The synergistic enhancement was explained by Bax activation through wortmannin, which tightly correlated to the characteristic Bax phosphorylation patterns. Thus, wortmannin resulted in early reduction of the Bax-inactivating phosphorylation at serine-184, whereas the Bax-activating phosphorylation at threonine-167 was enhanced. Proving the responsibility of the pathway, comparable effects were obtained with an Akt inhibitor (MK-2206); while suppressed phosphorylation of serine-184 may be attributed to reduced Akt activity itself, the causes of enhanced threonine-167 phosphorylation were addressed here. Characteristically, production of ROS was seen early in response to wortmannin and MK-2206. Providing the link between ROS and Bax, we show that abrogated ROS production by α-tocopherol or by NADPH oxidase 4 (NOX4) siRNA suppressed apoptosis and Bax activation. This correlated with reduced Bax phosphorylation at threonine-167. The data unraveled a mechanism by which NOX4-dependent ROS production controls apoptosis via Bax phosphorylation. The pathway may be considered for proapoptotic, anticancer strategies. PMID:24113173

  8. Induced europium CPL for the selective signalling of phosphorylated amino-acids and O-phosphorylated hexapeptides.

    PubMed

    Neil, Emily R; Fox, Mark A; Pal, Robert; Parker, David

    2016-05-17

    Two bright, europium(iii) complexes based on an achiral heptadentate triazacyclononane ligand bearing two strongly absorbing chromophores have been evaluated for the selective emission and CPL signalling of various chiral O-phosphono-anions. Binding of O-phosphono-Ser and Thr gives rise to a strong induced CPL signature and a favoured Δ complex configuration is adopted. A similarly large induced CPL signal arises when [Eu·](2+) binds to lysophosphatidic acid (LPA), where the strong binding (log K 5.25 (295 K)) in methanol allowed its detection over the range 5 to 40 μM. Strong and chemoselective binding to the phosphorylated amino-acid residues was also observed with a set of four structurally related hexapeptides: in one case, the sign of the gem value in the ΔJ = 1 transition allowed differentiation between the binding to O-P-Ser and O-P-Tyr residues. PMID:27109001

  9. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins.

    PubMed

    Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Zhao, Na; Yang, Qiangzhen; Li, Sisi; Li, Xinhong

    2016-08-01

    Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10μM Cd in the presence of 30μM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility. PMID:27233480

  10. Neuroinflammation is not a Prerequisite for Diabetes-induced Tau Phosphorylation

    PubMed Central

    van der Harg, Judith M.; Eggels, Leslie; Ruigrok, Silvie R.; Hoozemans, Jeroen J. M.; la Fleur, Susanne E.; Scheper, Wiep

    2015-01-01

    Abnormal phosphorylation and aggregation of tau is a key hallmark of Alzheimer's disease (AD). AD is a multifactorial neurodegenerative disorder for which Diabetes Mellitus (DM) is a risk factor. In animal models for DM, the phosphorylation and aggregation of tau is induced or exacerbated, however the underlying mechanism is unknown. In addition to the metabolic dysfunction, DM is characterized by chronic low-grade inflammation. This was reported to be associated with a neuroinflammatory response in the hypothalamus of DM animal models. Neuroinflammation is also implicated in the development and progression of AD. It is unknown whether DM also induces neuroinflammation in brain areas affected in AD, the cortex and hippocampus. Here we investigated whether neuroinflammation could be the mechanistic trigger to induce tau phosphorylation in the brain of DM animals. Two distinct diabetic animal models were used; rats on free-choice high-fat high-sugar (fcHFHS) diet that are insulin resistant and streptozotocin-treated rats that are insulin deficient. The streptozotocin-treated animals demonstrated increased tau phosphorylation in the brain as expected, whereas the fcHFHS diet fed animals did not. Remarkably, neither of the diabetic animal models showed reactive microglia or increased GFAP and COX-2 levels in the cortex or hippocampus. From this, we conclude: 1. DM does not induce neuroinflammation in brain regions affected in AD, and 2. Neuroinflammation is not a prerequisite for tau phosphorylation. Neuroinflammation is therefore not the mechanism that explains the close connection between DM and AD. PMID:26617484

  11. Induced expression of nucleolin phosphorylation-deficient mutant confers dominant-negative effect on cell proliferation.

    PubMed

    Xiao, Shu; Caglar, Elif; Maldonado, Priscilla; Das, Dibash; Nadeem, Zaineb; Chi, Angela; Trinité, Benjamin; Li, Xin; Saxena, Anjana

    2014-01-01

    Nucleolin (NCL) is a major nucleolar phosphoprotein that has pleiotropic effects on cell proliferation and is elevated in a variety of tumors. NCL is highly phosphorylated at the N-terminus by two major kinases: interphase casein kinase 2 (CK2) and mitotic cyclin-dependent kinase 1 (CDK1). Earlier we demonstrated that a NCL-mutant that is partly defective in undergoing phosphorylation by CK2 inhibits chromosomal replication through its interactions with Replication Protein A, mimicking the cellular response to DNA damage. We further delineated that the N-terminus of NCL associates with Hdm2, the most common E3 ubiquitin ligase of p53. We reported that NCL antagonizes Hdm2 to stabilize p53 and stimulates p53 transcriptional activity. Although NCL-phosphorylation by CK2 and ribosomal DNA transcription are closely coordinated during interphase, the role of NCL phosphorylation in regulating cell proliferation remains unexplored. We have therefore engineered unique human cells that specifically induce expression of NCL-wild type (WT) or a phosphorylation-deficient NCL-mutant, 6/S*A where all the six CK2 consensus serine sites residing in the N-terminus NCL were mutated to alanine. Here we show that this NCL-mutant is defective in undergoing phosphorylation by CK2. We also demonstrate that NCL-phosphorylation by CK2 is required through the S-phase progression in cell cycle and hence proliferation. Induced expression of NCL with mutated CK2 phosphorylation sites stabilizes p53, results in higher expression of Bcl2 (B-cell lymphoma 2) homology 3 (BH3)-only apoptotic markers and causes a dominant-negative effect on cell viability. Our unique cellular system thus provides the first evidential support to delineate phospho-specific functions of NCL on cell proliferation. PMID:25313645

  12. Induced Expression of Nucleolin Phosphorylation-Deficient Mutant Confers Dominant-Negative Effect on Cell Proliferation

    PubMed Central

    Xiao, Shu; Caglar, Elif; Maldonado, Priscilla; Das, Dibash; Nadeem, Zaineb; Chi, Angela; Trinité, Benjamin; Li, Xin; Saxena, Anjana

    2014-01-01

    Nucleolin (NCL) is a major nucleolar phosphoprotein that has pleiotropic effects on cell proliferation and is elevated in a variety of tumors. NCL is highly phosphorylated at the N-terminus by two major kinases: interphase casein kinase 2 (CK2) and mitotic cyclin-dependent kinase 1 (CDK1). Earlier we demonstrated that a NCL-mutant that is partly defective in undergoing phosphorylation by CK2 inhibits chromosomal replication through its interactions with Replication Protein A, mimicking the cellular response to DNA damage. We further delineated that the N-terminus of NCL associates with Hdm2, the most common E3 ubiquitin ligase of p53. We reported that NCL antagonizes Hdm2 to stabilize p53 and stimulates p53 transcriptional activity. Although NCL-phosphorylation by CK2 and ribosomal DNA transcription are closely coordinated during interphase, the role of NCL phosphorylation in regulating cell proliferation remains unexplored. We have therefore engineered unique human cells that specifically induce expression of NCL-wild type (WT) or a phosphorylation-deficient NCL-mutant, 6/S*A where all the six CK2 consensus serine sites residing in the N-terminus NCL were mutated to alanine. Here we show that this NCL-mutant is defective in undergoing phosphorylation by CK2. We also demonstrate that NCL-phosphorylation by CK2 is required through the S-phase progression in cell cycle and hence proliferation. Induced expression of NCL with mutated CK2 phosphorylation sites stabilizes p53, results in higher expression of Bcl2 (B-cell lymphoma 2) homology 3 (BH3)-only apoptotic markers and causes a dominant-negative effect on cell viability. Our unique cellular system thus provides the first evidential support to delineate phospho-specific functions of NCL on cell proliferation. PMID:25313645

  13. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  14. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  15. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    PubMed Central

    van der Harg, J M; Nölle, A; Zwart, R; Boerema, A S; van Haastert, E S; Strijkstra, A M; Hoozemans, J JM; Scheper, W

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstrate that metabolic stress induces the phosphorylation of endogenous tau via activation of the UPR. Strikingly, upon restoration of the metabolic homeostasis, not only the levels of the UPR markers pPERK, pIRE1α and BiP, but also tau phosphorylation are reversed both in cell models as well as in torpor, a physiological hypometabolic model in vivo. Intervention in the UPR using the global UPR inhibitor TUDCA or a specific small-molecule inhibitor of the PERK signaling pathway, inhibits the metabolic stress-induced phosphorylation of tau. These data support a role for UPR-mediated tau phosphorylation as part of an adaptive response to metabolic stress. Failure to restore the metabolic homeostasis will lead to prolonged UPR activation and tau phosphorylation, and may thus contribute to AD pathogenesis. We demonstrate that the UPR is functionally involved in the early stages of tau pathology. Our data indicate that targeting of the UPR may be employed for early intervention in tau-related neurodegenerative diseases. PMID:25165879

  16. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    PubMed

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions. PMID:25491575

  17. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  18. Structural basis of how stress-induced MDMX phosphorylation activates p53.

    PubMed

    Chen, X; Gohain, N; Zhan, C; Lu, W-Y; Pazgier, M; Lu, W

    2016-04-14

    The tumor-suppressor protein p53 is tightly controlled in normal cells by its two negative regulators--the E3 ubiquitin ligase MDM2 and its homolog MDMX. Under stressed conditions such as DNA damage, p53 escapes MDM2- and MDMX-mediated functional inhibition and degradation, acting to prevent damaged cells from proliferating through induction of cell cycle arrest, DNA repair, senescence or apoptosis. Ample evidence suggests that stress signals induce phosphorylation of MDM2 and MDMX, leading to p53 activation. However, the structural basis of stress-induced p53 activation remains poorly understood because of the paucity of technical means to produce site-specifically phosphorylated MDM2 and MDMX proteins for biochemical and biophysical studies. Herein, we report total chemical synthesis, via native chemical ligation, and functional characterization of (24-108)MDMX and its Tyr99-phosphorylated analog with respect to their ability to interact with a panel of p53-derived peptide ligands and PMI, a p53-mimicking but more potent peptide antagonist of MDMX, using FP and surface plasmon resonance techniques. Phosphorylation of MDMX at Tyr99 weakens peptide binding by approximately two orders of magnitude. Comparative X-ray crystallographic analyses of MDMX and of pTyr99 MDMX in complex with PMI as well as modeling studies reveal that the phosphate group of pTyr99 imposes extensive steric clashes with the C-terminus of PMI or p53 peptide and induces a significant lateral shift of the peptide ligand, contributing to the dramatic decrease in the binding affinity of MDMX for p53. Because DNA damage activates c-Abl tyrosine kinase that phosphorylates MDMX at Tyr99, our findings afford a rare glimpse at the structural level of how stress-induced MDMX phosphorylation dislodges p53 from the inhibitory complex and activates it in response to DNA damage. PMID:26148237

  19. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation.

    PubMed

    Zhao, Wei; Zhang, Tao; Qu, Bingqian; Wu, Xingxin; Zhu, Xu; Meng, Fanyu; Gu, Yanhong; Shu, Yongqian; Shen, Yan; Sun, Yang; Xu, Qiang

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML. PMID:20881478

  20. Phosphorylation dynamics of radixin in hypoxia-induced hepatocyte injury.

    PubMed

    Suda, Jo; Rockey, Don C; Karvar, Serhan

    2015-02-15

    The most prominent ezrin-radixin-moesin protein in hepatocytes is radixin, which is localized primarily at the canalicular microvilli and appears to be important in regulation of cell polarity and in localizing the multidrug resistance-associated protein 2 (Mrp-2) function. Our aim was to investigate how hypoxia affects radixin distribution and Mrp-2 function. We created wild-type and mutant constructs (in adenoviral vectors), which were expressed in WIF-B cells. The cellular distribution of Mrp-2 and radixin was visualized by fluorescence microscopy, and a 5-chloromethylfluorescein diacetate (CMFDA) assay was used to measure Mrp-2 function. Under usual conditions, cells infected with wild-type radixin, nonphosphorylatable radixin-T564A, and radixin-T564D (active phospho-mimicking mutant) were found to be heavily expressed in canalicular membrane compartment vacuoles, typically colocalizing with Mrp-2. In contrast, after hypoxia for 24 h, both endogenous and overexpressed wild-type radixin and the radixin-T564A mutant were found to be translocated to the cytoplasmic space. However, distribution of the radixin-T564D mutant, which mimics constant phosphorylation, was remarkably different, being associated with canalicular membranes even in hypoxic conditions. This dominant-active construct also prevented dissociation of radixin from the plasma membrane. Hypoxia also led to Mrp-2 mislocalization and caused Mrp-2 to be dissociated from radixin; the radixin phospho-mimicking mutant (T564D) abrogated this effect of hypoxia. Finally, hypoxia diminished the secretory response (measured using the CMFDA assay) in WIF-B cells, and the dominant-active construct (radixin-T567D) rescued this phenotype. Taken collectively, these findings suggest that radixin regulates Mrp-2 localization and function in hepatocytes and is important in hypoxic liver injury. PMID:25501552

  1. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release.

    PubMed

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca²⁺ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  2. Occludin S490 Phosphorylation Regulates Vascular Endothelial Growth Factor-Induced Retinal Neovascularization.

    PubMed

    Liu, Xuwen; Dreffs, Alyssa; Díaz-Coránguez, Monica; Runkle, E Aaron; Gardner, Thomas W; Chiodo, Vince A; Hauswirth, William W; Antonetti, David A

    2016-09-01

    Occludin is a transmembrane tight junction protein that contributes to diverse cellular functions, including control of barrier properties, cell migration, and proliferation. Vascular endothelial growth factor (VEGF) induces phosphorylation of occludin at S490, which is required for VEGF-induced endothelial permeability. Herein, we demonstrate that occludin S490 phosphorylation also regulates VEGF-induced retinal endothelial cell proliferation and neovascularization. Using a specific antibody, phospho-occludin was located in centrosomes in endothelial cell cultures, animal models, and human surgical samples of retinal neovessels. Occludin S490 phosphorylation was found to increase with endothelial tube formation in vitro and in vivo during retinal neovascularization after induction of VEGF expression. More important, expression of occludin mutated at S490 to Ala, completely inhibited angiogenesis in cell culture models and in vivo. Collectively, these data suggest a novel role for occludin in regulation of endothelial proliferation and angiogenesis in a phosphorylation-dependent manner. These findings may lead to methods of regulating pathological neovascularization by specifically targeting endothelial cell proliferation. PMID:27423695

  3. Phosphorylation of NMDA NR1 subunits in the myenteric plexus during TNBS induced colitis.

    PubMed

    Zhou, QiQi; Caudle, Robert M; Moshiree, Baharak; Price, Donald D; Verne, G Nicholas

    2006-10-01

    N-Methyl-d-aspartic acid (NMDA) receptors are known to function in the mediation of pain and have a significant role in the development of hyperalgesia following inflammation. Serine phosphorylation regulation of NMDA receptor function occurs in a variety of conditions. No studies have demonstrated a change in phosphorylation of enteric NMDA receptors following colonic inflammation. We examined the levels of NMDA NR1 phosphorylation in trinitrobenzene sulfonic acid (TNBS) induced colitis in rats and compared it to protein translation and the development of visceral hypersensitivity. We have previously, demonstrated an increase in the C1 cassette of NR1 mRNA expression at 14, 21, and 28 days following TNBS administration. In this study, we examined the NR1 serine phosphorylation at 14 days following TNBS injection. Male Sprague-Dawley rats (200-250 g) were treated with TNBS (20mg per rat) diluted in 50% ethanol (n=3) and vehicle controls of 50% ethanol (n=3). TNBS and vehicle controls were administered with a 24 gauge catheter inserted into the lumen of the rat colon. The animals were sacrificed at 14 days after induction of the colitis and their distal colon was retrieved for two-dimensional (2D) western blot analysis. Serine phosphorylation of the NR1 subunit with C1 cassette appears at 14 days after TNBS injection. In contrast, there was no NR1-C1 expression in the vehicle controls and untreated normal controls. These results suggest a role for colonic-NMDA receptor phosphorylation in the development of neuronal plasticity following colonic inflammation. Phosphorylation of NR1 may partially explain visceral hypersensitivity present during colonic inflammation. PMID:16942839

  4. Fe65 Is Phosphorylated on Ser289 after UV-Induced DNA Damage

    PubMed Central

    Langlands, Hannah; Blain, Peter G.; Jowsey, Paul A.

    2016-01-01

    Fe65 undergoes a phosphatase-sensitive gel mobility shift after DNA damage, consistent with protein phosphorylation. A recent study identified Ser228 as a specific site of phosphorylation, targeted by the ATM and ATR protein kinases, with phosphorylation inhibiting the Fe65-dependent transcriptional activity of the amyloid precursor protein (APP). The direct binding of Fe65 to APP not only regulates target gene expression, but also contributes to secretase-mediated processing of APP, producing cytoactive proteolytic fragments including the APP intracellular domain (AICD) and cytotoxic amyloid β (Aβ) peptides. Given that the accumulation of Aβ peptides in neural plaques is a pathological feature of Alzheimer’s disease (AD), it is essential to understand the mechanisms controlling Aβ production. This will aid in the development of potential therapeutic agents that act to limit the deleterious production of Aβ peptides. The Fe65-APP complex has transcriptional activity and the complex is regulated by multiple post-translational modifications and other protein binding partners. In the present study, we have identified Ser289 as a novel site of UV-induced phosphorylation. Interestingly, this phosphorylation was mediated by ATM, rather than ATR, and occurred independently of APP. Neither phosphorylation nor mutation of Ser289 affected the Fe65-APP interaction, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Using mutagenesis, we demonstrated that Fe65 Ser289 phosphorylation did not affect the transcriptional activity of the Fe65-APP complex, in contrast to the previously described Ser228 site. PMID:27176072

  5. Oxidative stress–dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration

    PubMed Central

    Wakatsuki, Shuji; Furuno, Akiko; Ohshima, Makiko

    2015-01-01

    Oxidative stress is a well-known inducer of neuronal apoptosis and axonal degeneration. We previously showed that the E3 ubiquitin ligase ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B activation. We now demonstrate that oxidative stress serves as an activator of the ubiquitin ligase activity of ZNRF1 by inducing epidermal growth factor receptor (EGFR)–mediated phosphorylation at the 103rd tyrosine residue and that the up-regulation of ZNRF1 activity by oxidative stress leads to neuronal apoptosis and Wallerian degeneration. We also show that nicotinamide adenine dinucleotide phosphate–reduced oxidase activity is required for the EGFR-dependent phosphorylation-induced activation of ZNRF1 and resultant AKT degradation via the ubiquitin proteasome system to induce Wallerian degeneration. These results indicate the pathophysiological significance of the EGFR–ZNRF1 pathway induced by oxidative stress in the regulation of neuronal apoptosis and Wallerian degeneration. A deeper understanding of the regulatory mechanism for ZNRF1 catalytic activity via phosphorylation will provide a potential therapeutic avenue for neurodegeneration. PMID:26572622

  6. Crocetin, a carotenoid derivative, inhibits VEGF-induced angiogenesis via suppression of p38 phosphorylation.

    PubMed

    Umigai, Naofumi; Tanaka, Junji; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2012-05-01

    We evaluated the protective effects of crocetin against angiogenesis induced by vascular endothelial growth factor (VEGF). Crocetin, the aglycone of crocin carotenoids, is found in saffron crocus (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). The effects of crocetin on VEGF-induced angiogenesis were examined by in vitro tube formation assays and following 14-day co-culture of human umbilical vein endothelial cells (HUVECs) and fibroblasts. The anti-angiogenic mechanism of crocetin was evaluated by examining its effects on VEGF-induced proliferation and migration of human retinal microvascular endothelial cells (HRMECs) and phosphorylation of p38. Vascular endothelial (VE)-cadherin, zonula occludens (ZO-1) and occludin, which are adherens and tight junction proteins, respectively, play a major role in the control of vascular permeability. Therefore, we tested effects of crocetin on adhesion molecule dissociation induced by VEGF. Crocetin significantly suppressed VEGF-induced tube formation by HUVECs and migration of HRMECs. It also significantly inhibited phosphorylation of p38 and protected VE-cadherin expression. These findings indicate that crocetin suppresses the VEGF-induced angiogenesis by inhibiting migration and that the inhibition of phosphorylated-p38 and protection of VE-cadherin expression may be involved in its underlying mechanism of action. PMID:22475394

  7. In vitro apatite formation on porous anodic alumina induced by a phosphorylation treatment.

    PubMed

    Li, Xiaohong; Ni, Siyu; Webster, Thomas J

    2014-09-01

    In this study, a phosphorylation treatment of porous anodic alumina (PAA) was performed by wet impregnation in phosphoric acid and a subsequent heat treatment. The PAA and phosphorylated PAA specimens were analyzed using a field emission scanning electron microscope, an energy-dispersive X-ray spectrometer, and Fourier transform infrared spectroscopy. The apatite-forming ability of the phosphorylated PAA was evaluated by soaking the specimens in simulated body fluid for 1, 3, and 7 days. The surface microstructures and chemical property changes after soaking in simulated body fluid were again characterized by field emission scanning electron microscope, energy-dispersive X-ray spectrometer, and Fourier transform infrared spectroscopy. Results of this study demonstrated that the functional -PO4 groups introduced onto the PAA surface dramatically promoted the deposition of bone-like apatite on PAA. The results from this study indicated that the phosphorylation treatment of anodic alumina is an effective method for inducing bone-like apatite formation, and this phosphorylated PAA can be a promising candidate to be used as bioactive surface coatings on implant metals and alloys for orthopedic and dental applications. PMID:24598060

  8. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T C; Millhorn, D E

    2001-01-01

    Akt is a serine/threonine kinase that has been shown to play a central role in promoting cell survival and opposing apoptosis. We evaluated the effect of hypoxia on Akt in rat pheochromocytoma (PC12) cells. PC12 cells were exposed to varying levels of hypoxia, including 21%, 15%, 10%, 5%, and 1% O(2). Hypoxia dramatically increased phosphorylation of Akt (Ser(473)). This effect peaked after 6 h exposure to hypoxia, but persisted strongly for up to 24 h. Phosphorylation of Akt was paralleled with a progressive increase in phosphorylation of glycogen synthase kinase-3 (GSK-3), one of its downstream substrates. The effect of hypoxia on phosphorylation of Akt was completely blocked by pretreatment of the cells with wortmannin (100 nM), indicating that this effect is mediated by phosphatidylinositol 3-kinase (P13K). In contrast, whereas hypoxia also strongly induced phosphorylation of the transcription factors CREB and EPAS1, these effects persisted in the presence of wortmannin. Thus, hypoxia regulates both P13K-dependent and P13K-independent signaling pathways. Furthermore, activation of the P13K and Akt signaling pathways may be one mechanism by which cells adapt and survive under conditions of hypoxia. PMID:11257444

  9. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation

    PubMed Central

    Li, Shuang; Ma, Guoqiang; Wang, Bing; Jiang, Jin

    2015-01-01

    Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). Here, we found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the C terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated trans-phosphorylation of Smo dimers. We identified multiple basic residues in the C-terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction. PMID:24985345

  10. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    SciTech Connect

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  11. Pretreatment of LPS inhibits IFN-β-induced STAT1 phosphorylation through SOCS3 induced by LPS.

    PubMed

    Ando, Takashi; Komatsu, Takayuki; Naiki, Yoshikazu; Yokochi, Takashi; Watanabe, Daisuke; Koide, Naoki

    2015-12-01

    It has been known that LPS activates macrophages and induces IFN-β production from macrophages. The endogenous IFN-β produced by LPS stimulates the cells, which plays a role in innate immune. However, it was not elucidated yet if the signaling by exogenous IFN-β was influenced by LPS stimulation. In this study, it was found pretreatment of LPS interrupted IFN-β-induced JAK1/STAT1 phosphorylation. LPS pretreatment also reduced IFN-β-induced ISG54, one of IFN-β-inducible genes. Pretreatment with LPS for more than 2h shows inhibitory effect on IFN-β-induced STAT1 phosphorylation but simultaneous treatment or post-treatment of LPS with IFN-β did not show the inhibitory effect. The study using a neutralizing antibody to IFN-β indicated that IFN-β produced by LPS does not take part in the inhibitory effect of LPS. Furthermore, LPS did not affect the expression of IFN αβ receptor. A previous report has shown that LPS-induced SOCS3 inhibited IFN-γ-induced STAT1 phosphorylation, likewise, it was also shown in this study that LPS induced SOCS3 expression and its expression inhibited IFN-β-induced STAT1 phosphorylation which was confirmed by the knockdown study by the siRNA of SOCS3. The real-time PCR and immune-blot studies of SOCS3 indicated that LPS induced SOCS3 is independent of IL-6, IL-10, TNF-α and STAT3, and might depend on p38 activation by LPS. It was suggested that bacterial LPS rather interfere with IFN-β actions, dependent on the timing of LPS stimulation. PMID:26653542

  12. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction.

    PubMed

    Liu, Mingchao; Li, Juan; Dai, Peng; Zhao, Fang; Zheng, Gang; Jing, Jinfei; Wang, Jiye; Luo, Wenjing; Chen, Jingyuan

    2015-01-01

    Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances. PMID:25472821

  13. Wogonin inhibits H2O2-induced vascular permeability through suppressing the phosphorylation of caveolin-1.

    PubMed

    Wang, Fei; Song, Xiuming; Zhou, Mi; Wei, Libin; Dai, Qinsheng; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-03-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been reported for its anti-oxidant activity. However, it is still unclear whether wogonin can inhibit oxidant-induced vascular permeability. In this study, we evaluated the effects of wogonin on H2O2-induced vascular permeability in human umbilical vein endothelial cells (HUVECs). We found that wogonin can suppress the H2O2-stimulated actin remodeling and albumin uptake of HUVECs, as well as transendothelial cell migration of the human breast carcinoma cell MDA-MB-231. The mechanism revealed that wogonin inhibited H2O2-induced phosphorylation of caveolin-1 (cav-1) associating with the suppression of stabilization of VE-cadherin and β-catenin. Moreover, wogonin repressed anisomycin-induced phosphorylation of p38, cav-1 and vascular permeability. These results suggested that wogonin could inhibit H2O2-induced vascular permeability by downregulating the phosphorylation of cav-1, and that it might have a therapeutic potential for the diseases associated with the development of both oxidant and vascular permeability. PMID:23246481

  14. AKT inhibitor suppresses hyperthermia-induced Ndrg2 phosphorylation in gastric cancer cells

    PubMed Central

    Tao, Yurong; Guo, Yan; Liu, Wenchao; Zhang, Jian; Li, Xia; Shen, Lan; Ru, Yi; Xue, Yan; Zheng, Jin; Liu, Xinping; Zhang, Jing; Yao, Libo

    2013-01-01

    Hyperthermia is one of the most effective adjuvant treatments for various cancers with few side effects. However, the underlying molecular mechanisms still are not known. N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, has been shown to be involved in diverse cellular stresses including hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to progression of gastric cancer. In the current study, our data showed that the apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P < 0.05). Nevertheless, there was no obvious change in the expression level of total Ndrg2 during this process. Further investigation demonstrated that the relative phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold (hyperthermia group vs control group) at 3 h in MKN28 cells, respectively (P < 0.05). We also found that heat treatment significantly increased AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P < 0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be induced by hyperthermia in an AKT-dependent manner in gastric cancer cells. Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric cancer cells susceptible to apoptosis induced by hyperthermia. PMID:23558861

  15. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area

    PubMed Central

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Background: Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Methods: Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. Results: TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). Conclusions: fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation. PMID:26269751

  16. Protein kinase Cα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation.

    PubMed

    Li, Weizong; Wang, Nan; Li, Man; Gong, Huiqin; Liao, Xinghua; Yang, Xiaolong; Zhang, Tongcun

    2015-09-01

    Myocardin plays a key role in the development of cardiac hypertrophy. However, the upstream signals that control the stability and transactivity of myocardin remain to be fully understood. The expression of protein kinase Cα (PKCα) also induces cardiac hypertrophy. An essential downstream molecule of PKCα, extracellular signal-regulated kinase 1/2, was reported to negatively regulate the activities of myocardin. But, the effect of cooperation between PKCα and myocardin and the potential molecular mechanism by which PKCα regulates myocardin-mediated cardiac hypertrophy are unclear. In this study, a luciferase assay was performed using H9C2 cells transfected with expression plasmids for PKCα and myocardin. Surprisingly, the results showed that PKCα inhibited the transcriptional activity of myocardin. PKCα inhibited myocardin-induced cardiomyocyte hypertrophy, demonstrated by the decrease in cell surface area and fetal gene expression, in cardiomyocyte cells overexpressing PKCα and myocardin. The potential mechanism underlying the inhibition effect of PKCα on the function of myocardin is further explored. PKCα directly promoted the basal phosphorylation of endogenous myocardin at serine and threonine residues. In myocardin-overexpressing cardiomyocyte cells, PKCα induced the excessive phosphorylation of myocardin, resulting in the degradation of myocardin and a transcriptional suppression of hypertrophic genes. These results demonstrated that PKCα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation. PMID:26206583

  17. Human TNF-α induces differential protein phosphorylation in Schistosoma mansoni adult male worms.

    PubMed

    Oliveira, Katia C; Carvalho, Mariana L P; Bonatto, José Matheus C; Schechtman, Debora; Verjovski-Almeida, Sergio

    2016-02-01

    Schistosoma mansoni and its vertebrate host have a complex and intimate connection in which several molecular stimuli are exchanged and affect both organisms. Human tumor necrosis factor alpha (hTNF-α), a pro-inflammatory cytokine, is known to induce large-scale gene expression changes in the parasite and to affect several parasite biological processes such as metabolism, egg laying, and worm development. Until now, the molecular mechanisms for TNF-α activity in worms are not completely understood. Here, we aimed at exploring the effect of hTNF-α on S. mansoni protein phosphorylation by 2D gel electrophoresis followed by a quantitative analysis of phosphoprotein staining and protein identification by mass spectrometry. We analyzed three biological replicates of adult male worms exposed to hTNF-α and successfully identified 32 protein spots with a statistically significant increase in phosphorylation upon in vitro exposure to hTNF-α. Among the differentially phosphorylated proteins, we found proteins involved in metabolism, such as glycolysis, galactose metabolism, urea cycle, and aldehyde metabolism, as well as proteins related to muscle contraction and to cytoskeleton remodeling. The most differentially phosphorylated protein (30-fold increase in phosphorylation) was 14-3-3, whose function is known to be modulated by phosphorylation, belonging to a signal transduction protein family that regulates a variety of processes in all eukaryotic cells. Further, 75% of the identified proteins are known in mammals to be related to TNF-α signaling, thus suggesting that TNF-α response may be conserved in the parasite. We propose that this work opens new perspectives to be explored in the study of the molecular crosstalk between host and pathogen. PMID:26547565

  18. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization

    SciTech Connect

    Geiss, Brian J.; Cano, Gina L.; Tavis, John E.; Morrison, Lynda A. . E-mail: morrisla@slu.edu

    2004-12-05

    Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22. Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.

  19. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. PMID:23077590

  20. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis.

    PubMed

    Gambelli, Federica; Di, Peter; Niu, Xiaomei; Friedman, Mitchell; Hammond, Timothy; Riches, David W H; Ortiz, Luis A

    2004-01-16

    Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure. PMID:14570868

  1. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    SciTech Connect

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  2. Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation.

    PubMed

    Song, M S; Rauw, G; Baker, G B; Kar, S

    2008-11-01

    It has been suggested that accumulation of beta-amyloid (Abeta) peptide triggers neurodegeneration, at least in part, via glutamate-mediated excitotoxicity in Alzheimer's disease (AD) brain. This is supported by observations that toxicity induced by Abeta peptide in cultured neurons and in adult rat brain is known to be mediated by activation of glutamatergic N-methyl-d-aspartate (NMDA) receptors. Additionally, recent clinical studies have shown that memantine, a noncompetitive NMDA receptor antagonist, can significantly improve cognitive functions in some AD patients. However, very little is currently known about the potential role of memantine against Abeta-induced toxicity. In the present study, we have shown that Abeta(1-42)-induced toxicity in rat primary cortical cultured neurons is accompanied by increased extracellular and decreased intracellular glutamate levels. We subsequently demonstrated that Abeta toxicity is induced by increased phosphorylation of tau protein and activation of tau kinases, i.e. glycogen synthase kinase-3beta and extracellular signal-related kinase 1/2. Additionally, Abeta treatment induced cleavage of caspase-3 and decreased phosphorylation of cyclic AMP response element binding protein, which are critical in determining survival of neurons. Memantine treatment significantly protected cultured neurons against Abeta-induced toxicity by attenuating tau-phosphorylation and its associated signaling mechanisms. However, this drug did not alter either conformation or internalization of Abeta(1-42) and it was unable to attenuate Abeta-induced potentiation of extracellular glutamate levels. These results, taken together, provide new insights into the possible neuroprotective action of memantine in AD pathology. PMID:19046381

  3. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  4. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  5. EMT phenotype is induced by increased Src kinase activity via Src-mediated caspase-8 phosphorylation.

    PubMed

    Zhao, Yang; Li, XiaoJun; Sun, XiangFei; Zhang, YunFeng; Ren, Hong

    2012-01-01

    Caspase-8 governs multiple cell responses to the microenvironmental cues. However, its integration of "death-life" signalings remains elusive. In our study, the role of caspase-8-Src is well-established as a promoter for migration or metastasis in Casp8(+)Src(+) A549/H226 cells in vivo and in vitro. In particular for nude mice models, mice implanted with Casp8(+)Src(+) A459/H226 cells remarkably increased spontaneous tumor metastatic burden with a significant survival disadvantage. Additionally, we detect that Src-mediated caspase-8 phosphorylation stimulates Src phosphorylation at Tyr-416 via the linkage of Src SH2 domain with phosph-Tyr-380 site of caspase-8. In turn, activated Src can efficiently induce epithelial-mesenchymal transition (EMT) phenotypic features to promote tumor cells metastasis. Surprisingly, RXDLL motif deletion in the DEDa of caspase-8 attenuates tumor cell migration or metastasis via impairing the recruitment of caspase-8 into the cellular periphery where activated Src is subject to caspase-8 phosphorylation. Together, a simple model is that the peripherization of caspase-8 is well-poised to facilitate Src-mediated caspase-8 phosphrylation at Tyr-380, then binding of phospho-Tyr380 of caspase-8 to Src SH2 domain may maintain Src in an active conformation to induce EMT phenotype, a key step toward cancer metastasis. PMID:22508042

  6. p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis

    SciTech Connect

    Grethe, Simone; Coltella, Nadia; Di Renzo, Maria Flavia; Poern-Ares, M. Isabella . E-mail: isabella.ares@helsinki.fi

    2006-09-01

    Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.

  7. 2-Methoxyestradiol induced Bax phosphorylation and apoptosis in human retinoblastoma cells via p38 MAPK activation.

    PubMed

    Min, Hongbo; Ghatnekar, Gautam S; Ghatnekar, Angela V; You, Xiaohong; Bu, Min; Guo, Xinyi; Bu, Shizhong; Shen, Bo; Huang, Qin

    2012-07-01

    Retinoblastoma (Rb) is a common childhood intraocular cancer that affects approximately 300 children each year in the United States alone. 2-Methoxyestradiol (2ME), an endogenous metabolite of 17-β-estradiol that dose not bind to nuclear estrogen receptor, exhibits potent apoptotic activity against rapidly growing tumor cells. Here, we report that 2ME induction of apoptosis was demonstrated by early fragmented DNA after 48 h of incubation with 10 µM 2ME in Rb cell lines. Subsequently, a decrease of proliferation was observed in a time- and dose-dependent manner. Further analysis of the mechanism indicates that p38 kinase plays a critical role in 2ME-induced apoptosis in Y79 cells, even though ERK was also activated by 2ME under the same conditions. Activation of p38 kinase also mediates 2ME induced Bax phosphorylated at Thr(167) after a 6 h treatment of 2ME, which in turn prevents formation of the Bcl-2-Bax heterodimer. Both p38 specific inhibitor, SB 203580, or p38 knockdown by specific siRNA, blocked 2ME induction of Bax phosphorylation. Furthermore, only transiently transfected mutant BaxT167A, but not Bax S163A, inhibited 2ME-induced apoptosis. In summary, our data suggest that 2ME induces apoptosis in human Rb cells by causing phosphorylation of p38 Mitogen-activated protein kinase (MAPK), which appears to be correlated with phosphorlation of Bax. This understanding of 2ME's ability may help develop it as a promising therapeutic candidate by inducing apoptosis in a Rb. PMID:21769948

  8. MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity.

    PubMed

    Deng, Jie V; Wan, Yehong; Wang, Xiaoting; Cohen, Sonia; Wetsel, William C; Greenberg, Michael E; Kenny, Paul J; Calakos, Nicole; West, Anne E

    2014-03-26

    The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors. PMID:24671997

  9. MeCP2 Phosphorylation Limits Psychostimulant-Induced Behavioral and Neuronal Plasticity

    PubMed Central

    Deng, Jie V.; Wan, Yehong; Wang, Xiaoting; Cohen, Sonia; Wetsel, William C.; Greenberg, Michael E.; Kenny, Paul J.; Calakos, Nicole

    2014-01-01

    The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors. PMID:24671997

  10. Hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity

    PubMed Central

    Kietzmann, Thomas; Mennerich, Daniela; Dimova, Elitsa Y.

    2016-01-01

    The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia occurs primarily on the level of protein stability due to posttranslational hydroxylation and proteasomal degradation. However, HIF α-subunits also respond to various growth factors, hormones, or cytokines under normoxia indicating involvement of different kinase pathways in their regulation. Because these proteins participate in angiogenesis, glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation with emphasis on protein stability, subcellular localization, and transactivation. PMID:26942179

  11. Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation.

    PubMed

    Paddock, Cathy; Lytle, Betsy L; Peterson, Francis C; Holyst, Trudy; Newman, Peter J; Volkman, Brian F; Newman, Debra K

    2011-06-01

    Immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors inhibit cellular responsiveness to immunoreceptor tyrosine-based activation motif (ITAM)-linked receptors. Although tyrosine phosphorylation is central to the initiation of both inhibitory ITIM and stimulatory ITAM signaling, the events that regulate receptor phosphorylation are incompletely understood. Previous studies have shown that ITAM tyrosines engage in structure-inducing interactions with the plasma membrane that must be relieved for phosphorylation to occur. Whether ITIM phosphorylation is similarly regulated and the mechanisms responsible for release from plasma membrane interactions to enable phosphorylation, however, have not been defined. PECAM-1 is a dual ITIM-containing receptor that inhibits ITAM-dependent responses in hematopoietic cells. We found that the PECAM-1 cytoplasmic domain is unstructured in an aqueous environment but adopts an α-helical conformation within a localized region on interaction with lipid vesicles that mimic the plasma membrane. The lipid-interacting segment contains the C-terminal ITIM tyrosine and a serine residue that undergo activation-dependent phosphorylation. The N-terminal ITIM is excluded from the lipid-interacting segment, and its phosphorylation is secondary to phosphorylation of the membrane-interacting C-terminal ITIM. On the basis of these findings, we propose a novel model for regulation of inhibitory signaling by ITIM-containing receptors that relies on reversible plasma membrane interactions and sequential ITIM phosphorylation. PMID:21464369

  12. The declined phosphorylation of Hsp27 in rat cardiac muscle after simulated microgravity induced by hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Jiang, Shizhong; Li, Zhili; Yuan, Min; Dong, Weijun

    Many studies have shown that simulated microgravity induced by hindlimb unloading can decrease the contractility of rat cardiac muscle however the mechanisms responsible for which remain unclear Actin polymerization which can be regulated by Hsp27 has important role in the transmission of stress force during the contraction of cardiac muscle In this study western blot analysis was used to detect the expression of Hsp27 and phosphorylated Hsp27 FAK and phosphorylated FAK P38 MAPK and phosphorylated P38 MAPK in rat cardiac muscle after 14d hindlimb unloading The results showed that the phosphorylation levels of both Hsp27 and P38 MAPK were declined significantly which may decrease actin polymerization and inhibit the transmission of stress force during the contraction of rat cardiac muscle after hindlimb unloading However the phosphorylation level of FAK was not declined significantly in cardiac muscle The results suggested that the declined phosphorylation level of Hsp27 which may be ascribable to the decline of contractility of rat cardiac muscle after 14d hindlimb unloading may be induced by the declined phosphorylation level of P38 MAPK but not phosphorylation level of FAK

  13. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes

    PubMed Central

    Sugden, Chris; Urbaniak, Michael D.; Araki, Tsuyoshi; Williams, Jeffrey G.

    2015-01-01

    Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1–controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca2+/calmodulin–dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555. PMID:25518940

  14. LRRK2 phosphorylation level correlates with abnormal motor behaviour in an experimental model of levodopa-induced dyskinesias.

    PubMed

    Stanic, Jennifer; Mellone, Manuela; Cirnaru, Maria Daniela; Perez-Carrion, Maria; Zianni, Elisa; Di Luca, Monica; Gardoni, Fabrizio; Piccoli, Giovanni

    2016-01-01

    Levodopa (L-DOPA)-induced dyskinesias (LIDs) represent the major side effect in Parkinson's disease (PD) therapy. Leucine-rich repeat kinase 2 (LRRK2) mutations account for up to 13 % of familial cases of PD. LRRK2 N-terminal domain encompasses several serine residues that undergo phosphorylation influencing LRRK2 function. This work aims at investigating whether LRRK2 phosphorylation/function may be involved in the molecular pathways downstream D1 dopamine receptor leading to LIDs. Here we show that LRRK2 phosphorylation level at serine 935 correlates with LIDs induction and that inhibition of LRRK2 induces a significant increase in the dyskinetic score in L-DOPA treated parkinsonian animals. Our findings support a close link between LRKK2 functional state and L-DOPA-induced abnormal motor behaviour and highlight that LRRK2 phosphorylation level may be implicated in LIDs, calling for novel therapeutic strategies. PMID:27169991

  15. Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists

    PubMed Central

    Tejeda-Muñoz, Nydia; González-Aguilar, Héctor; Santoyo-Ramos, Paula; Castañeda-Patlán, M. Cristina

    2015-01-01

    The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells. PMID:26711256

  16. Glutamate-induced protein phosphorylation in cerebellar granule cells: role of protein kinase C.

    PubMed

    Eboli, M L; Mercanti, D; Ciotti, M T; Aquino, A; Castellani, L

    1994-10-01

    Protein phosphorylation in response to toxic doses of glutamate has been investigated in cerebellar granule cells. 32P-labelled cells have been stimulated with 100 microM glutamate for up to 20 min and analysed by one and two dimensional gel electrophoresis. A progressive incorporation of label is observed in two molecular species of about 80 and 43 kDa (PP80 and PP43) and acidic isoelectric point. Glutamate-stimulated phosphorylation is greatly reduced by antagonists of NMDA and non-NMDA glutamate receptors. The effect of glutamate is mimicked by phorbol esters and is markedly reduced by inhibitors of protein kinase C (PKC) such as staurosporine and calphostin C. PP80 has been identified by Western blot analysis as the PKC substrate MARCKS (myristoylated alanine-rich C kinase substrate), while antibody to GAP-43 (growth associated protein-43), the nervous tissue-specific substrate of PKC, failed to recognize PP43. Our results suggest that PKC is responsible for the early phosphorylative events induced by toxic doses of glutamate in cerebellar granule cells. PMID:7891841

  17. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  18. Rapid Oligo-Galacturonide Induced Changes in Protein Phosphorylation in Arabidopsis.

    PubMed

    Kohorn, Bruce D; Hoon, Divya; Minkoff, Benjamin B; Sussman, Michael R; Kohorn, Susan L

    2016-04-01

    The wall-associated kinases (WAKs)(1)are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides. OGs activate a WAK-dependent, distinct stress-like response pathway to help plants resist pathogen attack. In this report, a quantitative mass-spectrometric-based phosphoproteomic analysis was used to identify Arabidopsis cellular events rapidly induced by OGsin planta Using N(14/)N(15)isotopicin vivometabolic labeling, we screened 1,000 phosphoproteins for rapid OG-induced changes and found 50 proteins with increased phosphorylation, while there were none that decreased significantly. Seven of the phosphosites within these proteins overlap with those altered by another signaling molecule plants use to indicate the presence of pathogens (the bacterial "elicitor" peptide Flg22), indicating distinct but overlapping pathways activated by these two types of chemicals. Genetic analysis of genes encoding 10 OG-specific and two Flg22/OG-induced phosphoproteins reveals that null mutations in eight proteins compromise the OG response. These phosphorylated proteins with genetic evidence supporting their role in the OG response include two cytoplasmic kinases, two membrane-associated scaffold proteins, a phospholipase C, a CDPK, an unknown cadmium response protein, and a motor protein. Null mutants in two proteins, the putative scaffold protein REM1.3, and a cytoplasmic receptor like kinase ROG2, enhance and suppress, respectively, a dominantWAKallele. Altogether, the results of these chemical and genetic experiments reveal the identity of several phosphorylated proteins involved in the kinase

  19. Mineral induced phosphorylation of glycolate ion--a metaphor in chemical evolution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G.

    1997-01-01

    Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from l0(-3) m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from l0(-2) m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.

  20. Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation

    PubMed Central

    2012-01-01

    Background Ethyl pyruvate (EP) possesses anti-inflammatory activity. However, the potential anti-nociceptive value of EP for the treatment of the inflammatory nociception is largely unknown. We investigated whether EP could have any anti-nociceptive effect on inflammatory pain, after systemic administration of EP (10, 50, and 100 mg/kg, i.p.), 1 hour before formalin (5%, 50 μl) injection into the plantar surface of the hind paws of rats. Results EP significantly decreased formalin-induced nociceptive behavior during phase II, the magnitude of paw edema, and the activation of c-Fos in L4-L5 spinal dorsal horn. EP also attenuated the phosphorylation of extracellular signal-regulated kinase (ERK) in the neurons of L4-L5 spinal dorsal horn after formalin injection. Interestingly, the i.t. administration of PD98059, an ERK upstream kinase (MEK) inhibitor, completely blocked the formalin-induced inflammatory nociceptive responses. Conclusions These results demonstrate that EP may effectively inhibit formalin-induced inflammatory nociception via the inhibition of neuronal ERK phosphorylation in the spinal dorsal horn, indicating its therapeutic potential in suppressing acute inflammatory pain. PMID:22640699

  1. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling.

    PubMed

    Hough, Chris; Radu, Maria; Doré, Jules J E

    2012-01-01

    The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or positively regulate gene expression. In this study, we define a second signaling pathway leading to TGF-β receptor activation of Extracellular Signal Regulated Kinase (Erk) in a cell-type dependent manner. TGF-β induced Erk activation was found in phenotypically normal mesenchymal cells, but not normal epithelial cells. By activating phosphotidylinositol 3-kinase (PI3K), TGF-β stimulates p21-activated kinase2 (Pak2) to phosphorylate c-Raf, ultimately resulting in Erk activation. Activation of Erk was necessary for TGF-β induced fibroblast replication. In addition, Erk phosphorylated the linker region of nuclear localized smads, resulting in increased half-life of C-terminal phospho-smad 2 and 3 and increased duration of smad target gene transcription. Together, these data show that in mesenchymal cell types the TGF-β/PI3K/Pak2/Raf/MEK/Erk pathway regulates smad signaling, is critical for TGF-β-induced growth and is part of an integrated signaling web containing multiple interacting pathways rather than discrete smad/non-smad pathways. PMID:22880011

  2. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis

    PubMed Central

    Verma, Ajeet Kumar; Yadav, Arti; Dewangan, Jayant; Singh, Sarvendra Vikram; Mishra, Manisha; Singh, Pradhyumna Kumar; Rath, Srikanta Kumar

    2015-01-01

    Isoniazid is used either alone or in combination with other drugs for the treatment of tuberculosis. It is also used for the prevention of tuberculosis. Chronic treatment of Isoniazid may cause severe liver damage leading to acute liver failure. The mechanism through which Isoniazid causes liver damage is investigated. Isoniazid treatment generates reactive oxygen species and induces apoptosis in Hep3B cells. It induces antioxidative and apoptotic genes leading to increase in mRNA expression and protein levels in Hep3B cells. Whole genome expression analysis of Hep3B cells treated with Isoniazid has resulted in differential expression of various genes playing prime role in regulation of apoptotic, antioxidative, DNA damage, cell signaling, cell proliferation and differentiation pathways. Isoniazid increased cytosolic Nrf2 protein level while decreased nuclear Nrf2 protein level. It also decreased ERK1 phosphorylation and treatment of Hep3B cells with ERK inhibitor followed by Isoniazid resulting in increased apoptosis in these cells. Two dimensional gel electrophoresis results have also shown differential expression of various protein species including heat shock proteins, proteins playing important role in oxidative stress, DNA damage, apoptosis, cell proliferation and differentiation. Results suggest that Isoniazid induces apoptosis through oxidative stress and also prevents Nrf2 translocation into the nucleus by reducing ERK1 phosphorylation thus preventing cytoprotective effect. PMID:26202867

  3. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366.

    PubMed Central

    Sapkota, Gopal P; Deak, Maria; Kieloch, Agnieszka; Morrice, Nick; Goodarzi, Aaron A; Smythe, Carl; Shiloh, Yosef; Lees-Miller, Susan P; Alessi, Dario R

    2002-01-01

    The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1. PMID:12234250

  4. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage

    SciTech Connect

    Pan, Xiao; Whitten, Douglas A.; Wu, Ming; Chan, Christina; Wilkerson, Curtis G.; Pestka, James J.

    2013-04-15

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤ 30 min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250 ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at both known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment. - Highlights: ► Mycotoxin deoxynivalenol (DON) induces immunotoxicity via ribotoxic stress response. ► SILAC phosphoproteomics using

  5. Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion-Induced Kidney Growth.

    PubMed

    Wu, Huijuan; Chen, Jianchun; Xu, Jinxian; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2016-04-01

    The molecular mechanisms underlying renal growth and renal growth-induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys. PMID:26296742

  6. Morphine-induced μ-Opioid Receptor Rapid Desensitization is independent of Receptor Phosphorylation and β-Arrestins

    PubMed Central

    Chu, Ji; Zheng, Hui; Loh, Horace H.; Law, Ping-Yee

    2008-01-01

    Receptor desensitization involving receptor phosphorylation and subsequent βArrestin (βArr) recruitment has been implicated in the tolerance development mediated by μ-opioid receptor (OPRM1). However, the roles of receptor phosphorylation and βArr on morphine-induced OPRM1 desensitization remain to be demonstrated. Using OPRM1-induced intracellular Ca2+ ([Ca2+]i )release to monitor receptor activation, as predicted, [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), induced OPRM1 desensitization in a receptor phosphorylation- and βArr-dependent manner. The DAMGO-induced OPRM1 desensitization was attenuated significantly when phosphorylation deficient OPRM1 mutants or Mouse Embryonic Fibroblast (MEF) cells from βArr1 and 2 knockout mice were used in the studies. Specifically, DAMGO-induced desensitization was blunted in HEK293 cells expressing the OPRM1S375A mutant and was eliminated in MEF cells isolated from βArr2 knockout mice expressing the wild type OPRM1. However, although morphine also could induce a rapid desensitization on [Ca2+]i release to a greater extent than that of DAMGO and could induce the phosphorylation of Ser375 residue, morphine-induced desensitization was not influenced by mutating the phosphorylation sites or in MEF cells lacking βArr1 and 2. Hence, morphine could induce OPRM1 desensitization via pathway independent of βArr, thus suggesting the in vivo tolerance development to morphine can occur in the absence of βArr. PMID:18558479

  7. Nordihydroguaiaretic acid inhibits IFN-gamma-induced STAT tyrosine phosphorylation in rat brain astrocytes.

    PubMed

    Jeon, Sae-Bom; Ji, Kyung-Ae; You, Hye-Jin; Kim, Jae-Hong; Jou, Ilo; Joe, Eun-Hye

    2005-03-11

    The Janus kinase (JAK) and signal transducers and activators of transcription (STAT) signal cascades are major pathways that mediate the inflammatory functions of interferon-gamma (IFN-gamma), an important pro-inflammatory cytokine. Therefore, regulation of JAK/STAT signaling should modulate IFN-gamma-mediated inflammation. In this study, we found that nordihydroguaiaretic acid (NDGA), a well-known lipoxygenase (LO) inhibitor, suppressed IFN-gamma-induced inflammatory responses in brain astrocytes. In the presence of NDGA, interferon regulatory factor-1 expression was significantly reduced. Expression of monocyte chemotactic protein-1 and interferon-gamma inducible protein-10 mRNA in response to IFN-gamma was significantly suppressed in the presence of NDGA, as was tyrosine-phosphorylation of JAK and STAT. However, the 5-LO products, leukotriene B(4) (LTB(4)) and leukotriene C(4), were not detected in cells treated with IFN-gamma, indicating that the effect of NDGA seemed to be independent of 5-LO inhibition. In addition, two other 5-LO inhibitors (Rev5901 and AA861) did not mimic the effect of NDGA, and the 5-LO metabolites, 5-hydroxyeicosatetraenoic acid and LTB(4), were unable to reverse NDGA-driven suppression of STAT activation or affect basal STAT phosphorylation. Taken together, these results suggest that NDGA regulates IFN-gamma-mediated inflammation through mechanisms unrelated to the inhibition of 5-LO. PMID:15694390

  8. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reymond, P.; Short, T. W.; Briggs, W. R.; Poff, K. L.

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

  9. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana.

    PubMed Central

    Reymond, P; Short, T W; Briggs, W R; Poff, K L

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants. Images PMID:11537679

  10. STAT3 supports experimental K-RasG12D–induced murine myeloproliferative neoplasms dependent on serine phosphorylation

    PubMed Central

    Gough, Daniel J.; Marié, Isabelle J.; Lobry, Camille; Aifantis, Iannis

    2014-01-01

    Juvenile myelomonocytic leukemia, acute myeloid leukemia (AML), and other myeloproliferative neoplasms (MPNs) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of signal transducer and activator of transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine-phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras–dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras–mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine-phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras. PMID:25150294

  11. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  12. Cationic uncouplers of oxidative phosphorylation are inducers of mitochondrial permeability transition.

    PubMed

    Shinohara, Y; Bandou, S; Kora, S; Kitamura, S; Inazumi, S; Terada, H

    1998-05-22

    To determine whether cationic uncouplers of oxidative phosphorylation induce permeability transition in mitochondria, the effects of the divalent cationic sulfhydryl cross-linker copper-o-phenanthroline (Cu(OP)2) and the cyanine dye tri-S-C4(5) on rat liver mitochondria were examined. Like Ca2+, they accelerated mitochondrial respiration with succinate and induced mitochondrial swelling when inorganic phosphate (Pi) was present in the incubation medium. The acceleration of respiration and swelling were inhibited by the SH-reagent N-ethylmaleimide, and by the specific permeability transition inhibitor cyclosporin A (CsA). In addition, these cations, like Ca2+, induced release of ADP entrapped in the mitochondrial matrix space, and the morphological change of mitochondria induced by these cations was essentially the same as that induced by Ca2+. It is concluded that the uncoupling actions of Cu(OP)2 and tri-S-C4(5) are due to induction of permeability transition in the inner mitochondrial membrane. PMID:9645482

  13. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells.

    PubMed

    Wehinger, Sergio; Ortiz, Rina; Díaz, María Inés; Aguirre, Adam; Valenzuela, Manuel; Llanos, Paola; Mc Master, Christopher; Leyton, Lisette; Quest, Andrew F G

    2015-05-01

    A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation. PMID:25572853

  14. Cocaine Enhances HIV-1 Transcription in Macrophages by Inducing p38 MAPK Phosphorylation

    PubMed Central

    Swepson, Chelsie; Ranjan, Alok; Balasubramaniam, Muthukumar; Pandhare, Jui; Dash, Chandravanu

    2016-01-01

    Cocaine is a commonly used illicit drug among HIV-1 infected individuals and is known to increase HIV-1 replication in permissive cells including PBMCs, CD4+ T cells, and macrophages. Cocaine’s potentiating effects on HIV-1 replication in macrophages- the primary targets of the virus in the central nervous system, has been suggested to play an important role in HIV-1 neuro-pathogenesis. However, the mechanism by which cocaine enhances HIV-1 replication in macrophages remain poorly understood. Here, we report the identification of cocaine-induced signaling events that lead to enhanced HIV-1 transcription in macrophages. Treatment of physiologically relevant concentrations of cocaine enhanced HIV-1 transcription in a dose-dependent manner in infected THP-1 monocyte-derived macrophages (THP-1macs) and primary monocyte-derived macrophages (MDMs). Toward decoding the underlying mechanism, results presented in this report demonstrate that cocaine induces the phosphorylation of p38 mitogen activated protein kinase (p38 MAPK), a known activator of HIV-1 transcription. We also present data suggesting that the p38 MAPK-driven HIV-1 transcription is dependent on the induction of mitogen- and stress-activated protein kinase 1 (MSK1). Consequently, MSK1 mediates the phosphorylation of serine 10 residue of histone 3 (H3 Ser10), which is known to activate transcription of genes including that of HIV-1 in macrophages. Importantly, our results show that inhibition of p38 MAPK/MSK1 signaling by specific pharmacological inhibitors abrogated the positive effect of cocaine on HIV-1 transcription. These results validate the functional link between cocaine and p38 MAPK/MSK1 pathways. Together, our results demonstrate for the first time that the p38 MAPK/MSK1 signaling pathway plays a critical role in the cocaine-induced potentiating effects on HIV-1 infection, thus providing new insights into the interplay between cocaine abuse and HIV-1 neuro-pathogenesis. PMID:27375565

  15. Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

    PubMed Central

    Lim, Junghyun; Lachenmayer, M. Lenard; Wu, Shuai; Liu, Wenchao; Kundu, Mondira; Wang, Rong; Komatsu, Masaaki; Oh, Young J.; Zhao, Yanxiang; Yue, Zhenyu

    2015-01-01

    Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. PMID:25723488

  16. Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator

    PubMed Central

    Shi, Qing; Li, Shuang; Li, Shuangxi; Jiang, Alice; Chen, Yongbin; Jiang, Jin

    2014-01-01

    Hedgehog (Hh) signaling governs many developmental processes by regulating the balance between the repressor (CiR/GliR) and activator (CiA/GliA) forms of Cubitus interruptus (Ci)/glioma-associated oncogene homolog (Gli) transcription factors. Although much is known about how CiR/GliR is controlled, the regulation of CiA/GliA remains poorly understood. Here we demonstrate that Casein kinase 1 (CK1) sustains Hh signaling downstream of Costal2 and Suppressor of fused (Sufu) by protecting CiA from premature degradation. We show that Hh stimulates Ci phosphorylation by CK1 at multiple Ser/Thr-rich degrons to inhibit its recognition by the Hh-induced MATH and BTB domain containing protein (HIB), a substrate receptor for the Cullin 3 family of E3 ubiquitin ligases. In Hh-receiving cells, reduction of CK1 activity accelerated HIB-mediated degradation of CiA, leading to premature loss of pathway activity. We also provide evidence that GliA is regulated by CK1 in a similar fashion and that CK1 acts downstream of Sufu to promote Sonic hedgehog signaling. Taken together, our study not only reveals an unanticipated and conserved mechanism by which phosphorylation of Ci/Gli positively regulates Hh signaling but also provides the first evidence, to our knowledge, that substrate recognition by the Cullin 3 family of E3 ubiquitin ligases is negatively regulated by a kinase. PMID:25512501

  17. Prolactin-induced Jak2 phosphorylation of RUSH: a key element in Jak/RUSH signaling.

    PubMed

    Helmer, Rebecca A; Panchoo, Marlyn; Dertien, Janet S; Bhakta, Suhani M; Hewetson, Aveline; Chilton, Beverly S

    2010-08-30

    Jak2/Stat-mediated prolactin signaling culminates in Stat5a-DNA-binding. However, not all Jak2-dependent genes have Stat5 sites. Western analysis with inhibitors showed Jak2 is a proximal intermediate in prolactin-induced RUSH phosphorylation. Transfection assays with HRE-H9 cells showed the RUSH-binding site mediated the ability of prolactin to augment progesterone-dependent transcription of the RUSH gene. Jak2 inhibitors or targeted RUSH-site mutation blocked the prolactin effect. RUSH co-immunoprecipitated with phospho-Jak2 from nuclear extracts. Jak2 inhibitors abolished the nuclear pool of phospho-RUSH not the nuclear content of RUSH in HRE-H9 cells. Nucleolar-affiliated partners, e.g. nucleolin, were identified by microLC/MS/MS analysis of nuclear proteins that co-immunoprecipitated with RUSH/GST-RING. RUSH did not exclusively co-localize with fibrillarin to the nucleolus. MG-132 (proteasomal inhibitor) failed to block Tyrene CR4-mediated decrease in phospho-RUSH, and did not promote RUSH accumulation in the nucleolus. These studies authenticate prolactin-dependent Jak2 phosphorylation of RUSH, and provide functional implications on the RUSH network of nuclear interactions. PMID:20562009

  18. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8

    PubMed Central

    Helmke, Christina; Raab, Monika; Rödel, Franz; Matthess, Yves; Oellerich, Thomas; Mandal, Ranadip; Sanhaji, Mourad; Urlaub, Henning; Rödel, Claus; Becker, Sven; Strebhardt, Klaus

    2016-01-01

    Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression. PMID:27325299

  19. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition

    PubMed Central

    Yuan, Hai-Xin; Wang, Zhen; Yu, Fa-Xing; Li, Fulong; Russell, Ryan C.; Jewell, Jenna L.; Guan, Kun-Liang

    2015-01-01

    The mechanistic target of rapamycin (mTOR) is a central cell growth controller and forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates a wide range of upstream signals, both positive and negative, to regulate cell growth. Although mTORC1 activation by positive signals, such as growth factors and nutrients, has been extensively investigated, the mechanism of mTORC1 regulation by stress signals is less understood. In this study, we identified the Nemo-like kinase (NLK) as an mTORC1 regulator in mediating the osmotic and oxidative stress signals. NLK inhibits mTORC1 lysosomal localization and thereby suppresses mTORC1 activation. Mechanistically, NLK phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. Our study reveals a function of NLK in stress-induced mTORC1 modulation and the underlying biochemical mechanism of NLK in mTORC1 inhibition in stress response. PMID:26588989

  20. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR

    PubMed Central

    Thomas, J. Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R.; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface. PMID:27101391

  1. FGFR3 intracellular mutations induce tyrosine phosphorylation in the Golgi and defective glycosylation.

    PubMed

    Gibbs, Linda; Legeai-Mallet, Laurence

    2007-04-01

    Mutations of the Fibroblast Growth Factor Receptor 3 (FGFR3) gene have been implicated in a series of skeletal dysplasias including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The severity of these diseases ranges from mild dwarfism to severe dwarfism and to perinatal lethality, respectively. Although it is considered that the mutations give rise to constitutively active receptors, it remains unclear how the different mutations are functionally linked to the severity of the different pathologies. By examining various FGFR3 mutations in a HEK cell culture model, including the uncharacterized X807R mutation, it was found that only the mutations affecting the intracellular domain, induced premature receptor phosphorylation and inhibited receptor glycosylation, suggesting that premature receptor tyrosine phosphorylation of the native receptor inhibits its glycosylation. Moreover, these mutations appeared to be associated with elevated receptor signaling in the Golgi apparatus. In conclusion, although pathological severity could not be correlated with a single factor arising from FGFR3 mutations, these results suggest that intracellular domain mutations define a distinct means by which mutated FGFR3 could disrupt bone development. PMID:17320202

  2. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8.

    PubMed

    Helmke, Christina; Raab, Monika; Rödel, Franz; Matthess, Yves; Oellerich, Thomas; Mandal, Ranadip; Sanhaji, Mourad; Urlaub, Henning; Rödel, Claus; Becker, Sven; Strebhardt, Klaus

    2016-08-01

    Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression. PMID:27325299

  3. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.

    PubMed

    Hirose, H; Sakuma, N; Kaji, N; Nakayama, K; Inoue, K; Sekijima, M; Nojima, T; Miyakoshi, J

    2007-02-01

    An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family. PMID:17004241

  4. Protein Kinase Cβ Phosphorylates Occludin Regulating Tight Junction Trafficking in Vascular Endothelial Growth Factor–Induced Permeability In Vivo

    PubMed Central

    Murakami, Tomoaki; Frey, Tiffany; Lin, Chengmao; Antonetti, David A.

    2012-01-01

    Vascular endothelial growth factor (VEGF)–induced breakdown of the blood-retinal barrier requires protein kinase C (PKC)β activation. However, the molecular mechanisms related to this process remain poorly understood. In this study, the role of occludin phosphorylation and ubiquitination downstream of PKCβ activation in tight junction (TJ) trafficking and endothelial permeability was investigated. Treatment of bovine retinal endothelial cells and intravitreal injection of PKCβ inhibitors as well as expression of dominant-negative kinase was used to determine the contribution of PKCβ to endothelial permeability and occludin phosphorylation at Ser490 detected with a site-specific antibody. In vitro kinase assay was used to demonstrate direct occludin phosphorylation by PKCβ. Ubiquitination was measured by immunoblotting after occludin immunoprecipitation. Confocal microscopy revealed organization of TJ proteins. The results reveal that inhibition of VEGF-induced PKCβ activation blocks occludin Ser490 phosphorylation, ubiquitination, and TJ trafficking in retinal vascular endothelial cells both in vitro and in vivo and prevents VEGF-stimulated vascular permeability. Occludin Ser490 is a direct target of PKCβ, and mutating Ser490 to Ala (S490A) blocks permeability downstream of PKCβ. Therefore, PKCβ activation phosphorylates occludin on Ser490, leading to ubiquitination required for VEGF-induced permeability. These data demonstrate a novel mechanism for PKCβ targeted inhibitors in regulating vascular permeability. PMID:22438576

  5. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    PubMed

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our

  6. Augmented ciliary reorientation response and cAMP-dependent protein phosphorylation induced by glycerol in triton-extracted Paramecium.

    PubMed

    Noguchi, Munenori; Kitani, Takayuki; Ogawa, Tokushige; Inoue, Hiroshi; Kamachi, Hiroyuki

    2005-01-01

    In the presence of 30% glycerol, the cilia of a permeabilized cell model from Paramecium exhibit dynamic orientation changes while displaying only a restricted cyclic beating with a very small amplitude. The direction of cilia under these conditions corresponds to the direction of the effective power stroke of cilia beating in the absence of glycerol, i.e., pointing posteriorly in the absence of Ca2+ and anteriorly at > 10(-6) M Ca2+. Ciliary reorientation toward the posterior in response to the removal of Ca2+ is particularly conspicuous; all the cilia become predominantly pointing to the posterior end all through their beating phases. Previous studies suggested that the effect of glycerol is caused through modification of cAMP-dependent protein phosphorylation. To determine whether glycerol in fact affects ciliary reorientation through changes in protein phosphorylation, here we examined protein phosphorylation in the axonemes. Glycerol stimulated cAMP-induced phosphorylation of 29-kDa and 65-kDa proteins. The stimulation of phosphorylation was found to be partly due to the inhibition of endogenous phosphodiesterase (PDE), and partly due to the inhibition of the dephosphorylation of the 29-kDa and 65-kDa phosphoproteins within the axoneme. Thus glycerol appears to cause predominant posterior orientation of cilia by stimulating cAMP-dependent phosphorylation on those proteins. In addition, glycerol appears to inhibit ciliary beating through inhibition of dynein ATPase. PMID:15684582

  7. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis.

    PubMed

    Carr, Michael I; Roderick, Justine E; Gannon, Hugh S; Kelliher, Michelle A; Jones, Stephen N

    2016-09-01

    ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2(S394A) knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2(S394A) mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2(S394A) mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies. PMID:27568562

  8. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain

    PubMed Central

    Yufune, Shinya; Satoh, Yasushi; Akai, Ryosuke; Yoshinaga, Yosuke; Kobayashi, Yasushi; Endo, Shogo; Kazama, Tomiei

    2016-01-01

    In animal models, neonatal exposure to general anesthetics significantly increased neuronal apoptosis with subsequent behavioral deficits in adulthood. Although the underlying mechanism is largely unknown, involvement of extracellular signal-regulated kinases (ERKs) is speculated since ERK phosphorylation is decreased by neonatal anesthetic exposure. Importance of ERK phosphorylation for neuronal development is underscored by our recent finding that transient suppression of ERK phosphorylation during the neonatal period significantly increased neuronal apoptosis and induced behavioral deficits. However, it is still unknown as to what extent decreased ERK phosphorylation contributes to the mechanism underlying anesthetic-induced toxicity. Here we investigated the causal relationship of decreased ERK phosphorylation and anesthetic-induced toxicity in the developing brain. At postnatal day 6 (P6), mice were exposed to sevoflurane (2%) or the blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) (50 mg/kg). Transient suppression of ERK phosphorylation by an intraperitoneal injection of SL327 at P6 significantly increased apoptosis similar to sevoflurane-induced apoptosis. Conversely, SL327 administration at P14 or P21 did not induce apoptosis, even though ERK phosphorylation was inhibited. Restoring ERK phosphorylation by administration of molecular hydrogen ameliorated sevoflurane-induced apoptosis. Together, our results strongly suggests that suppressed ERK phosphorylation is critically involved in the mechanism underlying anesthetic-induced toxicity in the developing brain. PMID:26905012

  9. Heat Shock Proteins Regulate Activation-induced Proteasomal Degradation of the Mature Phosphorylated Form of Protein Kinase C*

    PubMed Central

    Lum, Michelle A.; Balaburski, Gregor M.; Murphy, Maureen E.; Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells. PMID:23900841

  10. JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic

    PubMed Central

    Chen, Bailing; Liu, Jia; Chang, Qingshan; Beezhold, Kevin; Lu, Yongju; Chen, Fei

    2013-01-01

    The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis. PMID:23255093

  11. Mutations associated with retinopathies alter mitogen-activated protein kinase-induced phosphorylation of neural retina leucine-zipper

    PubMed Central

    Kumar, Sandeep; Patel, Dharmesh; Richong, Sushmita; Oberoi, Pranav; Ghosh, Madhumita; Swaroop, Anand

    2007-01-01

    Purpose Neural retina leucine-zipper (NRL), a member of the basic motif leucine zipper family of transcription factors, is preferentially expressed in rod photoreceptors of the mammalian retina. Mutations in NRL are associated with retinopathies; many of these are suggested to change phosphorylation status and alter NRL-mediated transactivation of rhodopsin promoter. The purpose of this study was to identify potential kinases responsible for the phosphorylation of NRL and determine if such kinase-dependent phosphorylation is altered in disease-associated NRL mutations. Methods Metabolic labeling with 33P-orthophosphate was used to study phosphorylation of NRL in transfected COS-1 cells. NRL or NRL mutants were expressed as glutathione S-transferase (GST)-fusion proteins and used as substrate to screen various kinases by in vitro phosphorylation assays. CV-1 cells were co-transfected with rhodopsin promoter-reporter construct and expression plasmids, with or without specific mitogen-activated protein kinase (MAPK) inhibitors, to examine their effect on NRL-mediated transactivation. Expression of activated MAPKs in postnatal mice retina was determined by immunoblot analysis. Results Metabolic labeling of NRL produces multiple phosphorylated protein bands in transfected COS-1 cells. Fewer but more intense radiolabeled bands are observed for NRL-S50T, -S50A, and -P51L mutants compared to wild-type NRL. We show that MAPK2 and p38 induce specific phosphorylation of NRL, but this pattern is altered in NRL mutants. Immunoblot analysis of extracts from developing mouse retina reveals enhanced expression of activated MAPK2 at postnatal day 0-3, concordant with the reported phosphorylation pattern of NRL in vivo. Inhibition of MAPK signaling pathways decreases NRL and CRX -mediated synergistic activation of rhodopsin promoter in transfected CV-1 cells. Conclusions Our results suggest that multiple MAPKs can phosphorylate NRL and this phosphorylation pattern is altered by

  12. Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway

    PubMed Central

    Maruyama, Junichi; Kobayashi, Yumie; Umeda, Tsuyoshi; Vandewalle, Alain; Takeda, Kohsuke; Ichijo, Hidenori; Naguro, Isao

    2016-01-01

    The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3). We found that WNK4 is phosphorylated in an ASK3 kinase activity-dependent manner. By exploring the ASK3-dependent phosphorylation sites, we identified Ser575 as a novel phosphorylation site in WNK4 by LC-MS/MS analysis. ASK3-dependent WNK4 Ser575 phosphorylation was mediated by the p38MAPK-MAPK-activated protein kinase (MK) pathway. Osmotic stress, as well as hypotonic low-chloride stimulation, increased WNK4 Ser575 phosphorylation via the p38MAPK-MK pathway. ASK3 was required for the p38MAPK activation induced by hypotonic stimulation but was not required for that induced by hypertonic stimulation or hypotonic low-chloride stimulation. Our results suggest that the p38MAPK-MK pathway might regulate WNK4 in an osmotic stress-dependent manner but its upstream regulators might be divergent depending on the types of osmotic stimuli. PMID:26732173

  13. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation

    PubMed Central

    Zou, Zhongju; Sumpter, Rhea; Su, Minfei; Zang, Xiao; Sinha, Sangita; Gaestel, Matthias; Levine, Beth

    2015-01-01

    Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1. DOI: http://dx.doi.org/10.7554/eLife.05289.001 PMID:25693418

  14. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    PubMed

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells. PMID:21716255

  15. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation.

    PubMed

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer's disease (AD) and Parkinson's disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  16. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  17. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism.

    PubMed

    Beitner-Johnson, D; Millhorn, D E

    1998-07-31

    To investigate signaling mechanisms by which hypoxia regulates gene expression, we examined the effect of hypoxia on the cyclic AMP response element-binding protein (CREB) in PC12 cells. Exposure to physiological levels of hypoxia (5% O2, approximately 50 mm Hg) rapidly induced a persistent phosphorylation of CREB on Ser133, an event that is required for CREB-mediated transcriptional activation. Hypoxia-induced phosphorylation of CREB was more robust than that induced by any other stimulus tested, including forskolin, depolarization, and osmotic stress. Furthermore, this effect was not mediated by any of the previously known signaling pathways that lead to phosphorylation of CREB, including protein kinase A, calcium/calmodulin-dependent protein kinase, protein kinase C, ribosomal S6 kinase-2, and mitogen-activated protein kinase-activated protein kinase-2. Hypoxic activation of a CRE-containing reporter (derived from the 5'-flanking region of the tyrosine hydroxylase gene) was attenuated markedly by mutation of the CRE. Thus, a physiological reduction in O2 levels induces a functional phosphorylation of CREB at Ser133 via a novel signaling pathway. PMID:9677418

  18. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation

    PubMed Central

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  19. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  20. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  1. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA. Stem Cells 2016;34:960-971. PMID:26676373

  2. Okadaic acid mimics multiple changes in early protein phosphorylation and gene expression induced by tumor necrosis factor or interleukin-1.

    PubMed

    Guy, G R; Cao, X; Chua, S P; Tan, Y H

    1992-01-25

    Okadaic acid, a phosphatase inhibitor from a marine organism, mimics tumor necrosis factor/interleukin-1 (TNF/IL-1) in inducing changes in early cellular protein phosphorylation. A total of approximately 116 proteins exhibit significant and concordant changes in phosphorylation or dephosphorylation within 15 min in human fibroblasts activated by either okadaic acid, TNF, or IL-1. The fidelity of this mimicry by okadaic acid extends to the phosphorylation of the 27 hsp complex, stathmin, eIF-4E, myosin light chain, nucleolin, epidermal growth factor receptor, and other cdc2-kinase substrates (c-abl, RB, and p53). The okadaic acid-induced pattern of protein phosphorylation is distinct from that observed in cells treated with phorbol 12-myristate 13-acetate or with ligands like epidermal growth factor, cyclic AMP agonists, bradykinin, or interferons. Like TNF, okadaic acid also induces the transcription of immediate early response genes like c-jun and Egr-1 as well as the interleukin-6 genes. The overall early effects of okadaic acid uniquely parallel those of TNF/IL-1 and not those of other cytokines or ligands. Regulation of protein phosphatase inhibition is discussed as a mechanism for TNF/IL-1 signal transduction. PMID:1370482

  3. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    PubMed

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  4. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    SciTech Connect

    Chen, Guo; Mcmahon, Benjamin H; Tung, Chang - Shung

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  5. IRS1Ser³⁰⁷ phosphorylation does not mediate mTORC1-induced insulin resistance.

    PubMed

    Herrema, Hilde; Lee, Jaemin; Zhou, Yingjiang; Copps, Kyle D; White, Morris F; Ozcan, Umut

    2014-01-10

    Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance. PMID:24333417

  6. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  7. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  8. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation.

    PubMed

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L

    2015-07-31

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  9. Inhibition of IκB phosphorylation prevents load-induced cardiac dysfunction in mice.

    PubMed

    Tanaka, Tetsu; Ogawa, Masahito; Suzuki, Jun-ichi; Sekinishi, Asuka; Itai, Akiko; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki

    2012-12-15

    Pressure overload is known to be a cause of cardiac hypertrophy that often transits to heart failure. Although nuclear factor (NF)-κB is a key factor in the progression of cardiac hypertrophy, its pathophysiology is yet to be elucidated. Thus, we aimed to show that inhibition of NF-κB activation improves pressure overload-induced cardiac dysfunction. To assess the effect of inhibition on NF-κB activation in pressure overload cardiac hypertrophy, we used IMD-1041 in a murine thoracic aortic constriction (TAC) model. IMD-1041 inhibits the phosphorylation of IκB via inhibition of IκB kinase-β. IMD-1041 (100 mg·kg(-1)·day(-1)) or vehicle was administered orally into mice once a day, and mice were euthanized on day 42 after TAC. TAC resulted in left ventricular wall thickening, cardiac dysfunction, and increases of heart and lung weight, whereas IMD-1041 significantly suppressed the development of cardiac hypertropy 6 wk after TAC. Histologically, developed cardiac fibrosis and cardiomyocyte hypertrophy occurred in the vehicle-treated group, whereas IMD-1041 significantly attenuated these changes. IMD-1041 suppressed the expression of p65-positive cells and nuclear translocation of p65 induced by TAC compared with vehicle. Matrix metalloproteinase-2 activity increased in the vehicle + TAC-treated group; however, it was suppressed in the IMD-1041 + TAC-treated group. IMD-1041 treatment from day 28 to day 42 after TAC significantly attenuated the decrease in the percentage of fractional shortening and cardiac fibrosis without an antihypertrophic effect. In conclusion, IMD-1041 may be useful for preventing pressure overload-induced cardiac dysfunction and the transition of cardiac hypertrophy to contraction failure via suppression of NF-κB activation. PMID:23042949

  10. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  11. VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells.

    PubMed

    Al Thawadi, Hamda; Abu-Kaoud, Nadine; Al Farsi, Haleema; Hoarau-Véchot, Jessica; Rafii, Shahin; Rafii, Arash; Pasquier, Jennifer

    2016-02-01

    Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells. PMID:26700621

  12. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428

    PubMed Central

    Pozuelo Rubio, Mercedes; Campbell, David G.; Morrice, Nicholas A.; Mackintosh, Carol

    2005-01-01

    PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding. PMID:16153182

  13. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK

    PubMed Central

    SHARMA, Mukesh Kumar; KAMDAR, Radhika Pankaj; FUKUCHI, Mikoto; MATSUMOTO, Yoshihisa

    2014-01-01

    XRCC4 (X-ray cross-complementation group 4) is a protein associated with DNA ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end-joining. It has been shown that, in response to irradiation or treatment with DNA damaging agents, XRCC4 undergoes phosphorylation, requiring DNA-PK. Here we explored possible role of ATM, which is structurally related to DNA-PK, in the regulation of XRCC4. The radiosensitizing effects of DNA-PK inhibitor and/or ATM inhibitor were dependent on XRCC4. DNA-PK inhibitor and ATM inhibitor did not affect the ionizing radiation-induced chromatin recruitment of XRCC4. Ionizing radiation-induced phosphorylation of XRCC4 in the chromatin-bound fraction was largely inhibited by DNA-PK inhibitor but further diminished by the combination with ATM inhibitor. The present results indicated that XRCC4 phosphorylation is mediated through ATM as well as DNA-PK, although DNA-PK plays the major role. We would propose a possible model that DNA-PK and ATM acts in parallel upstream of XRCC4, regulating through phosphorylation. PMID:25391321

  14. GQ5 Hinders Renal Fibrosis in Obstructive Nephropathy by Selectively Inhibiting TGF-β-Induced Smad3 Phosphorylation.

    PubMed

    Ai, Jun; Nie, Jing; He, Jiangbo; Guo, Qin; Li, Mei; Lei, Ying; Liu, Youhua; Zhou, Zhanmei; Zhu, Fengxin; Liang, Min; Cheng, Yongxian; Hou, Fan Fan

    2015-08-01

    TGF-β1, via Smad-dependent or Smad-independent signaling, has a central role in the pathogenesis of renal fibrosis. This pathway has been recognized as a potential target for antifibrotic therapy. Here, we identified GQ5, a small molecular phenolic compound isolated from the dried resin of Toxicodendron vernicifluum, as a potent and selective inhibitor of TGF-β1-induced Smad3 phosphorylation. In TGF-β1-stimulated renal tubular epithelial cells and interstitial fibroblast cells, GQ5 inhibited the interaction of Smad3 with TGF-β type I receptor (TβRI) by blocking binding of Smad3 to SARA, suppressed subsequent phosphorylation of Smad3, reduced nuclear translocation of Smad2, Smad3, and Smad4, and downregulated the transcription of major fibrotic genes such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin. Notably, intraperitoneal administration of GQ5 in rats immediately after unilateral ureteral obstruction (UUO) selectively inhibited Smad3 phosphorylation in UUO kidneys, suppressed renal expression of α-SMA, collagen I, and fibronectin, and resulted in impressive renal protection after obstructive injury. Late administration of GQ5 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, our results suggest that GQ5 hinders renal fibrosis in rats by selective inhibition of TGF-β1-induced Smad3 phosphorylation. PMID:25392233

  15. Growth hormone (GH) induces tyrosine-phosphorylated proteins in mouse L cells that express recombinant GH receptors.

    PubMed Central

    Wang, X; Xu, B; Souza, S C; Kopchick, J J

    1994-01-01

    Porcine and bovine GH receptor (GHR) cDNAs were stably expressed in mouse L cells, which normally do not possess detectable levels of mouse GHR. Expression of the GHR cDNAs resulted in specific binding of 125I-labeled GH by these cell lines. To study GHR-related signaling events in these cells, protein tyrosine phosphorylation was examined. In GH-treated cells, a tyrosine-phosphorylated protein with a molecular mass of approximately 95 kDa (pp95) was increased dramatically (approximately 100-fold) relative to non-GH-treated cells. The amount of pp95 within the cells after GH treatment was positively correlated with the number of GHRs on the cells. Tyrosine phosphorylation of pp95 could not be induced by prolactin, insulin, insulin-like growth factor I, interleukin 2, epidermal growth factor, platelet-derived growth factor, or fibroblast growth factor. Phosphorylation of pp95 was found to be a rapid event that could be observed 60 sec after GH treatment. Also, pp95 appears to exist as a complex of two proteins, i.e., pp95 and pp96. The GH-induced response by these cells may be of use in screening GH analogs for biological activity. Images PMID:7509070

  16. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase.

    PubMed

    Ding, A; Sanchez, E; Nathan, C F

    1993-11-15

    Microtubule-associated proteins may mediate the activation of macrophages by bacterial LPS. Three lines of evidence support this hypothesis: a) Taxol, a microtubule-binding diterpene, mimics the ability of LPS to induce cytokines and down-regulate receptors for TNF-alpha. In recombinant inbred mouse strains differing at the Lps gene, responsiveness to these effects of Taxol co-segregates with responsiveness to LPS. b) In vitro, LPS binds specifically to MT and preferentially to beta-tubulin. c) LPS activates microtubule-associated protein-2 kinase (MAPK). The present studies bring together and extend these lines of evidence. a) Taxol, like LPS, rapidly induces tyrosine phosphorylation of MAPK in mouse macrophages, and triggers MAPK to phosphorylate an exogenous substrate. b) Tyrosine phosphorylation of MAPK is an extremely rapid cellular response both to taxol and LPS. c) Macrophages from C3H/HeJ mice, which carry a defective Lps gene, fail to activate MAPK in response to taxol or LPS, although they activate MAPK in response to insulin or IFN-gamma. These results suggest that tyrosine phosphorylation of MAPK is among the earliest known response of macrophages to LPS. Taxol mimics LPS with respect to immediate MAPK activation, later transcriptional events, and the genetic control of both sets of responses. LPS and taxol thus appear to share an early step in a functionally important signal transduction pathway that may involve MT. PMID:7901279

  17. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    PubMed Central

    Wang, Nan; Zhang, Dan; Sun, Gengyun; Zhang, Hong; You, Qinghai; Shao, Min; Yue, Yang

    2015-01-01

    Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance

  18. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation.

    PubMed

    Chen, Xiaowei; Arciero, Cletus A; Wang, Chunrong; Broccoli, Dominique; Godwin, Andrew K

    2006-05-15

    We have previously reported the identification and characterization of a novel BRCA1/2 interacting protein complex, BRCC (BRCA1/2-containing complex). BRCC36, one of the proteins in BRCC, directly interacts with BRCA1, and regulates the ubiquitin E3 ligase activity of BRCC. Importantly, BRCC36 is aberrantly expressed in the vast majority of breast tumors, indicating a potential role in the pathogenesis of this disease. To further elucidate the functional consequence of abnormal BRCC36 expression in breast cancer, we have done in vivo silencing studies using small interfering RNAs targeting BRCC36 in breast cancer cell lines, i.e., MCF-7, ZR-75-1, and T47D. Knock-down of BRCC36 alone does not affect cell growth, but when combined with ionizing radiation (IR) exposure, it leads to an increase in the percentage of cells undergoing apoptosis when compared with the small interfering RNA control group in breast cancer cells. Immunoblot analysis shows that inhibition of BRCC36 has no effect on the activation of ATM, expression of p21 and p53, or BRCA1-BARD1 interaction following IR exposure. Importantly, BRCC36 depletion disrupts IR-induced phosphorylation of BRCA1. Immunofluorescent staining of BRCA1 and gamma-H2AX indicates that BRCC36 depletion prevents the formation of BRCA1 nuclear foci in response to DNA damage in breast cancer cells. These results show that down-regulation of BRCC36 expression impairs the DNA repair pathway activated in response to IR by inhibiting BRCA1 activation, thereby sensitizing breast cancer cells to IR-induced apoptosis. PMID:16707425

  19. Lectin-induced activation of platelets may require only limited phosphorylation of the 47K protein

    SciTech Connect

    Ganguly, C.; Chelladurai, M.; Ganguly, P.

    1986-05-01

    Wheat germ agglutinin (WGA) is an N-acetylglucosamine (Glc-NAc) specific lectin which can activate platelets. Like thrombin, stimulation of platelets by WGA is accompanied by enhanced phosphorylation of two polypeptides of M/sub r/ 47K and 20K. Addition of GlcNAc at different time intervals arrested that aggregation of platelets by WGA and paralleled the modification of phosphorylation of the 47K polypeptide. So, the phosphorylation of the 47K polypeptide may regulate the WGA-receptor mediated stimulation of platelets. However, the ratio of phosphoserine to phosphothreonine in the 47K protein was markedly different in WGA-activated than thrombin-stimulated platelets. Thus, the molecular mechanism of action of thrombin and WGA could be different. To explore this idea, /sup 32/P/sub i/-labeled platelets were stimulated with WGA and the activation arrested with N-acetyl-glucosamine at different times. Two-dimensional gel electrophoresis of total protein at 5s showed only two phosphorylated species of 47K protein. At 60s, maximally four phosphorylated species were noted. In contrast, with thrombin using the same technique, seven to nine phosphorylated components have been reported. These results suggest that the different activators of platelets may act by different mechanisms. In addition, activation of platelets may require only limited levels of phosphorylation of the 47K polypeptide.

  20. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.

    PubMed

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-01

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022

  1. Phosphorylation of the Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its Endocytosis and Ubiquitination*

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Hach, Jocelyn C.; Yount, Jacob S.

    2014-01-01

    Interferon-inducible transmembrane protein 3 (IFITM3) is essential for innate defense against influenza virus in mice and humans. IFITM3 localizes to endolysosomes where it prevents virus fusion, although mechanisms controlling its trafficking to this cellular compartment are not fully understood. We determined that both mouse and human IFITM3 are phosphorylated by the protein-tyrosine kinase FYN on tyrosine 20 (Tyr20) and that mouse IFITM3 is also phosphorylated on the non-conserved Tyr27. Phosphorylation led to a cellular redistribution of IFITM3, including plasma membrane accumulation. Mutation of Tyr20 caused a similar redistribution of IFITM3 and resulted in decreased antiviral activity against influenza virus, whereas Tyr27 mutation of mouse IFITM3 showed minimal effects on localization or activity. Using FYN knockout cells, we also found that IFITM3 phosphorylation is not a requirement for its antiviral activity. Together, these results indicate that Tyr20 is part of an endocytosis signal that can be blocked by phosphorylation or by mutation of this residue. Further mutagenesis narrowed this endocytosis-controlling region to four residues conforming to a YXXΦ (where X is any amino acid and Φ is Val, Leu, or Ile) endocytic motif that, when transferred to CD4, resulted in its internalization from the cell surface. Additionally, we found that phosphorylation of IFITM3 by FYN and mutagenesis of Tyr20 both resulted in decreased IFITM3 ubiquitination. Overall, these results suggest that modification of Tyr20 may serve in a cellular checkpoint controlling IFITM3 trafficking and degradation and demonstrate the complexity of posttranslational regulation of IFITM3. PMID:24627473

  2. Ginkgo Biloba Extract Ameliorates Oxidative Phosphorylation Performance and Rescues Aβ-Induced Failure

    PubMed Central

    Rhein, Virginie; Giese, Maria; Baysang, Ginette; Meier, Fides; Rao, Stefania; Schulz, Kathrin L.; Hamburger, Matthias; Eckert, Anne

    2010-01-01

    Background Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer's disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Aβ) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Aβ-induced defects in energy metabolism. Methodology/Principal Findings We used a high-resolution respiratory protocol to evaluate OXPHOS respiratory capacity under physiological condition in control (stably transfected with the empty vector) and APP cells after treatment with GBE. In addition, oxygen consumption of isolated mitochondria, activities of mitochondrial respiratory enzymes, ATP and reactive oxygen species (ROS) levels as well as mitochondrial membrane mass and mitochondrial DNA content were determined. We observed a general antioxidant effect of GBE leading to an increase of the coupling state of mitochondria as well as energy homeostasis and a reduction of ROS levels in control cells and in APP cells. GBE effect on OXPHOS was even preserved in mitochondria after isolation from treated cells. Moreover, these functional data were paralleled by an up-regulation of mitochondrial DNA. Improvement of the OXPHOS efficiency was stronger in APP cells than in control cells. In APP cells, the GBE-induced amelioration of oxygen consumption most likely arose from the modulation and respective normalization of the Aβ-induced disturbance in the activity of mitochondrial complexes III and IV restoring impaired ATP levels possibly through decreasing Aβ and oxidative stress level. Conclusions/Significance Although the underlying

  3. Sphingosine 1-phosphate induces platelet/endothelial cell adhesion molecule-1 phosphorylation in human endothelial cells through cSrc and Fyn.

    PubMed

    Huang, Yu-Ting; Chen, Shee-Uan; Chou, Chia-Hong; Lee, Hsinyu

    2008-08-01

    Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells. PMID:18502612

  4. Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane.

    PubMed

    Takagishi, Teruhisa; Oda, Masataka; Kabura, Michiko; Kurosawa, Mie; Tominaga, Kaori; Urano, Shiori; Ueda, Yoshibumi; Kobayashi, Keiko; Kobayashi, Toshihide; Sakurai, Jun; Terao, Yutaka; Nagahama, Masahiro

    2015-01-01

    Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA. PMID:25910247

  5. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  6. IGF-1-induced phosphorylation and altered distribution of TSC1/TSC2 in C2C12 myotubes

    PubMed Central

    Miyazaki, Mitsunori; McCarthy, John J; Esser, Karyn A

    2010-01-01

    Insulin like growth factor-1 (IGF-1) is established as an anabolic factor that can induce skeletal muscle growth through activating the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. While this signaling pathway has been heavily studied, the molecular mechanisms linking IGF-1 binding to mTOR activation are still poorly defined in muscle. The purpose of this study was to test the hypothesis that IGF-1 activation of mTOR in C2C12 myotubes requires a phosphorylation dependent, altered distribution of the tuberous sclerosis complex (TSC)1/TSC2 complex from the membrane to the cytosol. We found that IGF-1 treatment does not affect complex formation between TSC1 and TSC2, but rather IGF-1 induces an altered distribution of the TSC1/TSC2 complex in C2C12 myotubes. In response to IGF-1 treatment, there was a relative re-distribution of the TSC1/TSC2 complex, composed of TSC1 and phosphorylated TSC2, from the membrane to the cytosol. IGF-1 stimulated TSC1/TSC2 phosphorylation and re-distribution were completely prevented by the PI3K inhibitor wortmannin, but were not with the downstream mTOR inhibitor, rapamycin. When a non-phosphorylatable form of TSC2 (S939A) was overexpressed, phosphorylation-dependent binding of the scaffold protein 14-3-3 to TSC2 was diminished and no re-distribution of the TSC1/TSC2 complex was observed following IGF-1 stimulation. These results indicate that TSC2 phosphorylation in response to IGF-1 treatment is necessary for the altered distribution of the TSC1/TSC2 complex to the cytosol and we suggest that this translocation is likely critical for mTOR activation by dissociating the interaction between the GAP activity of the TSC1/TSC2 complex and its downstream target Rheb. PMID:20412061

  7. Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane

    PubMed Central

    Takagishi, Teruhisa; Oda, Masataka; Kabura, Michiko; Kurosawa, Mie; Tominaga, Kaori; Urano, Shiori; Ueda, Yoshibumi; Kobayashi, Keiko; Kobayashi, Toshihide; Sakurai, Jun; Terao, Yutaka; Nagahama, Masahiro

    2015-01-01

    Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA. PMID:25910247

  8. Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues. [Zea mays

    SciTech Connect

    Perez, L.; Aguilar, R.; Mendez, A.P.; de Jimenez, E.S.

    1990-11-01

    The effect of auxin on ribosomal protein phosphorylation of germinating maize (Zea mays) tissues was investigated. Two-dimensional gel electrophoresis and autoradiography of ({sup 32}P) ribosomal protein patterns for natural and synthetic auxin-treated tissues were performed. Both the rate of {sup 32}P incorporation and the electrophoretic patterns were dependent on {sup 32}P pulse length, suggesting that active protein phosphorylation-dephosphorylation occurred in small and large subunit proteins, in control as well as in auxin-treated tissues. The effect of ribosomal protein phosphorylation on in vitro translation was tested. Measurements of poly(U) translation rates as a function of ribosome concentration provided apparent K{sub m} values significantly different for auxin-treated and nontreated tissues. These findings suggest that auxin might exert some kind of translational control by regulating the phosphorylated status of ribosomal proteins.

  9. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  10. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression.

    PubMed

    Borgal, Lori; Rinschen, Markus M; Dafinger, Claudia; Liebrecht, Valérie I; Abken, Hinrich; Benzing, Thomas; Schermer, Bernhard

    2016-04-17

    The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair. PMID:26919559

  11. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    PubMed Central

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line using reverse-transcriptase polymerase chain reaction and the enzyme-linked immunosorbent assay, respectively. Transcriptional activity of IL-8 promoter and nuclear factor kappa B (NFκB) in ZnO-treated BEAS-2B cells was measured using transient gene transfection of the luciferase reporter construct with or without p65 constructs. Phosphorylation and degradation of IκBα, an inhibitor of NF-κB, and phosphorylation of p65 were detected using immunoblotting. Binding of p65 to the IL-8 promoter was examined using the chromatin immunoprecipitation assay. Results ZnO exposure (2–8 μg/mL) increased IL-8 mRNA and protein expression. Inhibition of transcription with actinomycin D blocked ZnO-induced IL-8 expression, which was consistent with the observation that ZnO exposure increased IL-8 promoter reporter activity. Further study demonstrated that the κB-binding site in the IL-8 promoter was required for ZnO-induced IL-8 transcriptional activation. ZnO stimulation modestly elevated IκBα phosphorylation and degradation. Moreover, ZnO exposure also increased the binding of p65 to the IL-8 promoter and p65 phosphorylation at serines 276 and 536. Overexpression of p65 constructs mutated at serines 276 or 536 significantly reduced ZnO-induced increase in IL-8 promoter reporter activity. Conclusion p65 phosphorylation and IκBα phosphorylation and degradation are the primary mechanisms involved in ZnO nanoparticle-induced IL-8 expression in human bronchial epithelial cells. PMID

  12. mTORC2 Phosphorylation of Akt1: A Possible Mechanism for Hydrogen Sulfide-Induced Cardioprotection

    PubMed Central

    Zhou, Yue; Wang, Daying; Gao, Xiufang; Lew, Karsheng; Richards, Arthur Mark; Wang, Peipei

    2014-01-01

    Hydrogen sulfide (H2S) is known to have cardiac protective effects through Akt activation. Akt acts as a ‘central sensor’ for myocyte survival or death; its activity is regulated by multiple kinases including PI3K, mTORC2, PDK1 and phosphatases including PTEN, PP2A and PHLPPL. Based on the previous finding that PI3K inhibitor LY294002 abolishes H2S-induced Akt phosphorylation and cardioprotection, it is accepted that PI3K is the mediator of H2S-induced Akt phosphorylation. However, LY294002 inhibits both PI3K and mTOR, and PI3K only recruits Akt to the membrane where Akt is phosphorylated by Akt kinases. We undertook a series of experiments to further evaluate the role of mTORC2, PDK1, PTEN, PP2A and PHLPPL in H2S-induced Akt phosphorylation and cardioprotection, which, we believe, has not been investigated before. Hearts from adult Sprague-Dawley rats were isolated and subjected to (i) normoxia, (ii) global ischemia and (iii) ischemia/reperfusion in the presence or absence of 50 µM of H2S donor NaHS. Cardiac mechanical function and lactate dehydrogenase (LDH) release were assessed. All hearts also were Western analyzed at the end of perfusion for Akt and a panel of appropriate Akt regulators and targets. Hearts pretreated with 50 µM NaHS had improved function at the end of reperfusion (Rate pressure product; 19±4×103 vs. 10±3×103 mmHg/min, p<0.05) and reduced cell injury (LDH release 19±10 vs. 170±87 mU/ml p<0.05) compared to untreated hearts. NaHS significantly increased phospho-Akt, phospho-mTOR, phospho-Bim and Bcl-2 in reperfused hearts (P<0.05). Furthermore using H9c2 cells we demonstrate that NaHS pretreatment reduces apoptosis following hypoxia/re-oxygenation. Importantly, PP242, a specific mTOR inhibitor, abolished both cardioprotection and protein phosphorylation in isolated heart and reduced apoptotic effects in H9c2 cells. Treating hearts with NaHS only during reperfusion produced less cardioprotection through a similar mechanism. These data

  13. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase-2

    PubMed Central

    Cadete, Virgilio J. J.; Sawicka, Jolanta; Jaswal, Jagdip; Lopaschuk, Gary D.; Schulz, Richard; Szczesna-Cordary, Danuta; Sawicki, Grzegorz

    2012-01-01

    Summary Degradation of myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2) during myocardial ischemia/reperfusion (I/R) injury has been established. However, the exact mechanisms controlling this process remain unknown. I/R increases the phosphorylation of MLC1, but the consequences of this modification are not known. We hypothesized that phosphorylation of MLC1 plays an important role in its degradation by MMP-2. To examine this, isolated perfused rat hearts were subjected to 20 min global ischemia followed by 30 min of aerobic reperfusion. I/R increased phosphorylation of MLC1 (as measured by mass spectrometry). If hearts were subjected to I/R in the presence of ML-7 (a myosin light chain kinase (MLCK) inhibitor) or doxycycline (a MMP inhibitor) an improved recovery of contractile function was seen compared to aerobic hearts and MLC1 was protected from degradation. Enzyme kinetic studies revealed an increased affinity of MMP-2 for the phosphorylated form of MLC1 compared to non-phosphorylated MLC1. We conclude that MLC1 phosphorylation is important mechanism controlling the intracellular action of MMP-2 and promoting the degradation of MLC1. These results further support previous findings implicating posttranslational modifications of contractile proteins as a key factor in the pathology of cardiac dysfunction during and following ischemia. PMID:22564771

  14. IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle.

    PubMed

    Coiras, Mayte; Bermejo, Mercedes; Descours, Benjamin; Mateos, Elena; García-Pérez, Javier; López-Huertas, María-Rosa; Lederman, Michael M; Benkirane, Monsef; Alcamí, José

    2016-03-01

    HIV-1 post-integration latency in CD4+ lymphocytes is responsible for viral persistence despite treatment, but mechanisms involved in the establishment of latent viral reservoirs are not fully understood. We determined that both interleukin 2 (IL-2) and IL-7 induced SAMHD1 phosphorylation in T592, abrogating its antiviral activity. However, IL-7 caused a much more profound stimulatory effect on HIV-1 reverse transcription and integration than IL-2 that required chemokine co-stimulation. Both cytokines barely induced transcription due to low NF-κB induction, favoring the establishment of latent reservoirs. Effect of IL-7 on SAMHD1 phosphorylation was confirmed in IL-7-treated patients (ACTG 5214 study). Dasatinib--a tyrosine-kinase inhibitor--blocked SAMHD1 phosphorylation induced by IL-2 and IL-7 and restored HIV-1 restriction. We propose that γc-cytokines play a major role in the reservoir establishment not only by driving homeostatic proliferation but also by increasing susceptibility of CD4+ lymphocytes to HIV-1 infection through SAMHD1 inactivation. PMID:26923586

  15. Brevetoxin-induced phosphorylation of Pyk2 and Src in murine neocortical neurons involves distinct signaling pathways

    PubMed Central

    Cao, Zhengyu; George, Joju; Baden, Daniel G.; Murray, Thomas F.

    2009-01-01

    Brevetoxins (PbTx-1 to PbTx-10) are potent lipid soluble polyether neurotoxins produced by the marine dinoflagellate Karenia brevis. Brevetoxins bind to site 5 of the α-subunit of voltage-gated sodium channels (VGSCs) and augment Na+ influx. In neocortical neurons brevetoxins elevate intracellular Ca2+ and augment NMDA receptor signaling. In this study, we explored the effects of PbTx-2 on Pyk2 and Src activation in neocortical neurons. We found that both Pyk2 and Src were activated following PbTx-2 exposure. PbTx-2-induced Pyk2 Tyr402 phosphorylation was dependent on elevation of Ca2+ influx through NMDA receptors. Moreover, Pyk2 Tyr402 phosphorylation was also found to require PKC activation inasmuch as RO-31-8425 and GF 109203x both attenuated the response. In contrast, PbTx-2-induced Src Tyr416 phosphorylation involved a Gq-coupled receptor inasmuch as U73122, a specific PLC inhibitor, abolished the response. This Gq-coupled receptor appears to be mGluR 5. The PKCδ inhibitor rottlerin abolished PbTx-2-induced Src activation demonstrating that this isoform of PKC is involved in the activation of Src by PbTx-2. Considered together these data suggest that although activation of neuronal Pyk2 and Src result from PbTx-2 stimulation of VGSC, engagement of these two non-receptor tyrosine kinases involves distinct signaling pathways. PMID:17963734

  16. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  17. Modulation of the transforming growth factor-beta1-induced Smad phosphorylation by the extracellular matrix receptor beta1-integrin.

    PubMed

    Hamajima, Hiroshi; Ozaki, Iwata; Zhang, Hao; Iwane, Shinji; Kawaguchi, Yasunori; Eguchi, Yuichiro; Matsuhashi, Sachiko; Mizuta, Toshihiko; Matsuzaki, Koichi; Fujimoto, Kazuma

    2009-12-01

    Integrins, heterodimeric receptors for the extracellular matrix, are known to modulate transforming growth factor-beta1 (TGF-beta1)-mediated cell behavior. However, the interplay between beta1-integrin and Smad signaling, regulated by TGF-beta1, is not clearly understood. This study focuses on the alterations of the regulatory Smads (R-Smads) by TGF-beta1 in beta1-integrin-transfected HepG2 cells. The phosphorylation at the C-terminal site of R-Smads by TGF-beta1 was impaired in the beta1-integrin-transfected cells. However, the R-Smads were constitutively phosphorylated at the linker region in a MAP kinase-dependent manner. Furthermore, the expression of a mutant Smad3, that lacks the phosphorylation sites in the linker region, restored the TGF-beta1-induced Smad transcriptional activity. These results suggest that beta1-integrin impairs the TGF-beta1-mediated signals through the altered phosphorylation of the R-Smads. PMID:19885568

  18. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  19. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum

    PubMed Central

    Swärd, Karl; Dreja, Karl; Susnjar, Marija; Hellstrand, Per; Hartshorne, David J; Walsh, Michael P

    2000-01-01

    Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK).The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.Contraction of permeabilized muscle strips induced by GTPγS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPγS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077.Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol.LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation.In the absence of Ca2+, GTPγS stimulated 35S incorporation from [35S]ATPγS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected.These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction. PMID:10618150

  20. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    SciTech Connect

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto . E-mail: nyama@p.chiba-u.ac.jp

    2006-07-15

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to {approx}200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation.

  1. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirnik, Zdenko; Zemenová, Jana; Haluzík, Martin; Železná, Blanka; Galas, Marie-Christine; Maletínská, Lenka

    2015-01-01

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation. PMID:25624414

  2. Interleukin-4-induced transcriptional activation by stat6 involves multiple serine/threonine kinase pathways and serine phosphorylation of stat6.

    PubMed

    Pesu, M; Takaluoma, K; Aittomäki, S; Lagerstedt, A; Saksela, K; Kovanen, P E; Silvennoinen, O

    2000-01-15

    Stat6 transcription factor is a critical mediator of IL-4-specific gene responses. Tyrosine phosphorylation is required for nuclear localization and DNA binding of Stat6. The authors investigated whether Stat6-dependent transcriptional responses are regulated through IL-4-induced serine/threonine phosphorylation. In Ramos B cells, the serine/threonine kinase inhibitor H7 inhibited IL-4-induced expression of CD23. Treatment with H7 did not affect IL-4R-mediated immediate signaling events such as tyrosine phosphorylation of Jak1, Jak3, insulin receptor substrate (IRS)-1 and IRS-2, or tyrosine phosphorylation and DNA binding of Stat6. To analyze whether the H7-sensitive pathway was regulating Stat6-activated transcription, we used reporter constructs containing different IL-4 responsive elements. H7 abrogated Stat6-, as well as Stat5-, mediated reporter gene activation and partially reduced C/EBP-dependent reporter activity. By contrast, IL-4-induced transcription was not affected by wortmannin, an inhibitor of the phosphatidyl-inositol 3'-kinase pathway. Phospho-amino acid analysis and tryptic phosphopeptide maps revealed that IL-4 induced phosphorylation of Stat6 on serine and tyrosine residues in Ramos cells and in 32D cells lacking endogenous IRS proteins. However, H7 treatment did not inhibit the phosphorylation of Stat6. Instead, H7 inhibited the IL-4-induced phosphorylation of RNA polymerase II. These results indicate that Stat6-induced transcription is dependent on phosphorylation events mediated by H7-sensitive kinase(s) but that it also involves serine phosphorylation of Stat6 by an H7-insensitive kinase independent of the IRS pathway. (Blood. 2000;95:494-502) PMID:10627454

  3. Gentiopicroside and sweroside from Veratrilla baillonii Franch. induce phosphorylation of Akt and suppress Pck1 expression in hepatoma cells.

    PubMed

    Huang, Xian-Ju; Li, Jun; Mei, Zhi-Yi; Chen, Guoxun

    2016-06-01

    The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and phytochemicals. Veratrilla baillonii Franch. has long been used as a medicinal herb in southwestern China. Here, we analyzed the effects of an ethanol extract from V. baillonii (VBFE) on the expression levels of the cytosolic form of the phosphoenolpyruvate carboxykinase gene (Pck1) mRNA and components of the insulin signalling cascade in HL1C hepatoma cells. Compared with the insulin control, VBFE treatment inhibited the expression of Pck1 mRNA in a dose-dependent manner. This was associated with the phosphorylation of Akt and Erk1/2 in a time-dependent manner. Further analysis of the purified components of VBFE indicated that gentiopicroside and sweroside from VBFE, alone and in combination, suppressed Pck1 expression and induced Akt and Erk1/2 phosphorylation. In conclusion, gentiopicroside and sweroside suppress Pck1 expression and induce phosphorylation of components in the insulin signalling cascade. This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression. Further studies are warranted to explore the potential of gentiopicroside and sweroside in the control of blood glucose in animals. PMID:27248905

  4. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis.

    PubMed

    Rinaldo, Cinzia; Prodosmo, Andrea; Mancini, Francesca; Iacovelli, Stefano; Sacchi, Ada; Moretti, Fabiola; Soddu, Silvia

    2007-03-01

    In response to DNA damage, p53 induces either cell-cycle arrest or apoptosis by differential transcription of several target genes and through transcription-independent apoptotic functions. p53 phosphorylation at Ser46 by HIPK2 is one determinant of the outcome because it takes place only upon severe, nonrepairable DNA damage that irreversibly drives cells to apoptosis. Here, we show that p53 represses its proapoptotic activator HIPK2 via MDM2-mediated degradation, whereas a degradation-resistant HIPK2 mutant has increased apoptotic activity. Upon cytostatic, nonsevere DNA damage, inhibition of HIPK2 degradation is sufficient to induce p53Ser46 phosphorylation and apoptosis, converting growth-arresting stimuli to apoptotic ones. These findings establish HIPK2 as an MDM2 target and support a model in which, upon nonsevere DNA damage, p53 represses its own phosphorylation at Ser46 due to HIPK2 degradation, supporting the notion that the cell-cycle-arresting functions of p53 include active inhibition of the apoptotic ones. PMID:17349959

  5. Phosphorylation-Induced Dimerization of Interferon Regulatory Factor 7 Unmasks DNA Binding and a Bipartite Transactivation Domain

    PubMed Central

    Marié, Isabelle; Smith, Eric; Prakash, Arun; Levy, David E.

    2000-01-01

    Interferon regulatory factor 7 (IRF7) is an interferon (IFN)-inducible transcription factor required for activation of a subset of IFN-α genes that are expressed with delayed kinetics following viral infection. IRF7 is synthesized as a latent protein and is posttranslationally modified by protein phosphorylation in infected cells. Phosphorylation required a carboxyl-terminal regulatory domain that controlled the retention of the active protein exclusively in the nucleus, as well as its binding to specific DNA target sequences, multimerization, and ability to induce target gene expression. Transcriptional activation by IRF7 mapped to two distinct regions, both of which were required for full activity, while all functions were masked in latent IRF7 by an autoinhibitory domain mapping to an internal region. A conditionally active form of IRF7 was constructed by fusing IRF7 with the ligand-binding and dimerization domain of estrogen receptor (ER). Hormone-dependent dimerization of chimeric IRF7-ER stimulated DNA binding and transcriptional transactivation of endogenous target genes. These studies demonstrate the regulation of IRF7 activity by phosphorylation-dependent allosteric changes that result in dimerization and that facilitate nuclear retention, derepress transactivation, and allow specific DNA binding. PMID:11073981

  6. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism.

    PubMed Central

    Parker, D; Ferreri, K; Nakajima, T; LaMorte, V J; Evans, R; Koerber, S C; Hoeger, C; Montminy, M R

    1996-01-01

    We have characterized a phosphoserine binding domain in the coactivator CREB-binding protein (CBP) which interacts with the protein kinase A-phosphorylated, and hence activated, form of the cyclic AMP-responsive factor CREB. The CREB binding domain, referred to as KIX, is alpha helical and binds to an unstructured kinase-inducible domain in CREB following phosphorylation of CREB at Ser-133. Phospho-Ser-133 forms direct contacts with residues in KIX, and these contacts are further stabilized by hydrophobic residues in the kinase-inducible domain which flank phospho-Ser-133. Like the src homology 2 (SH2) domains which bind phosphotyrosine-containing peptides, phosphoserine 133 appears to coordinate with a single arginine residue (Arg-600) in KIX which is conserved in the CBP-related protein P300. Since mutagenesis of Arg-600 to Gln severely reduces CREB-CBP complex formation, our results demonstrate that, as in the case of tyrosine kinase pathways, signal transduction through serine/threonine kinase pathways may also require protein interaction motifs which are capable of recognizing phosphorylated amino acids. PMID:8552098

  7. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid

    PubMed Central

    Kline, Kelli G.; Barrett-Wilt, Gregory A.; Sussman, Michael R.

    2010-01-01

    Abscisic acid (ABA) is a hormone that controls seed dormancy and germination as well as the overall plant response to important environmental stresses such as drought. Recent studies have demonstrated that the ABA-bound receptor binds to and inhibits a class of protein phosphatases. To identify more broadly the phosphoproteins affected by this hormone in vivo, we used 14N/15N metabolic labeling to perform a quantitative untargeted mass spectrometric analysis of the Arabidopsis thaliana phosphoproteome following ABA treatment. We found that 50 different phosphopeptides had their phosphorylation state significantly altered by ABA over a treatment period lasting 5–30 min. Among these changes were increases in phosphorylation of subfamily 2 SNF1-related kinases and ABA-responsive basic leucine zipper transcription factors implicated in ABA signaling by previous in vitro studies. Furthermore, four members of the aquaporin family showed decreased phosphorylation at a carboxy-terminal serine which is predicted to cause closure of the water-transporting aquaporin gate, consistent with ABA's role in ameliorating the effect of drought. Finally, more than 20 proteins not previously known to be involved with ABA were found to have significantly altered phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that an expanded model of ABA signaling, beyond simple phosphatase inhibition, may be necessary. This quantitative proteomics dataset provides a more comprehensive, albeit incomplete, view both of the protein targets whose biochemical activities are likely to be controlled by ABA and of the nature of the emerging phosphorylation and dephosphorylation cascades triggered by this hormone. PMID:20733066

  8. Resveratrol induces apoptosis of human chronic myelogenous leukemia cells in vitro through p38 and JNK-regulated H2AX phosphorylation

    PubMed Central

    Wu, Xin-pin; Xiong, Min; Xu, Cheng-shan; Duan, Lian-ning; Dong, Ya-qiong; Luo, Yuan; Niu, Tian-hui; Lu, Cheng-rong

    2015-01-01

    Aim: The phosphorylation of histone H2AX, a novel tumor suppressor protein, is involved in regulation of cancer cell apoptosis. The aim of this study was to examine whether H2AX phosphorylation was required for resveratrol-induced apoptosis of human chronic myelogenous leukemia (CML) cells in vitro. Methods: K562 cells were tested. Cell apoptosis was analyzed using flow cytometry, and the phosphorylation of H2AX and other signaling proteins was examined with Western blotting. To analyze the signaling pathways, the cells were transfected with lentiviral vectors encoding H2AX-wt or specific siRNAs. Results: Treatment of K562 cells with resveratrol (20–100 μmol/L) induced apoptosis and phosphorylation of H2AX at Ser139 in time- and dose-dependent manners, but reduced phosphorylation of histone H3 at Ser10. Resveratrol treatment activated two MAPK family members p38 and JNK, and blocked the activation of another MAPK family member ERK. Pretreatment with the p38 inhibitor SB202190 or the JNK inhibitor SP600125 dose-dependently reduced resveratrol-induced phosphorylation of H2AX, which were also observed when the cells were transfected with p38- or JNK-specific siRNAs. Overexpression of H2AX in K562 cells markedly increased resveratrol-induced apoptosis, whereas overexpression of H2AX-139m (Ser139 was mutated to block phosphorylation) inhibited resveratrol-induced apoptosis. K562 cells transfected with H2AX-specific siRNAs were resistant to resveratrol-induced apoptosis. Conclusion: H2AX phosphorylation at Ser139 in human CML cells, which is regulated by p38 and JNK, is essential for resveratrol-induced apoptosis. PMID:25619392

  9. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    PubMed

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast. PMID:27298372

  10. Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation

    PubMed Central

    Kim, Jonggul; Masterson, Larry R.; Cembran, Alessandro; Verardi, Raffaello; Shi, Lei; Gao, Jiali; Taylor, Susan S.; Veglia, Gianluigi

    2015-01-01

    The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to β-adrenergic stimulation. We found that the single deletion of arginine in phospholamban’s recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca2+ signaling and normal cardiac function. PMID:25775607

  11. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach

    SciTech Connect

    Hill, Jennifer J. . E-mail: Jennifer.Hill@nrc.gc.ca; Callaghan, Deborah A.; Ding Wen; Kelly, John F.; Chakravarthy, Balu R.

    2006-04-14

    Okadaic acid (OA) is a widely used small-molecule phosphatase inhibitor that is thought to selectively inhibit protein phosphatase 2A (PP2A). Multiple studies have demonstrated that PP2A activity is compromised in Brains of Alzheimer's disease patients. Thus, we set out to determine changes in phosphorylation that occur upon OA treatment of neuronal cells. Utilizing isotope-coded affinity tags and mass spectrometry analysis, we determined the relative abundance of proteins in a phosphoprotein enriched fraction from control and OA-treated primary cortical neurons. We identified many proteins whose phosphorylation state is regulated by OA, including glycogen synthase kinase 3{beta}, collapsin-response mediator proteins (DRP-2, DPYSL-5, and CRMP-4), and the B subunit of PP2A itself. Most interestingly, we have found that complexin 2, an important regulator of neurotransmitter release and synaptic plasticity, is phosphorylated at serine 93 upon OA treatment of neurons. This is First report of a phosphorylation site on complexin 2.

  12. Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway

    PubMed Central

    Su, Fengtao; Bhattacharya, Souparno; Abdisalaam, Salim; Mukherjee, Shibani; Yajima, Hirohiko; Yang, Yanyong; Mishra, Ritu; Srinivasan, Kalayarasan; Ghose, Subroto; Chen, David J.; Yannone, Steven M.; Asaithamby, Aroumougame

    2016-01-01

    Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability. PMID:26695548

  13. Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato

    PubMed Central

    Lin, Jeng-Shane; Lin, Hsin-Hung; Li, Yu-Chi; King, Yu-Chi; Sung, Ruei-Jin; Kuo, Yun-Wei; Lin, Chih-Ching; Shen, Yu-Hsing; Jeng, Shih-Tong

    2014-01-01

    Carbon monoxide (CO), one of the haem oxygenase (HO) products, plays important roles in plant development and stress adaptation. However, the function of CO involved in wounding responses is seldom studied. A wound-inducible gene, ipomoelin (IPO), of sweet potato (Ipomoea batatas cv. Tainung 57) was used as a target to study the regulation of CO in wounding responses. After wounding for 1h, the endogenous CO content and IbHO expression level were significantly reduced in leaves. IPO expression upon wounding was prohibited by the HO activator hemin, whereas the HO inhibitor zinc protoporphyrin IX elevated IPO expression. The IPO expression induced by wounding, H2O2, or methyl jasmonate was inhibited by CO. CO also affected the activities of ascorbate peroxidase, catalase, and peroxidase, and largely decreased H2O2 content in leaves. CO inhibited the extracellular signal-regulated kinase (ERK) phosphorylation induced by wounding. IbMAPK, the ERK of sweet potato, was identified by immunoblotting, and the interaction with its upstream activator, IbMEK1, was further confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Conclusively, wounding in leaves repressed IbHO expression and CO production, induced H2O2 generation and ERK phosphorylation, and then stimulated IPO expression. PMID:25063862

  14. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes.

    PubMed

    Gerlach, Jan P; Emmink, Benjamin L; Nojima, Hisashi; Kranenburg, Onno; Maurice, Madelon M

    2014-11-01

    Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells. PMID:25392450

  15. Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.

    PubMed

    Maas, Matthias; Wang, Ronggang; Paddock, Cathy; Kotamraju, Srigiridhar; Kalyanaraman, Balaraman; Newman, Peter J; Newman, Debra K

    2003-12-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation. PMID:12893640

  16. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana

    PubMed Central

    Duan, Guangyou; Walther, Dirk; Schulze, Waltraud X.

    2013-01-01

    Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 min after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH+4, NO−3, PO3−4 elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein–protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana. PMID:24400017

  17. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-11-15

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  18. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed Central

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-01-01

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  19. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila.

    PubMed

    Kelly, Lindsay K; Wu, Jun; Yanfeng, Wang A; Mlodzik, Marek

    2016-07-12

    Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP). PCP depends upon Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl). We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment. PMID:27346358

  20. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell.

    PubMed

    Katsube, Takanori; Tsuji, Hideo; Onoda, Makoto

    2007-06-01

    The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells. PMID:17451824

  1. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells. PMID:25479723

  2. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation.

    PubMed

    Fukuda, Yu; Aoyama, Yuki; Wada, Atsushi; Igarashi, Yasuyuki

    2004-02-27

    Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated from sphingosine by sphingosine kinase (SPHK). S1P acts both extracellularly and intracellularly as a signaling molecule, although its intracellular targets are still undefined. Intracellular level of S1P is under strict regulatory control of SPHK regulation, S1P degradation, and S1P dephosphorylation. Therefore, clarifying the mechanisms regulating SPHK activity may help us understand when and where S1P is generated. In this study, we performed yeast two-hybrid screening to search for SPHK1a-binding molecules that may be involved in the regulation of the kinase localization or activity. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was identified as a protein potentially associating with SPHK1a. Their association was confirmed by co-immunoprecipitation analysis using HEK293 cells overexpressing PECAM-1 and SPHK1a. Moreover, the kinase activity appeared to be reduced in stable PECAM-1-expressing cells. PECAM-1 is expressed on the cell surface of vascular cells, and several stimuli are known to induce phosphorylation of its tyrosine residues. We found that such phosphorylation attenuated its association with SPHK1a. This association/dissociation of SPHK with PECAM-1, regulated by the phosphorylated state of the membrane protein, may be involved in the control of localized kinase activity in certain cell types. PMID:14984734

  3. Prostaglandin F2 alpha administered in vivo induces Ca2+-dependent protein phosphorylation in rat luteal tissue

    SciTech Connect

    Baum, M.S.

    1989-01-01

    The present study was performed in order to further elucidate the mechanism of action of PGF2 alpha in luteolysis in the rat ovary. Seven days after priming with superovulatory doses of pregnant mare serum gonadotropin and human chorionic gonadotropin to induce luteal tissue formation, the rats were injected with a luteolytic dose of the prostaglandin F2 alpha analogue cloprostenol. The ovaries were then homogenized, a 30,000 x g supernatant and pellet were prepared, whereafter aliquots of the preparations were incubated in the presence of (gamma-/sup 32/P)ATP with or without Ca2+. The phosphorylated proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and localized by autoradiography. The presence of Ca2+ caused an increased phosphorylation of a 45 kDa protein band in the particulate, but not in the cytosol, fraction. Furthermore, PGF2 alpha rapidly increased the /sup 32/P incorporation into the same protein band of 45 kDa. Thus, the PGF2 alpha-stimulated /sup 32/P incorporation was Ca2+-dependent and seen only in the particulate fraction. These results suggest that PGF2 alpha in its role as a luteolytic agent stimulates a Ca2+-dependent phosphorylation of a specific protein in luteal membranes of the rat ovary.

  4. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc{sup -}

    SciTech Connect

    Gu Li; Hu Xiaoling; Xue Zhanxia; Yang Jun; Wan Lishu; Ren Yan; Hertz, Leif; Peng Liang

    2010-01-15

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK{sub 1/2}) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a approx 10-fold increase in potency occurred in the presence of the glutamate precursor glutamine, when ERK{sub 1/2} phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X{sub c}{sup -} could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK{sub 1/2} phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X{sub c}{sup -} prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK{sub 1/2} phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X{sub c}{sup -} like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.

  5. Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy

    PubMed Central

    Xu, Jie; Fotouhi, Maryam; McPherson, Peter S

    2015-01-01

    Unc-51-like kinases (ULKs) are the most upstream kinases in the initiation of autophagy, yet the molecular mechanisms underlying their function are poorly understood. We report a new role for ULK in the induction of autophagy. ULK-mediated phosphorylation of the guanine nucleotide exchange factor DENND3 at serines 554 and 572 upregulates its GEF activity toward the small GTPase Rab12. Through binding to LC3 and associating with LC3-positive autophagosomes, active Rab12 facilitates autophagosome trafficking, thus establishing a crucial role for the ULK/DENND3/Rab12 axis in starvation-induced autophagy. PMID:25925668

  6. Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus.

    PubMed

    Wang, Peng; Cao, Yonggang; Yu, Juan; Liu, Ruxia; Bai, Bing; Qi, Hanping; Zhang, Qianlong; Guo, Wenguang; Zhu, Hui; Qu, Lihui

    2016-07-01

    Baicalin has a significant neuroprotective effect in stroke. However, the mechanism remains unclear. This study was to reveal the mechanisms by which baicalin protected hippocampal neurons and improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbil. In the present study, the Morris water maze test showed that baicalin significantly improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbils. Laser scanning confocal fluorescence microscope examination showed that baicalin suppressed OGD-induced augmentation of intracellular calcium concentration. Western blotting analysis indicated that baicalin suppressed ischemia-caused elevated phosphorylation level of CaMKII in vivo, in hippocampal neurons in culture, and in SH-SY5Y cells in culture. Western blotting, TUNEL and RNA interference technology were applied to detect effects of baicalin on neuronal apoptosis. We found that baicalin, a CaMKII inhibitor and knocking down the CaMKII prevented OGD-induced apoptosis of hippocampal or SH-SY5Y cells in culture. Therefore, these results suggested that baicalin improves learning and memory impairment induced by global cerebral ischemia/reperfusion in gerbils via attenuating the phosphorylation level of CaMKII and further preventing hippocampal neuronal apoptosis. PMID:27016057

  7. New Treatment for Alzheimer's Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy

    PubMed Central

    Tohda, Chihiro

    2014-01-01

    Aims. We previously reported that kamikihito (KKT), a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer's disease (AD). However, the mechanism underlying the effects of KKT remained unknown. The aim of the present study was to investigate the mechanism by which KKT reverses the progression of axonal degeneration. Methods. Primary cultured cortical neurons were treated with amyloid beta (Aβ) fragment comprising amino acid residues (25–35) (10 μM) in an in vitro AD model. KKT (10 μg/mL) was administered to the cells before or after Aβ treatment. The effects of KKT on Aβ-induced tau phosphorylation, axonal atrophy, and protein phosphatase 2A (PP2A) activity were investigated. We also performed an in vivo assay in which KKT (500 mg/kg/day) was administered to 5XFAD mice once a day for 15 days. Cerebral cortex homogenates were used to measure PP2A activity. Results. KKT improved Aβ-induced tau phosphorylation and axonal atrophy after they had already progressed. In addition, KKT increased PP2A activity in vitro and in vivo. Conclusions. KKT reversed the progression of Aβ-induced axonal degeneration. KKT reversed axonal degeneration at least in part through its role as an exogenous PP2A stimulator. PMID:24707311

  8. Regulation and function of stimulus-induced phosphorylation of MeCP2

    PubMed Central

    Li, Hongda; Chang, Qiang

    2014-01-01

    DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients. PMID:25568644

  9. Structural Characterizations of Glycerol Kinase: Unraveling Phosphorylation-Induced Long-Range Activation

    SciTech Connect

    Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth; Bourand, Alexa; Darbon, Emmanuelle; Joly, Nathalie; Briozzo, Pierre; Deutscher, Josef

    2009-09-11

    Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft are more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of glycerol kinase

  10. The Roles of Phosphorylation and SHAGGY-Like Protein Kinases in Geminivirus C4 Protein Induced Hyperplasia

    PubMed Central

    Mills-Lujan, Katherine; Andrews, David L.; Chou, Chau-wen; Deom, C. Michael

    2015-01-01

    Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV). The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR) hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1) mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2) Ser49 is phosphorylated in planta; and 3) plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control. PMID:25815729

  11. The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia.

    PubMed

    Mills-Lujan, Katherine; Andrews, David L; Chou, Chau-Wen; Deom, C Michael

    2015-01-01

    Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV). The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR) hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1) mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2) Ser49 is phosphorylated in planta; and 3) plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control. PMID:25815729

  12. Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation.

    PubMed

    Moehlenbrink, Jutta; Bitomsky, Nadja; Hofmann, Thomas G

    2010-06-01

    The molecular mechanisms by which hypoxic tumor cells escape radio- and chemotherapy are largely unclear. Homeodomain-interacting protein kinase 2 (HIPK2) drives the apoptotic program in response to DNA-damaging chemotherapeutic drug treatment by phosphorylating the tumor suppressor protein p53 at Ser46. HIPK2 is kept inactive in unstressed cells through ubiquitination and degradation facilitated by the ubiquitin ligases WSB1 and Siah1. Here, we demonstrate that HIPK2 is degraded during hypoxia in a proteasome-dependent and partially Siah1-dependent fashion. Concordantly, hypoxic tumor cells show an impaired p53 Ser46 phosphorylation in response to treatment with the chemotherapeutic Adriamycin. Remarkably, proteasome-inhibition rescues HIPK2 expression in hypoxic hepatoma cells and restores p53 Ser46 phosphorylation and caspase activity after Adriamycin treatment. Our findings suggest a molecular mechanism by which hypoxic cancer cells can escape chemotherapeutic drug treatment and suggest proteasome-inhibition as a promising approach to sensitise hypoxic cancer cells to therapy. PMID:20018442

  13. Altered protein phosphorylation in sciatic nerve from rats with streptozocin-induced diabetes

    SciTech Connect

    Schrama, L.H.; Berti-Mattera, L.N.; Eichberg, J.

    1987-11-01

    The effect of experimental diabetes on the phosphorylation of proteins in the rat sciatic nerve was studied. Nerves from animals made diabetic with streptozocin were incubated in vitro with (/sup 32/P)orthophosphate and divided into segments from the proximal to the distal end, and proteins from each segment were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The principal labeled species were the major myelin proteins, P0, and the basic proteins. After 6 wk of diabetes, the incorporation of isotope into these proteins rose as a function of distance along the nerve in a proximal to distal direction and was significantly higher at the distal end compared with incorporation into nerves from age-matched controls. The overall level of isotope uptake was similar in nerves from diabetic animals and weight-matched controls. The distribution of /sup 32/P among proteins also differed in diabetic nerve compared with both control groups in that P0 and the small basic protein accounted for a greater proportion of total label incorporated along the entire length of nerve. In contrast to intact nerve, there was no significant difference in protein phosphorylation when homogenates from normal and diabetic nerve were incubated with (/sup 32/P)-gamma-ATP. The results suggest that abnormal protein phosphorylation, particularly of myelin proteins, is a feature of experimental diabetic neuropathy and that the changes are most pronounced in the distal portion of the nerve.

  14. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini.

    PubMed

    Satoh, Keitaro; Narita, Takanori; Katsumata-Kato, Osamu; Sugiya, Hiroshi; Seo, Yoshiteru

    2016-03-15

    Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells. PMID:26744470

  15. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  16. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations.

    PubMed Central

    Kuo, M H; Nadeau, E T; Grayhack, E J

    1997-01-01

    The Saccharomyces cerevisiae Mcm1 protein is an essential multifunctional transcription factor which is highly homologous to human serum response factor. Mcm1 protein acts on a large number of distinctly regulated genes: haploid cell-type-specific genes, G2-cell-cycle-regulated genes, pheromone-induced genes, arginine metabolic genes, and genes important for cell wall and cell membrane function. We show here that Mcm1 protein is phosphorylated in vivo. Several (more than eight) isoforms of Mcm1 protein, resolved by isoelectric focusing, are present in vivo; two major phosphorylation sites lie in the N-terminal 17 amino acids immediately adjacent to the conserved MADS box DNA-binding domain. The implications of multiple species of Mcm1, particularly the notion that a unique Mcm1 isoform could be required for regulation of a specific set of Mcm1's target genes, are discussed. We also show here that Mcm1 plays an important role in the response to stress caused by NaCl. G. Yu, R. J. Deschenes, and J. S. Fassler (J. Biol. Chem. 270:8739-8743, 1995) showed that Mcm1 function is affected by mutations in the SLN1 gene, a signal transduction component implicated in the response to osmotic stress. We find that mcm1 mutations can confer either reduced or enhanced survival on high-salt medium; deletion of the N terminus or mutation in the primary phosphorylation site results in impaired growth on high-salt medium. Furthermore, Mcm1 protein is a target of a signal transduction system responsive to osmotic stress: a new isoform of Mcm1 is induced by NaCl or KCl; this result establishes that Mcm1 itself is regulated. PMID:9001236

  17. Human Herpesviruses 6A, 6B, and 7.

    PubMed

    Agut, Henri; Bonnafous, Pascale; Gautheret-Dejean, Agnès

    2016-06-01

    Human roseoloviruses include three different species, human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), genetically related to human cytomegalovirus. They exhibit a wide cell tropism in vivo and, like other herpesviruses, induce a lifelong latent infection in humans. In about 1% of the general population, HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6). Many active infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. They also may cause serious diseases, particularly in immunocompromised individuals, including hematopoietic stem-cell transplant (HSCT) and solid-organ transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients. This opportunistic pathogenic role is formally established for HHV-6 infection and less clear for HHV-7. It mainly concerns the central-nervous system, bone marrow, lungs, gastrointestinal tract, skin, and liver. As the best example, HHV-6 causes both exanthema subitum, a benign disease associated with primary infection, and severe encephalitis associated with virus reactivations in HSCT recipients. Diagnosis using serologic and direct antigen-detection methods currently exhibits limitations. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time polymerase-chain reaction (PCR). The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active infections, but there is currently no consensus regarding the indications of treatment or specifics of drug administration. Numerous questions about HHV-6A, HHV-6B, HHV-7 are still pending, concerning in particular clinical impact and therapeutic options in immunocompromised patients. PMID:27337451

  18. Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling

    PubMed Central

    Prasad, K. S. Srinivasa; Andre, Patrick; He, Ming; Bao, Ming; Manganello, Jeanne; Phillips, David R.

    2003-01-01

    We earlier reported that the soluble form of the CD40 ligand (sCD40L), is involved in thrombosis by stabilizing platelet thrombi. In this article, we have determined the mechanism by which this protein affects platelet biology. Addition of sCD40L to washed platelets was found to activate the receptor function of αIIbβ3 as measured by the induction of fibrinogen binding and the formation of platelet microparticles. Mutation in the KGD sequence (D117E) of sCD40L, the αIIbβ3-binding domain in the N terminus of the protein resulted in a loss of the platelet-stimulatory activity of this protein. Integrilin, a αIIbβ3 antagonist, but not an antibody to CD40 that blocked the ligand-binding activity, inhibited these platelet-stimulatory events. CD40-/- platelets bound fibrinogen and formed microparticles similar to WT platelets, again indicating that CD40 is not involved in sCD40L-induced platelet activation. Exposure of platelets to sCD40L, but not D117E-sCD40L-coated surfaces, induced platelet thrombi formation under arterial shear rate. sCD40L-induced platelet stimulation resulted in the phosphorylation of tyrosine-759 in the cytoplasmic domain of β3. Platelets from the diYF mouse strain, expressing β3 in which both cytoplasmic tyrosines are mutated to phenylalanine, were defective in sCD40L-induced platelet stimulation. These data indicate that sCD40L is a primary platelet agonist and that platelet stimulation is induced by the binding of the KGD domain of sCD40L to αIIbβ3, triggering outside-in signaling by tyrosine phosphorylation of β3. PMID:14519852

  19. CRSBP-1/LYVE-1 ligands disrupt lymphatic intercellular adhesion by inducing tyrosine phosphorylation and internalization of VE-cadherin

    PubMed Central

    Hou, Wei-Hsien; Liu, I-Hua; Tsai, Cheng C.; Johnson, Frank E.; Huang, Shuan Shian; Huang, Jung San

    2011-01-01

    Cell-surface retention sequence (CRS) binding protein (CRSBP-1) is a membrane glycoprotein identified by its ability to bind PDGF-BB and VEGF-A via their CRS motifs (clusters of basic amino acid residues). CRSBP-1 is identical to LYVE-1 and exhibits dual ligand (CRS-containing proteins and hyaluronic acid) binding activity, suggesting the importance of CRSBP-1 ligands in lymphatic function. Here, we show that CRSBP-1 ligands induce disruption of VE-cadherin-mediated intercellular adhesion and opening of intercellular junctions in lymphatic endothelial cell (LEC) monolayers as determined by immunofluorescence microscopy and Transwell permeability assay. This occurs by interaction with CRSBP-1 in the CRSBP-1–PDGFβR–β-catenin complex, resulting in tyrosine phosphorylation of the complex, dissociation of β-catenin and p120-catenin from VE-cadherin, and internalization of VE-cadherin. Pretreatment of LECs with a PDGFβR kinase inhibitor abolishes ligand-stimulated tyrosine phosphorylation of VE-cadherin, halts the ligand-induced disruption of VE-cadherin intercellular adhesion and blocks the ligand-induced opening of intercellular junctions. These CRSBP-1 ligands also induce opening of lymphatic intercellular junctions that respond to PDGFβR kinase inhibitor in wild-type mice (but not in Crsbp1-null mice) as evidenced by increased transit of injected FITC–dextran and induced edema fluid from the interstitial space into lymphatic vessels. These results disclose a novel mechanism involved in the opening of lymphatic intercellular junctions. PMID:21444752

  20. Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCζ-mediated p47phox phosphorylation.

    PubMed

    Leverence, Jeremy T; Medhora, Meetha; Konduri, Girija G; Sampath, Venkatesh

    2011-01-15

    Chronic inflammation incited by bacteria in the saccular lung of premature infants contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). LPS-mediated type II alveolar epithelial cell (AEC) injury induces the expression of pro-inflammatory cytokines that trigger pulmonary neutrophil influx, alveolar matrix degradation and lung remodeling. We hypothesized that NADPH oxidase (Nox)-dependent mechanisms mediate LPS-induced cytokine expression in AEC. We examined the role of p47phox in mediating LPS-dependent inflammatory cytokine expression in A549 cells (which exhibit phenotypic features characteristic of type II AEC) and elucidated the proximal signaling events by which Nox is activated by LPS. LPS-induced ICAM-1 and IL-8 expression was associated with increased superoxide formation in AEC. LPS-mediated oxidative stress and cytokine expression was inhibited by apocynin and augmented by PMA demonstrating that Nox-dependent redox signaling regulates LPS-dependent pro-inflammatory signaling in AEC. In LPS-treated cells, p47phox translocated from the cytoplasm to the perinuclear region and co-localized with gp91phox. LPS also induced a temporal increase in p47phox serine304 phosphorylation in AEC. While inhibition of classical PKC and novel PKC with calphostin and rottlerin did not inhibit ICAM-1 or IL-8 expression, the myristolyated PKCζ pseudosubstrate peptide (a specific inhibitor of PKCζ) inhibited LPS-induced cytokine expression in AEC. Inhibition of PKCζ also attenuated LPS-mediated p47phox phosphorylation and perinuclear translocation in AEC. Consistent with these data, LPS activated PKCζ in AEC as evidenced by increased threonine410 phophorylation. We conclude that PKCζ-mediated p47phox activation regulates LPS-dependent cytokine expression in AEC. Selective inhibition of PKCζ or p47phox might attenuate LPS-mediated inflammation and alveolar remodeling in BPD. PMID:20920494

  1. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals.

    PubMed

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs; Clasen, Berthil Forrest; Schjerling, Peter; Vissing, Kristian; Jessen, Niels

    2013-12-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained

  2. Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements

    PubMed Central

    Kaushansky, Alexis; Pompaiah, Malvika; Thorn, Hans; Brinkmann, Volker; MacBeath, Gavin; Meyer, Thomas F.

    2010-01-01

    Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. PMID:20808760

  3. ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells

    SciTech Connect

    Colonna, Cecilia . E-mail: ccolonna@fmed.uba.ar; Podesta, Ernesto J.

    2005-04-01

    Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.

  4. Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src.

    PubMed

    Diao, Yan; Ma, Xiaobin; Min, WeiLi; Lin, Shuai; Kang, HuaFeng; Dai, ZhiJun; Wang, Xijing; Zhao, Yang

    2016-08-28

    Cisplatin and paclitaxel are considered to be the backbone of chemotherapy in lung adenocarcinoma. These agents show pleiotropic effects on cell death. However, the precise mechanisms remain unclear. The present study reported that phosphorylated caspase-8 at tyrosine 380 (p-Casp8) was characterized as a biomarker of chemoresistance to TP regimen (cisplatin and paclitaxel) in patients with resectable lung adenocarcinoma with significantly poorer 5-year disease-free survival (DFS) and overall survival (OS). Cisplatin killed lung adenocarcinoma cells regardless of c-Src-induced caspase-8 phosphorylation at tyrosine 380. Subsequently, we identified a novel mechanism by which paclitaxel induced necroptosis in lung adenocarcinoma cells that was dependent upon p-Casp8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3. Moreover, dasatinib, a c-Src inhibitor, dephosphorylated caspase-8 to facilitate necroptosis, rather than apoptosis, in paclitaxel-treated p-Casp8-expressing lung adenocarcinoma cells. The data from our study revealed previously unrecognized roles of p-Casp8 as a positive effector in the initiation of necroptosis and as a negative effector in the repression of the interaction between RIPK1 and RIPK3. Moreover, these outcomes supported the need for further clinical studies with the goal of evaluating the efficacy of dasatinib plus paclitaxel in the treatment of lung adenocarcinoma. PMID:27195913

  5. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage.

    PubMed

    Salzano, Marcella; Sanz-García, Marta; Monsalve, Diana M; Moura, David S; Lazo, Pedro A

    2015-01-01

    All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the appropriate cellular response. In this work, we demonstrate that VRK1 is a nucleosomal chromatin kinase and that its depletion causes loss of histones H3 and H4 acetylation, which are required for chromatin relaxation, both in basal conditions and after DNA damage, independently of ATM. Moreover, VRK1 directly and stably interacts with histones H2AX and H3 in basal conditions. In response to DNA damage induced by ionizing radiation, histone H2AX is phosphorylated in Ser139 by VRK1. The phosphorylation of H2AX and the formation of γH2AX foci induced by ionizing radiation (IR), are prevented by VRK1 depletion and are rescued by kinase-active, but not kinase-dead, VRK1. In conclusion, we found that VRK1 is a novel chromatin component that reacts to its alterations and participates very early in DDR, functioning by itself or in cooperation with ATM. PMID:25923214

  6. Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers.

    PubMed

    Britton, Sébastien; Froment, Carine; Frit, Philippe; Monsarrat, Bernard; Salles, Bernard; Calsou, Patrick

    2009-11-15

    Aiming to identify novel phosphorylation sites in response to DNA double-strand breaks (DSB) inducers, we have isolated a phosphorylation site on KU70. Unexpectedly, a rabbit antiserum raised against this site cross-reacted with a 120 kDa protein in cells treated by DNA DSB inducers. We identified this protein as SAF-A/hnRNP U, an abundant and essential nuclear protein containing regions binding DNA or RNA. The phosphorylation site was mapped at S59 position in a sequence context favoring a "S-hydrophobic" consensus model for DNA-PK phosphorylation site in vivo. This site was exclusively phosphorylated by DNA-PK in response to DNA DSB inducers. In addition, the extent and duration of this phosphorylation was in inverse correlation with the capacity of the cells to repair DSB by Nonhomologous End Joining. These results bring a new link between the hnRNP family and the DNA damage response. Addtionaly, the mapped phospho-site on SAF-A might serve as a potential bio-marker for DNA-PK activity in academic studies and clinical analyses of DNA-PK activators or inhibitors. PMID:19844162

  7. Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446.

    PubMed

    Masuda, Kouhei; Shima, Hiroshi; Katagiri, Chiaki; Kikuchi, Kunimi

    2003-08-22

    We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK > p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK. PMID:12794087

  8. Leader-Induced Phosphorylation of Nucleoporins Correlates with Nuclear Trafficking Inhibition by Cardioviruses▿

    PubMed Central

    Porter, Frederick W.; Palmenberg, Ann C.

    2009-01-01

    Picornaviruses disrupt nucleocytoplasmic trafficking pathways during infection. Poliovirus and rhinovirus inhibit nuclear protein import/export through a series of 2A protease-dependent cleavages within nuclear pore proteins (nucleoporins [Nups]), including Nup62, Nup98, and Nup153. Cardioviruses lack the same protease and instead affect trafficking inhibition through an activity mapped to their leader (L) protein, a 67- to 76-amino acid (aa) polypeptide with no known enzymatic activity. We have shown that L from encephalomyocarditis virus (EMCV) binds and inhibits the activity of Ran-GTPase, a key regulator of nucleocytoplasmic transport. We now report that recombinant EMCV L triggers the unregulated efflux of protein cargo from preloaded HeLa cell nuclei in cell-free reactions dependent upon Xenopus egg cytosol or HeLa cell-derived cytosol. Recombinant L was the only viral protein necessary for this activity or for nuclear protein import inhibition. Mutational disruption of the L protein zinc finger domain (C19A) abrogated the inhibitory activity for both import and efflux in cell extracts, but mutations in the C-terminal acidic domain of L (aa 37 to 61) did not. Notably, HeLa cell nuclei treated with L, or those from EMCV-infected cells, showed reproducibly altered patterns of nucleoporin phosphorylation. Nup62, Nup153, and Nup214 each became hyperphosphorylated in an L-dependent manner. Staurosporine, a broad-spectrum kinase inhibitor, blocked this phosphorylation and rescued nuclear import/export activity from L-dependent inhibition. Therefore, cardioviruses target the same group of nucleoporins as enteroviruses, but the effector mechanism triggered by L (or L-Ran complexes) involves a unique cytosol-dependent phosphorylation cascade rather than proteolysis. PMID:19073724

  9. Formaldehyde-induced paxillin-tyrosine phosphorylation and paxillin and P53 downexpression in Hela cells.

    PubMed

    Zhao, Yun; Wei, Chenxi; Wu, Yang; Ma, Ping; Ding, Shumao; Yuan, Junlin; Shen, Dingwen; Yang, Xu

    2016-02-01

    Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin-tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0 mM, with the exposure time for 0.5, 1.0 and 2.0 h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin-tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0 mM FA for 2 h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin-tyrosine phosphorylation. PMID:26400731

  10. Data on the phosphorylation of p38MAPK and JNK induced by chlorpyrifos in Drosophila melanogaster.

    PubMed

    Batista, J E S; Sousa, L R; Martins, I K; Rodrigues, N R; Posser, T; Franco, J L

    2016-12-01

    Exposure to organophosphate compounds, such as chlorpyrifos, has been linked to disturbances on cell signaling pathways. Mitogen activated protein kinases (MAPK) are a family of protein kinases involved in a range of cellular processes, including stress response, apoptosis and survival. Therefore, changes in the activation state of these kinases may characterize key mechanisms of toxicity elicited by xenobiotics. Here we report data on the phosphorylation of p38MAPK and JNK, members of the MAPK family, in Drosophila melanogaster exposed to chlorpyrifos, as characterized by western blotting assays. PMID:27626050

  11. Inhibition of p38 MAPK Phosphorylation Is Critical for Bestatin to Enhance ATRA-Induced Cell Differentiation in Acute Promyelocytic Leukemia NB4 Cells.

    PubMed

    Qian, Xijun; He, Jingsong; Zhao, Yi; Lin, Maofang

    2016-01-01

    Bestatin has been known as an immunomodulating agent in anti-leukemia treatment. The mechanism by which Bestatin enhances all-trans retinoic acid (ATRA)-induced cell differentiation of acute promyelocytic leukemia (APL) cells is generally attributed to inhibition of cell surface CD13/aminopeptidase N activity. Bestatin also exerts its biological activities besides its ability to inhibit aminopeptidase N enzymatic activity. This article provides data to support an alternative mechanism regarding an important role of inhibition of p38 mitogen-activated protein kinase (MAPK) signal pathway in Bestatin's anti-leukemia effect. Bestatin enhanced ATRA-induced differentiation and inhibited ATRA-driven phosphorylation of p38 MAPK in ATRA-sensitive APL NB4 cells. In contrast, Bestatin could not reverse the differentiation block in ATRA-resistant APL MR2 cells, in which ATRA was unable to induce phosphorylation of p38 MAPK. Moreover, CD13 ligation with anti-CD13 antibody WM-15 resulted in phosphorylation of p38 MAPK, reduced the inhibition of Bestatin on the phosphorylation of p38 MAPK, and completely abolished the enhancement of Bestatin on ATRA-inducing differentiation in NB4 cells. This study shows that inhibition of p38 MAPK phosphorylation is critical for Bestatin to enhance ATRA-induced cell differentiation in ATRA-sensitive APL NB4 cells. Results suggested that pharmacological inhibition of the p38 MAPK pathway might enhance ATRA-dependent differentiation. PMID:24141198

  12. Natriuretic peptides induce weak VASP phosphorylation at Serine 239 in platelets

    PubMed Central

    Borgognone, Alessandra; Lowe, Kate L; Watson, Stephen P; Madhani, Melanie

    2013-01-01

    Cyclic guanosine-3′,5′-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; for example, atrial natriuretic peptide [ANP]), which activate soluble and particulate guanylyl cyclases (sGC and pGC), respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate VASP at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylanxthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C, NPR-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis. PMID:23469931

  13. Perfluoroheptanoic acid affects amphibian embryogenesis by inducing the phosphorylation of ERK and JNK.

    PubMed

    Kim, Miran; Park, Mi Seon; Son, Jungeun; Park, Inji; Lee, Hyun-Kyung; Kim, Chowon; Min, Byung-Hwa; Ryoo, Jaewoong; Choi, Kwang Shik; Lee, Dong-Seok; Lee, Hyun-Shik

    2015-12-01

    Perfluoroalkyl compounds (PFCs) are globally distributed synthetic compounds that are known to adversely affect human health. Developmental toxicity assessment of PFCs is important to facilitate the evaluation of their environmental impact. In the present study, we assessed the developmental toxicity and teratogenicity of PFCs with different numbers of carbon atoms on Xenopus embryogenesis. An initial frog embryo teratogenicity assay-Xenopus (FETAX) assay was performed that identified perfluorohexanoic (PFHxA) and perfluoroheptanoic (PFHpA) acids as potential teratogens and developmental toxicants. The mechanism underlying this teratogenicity was also investigated by measuring the expression of tissue-specific biomarkers such as phosphotyrosine‑binding protein, xPTB (liver); NKX2.5 (heart); and Cyl18 (intestine). Whole‑mount in situ hybridization, reverse transcriptase‑polymerase chain reaction (RT-PCR), and histologic analyses detected severe defects in the liver and heart following exposure to PFHxA or PFHpA. In addition, immunoblotting revealed that PFHpA significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while PFHxA slightly increased these, as compared with the control. These results suggest that PFHxA and PFHpA are developmental toxicants and teratogens, with PFHpA producing more severe effects on liver and heart development through the induction of ERK and JNK phosphorylation. PMID:26459765

  14. Aurora Kinases Phosphorylate Lgl to Induce Mitotic Spindle Orientation in Drosophila Epithelia

    PubMed Central

    Bell, Graham P.; Fletcher, Georgina C.; Brain, Ruth; Thompson, Barry J.

    2015-01-01

    Summary The Lethal giant larvae (Lgl) protein was discovered in Drosophila as a tumor suppressor in both neural stem cells (neuroblasts) and epithelia. In neuroblasts, Lgl relocalizes to the cytoplasm at mitosis, an event attributed to phosphorylation by mitotically activated aPKC kinase and thought to promote asymmetric cell division. Here we show that Lgl also relocalizes to the cytoplasm at mitosis in epithelial cells, which divide symmetrically. The Aurora A and B kinases directly phosphorylate Lgl to promote its mitotic relocalization, whereas aPKC kinase activity is required only for polarization of Lgl. A form of Lgl that is a substrate for aPKC, but not Aurora kinases, can restore cell polarity in lgl mutants but reveals defects in mitotic spindle orientation in epithelia. We propose that removal of Lgl from the plasma membrane at mitosis allows Pins/LGN to bind Dlg and thus orient the spindle in the plane of the epithelium. Our findings suggest a revised model for Lgl regulation and function in both symmetric and asymmetric cell divisions. PMID:25484300

  15. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr{sup 286} in squamous cell carcinoma

    SciTech Connect

    Mori, Jun; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-11-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G{sub 0}/G{sub 1} phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3{beta} (GSK-3{beta}). Depletion of endogenous GSK-3{beta} by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3{beta} and found that DIF-1 dephosphorylated GSK-3{beta} on Ser{sup 9} and induced the nuclear translocation of GSK-3{beta}, suggesting that DIF-1 activated GSK-3{beta}. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr{sup 286} was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3{beta}-mediated phosphorylation of Thr{sup 286}.

  16. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer.

    PubMed

    Guo, Chengcheng; Hao, Chuncheng; Shao, RuPing; Fang, Bingliang; Correa, Arlene M; Hofstetter, Wayne L; Roth, Jack A; Behrens, Carmen; Kalhor, Neda; Wistuba, Ignacio I; Swisher, Stephen G; Pataer, Apar

    2015-05-10

    We have demonstrated that RNA-dependent protein kinase (PKR) and its downstream protein p-eIF2α are independent prognostic markers for overall survival in lung cancer. In the current study, we further investigate the interaction between PKR and AMPK in lung tumor tissue and cancer cell lines. We examined PKR protein expression in 55 frozen primary lung tumor tissues by Western blotting and analyzed the association between PKR expression and expression of 139 proteins on tissue samples examined previously by Reverse Phase Protein Array (RPPA) from the same 55 patients. We observed that biomarkers were either positively (phosphorylated AMP-activated kinase(T172) [p-AMPK]) or negatively (insulin receptor substrate 1, meiotic recombination 11, ATR interacting protein, telomerase, checkpoint kinase 1, and cyclin E1) correlated with PKR. We further confirmed that induction of PKR with expression vectors in lung cancer cells causes activation of the AMPK protein independent of the LKB1, TAK1, and CaMKKβ pathway. We found that PKR causes nutrient depletion, which increases AMP levels and decreases ATP levels, causing AMPK phosphorylation. We further demonstrated that inhibiting AMPK expression with compound C or siRNA enhanced PKR-mediated cell death. We next explored the combination of PKR and p-AMPK expression in NSCLC patients and observed that expression of p-AMPK predicted a poor outcome for adenocarcinoma patients with high PKR expression and a better prognosis for those with low PKR expression. These findings were consistent with our in vitro results. AMPK might rescue cells facing metabolic stresses, such as ATP depletion caused by PKR. Our data indicate that PKR causes nutrient depletion, which induces the phosphorylation of AMPK. AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation. PMID:25798539

  17. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription.

    PubMed Central

    Gouilleux, F; Wakao, H; Mundt, M; Groner, B

    1994-01-01

    Mammary gland factor (MGF) is a transcription factor discovered initially in the mammary epithelial cells of lactating animals. It confers the lactogenic hormone response to the milk protein genes. We reported recently the isolation of the cDNA encoding MGF. MGF is a novel member of the cytokine-regulated transcription factor gene family. Members of this gene family mediate interferon alpha/beta and interferon gamma induction of gene transcription, as well as the response to epidermal growth factor and interleukin-6, and have been named signal transducers and activators of transcription (Stat). The name Stat5 has been assigned to MGF. We studied the mechanisms involved in the prolactin activation of Stat5 in COS cells co-transfected with cDNA encoding Stat5 and the prolactin receptor. Prolactin treatment of the transfected cells caused activation of Stat5 within 5-10 min. This activation does not require ongoing protein synthesis. Tyrosine kinase inhibitors prevent Stat5 activation in transfected COS cells. Treatment of recombinant Stat5 with a tyrosine-specific protein phosphatase in vitro abolishes its DNA binding activity. Prolactin stimulation of transfected cells induces Stat5 phosphorylation on tyrosine. Phosphorylation of in vitro transcribed and translated Stat5 with the Jak2 tyrosine kinase, but not with fyn, lyn or lck, confers DNA binding activity. The prolactin response of the beta-casein milk protein gene promoter can be observed in COS cells transfected with cDNA vectors encoding Stat5 and the long form of the prolactin receptor. The short form of the prolactin receptor is unable to promote Stat5 phosphorylation and confer transcriptional induction in COS cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7925280

  18. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana

    PubMed Central

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M.; Zhang, Chi; Cerutti, Heriberto

    2015-01-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5′ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  19. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    SciTech Connect

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji; Sayama, Koji

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  20. Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) Increases the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Airway Epithelial Cells by Phosphorylating Shank2E Protein*

    PubMed Central

    Koeppen, Katja; Coutermarsh, Bonita A.; Madden, Dean R.; Stanton, Bruce A.

    2014-01-01

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site. PMID:24811177

  1. β-Arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser83 and microglia chemotaxis

    PubMed Central

    Lee, Sang-Hyun; Hollingsworth, Ryan; Kwon, Hyeok-Yil; Lee, Narae; Chung, Chang Y.

    2014-01-01

    Microglia play crucial roles in increased inflammation in the CNS upon brain injuries and diseases. Extracellular ADP has been reported to induce microglia chemotaxis and membrane ruffle formation through P2Y12 receptor. In this study, we examined the role of ERK1/2 activation in ADP-induced microglia chemotaxis. ADP stimulation increases the phosphorylation of ERK1/2 and paxillin phosphorylation at Tyr31 and Ser83. Inhibition of ERK1/2 significantly inhibited paxillin phosphorylation at Ser83 and the retraction of membrane ruffles, causing inefficient chemotaxis. Close examination of dynamics of focal adhesion formation with GFP-paxillin revealed that the disassembly of focal adhesions in U0126-treated cells was significantly impaired. Depletion of β-Arr2 with shRNA markedly reduced the phosphorylation of ERK1/2 and Pax/Ser83, indicating that β-Arr2 is required for ERK1/2 activation upon ADP stimulation. A large fraction of phosphorylated ERK1/2 and β-Arr2 were translocated and co-localized at focal contacts in the newly forming lamellipodia. Examination of kinetics and rate constant of paxillin formation and disassembly revealed that the phosphorylation of paxillin at Tyr31 by c-Src appears to be involved in adhesion formation upon ADP stimulation while Ser83 required for adhesion disassembly. PMID:22638989

  2. Chronic restraint stress induces sperm acrosome reaction and changes in testicular tyrosine phosphorylated proteins in rats

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Maneenin, Chanwit; Iamsaard, Sitthichai

    2016-01-01

    Background: Stress is a cause of male infertility. Although sex hormones and sperm quality have been shown to be low in stress, sperm physiology and testicular functional proteins, such as phosphotyrosine proteins, have not been documented. Objective: To investigate the acrosome status and alterations of testicular proteins involved in spermatogenesis and testosterone synthesis in chronic stress in rats. Materials and Methods: In this experimental study, male rats were divided into 2 groups (control and chronic stress (CS), n=7). CS rats were immobilized (4 hr/day) for 42 consecutive days. The blood glucose level (BGL), corticosterone, testosterone, acrosome status, and histopathology were examined. The expressions of testicular steroidogenic acute regulatory (StAR), cytochrome P450 side chain cleavage (CYP11A1), and phosphorylated proteins were analyzed. Results: Results showed that BGL (71.25±2.22 vs. 95.60±3.36 mg/dl), corticosterone level (24.33±4.23 vs. 36.9±2.01 ng/ml), acrosome reacted sperm (3.25±1.55 vs. 17.71±5.03%), and sperm head abnormality (3.29±0.71 vs. 6.21±1.18%) were significantly higher in CS group in comparison with control. In contrast, seminal vesicle (0.41±0.05 vs. 0.24±0.07 g/100g), testosterone level (3.37±0.79 vs. 0.61±0.29 ng/ml), and sperm concentration (115.33±7.70 vs. 79.13±3.65×106 cells/ml) of CS were significantly lower (p<0.05) than controls. Some atrophic seminiferous tubules and low sperm mass were apparent in CS rats. The expression of CYP11A1 except StAR protein was markedly decreased in CS rats. In contrast, a 55 kDa phosphorylated protein was higher in CS testes. Conclusion: CS decreased the expression of CYP11A, resulting in decreased testosterone, and increased acrosome-reacted sperm, assumed to be the result of an increase of 55 kDa phosphorylated protein. PMID:27525328

  3. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.

    PubMed

    Bae, Eunjin; Kim, Seong-Jin; Hong, Suntaek; Liu, Fang; Ooshima, Akira

    2012-10-26

    Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. PMID:23022526

  4. NKCC1 mediates traumatic brain injury-induced hippocampal neurogenesis through CREB phosphorylation and HIF-1α expression.

    PubMed

    Lu, Kwok-Tung; Huang, Tai-Chun; Wang, Jia-Yi; You, Ya-Shen; Chou, Jian-Liang; Chan, Michael W Y; Wo, Peter Y Y; Amstislavskaya, Tamara G; Tikhonova, Maria A; Yang, Yi-Ling

    2015-08-01

    Traumatic brain injury (TBI) is one of the most prevalent causes of worldwide mortality and morbidity. We previously had evidenced that TBI induced Na-K-2Cl co-transporter (NKCC1) upregulation in hippocampus. Here, we aim to investigate the role of NKCC1 in TBI-induced neurogenesis and the detailed mechanisms. The TBI-associated alternations in the expression of NKCC1, HIF-1α, VEGF, MAPK cascade, and CREB phosphorylation were analyzed by Western blot. TBI-induced neurogenesis was determined by immuno-fluorescence labeling. Chromatin immunoprecipitation was used to elucidate whether HIF-1α would activate VEGF gene after TBI. We found that the level of hippocampal NKCC1 and VEGF began to rise 8 h after TBI, and both of them reached maxima at day 7. Along with the upregulation of NKCC1 and VEGF, MAPK cascade was activated and hippocampal neurogenesis was promoted. Administration of CREB antisense oligonucleotide significantly attenuated the expression of HIF-1α, while HIF-1α antisense oligonucleotide exhibited little effect on the expression of CREB. However, HIF-1α antisense oligonucleotide administration did effectively suppress the expression of VEGF. Our results of the chromosome immunoprecipitation also indicated that HIF-1α could directly act on the VEGF promoter and presumably would elevate the VEGF expression after TBI. All these results have illustrated the correlation between NKCC1 upregulation and TBI-associated neurogenesis. The pathway involves the activation of Raf/MEK/ERK cascade, CREB phosphorylation, and HIF-1α upregulation, and finally leads to the stimulation of VEGF expression and the induction of neurogenesis. PMID:25201604

  5. Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate.

    PubMed

    Kumaresan, A; Siqueira, A P; Hossain, M S; Bergqvist, A S

    2011-12-01

    Previous studies have shown that boar sperm quality after cryopreservation differs depending on the ejaculate fraction used and that spermatozoa contained in the first 10mL (P1) of the sperm-rich fraction (SRF) show better cryosurvival than those in the SRF-P1. Since protein tyrosine phosphorylation (PTP) in spermatozoa is related with the tolerance of spermatozoa to frozen storage and cryocapacitation, we assessed the dynamics of cryopreservation-induced PTP and intracellular calcium ([Ca(2+)]i) in spermatozoa, using flow cytometry, from P1 and SRF-P1 of the boar ejaculate at different stages of cryopreservation. Sperm kinetics, assessed using a computer-assisted semen analyzer, did not differ between P1 and SRF-P1 during cryopreservation but the decrease in sperm velocity during cryopreservation was significant (P<0.05) in SRF-P1 compared to P1. There were no significant differences in percentages of spermatozoa with high [Ca(2+)]i between P1 and SRF-P1 in fresh as well as in frozen-thawed semen. A higher (P<0.001) proportion of spermatozoa displayed PTP during the course of cryopreservation indicating a definite effect of the cryopreservation process on sperm PTP. The proportion of spermatozoa with PTP did not differ significantly between portions of the boar ejaculate. However at any given step during cryopreservation the percentage of spermatozoa with PTP was comparatively higher in SRF-P1 than P1. A 32kDa tyrosine phosphorylated protein, associated with capacitation, appeared after cooling suggesting that cooling induces capacitation-like changes in boar spermatozoa. In conclusion, the study has shown that the cryopreservation process induced PTP in spermatozoa and their proportions were similar between portions of SRF. PMID:21893053

  6. Phosphorylation by Casein Kinase 1 Regulates Tonicity-induced Osmotic Response Element-binding Protein/Tonicity Enhancer-binding Protein Nucleocytoplasmic Trafficking*

    PubMed Central

    Xu, SongXiao; Wong, Catherine C. L.; Tong, Edith H. Y.; Chung, Stephen S. M.; Yates, John R.; Yin, YiBing; Ko, Ben C. B.

    2008-01-01

    The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1α1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process. PMID:18411282

  7. Phosphorylation by casein kinase 1 regulates tonicity-induced osmotic response element-binding protein/tonicity enhancer-binding protein nucleocytoplasmic trafficking.

    PubMed

    Xu, SongXiao; Wong, Catherine C L; Tong, Edith H Y; Chung, Stephen S M; Yates, John R; Yin, YiBing; Ko, Ben C B

    2008-06-20

    The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1alpha1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process. PMID:18411282

  8. R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells

    PubMed Central

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2016-01-01

    R-Ras is a Ras family small GTPase highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes, and smooth muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. R-Ras attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and phosphorylation of downstream heat shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion, and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNAi increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  9. Loss of Activity-Induced Phosphorylation of MeCP2 Enhances Synaptogenesis, LTP, and Spatial Memory

    PubMed Central

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Williams, Emily Cunningham; Chang, Qiang

    2012-01-01

    DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 expresses highly in neurons, and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies showed neuronal activity-induced phosphorylation (NAIP) of MeCP2 precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knockin mice that lack NAIP of MeCP2, and show here the Mecp2 phospho-mutant mice perform better in hippocampus-dependent memory tests, present enhanced LTP at two synapses in the hippocampus, and show increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein binds more tightly to several MeCP2 target gene promoters and alters the expression of these genes. Our results supply the first genetic evidence that NAIP of MeCP2 is required in modulating dynamic functions of the adult mouse brain. PMID:21765426

  10. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    PubMed

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  11. Kaposi΄s sarcoma-associated herpesvirus ORF36 protein induces chromosome condensation and phosphorylation of histone H3.

    PubMed

    Kim, Sunmi; Cha, Seho; Jang, Jun Hyeong; Kim, Yejin; Seo, Taegun

    2013-01-01

    Kaposi΄s sarcoma-associated herpesvirus (KSHV) has been known as an agent causing Kaposi΄s sarcoma, primary effusion lymphoma, and multicentric Castleman΄s disease. In the lytic phase of the virus cycle, various viral genes are expressed, which causes host cell dysregulation. Among the lytic genes, viral protein kinase (vPK) encoded by ORF36 is a member of serine/threonine protein kinase (CHPK) family, which is involved in viral gene expression, viral DNA replication and encapsidation, and nuclear egress of virions. Recent studies have shown that the BGLF4 protein of Epstein-Barr virus (EBV), a member of the CHPK family, alters the host cell chromatin structure through phosphorylation of its key regulators. The role of KSHV ORF36 in cellular mitotic events, however, is not yet understood. In the current study, we showed that KSHV ORF36 induced chromosome condensation and phosphorylation of histone H3 on Ser 10, which are known as cellular mitosis markers. These processes have occurred in a kinase activity-dependent manner. PMID:23530827

  12. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus

    PubMed Central

    Ko, Ah-Reum; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2016-01-01

    The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE. PMID:27242436

  13. DMBA induces tyrosine phosphorylation of PLC-[gamma]1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W. . Coll. of Pharmacy)

    1993-01-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP[sub 3] and the release of intracellular Ca[sup 2+]. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP[sub 3] formation and Ca[sup 2+] release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10[mu]M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-[gamma]1 that correlated with our earlier findings of IP[sub 3] formation and Ca[sup 2+] release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-[gamma]1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-[gamma]1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-[gamma]1, release of IP[sub 3], and mobilization of intracellular Ca[sup 2+].

  14. DMBA induces tyrosine phosphorylation of PLC-{gamma}1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W.

    1993-02-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP{sub 3} and the release of intracellular Ca{sup 2+}. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP{sub 3} formation and Ca{sup 2+} release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10{mu}M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-{gamma}1 that correlated with our earlier findings of IP{sub 3} formation and Ca{sup 2+} release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-{gamma}1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-{gamma}1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-{gamma}1, release of IP{sub 3}, and mobilization of intracellular Ca{sup 2+}.

  15. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1.

    PubMed

    Tsuchiya, Yuko; Jounai, Nao; Takeshita, Fumihiko; Ishii, Ken J; Mizuguchi, Kenji

    2016-07-01

    The innate immune protein Stimulator of interferon genes (STING) promotes the induction of interferon beta (IFN-β) production via the phosphorylation of its C-terminal tail (CTT) by TANK-binding kinase 1 (TBK1). Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP) induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation. PMID:27333035

  16. Metformin exaggerates phenylephrine-induced AMPK phosphorylation independent of CaMKKβ and attenuates contractile response in endothelium-denuded rat aorta

    PubMed Central

    Pyla, Rajkumar; Osman, Islam; Pichavaram, Prahalathan; Hansen, Paul; Segar, Lakshman

    2014-01-01

    Metformin, a widely prescribed antidiabetic drug, has been shown to reduce the risk of cardiovascular disease, including hypertension. Its beneficial effect toward improved vasodilation results from its ability to activate AMPK and enhance nitric oxide formation in the endothelium. To date, metformin regulation of AMPK has not been fully studied in intact arterial smooth muscle, especially during contraction evoked by G protein-coupled receptor (GPCR) agonists. In the present study, ex vivo incubation of endothelium-denuded rat aortic rings with 3 mM metformin for 2 hours resulted in significant accumulation of metformin (~600 pmoles/mg tissue), as revealed by LC-MS/MS MRM analysis. However, metformin did not show significant increase in AMPK phosphorylation under these conditions. Exposure of aortic rings to a GPCR agonist (e.g., phenylephrine) resulted in enhanced AMPK phosphorylation by ~2.5-fold. Importantly, in metformin-treated aortic rings, phenylephrine challenge showed an exaggerated increase in AMPK phosphorylation by ~9.7-fold, which was associated with an increase in AMP/ATP ratio. Pretreatment with compound C (AMPK inhibitor) prevented AMPK phosphorylation induced by phenylephrine alone and also that induced by phenylephrine after metformin treatment. However, pretreatment with STO-609 (CaMKKβ inhibitor) diminished AMPK phosphorylation induced by phenylephrine alone but not that induced by phenylephrine after metformin treatment. Furthermore, attenuation of phenylephrine-induced contraction (observed after metformin treatment) was prevented by AMPK inhibition but not by CaMKKβ inhibition. Together, these findings suggest that, upon endothelial damage in the vessel wall, metformin uptake by the underlying vascular smooth muscle would accentuate AMPK phosphorylation by GPCR agonists independent of CaMKKβ to promote vasorelaxation. PMID:25179145

  17. Enhanced Glucose Transport, but not Phosphorylation Capacity, Ameliorates Lipopolysaccharide-Induced Impairments in Insulin-Stimulated Muscle Glucose Uptake.

    PubMed

    Otero, Yolanda F; Mulligan, Kimberly X; Barnes, Tammy M; Ford, Eric A; Malabanan, Carlo M; Zong, Haihong; Pessin, Jeffrey E; Wasserman, David H; McGuinness, Owen P

    2016-06-01

    Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 μg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS. PMID:26682946

  18. Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serine-1327 as a novel site of phorbol ester-induced phosphorylation.

    PubMed Central

    Coghlan, M P; Pillay, T S; Tavaré, J M; Siddle, K

    1994-01-01

    Rabbit antisera were raised against synthetic phosphopeptides corresponding to defined or putative sites of insulin receptor serine/threonine phosphorylation (Ser-1305, Ser-1327, Thr-1348). All of these antibodies bound specifically to the immunogenic phosphopeptide but not to the non-phosphorylated form of the peptide or to other phosphopeptides, in a microtitre plate competition enzyme-linked immunosorbent assay. Anti-PS1327 antibody reacted well with native insulin receptor prepared from phorbol ester-treated transfected CHO.T cells, but showed little reaction with receptor from untreated cells. Anti-PT1348 antibody in crude form reacted substantially with receptor from both phorbol 12-myristate 13-acetate-treated and untreated cells, but displayed specificity for phosphoreceptor after adsorption to remove antibodies reactive with dephosphopeptide. The ability to discriminate between receptor from cells treated with or without phorbol ester was retained when these antibodies were used to probe denatured receptor on Western blots. Thus anti-PS1327 and anti-PT1348 react with insulin receptor in a site-specific and phosphorylation-state-dependent manner. Anti-PT1348, but not anti-PS1327, also showed increased reactivity with receptor prepared from insulin-treated cells. The third antibody, anti-PS1305, did not react with intact insulin receptor under any conditions. It is concluded that serine 1327 is a major, previously unrecognized, site of phorbol ester-induced receptor phosphorylation, and that anti-phosphopeptide antibodies will be valuable reagents with which to examine the serine/threonine phosphorylation state of receptor extracted from tissues. Images Figure 3 Figure 4 PMID:7980459

  19. Photoactivated Phytochrome Induces Rapid PIF3 Phosphorylation Prior to Proteasome-Mediated Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following light-induced nuclear translocation, specific members of the phytochrome (phy) photoreceptor family (phyA to phyE) interact with bHLH transcription factors, such as PIF3, and induce changes in target-gene expression. The biochemical mechanism comprising signal transfer from phy to PIF3 has...

  20. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcriptio...

  1. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. PMID:27113203

  2. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  3. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation.

    PubMed

    Baranski, Zuzanna; Booij, Tijmen H; Kuijjer, Marieke L; de Jong, Yvonne; Cleton-Jansen, Anne-Marie; Price, Leo S; van de Water, Bob; Bovée, Judith V M G; Hogendoorn, Pancras C W; Danen, Erik H J

    2015-11-01

    Conventional high-grade osteosarcoma is the most common primary bone cancer with relatively high incidence in young people. Recurrent and metastatic tumors are difficult to treat. We performed a kinase inhibitor screen in two osteosarcoma cell lines, which identified MEK1/2 inhibitors. These inhibitors were further validated in a panel of six osteosarcoma cell lines. Western blot analysis was performed to assess ERK activity and efficacy of MEK inhibition. A 3D culture system was used to validate results from 2D monolayer cultures. Gene expression analysis was performed to identify differentially expressed gene signatures in sensitive and resistant cell lines. Activation of the AKT signaling network was explored using Western blot and pharmacological inhibition. In the screen, Trametinib, AZD8330 and TAK-733 decreased cell viability by more than 50%. Validation in six osteosarcoma cell lines identified three cell lines as resistant and three as sensitive to the inhibitors. Western blot analysis of ERK activity revealed that sensitive lines had high constitutive ERK activity. Treatment with the three MEK inhibitors in a 3D culture system validated efficacy in inhibition of osteosarcoma viability. MEK1/2 inhibition represents a candidate treatment strategy for osteosarcomas displaying high MEK activity as determined by ERK phosphorylation status. PMID:26807203

  4. High LET-induced H2AX phosphorylation around the Bragg curve.

    PubMed

    Desai, N; Durante, M; Lin, Z W; Cucinotta, F; Wu, H

    2005-01-01

    We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (gamma-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent gamma-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced gamma-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of gamma-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects. PMID:15934200

  5. Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation

    PubMed Central

    Di Costanzo, Antonella; Festa, Luisa; Duverger, Olivier; Vivo, Maria; Guerrlal, Luisa; La Mantia, Girolama; Morasso, Marla I.; Calabro, Viola

    2009-01-01

    The epidermis is a stratified epithelium which develops depending on the transcription factor p63, a member of the p53 family of transcription factors. p63 is strongly expressed in the innermost basal layer where highly proliferative epithelial cells reside. p63 functions as a molecular switch that initiates epithelial stratification or cell fate determination while regulating proliferation and differentiation of developmentally mature keratinocytes. p63 acts upstream of Dlx3 homeobox gene in a transcriptional regulatory pathway relevant to ectodermal dysplasia. Here we show that Dlx3 triggers p63 protein degradation by a proteasome-dependent pathway. Mutant ΔNp63α in which Threonine397 and Serine383 were replaced with Alanine as well as C-terminal truncated versions of ΔNp63α are resistant to Dlx3-mediated degradation. Transient expression of Dlx3 is associated with Raft phosphorylation. Dlx3 is unable to promote p63 degradation in Raft depleted MEF cells or upon pharmacological knockdown of Raft. Our data support a previously unrecognized role for Dlx3 in posttranslational regulation of ΔNp63α protein level, a mechanism that may contribute to reduce the abundance of ΔNp63α during differentiation of stratified epithelia. PMID:19282665

  6. Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation.

    PubMed

    Di Costanzo, Antonella; Festa, Luisa; Duverger, Olivier; Vivo, Maria; Guerrini, Luisa; La Mantia, Girolama; Morasso, Maria I; Calabrò, Viola

    2009-04-15

    The epidermis is a stratified epithelium which develops depending on the transcription factor p63, a member of the p53 family of transcription factors. p63 is strongly expressed in the innermost basal layer where highly proliferative epithelial cells reside. p63 functions as a molecular switch that initiates epithelial stratification or cell fate determination while regulating proliferation and differentiation of developmentally mature keratinocytes. p63 acts upstream of Dlx3 homeobox gene in a transcriptional regulatory pathway relevant to ectodermal dysplasia. Here we show that Dlx3 triggers p63 protein degradation by a proteasome-dependent pathway. Mutant DeltaNp63alpha in which Threonine397 and Serine383 were replaced with Alanine as well as C-terminal truncated versions of DeltaNp63alpha are resistant to Dlx3-mediated degradation. Transient expression of Dlx3 is associated with Raf1 phosphorylation. Dlx3 is unable to promote p63 degradation in Raf1 depleted MEF cells or upon pharmacological knockdown of Raf1. Our data support a previously unrecognized role for Dlx3 in posttranslational regulation of DeltaNp63alpha protein level, a mechanism that may contribute to reduce the abundance of DeltaNp63alpha during differentiation of stratified epithelia. PMID:19282665

  7. High LET - induced H2AX phosphorylation at sites of DNA double strand breaks

    NASA Astrophysics Data System (ADS)

    Desai, N.; Cucinotta, F.; Wu, H.

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  8. High LET-induced H2AX phosphorylation around the Bragg curve

    NASA Astrophysics Data System (ADS)

    Desai, N.; Durante, M.; Lin, Z. W.; Cucinotta, F.; Wu, H.

    We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (γ-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of γ-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/ y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent γ-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced γ-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of γ-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects.

  9. Loss of p53-regulatory protein IFI16 induces NBS1 leading to activation of p53-mediated checkpoint by phosphorylation of p53 SER37.

    PubMed

    Tawara, Hideyuki; Fujiuchi, Nobuko; Sironi, Juan; Martin, Sarah; Aglipay, Jason; Ouchi, Mutsuko; Taga, Makoto; Chen, Phang-Lang; Ouchi, Toru

    2008-01-01

    Our previous results that IFI16 is involved in p53 transcription activity under conditions of ionizing radiation (IR), and that the protein is frequently lost in human breast cancer cell lines and breast adenocarcinoma tissues suggesting that IFI16 plays a crucial role in controlling cell growth. Here, we show that loss of IFI16 by RNA interference in cell culture causes elevated phosphorylation of p53 Ser37 and accumulated NBS1 (nibrin) and p21WAF1, leading to growth retardation. Consistent with these observations, doxycyclin-induced NBS1 caused accumulation of p21WAF1 and increased phosphorylation of p53 Ser37, leading to cell cycle arrest in G1 phase. Wortmannin treatment was found to decrease p53 Ser37 phosphorylation in NBS-induced cells. These results suggest that loss of IFI16 activates p53 checkpoint through NBS1-DNA-PKcs pathway. PMID:17981542

  10. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; Aronow, Bruce J.; Pu, William T.; Molkentin, Jeffery D.

    2011-01-01

    Cardiac hypertrophy is an adaptive growth process that occurs in response to stress stimulation or injury wherein multiple signal transduction pathways are induced, culminating in transcription factor activation and the reprogramming of gene expression. GATA4 is a critical transcription factor in the heart that is known to induce/regulate the hypertrophic program, in part, by receiving signals from MAPKs. Here we generated knock-in mice in which a known MAPK phosphorylation site at serine 105 (S105) in Gata4 that augments activity was mutated to alanine. Homozygous Gata4-S105A mutant mice were viable as adults, although they showed a compromised stress response of the myocardium. For example, cardiac hypertrophy in response to phenylephrine agonist infusion for 2 wk was largely blunted in Gata4-S105A mice, as was the hypertrophic response to pressure overload at 1 and 2 wk of applied stimulation. Gata4-S105A mice were also more susceptible to heart failure and cardiac dilation after 2 wk of pressure overload. With respect to the upstream pathway, hearts from Gata4-S105A mice did not efficiently hypertrophy following direct ERK1/2 activation using an activated MEK1 transgene in vivo. Mechanistically, GATA4 mutant protein from these hearts failed to show enhanced DNA binding in response to hypertrophic stimulation. Moreover, hearts from Gata4-S105A mice had significant changes in the expression of hypertrophy-inducible, fetal, and remodeling-related genes. PMID:21746915