A lower bound for the first eigenvalue in the Laplacian operator on compact Riemannian manifolds
NASA Astrophysics Data System (ADS)
He, Yue
2013-09-01
This paper gives a simple proof of the main result of Ling [J. Ling, Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature, Ann. Global Anal. Geom. 31 (2007) 385-408] in an in-depth study of the sharp lower bound for the first eigenvalue in the Laplacian operator on compact Riemannian manifolds with nonnegative Ricci curvature. Although we use Ling's methods on the whole, to some extent we deal with the singularity of test functions and greatly simplify many of the calculations involved. This may provide a new way for estimating eigenvalues.
Sasaki-like almost contact complex Riemannian manifolds
NASA Astrophysics Data System (ADS)
Ivanov, Stefan; Manev, Hristo; Manev, Mancho
2016-09-01
A Sasaki-like almost contact complex Riemannian manifold is defined as an almost contact complex Riemannian manifold whose complex cone is a holomorphic complex Riemannian manifold. Explicit compact and non-compact examples are given. A canonical construction producing a Sasaki-like almost contact complex Riemannian manifold from a holomorphic complex Riemannian manifold is provided as an S1-solvable extension.
On L p -Resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds
NASA Astrophysics Data System (ADS)
Bourgain, Jean; Shao, Peng; Sogge, Christopher D.; Yao, Xiaohua
2015-02-01
We address an interesting question raised by Dos Santos Ferreira, Kenig and Salo (Forum Math, 2014) about regions for which there can be uniform resolvent estimates for , , where is the Laplace-Beltrami operator with metric g on a given compact boundaryless Riemannian manifold of dimension . This is related to earlier work of Kenig, Ruiz and the third author (Duke Math J 55:329-347, 1987) for the Euclidean Laplacian, in which case the region is the entire complex plane minus any disc centered at the origin. Presently, we show that for the round metric on the sphere, S n , the resolvent estimates in (Dos Santos Ferreira et al. in Forum Math, 2014), involving a much smaller region, are essentially optimal. We do this by establishing sharp bounds based on the distance from to the spectrum of . In the other direction, we also show that the bounds in (Dos Santos Ferreira et al. in Forum Math, 2014) can be sharpened logarithmically for manifolds with nonpositive curvature, and by powers in the case of the torus, , with the flat metric. The latter improves earlier bounds of Shen (Int Math Res Not 1:1-31, 2001). The work of (Dos Santos Ferreira et al. in Forum Math, 2014) and (Shen in Int Math Res Not 1:1-31, 2001) was based on Hadamard parametrices for . Ours is based on the related Hadamard parametrices for , and it follows ideas in (Sogge in Ann Math 126:439-447, 1987) of proving L p -multiplier estimates using small-time wave equation parametrices and the spectral projection estimates from (Sogge in J Funct Anal 77:123-138, 1988). This approach allows us to adapt arguments in Bérard (Math Z 155:249-276, 1977) and Hlawka (Monatsh Math 54:1-36, 1950) to obtain the aforementioned improvements over (Dos Santos Ferreira et al. in Forum Math, 2014) and (Shen in Int Math Res Not 1:1-31, 2001). Further improvements for the torus are obtained using recent techniques of the first author (Bourgain in Israel J Math 193(1):441-458, 2013) and his work with Guth (Bourgain and Guth
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Distance approximating dimension reduction of Riemannian manifolds.
Chen, Changyou; Zhang, Junping; Fleischer, Rudolf
2010-02-01
We study the problem of projecting high-dimensional tensor data on an unspecified Riemannian manifold onto some lower dimensional subspace We note that, technically, the low-dimensional space we compute may not be a subspace of the original high-dimensional space. However, it is convenient to envision it as a subspace when explaining the algorithms. without much distorting the pairwise geodesic distances between data points on the Riemannian manifold while preserving discrimination ability. Existing algorithms, e.g., ISOMAP, that try to learn an isometric embedding of data points on a manifold have a nonsatisfactory discrimination ability in practical applications such as face and gait recognition. In this paper, we propose a two-stage algorithm named tensor-based Riemannian manifold distance-approximating projection (TRIMAP), which can quickly compute an approximately optimal projection for a given tensor data set. In the first stage, we construct a graph from labeled or unlabeled data, which correspond to the supervised and unsupervised scenario, respectively, such that we can use the graph distance to obtain an upper bound on an objective function that preserves pairwise geodesic distances. Then, we perform some tensor-based optimization of this upper bound to obtain a projection onto a low-dimensional subspace. In the second stage, we propose three different strategies to enhance the discrimination ability, i.e., make data points from different classes easier to separate and make data points in the same class more compact. Experimental results on two benchmark data sets from the University of South Florida human gait database and the Face Recognition Technology face database show that the discrimination ability of TRIMAP exceeds that of other popular algorithms. We theoretically show that TRIMAP converges. We demonstrate, through experiments on six synthetic data sets, its potential ability to unfold nonlinear manifolds in the first stage. PMID:19622439
Characterizing humans on Riemannian manifolds.
Tosato, Diego; Spera, Mauro; Cristani, Marco; Murino, Vittorio
2013-08-01
In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases. PMID:23787347
A Riemannian approach to Randers geodesics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.; Gibbons, Gary W.; Meier, David M.
2016-08-01
In certain circumstances tools of Riemannian geometry are sufficient to address questions arising in the more general Finslerian context. We show that one such instance presents itself in the characterisation of geodesics in Randers spaces of constant flag curvature. To achieve a simple, Riemannian derivation of this special family of curves, we exploit the connection between Randers spaces and the Zermelo problem of time-optimal navigation in the presence of background fields. The characterisation of geodesics is then proven by generalising an intuitive argument developed recently for the solution of the quantum Zermelo problem.
Foucault pendulum and sub-Riemannian geometry
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.; Monroy-Pérez, F.
2010-08-01
The well known Foucault nonsymmetrical pendulum is studied as a problem of sub-Riemannian geometry on nilpotent Lie groups. It is shown that in a rotating frame a sub-Riemannian structure can be naturally introduced. For small oscillations, three dimensional horizontal trajectories are computed and displayed in detail. The fiber bundle structure is explicitly shown. The underlying Lie structure is described together with the corresponding holonomy group, which turns out to be given by the center of the Heisenberg group. Other related physical problems that can be treated in a similar way are also mentioned.
Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4
NASA Astrophysics Data System (ADS)
Kordyukov, Yuri; Lejmi, Mehdi; Weber, Patrick
2016-09-01
We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifolds. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.
Riemannian geometry of fluctuation theory: An introduction
NASA Astrophysics Data System (ADS)
Velazquez, Luisberis
2016-05-01
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.
Invariant distributions on compact homogeneous spaces
Gorbatsevich, V V
2013-12-31
In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Brane world in non-Riemannian geometry
Maier, R.; Falciano, F. T.
2011-03-15
We carefully investigate the modified Einstein's field equation in a 4-dimensional (3-brane) arbitrary manifold embedded in a 5-dimensional non-Riemannian bulk spacetime with a noncompact extra dimension. In this context the Israel-Darmois matching conditions are extended assuming that the torsion in the bulk is continuous. The discontinuity in the torsion first derivatives are related to the matter distribution through the field equation. In addition, we develop a model that describes a flat FLRW model embedded in a 5-dimensional de Sitter or anti-de Sitter, where a 5-dimensional cosmological constant emerges from the torsion.
Riemannian Penrose inequality and a virtual gravitational collapse
Ohashi, Seiju; Shiromizu, Tetsuya; Yamada, Sumio
2009-08-15
We reinterpret the proof of the Riemannian Penrose inequality by Bray. The modified argument turns out to have a nice feature so that the flow of Riemannian metrics appearing in Bray's proof gives a Lorentzian metric of a spacetime. We also discuss a possible extension of our approach to charged black holes.
Non-Riemannian geometry of vortex acoustics
Garcia de Andrade, L.C.
2004-09-15
The concept of acoustic torsion is introduced by making use of the scalar wave equation in Riemann-Cartan spacetime. Acoustic torsion extends the acoustic metric previously given by Unruh (PRL-1981). The wave equation describes irrotational perturbations in rotational nonrelativistic fluids. This physical motivation allows us to show that the acoustic line element can be conformally mapped to the line element of a stationary torsion loop in non-Riemannian gravity. Two examples of such sonic analogues are given. The first is the stationary torsion loop in teleparallel gravity. In the far from the vortex approximation, the Cartan torsion vector is shown to be proportional to the quantum vortex number of the superfluid. The torsion vector is also shown to be proportional to the superfluid vorticity in the presence of vortices. The formation of superfluid vortices is shown not to be favored by torsion loops in Riemann-Cartan spacetime, as long as this model is concerned. It is suggested that the teleparallel model may help to find a model for superfluid neutron stars vortices based on non-Riemannian gravity.
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING.
Liu, Meizhu; Vemuri, Baba C
2011-03-30
Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) - used to represent the distribution over the training data and the classification error respectively - to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
Jayasumana, Sadeep; Hartley, Richard; Salzmann, Mathieu; Li, Hongdong; Harandi, Mehrtash
2015-12-01
In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels. PMID:26539851
A Riemannian framework for orientation distribution function computing.
Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid
2009-01-01
Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation. PMID:20426075
Almost Commutative Riemannian Geometry: Wave Operators
NASA Astrophysics Data System (ADS)
Majid, Shahn
2012-03-01
Associated to any (pseudo)-Riemannian manifold M of dimension n is an n + 1-dimensional noncommutative differential structure (Ω1, d) on the manifold, with the extra dimension encoding the classical Laplacian as a noncommutative `vector field'. We use the classical connection, Ricci tensor and Hodge Laplacian to construct (Ω2, d) and a natural noncommutative torsion free connection {(nabla,σ)} on Ω1. We show that its generalised braiding {σ:Ω^1⊗Ω^1to Ω^1⊗Ω^1} obeys the quantum Yang-Baxter or braid relations only when the original M is flat, i.e. their failure is governed by the Riemann curvature, and that σ 2 = id only when M is Einstein. We show that if M has a conformal Killing vector field τ then the cross product algebra {C(M)rtimes_taumathbb{R}} viewed as a noncommutative analogue of {M×mathbb{R}} has a natural n + 2-dimensional calculus extending Ω1 and a natural spacetime Laplacian now directly defined by the extra dimension. The case {M=mathbb{R}^3} recovers the Majid-Ruegg bicrossproduct flat spacetime model and the wave-operator used in its variable speed of light prediction, but now as an example of a general construction. As an application we construct the wave operator on a noncommutative Schwarzschild black hole and take a first look at its features. It appears that the infinite classical redshift/time dilation factor at the event horizon is made finite.
3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold.
Devanne, Maxime; Wannous, Hazem; Berretti, Stefano; Pala, Pietro; Daoudi, Mohamed; Del Bimbo, Alberto
2015-07-01
Recognizing human actions in 3-D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3-D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3-D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body, simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using k-nearest neighbors is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported. PMID:25216492
Canonical Correlation Analysis on Riemannian Manifolds and Its Applications.
Kim, Hyunwoo J; Adluru, Nagesh; Bendlin, Barbara B; Johnson, Sterling C; Vemuri, Baba C; Singh, Vikas
2014-01-01
Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matrices (SPD), rotations and probability distributions, all belong to certain curved Riemannian manifolds where vector-space operations are in general not applicable. Analyzing the space of such data via the classical versions of inference models is rather sub-optimal. But perhaps more importantly, since the algorithms do not respect the underlying geometry of the data space, it is hard to provide statistical guarantees (if any) on the results. Using the space of SPD matrices as a concrete example, this paper gives a principled generalization of the well known CCA to the Riemannian setting. Our CCA algorithm operates on the product Riemannian manifold representing SPD matrix-valued fields to identify meaningful statistical relationships on the product Riemannian manifold. As a proof of principle, we present results on an Alzheimer's disease (AD) study where the analysis task involves identifying correlations across diffusion tensor images (DTI) and Cauchy deformation tensor fields derived from T1-weighted magnetic resonance (MR) images. PMID:25317426
Improved Segmentation of White Matter Tracts with Adaptive Riemannian Metrics
Hao, Xiang; Zygmunt, Kristen; Whitaker, Ross T.; Fletcher, P. Thomas
2014-01-01
We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geometry of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics, which have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment the white matter tracts based on the computed geodesics. We show the robustness of our method on simulated data with different noise levels. We also compare our method with tractography methods and geodesic approaches using other Riemannian metrics and demonstrate that the proposed method results in improved geodesics and segmentations using both synthetic and real DTI data. PMID:24211814
Geometric calculus: a new computational tool for Riemannian geometry
Moussiaux, A.; Tombal, P.
1988-05-01
We compare geometric calculus applied to Riemannian geometry with Cartan's exterior calculus method. The correspondence between the two methods is clearly established. The results obtained by a package written in an algebraic language and doing general manipulations on multivectors are compared. We see that the geometric calculus is as powerful as exterior calculus.
Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds
NASA Astrophysics Data System (ADS)
Hsu, Elton P.
Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that γ(0) =o, a fixed point on M, and ν the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:
The Newman-Penrose formalism for Riemannian 3-manifolds
NASA Astrophysics Data System (ADS)
Aazami, Amir Babak
2015-08-01
We adapt the Newman-Penrose formalism in general relativity to the setting of three-dimensional Riemannian geometry, and prove the following results. Given a Riemannian 3-manifold without boundary and a smooth unit vector field k with geodesic flow, if an integral curve of k is hypersurface-orthogonal at a point, then it is so at every point along that curve. Furthermore, if k is complete, hypersurface-orthogonal, and satisfies Ric(k, k) ≥ 0, then its divergence must be nonnegative. As an application, we show that if the Riemannian 3-manifold is closed and a unit length k with geodesic flow satisfies Ric(k, k) > 0, then k cannot be hypersurface-orthogonal, thus recovering a result in Harris and Paternain (2013). Turning next to scalar curvature, we derive an evolution equation for the scalar curvature in terms of unit vector fields k that satisfy the condition R(k, ṡ, ṡ, ṡ) = 0. When the scalar curvature is a nonzero constant, we show that a hypersurface-orthogonal unit vector field k satisfies R(k, ṡ, ṡ, ṡ) = 0 if and only if it is a Killing vector field.
NASA Astrophysics Data System (ADS)
Xi, Yakun; Zhang, Cheng
2016-07-01
We show that one can obtain improved L 4 geodesic restriction estimates for eigenfunctions on compact Riemannian surfaces with nonpositive curvature. We achieve this by adapting Sogge's strategy in (Improved critical eigenfunction estimates on manifolds of nonpositive curvature, Preprint). We first combine the improved L 2 restriction estimate of Blair and Sogge (Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint) and the classical improved {L^∞} estimate of Bérard to obtain an improved weak-type L 4 restriction estimate. We then upgrade this weak estimate to a strong one by using the improved Lorentz space estimate of Bak and Seeger (Math Res Lett 18(4):767-781, 2011). This estimate improves the L 4 restriction estimate of Burq et al. (Duke Math J 138:445-486, 2007) and Hu (Forum Math 6:1021-1052, 2009) by a power of {(log logλ)^{-1}} . Moreover, in the case of compact hyperbolic surfaces, we obtain further improvements in terms of {(logλ)^{-1}} by applying the ideas from (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) and (Blair and Sogge, Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint). We are able to compute various constants that appeared in (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) explicitly, by proving detailed oscillatory integral estimates and lifting calculations to the universal cover H^2.
The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry
Gromov, N. A.
2009-05-15
More than forty years ago R.I. Pimenov introduced a new geometry-semi-Riemannian one-as a set of geometrical objects consistent with a fibering pr: M{sub n} {yields} M{sub m}. He suggested the heuristic principle according to which the physically different quantities (meter, second, Coulomb, etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple-fibered semi-Riemannian geometry is the most appropriate one for the treatment of more than three different physical quantities as unified geometrical field theory. Semi-Euclidean geometry {sup 3}R{sub 5}{sup 4} with 1-dimensional fiber x{sup 5} and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry {sup 3}V{sub 5}{sup 4} with the general relativity pseudo-Riemannian space-time {sup 3}V{sub 4}, and 1-dimensional fiber x{sup 5}, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the fifth coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise.
On pseudo-Riemannian manifolds with many Killing spinors
Alekseevsky, D. V.; Cortes, V.
2009-02-02
Let M be a pseudo-Riemannian spin manifold of dimension n and signature s and denote by N the rank of the real spinor bundle. We prove that M is locally homogeneous if it admits more than (3/4)N independent Killing spinors with the same Killing number, unless n {identical_to} 1(mod 4) and s {identical_to} 3(mod 4). We also prove that M is locally homogeneous if it admits k{sub +} independent Killing spinors with Killing number {lambda} and k{sub -} independent Killing spinors with Killing number -{lambda} such that k{sub +}+k{sub -}>(3/2)N, unless n {identical_to} s {identical_to} 3(mod 4). Similarly, a pseudo-Riemannian manifold with more than (3/4)N independent conformal Killing spinors is conformally locally homogeneous. For (positive or negative) definite metrics, the bounds (3/4)N and (3/2)N in the above results can be relaxed to (1/2)N and N, respectively. Furthermore, we prove that a pseudo-Riemannnian spin manifold with more than (3/4)N parallel spinors is flat and that (1/4)N parallel spinors suffice if the metric is definite. Similarly, a Riemannnian spin manifold with more than (3/8)N Killing spinors with the Killing number {lambda}(set-membership sign)R has constant curvature 4{lambda}{sup 2}. For Lorentzian or negative definite metrics the same is true with the bound (1/2)N. Finally, we give a classification of (not necessarily complete) Riemannian manifolds admitting Killing spinors, which provides an inductive construction of such manifolds.
Isometry groups of three-dimensional Riemannian metrics
Bona, C. ); Coll, B. )
1992-01-01
The necessary and sufficient conditions for a three-dimensional Riemannian metric to admit a group {ital G}{sub {ital r}} of isometries acting on {ital s}-dimensional orbits are given. This provides the list of (abstract) groups that can act isometrically and maximally on such metrics. The conditions are expressed in terms of the eigenvalues and eigenvectors of the Ricci tensor. In any case, the order of differentiability of these data necessary to determine the isometry group is less than 4.
Riemannian-geometric entropy for measuring network complexity
NASA Astrophysics Data System (ADS)
Franzosi, Roberto; Felice, Domenico; Mancini, Stefano; Pettini, Marco
2016-06-01
A central issue in the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate with a—in principle, any—network a differentiable object (a Riemannian manifold) whose volume is used to define the entropy. The effectiveness of the latter in measuring network complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale-free networks, as well as of characterizing small exponential random graphs, configuration models, and real networks.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
NASA Astrophysics Data System (ADS)
Biess, Armin; Flash, Tamar; Liebermann, Dario G.
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Stretch fast dynamo mechanism via conformal mapping in Riemannian manifolds
Garcia de Andrade, L. C.
2007-10-15
Two new analytical solutions of the self-induction equation in Riemannian manifolds are presented. The first represents a twisted magnetic flux tube or flux rope in plasma astrophysics, where the rotation of the flow implies that the poloidal field is amplified from toroidal field, in the spirit of dynamo theory. The value of the amplification depends on the Frenet torsion of the magnetic axis of the tube. Actually this result illustrates the Zeldovich stretch, twist, and fold method to generate dynamos from straight and untwisted ropes. Based on the fact that this problem was previously handled, using a Riemannian geometry of twisted magnetic flux ropes [Phys Plasmas 13, 022309 (2006)], investigation of a second dynamo solution, conformally related to the Arnold kinematic fast dynamo, is obtained. In this solution, it is shown that the conformal effect on the fast dynamo metric enhances the Zeldovich stretch, and therefore a new dynamo solution is obtained. When a conformal mapping is performed in an Arnold fast dynamo line element, a uniform stretch is obtained in the original line element.
Fine, Dana S.; Sawin, Stephen
2014-06-15
Following Feynman's prescription for constructing a path integral representation of the propagator of a quantum theory, a short-time approximation to the propagator for imaginary-time, N = 1 supersymmetric quantum mechanics on a compact, even-dimensional Riemannian manifold is constructed. The path integral is interpreted as the limit of products, determined by a partition of a finite time interval, of this approximate propagator. The limit under refinements of the partition is shown to converge uniformly to the heat kernel for the Laplace-de Rham operator on forms. A version of the steepest descent approximation to the path integral is obtained, and shown to give the expected short-time behavior of the supertrace of the heat kernel.
Transport on Riemannian manifold for functional connectivity-based classification.
Ng, Bernard; Dressler, Martin; Varoquaux, Gaël; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand
2014-01-01
We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson's correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing. PMID:25485405
Canonical distributions on Riemannian homogeneous k-symmetric spaces
NASA Astrophysics Data System (ADS)
Balashchenko, Vitaly V.
2015-01-01
It is known that distributions generated by almost product structures are applicable, in particular, to some problems in the theory of Monge-Ampère equations. In this paper, we characterize canonical distributions defined by canonical almost product structures on Riemannian homogeneous k-symmetric spaces in the sense of types AF (anti-foliation), F (foliation), TGF (totally geodesic foliation). Algebraic criteria for all these types on k-symmetric spaces of orders k = 4, 5, 6 were obtained. Note that canonical distributions on homogeneous k-symmetric spaces are closely related to special canonical almost complex structures and f-structures, which were recently applied by I. Khemar to studying elliptic integrable systems.
Pauli paramagnetic gas in the framework of Riemannian geometry.
Kaviani, K; Dalafi-Rezaie, A
1999-10-01
We investigate the thermodynamic curvature resulting from a Riemannian geometry approach to thermodynamics for the Pauli paramagnetic gas which is a system of identical fermions each with spin 1 / 2, and also for classical ideal paramagnetic gas. We find that both the curvature of classical ideal paramagnetic gas and the curvature of the Pauli gas in the classical limit reduce to that of a two-component ideal gas. On the other hand, it is seen straightforwardly that the curvature of classical gas satisfies the geometrical equation exactly. Also a simple relationship between the curvature of Pauli gas and the correlation volume is obtained. We see that it is only in the classical and semiclassical regime that the absolute value of the thermodynamic curvature can be interpreted as a measure of the stability of the system. PMID:11970187
Higher-dimensional Riemannian geometry and quaternion and octonion spaces
Moffat, J.W.
1984-02-01
An eight-dimensional Riemannian geometry is shown to be the basis of a nonsymmetric theory of gravitation. A hyperbolic complex structure is imposed and the group structure is GL(8,R)..-->..GL(4,R)xGL(4,R)containsGL(4,R). Octonion and quaternion division algebras are used to represent geometrical quantities and spinors. A Lagrangian is constructed that is related to supersymmetry and supergravity theories. The group structure for a hyperbolic octonion scheme is GL(8,q/sub H/)..-->..GL(4,O/sub H/)approx. =GL(4,q/sub H/) xGL(4,q/sub H/)containsGL(4,q/sub H/), while a simpler scheme based on hyperbolic quaternions is GL(8,C)..-->..GL(4,q/sub H/)approx. =GL(4,C)xGL(4,C)containsGL(4,C).
[Anomaly Detection of Multivariate Time Series Based on Riemannian Manifolds].
Xu, Yonghong; Hou, Xiaoying; Li Shuting; Cui, Jie
2015-06-01
Multivariate time series problems widely exist in production and life in the society. Anomaly detection has provided people with a lot of valuable information in financial, hydrological, meteorological fields, and the research areas of earthquake, video surveillance, medicine and others. In order to quickly and efficiently find exceptions in time sequence so that it can be presented in front of people in an intuitive way, we in this study combined the Riemannian manifold with statistical process control charts, based on sliding window, with a description of the covariance matrix as the time sequence, to achieve the multivariate time series of anomaly detection and its visualization. We made MA analog data flow and abnormal electrocardiogram data from MIT-BIH as experimental objects, and verified the anomaly detection method. The results showed that the method was reasonable and effective. PMID:26485975
Some Cohomology Classes in Principal Fiber Bundles and Their Application to Riemannian Geometry
Chern, Shiing-Shen; Simons, James
1971-01-01
We define some new global invariants of a fiber bundle with a connection. They are cohomology classes in the principal fiber bundle that are defined when certain characteristic curvature forms vanish. In the case of the principal tangent bundle of a riemannian manifold, they are invariant under a conformal transformation of the metric. They give necessary conditions for conformal immersion of a riemannian manifold in euclidean space. PMID:16591916
Some cohomology classes in principal fiber bundles and their application to riemannian geometry.
Chern, S S; Simons, J
1971-04-01
We define some new global invariants of a fiber bundle with a connection. They are cohomology classes in the principal fiber bundle that are defined when certain characteristic curvature forms vanish. In the case of the principal tangent bundle of a riemannian manifold, they are invariant under a conformal transformation of the metric. They give necessary conditions for conformal immersion of a riemannian manifold in euclidean space. PMID:16591916
Transport on Riemannian Manifold for Connectivity-Based Brain Decoding.
Ng, Bernard; Varoquaux, Gael; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand
2016-01-01
There is a recent interest in using functional magnetic resonance imaging (fMRI) for decoding more naturalistic, cognitive states, in which subjects perform various tasks in a continuous, self-directed manner. In this setting, the set of brain volumes over the entire task duration is usually taken as a single sample with connectivity estimates, such as Pearson's correlation, employed as features. Since covariance matrices live on the positive semidefinite cone, their elements are inherently inter-related. The assumption of uncorrelated features implicit in most classifier learning algorithms is thus violated. Coupled with the usual small sample sizes, the generalizability of the learned classifiers is limited, and the identification of significant brain connections from the classifier weights is nontrivial. In this paper, we present a Riemannian approach for connectivity-based brain decoding. The core idea is to project the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. For this, we propose a matrix whitening transport, and compare it against parallel transport implemented via the Schild's ladder algorithm. To validate our classification approach, we apply it to fMRI data acquired from twenty four subjects during four continuous, self-driven tasks. We show that our approach provides significantly higher classification accuracy than directly using Pearson's correlation and its regularized variants as features. To facilitate result interpretation, we further propose a non-parametric scheme that combines bootstrapping and permutation testing for identifying significantly discriminative brain connections from the classifier weights. Using this scheme, a number of neuro-anatomically meaningful connections are detected, whereas no significant connections are found with pure permutation testing. PMID:26259016
On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity [rapid communication
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
2005-10-01
The necessity of a newly proposed [L.C. Garcia de Andrade, Phys. Rev. D 70 (2004) 64004] non-Riemannian acoustic spacetime structure called acoustic torsion of sound wave equation in fluids with vorticity are discussed. It is shown that this structure, although not always necessary is present in fluids with vorticity even when the perturbation is rotational. This can be done by solving the Bergliaffa et al. [Physica D 191 (2004) 121] gauge invariant equations for sound, superposed to a general background flow, needs to support a non-Riemannian acoustic geometry in effective spacetime. Bergliaffa et al. have previously shown that a Riemannian structure cannot be associated to this gauge invariant general system.
A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation
NASA Astrophysics Data System (ADS)
Piccione, Paolo; Portaluri, Alessandro
We obtain a bifurcation result for solutions of the Lorentz equation in a semi-Riemannian manifold; such solutions are critical points of a certain strongly indefinite functionals defined in terms of the semi-Riemannian metric and the electromagnetic field. The flow of the Jacobi equation along each solution preserves the so-called electromagnetic symplectic form, and the corresponding curve in the symplectic group determines an integer valued homology class called the Maslov index of the solution. We study electromagnetic conjugate instants with symplectic techniques, and we prove at first, an analogous of the semi-Riemannian Morse Index Theorem (see (Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1963)). By using this result, together with recent results on the bifurcation for critical points of strongly indefinite functionals (see (J. Funct. Anal. 162(1) (1999) 52)), we are able to prove that each non-degenerate and non-null electromagnetic conjugate instant along a given solution of the semi-Riemannian Lorentz force equation is a bifurcation point.
The role of curvature and stretching on the existence of fast dynamo plasma in Riemannian space
Garcia de Andrade, L. C.
2008-12-15
Vishik's anti-dynamo theorem is applied to a nonstretched twisted magnetic flux tube in Riemannian space. Marginal or slow dynamos along curved (folded), torsioned (twisted), and nonstretching flux tubes plasma flows are obtained. Riemannian curvature of the twisted magnetic flux tube is computed in terms of the Frenet curvature in the thin tube limit. It is shown that, for nonstretched filaments, fast dynamo action in the diffusive case cannot be obtained, in agreement with Vishik's argument that fast dynamos cannot be obtained in nonstretched flows. Instead of a fast dynamo, a nonuniform stretching slow dynamo is obtained. An example is given, which generalizes plasma dynamo laminar flows, recently presented by Wang et al. [Phys Plasmas 9, 1491 (2002)], in the case of low magnetic Reynolds number Re{sub m}{>=}210. Curved and twisting Riemannian heliotrons, where nondynamo modes are found even when stretching is present, shows that the simple presence of stretching is not enough for the existence of dynamo action. In this paper, folding plays the role of Riemannian curvature and can be used to cancel magnetic fields, not enhancing the dynamo action. Nondynamo modes are found for certain values of torsion, or Frenet curvature (folding) in the spirit of the anti-dynamo theorem. It is also shown that curvature and stretching are fundamental for the existence of fast dynamos in plasmas.
Minimality on biharmonic space-like submanifolds in pseudo-Riemannian space forms
NASA Astrophysics Data System (ADS)
Liu, Jiancheng; Du, Li; Zhang, Juan
2015-06-01
In this paper, we investigate the minimality or the constraint of the mean curvature of three kinds of biharmonic space-like submanifolds in pseudo-Riemannian space forms: (1) pseudo-umbilical ones; (2) the ones with parallel mean curvature vector; (3) with constant mean curvature.
A Riemannian geometry theory of human movement: The geodesic synergy hypothesis.
Neilson, Peter D; Neilson, Megan D; Bye, Robin T
2015-12-01
Mass-inertia loads on muscles change with posture and with changing mechanical interactions between the body and the environment. The nervous system must anticipate changing mass-inertia loads, especially during fast multi-joint coordinated movements. Riemannian geometry provides a mathematical framework for movement planning that takes these inertial interactions into account. To demonstrate this we introduce the controlled (vs. biomechanical) degrees of freedom of the body as the coordinate system for a configuration space with movements represented as trajectories. This space is not Euclidean. It is endowed at each point with a metric equal to the mass-inertia matrix of the body in that configuration. This warps the space to become Riemannian with curvature at each point determined by the differentials of the mass-inertia at that point. This curvature takes nonlinear mass-inertia interactions into account with lengths, velocities, accelerations and directions of movement trajectories all differing from those in Euclidean space. For newcomers to Riemannian geometry we develop the intuitive groundwork for a Riemannian field theory of human movement encompassing the entire body moving in gravity and in mechanical interaction with the environment. In particular we present a geodesic synergy hypothesis concerning planning of multi-joint coordinated movements to achieve goals with minimal muscular effort. PMID:26302481
ERIC Educational Resources Information Center
Further Education Unit, London (England).
This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…
NASA Astrophysics Data System (ADS)
Christoforou, Cleopatra; Slemrod, Marshall
2015-12-01
In this paper, the method of compensated compactness is applied to the problem of isometric immersion of a two-dimensional Riemannian manifold with negative Gauss curvature into three-dimensional Euclidean space. Previous applications of the method to this problem have required decay of order t -4 in the Gauss curvature. Here, we show that the decay of Hong (Commun Anal Geom 1:487-514, 1993) t -2- δ/2 where δ ∈ (0, 4) suffices.
Connections on a non-symmetric (generalized) Riemannian manifold and gravity
NASA Astrophysics Data System (ADS)
Ivanov, Stefan; Zlatanović, Milan
2016-04-01
Connections with (skew-symmetric) torsion on a non-symmetric Riemannian manifold satisfying the Einstein metricity condition (non-symmetric gravitation theory (NGT) with torsion) are considered. It is shown that an almost Hermitian manifold is NGT with torsion if and only if it is a nearly Kähler manifold. In the case of an almost contact metric manifold the NGT with torsion spaces are characterized and a possibly new class of almost contact metric manifolds is extracted. Similar considerations lead to a definition of a particular class of almost para-Hermitian and almost paracontact metric manifolds. Conditions are given in terms of the corresponding Nijenhuis tensors and the exterior derivative of the skew-symmetric part of the non-symmetric Riemannian metric.
Batalin, Igor A.; Bering, Klaus
2009-07-15
We introduce an antisymplectic Dirac operator and antisymplectic gamma matrices. We explore similarities between, on one hand, the Schroedinger-Lichnerowicz formula for spinor bundles in Riemannian spin geometry, which contains a zeroth-order term proportional to the Levi-Civita scalar curvature, and, on the other hand, the nilpotent, Grassmann-odd, second-order {delta} operator in antisymplectic geometry, which, in general, has a zeroth-order term proportional to the odd scalar curvature of an arbitrary antisymplectic and torsion-free connection that is compatible with the measure density. Finally, we discuss the close relationship with the two-loop scalar curvature term in the quantum Hamiltonian for a particle in a curved Riemannian space.
A new way to interpret the DIRAC equation in a non-Riemannian manifold
NASA Technical Reports Server (NTRS)
Marques-Bonham, Sirley
1989-01-01
The idea of internal mass terms introduced in ref. (1), is shown not to be an appropriate hypothesis when it is placed in connection with the components of the generalized (matrix) vierbeins being proportional to the Riemannian (gravitational) vierbeins. It would result in an undesirable canceling of the Electromagnetic and the Yang-Mills components in the generalized metric. Another hypothesis is introduced where the wave function psi is Taylor expanded in a small parameter p.
Monotone Riemannian metrics and dynamic structure factor in condensed matter physics
NASA Astrophysics Data System (ADS)
Tonchev, N. S.
2016-07-01
An analytical approach is developed to the problem of computation of monotone Riemannian metrics (e.g., Bogoliubov-Kubo-Mori, Bures, Chernoff, etc.) on the set of quantum states. The obtained expressions originate from the Morozova, C ̆ encov, and Petz correspondence of monotone metrics to operator monotone functions. The used mathematical technique provides analytical expansions in terms of the thermodynamic mean values of iterated (nested) commutators of a model Hamiltonian T with the operator S involved through the control parameter h. Due to the sum rules for the frequency moments of the dynamic structure factor, new presentations for the monotone Riemannian metrics are obtained. Particularly, relations between any monotone Riemannian metric and the usual thermodynamic susceptibility or the variance of the operator S are discussed. If the symmetry properties of the Hamiltonian are given in terms of generators of some Lie algebra, the obtained expansions may be evaluated in a closed form. These issues are tested on a class of model systems studied in condensed matter physics.
Hauth, J.J.
1962-07-01
A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)
Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group
Ardentov, Andrei A; Sachkov, Yurii L
2011-11-30
On the Engel group a nilpotent sub-Riemannian problem is considered, a 4-dimensional optimal control problem with a 2-dimensional linear control and an integral cost functional. It arises as a nilpotent approximation to nonholonomic systems with 2-dimensional control in a 4-dimensional space (for example, a system describing the navigation of a mobile robot with trailer). A parametrization of extremal trajectories by Jacobi functions is obtained. A discrete symmetry group and its fixed points, which are Maxwell points, are described. An estimate for the cut time (the time of the loss of optimality) on extremal trajectories is derived on this basis. Bibliography: 25 titles.
Nonsmooth ICA contrast minimization using a Riemannian Nelder-Mead method.
Selvan, Suviseshamuthu Easter
2015-01-01
This brief concerns the design and application of a Riemannian Nelder-Mead algorithm to minimize a Hartley-entropybased contrast function to reliably estimate the sources from their mixtures. Despite its nondifferentiability, the contrast function is endowed with attractive properties such as discriminacy, and hence warrants an effort to be effectively handled by a derivative-free optimizer. Aside from tailoring the Nelder-Mead technique to the constraint set, namely, oblique manifold, the source separation results attained in an empirical study with quasi-correlated synthetic signals and digital images are presented, which favor the proposed method on a comparative basis. PMID:25014966
A new approach for magnetic curves in 3D Riemannian manifolds
Bozkurt, Zehra Gök, Ismail Yaylı, Yusuf Ekmekci, F. Nejat
2014-05-15
A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.
A Derivative-Free Riemannian Powell's Method, Minimizing Hartley-Entropy-Based ICA Contrast.
Chattopadhyay, Amit; Selvan, Suviseshamuthu Easter; Amato, Umberto
2016-09-01
Even though the Hartley-entropy-based contrast function guarantees an unmixing local minimum, the reported nonsmooth optimization techniques that minimize this nondifferentiable function encounter computational bottlenecks. Toward this, Powell's derivative-free optimization method has been extended to a Riemannian manifold, namely, oblique manifold, for the recovery of quasi-correlated sources by minimizing this contrast function. The proposed scheme has been demonstrated to converge faster than the related algorithms in the literature, besides the impressive source separation results in simulations involving synthetic sources having finite-support distributions and correlated images. PMID:26292347
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen
2010-02-01
A spatial surface of a pseudo-Riemannian space form is called parallel if its second fundamental form is parallel with respect to the Van der Waerden-Bortolotti connection. It is well known that a surface in a pseudo-Riemannian space form is parallel if and only if it is locally invariant under the reflection with respect to the normal space at each point. Such surfaces are important in geometry as well as in general relativity since the extrinsic invariants of the surfaces do not change from point to point. Recently, parallel spatial surfaces in 4-dimensional Lorentzian space forms were classified by Chen and Van der Veken (2009) [6]. In this article, we completely classify parallel spatial surfaces in pseudo-Riemannian space forms with an arbitrary index and dimensions. As an immediate by-product, we achieve the classification of all spatial surfaces in Lorentzian space forms with arbitrary dimensions.
NASA Astrophysics Data System (ADS)
Walker, D.; Agee, C. B.
1988-03-01
Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.
The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature
NASA Astrophysics Data System (ADS)
Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano
2008-03-01
The harmonic oscillator as a distinguished dynamical system can be defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane, and more generally on any configuration space with constant curvature and metric of any signature, either Riemannian (definite positive) or Lorentzian (indefinite). In this paper we study the main properties of these "curved" harmonic oscillators simultaneously on any such configuration space, using a Cayley-Klein (CK)-type approach, with two free parameters κ1,κ2 which altogether correspond to the possible values for curvature and signature type: the generic Riemannian and Lorentzian spaces of constant curvature (sphere S2, hyperbolic plane H2, AntiDeSitter sphere AdS1+1, and DeSitter sphere dS1+1) appear in this family, with Euclidean and Minkowski spaces as flat particular cases. We solve the equations of motion for the curved harmonic oscillator and obtain explicit expressions for the orbits by using three different methods: by direct integration, by obtaining the general CK version of Binet's equation, and finally as a consequence of its superintegrable character. The orbits are conics with center at the potential origin on any CK space, thereby extending this well known Euclidean property to any constant curvature configuration space. The final part of the article, that has a more geometric character, presents pertinent results of the theory of conics on spaces of constant curvature.
Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering
Wright, Margaret J.; Thompson, Paul M.; Vidal, René
2015-01-01
We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2007-02-06
A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).
Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2015-10-01
We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √{-g} (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies.
Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.; Crooks, Gavin E.
2015-12-01
A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.
Riemannian mean and space-time adaptive processing using projection and inversion algorithms
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Barbaresco, Frédéric
2013-05-01
The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.
Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
Ivanov, A O; Tuzhilin, A A
2001-06-30
It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space.
Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.
2010-02-15
A quantum sl(2,R) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature tensors for these 'deformed' spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z {yields} 0 is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.
NASA Technical Reports Server (NTRS)
Title, A. M.; Gillespie, B. A.; Mosher, J. W.
1982-01-01
A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.
The Geometric Median on Riemannian Manifolds with Application to Robust Atlas Estimation
Fletcher, P. Thomas; Venkatasubramanian, Suresh; Joshi, Sarang
2009-01-01
One of the primary goals of computational anatomy is the statistical analysis of anatomical variability in large populations of images. The study of anatomical shape is inherently related to the construction of transformations of the underlying coordinate space, which map one anatomy to another. It is now well established that representing the geometry of shapes or images in Euclidian spaces undermines our ability to represent natural variability in populations. In our previous work we have extended classical statistical analysis techniques, such as averaging, principal components analysis, and regression, to Riemannian manifolds, which are more appropriate representations for describing anatomical variability. In this paper we extend the notion of robust estimation, a well established and powerful tool in traditional statistical analysis of Euclidian data, to manifold-valued representations of anatomical variability. In particular, we extend the geometric median, a classic robust estimator of centrality for data in Euclidean spaces. We formulate the geometric median of data on a Riemannian manifold as the minimizer of the sum of geodesic distances to the data points. We prove existence and uniqueness of the geometric median on manifolds with non-positive sectional curvature and give sufficient conditions for uniqueness on positively curved manifolds. Generalizing the Weiszfeld procedure for finding the geometric median of Euclidean data, we present an algorithm for computing the geometric median on an arbitrary manifold. We show that this algorithm converges to the unique solution when it exists. In this paper we exemplify the robustness of the estimation technique by applying the procedure to various manifolds commonly used in the analysis of medical images. Using this approach, we also present a robust brain atlas estimation technique based on the geometric median in the space of deformable images. PMID:19056498
Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces
NASA Astrophysics Data System (ADS)
Gichev, V. M.
2013-06-01
Let M=G/H be a compact connected isotropy irreducible Riemannian homogeneous manifold, where G is a compact Lie group (may be, disconnected) acting on M by isometries. This class includes all compact irreducible Riemannian symmetric spaces and, for example, the tori {R }^n/{Z }^n with the natural action on itself extended by the finite group generated by all permutations of the coordinates and inversions in circle factors. We say that u is a polynomial on M if it belongs to some G-invariant finite dimensional subspace {E } of L^2(M). We compute or estimate from above the averages over the unit sphere {S } in {E } for some metric quantities such as Hausdorff measures of level set and norms in L^p(M), 1le ple infty , where M is equipped with the invariant probability measure. For example, the averages over {S } of Vert uVert _{L^p(M)}, pge 2, are less than sqrt{p+1/e} independently of M and {E }.
Goh, Alvina; Lenglet, Christophe; Thompson, Paul M.; Vidal, René
2011-01-01
High angular resolution diffusion imaging (HARDI) has become an important technique for imaging complex oriented structures in the brain and other anatomical tissues. This has motivated the recent development of several methods for computing the orientation probability density function (PDF) at each voxel. However, much less work has been done on developing techniques for filtering, interpolation, averaging and principal geodesic analysis of orientation PDF fields. In this paper, we present a Riemannian framework for performing such operations. The proposed framework does not require that the orientation PDFs be represented by any fixed parameterization, such as a mixture of von Mises-Fisher distributions or a spherical harmonic expansion. Instead, we use a nonparametric representation of the orientation PDF. We exploit the fact that under the square-root re-parameterization, the space of orientation PDFs forms a Riemannian manifold: the positive orthant of the unit Hilbert sphere. We show that various orientation PDF processing operations, such as filtering, interpolation, averaging and principal geodesic analysis, may be posed as optimization problems on the Hilbert sphere, and can be solved using Riemannian gradient descent. We illustrate these concepts with numerous experiments on synthetic, phantom and real datasets. We show their application to studying left/right brain asymmetries. PMID:21292013
Compaction behavior of roller compacted ibuprofen.
Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar
2008-06-01
The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716
Williams, Pharis E.
2007-01-30
Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.
Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.
1995-12-31
With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.
Nonlinear regression on Riemannian manifolds and its applications to Neuro-image analysis ★
Banerjee, Monami; Chakraborty, Rudrasis; Ofori, Edward; Vaillancourt, David
2016-01-01
Regression in its most common form where independent and dependent variables are in ℝn is a ubiquitous tool in Sciences and Engineering. Recent advances in Medical Imaging has lead to a wide spread availability of manifold-valued data leading to problems where the independent variables are manifold-valued and dependent are real-valued or vice-versa. The most common method of regression on a manifold is the geodesic regression, which is the counterpart of linear regression in Euclidean space. Often, the relation between the variables is highly complex, and existing most commonly used geodesic regression can prove to be inaccurate. Thus, it is necessary to resort to a non-linear model for regression. In this work we present a novel Kernel based non-linear regression method when the mapping to be estimated is either from M → ℝn or ℝn → M, where M is a Riemannian manifold. A key advantage of this approach is that there is no requirement for the manifold-valued data to necessarily inherit an ordering from the data in ℝn. We present several synthetic and real data experiments along with comparisons to the state-of-the-art geodesic regression method in literature and thus validating the effectiveness of the proposed algorithm. PMID:27110601
A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero Shapes
Gutman, Boris; Fletcher, Thomas; Cardoso, M. Jorge; Fleishman, Greg; Lorenzi, Marco; Thompson, Paul; Ourselin, Sebastien
2015-01-01
We present a framework for intrinsic comparison of surface metric structures and curvatures. This work parallels the work of Kurtek et al. on parameterization-invariant comparison of genus zero shapes. Here, instead of comparing the embedding of spherically parameterized surfaces in space, we focus on the first fundamental form. To ensure that the distance on spherical metric tensor fields is invariant to parameterization, we apply the conjugation-invariant metric arising from the L2 norm on symmetric positive definite matrices. As a reparameterization changes the metric tensor by a congruent Jacobian transform, this metric perfectly suits our purpose. The result is an intrinsic comparison of shape metric structure that does not depend on the specifics of a spherical mapping. Further, when restricted to tensors of fixed volume form, the manifold of metric tensor fields and its quotient of the group of unitary diffeomorphisms becomes a proper metric manifold that is geodesically complete. Exploiting this fact, and augmenting the metric with analogous metrics on curvatures, we derive a complete Riemannian framework for shape comparison and reconstruction. A by-product of our framework is a near-isometric and curvature-preserving mapping between surfaces. The correspondence is optimized using the fast spherical fluid algorithm. We validate our framework using several subcortical boundary surface models from the ADNI dataset. PMID:26221675
A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero Shapes.
Gutman, Boris A; Fletcher, P Thomas; Cardoso, M Jorge; Fleishman, Greg M; Lorenzi, Marco; Thompson, Paul M; Ourselin, Sebastien
2015-01-01
We present a framework for intrinsic comparison of surface metric structures and curvatures. This work parallels the work of Kurtek et al. on parameterization-invariant comparison of genus zero shapes. Here, instead of comparing the embedding of spherically parameterized surfaces in space, we focus on the first fundamental form. To ensure that the distance on spherical metric tensor fields is invariant to parameterization, we apply the conjugation-invariant metric arising from the L2 norm on symmetric positive definite matrices. As a reparameterization changes the metric tensor by a congruent Jacobian transform, this metric perfectly suits our purpose. The result is an intrinsic comparison of shape metric structure that does not depend on the specifics of a spherical mapping. Further, when restricted to tensors of fixed volume form, the manifold of metric tensor fields and its quotient of the group of unitary diffeomorphisms becomes a proper metric manifold that is geodesically complete. Exploiting this fact, and augmenting the metric with analogous metrics on curvatures, we derive a complete Riemannian framework for shape comparison and reconstruction. A by-product of our framework is a near-isometric and curvature-preserving mapping between surfaces. The correspondence is optimized using the fast spherical fluid algorithm. We validate our framework using several subcortical boundary surface models from the ADNI dataset. PMID:26221675
Thinking Outside the Euclidean Box: Riemannian Geometry and Inter-Temporal Decision-Making.
Mishra, Himanshu; Mishra, Arul
2016-01-01
Inter-temporal decisions involves assigning values to various payoffs occurring at different temporal distances. Past research has used different approaches to study these decisions made by humans and animals. For instance, considering that people discount future payoffs at a constant rate (e.g., exponential discounting) or at variable rate (e.g., hyperbolic discounting). In this research, we question the widely assumed, but seldom questioned, notion across many of the existing approaches that the decision space, where the decision-maker perceives time and monetary payoffs, is a Euclidean space. By relaxing the rigid assumption of Euclidean space, we propose that the decision space is a more flexible Riemannian space of Constant Negative Curvature. We test our proposal by deriving a discount function, which uses the distance in the Negative Curvature space instead of Euclidean temporal distance. The distance function includes both perceived values of time as well as money, unlike past work which has considered just time. By doing so we are able to explain many of the empirical findings in inter-temporal decision-making literature. We provide converging evidence for our proposal by estimating the curvature of the decision space utilizing manifold learning algorithm and showing that the characteristics (i.e., metric properties) of the decision space resembles those of the Negative Curvature space rather than the Euclidean space. We conclude by presenting new theoretical predictions derived from our proposal and implications for how non-normative behavior is defined. PMID:27018787
Thinking Outside the Euclidean Box: Riemannian Geometry and Inter-Temporal Decision-Making
2016-01-01
Inter-temporal decisions involves assigning values to various payoffs occurring at different temporal distances. Past research has used different approaches to study these decisions made by humans and animals. For instance, considering that people discount future payoffs at a constant rate (e.g., exponential discounting) or at variable rate (e.g., hyperbolic discounting). In this research, we question the widely assumed, but seldom questioned, notion across many of the existing approaches that the decision space, where the decision-maker perceives time and monetary payoffs, is a Euclidean space. By relaxing the rigid assumption of Euclidean space, we propose that the decision space is a more flexible Riemannian space of Constant Negative Curvature. We test our proposal by deriving a discount function, which uses the distance in the Negative Curvature space instead of Euclidean temporal distance. The distance function includes both perceived values of time as well as money, unlike past work which has considered just time. By doing so we are able to explain many of the empirical findings in inter-temporal decision-making literature. We provide converging evidence for our proposal by estimating the curvature of the decision space utilizing manifold learning algorithm and showing that the characteristics (i.e., metric properties) of the decision space resembles those of the Negative Curvature space rather than the Euclidean space. We conclude by presenting new theoretical predictions derived from our proposal and implications for how non-normative behavior is defined. PMID:27018787
Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows
Garcia de Andrade, L.C.
2006-02-15
Riemannian geometry of curves applied recently by Ricca [Fluid Dyn. Res 36, 319 (2005)] in the case of inflectional disequilibrium of twisted magnetic flux tubes is used here to compute the magnetic helicity force-free field case. Here the application of Lorentz force-free to the magnetic flux tube in tokamaks allows one to obtain an equation that generalizes the cylindrical tokamak equation by a term that contains the curvature of the magnetic flux tube. Another example of the use of the magnetic flux tube is done by taking the electron magnetohydrodynamics (MHD) fluid model (EMHD) of plasma physics that allows one to compute the velocity of the fluid in helical and almost helical flows in terms of the Frenet torsion of thin magnetic flux tubes. The cases of straight and curved twisted tubes are examined. Second-order effects on the Frenet torsion arise on the poloidal component of the magnetic field, while curvature effects appear in the toroidal component. The magnetic fields are computed in terms of the penetration depth used in superconductors. The ratio between poloidal and toroidal components of the magnetic field depends on the torsion and curvature of the magnetic flux tube. It is shown that the rotation of the almost helical plasma flow contributes to the twist of the magnetic flux tube through the total Frenet torsion along the tube.
A Riemannian framework for matching point clouds represented by the Schrödinger distance transform
Deng, Yan; Rangarajan, Anand; Eisenschenk, Stephan; Vemuri, Baba C.
2015-01-01
In this paper, we cast the problem of point cloud matching as a shape matching problem by transforming each of the given point clouds into a shape representation called the Schrödinger distance transform (SDT) representation. This is achieved by solving a static Schrödinger equation instead of the corresponding static Hamilton-Jacobi equation in this setting. The SDT representation is an analytic expression and following the theoretical physics literature, can be normalized to have unit L2 norm—making it a square-root density, which is identified with a point on a unit Hilbert sphere, whose intrinsic geometry is fully known. The Fisher-Rao metric, a natural metric for the space of densities leads to analytic expressions for the geodesic distance between points on this sphere. In this paper, we use the well known Riemannian framework never before used for point cloud matching, and present a novel matching algorithm. We pose point set matching under rigid and non-rigid transformations in this framework and solve for the transformations using standard nonlinear optimization techniques. Finally, to evaluate the performance of our algorithm—dubbed SDTM—we present several synthetic and real data examples along with extensive comparisons to state-of-the-art techniques. The experiments show that our algorithm outperforms state-of-the-art point set registration algorithms on many quantitative metrics. PMID:25821394
Metric Relativity and the Dynamical Bridge: Highlights of Riemannian Geometry in Physics
NASA Astrophysics Data System (ADS)
Novello, Mario; Bittencourt, Eduardo
2015-12-01
We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research: the Metric Relativity and the Dynamical Bridge. We describe the notion of equivalent (dragged) metric widehat {g}_{μ ν } which is responsible to map the path of any accelerated body in Minkowski space-time onto a geodesic motion in such associated widehat {g} geometry. Only recently, the method introduced by Einstein in general relativity was used beyond the domain of gravitational forces to map arbitrary accelerated bodies submitted to non-Newtonian attractions onto geodesics of a modified geometry. This process has its roots in the very ancient idea to treat any dynamical problem in Classical Mechanics as nothing but a problem of static where all forces acting on a body annihilates themselves including the inertial ones. This general procedure, that concerns arbitrary forces—beyond the uses of General Relativity that is limited only to gravitational processes—is nothing but the relativistic version of the d'Alembert method in classical mechanics and consists in the principle of Metric Relativity. The main difference between gravitational interaction and all other forces concerns the universality of gravity which added to the interpretation of the equivalence principle allows all associated geometries—one for each different body in the case of non-gravitational forces—to be unified into a unique Riemannian space-time structure. The same geometrical description appears for electromagnetic waves in the optical limit within the context of nonlinear theories or material medium. Once it is largely discussed in the literature, the so-called analogue models of gravity, we will dedicate few sections on this emphasizing their relation with the new concepts introduced here. Then, we pass to the description of the Dynamical
NASA Astrophysics Data System (ADS)
German, Brian Joseph
This research develops a technique for the solution of incompressible equivalents to planar steady subsonic potential flows. Riemannian geometric formalism is used to develop a gauge transformation of the length measure followed by a curvilinear coordinate transformation to map the given subsonic flow into a canonical Laplacian flow with the same boundary conditions. The effect of the transformation is to distort both the immersed profile shape and the domain interior nonuniformly as a function of local flow properties. The method represents the full nonlinear generalization of the classical methods of Prandtl-Glauert and Karman-Tsien. Unlike the classical methods which are "corrections," this method gives exact results in the sense that the inverse mapping produces the subsonic full potential solution over the original airfoil, up to numerical accuracy. The motivation for this research was provided by an observed analogy between linear potential flow and the special theory of relativity that emerges from the invariance of the d'Alembert wave equation under Lorentz transformations. This analogy is well known in an operational sense, being leveraged widely in linear unsteady aerodynamics and acoustics, stemming largely from the work of Kussner. Whereas elements of the special theory can be invoked for compressibility effects that are linear and global in nature, the question posed in this work was whether other mathematical techniques from the realm of relativity theory could be used to similar advantage for effects that are nonlinear and local. This line of thought led to a transformation leveraging Riemannian geometric methods common to the general theory of relativity. A gauge transformation is used to geometrize compressibility through the metric tensor of the underlying space to produce an equivalent incompressible flow that lives not on a plane but on a curved surface. In this sense, forces owing to compressibility can be ascribed to the geometry of space in
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3
NASA Astrophysics Data System (ADS)
Congedo, Marco; Barachant, Alexandre
2015-01-01
Currently the Riemannian geometry of symmetric positive definite (SPD) matrices is gaining momentum as a powerful tool in a wide range of engineering applications such as image, radar and biomedical data signal processing. If the data is not natively represented in the form of SPD matrices, typically we may summarize them in such form by estimating covariance matrices of the data. However once we manipulate such covariance matrices on the Riemannian manifold we lose the representation in the original data space. For instance, we can evaluate the geometric mean of a set of covariance matrices, but not the geometric mean of the data generating the covariance matrices, the space of interest in which the geometric mean can be interpreted. As a consequence, Riemannian information geometry is often perceived by non-experts as a "black-box" tool and this perception prevents a wider adoption in the scientific community. Hereby we show that we can overcome this limitation by constructing a special form of SPD matrix embedding both the covariance structure of the data and the data itself. Incidentally, whenever the original data can be represented in the form of a generic data matrix (not even square), this special SPD matrix enables an exhaustive and unique description of the data up to second-order statistics. This is achieved embedding the covariance structure of both the rows and columns of the data matrix, allowing naturally a wide range of possible applications and bringing us over and above just an interpretability issue. We demonstrate the method by manipulating satellite images (pansharpening) and event-related potentials (ERPs) of an electroencephalography brain-computer interface (BCI) study. The first example illustrates the effect of moving along geodesics in the original data space and the second provides a novel estimation of ERP average (geometric mean), showing that, in contrast to the usual arithmetic mean, this estimation is robust to outliers. In
The index theory on non-compact manifolds with proper group action
NASA Astrophysics Data System (ADS)
Braverman, Maxim
2015-12-01
We construct a regularized index of a generalized Dirac operator on a complete Riemannian manifold endowed with a proper action of a unimodular Lie group. We show that the index is preserved by a certain class of non-compact cobordisms and prove a gluing formula for the regularized index. The results of this paper generalize our previous construction of index for compact group action and the recent paper of Hochs and Mathai who studied the case of a Hamiltonian action on a symplectic manifold. As an application of the cobordism invariance of the index we give an affirmative answer to a question of Hochs and Mathai about the independence of the Hochs-Mathai quantization of the metric, connection and other choices.
Higher spin approaches to quantum field theory and (psuedo)-Riemannian geometries
NASA Astrophysics Data System (ADS)
Hallowell, Karl Evan
In this thesis, we study a number of higher spin quantum field theories and some of their algebraic and geometric consequences. These theories apply mostly either over constant curvature or more generally symmetric pseudo-Riemannian manifolds. The first part of this dissertation covers a superalgebra coming from a family of particle models over symmetric spaces. These theories are novel in that the symmetries of the (super)algebra osp( Q|2p) are larger and more elaborate than traditional symmetries. We construct useful (super)algebras related to and generalizing old work by Lichnerowicz and describe their role in developing the geometry of massless models with osp(Q|2 p) symmetry. The result is two practical applications of these (super)algebras: (1) a lunch more concise description of a family of higher spin quantum field theories; and (2) an interesting algebraic probe of underlying background geometries. We also consider massive models over constant curvature spaces. We use a radial dimensional reduction process which converts massless models into massive ones over a lower dimensional space. In our case, we take from the family of theories above the particular free, massless model over flat space associated with sp(2, R ) and derive a massive model. In the process, we develop a novel associative algebra, which is a deformation of the original differential operator algebra associated with the sp(2, R ) model. This algebra is interesting in its own right since its operators realize the representation structure of the sp(2, R ) group. The massive model also has implications for a sequence of unusual, "partially massless" theories. The derivation illuminates how reduced degrees of freedom become manifest in these particular models. Finally, we study a Yang-Mills model using an on-shell Poincare Yang-Mills twist of the Maxwell complex along with a non-minimal coupling. This is a special, higher spin case of a quantum field theory called a Yang-Mills detour complex
White, M D; Bissiere, S; Alvarez, Y D; Plachta, N
2016-01-01
Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854
González-Pérez, Alfredo
2014-01-01
In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152
Compaction Behavior of Isomalt after Roll Compaction
Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter
2012-01-01
The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366
Compaction behavior of isomalt after roll compaction.
Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter
2012-01-01
The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366
NASA Astrophysics Data System (ADS)
McLenaghan, Raymond G.; Smirnov, Roman G.; The, Dennis
2004-03-01
We develop a new approach to the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvature that is ideologically close to the classical theory of invariants. The main idea, which provides the foundation of the new approach, is to treat a Killing tensor as an algebraic object determined by a set of parameters of the corresponding vector space of Killing tensors under the action of the isometry group. The spaces of group invariants and conformal group invariants of valence two Killing tensors defined in the Minkowski plane are described. The group invariants, which are the generators of the space of invariants, are applied to the problem of classification of orthogonally separable Hamiltonian systems defined in the Minkowski plane. Transformation formulas to separable coordinates expressed in terms of the parameters of the corresponding space of Killing tensors are presented. The results are applied to the problem of orthogonal separability of the Drach superintegrable potentials.
Compact negatively curved manifolds (of dim [unk] 3,4) are topologically rigid
Farrell, F. T.; Jones, L. E.
1989-01-01
Let M be a complete (connected) Riemannian manifold having finite volume and whose sectional curvatures lie in the interval [c1, c2] with -∞ < c1[unk]c2 < 0. Then any proper homotopy equivalence h:N → M from a topological manifold N is properly homotopic to a homeomorphism, provided the dimension of M is >5. In particular, if M and N are both compact (connected) negatively curved Riemannian manifolds with isomorphic fundamental groups, then M and N are homeomorphic provided dim M [unk] 3 and 4. {If both are locally symmetric, this is a consequence of Mostow's rigidity theorem [Mostow, G. D. (1967) Publ. Inst. Haut. Etud. Sci. 34, 53-104].} When M has infinite volume we can still calculate the surgery L-groups of π1M, even when dim M = 3, 4, or 5, provided M is locally symmetric. An identification of the weak homotopy type of the homeomorphism group of (finite volume) M is also made through a stable range. We have previously announced these results for the special case that c1 = c2 = -1. PMID:16594041
ACOUSTIC COMPACTION LAYER DETECTION
Technology Transfer Automated Retrieval System (TEKTRAN)
The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...
Dynamical compactness and sensitivity
NASA Astrophysics Data System (ADS)
Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua
2016-05-01
To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.
Stabilization of compactible waste
Franz, E.M.; Heiser, J.H. III; Colombo, P.
1990-09-01
This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.
Compaction properties of isomalt.
Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C
2009-08-01
Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398
Griffiths, Stewart
2003-09-30
The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.
NASA Astrophysics Data System (ADS)
Tolos, Laura; Schaffner-Bielich, Jürgen
2015-12-01
We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .
Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.
2009-11-15
For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.
COMPACT SCHOOL AND $$ SAVINGS.
ERIC Educational Resources Information Center
BAIR, W.G.
A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…
Compact optical transconductance varistor
Sampayan, Stephen
2015-09-22
A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.
Limestone compaction: an enigma
Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.
1977-01-01
Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.
Progress in Compact Toroid Experiments
Dolan, Thomas James
2002-09-01
The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
Compact waveguide splitter networks.
Qian, Yusheng; Song, Jiguo; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P
2008-03-31
We demonstrate compact waveguide splitter networks in siliconon- insulator (SOI) rib waveguides using trench-based splitters (TBSs) and bends (TBBs). Rather than a 90 degrees geometry, we use 105 degrees TBSs to facilitate reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting when filled with SU8. Three dimensional (3D) finite difference time domain (FDTD) simulation is used for splitter and bend design. Measured TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 105 degrees 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs) are demonstrated. The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 microm x 1600 microm for an output waveguide spacing of 50 microm. PMID:18542598
NASA Technical Reports Server (NTRS)
Gupta, A.; Hong, S.; Moacanin, J.
1981-01-01
Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metalized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient "thermal lens" that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.
Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.
1978-01-01
There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.
Kays, W.M.; London, A.L.
1984-01-01
This third edition is an update of the second edition published in 1964. New data and more modern theoretical solutions for flow in the simple geometries are included, although this edition does not differ radically from the second edition. It contains basic test data for eleven new surface configurations, including some of the very compact ceramic matrices. Al dimensions are given in both the English and the Systeme International (SI) system of units.
Granule consolidation during compaction.
Rubinstein, M H
1976-03-01
The deformation of small cylindrical aggregates of dibasic calcium phosphate was measured during compaction. An analogy between these aggregates and cylindrical granules was proposed. No change in the original shape of the aggregates occurred; the cylindrical shape was maintained even at high compaction pressures. Relaxation of the aggregates occurred at pressures higher than 420 MNm-2 (60.9 x 10(3) lb in.-2) when removed from the compacts, but no relaxation took place at pressures below this value. In addition, the aggregates relaxed by an increase in thickness only; there was no corresponding change in diameter. Up to a pressure of 200 MNm-2 (29.0 x 10(3) lb in.-2), an increase in aggregate diameter occurred, which was accompanied by a reduction in thickness. This change produced only a small reduction in volume, which was attributable to interparticulate slippage resulting in a closer packed arrangement. At a pressure of 200 MNm-2, the aggregate diameter no longer increased because solid bridges were formed between the particles and the die wall, preventing further spreading. From 200 to 420 MNm-2, failure of the material occurred by plastic deformation, which produced only a decrease in aggregate thickness. From 420 to 800 MNm-2 (116.0 x 10(3) lb in.-2), a structure was formed that could support the applied load without further reduction of thickness, and this structure was shown to behave elastically. PMID:1263085
Compact laser amplifier system
Carr, R.B.
1974-02-26
A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)
Photometry of compact galaxies.
NASA Technical Reports Server (NTRS)
Shen, B. S. P.; Usher, P. D.; Barrett, J. W.
1972-01-01
Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.
NASA Astrophysics Data System (ADS)
Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.
2016-07-01
In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.
Kurennoy, S S; O' Hara, J F; Rybarcyk, L J
2008-01-01
We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.
Compact multiframe blind deconvolution.
Hope, Douglas A; Jefferies, Stuart M
2011-03-15
We describe a multiframe blind deconvolution (MFBD) algorithm that uses spectral ratios (the ratio of the Fourier spectra of two data frames) to model the inherent temporal signatures encoded by the observed images. In addition, by focusing on the separation of the object spectrum and system transfer functions only at spatial frequencies where the measured signal is above the noise level, we significantly reduce the number of unknowns to be determined. This "compact" MFBD yields high-quality restorations in a much shorter time than is achieved with MFBD algorithms that do not model the temporal signatures; it may also provide higher-fidelity solutions. PMID:21403711
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.
Bobo, Gerald E.
1977-01-01
This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.
Compaction of Titanium Powders
Stephen J. Gerdemann; Paul D. Jablonski
2010-11-01
Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.
Compact electrostatic comb actuator
Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.
2000-01-01
A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).
METHOD OF FORMING ELONGATED COMPACTS
Larson, H.F.
1959-05-01
A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)
Multipurpose Compact Spectrometric Unit
Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan
2009-11-09
A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.
Compact vacuum insulation embodiments
Benson, D.K.; Potter, T.F.
1992-04-28
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.
Benson, D.K.; Potter, T.F.
1993-01-05
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Benson, David K.; Potter, Thomas F.
1993-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Compact vacuum insulation embodiments
Benson, David K.; Potter, Thomas F.
1992-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Bennett, Gloria A.
1992-01-01
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.
NASA Astrophysics Data System (ADS)
Pospisil, M.; Pospisilova, L.
1982-09-01
The power deliverable by a compact solar Space Power Station (SPS) is a function of its outer surface shape. Methods of fitting the power delivery curve of such a system to different patterns of daily power demand are considered that involve the appropriate choice of the number of satellites, their maximal power, height to width ratio and the shift of longitude with respect to the receiving station. Changes in the daily delivery curve can be made by altering the longitudes and orientations of the satellites. Certain limitations to the choice of parameters exist, such as: the height to width ratio should be near 1.2, and the sum of longitude and orientation changes will probably not be greater than 50 deg. The optimization of the peak to average power ratio is also discussed.
Bennett, G.A.
1992-11-24
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.
NASA Technical Reports Server (NTRS)
Wiker, G. A.; Mann, W. A. (Inventor)
1979-01-01
A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.
Bennett, G.A.
1991-12-31
This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.
NASA Astrophysics Data System (ADS)
Baird, Brian Walter
1997-09-01
This dissertation presents theoretical analysis and experimental investigation of a compact ultraviolet laser, comprising an unstable resonator semiconductor (URSL) laser-pumped potassium titanyl phosphate (KTP) periodically segmented waveguide (PSW) laser. A comprehensive survey of existing short wavelength visible and near ultraviolet laser technologies suitable for the development of compact ultraviolet lasers is presented. This survey establishes the suitability of a diode-pumped KTP PSW laser as an attractive approach for developing a compact ultraviolet laser. Requirements for an efficient diode-pumped KTP PSW laser are given, leading to the selection of a frequency-stabilized URSL and hydrothermal KTP PSWs as the component technologies to be developed and integrated. Since the design requirements for the URSL and KTP PSW are critically dependent on a thorough understanding of the spatial mode properties of KTP PSWs, analyses and modeling of the spatial mode properties of these devices is presented using effective index method (EIM) and beam propagation method (BPM) models. In addition, a new expression for the normalized conversion efficiency is presented which explicitly incorporates the dependence of this important parameter on the lateral variation of the refractive index and d coefficient. To assess the theoretical performance of an URSL-pumped KTP PSW, the BPM model was extended to incorporate second harmonic generation. This represents an important contribution to the development of numerical methods for modeling nonlinear waveguides, in general, and provides important information on the cooperative effects of diffraction and spatial mode beating on the SHG output from KTP PSWs. Extensive optical characterization of NUV SHG in hydrothermal KTP PSWs using an argon-ion laser-pumped Ti:Sapphire laser as the infrared laser pump source is presented. Spectral characterization, spatial mode characterization, and the temperature dependence of the QPM
Compost improves compacted urban soil
Technology Transfer Automated Retrieval System (TEKTRAN)
Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...
ERIC Educational Resources Information Center
Wasescha, Anna
2016-01-01
To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…
A Compact Ring Design with Tunable Momentum Compaction
Sun, Y.; /SLAC
2012-05-17
A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.
NASA Technical Reports Server (NTRS)
Foster, John E. (Inventor)
2004-01-01
A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.
Benson, David K.; Potter, Thomas F.
1992-01-01
Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.
Benson, D.K.; Potter, T.F.
1992-10-27
Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.
Leung, Ka-Ngo; Lou, Tak Pui
2005-03-22
A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.
NASA Astrophysics Data System (ADS)
Ruzmaikin, Alexander; Moynihan, Philip I.; Vaughan, Arthur H.; Cacciani, Alessandro
1998-11-01
We designed a low-cost flight instrument that images the full solar disk through two narrow band filters at the red nd blue 'wings' of the solar potassium absorption line. The images are produced on a 1024 X 1024 charge-coupled device with a resolution of 2 arcsec per pixel. Four filtergrams taken in a very short time at both wings in the left and right states of circular polarization are used to yield a Dopplergram and a magnetogram simultaneously. The noise-equivalent velocity associated with each pixel is less than 3 m/s. The measured signal is linearly proportional to the velocity in the range +/- 4000 m/s. The range of magnetic fields is from 3 to 3000 Gauss. The optical system of the instrument is simple and easily aligned. With a pixel size of 12 micrometers , the effective focal length is 126 cm. A Raleigh resolution limit of 4 arcsec is achieved with a 5-cm entrance apertures, providing an f/25 focal ratio. The foreoptic is a two-component telephoto lens serving to limit the overall optical length to 89 cm or less. The mass of the instrument is 14 kg. the power required is less than 30 Watts. The Compact Doppler Magnetograph can be used in space mission with severe mass and power requirements. It can also be effectively used for ground-based observations: large telescope, dome or other observatory facilities are not required.
Compact Dexterous Robotic Hand
NASA Technical Reports Server (NTRS)
Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)
2001-01-01
A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.
Compaction managed mirror bend achromat
Douglas, David
2005-10-18
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Compact, Reliable EEPROM Controller
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2010-01-01
A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault
Flairty, C. )
1991-10-01
The EPRI Compact Substation Project (a HVDC Converter Station) was developed, designed, and constructed per EPRI Agreement RP213. In December 1983, the converter station operated at its rating (100 MW power transmission and 300 kV dc bias plus 100 kV operating voltage). From January to May 1984, the converter station operated at various power transmission levels. Operation was intermittent due to a randomly occurring voltage breakdown. The voltage breakdown was isolated to the steel tanks containing the thyristor valves in an SF{sub 6} environment. The type of insulators stressed within the valve tanks were: (1) the epoxy cone shape insulators providing an interface to the bus entering the valve tank; (2) epoxy fiberglass hydraulic columns for the flow of the R113 refrigerant to and from the thyristor valves; and (3) the epoxy fiberglass support columns supporting the thyristor valves from the floor of the valve tank. The cause of the randomly occurring breakdown was investigated and determined to be the epoxy fiberglass support columns. The random dielectric breakdowns were due to excessive voltage gradients existing at the epoxy fiberglass support columns. This probably was caused by the misplacement of an internal insert within the column with respect to an external shield on the column. The cost and time to retrofit the support columns outweighed the benefits expected from resuming the project. Consequently, work was terminated and the equipment disassembled. Examination of the epoxy fiberglass support columns revealed several arcing tracks along the inside surface confirming the earlier hypothesis. 53 figs., 32 tabs.
NASA Astrophysics Data System (ADS)
Teare, S. W.
2003-05-01
Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.
Compact Holographic Data Storage
NASA Technical Reports Server (NTRS)
Chao, T. H.; Reyes, G. F.; Zhou, H.
2001-01-01
NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.
What Is Business's Social Compact?
ERIC Educational Resources Information Center
Avishai, Bernard
1994-01-01
Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)
A Compact Beam Measurement Setup
NASA Astrophysics Data System (ADS)
Graf, Urs U.
2016-03-01
We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.
An isolated compact galaxy triplet
NASA Astrophysics Data System (ADS)
Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting
2016-05-01
We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.
A compact rotary vane attenuator
NASA Technical Reports Server (NTRS)
Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.
1969-01-01
Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.
A Compact Beam Measurement Setup
NASA Astrophysics Data System (ADS)
Graf, Urs U.
2016-08-01
We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.
MESOSCALE SIMULATIONS OF POWDER COMPACTION
Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin
2009-12-28
Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.
Mesoscale Simulations of Powder Compaction
NASA Astrophysics Data System (ADS)
Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin
2009-12-01
Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.
NASA Technical Reports Server (NTRS)
Hemmati, H.
1988-01-01
Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.
Compact boson stars in K field theories
NASA Astrophysics Data System (ADS)
Adam, C.; Grandi, N.; Klimas, P.; Sánchez-Guillén, J.; Wereszczyński, A.
2010-11-01
We study a scalar field theory with a non-standard kinetic term minimally coupled to gravity. We establish the existence of compact boson stars, that is, static solutions with compact support of the full system with self-gravitation taken into account. Concretely, there exist two types of solutions, namely compact balls on the one hand, and compact shells on the other hand. The compact balls have a naked singularity at the center. The inner boundary of the compact shells is singular, as well, but it is, at the same time, a Killing horizon. These singular, compact shells therefore resemble black holes.
Modelling of compaction in planetesimals
NASA Astrophysics Data System (ADS)
Neumann, Wladimir; Breuer, Doris; Spohn, Tilman
2014-07-01
Aims: Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On the one hand, compaction decreases the porosity resulting in a reduction of the radius and on the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and thus in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modelled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ≈650 K and 700 K. This approach neglects the dependence of compaction on stress and other factors such as matrix grain size and creep activation energy. In the present study, we compare this parametrised method with a self-consistent calculation of porosity loss via a creep related approach. Methods: We use our thermal evolution model from previous studies to model compaction of an initially porous body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centred cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modelled by simply reducing the initial porosity linearly to zero between 650 K and 700 K. As we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. Results: For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrised approach. Depending on the radius, the initial grain size, the
Blue ellipticals in compact groups
NASA Technical Reports Server (NTRS)
Zepf, Stephen E.; Whitmore, Bradley C.
1990-01-01
By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.
Viral RNAs Are Unusually Compact
Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.
2014-01-01
A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030
Compaction Behavior of Granular Materials
NASA Astrophysics Data System (ADS)
Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.
1996-03-01
We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W.
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
VARIABLE MOMENTUM COMPACTION LATTICE STUDIES.
KRAMER,S.; MURPHY,J.B.
1999-03-29
The VUV storage ring at the National Synchrotron Light Source was used to study the impact of changes in the momentum compaction factors over a large range from positive to negative values. Changes in bunch length and synchrotron tune were measured versus current and RF parameters for these different lattices. By controlling both the first and second-order momentum compaction factors, a lattice was developed in which a pair of alpha buckets was created within the energy aperture of the vacuum chamber and beam was stored simultaneously in both buckets.
Compact monolithic capacitive discharge unit
Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.
2007-06-26
A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.
Modeling of compact loop antennas
Baity, F.W.
1987-01-01
A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
Modeling of compact loop antennas
NASA Astrophysics Data System (ADS)
Baity, F. W.
A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).
Modeling of compact loop antennas
NASA Astrophysics Data System (ADS)
Baity, F. W.
1987-09-01
A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).
Compact intermediates in RNA folding
Woodson, S.A.
2011-12-14
Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.
75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... of the Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S..., FBI Compact Officer, Compact Council Office, Module D3, 1000 Custer Hollow Road, Clarksburg,...
Compact Circuit Preprocesses Accelerometer Output
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.
Generalized high order compact methods.
Spotz, William F.; Kominiarczuk, Jakub
2010-09-01
The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.
The Compact Project: Final Report.
ERIC Educational Resources Information Center
National Alliance of Business, Inc., Washington, DC.
The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…
Mesoscale Simulations of Power Compaction
Lomov, I; Fujino, D; Antoun, T; Liu, B
2009-08-06
Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.
Mesoscale simulations of powder compaction
NASA Astrophysics Data System (ADS)
Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin
2009-06-01
Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.
Compact color schlieren optical system
NASA Technical Reports Server (NTRS)
Buchele, Donald R.; Griffin, Devon W.
1993-01-01
A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements.
Compact CFB: The next generation CFB boiler
Utt, J.
1996-12-31
The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.
Compaction in the Bushveld Complex
NASA Astrophysics Data System (ADS)
Boorman, S.; Boudreau, A.
2003-12-01
Compaction in the mush zone of a crystallizing chamber is a model for fractionation, whereby evolved interstitial liquid expelled from the compacting crystal pile is returned to the magma chamber. If compaction was important during crystallization of the Lower and Critical Zones of the Bushveld Complex, certain textural features are expected; and, these features should correlate to position in the section, as well as to the number of mineral phases present. We report on a spectrum of textural data for 30 samples form the Lower and Critical Zones of the Bushveld Complex. Crystal Size Distributions (CSDs) are a semi-log plot of population density against crystal size, and provide information about magmatic processes such as crystal accumulation, removal and aging. Changes to the magmatic system are reflected in the shape of the CSD plot. CSDs of Bushveld rocks show a log-linear trend overturned at smaller grain sizes, a result consistent with both crystal aging, wherein larger grains grow at the expense of small ones in the crystallizing pile, and melt migration, where nucleation is suppressed by the loss of late melt fractions. CSD slope and intercept data vary with stratigraphy. Slopes in the Critical Zone are steeper, indicating less recrystallization and less of a compaction effect. In contrast, slopes in the Lower Zone are shallower, a result consistent with slower cooling and a greater compaction/recrystallization effect. Likewise, lower CSD intercepts are associated with the shallower slopes of the lower zone and vice versa. The extent of foliation is measured as alignment factor (AF), determined by orientation statistics of the major axes of the grains of interest. AF decreases with stratigraphic height and foliation is best developed in the nearly monomineralic harzburgite of the Lower Zone (AF avg=64). At the Lower Zone-Critical Zone transition, plagioclase content increases, decreasing bulk density and thus, the systems ability to accommodate compaction
Powder compaction in systems of bimodal distribution
NASA Technical Reports Server (NTRS)
Chattopadhyay, A. K.; Whittemore, O. J., Jr.
1973-01-01
The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.
Rapid compaction during RNA folding
NASA Astrophysics Data System (ADS)
Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois
2002-04-01
We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.
Nuclear Physics for Compact Stars
Baldo, M.
2009-05-04
A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.
Compact magnetic energy storage module
Prueitt, Melvin L.
1994-01-01
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.
Compact planar microwave blocking filters
NASA Technical Reports Server (NTRS)
U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)
2012-01-01
A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.
Compact portable diffraction moire interferometer
Deason, V.A.; Ward, M.B.
1988-05-23
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.
Compact portable diffraction moire interferometer
Deason, Vance A.; Ward, Michael B.
1989-01-01
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.
Compact magnetic energy storage module
Prueitt, M.L.
1994-12-20
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.
Compact color schlieren optical system.
Buchele, D R; Griffin, D W
1993-08-01
A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements. PMID:20830072
Compact Color Schlieren Optical System
NASA Technical Reports Server (NTRS)
Buchele, Donald R.; Griffin, Devon W.
1996-01-01
Compact, rugged optical system developed for use in rainbow schlieren deflectometry. Features unobscured telescope with focal-length/aperture-width ratio of 30. Made of carefully selected but relatively inexpensive parts. All of lenses stock items. By-product of design is optical system with loose tolerances on interlens spacing. One of resulting advantages, insensitivity to errors in fabrication of optomechanical mounts. Another advantage is ability to compensate for some of unit-to-unit variations inherent in stock lenses.
Compact Stellarator Path to DEMO
NASA Astrophysics Data System (ADS)
Lyon, J. F.
2007-11-01
Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.
Compaction Waves in Granular HMX
E. Kober; R. Menikoff
1999-01-01
Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.
Thixoforming of Stellite Powder Compacts
NASA Astrophysics Data System (ADS)
Hogg, S. C.; Atkinson, H. V.; Kapranos, P.
2007-04-01
Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340°C-1350°C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.
Label transfer by measuring compactness.
Varga, Robert; Nedevschi, Sergiu
2013-12-01
This paper presents a new automatic image annotation algorithm. First, we introduce a new similarity measure between images: compactness. This uses low level visual descriptors for determining the similarity between two images. Compactness shows how close test image features lie to training image feature cluster centers. The measure provides the core for a k-nearest neighbor type image annotation method. Afterward, a formalism for defining different transfer techniques is devised and several label transfer techniques are provided. The method as whole is evaluated on four image annotation benchmarks. The results on these sets validate the accuracy of the approach, which outperforms many state-of-the-art annotation methods. The method presented here requires a simple training process, efficiently combines different feature types and performs better than complex learning algorithms, even in this incipient form. The main contributions of this paper are the usage of compactness as a similarity measure that enables efficient low level feature comparison and an annotation algorithm based on label transfer. PMID:23955754
Thixoforming of Stellite Powder Compacts
Hogg, S. C.; Atkinson, H. V.; Kapranos, P.
2007-04-07
Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.
Strings in compact cosmological spaces
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Konechny, Anatoly
2013-10-01
We confront the problem of giving a fundamental definition to perturbative string theory in spacetimes with totally compact space (taken to be a torus for simplicity, though the nature of the problem is very general) and non-compact time. Due to backreaction induced by the presence of even a single string quantum, the usual formulation of perturbative string theory in a fixed classical background is infrared-divergent at all subleading orders in the string coupling, and needs to be amended. The problem can be seen as a closed string analogue of D0-brane recoil under an impact by closed strings (a situation displaying extremely similar infrared divergences). Inspired by the collective coordinate treatment of the D0-brane recoil, whereby the translational modes of the D0-brane are introduced as explicit dynamical variables in the path integral, we construct a similar formalism for the case of string-induced gravitational backreaction, in which the spatially uniform modes of the background fields on the compact space are quantized explicitly. The formalism can equally well be seen as an ultraviolet completion of a minisuperspace quantum cosmology with string degrees of freedom. We consider the amplitudes for the universe to have two cross-sections with specified spatial properties and string contents, and show (at the first non-trivial order) that they are finite within our formalism.
Permeability of compacting porous lavas
NASA Astrophysics Data System (ADS)
Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.
2015-03-01
The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Experimental compact space power station
NASA Astrophysics Data System (ADS)
Pospisil, M.; Pospisilova, L.; Hanzelka, Z.; Prochazka, M.
1980-09-01
A hexagonal structure of 1-km diameter and a weight of 500 metric tons situated at geosynchronous orbit is proposed for testing a space power station of 64 MW peak power in operation and for evaluating materials, means and methods needed for production of large stations. In this compact space power station, solar blankets and microwave sources are situated on one supporting structure, thus saving a lot of auxiliary parts, but the exploitation of solar elements is 3.3 times lower than for an earlier concept.
Shock compaction of molybdenum powder
NASA Technical Reports Server (NTRS)
Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.
1983-01-01
Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.
Simplified compact containment BWR plant
Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.
2004-07-01
The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA
Aminsobhani, Mohsen; Ghorbanzadeh, Abdollah; Sharifian, Mohammad Reza; Namjou, Sara; Kharazifard, Mohamad Javad
2015-01-01
Objectives: The aim of this study was to introduce modified continuous wave compaction (MCWC) technique and compare its obturation quality with that of lateral compaction (LC), warm vertical compaction (WVC) and continuous wave compaction techniques (CWC). The obturation time was also compared among the four techniques. Materials and Methods: Sixty-four single-rooted teeth with 0–5° root canal curve and 64 artificially created root canals with 15° curves in acrylic blocks were evaluated. The teeth and acrylic specimens were each divided into four subgroups of 16 for testing the obturation quality of four techniques namely LC, WVC, CWC and MCWC. Canals were prepared using the Mtwo rotary system and filled with respect to their group allocation. Obturation time was recorded. On digital radiographs, the ratio of area of voids to the total area of filled canals was calculated using the Image J software. Adaptation of the filling materials to the canal walls was assessed at three cross-sections under a stereomicroscope (X30). Data were statistically analyzed using ANOVA, Tukey’s post hoc HSD test, the Kruskal Wallis test and t-test. Results: No significant difference existed in adaptation of filling materials to canal walls among the four subgroups in teeth samples (P ≥ 0.139); but, in artificially created canals in acrylic blocks, the frequency of areas not adapted to the canal walls was significantly higher in LC technique compared to MCWC (P ≤ 0.02). The void areas were significantly more in the LC technique than in other techniques in teeth (P < 0.001). The longest obturation time belonged to WVC technique followed by LC, CW and MCWC techniques (P<0.05). The difference between the artificially created canals in blocks and teeth regarding the obturation time was not significant (P = 0.41). Conclusion: Within the limitations of this in vitro study, MCWC technique resulted in better adaptation of gutta-percha to canal walls than LC at all cross-sections with
Compact objects in Horndeski gravity
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele
2016-04-01
Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.
Two Piece Compaction Die Design
Coffey, Ethan N
2010-03-01
Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the
New charged anisotropic compact models
NASA Astrophysics Data System (ADS)
Kileba Matondo, D.; Maharaj, S. D.
2016-07-01
We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.
Compact Radiometers Expand Climate Knowledge
NASA Technical Reports Server (NTRS)
2010-01-01
To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.
The Planck Compact Source Catalogues
NASA Astrophysics Data System (ADS)
Lopez-Caniego, Marcos
2015-12-01
The Second Planck Catalogue of Compact Sources is a catalogue of sources observed over the entire sky at nine different frequencies between 30 and 857 GHz. It consists of Galactic and extragalactic objects detected in the Planck single-frequency full mission total intensity maps. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two sub·catalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The PCCS2 covers most of the sky and can be used to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The PCCS2E contains sources located in certain regions where the complex background makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels.
Durham, W.B.; McKinnon, W.B.; Stern, L.A.
2005-01-01
Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.
Hydrostatic compaction of Microtherm HT.
Broome, Scott Thomas; Bauer, Stephen J.
2010-09-01
Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.
High flux compact neutron generators
Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.
2001-06-15
Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.
Incompletely compacted equilibrated ordinary chondrites
Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.
2010-01-22
We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.
Compacted carbon for electrochemical cells
Greinke, R.A.; Lewis, I.C.
1997-10-14
This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.
NASA Astrophysics Data System (ADS)
Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez
2015-03-01
The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.
Compacted carbon for electrochemical cells
Greinke, Ronald Alfred; Lewis, Irwin Charles
1997-01-01
This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.
Compact Microscope Imaging System Developed
NASA Technical Reports Server (NTRS)
McDowell, Mark
2001-01-01
The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.
Structural properties of compact groups
NASA Technical Reports Server (NTRS)
De Carvalho, R. R.; Ribeiro, A. L. B.; Zepf, Stephen E.
1994-01-01
We report the results of a systematic study of galaxies in the regions of Hickson compact groups. Our sample is composed of the 22 Hickson groups which are located in the southern hemisphere and have cz less than 9000 km/s. Making use of digitized images of IIIa-J plates that cover an area of 0.5 x 0.5 deg around each group, we were able to detect and classify images down to a magnitude limit of 19.5 in the B band. This limit is typically three magnitudes fainter than previous studies. Most groups show a statistically significant excess of fainter galaxies compared to the background. These fainter galaxies typically have a somewhat more extended spatial distribution than the brighter galaxies originally classified by Hickson. Our data suggest that Hickson groups have a wide range in density and radius, ranging from very compact structures with overdensities of the order of 10(exp 2) and crossing times of roughly 0.01 H(sub 0 sup -1), to much more diffuse structures, similar to loose groups, with overdensities of about 3 and crossing times of roughly 0.5 H(sub 0 sup -1).
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki Y.
2008-02-01
High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.
Suzuki, Hiroyuki Y.
2008-02-15
High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.
Brittle and compaction creep in porous sandstone
NASA Astrophysics Data System (ADS)
Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip
2015-04-01
Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate
Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module
2010-10-01
BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.
Combined method of compaction of collapsible soils
Bagdasarov, Yu.A.
1994-07-01
The writer proposes a combined method of compaction of collapsible soils. He presents results of investigations carried out to study compacted zones of pads punched (tamped-out) by rammers 10 and 20 tons in mass, as well as a comparative analysis of the pads over against compacted zones obtained by means of plane rammers. The analysis results are illustrated by the {open_quotes}arch effect{close_quotes} on the stress conditions of the soaked soil mass.
Method for preparing porous metal hydride compacts
Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.
1980-01-21
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Method for preparing porous metal hydride compacts
Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving
1981-01-01
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Baryon currents in QCD with compact dimensions
Lucini, B.; Patella, A.; Pica, C.
2007-06-15
On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Chromosome Compaction by Active Loop Extrusion.
Goloborodko, Anton; Marko, John F; Mirny, Leonid A
2016-05-24
During cell division, chromosomes are compacted in length by more than a 100-fold. A wide range of experiments demonstrated that in their compacted state, mammalian chromosomes form arrays of closely stacked consecutive ∼100 kb loops. The mechanism underlying the active process of chromosome compaction into a stack of loops is unknown. Here we test the hypothesis that chromosomes are compacted by enzymatic machines that actively extrude chromatin loops. When such loop-extruding factors (LEF) bind to chromosomes, they progressively bridge sites that are further away along the chromosome, thus extruding a loop. We demonstrate that collective action of LEFs leads to formation of a dynamic array of consecutive loops. Simulations and an analytically solved model identify two distinct steady states: a sparse state, where loops are highly dynamic but provide little compaction; and a dense state, where there are more stable loops and dramatic chromosome compaction. We find that human chromosomes operate at the border of the dense steady state. Our analysis also shows how the macroscopic characteristics of the loop array are determined by the microscopic properties of LEFs and their abundance. When the number of LEFs are used that match experimentally based estimates, the model can quantitatively reproduce the average loop length, the degree of compaction, and the general loop-array morphology of compact human chromosomes. Our study demonstrates that efficient chromosome compaction can be achieved solely by an active loop-extrusion process. PMID:27224481
76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting Notice. SUMMARY: The purpose of... Justice Information Services Division, Federal Bureau of Investigation. BILLING CODE......
75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, Justice. ACTION: Meeting notice. SUMMARY: The... of Investigation. BILLING CODE 4410-02-M...
Compact Sources of Ultrashort Pulses
NASA Astrophysics Data System (ADS)
Duling, Irl N., III
2006-11-01
List of contributors; Acronyms and abbreviations; Preface; 1. Short pulse generation H. A. Haus; 2. Passive modelocking in solid state lasers Thomas Brabec, Stephen M. J. Kelly and Ferenc Krausz; 3. Compact modelocked solid state lasers pumped by laser diodes John R. M. Barr; 4. Modelocking of all-fiber lasers Irl N. Duling, III and Michael L. Dennis; 5. Nonlinear polarization evolution in passively modelocked fiber lasers Martin E. Fermann; 6. Ultrafast vertical cavity semiconductor lasers Wenbin Jiang and John Bowers; 7. High power ultrafast semiconductor for injection diode lasers Peter J. Delfyett; 8. The hybrid soliton pulse source Paul A. Morton; 9. Monolithic colliding pulse modelocked diode lasers Ming C. Wu and Young-Kai Chen; Index.
NASA Astrophysics Data System (ADS)
Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.; Fojtík, P.; Hýža, M.; HÅ¯lka, J.; Jílek, K.; Stoček, P.; Veselý, J.; Busto, J.
2015-08-01
Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m3/h of purified air (air radon activity at the output ˜10mBq/m3). The basic features and preliminary results of anti-radon device testing are presented.
Anisotropic models for compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Dayanandan, Baiju
2015-05-01
In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor with the help of both metric potentials and . Here we consider the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model.
Saloplastics: processing compact polyelectrolyte complexes.
Schaaf, Pierre; Schlenoff, Joseph B
2015-04-17
Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented. PMID:25771881
Cowder, L.R.; Klosterbuer, S.F.; Augustson, R.H.; Esmailpour, A.; Hawkins, R.; Kuhn, E.
1984-05-01
Los Alamos National Laboratory has designed, built, and is currently testing a compact K-edge densitometer for use by International Atomic Energy Agency (IAEA) inspectors. The unit, which can easily be moved from one location to another within a facility, is positioned outside a glovebox with the body of the instrument inserted into the glove. A fixture inside the glovebox fits around the body and positions a sample holder. A hand-held high-purity germanium detector powered by a battery pack and a Davidson portable multichannel analyzer (MCA) is used to measure the transmission through plutonium nitrate solutions at E/sub Y/ = 121.1 and 122.2 keV. The Davidson MCA is programmed to lead the user through the measurement procedure and perform all the data analyses. The instrument is currently installed at the Safeguards Analytical Laboratory, where IAEA personnel are evaluating its accuracy, ease of operation, and safety. 5 references, 5 figures, 5 tables.
A Compact Wakefield Measurement Facility
NASA Astrophysics Data System (ADS)
Power, J. G.; Gai, W.
2015-10-01
The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.
Power burner for compact furnace
Dilmore, J.A.
1980-09-23
A compact gas power burner is provided which includes a cylindrical mixing tube into which combustion air is discharged tangentially from a centrifugal blower located adjacent the closed end of the mixing tube, and gaseous fuel is admitted into the discharge airstream of the blower upstream from the admission location of the airstream into the mixing tube so that the swirling component of the air in the mixing tube during its passage to the open end of the tube will promote the mixing of the air and gaseous fuel, the mixing tube being provided with a honeycomb ceramic disc at its end to which it is attached to a cylindrical heat exchanger, and ignition means and flame sensors are provided on the downstream side of the ceramic disc.
Compact Microwave Fourier Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
Compact Quantum Cascade Laser Transmitter
Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.
2009-04-01
): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.
Studies of accelerated compact toruses
Hartman, C.W.; Eddleman, J.; Hammer, J.H.
1983-01-04
In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.
Experimental studies of compact toroids
Not Available
1991-01-01
The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.
Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.
2015-08-17
Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.
NASA Astrophysics Data System (ADS)
Pati, Bhabana; Park, Eric D.; Stebbins, Kenneth
2016-03-01
A compact laser producing green wavelength with a volume of < 8 cm3 and a weight of < 80 g finds its application in many fields from military to space based. We built a small solid-state laser that produces 1 mJ of energy per-pulse at a 1 - 20 Hz repetition rate. The laser is passively Q-switched using a Cr4+:YAG saturable absorber to generate pulses <10 ns. A nonlinear crystal doubles the frequency to generate light at 523 nm. The laser is side-pumped by a single bar diode laser using a unique pump cavity to homogenize the pump intensity in the laser rod. The laser components can easily be modified to change the output wavelength from UV to mid IR.
General Relativity&Compact Stars
Glendenning, Norman K.
2005-08-16
Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.
77 FR 20051 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of... notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S. Barron at......
78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, DOJ. ACTION: Meeting notice. SUMMARY: The purpose... Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S.......
Compact Process Development at Babcock & Wilcox
Eric Shaber; Jeffrey Phillips
2012-03-01
Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.
The Compact Route from Boston to London.
ERIC Educational Resources Information Center
Wright, Brian
1988-01-01
The author describes the development and implementation of a business/secondary school compact in East London, based on the original Boston Compact. This cooperative relationship helps disadvantaged students attain employability skills and work experience, while employers gain a trained labor force for their entry-level jobs. (CH)
Compaction within the South Belridge diatomite
Chase C.A. Jr.; Dietrich, J.K. )
1989-11-01
Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).
Physics of compact ignition tokamak designs
Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.
1986-03-01
Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.
NASA Astrophysics Data System (ADS)
Doikou, Anastasia; Ioannidou, Theodora
2011-04-01
A non-compact version of the Weyl equation is proposed, based on the infinite dimensional spin zero representation of the mathfrak{s}{mathfrak{l}_2} algebra. Solutions of the aforementioned equation are obtained in terms of the Kummer functions. In this context, we discuss the ADHMN approach in order to construct the corresponding non-compact BPS monopoles.
Strength of field compacted clayey embankments
NASA Astrophysics Data System (ADS)
Liang, Y.; Lovell, C. W.
1982-02-01
The shearing behavior of a plastic Indiana clay (St. Croix) was studied for both laboratory and field compaction. This interim report deals with the field compacted phase. The strength tests were performed by unconsolidated undrained (UU) and saturated consolidated undrained (CIU) triaxials. These were run at various confining pressures to approximate the end of construction and long term conditions at several embankment depths.
Secondary structures in long compact polymers
NASA Astrophysics Data System (ADS)
Oberdorf, Richard; Ferguson, Allison; Jacobsen, Jesper L.; Kondev, Jané
2006-11-01
Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte Carlo algorithm that uniformly samples compact polymer configurations in an efficient manner, allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self-averaging in the long-chain limit and strictly less than 1. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure.
Secondary structures in long compact polymers.
Oberdorf, Richard; Ferguson, Allison; Jacobsen, Jesper L; Kondev, Jané
2006-11-01
Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte Carlo algorithm that uniformly samples compact polymer configurations in an efficient manner, allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self-averaging in the long-chain limit and strictly less than 1. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure. PMID:17279930
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Hadžović, Ervina; Betz, Gabriele; Hadžidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans
2011-09-15
Roller compaction is a dry granulation method which results in tablets with inferior tensile strength comparing to direct compaction. The effect of roller compaction on compressibility and compactibility of tablets prepared from Theophylline anhydrate powder, Theophylline anhydrate fine powder and Theophylline monohydrate was investigated by measuring tensile strength of tablets as well as calculating compressibility and compactibility parameters by Leuenberger equation. The tablets under the same conditions were prepared by direct compaction and roller compaction. The binary mixtures of Theophylline anhydrate powder, Theophylline anhydrate fine powder, Theophylline monohydrate and microcrystalline cellulose were prepared in order to determine the optimal ratio of active material and excipients which delivers a sufficient mechanical strength of tablets. Tensile strength of MCC tablets and compactibility parameters calculated by Leuenberger equation after roller compaction was significantly decreased, while THAP, THAFP and THMO tablets showed only a minor reduction in compactibility and compressibility. Adding MCC to a mixture with Theophylline showed that the right choice and ratio of excipients can enable a sufficient mechanical strength of the tablets after roller compaction. PMID:21704142
Compact drilling and sample system
NASA Technical Reports Server (NTRS)
Gillis-Smith, Greg R.; Petercsak, Doug
1998-01-01
The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.
Compact, harmonic multiplying gyrotron amplifiers
Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.
1995-12-31
A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.