Science.gov

Sample records for 7-tesla magnetic resonance

  1. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  2. Human cardiac 31P magnetic resonance spectroscopy at 7 tesla

    PubMed Central

    Rodgers, Christopher T; Clarke, William T; Snyder, Carl; Vaughan, J Thomas; Neubauer, Stefan; Robson, Matthew D

    2014-01-01

    Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24006267

  3. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation.

    PubMed

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan; Francis, Susan T; McGlone, Francis

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. PMID:27154626

  4. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation

    PubMed Central

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit’s receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12812.001 PMID:27154626

  5. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  6. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip

    NASA Astrophysics Data System (ADS)

    Ipek, Ö.; Raaijmakers, A. J. E.; Klomp, D. W. J.; Lagendijk, J. J. W.; Luijten, P. R.; van den Berg, C. A. T.

    2012-01-01

    Ultra-high field magnetic resonance (⩾7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B+1, local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B+1 and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR10g avg/(B+1)2 ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.

  7. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip.

    PubMed

    Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T

    2012-01-21

    Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable. PMID:22170777

  8. Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla

    PubMed Central

    2013-01-01

    Background Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV. Methods Nine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2x1.2x6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2x1.2x6) mm3 and (1.3x1.3x4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views. Results All scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3x1.3x4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3x1.3x4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2±9.3ml) and to FGRE at 7T with voxel size (1.2x1.2x6) mm3 (mean difference of RVEDV 9.3±8.6ml). Conclusions FGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard. PMID:23497030

  9. Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism.

    PubMed

    van den Bogaard, Simon J A; Dumas, Eve M; Teeuwisse, Wouter M; Kan, Hermien E; Webb, Andrew; Roos, Raymund A C; van der Grond, Jeroen

    2011-12-01

    Huntington's disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes. PMID:21614431

  10. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes.

    PubMed

    Reddig, Annika; Fatahi, Mahsa; Friebe, Björn; Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  11. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  12. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field

    PubMed Central

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653

  13. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  14. Superconducting Magnets for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Feenan, Peter

    2000-03-01

    MRI is now a well established diagnostic technique in medicine. The richness of information provided by magnetic resonance gives rise to a variety of techniques which in turn leads to a variety of magnet designs. Magnet designers must consider suitable superconduting materials for the magnet, but need also to consider the overall fomat of the magnet to maximise patient comfort, access for clinicians and convenience of use - in some examples magnets are destined for use within the operating theatre and special considerations are required for this. Magnet types include; (1) low-field general purpose imagers, (2) extremity imaging, (3) open magnets with exellent all-round access often employing iron or permanent magnetic materials, (4) high-field magnets, and (5) very high-field (7 Tesla and more) magnets for spectroscopy and functional imaging research. Examples of these magnet varieties will be shown and some of the design challenges discussed.

  15. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia.

    PubMed

    Rommer, Paulus S; Wiest, Gerald; Kronnerwetter, Claudia; Zach, Heidemarie; Loader, Benjamin; Elwischger, Kirsten; Trattnig, Siegfried

    2015-01-01

    Vestibular parxoysmia (VP) is a rare vestibular disorder. A neurovascular cross-compression (NVCC) between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. An NVCC can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI), and whether high field MRI may help to differentiate symptomatic from asymptomatic subjects. 7 Tesla MRI was performed in six patients with VP and confirmed NVCC seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic NVCC and that the symptoms of VP are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with VP has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders. PMID:26106306

  16. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia

    PubMed Central

    Rommer, Paulus S.; Wiest, Gerald; Kronnerwetter, Claudia; Zach, Heidemarie; Loader, Benjamin; Elwischger, Kirsten; Trattnig, Siegfried

    2015-01-01

    Vestibular parxoysmia (VP) is a rare vestibular disorder. A neurovascular cross-compression (NVCC) between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. An NVCC can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI), and whether high field MRI may help to differentiate symptomatic from asymptomatic subjects. 7 Tesla MRI was performed in six patients with VP and confirmed NVCC seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic NVCC and that the symptoms of VP are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with VP has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders. PMID:26106306

  17. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla

    PubMed Central

    Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These

  18. Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke

    PubMed Central

    Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

    2014-01-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

  19. Preattentive mechanisms of change detection in early auditory cortex: a 7 Tesla fMRI study.

    PubMed

    Szycik, G R; Stadler, J; Brechmann, A; Münte, T F

    2013-12-01

    The auditory system continuously monitors the environment for irregularities in an automatic, preattentive fashion. This is presumably accomplished by two mechanisms: a sensory mechanism detects a deviant sound on the basis of differential refractoriness of neural populations sensitive to the standard and deviant sounds, whereas the cognitive mechanism reveals deviance by comparing incoming auditory information with a template derived from previous input. Using fast event-related high-resolution functional magnetic resonance imaging at 7 Tesla we show that both mechanisms can be mapped to different parts of the auditory cortex both at the group level and the single-subject level. The sensory mechanism is supported by primary auditory areas in Heschl's gyrus whereas the cognitive mechanism is implemented in more anterior secondary auditory areas. Both mechanisms are equally engaged by simple sine-wave tones and speech-related phonemes indicating that streams of speech and non-speech stimuli are processed in a similar fashion. PMID:23994180

  20. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  1. Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution 7 Tesla MRA Images.

    PubMed

    Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan

    2016-01-01

    We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia. PMID:26571526

  2. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  3. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  4. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-04-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  5. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    PubMed Central

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  6. Gradient-based Magnetic Resonance Electrical Properties Imaging of Brain Tissues

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2015-01-01

    Electrical properties tomography (EPT) holds promise for noninvasively mapping at high spatial resolution the electrical conductivity and permittivity of biological tissues in vivo using a magnetic resonance imaging (MRI) scanner. In the present study, we developed a novel gradient-based EPT approach with greatly improved tissue boundary reconstruction and largely elevated robustness against measurement noise compared to existing techniques. Using a 7 Tesla MRI system, we report high-quality in vivo human brain electrical property images with refined structural details, which can potentially merit clinical diagnosis (such as cancer detection) and high-field MRI applications (local SAR quantification) in the future. PMID:25571378

  7. In vivo 7 Tesla imaging of the dentate granule cell layer in Schizophrenia

    PubMed Central

    Kirov, Ivan I.; Hardy, Caitlin J.; Matsuda, Kant; Messinger, Julie; Cankurtaran, Ceylan Z.; Warren, Melina; Wiggins, Graham C.; Perry, Nissa N.; Babb, James S.; Goetz, Raymond R.; George, Ajax; Malaspina, Dolores; Gonen, Oded

    2013-01-01

    PURPOSE The hippocampus is central to the pathophysiology of schizophrenia. Histology shows abnormalities in the dentate granule cell layer (DGCL), but its small size (~100 micron thickness) has precluded in vivo human studies. We used ultra high field magnetic resonance imaging (MRI) to compare DGCL morphology of schizophrenic patients to matched controls’. METHOD Bilateral hippocampi of 16 schizophrenia patients (10 male) 40.7±10.6 years old (mean ±standard deviation) were imaged at 7 Tesla MRI with heavily T2*-weighted gradient-echo sequence at 232 micron in-plane resolution (0.08 μL image voxels). Fifteen matched controls (8 male, 35.6±9.4 years old) and one ex vivo post mortem hippocampus (that also underwent histopathology) were scanned with same protocol. Three blinded neuroradiologists rated each DGCL on a qualitative scale of 1 to 6 (from “not discernible” to “easily visible, appearing dark gray or black”) and mean left and right DGCL scores were compared using a non-parametric Mann-Whitney test. RESULTS MRI identification of the DGCL was validated with histopathology. Mean right and left DGCL ratings in patients (3.2±1.0 and 3.5±1.2) were not statistically different from controls’ (3.9±1.1 and 3.8±0.8), but patients’ had a trend for lower right DGCL score (p=0.07), which was significantly associated with patient diagnosis (p=0.05). The optimal 48% sensitivity and 80% specificity for schizophrenia was achieved with a DGCL rating of ≤2. CONCLUSION Decreased contrast in the right DGCL in schizophrenia was predictive of schizophrenia diagnosis. Better utility of this metric as a schizophrenia biomarker may be achieved in future studies of patients with homogeneous disease subtypes and progression rates. PMID:23664589

  8. The Interventional Loopless Antenna at 7 Tesla

    PubMed Central

    Ertürk, Mehmet Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2012-01-01

    The loopless antenna MRI detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at sub-millimeter diameters for inteventional use in guidewires, catheters or needles. Prior work up to 4.7T suggests a near-quadratic gain in signal-to-noise ratio (SNR) with field strength, and safe operation at 3T. Here for the first time, the SNR performance and RF safety of the loopless antenna is investigated both theoretically, using the electro-magnetic method-of-moments, and experimentally in a standard 7T human scanner. The results are compared with equivalent 3T devices. An absolute SNR gain of 5.7±1.5-fold was realized at 7T vs. 3T: more than 20-fold higher than at 1.5T. The effective field-of-view (FOV) area also increased approximately 10-fold compared to 3T. Testing in a saline gel phantom suggested safe operation is possible with maximum local 1-g average specific absorption rates of <12W/kg and temperature increases of <1.9°C, normalized to a 4W/kg RF field exposure at 7T. The antenna did not affect the power applied to the scanner's transmit coil. The SNR gain enabled MRI microscopy at 40-50μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-FOV or endoscopic MRI for targeted intervention in focal disease. PMID:22161992

  9. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  10. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  11. In vivo magnetic resonance imaging at 11.7 Tesla visualized the effects of neonatal transection of infraorbital nerve upon primary and secondary trigeminal pathways in rats.

    PubMed

    Ooi, Yasuhiro; Inui-Yamamoto, Chizuko; Suzuki, Takashi; Nakadate, Hiromichi; Nagase, Yoshitaka; Seiyama, Akitoshi; Yoshioka, Yoshichika; Seki, Junji

    2014-09-01

    Using 11.7T ultra high-field T2-weighted MRI, the present study aimed to investigate pathological changes of primary and secondary trigeminal pathways following neonatal transection of infraorbital nerve in rats. The trigeminal pathways consist of spinal trigeminal tract, trigeminal sensory nuclear complex, medial lemniscus, ventromedial portion of external medullary lamina and ventral posterior nucleus of thalamus. By selecting optimum parameters of MRI such as repetition time, echo time, and slice orientation, this study visualized the trigeminal pathways in rats without any contrast agents. Pathological changes due to the nerve transection were found at 8 weeks of age as a marked reduction of the areas of the trigeminal pathways connecting from the injured nerve. In addition, T2-weighted MR images of the trigeminal nerve trunk and the spinal trigeminal tract suggest a communication of CSF through the trigeminal nerve between the inside and outside of the brain stem. These results support the utility of ultra high-field MRI system for noninvasive assessment of effects of trigeminal nerve injury upon the trigeminal pathways. PMID:25038563

  12. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    PubMed

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657

  13. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    PubMed Central

    Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657

  14. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie.

    PubMed

    Hanke, Michael; Baumgartner, Florian J; Ibe, Pierre; Kaule, Falko R; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset - 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film ("Forrest Gump"). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures - from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  15. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  16. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  17. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  18. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  19. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  20. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. PMID:27378060

  1. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Tilted Microstrip Phased Arrays With Improved Electromagnetic Decoupling for Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B.; Zhang, Xiaoliang

    2014-01-01

    Abstract One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T. PMID:25526481

  3. [Magnetic resonance, an introduction].

    PubMed

    Cabrera Rueda, D J; Fernández Herrerías, G

    2000-09-01

    What would you explain to a patient if he/she had to undergo a magnetic resonance imagery session? Do you know if a person wearing a pacemaker can undergo an MRI? These and many other questions are answered in the following article since magnetic resonance imagery is a very useful diagnostic medium; however, it is one which not everyone has been able to get to know and use. The authors shed light on this diagnostic technique for nurses starting with its physical foundations; since knowing these aids professionals to correctly plan our treatments and improves the attention provided to patients who undergo this test. The authors also list the specific components in this device, the possible biological effects, the detractions and some basic recommendations. PMID:11111673

  4. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  5. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  6. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  7. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  8. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  9. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  10. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  11. Cranial magnetic resonance imaging

    SciTech Connect

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes.

  12. Magnetic Resonance Imaging Duodenoscope.

    PubMed

    Syms, Richard R A; Young, Ian R; Wadsworth, Christopher A; Taylor-Robinson, Simon D; Rea, Marc

    2013-12-01

    A side-viewing duodenoscope capable of both optical and magnetic resonance imaging (MRI) is described. The instrument is constructed from MR-compatible materials and combines a coherent fiber bundle for optical imaging, an irrigation channel and a side-opening biopsy channel for the passage of catheter tools with a tip saddle coil for radio-frequency signal reception. The receiver coil is magnetically coupled to an internal pickup coil to provide intrinsic safety. Impedance matching is achieved using a mechanically variable mutual inductance, and active decoupling by PIN-diode switching. (1)H MRI of phantoms and ex vivo porcine liver specimens was carried out at 1.5 T. An MRI field-of-view appropriate for use during endoscopic retrograde cholangiopancreatography (ERCP) was obtained, with limited artefacts, and a signal-to-noise ratio advantage over a surface array coil was demonstrated. PMID:23807423

  13. Magnetic Resonance Elastography

    PubMed Central

    Litwiller, Daniel V.; Mariappan, Yogesh K.; Ehman, Richard L.

    2015-01-01

    Often compared to the practice of manual palpation, magnetic resonance elastography is an emerging technology for quantitatively assessing the mechanical properties of tissue as a basis for characterizing disease. The potential of MRE as a diagnostic tool is rooted in the fact that normal and diseased tissues often differ significantly in terms of their intrinsic mechanical properties. MRE uses magnetic resonance imaging (MRI) in conjunction with the application of mechanical shear waves to probe tissue mechanics. This process can be broken down into three essential steps: inducing shear waves in the tissue,imaging the propagating shear waves with MRI, andanalyzing the wave data to generate quantitative images of tissue stiffness MRE has emerged as a safe, reliable and noninvasive method for staging hepatic liver fibrosis, and is now used in some locations as an alternative to biopsy. MRE is also being used in the ongoing investigations of numerous other organs and tissues, including, for example, the spleen, kidney, pancreas, brain, heart, breast, skeletal muscle, prostate, vasculature, lung, spinal cord, eye, bone, and cartilage. In the article that follows, some fundamental techniques and applications of MRE are summarized. PMID:26361467

  14. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality. PMID:2640910

  15. Virtual magnetic resonance colonography

    PubMed Central

    Debatin, J; Lauenstein, T

    2003-01-01

    Colorectal cancer screening has vast potential. Beyond considerations for cost and diagnostic accuracy, the effectiveness of any colorectal screening strategy will be dependent on the degree of patient acceptance. Magnetic resonance (MR) colonography has been shown to be accurate regarding the detection of clinically relevant colonic polyps exceeding 10 mm in size, with reported sensitivity and specificity values exceeding 95%. To further increase patient acceptance, strategies for fecal tagging have recently been developed. By modulating the signal of fecal material to be identical to the signal characteristics of the enema applied to distend the colon, fecal tagging in conjunction with MR colonography obviates the need for bowel cleansing. The review will describe the techniques underlying MR colonography and describe early clinical experience with fecal tagging techniques. PMID:12746264

  16. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  17. In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a

    PubMed Central

    Ramamonjisoa, Nirilanto; Ratiney, Helene; Mutel, Elodie; Guillou, Herve; Mithieux, Gilles; Pilleul, Frank; Rajas, Fabienne; Beuf, Olivier; Cavassila, Sophie

    2013-01-01

    The assessment of liver lipid content and composition is needed in preclinical research to investigate steatosis and steatosis-related disorders. The purpose of this study was to quantify in vivo hepatic fatty acid content and composition using a method based on short echo time proton magnetic resonance spectroscopy (MRS) at 7 Tesla. A mouse model of glycogen storage disease type 1a with inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc−/−) mice and control mice were fed a standard diet or a high-fat/high-sucrose (HF/HS) diet for 9 months. In control mice, hepatic lipid content was found significantly higher with the HF/HS diet than with the standard diet. As expected, hepatic lipid content was already elevated in L-G6pc−/− mice fed a standard diet compared with control mice. L-G6pc−/− mice rapidly developed steatosis which was not modified by the HF/HS diet. On the standard diet, estimated amplitudes from olefinic protons were found significantly higher in L-G6pc−/− mice compared with that in control mice. L-G6pc−/− mice showed no noticeable polyunsaturation from diallylic protons. Total unsaturated fatty acid indexes measured by gas chromatography were in agreement with MRS measurements. These results showed the great potential of high magnetic field MRS to follow the diet impact and lipid alterations in mouse liver. PMID:23596325

  18. Simultaneous bilateral hip joint imaging at 7 Tesla using fast transmit B₁ shimming methods and multichannel transmission - a feasibility study.

    PubMed

    Ellermann, J; Goerke, U; Morgan, P; Ugurbil, K; Tian, J; Schmitter, S; Vaughan, T; Van De Moortele, P-F

    2012-10-01

    The objective of this study was to demonstrate the feasibility of simultaneous bilateral hip imaging at 7 Tesla. Hip joint MRI becomes clinically critical since recent advances have made hip arthroscopy an efficacious approach to treat a variety of early hip diseases. The success of these treatments requires a reliable and accurate diagnosis of intraarticular abnormalities at an early stage. Articular cartilage assessment is especially important to guide surgical decisions but is difficult to achieve with current MR methods. Because of gains in tissue contrast and spatial resolution reported at ultra high magnetic fields, there are strong expectations that imaging the hip joint at 7 Tesla will improve diagnostic accuracy. Furthermore, there is growing evidence that the majority of these hip abnormalities occur bilaterally, emphasizing the need for bilateral imaging. However, obtaining high quality images in the human torso, in particular of both hips simultaneously, must overcome a major challenge arising from the damped traveling wave behaviour of RF waves at 7 Tesla that leads to severe inhomogeneities in transmit B1 (B(1) (+) ) phase and magnitude, typically resulting in areas of low signal and contrast, and consequently impairing use for clinical applications. To overcome this problem, a 16-channel stripline transceiver RF coil was used, together with a B1 shimming algorithm aiming at maximizing B(1) (+) in six regions of interest over the hips that were identified on axial scout images. Our successful results demonstrate that this approach effectively reduces inhomogeneities observed before B1 shimming and provides high joint tissue contrast in both hips while reducing the required RF power. Critical to this success was a fast small flip angle B(1) (+) calibration scan that permitted the computation of subject-specific B1 shimming solutions, a necessary step to account for large spatial variations in B(1) (+) phase observed in different subjects. PMID:22311346

  19. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  20. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  1. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  2. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  3. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  4. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  5. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  6. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  7. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  8. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  9. Simple RF design for human functional and morphological cardiac imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Versluis, M. J.; Tsekos, N.; Smith, N. B.; Webb, A. G.

    2009-09-01

    Morphological and functional cardiac MRI can potentially benefit greatly from the recent advent of commercial high-field (7 tesla and above) MRI systems. However, conventional hardware configurations at lower field using a body-coil for homogeneous transmission are not available at these field strengths. Sophisticated multiple-transmit-channel systems have been shown to be able to image the human heart at 7 tesla but such systems are currently not widely available. In this paper, we empirically optimize the design of a simple quadrature coil for cardiac imaging at 7 tesla. The size, geometry, and position have been chosen to produce a B1 field with no tissue-induced signal voids within the heart. Standard navigator echoes for gating were adapted for operation at the heart/lung interface, directly along the head-foot direction. Using this setup, conventional and high-resolution cine functional imaging have been successfully performed, as has morphological imaging of the right coronary artery.

  10. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  11. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  12. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  13. Nuclear magnetic resonance spectroscopy

    SciTech Connect

    Harris, R.K.

    1986-01-01

    NMR is remarkable in the number of innovations that have appeared and become established within the past five years. This thoroughly up-to-date account of the field explains fundamentals and applications of the NMR phenomenon from the viewpoint of a physical chemist. Beginning with descriptions of basic concepts involved in continuous wave operation, the book goes on to cover spectral analysis, relaxation phenomena, the effects of pulses, the Fourier transform model, double resonance and the effects of chemical exchange and quadrupolar interactions. The book also includes the new techniques for work on solids and for complicated pulse sequences, plus abundant figures and illustrative spectra.

  14. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  15. Dose-related cerebellar abnormality in rats with prenatal exposure to X-irradiation by magnetic resonance imaging volumetric analysis.

    PubMed

    Sawada, Kazuhiko; Saito, Shigeyoshi; Horiuchi-Hirose, Miwa; Mori, Yuki; Yoshioka, Yoshichika; Murase, Kenya

    2013-09-01

    Cerebellar abnormalities in 4-week-old rats with a single whole body X-irradiation at a dose of 0.5, 1.0, or 1.5 Gy on embryonic day (ED) 15 were examined by magnetic resonance imaging (MRI) volumetry. A 3D T2 W-MRI anatomical sequence with high-spatial resolution at 11.7-tesla was acquired from the fixed rat heads. By MRI volumetry, whole cerebellar volumes decreased dose-dependently. Multiple linear regression analysis revealed that the cortical volume (standardized β=0.901; P<0.001) was a major explanatory variable for the whole cerebellar volume, whereas both volumes of the white matter and deep cerebellar nuclei also decreased depending on the X-irradiation dose. The present MRI volumetric analysis revealed a dose-related cerebellar cortical hypoplasia by prenatal exposure to X-irradiation on E15. PMID:23998266

  16. Pediatric Body Magnetic Resonance Imaging.

    PubMed

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information. PMID:26916887

  17. In Vivo Magnetic Resonance Imaging of Amyloid-β Plaques in Mice

    PubMed Central

    Wadghiri, Youssef Zaim; Hoang, Dung Minh; Wisniewski, Thomas; Sigurdsson, Einar M.

    2013-01-01

    Transgenic mice are used increasingly to model brain amyloidosis, mimicking the pathogenic processes involved in Alzheimer's disease (AD). In this chapter, an in vivo strategy is described that has been successfully used to map amyloid-β deposits in transgenic mouse models of AD with magnetic resonance imaging (MRI), utilizing both the endogenous contrast induced by the plaques attributed to their iron content and by selectively enhancing the signal from amyloid-β plaques using molecular-targeting vectors labeled with MRI contrast agents. To obtain sufficient spatial resolution for effective and sensitive mouse brain imaging, magnetic fields of 7-Tesla (T) or more are required. These are higher than the 1.5-T field strength routinely used for human brain imaging. The higher magnetic fields affect contrast agent efficiency and dictate the choice of pulse sequence parameters for in vivo MRI, all addressed in this chapter. Two-dimensional (2D) multi-slice and three-dimensional (3D) MRI acquisitions are described and their advantages and limitations are discussed. The experimental setup required for mouse brain imaging is explained in detail, including anesthesia, immobilization of the mouse's head to reduce motion artifacts, and anatomical landmarks to use for the slice alignment procedure to improve image co-registration during longitudinal studies and for subsequent matching of MRI with histology. PMID:22528108

  18. Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects

    PubMed Central

    Schreiner, Simon J.; Liu, Xinyang; Gietl, Anton F.; Wyss, Michael; Steininger, Stefanie C.; Gruber, Esmeralda; Treyer, Valerie; Meier, Irene B.; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Nitsch, Roger M.; Pruessmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. Methods: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm–Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). Conclusions: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  19. Data-driven optimization and evaluation of 2D EPI and 3D PRESTO for BOLD fMRI at 7 Tesla: I. Focal coverage.

    PubMed

    Barry, Robert L; Strother, Stephen C; Gatenby, J Christopher; Gore, John C

    2011-04-01

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is commonly performed using 2D single-shot echo-planar imaging (EPI). However, single-shot EPI at 7 Tesla (T) often suffers from significant geometric distortions (due to low bandwidth (BW) in the phase-encode (PE) direction) and amplified physiological noise. Recent studies have suggested that 3D multi-shot sequences such as PRESTO may offer comparable BOLD contrast-to-noise ratio with increased volume coverage and decreased geometric distortions. Thus, a four-way group-level comparison was performed between 2D and 3D acquisition sequences at two in-plane resolutions. The quality of fMRI data was evaluated via metrics of prediction and reproducibility using NPAIRS (Non-parametric Prediction, Activation, Influence and Reproducibility re-Sampling). Group activation maps were optimized for each acquisition strategy by selecting the number of principal components that jointly maximized prediction and reproducibility, and showed good agreement in sensitivity and specificity for positive BOLD changes. High-resolution EPI exhibited the highest z-scores of the four acquisition sequences; however, it suffered from the lowest BW in the PE direction (resulting in the worst geometric distortions) and limited spatial coverage, and also caused some subject discomfort through peripheral nerve stimulation (PNS). In comparison, PRESTO also had high z-scores (higher than EPI for a matched in-plane resolution), the highest BW in the PE direction (producing images with superior geometric fidelity), the potential for whole-brain coverage, and no reported PNS. This study provides evidence to support the use of 3D multi-shot acquisition sequences in lieu of single-shot EPI for ultra high field BOLD fMRI at 7T. PMID:21232613

  20. 7 tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia.

    PubMed

    Veersema, Tim J; van Eijsden, Pieter; Gosselaar, Peter H; Hendrikse, Jeroen; Zwanenburg, Jaco J M; Spliet, Wim G M; Aronica, Eleonora; Braun, Kees P J; Ferrier, Cyrille H

    2016-09-01

    Focal cortical dysplasia is one of the most common underlying pathologies in patients who undergo surgery for refractory epilepsy. Absence of a MRI-visible lesion necessitates additional diagnostic tests and is a predictor of poor surgical outcome. We describe a series of six patients with refractory epilepsy due to histopathologically-confirmed focal cortical dysplasia, for whom pre-surgical 7 tesla T2*-weighted MRI was acquired. In four of six patients, T2* sequences showed areas of marked superficial hypointensity, co-localizing with the epileptogenic lesion. 7 tesla T2* hypointensities overlying focal cortical dysplasia may represent leptomeningeal venous vascular abnormalities associated with the underlying dysplastic cortex. Adding T2* sequences to the MRI protocol may aid in the detection of focal cortical dysplasias. PMID:27435411

  1. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  2. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  3. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  4. Magnetic resonance imaging of acquired cardiac disease.

    PubMed Central

    Carrol, C L; Higgins, C B; Caputo, G R

    1996-01-01

    Over the last 15 years, advances in magnetic resonance imaging techniques have increased the accuracy and applicability of cardiovascular magnetic resonance imaging. These advances have improved the utility of magnetic resonance imaging in evaluating cardiac morphology, blood flow, and myocardial contractility, all significant diagnostic features in the evaluation of the patient with acquired heart disease. Utilization of cardiovascular magnetic resonance imaging has been limited, primarily due to clinical reliance upon nuclear scintigraphy and echocardiography. Recent developments in fast and ultrafast imaging should continue to enhance the significance of magnetic resonance imaging in this field. Widespread use of magnetic resonance imaging in the evaluation of the cardiovascular system will ultimately depend upon its maturation into a comprehensive, noninvasive imaging technique for the varying manifestations of acquired heart disease, including cardiomyopathy, ischemic heart disease, and acquired valvular disease. Images PMID:8792545

  5. Magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.

    1988-01-01

    MAGNETIC RESONANCE IMAGING OF THE SPINE thoroughly demonstrates the advantages of this new radiologic modality in diagnosing spinal disorders. The book begins with an introductory chapter on the basic physics and technical considerations of magnetic resonance in general and magnetic resonance imaging of the spine in particular. The second chapter covers normal spinal anatomy, and features color photos of multi-planar sections of spinal anatomy.

  6. Practical applications of cardiovascular magnetic resonance

    PubMed Central

    Alpendurada, F; Wong, J; Pennell, D J

    2009-01-01

    Recent developments in magnetic resonance imaging have focused attention on evaluation of patients with cardiac disease. These improvements have been substantiated by a large and expanding body of clinical evidence, making cardiovascular magnetic resonance the imaging modality of choice in a wide variety of cardiovascular disorders. A brief review on the current applications of cardiovascular magnetic resonance is provided, with reference to some of the most relevant studies, statements and reviews published in this field.

  7. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  8. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  9. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  10. MAGNETIC RESONANCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    Mariappan, Yogesh K; Glaser, Kevin J; Ehman, Richard L

    2011-01-01

    Magnetic Resonance Elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging (MRI) technique. The technique essentially involves three steps: generating shear waves in the tissue,acquiring MR images depicting the propagation of the induced shear waves andprocessing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. PMID:20544947

  11. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  12. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices. PMID:26564851

  13. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  14. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    PubMed Central

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  15. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible. PMID:22692894

  16. Vestibular Effects of a 7 Tesla MRI Examination Compared to 1.5 T and 0 T in Healthy Volunteers

    PubMed Central

    Theysohn, Jens M.; Kraff, Oliver; Eilers, Kristina; Andrade, Dorian; Gerwig, Marcus; Timmann, Dagmar; Schmitt, Franz; Ladd, Mark E.; Ladd, Susanne C.; Bitz, Andreas K.

    2014-01-01

    Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or “postural instability” even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B0 (n = 20), 7 T in & out B0 (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B0. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B0) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B0 or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B0 exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or “over-compensation” of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. PMID:24658179

  17. Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers.

    PubMed

    Theysohn, Jens M; Kraff, Oliver; Eilers, Kristina; Andrade, Dorian; Gerwig, Marcus; Timmann, Dagmar; Schmitt, Franz; Ladd, Mark E; Ladd, Susanne C; Bitz, Andreas K

    2014-01-01

    Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or "postural instability" even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B0 (n = 20), 7 T in & out B0 (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B0. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B0) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B0 or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B0 exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or "over-compensation" of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. PMID:24658179

  18. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  19. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  20. Magnetic resonance elastography of abdomen.

    PubMed

    Venkatesh, Sudhakar Kundapur; Ehman, Richard L

    2015-04-01

    Many diseases cause substantial changes in the mechanical properties of tissue, and this provides motivation for developing methods to noninvasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate noninvasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  1. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  2. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  3. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  4. Enhancement of Magnetic Resonance Imaging with Metasurfaces.

    PubMed

    Slobozhanyuk, Alexey P; Poddubny, Alexander N; Raaijmakers, Alexander J E; van den Berg, Cornelis A T; Kozachenko, Alexander V; Dubrovina, Irina A; Melchakova, Irina V; Kivshar, Yuri S; Belov, Pavel A

    2016-03-01

    It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution. PMID:26754827

  5. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  6. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  7. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  8. Magnetic resonance imaging of glioblastoma using aptamer conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Bongjune; Yang, Jaemoon; Hwang, Myeonghwan; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2012-10-01

    Here we introduce a new class of smart imaging probes hybridizing polysorbate 80 coated-magnetic nanoparticles with vascular endothelial growth factor receptor 2 (VEGFR2)-targetable aptamer for specific magnetic resonance (MR) imaging of angiogenesis from glioblastoma.

  9. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  10. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. PMID:25635352

  11. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease.

    PubMed

    Zeineh, Michael M; Chen, Yuanxin; Kitzler, Hagen H; Hammond, Robert; Vogel, Hannes; Rutt, Brian K

    2015-09-01

    Although amyloid plaques and neurofibrillary pathology play important roles in Alzheimer disease (AD), our understanding of AD is incomplete, and the contribution of microglia and iron to neurodegeneration is unknown. High-field magnetic resonance imaging (MRI) is exquisitely sensitive to microscopic iron. To explore iron-associated neuroinflammatory AD pathology, we studied AD and control human brain specimens by (1) performing ultra-high resolution ex vivo 7 Tesla MRI, (2) coregistering the MRI with successive histologic staining for iron, microglia, amyloid beta, and tau, and (3) quantifying the relationship between magnetic resonance signal intensity and histological staining. In AD, we identified numerous small MR hypointensities primarily within the subiculum that were best explained by the combination of microscopic iron and activated microglia (p = 0.025), in contradistinction to the relatively lesser contribution of tau or amyloid. Neuropathologically, this suggests that microglial-mediated neurodegeneration may occur in the hippocampal formation in AD and is detectable by ultra-high resolution MRI. PMID:26190634

  12. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease

    PubMed Central

    Zeineh, Michael M.; Chen, Yuanxin; Kitzler, Hagen H.; Hammond, Robert; Vogel, Hannes; Rutt, Brian K.

    2016-01-01

    Although amyloid plaques and neurofibrillary pathology play important roles in Alzheimer disease (AD), our understanding of AD is incomplete, and the contribution of microglia and iron to neurodegeneration is unknown. High-field magnetic resonance imaging (MRI) is exquisitely sensitive to microscopic iron. To explore iron-associated neuroinflammatory AD pathology, we studied AD and control human brain specimens by (1) performing ultra-high resolution ex vivo 7 Tesla MRI, (2) coregistering the MRI with successive histologic staining for iron, microglia, amyloid beta, and tau, and (3) quantifying the relationship between magnetic resonance signal intensity and histological staining. In AD, we identified numerous small MR hypointensities primarily within the subiculum that were best explained by the combination of microscopic iron and activated microglia (p = 0.025), in contradistinction to the relatively lesser contribution of tau or amyloid. Neuropathologically, this suggests that microglial-mediated neurodegeneration may occur in the hippocampal formation in AD and is detectable by ultra-high resolution MRI. PMID:26190634

  13. Tunable Magnetic Resonance via Interlayer Exchange Interaction

    NASA Astrophysics Data System (ADS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Wilson, Jeffrey; Simons, Rainee; Chui, Sui-Tat; Xiao, John

    Magnetic resonance is a critical property of magnetic materials for the applications in microwave devices and novel spintronics devices. The resonance frequency is commonly controlled with an external magnetic field generated by an energy-inefficient and bulky electromagnet. The search for tuning the resonance frequency without electromagnets has attracted tremendous attention. The voltage control of resonance frequency has been demonstrated in multiferroic heterostructures through magnetoelastic effect. However, the frequency tunable range is limited. We propose a paradigm to tune the magnetic resonance frequency by recognizing the huge interlayer exchange field and the existence of the high-frequency modes in coupled oscillators. We demonstrate the optical mode in exchange coupled magnetic layers which occurred at much higher frequencies than coherent ferromagnetic resonance. We further demonstrated a large resonance frequency tunable range from 11GHz to 21 GHz in a spin valve device by in-situ manipulating of the exchange interaction. The technique developed here is far more efficient than the conventional methods of using electromagnets and multiferroics. This new scheme will have an immediate impact on applications based on magnetic resonance.

  14. Artifacts in Magnetic Resonance Imaging

    PubMed Central

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Summary Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature. PMID:25745524

  15. Tracking Iron in Multiple Sclerosis: A Combined Imaging and Histopathological Study at 7 Tesla

    ERIC Educational Resources Information Center

    Bagnato, Francesca; Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R[subscript 2][superscript *] and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a…

  16. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  17. Enhancement of artificial magnetism via resonant bianisotropy

    NASA Astrophysics Data System (ADS)

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  18. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  19. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  20. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  1. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus Videos and Cool Tools

    ... talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA is a noninvasive ... possibility that you’re pregnant tell your doctor as well. On the day of your exam, it’s ...

  2. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Upcoming Workshops & Deadlines Past Workshops Endorsed Meetings & Education International Outreach Event Planning Guides Education MR Safety Resources ... Center E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton ...

  3. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  4. Counteracting radio frequency inhomogeneity in the human brain at 7 Tesla using strongly modulating pulses.

    PubMed

    Boulant, N; Mangin, J-F; Amadon, A

    2009-05-01

    We report flip angle and spoiled gradient echo measurements at 7 Tesla on human brains in three-dimensional imaging, using strongly modulating pulses to counteract the transmitted radiofrequency inhomogeneity problem. Compared with the standard square pulse results, three points of improvement are demonstrated, namely: (i) the removal of the bright center (typical at high fields when using a quadrature head coil), (ii) the substantial gain of signal in the regions of low B(1) intensity, and (iii) an increased 35% signal uniformity over the whole brain at the flip angle where maximum contrast between white and gray matter occurs. We also find by means of simulations that standard BIR-4 adiabatic pulses need several times more energy to reach a similar performance at the same field strength. PMID:19253378

  5. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  6. Children's (Pediatric) Magnetic Resonance Imaging

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  7. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... uses radio waves, a magnetic field and a computer to produce detailed pictures of the spine and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  8. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  9. Designing dielectric resonators on substrates: combining magnetic and electric resonances.

    PubMed

    van de Groep, J; Polman, A

    2013-11-01

    High-performance integrated optics, solar cells, and sensors require nanoscale optical components at the surface of the device, in order to manipulate, redirect and concentrate light. High-index dielectric resonators provide the possibility to do this efficiently with low absorption losses. The resonances supported by dielectric resonators are both magnetic and electric in nature. Combined scattering from these two can be used for directional scattering. Most applications require strong coupling between the particles and the substrate in order to enhance the absorption in the substrate. However, the coupling with the substrate strongly influences the resonant behavior of the particles. Here, we systematically study the influence of particle geometry and dielectric environment on the resonant behavior of dielectric resonators in the visible to near-IR spectral range. We show the key role of retardation in the excitation of the magnetic dipole (MD) mode, as well as the limit where no MD mode is supported. Furthermore, we study the influence of particle diameter, shape and substrate index on the spectral position, width and overlap of the electric dipole (ED) and MD modes. Also, we show that the ED and MD mode can selectively be enhanced or suppressed using multi-layer substrates. And, by comparing dipole excitation and plane wave excitation, we study the influence of driving field on the scattering properties. Finally, we show that the directional radiation profiles of the ED and MD modes in resonators on a substrate are similar to those of point-dipoles close to a substrate. Altogether, this work is a guideline how to tune magnetic and electric resonances for specific applications. PMID:24216852

  10. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  11. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  12. Low-temperature magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Wago, Koichi

    Magnetic resonance force microscopy (MRFM) is a technique whose goal is to combine the three-dimensional, chemically specific imaging capability of magnetic resonance imaging with the atomic-scale spatial resolution of scanning force microscopy. MRFM relies on the detection of small oscillatory magnetic forces between spins in the sample and a magnetic tip, using a micromechanical cantilever. The force resolution is a key issue for successfully operating MRFM experiments. Operating at low temperature improves the force resolution because of the reduced thermal energy and increased mechanical Q of the cantilever. The spin polarization is also enhanced at low temperature, leading to the improved magnetic resonance sensitivity for ensemble spin samples. A low-temperature magnetic resonance force detection apparatus was built and used to demonstrate a force resolution of 8×10sp{-17}\\ N/sqrt{Hz} at 6 K with a commercial single-crystal silicon cantilever. Both nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) were detected in micron-size samples. Force-detection technique was also applied to a wide range of magnetic resonance measurements, including inversion recovery, nutation, and spin echoes. Force-detected EPR spectra of phosphorus-doped silicon revealed hyperfine splitting, illustrating the possibility of using the MRFM technique for spectroscopic purposes. An improved low-temperature magnetic resonance force microscope was also built, incorporating a magnetic tip mounted directly on the cantilever. This allows a much wider variety of samples to be investigated and greatly improves the convenience of the technique. Using the improved microscope, three-dimensional EPR imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed a broad response reflecting the size and shape of the sample, allowing a three-dimensional real

  13. Cyclotron resonance in an inhomogeneous magnetic field

    SciTech Connect

    Albert, J.M. )

    1993-08-01

    Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.

  14. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  15. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  16. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  17. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  18. The Diversity of Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Corey W.; Alekseyev, Viktor Y.; Allwardt, Jeffrey R.; Bankovich, Alexander J.; Cade-Menun, Barbara J.; Davis, Ronald W.; Du, Lin-Shu; Garcia, K. Christopher; Herschlag, Daniel; Khosla, Chaitan; Kraut, Daniel A.; Li, Qing; Null, Brian; Puglisi, Joseph D.; Sigala, Paul A.; Stebbins, Jonathan F.; Varani, Luca

    The discovery of the physical phenomenon of Nuclear Magnetic Resonance (NMR) in 1946 gave rise to the spectroscopic technique that has become a remarkably versatile research tool. One could oversimplify NMR spectros-copy by categorizing it into the two broad applications of structure elucidation of molecules (associated with chemistry and biology) and imaging (associated with medicine). But, this certainly does not do NMR spectroscopy justice in demonstrating its general acceptance and utilization across the sciences. This manuscript is not an effort to present an exhaustive, or even partial review of NMR spectroscopy applications, but rather to provide a glimpse at the wide-ranging uses of NMR spectroscopy found within the confines of a single magnetic resonance research facility, the Stanford Magnetic Resonance Laboratory. Included here are summaries of projects involving protein structure determination, mapping of intermolecular interactions, exploring fundamental biological mechanisms, following compound cycling in the environmental, analysis of synthetic solid compounds, and microimaging of a model organism.

  19. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  20. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    PubMed Central

    Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D

    2015-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. Results The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Conclusion Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. Magn Reson Med 73:2390–2397, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:24986525

  1. Magnetic resonance of magnetic fluid and magnetoliposome preparations

    NASA Astrophysics Data System (ADS)

    Morais, Paulo C.; Santos, Judes G.; Skeff Neto, K.; Pelegrini, Fernando; De Cuyper, Marcel

    2005-05-01

    In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  3. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  4. Nanomagnetic planar magnetic resonance microscopy "lens".

    PubMed

    Barbic, Mladen; Scherer, Axel

    2005-04-01

    The achievement of three-dimensional atomic resolution magnetic resonance microscopy remains one of the main challenges in the visualization of biological molecules. The prospects for single spin microscopy have come tantalizingly close due to the recent developments in sensitive instrumentation. Despite the single spin detection capability in systems of spatially well-isolated spins, the challenge that remains is the creation of conditions in space where only a single spin is resonant and detected in the presence of other spins in its natural dense spin environment. We present a nanomagnetic planar design where a localized Angstrom-scale point in three-dimensional space is created above the nanostructure with a nonzero minimum of the magnetic field magnitude. The design thereby represents a magnetic resonance microscopy "lens" where potentially only a single spin located in the "focus" spot of the structure is resonant. Despite the presence of other spins in the Angstrom-scale vicinity of the resonant spin, the high gradient magnetic field of the "lens" renders those spins inactive in the detection process. PMID:15826129

  5. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  6. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  7. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  8. Artifacts in Breast Magnetic Resonance Imaging.

    PubMed

    Anthony, Marina-Portia; Nguyen, Dustin; Friedlander, Lauren; Mango, Victoria; Wynn, Ralph; Ha, Richard

    2016-01-01

    As breast magnetic resonance imaging has evolved to become a routine part of clinical practice, so too has the need for radiologists to be aware of its potential pitfalls and limitations. Unique challenges arise in the identification and remedy of artifacts in breast magnetic resonance imaging, and it is important that radiologists and technicians work together to optimize protocols and monitor examinations such that these may be minimized or avoided entirely. This article presents patient-related and technical artifacts that may give rise to reduced image quality and ways to recognize and reduce them. PMID:26343534

  9. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-01

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  10. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.

    PubMed

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-27

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium. PMID:25736463

  11. Non-Invasive Magnetic Resonance Imaging of Nanoparticle Migration and Water Velocity Inside Sandstone

    NASA Astrophysics Data System (ADS)

    Phoenix, V. R.; Shukla, M.; Vallatos, A.; Riley, M. S.; Tellam, J. H.; Holmes, W. M.

    2015-12-01

    Manufactured nanoparticles (NPs) are already utilized in a diverse array of applications, including cosmetics, optics, medical technology, textiles and catalysts. Problematically, once in the natural environment, NPs can have a wide range of toxic effects. To protect groundwater from detrimental NPs we must be able to predict nanoparticle movement within the aquifer. The often complex transport behavior of nanoparticles ensures the development of NP transport models is not a simple task. To enhance our understanding of NP transport processes, we utilize novel magnetic resonance imaging (MRI) which enables us to look inside the rock and image the movement of nanoparticles within. For this, we use nanoparticles that are paramagnetic, making them visible to the MRI and enabling us to collect spatially resolved data from which we can develop more robust transport models. In this work, a core of Bentheimer sandstone (3 x 7 cm) was saturated with water and imaged inside a 7Tesla Bruker Biospec MRI. Firstly the porosity of the core was mapped using a MSME MRI sequence. Prior to imaging NP transport, the velocity of water (in absence on nanoparticles) was mapped using an APGSTE-RARE sequence. Nano-magnetite nanoparticles were then pumped into the core and their transport through the core was imaged using a RARE sequence. These images were calibrated using T2 parameter maps to provide fully quantitative maps of nanoparticle concentration at regular time intervals throughout the column (T2 being the spin-spin relaxation time of 1H nuclei). This work demonstrated we are able to spatially resolve porosity, water velocity and nanoparticle movement, inside rock, using a single technique (MRI). Significantly, this provides us with a unique and powerful dataset from which we are now developing new models of nanoparticle transport.

  12. Magnetic elliptical polarization of Schumann resonances

    SciTech Connect

    Sentman, D.D.

    1987-08-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references.

  13. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  14. Comparison Between Eight- and Sixteen-Channel TEM Transceive Arrays for Body Imaging at 7 Tesla

    PubMed Central

    Snyder, CJ; DelaBarre, L; Moeller, S; Tian, J; Akgun, C; Van De Moortele, P-F; Bolan, PJ; Ugurbil, K; Vaughan, JT; Metzger, GJ

    2011-01-01

    Eight- and sixteen-channel transceive stripline/TEM body arrays were compared at 7 tesla (297 MHz) both in simulation and experimentally. Despite previous demonstrations of similar arrays for use in body applications, a quantitative comparison of the two configurations has not been undertaken to date. Results were obtained on a male pelvis for assessing transmit, SNR and parallel imaging performance and to evaluate local power deposition versus transmit B1 (B1+). All measurements and simulations were conducted after performing local B1+ phase shimming in the region of the prostate. Despite the additional challenges of decoupling immediately adjacent coils, the sixteen-channel array demonstrated improved or nearly equivalent performance to the eight-channel array based on the evaluation criteria. Experimentally, transmit performance and SNR were 22% higher for the sixteen-channel array while significantly increased reduction factors were achievable in the left-right direction for parallel imaging. Finite-difference time-domain simulations demonstrated similar results with respect to transmit and parallel imaging performance, however a higher transmit efficiency advantage of 33% was predicted. Simulations at both 3T and 7T verified the expected parallel imaging improvements with increasing field strength and showed that, for a specific B1+ shimming strategy employed, the sixteen-channel array exhibited lower local and global SAR for a given B1+. PMID:22102483

  15. Performance of external and internal coil configurations for prostate investigations at 7 Tesla

    PubMed Central

    Metzger, Gregory J.; van de Moortele, Pierre-Francois; Akgun, Can; Snyder, Carl J.; Moeller, Steen; Strupp, John; Andersen, Peter; Shrivastava, Devashish; Vaughan, Tommy; Ugurbil, Kamil; Adriany, Gregor

    2010-01-01

    Three different coil configurations were evaluated through simulation and experimentally to determine safe operating limits and evaluate subject size dependent performance for prostate imaging at 7 Tesla. The coils included a transceiver endorectal coil (trERC), a 16 channel transceiver external surface array (trESA) and a trESA combined with a receive-only ERC (trESA+roERC). While the transmit B1 (B1+) homogeneity was far superior for the trESA, the maximum achievable B1+ is subject size dependent and limited by transmit chain losses and amplifier performance. For the trERC, limitations in transmit homogeneity greatly compromised image quality and limited coverage of the prostate. Despite these challenges, the high peak B1+ close to the trERC and subject size independent performance provides potential advantages especially for spectroscopic localization where high bandwidth RF pulses are required. On the receive side, the combined trESA+roERC provided the highest SNR and improved homogeneity over the trERC resulting in better visualization of the prostate and surrounding anatomy. In addition, the parallel imaging performance of the trESA+roERC holds strong promise for diffusion weighted imaging and dynamic contrast enhanced MRI. PMID:20740657

  16. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  17. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  18. Early Knee Changes in Dancers Identified by Ultra High Field 7 Tesla MRI

    PubMed Central

    Chang, Gregory; Diamond, Matthew; Nevsky, Gregory; Regatte, Ravinder R.; Weiss, David S.

    2012-01-01

    Introduction We aimed to determine whether a unique, ultra high-field 7 Tesla (T) MRI scanner could detect occult cartilage and meniscal injuries in asymptomatic female dancers. Materials and Methods This study had institutional review board approval. We recruited eight pre-professional female dancers and nine non-athletic, female controls. We scanned the dominant knee on a 7T MRI scanner using a 3D-FLASH sequence and a proton density, fast spin-echo sequence to evaluate cartilage and menisci, respectively. Two radiologists scored cartilage (International Cartilage Repair Society classification) and meniscal (Stoller classification) lesions. We applied two-tailed z- and t-tests to determine statistical significance. Results There were no cartilage lesions in dancers or controls. For the medial meniscus, the dancers compared to controls demonstrated higher mean MRI score (2.38±0.61 vs. 1.0±0.97, p<0.0001) and higher frequency of mean grade 2 lesions (88% vs. 11%, p<0.01). For the lateral meniscus, there was no difference in score (0.5±0.81 vs. 0.5±0.78, p=0.78) in dancers compared to controls. Discussion Asymptomatic dancers demonstrate occult medial meniscal lesions. Because this has been described in early osteoarthritis, close surveillance of dancers’ knee symptoms and function with appropriate activity modification may help maintain their long-term knee health. PMID:23346987

  19. Spin connection resonance in magnetic motors

    NASA Astrophysics Data System (ADS)

    Evans, Myron W.; Eckardt, H.

    2007-11-01

    A mechanism is proposed for rotation of magnetic assemblies by a torque consisting of the magnetic dipole moment of the assembly and a magnetic field generated from space-time in Einstein-Cartan-Evans (ECE) field theory. It is shown that when the magnetic assembly is stationary, the space-time is described by a Helmholtz wave equation in the tetrad as eigenfunction. This is a balance condition in which the Cartan torsion of the space-time is zero, but in which the tetrad and spin connection are non-zero. This balance may be broken by a driving current density produced by the magnetic assembly. The Helmholtz equation becomes an undamped oscillator equation. At resonance the torque on the magnetic assembly may be amplified sufficiently to cause the whole assembly to rotate, as observed experimentally in a repeatable and reproducible manner.

  20. Magnetic Resonance Imaging Detects and Predicts Early Brain Injury after Subarachnoid Hemorrhage in a Canine Experimental Model

    PubMed Central

    Jadhav, Vikram; Sugawara, Takashi; Zhang, John; Jacobson, Paul

    2008-01-01

    Abstract The canine double hemorrhage model is an established model to study cerebral vasospasm, the late sequelae of subarachnoid hemorrhage (SAH). The present study uses magnetic resonance imaging (MRI) to examine the recently reported early brain injury after SAH. Double hemorrhage SAH modeling was obtained by injecting 0.5 mL/kg of autologous arterial blood into the cisterna magna of five adult mongrel dogs on day 0 and day 2, followed by imaging at day 2 and day 7 using a 4.7-Tesla (T) scanner. White matter (WM) showed a remarkable increase in T2 values at day 2 which resolved by day 7, whereas gray matter (GM) T2 values did not resolve. The apparent diffusion coefficient (ADC) values progressively increased in both WM and GM after SAH, suggestive of a transition from vasogenic to cytotoxic edema. Ventricular volume also increased dramatically. Prominent neuronal injury with Nissl's staining was seen in the cortical GM and in the periventricular tissue. Multimodal MRI reveals acute changes in the brain after SAH and can be used to non-invasively study early brain injury and normal pressure hydrocephalus post-SAH. MR can also predict tissue histopathology and may be useful for assessing pharmacological treatments designed to ameliorate SAH. PMID:18729770

  1. Visualization of Activated Platelets by Targeted Magnetic Resonance Imaging Utilizing Conformation-Specific Antibodies against Glycoprotein IIb/IIIa

    PubMed Central

    von zur Muhlen, Constantin; Peter, Karlheinz; Ali, Ziad A.; Schneider, Jürgen E.; McAteer, Martina A.; Neubauer, Stefan; Channon, Keith M.; Bode, Christoph; Choudhury, Robin P.

    2009-01-01

    Ruptured atherosclerotic plaques, lined with activated platelets, constitute an attractive target for magnetic resonance imaging (MRI). This study evaluated whether microparticles of iron oxide (MPIO) targeting ligand-induced binding sites (LIBS) on the activated conformation of glycoprotein IIb/IIIa could be used to image platelets. MPIO (size: 1 μm) were conjugated to anti-LIBS or control single-chain antibody. Following guidewire injury to mouse femoral artery, platelet adhesion was present after 24 h. Mice were perfused with anti-LIBS-MPIO (or control MPIO) via the left ventricle and 11.7-tesla MRI was performed on femoral arteries ex vivo. A 3D gradient echo sequence attained an isotropic resolution of 25 μm. MPIO binding, quantified by MRI, was 4-fold higher with anti-LIBS-MPIO in comparison to control MPIO (p < 0.01). In histological sections, low signal zones on MRI and MPIO correlated strongly (R2 = 0.72; p < 0.001), indicating accurate MR quantification. In conclusion, anti-LIBS-MPIO bind to activated platelets in mouse arteries, providing a basis for the use of function-specific single-chain antibody-MPIO conjugates for molecular MRI, and represent the first molecular imaging of a conformational change in a surface receptor. This presents an opportunity to specifically image activated platelets involved in acute atherothrombosis with MRI. PMID:18515970

  2. Detecting Vascular-Targeting Effects of the Hypoxic Cytotoxin Tirapazamine in Tumor Xenografts Using Magnetic Resonance Imaging

    SciTech Connect

    Bains, Lauren J.; Baker, Jennifer; Kyle, Alastair H.; Minchinton, Andrew I.; Reinsberg, Stefan A.

    2009-07-01

    Purpose: To determine whether vascular-targeting effects can be detected in vivo using magnetic resonance imaging (MRI). Methods and Materials: MR images of HCT-116 xenograft-bearing mice were acquired at 7 Tesla before and 24 hours after intraperitoneal injections of tirapazamine. Quantitative dynamic contrast-enhanced MRI analyses were performed to evaluate changes in tumor perfusion using two biomarkers: the volume transfer constant (K{sup trans}) and the initial area under the concentration-time curve (IAUC). We used novel implanted fiducial markers to obtain cryosections that corresponded to MR image planes from excised tumors; quantitative immunohistochemical mapping of tumor vasculature, perfusion, and necrosis enabled correlative analysis between these and MR images. Results: Conventional histological analysis showed lower vascular perfusion or greater amounts of necrosis in the central regions of five of eight tirapazamine-treated tumors, with three treated tumors showing no vascular dysfunction response. MRI data reflected this result, and a striking decrease in both K{sup trans} and IAUC values was seen with the responsive tumors. Retrospective evaluation of pretreatment MRI parameters revealed that those tumors that did not respond to the vascular-targeting effects of tirapazamine had significantly higher pretreatment K{sup trans} and IAUC values. Conclusions: MRI-derived parameter maps showed good agreement with histological tumor mapping. MRI was found to be an effective tool for noninvasively monitoring and predicting tirapazamine-mediated central vascular dysfunction.

  3. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  4. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  5. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  6. Sports Health Magnetic Resonance Imaging Challenge

    PubMed Central

    Howell, Gary A.; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians. PMID:23015984

  7. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  8. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  9. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  10. Use of Magnetic Resonance in Pancreaticobiliary Emergencies.

    PubMed

    Bates, David D B; LeBedis, Christina A; Soto, Jorge A; Gupta, Avneesh

    2016-05-01

    This article presents the magnetic resonance protocols, imaging features, diagnostic criteria, and complications of commonly encountered emergencies in pancreaticobiliary imaging. Pancreatic trauma, bile leak, acute cholecystitis, biliary obstruction, and pancreatitis are discussed. Various classifications and complications that can arise with these conditions, as well as artifacts that may mimic pathology, are also included. PMID:27150328

  11. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  12. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  13. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  14. Volume coil based on hybridized resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jouvaud, C.; Abdeddaim, R.; Larrat, B.; de Rosny, J.

    2016-01-01

    We present an electromagnetic device based on hybridization of four half-wavelength dipoles which increases the uniformity and the strength of the radio-frequency (RF) field of a Magnetic Resonant Imaging (MRI) apparatus. Numerical results show that this Hybridized Coil (HC) excited with a classical loop coil takes advantage of the magnetic hybrid modes. The distribution of the RF magnetic field is experimentally confirmed on a 7-T MRI with a gelatin phantom. Finally, the HC is validated in vivo by imaging the head of an anesthetized rat. We measure an overall increase of the signal to noise ratio with up to 2.4 fold increase in regions of interest far from the active loop coil.

  15. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  16. 7 Tesla MRI with a Transmit/Receive Loopless Antenna and B1-Insensitive Selective Excitation

    PubMed Central

    Erturk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Moore, Jay; Bottomley, Paul A.

    2014-01-01

    Purpose Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1) penetration, B1-inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils. Methods External coils were replaced by semi-rigid or biocompatible transmit/receive loopless antennae requiring only a few Watts of peak RF power. Slice selection was provided by spatially selective B1-insensitive composite RF pulses that compensate for the antenna’s intrinsically nonuniform B1-field. Power was adjusted to maintain local temperature rise ≤1° C. Fruit, intravascular MRI of diseased human vessels in vitro, and MRI of rabbit aorta in vivo are demonstrated. Results Scout MRI with the transmit/receive antennae yielded a ≤10 cm cylindrical field-of-view, enabling subsequent targeted localization at ~100 μm resolution in 10-50 s and/or 50 μm MRI in ~2 min in vitro, and 100–300 μm MRI of the rabbit aorta in vivo. Conclusion A simple, low-power, one-device approach to interventional MRI at 7T offers the potential of truly high-resolution MRI, while avoiding issues with external coil excitation and interactions at 7T. PMID:23963978

  17. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.

    2016-03-01

    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.

  18. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  19. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  20. A hyperpolarized equilibrium for magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-12-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10-3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  1. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  2. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  3. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  4. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  5. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  6. Magnetic Resonance Characterization of Ischemic Tissue Metabolism

    PubMed Central

    Cheung, Jerry S; Wang, Xiaoying; Zhe Sun, Phillip

    2011-01-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile diagnostic techniques capable of characterizing the complex stroke pathophysiology, and hold great promise for guiding stroke treatment. Particularly, tissue viability and salvageability are closely associated with its metabolic status. Upon ischemia, ischemic tissue metabolism is disrupted including altered metabolism of glucose and oxygen, elevated lactate production/accumulation, tissue acidification and eventually, adenosine triphosphate (ATP) depletion and energy failure. Whereas metabolism impairment during ischemic stroke is complex, it may be monitored non-invasively with magnetic resonance (MR)-based techniques. Our current article provides a concise overview of stroke pathology, conventional and emerging imaging and spectroscopy techniques, and data analysis tools for characterizing ischemic tissue damage. PMID:22216079

  7. Magnetic resonance angiography: physical principles and applications.

    PubMed

    Kiruluta, Andrew J M; González, R Gilberto

    2016-01-01

    Magnetic resonance angiography (MRA) is the visualization of hemodynamic flow using imaging techniques that discriminate flowing spins in blood from those in stationary tissue. There are two classes of MRA methods based on whether the magnetic resonance imaging signal in flowing blood is derived from the amplitude of the moving spins, the time-of-flight methods, or is based on the phase accumulated by these flowing spins, as in phase contrast methods. Each method has particular advantages and limitations as an angiographic imaging technique, as evidenced in their application space. Here we discuss the physics of MRA for both classes of imaging techniques, including contrast-enhanced approaches and the recent rapid expansion of the techniques to fast acquisition and processing techniques using parallel imaging coils as well as their application in high-field MR systems such as 3T and 7T. PMID:27432663

  8. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  9. [Indications for magnetic resonance imaging in pneumology].

    PubMed

    Arrivé, L

    1997-04-19

    Tissue mobilization caused by respiration and heart beat and lower spacial resolution than with computed tomography has limited use of magnetic resonance imaging (MRI) in pneumology. Nevertheless, because of the high-quality of spontaneous contrast and the non irradiation nature of the examination, there are selected indications. For bronchogenic cancer, MRI is reserved for selected cases to evaluate tumor extension. For tumors of the mediastinum, MRI is particularly useful for evaluating extension of neurogenic tumors. MRI also gives a better visualization of processes involving the diaphragm than computed tomography. The development of magnetic resonance angiography is a major progress for exploration of pulmonary embolism as repeated acquisitions can be obtained without injection of a contrast medium. Several studies have shown that MRI visualizes well solitary lung nodules, clearly distinguishing fat content from vascularized nodules. For the pulmonary parenchyma, further advances are necessary before MRI can become a routine exploration technique. PMID:9180867

  10. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  11. Fundamental physics of magnetic resonance imaging.

    PubMed

    Villafana, T

    1988-07-01

    Although similar to computerized tomography, in that cross-sectional images are produced, the physical principles underlying magnetic resonance are entirely different. The MRI process, as commonly implemented, involves the excitation of hydrogen nuclei and the analysis of how these nuclei recover to the original equilibrium steady states that they had prior to excitation. This article discusses that process, that is, preparatory alignment, RF excitation, relaxation and signal measurement, and spatial localization. PMID:3380941

  12. Nuclear magnetic resonance in Kondo lattice systems

    NASA Astrophysics Data System (ADS)

    Curro, Nicholas J.

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  13. Neurosurgical uses for intraprocedural magnetic resonance imaging.

    PubMed

    Mutchnick, Ian S; Moriarty, Thomas M

    2005-10-01

    Neurosurgical procedures demand precision, and efforts to create accurate neurosurgical navigation have been central to the profession through its history. Magnetic resonance image (MRI)-guided navigation offers the possibility of real-time, image-based stereotactic information for the neurosurgeon, which makes possible a number of diagnostic and therapeutic procedures. This article will review both current options for intraoperative MRI operative suite arrangements and the current therapeutic/diagnostic uses of intraoperative MRI. PMID:16924171

  14. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  15. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  16. Magnetic resonance imaging of diabetic foot complications.

    PubMed

    Low, Keynes T A; Peh, Wilfred C G

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  17. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  18. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  19. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    PubMed Central

    Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

    2012-01-01

    Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study. PMID:22701525

  20. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  1. Magnetic resonance at the quantum limit

    NASA Astrophysics Data System (ADS)

    Bertet, Patrice

    The detection and characterization of paramagnetic species by electron-spin resonance (ESR) spectroscopy has numerous applications in chemistry, biology, and materials science. Most ESR spectrometers rely on the inductive detection of the small microwave signals emitted by the spins during their Larmor precession into a microwave resonator in which they are embedded. Using the tools offered by circuit Quantum Electrodynamics (QED), namely high quality factor superconducting micro-resonators and Josephson parametric amplifiers that operate at the quantum limit when cooled at 20mK, we report an increase of the sensitivity of inductively detected ESR by 4 orders of magnitude over the state-of-the-art, enabling the detection of 1700 Bismuth donor spins in silicon with a signal-to-noise ratio of 1 in a single echo. We also demonstrate that the energy relaxation time of the spins is limited by spontaneous emission of microwave photons into the measurement line via the resonator, which opens the way to on-demand spin initialization via the Purcell effect. These results constitute a first step towards circuit QED experiments with magnetically coupled individual spins.

  2. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    PubMed Central

    Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. PMID:22121333

  3. Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals

    PubMed Central

    Kanakia, Shruti; Toussaint, Jimmy; Hoang, Dung Minh; Mullick Chowdhury, Sayan; Lee, Stephen; Shroyer, Kenneth R.; Moore, William; Wadghiri, Youssef Z.; Sitharaman, Balaji

    2015-01-01

    Current clinical Gd3+-based T1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe. PMID:26625867

  4. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  5. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  6. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  7. 7-Tesla Susceptibility-Weighted Imaging to Assess the Effects of Radiotherapy on Normal-Appearing Brain in Patients With Glioma

    SciTech Connect

    Lupo, Janine M.; Chuang, Cynthia F.; Chang, Susan M.; Barani, Igor J.; Jimenez, Bert; Hess, Christopher P.; Nelson, Sarah J.

    2012-03-01

    Purpose: To evaluate the intermediate- and long-term imaging manifestations of radiotherapy on normal-appearing brain tissue in patients with treated gliomas using 7T susceptibility-weighted imaging (SWI). Methods and Materials: SWI was performed on 25 patients with stable gliomas on a 7 Tesla magnet. Microbleeds were identified as discrete foci of susceptibility that did not correspond to vessels. The number of microbleeds was counted within and outside of the T2-hyperintense lesion. For 3 patients, radiation dosimetry maps were reconstructed and fused with the 7T SWI data. Results: Multiple foci of susceptibility consistent with microhemorrhages were observed in patients 2 years after chemoradiation. These lesions were not present in patients who were not irradiated. The prevalence of microhemorrhages increased with the time since completion of radiotherapy, and these lesions often extended outside the boundaries of the initial high-dose volume and into the contralateral hemisphere. Conclusions: High-field SWI has potential for visualizing the appearance of microbleeds associated with long-term effects of radiotherapy on brain tissue. The ability to visualize these lesions in normal-appearing brain tissue may be important in further understanding the utility of this treatment in patients with longer survival.

  8. Magnetic resonance imaging in central pontine myelinolysis.

    PubMed Central

    Thompson, P D; Miller, D; Gledhill, R F; Rossor, M N

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in two patients in whom a clinical diagnosis of central pontine myelinolysis (CPM) had been made. MRI showed lesions in the pons in both cases about 2 years after the illness, at a time when the spastic quadriparesis and pseudobulbar palsy had recovered. The persisting abnormal signals in CPM are likely to be due to fibrillary gliosis. Persistence of lesions on MRI means that the diagnosis of CPM may be electively, after the acute illness has resolved. Images PMID:2732743

  9. Multiparametric magnetic resonance imaging of prostate cancer.

    PubMed

    Hedgire, Sandeep S; Oei, Tamara N; McDermott, Shaunagh; Cao, Kai; Patel M, Zena; Harisinghani, Mukesh G

    2012-07-01

    In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up. PMID:23599562

  10. Insight into protein nuclear magnetic resonance research.

    PubMed

    Stoven, V; Lallemand, J Y; Abergel, D; Bouaziz, S; Delsuc, M A; Ekondzi, A; Guittet, E; Laplante, S; Le Goas, R; Malliavin, T

    1990-08-01

    Nuclear magnetic resonance (NMR) is one of the most powerful techniques to investigate the geometry of molecules in solution. It has been widely applied, in recent years, to the study of protein conformation. However, full reconstruction of the 3-D structure of such macro-molecules, still constitutes a real challenge for the spectroscopist. Skills as diverse as biology, spectroscopy, signal processing, or computer sciences, are required. This paper presents various aspects of the research in that domain, and our contribution to it. PMID:2126458

  11. Magnetic resonance imaging findings of intramammary metastases.

    PubMed

    Wienbeck, Susanne; Herzog, Aimee; Kinner, Sonja; Surov, Alexey

    2016-01-01

    The purpose of this study was to identify magnetic resonance imaging (MRI) findings of intramammary metastases (IM). We identified 8 cases with IM, which were investigated by breast MRI (1.5T). In every case, the diagnosis of IM was proven histopathologically on breast biopsy specimens. Overall, 187 IM were identified. IM had inconsistent MRI features, which cannot be clearly classify as benign or malignant. IM should be taken into consideration in the differential diagnosis of breast lesions to avoid possible misinterpretations. PMID:27133668

  12. Magnetic Resonance Imaging of Acute Stroke.

    PubMed

    Nael, Kambiz; Kubal, Wayne

    2016-05-01

    Neuroimaging plays a critical role in the management of patients with acute stroke syndrome, with diagnostic, therapeutic, and prognostic implications. A multiparametric magnetic resonance (MR) imaging protocol in the emergency setting can address both primary goals of neuroimaging (ie, detection of infarction and exclusion of hemorrhage) and secondary goals of neuroimaging (ie, identifying the site of arterial occlusion, tissue characterization for defining infarct core and penumbra, and determining stroke cause/mechanism). MR imaging provides accurate diagnosis of acute ischemic stroke (AIS) and can differentiate AIS from other potential differential diagnoses. PMID:27150320

  13. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. PMID:27150327

  14. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  15. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  16. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  17. Pelvic applications of diffusion magnetic resonance images.

    PubMed

    Coutinho, Antonio C; Krishnaraj, Arun; Pires, Cintia E; Bittencourt, Leonardo K; Guimarães, Alexander R

    2011-02-01

    Diffusion-weighted imaging (DWI) is a powerful imaging technique in neuroimaging; its value in abdominal and pelvic imaging has only recently been appreciated as a result of improvements in magnetic resonance imaging technology. There is growing interest in the use of DWI for evaluating pathology in the pelvis. Its ability to noninvasively characterize tissues and to depict changes at a cellular level allows DWI to be an effective complement to conventional sequences of pelvic imaging, especially in oncologic patients. The addition of DWI may obviate contrast material in those with renal insufficiency or contrast material allergy. PMID:21129639

  18. Emergency Magnetic Resonance Imaging of Musculoskeletal Trauma.

    PubMed

    Kumaravel, Manickam; Weathers, William M

    2016-05-01

    Musculoskeletal (MSK) trauma is commonly encountered in the emergency department. Computed tomography and radiography are the main forms of imaging assessment, but the use of magnetic resonance (MR) imaging has become more common in the emergency room (ER) setting for evaluation of low-velocity/sports-related injury and high-velocity injury. The superior soft tissue contrast and detail provided by MR imaging gives clinicians a powerful tool in the management of acute MSK injury in the ER. This article provides an overview of techniques and considerations when using MR imaging in the evaluation of some of the common injuries seen in the ER setting. PMID:27150325

  19. Approach to breast magnetic resonance imaging interpretation.

    PubMed

    Palestrant, Sarah; Comstock, Christopher E; Moy, Linda

    2014-05-01

    With the increasing use of breast magnetic resonance (MR) imaging comes the expectation that the breast radiologist is as fluent in its interpretation as in that of mammography and breast ultrasonography. Knowledge of who should be included for imaging and how to perform the imaging are as essential as interpreting the images. When reading the examination, the radiologist should approach the images from both a global and focused perspective, synthesizing findings into a report that includes a management plan. This article reviews a systematic and organized approach to breast MR imaging interpretation. PMID:24792657

  20. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  1. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  2. Metabolite specific proton magnetic resonance imaging

    SciTech Connect

    Hurd, R.E.; Freeman, D.M.

    1989-06-01

    An imaging method is described that makes use of proton double quantum nuclear magnetic resonance (NMR) to construct images based on selected metabolites such as lactic acid. The optimization of the method is illustrated in vitro, followed by in vivo determination of lactic acid distribution in a solid tumor model. Water suppression and editing of lipid signals are such that two-dimensional spectra of lactic acid may be obtained from a radiation-induced fibrosarcoma (RIF-1) tumor in under 1 min and lactic acid images from the same tumor in under 1 hr at 2.0 T. This technique provides a fast and reproducible method at moderate magnetic field strength for mapping biologically relevant metabolites.

  3. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  4. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  5. Multiparametric magnetic resonance imaging: Current role in prostate cancer management.

    PubMed

    Ueno, Yoshiko; Tamada, Tsutomu; Bist, Vipul; Reinhold, Caroline; Miyake, Hideaki; Tanaka, Utaru; Kitajima, Kazuhiro; Sugimura, Kazuro; Takahashi, Satoru

    2016-07-01

    Digital rectal examination, serum prostate-specific antigen screening and transrectal ultrasound-guided biopsy are conventionally used as screening, diagnostic and surveillance tools for prostate cancer. However, they have limited sensitivity and specificity. In recent years, the role of multiparametric magnetic resonance imaging has steadily grown, and is now part of the standard clinical management in many institutions. In multiparametric magnetic resonance imaging, the morphological assessment of T2-weighted imaging is correlated with diffusion-weighted imaging, dynamic contrast-enhanced imaging perfusion and/or magnetic resonance spectroscopic imaging. Multiparametric magnetic resonance imaging is currently regarded as the most sensitive and specific imaging technique for the evaluation of prostate cancer, including detection, staging, localization and aggressiveness evaluation. This article presents an overview of multiparametric magnetic resonance imaging, and discusses the current role of multiparametric magnetic resonance imaging in the different fields of prostate cancer management. PMID:27184019

  6. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible–near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  7. Fano resonance generated by magnetic scatterer in micro metal slit

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Song; Wang, Pei-Jie; Wang, Hai; Feng, Sheng-Fei

    2014-09-01

    A micro metal slit/magnetic scatterer structure is proposed to generate electromagnetic Fano resonance. The magnetic scatterer is formed by infinite long split cylinder resonator array. The analytical transmissivity formulas are deduced from Maxwell electromagnetic theory and the Fano resonance transmission is achieved by the theoretical calculations. The enhancement of environment refractive index leads to an ultrasensitive and linear red shift of resonance peak in the THz range.

  8. Retrieval, Monitoring, and Control Processes: A 7 Tesla fMRI Approach to Memory Accuracy

    PubMed Central

    Risius, Uda-Mareke; Staniloiu, Angelica; Piefke, Martina; Maderwald, Stefan; Schulte, Frank P.; Brand, Matthias; Markowitsch, Hans J.

    2012-01-01

    Memory research has been guided by two powerful metaphors: the storehouse (computer) and the correspondence metaphor. The latter emphasizes the dependability of retrieved mnemonic information and draws upon ideas about the state dependency and reconstructive character of episodic memory. We used a new movie to unveil the neural correlates connected with retrieval, monitoring, and control processes, and memory accuracy (MAC), according to the paradigm of Koriat and Goldsmith (1996a,b). During functional magnetic resonance imaging, subjects performed a memory task which required (after an initial learning phase) rating true and false statements [retrieval phase (RP)], making confidence judgments in the respective statement [monitoring phase (MP)], and deciding for either venturing (volunteering) the respective answer or withholding the response [control phase (CP)]. Imaging data pointed to common and unique neural correlates. Activations in brain regions related to RP and MAC were observed in the precuneus, middle temporal gyrus, and left hippocampus. MP was associated with activation in the left anterior and posterior cingulate cortex along with bilateral medial temporal regions. If an answer was volunteered (as opposed to being withheld) during the CP, temporal, and frontal as well as middle and posterior cingulate areas and the precuneus revealed activations. Increased bilateral hippocampal activity was found during withholding compared to volunteering answers. The left caudate activation detected during withholding compared to venturing an answer supports the involvement of the left caudate in inhibiting unwanted responses. Contrary to expectations, we did not evidence prefrontal activations during withholding (as opposed to volunteering) answers. This may reflect our design specifications, but alternative interpretations are put forth. PMID:23580061

  9. Exploration of Traveling Waves in High Field Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Zachary

    2010-10-01

    MRI has been a remarkable means of medical imaging for the last three decades without exposure to ionizing radiation. The increase in MRI signal with the increase of magnetic field strength is the main motive in a move towards imaging at higher field strengths. However, the advent of higher field strength MRI has come with the challenge of maintaining homogeneous excitation fields (B1). One promising solution to this has been to transmit radio-frequency (RF) signals using a patch antenna instead of the usual RF coil. This technique exploits the theory of waveguides and traveling waves typically used in high frequency applications. In this particular study we have investigated this unique application by measuring B1 maps, geometric distortions, and signal-to-noise ratios (SNRs) in order to better quantify its potential in MRI. Using phantoms to match the similar physical features of the human head/torso region, we ran comparative scans using the traveling wave setup versus the conventional head volume coil setup on a Philips 7 Tesla MRI scanner. The goal of this experiment was to systematically measure B1 maps for flip angle efficiency and multi-planar rendering images for geometric distortion. Although the application of traveling wave in MRI does suffer from low excitation (small flip angles), there seems to be little to no correlation between traveling wave phase variability and frequency/phase encoding. Therefore, further experiments, if carried out, may enhance image quality such as RF shielding, the use of local receive coils, and/or the addition of a second patch antenna.

  10. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging.

  11. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  12. Massive subchorionic thrombosis followed by magnetic resonance imaging.

    PubMed

    Himoto, Yuki; Okumura, Ryosuke; Tsuji, Natsuki; Nagano, Tadayoshi; Fujimoto, Masakazu; Yamaoka, Toshihide; Kohno, Shigene

    2012-01-01

    Massive subchorionic thrombosis is a rare condition, defined as a large thrombus confined to the subchorionic space. It is associated with poor perinatal prognosis. However, prenatal diagnosis by ultrasonography is often difficult. We report a case of massive subchorionic thrombosis developing dermatomyositis after the delivery, followed by magnetic resonance imaging. Moreover, we review other 4 cases assessed with magnetic resonance imaging. Magnetic resonance imaging is very useful for confirmation of diagnosis and follow-up in combination with ultrasonography. PMID:22592619

  13. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  14. Magnetic Resonance Imaging in Pediatric Pulmonary Hypertension

    PubMed Central

    Olgunturk, Rana; Cevik, Ayhan; Terlemez, Semiha; Kacar, Emre; Oner, Yusuf Ali

    2015-01-01

    The present study aims to determine the efficacy and reliability of cardiovascular magnetic resonance imaging in establishing the diagnosis and prognosis of pulmonary hypertension in children. This is a retrospective comparison of 25 children with pulmonary hypertension and a control group comprising 19 healthy children. The diagnosis of pulmonary hypertension was made when the mean pulmonary artery pressure was ≥25 mmHg by catheter angiography. The children with pulmonary hypertension had significantly lower body mass indices than did the healthy children (P=0.048). In addition, the children with pulmonary hypertension had significantly larger main pulmonary artery diameters and ascending aortic diameters (both P=0.001) but statistically similar ratios of main pulmonary artery diameter-to-ascending aortic diameter. If the main pulmonary artery diameter was ≥25 mm, pediatric pulmonary hypertension was diagnosed with 72% sensitivity and 84% specificity. In the event that the ratio of main pulmonary artery diameter-to-ascending aorta diameter was ≥1, pediatric pulmonary hypertension was diagnosed with 60% sensitivity and 53% specificity. When compared with children who had New York Heart Association functional class II pulmonary hypertension, the children with functional class III pulmonary hypertension had significantly larger main (P=0.046), right (P=0.036), and left (P=0.003) pulmonary arteries. Cardiovascular magnetic resonance imaging is useful in the diagnosis of children with pulmonary hypertension. Pediatric pulmonary hypertension can be diagnosed with high sensitivity and specificity when the main pulmonary artery diameter measures ≥25 mm. PMID:26175631

  15. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  16. PLANTAR THROMBOPHLEBITIS: MAGNETIC RESONANCE IMAGING FINDINGS

    PubMed Central

    Miranda, Frederico Celestino; Carneiro, Renato Duarte; Longo, Carlos Henrique; Fernandes, Túlio Diniz; Rosemberg, Laércio Alberto; de Gusmão Funari, Marcelo Buarque

    2015-01-01

    Objective: Demonstrate the magnetic resonance imaging (MRI) findings in plantar thrombophlebitis. Methods: Retrospective review of twenty patients with pain in the plantar region of the foot, in which the MRI findings indicated plantar thrombophlebitis. Results: A total of fourteen men and six women, mean age 46.7 years were evaluated. Eight of these patients also underwent Doppler ultrasonography, which confirmed the thrombophlebitis. The magnetic resonance images were evaluated in consensus by two radiologists with experience in musculoskeletal radiology (more than 10 years each), showing perivascular edema in all twenty patients (100%) and muscle edema in nineteen of the twenty patients (95%). All twenty patients had intraluminal intermediate signal intensity on T2-weighted (100%) and venous ectasia was present in seventeen of the twenty cases (85%). Collateral veins were visualized in one of the twenty patients (5%). All fourteen cases (100%), in which intravenous contrast was administered, showed perivenular tissues enhancement and intraluminal filling defect. Venous ectasia, loss of compressibility and no flow on Doppler ultrasound were also observed in all eight cases examined by the method. Conclusion: MRI is a sensitive in the evaluation of plant thrombophlebitis in patients with plantar foot pain. PMID:27047898

  17. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described. PMID:19499839

  18. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  19. Magnetic resonance-guided thermal surgery.

    PubMed

    Cline, H E; Schenck, J F; Watkins, R D; Hynynen, K; Jolesz, F A

    1993-07-01

    A demonstration of MR guided thermal surgery involved experiments with imaging of focused ultrasound in an MRI system, measurements of the thermal transients and a thermal analysis of the resulting images. Both the heat distribution and the creation of focused ultrasound lesions in gel phantoms, in vitro bovine muscle and in vivo rabbit muscle were monitored with magnetic resonance imaging. Thermal surgical procedures were modeled by an elongated gaussian heat source where heat flow is controlled by tissue thermal properties and tissue perfusion. Temperature profiles were measured with thermocouples or calculated from magnetic resonance imaging in agreement with the model. A 2-s T1-weighted gradient-refocused acquisition provided thermal profiles needed to localize the heat distribution produced by a 4-s focused ultrasound pulse. Thermal analysis of the images give an effective thermal diffusion coefficient of 0.0015 cm2/s in gel and 0.0033 cm2/s in muscle. The lesions were detected using a T2-weighted spin-echo or fast spin-echo pulse sequence in agreement with muscle tissue sections. Potential thermal surgery applications are in the prostate, liver, kidney, bladder, breast, eye and brain. PMID:8371680

  20. Magnetic resonance imaging in pediatric pulmonary hypertension.

    PubMed

    Pektas, Ayhan; Olgunturk, Rana; Cevik, Ayhan; Terlemez, Semiha; Kacar, Emre; Oner, Yusuf Ali

    2015-06-01

    The present study aims to determine the efficacy and reliability of cardiovascular magnetic resonance imaging in establishing the diagnosis and prognosis of pulmonary hypertension in children. This is a retrospective comparison of 25 children with pulmonary hypertension and a control group comprising 19 healthy children. The diagnosis of pulmonary hypertension was made when the mean pulmonary artery pressure was ≥25 mmHg by catheter angiography. The children with pulmonary hypertension had significantly lower body mass indices than did the healthy children (P=0.048). In addition, the children with pulmonary hypertension had significantly larger main pulmonary artery diameters and ascending aortic diameters (both P=0.001) but statistically similar ratios of main pulmonary artery diameter-to-ascending aortic diameter. If the main pulmonary artery diameter was ≥25 mm, pediatric pulmonary hypertension was diagnosed with 72% sensitivity and 84% specificity. In the event that the ratio of main pulmonary artery diameter-to-ascending aorta diameter was ≥1, pediatric pulmonary hypertension was diagnosed with 60% sensitivity and 53% specificity. When compared with children who had New York Heart Association functional class II pulmonary hypertension, the children with functional class III pulmonary hypertension had significantly larger main (P=0.046), right (P=0.036), and left (P=0.003) pulmonary arteries. Cardiovascular magnetic resonance imaging is useful in the diagnosis of children with pulmonary hypertension. Pediatric pulmonary hypertension can be diagnosed with high sensitivity and specificity when the main pulmonary artery diameter measures ≥25 mm. PMID:26175631

  1. Magnetic resonance imaging of spinal injury.

    PubMed

    Tracy, P T; Wright, R M; Hanigan, W C

    1989-03-01

    Magnetic resonance imaging (MRI) was performed on 30 patients following spinal injury (SI). Spin-echo sequences and surface coils were used for all patients. Plain radiographs, high-resolution computed tomography (CT), and MRI were compared for the delineation of bone, disc, and ligament injury, measurement of sagittal spinal canal diameter and subluxation, epidural hematoma, and spinal cord structure. Myelography or intrathecal contrast-enhanced CT were not performed on any of these patients. Magnetic resonance imaging accurately delineated intraspinal pathology in two of four patients with acute penetrating SI, and was normal in the other two patients. In 16 patients with acute nonpenetrating SI, MRI was superior to CT for visualizing injuries to discs, ligaments, and the spinal cord, while CT was superior to MRI in characterizing bony injury. Computed tomography and MRI provided similar measurements of subluxation in six of six patients and of sagittal spinal canal diameter in three of four patients. In ten patients with chronic SI, MRI demonstrated post-traumatic cysts, myelomalacia, spinal cord edema, and the presence or absence of spinal cord compression. In patients with acute penetrating SI and chronic SI, MRI provided comprehensive clinical information. In patients with acute nonpenetrating SI, the information obtained by MRI complemented the data given by plain radiographs and CT, allowing clinical decisions to be made without the need of invasive imaging modalities. PMID:2711244

  2. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  3. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  4. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  5. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  6. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  7. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  8. Reciprocity and gyrotropism in magnetic resonance transduction

    NASA Astrophysics Data System (ADS)

    Tropp, James

    2006-12-01

    We give formulas for transduction in magnetic resonance—i.e., the appearance of an emf due to Larmor precession of spins—based upon the modified Lorentz reciprocity principle for gyrotropic (also called “nonreciprocal”) media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e., (H1x±iH1y) , where, e.g., for a single transceive antenna, the H ’s are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped

  9. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Polimeni, Jonathan R; Evans, Karleyton C; Bhat, Himanshu; Keil, Boris; Rosen, Bruce R; Boas, David A; Wald, Lawrence L

    2016-05-13

    The influence of cardiac activity on the viscoelastic properties of intracranial tissue is one of the mechanisms through which brain-heart interactions take place, and is implicated in cerebrovascular disease. Cerebrovascular disease risk is not fully explained by current risk factors, including arterial compliance. Cerebrovascular compliance is currently estimated indirectly through Doppler sonography and magnetic resonance imaging (MRI) measures of blood velocity changes. In order to meet the need for novel cerebrovascular disease risk factors, we aimed to design and validate an MRI indicator of cerebrovascular compliance based on direct endogenous measures of blood volume changes. We implemented a fast non-gated two-dimensional MRI pulse sequence based on echo-planar imaging (EPI) with ultra-short repetition time (approx. 30-50 ms), which stepped through slices every approximately 20 s. We constrained the solution of the Bloch equations for spins moving faster than a critical speed to produce an endogenous contrast primarily dependent on spin volume changes, and an approximately sixfold signal gain compared with Ernst angle acquisitions achieved by the use of a 90° flip angle. Using cardiac and respiratory peaks detected on physiological recordings, average cardiac and respiratory MRI pulse waveforms in several brain compartments were obtained at 7 Tesla, and used to derive a compliance indicator, the pulsatility volume index (pVI). The pVI, evaluated in larger cerebral arteries, displayed significant variation within and across vessels. Multi-echo EPI showed the presence of significant pulsatility effects in both S0 and [Formula: see text] signals, compatible with blood volume changes. Lastly, the pVI dynamically varied during breath-holding compared with normal breathing, as expected for a compliance indicator. In summary, we characterized and performed an initial validation of a novel MRI indicator of cerebrovascular compliance, which might prove useful

  10. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  11. [Clinical applications of magnetic resonance cholangiopancreatography].

    PubMed

    Soto, J A; Castrillón, G A

    2007-01-01

    Magnetic resonance cholangiopancreatography (MRCP) is the most important diagnostic alternative that has been developed in recent years for the evaluation of the biliary and pancreatic ducts. The advantages of this technique are: it does not use contrast media or ionizing radiation; it is noninvasive and complication free; and, the examination is relatively short (approximately 20 to 30 minutes). MRCP has high sensitivity and specificity for diagnosing biliary dilatation and for determining the site and cause of stenosis. Its diagnostic precision for biliary and pancreatic stones is similar to that of endoscopic retrograde cholangiopancreatography (ERCP). MRCP has replaced ERCP in biliary and pancreatic anatomic variants. In unsuccessful ERCP, MRCP is nearly the only diagnostic modality for the evaluation of the biliary tract. Other applications include primary sclerosing cholangitis, stenosis after liver transplantation, and the evaluation of bilioenteric anastomoses. This article reviews the clinical applications of MRCP in the evaluation of biliopancreatic diseases. PMID:18021667

  12. Magnetic resonance imaging in Leber's optic neuropathy.

    PubMed Central

    Kermode, A G; Moseley, I F; Kendall, B E; Miller, D H; MacManus, D G; McDonald, W I

    1989-01-01

    Thirteen males with Leber's optic neuropathy had magnetic resonance imaging (MRI) of the brain, and in eight the optic nerves were imaged using STIR (Short Time Inversion Recovery) sequences. All optic nerve scans were abnormal. In seven with bilateral visual loss four showed bilateral increased optic nerve signal and three unilateral increase. The involvement was of the mid and posterior intra-orbital sections over three 5 mm slices or more with sparing of the anterior portion. One patient with unilateral visual loss had increased signal only on the affected side. Brain MRI was normal, in marked contrast to the findings in clinically isolated optic neuritis in which multiple white matter lesions are seen in the majority. Images PMID:2732742

  13. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  14. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  15. Magnetic resonance imaging of prostate cancer.

    PubMed

    Guneyli, Serkan; Erdem, Cemile Zuhal; Erdem, Lutfi Oktay

    2016-01-01

    Prostate cancer is one of the causes of cancer-related deaths. Multiparametric magnetic resonance imaging (MRI) provides the best soft tissue resolution and plays an important role in the management of prostate cancer patients. It is the recommended imaging modality for patients with prostate cancer, and it is clinically indicated for diagnosis, staging, tumor localization, detection of tumor aggressiveness, follow-up, and MRI-guided interventions. Multiparametric MRI includes T1- and high-resolution T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. We evaluated MR images of patients with prostate cancer who underwent multiparametric endorectal MRI on a 3.0-T scanner and presented demonstrative images. PMID:27317204

  16. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  17. Magnetic resonance imaging of heterotaxis syndrome.

    PubMed

    Stoeckelhuber, Beate M; Eckey, Thomas; Buchholz, Michael; Kapsimalakou, Smaragda; Stoeckelhuber, Mechthild

    2008-12-20

    Failure to establish normal left-right body axis (LRA) formation during embryogenesis results in heterotaxis, a multi-malformation syndrome. We report on a 20-year-old young woman who presented to the emergency room with upper abdominal pain. On chest X-ray, dextrocardia was noted. Ultrasound was inconclusive. Barium studies demonstrated non-rotation of the intestine. Magnetic resonance imaging (MRI) of the abdomen confirmed heterotaxis with abnormal arrangement of abdominal organs and vasculature. This is the first radiographic description of LRA in MRI. It provides a unique contribution to the wide morphological variety of lateralization defects in a single examination within 15 min and without the risks of ionizing radiation. In addition, a literature overview over the genetic aspects, broad morphological spectrum, and possible therapeutic consequences is given. PMID:18835766

  18. Magnetic resonance imaging of pancreatitis: An update

    PubMed Central

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  19. Safety of magnetic resonance contrast media.

    PubMed

    Runge, V M

    2001-08-01

    Intravenous contrast media, specifically the gadolinium chelates, are well accepted for use in the clinical practice of magnetic resonance imaging. The gadolinium chelates are considered to be very safe and lack (in intravenous use) the nephrotoxicity found with iodinated contrast media. Minor adverse reactions, including nausea and hives, occur in a low percentage of cases. The four agents currently available in the United States cannot be differentiated on the basis of these adverse reactions. Severe anaphylactoid reactions are also known to occur with all agents, although these are uncommon. This review discusses the safety issues involved with intravenous administration of the gadolinium chelates and off-label use. The latter is common in clinical practice and permits broader application of these agents. PMID:11687717

  20. Molecular magnetic resonance imaging in cancer.

    PubMed

    Haris, Mohammad; Yadav, Santosh K; Rizwan, Arshi; Singh, Anup; Wang, Ena; Hariharan, Hari; Reddy, Ravinder; Marincola, Francesco M

    2015-01-01

    The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care. PMID:26394751

  1. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. PMID:26614130

  2. [Prostate biopsy under magnetic resonance imaging guidance].

    PubMed

    Kuplevatskiy, V I; CherkashiN, M A; Roshchin, D A; Berezina, N A; Vorob'ev, N A

    2016-01-01

    Prostate cancer (PC) is one of the most important problems in modern oncology. According to statistical data, PC ranks second in the cancer morbidity structure in the Russian Federation and developed countries and its prevalence has been progressively increasing over the past decade. A need for early diagnosis and maximally accurate morphological verification of the diagnosis in difficult clinical cases (inconvenient tumor location for standard transrectal biopsy; gland scarring changes concurrent with prostatitis and hemorrhage; threshold values of prostate-specific antigen with unclear changes in its doubling per unit time; suspicion of biochemical recurrence or clinical tumor progression after special treatment) leads to revised diagnostic algorithms and clinically introduced new high-tech invasive diagnostic methods. This paper gives the first analysis of literature data on Russian practice using one of the new methods to verify prostate cancer (transrectal prostate cancer under magnetic resonance imaging (MRI) guidance). The have sought the 1995-2015 data in the MEDLINE and Pubmed. PMID:27192773

  3. Magnetic Resonance Imaging for Perianal Fistula.

    PubMed

    Tolan, Damian J M

    2016-08-01

    Perianal fistulas and other inflammatory diseases of the anus and perianal soft tissues are a cause of substantial morbidity, and are a major part of the practice of any colorectal surgeon. Magnetic resonance imaging (MRI) has a key role in the assessment of patients for the extent of fistulizing Crohn disease, complications related to fistulas, and to assist in confirming the diagnosis or proposing an alternative. Technique is critical and in particular, the selection of sequences for diagnosis and characterization of abnormalities with the main choices being between standard anatomical sequences (T1 or T2), assessing for edema (FS T2 or STIR), assessing abnormal contrast enhancement (FS T1), and assessing for abnormal diffusion or a combination of these. Guidance on MRI sequence selection, classification of fistulas, the current guidance on the role of MRI in assessing patients, and advice on how to provide useful structured reports, as well as how to detect complications of perianal sepsis are included. PMID:27342895

  4. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  5. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  6. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. PMID:24931095

  7. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  8. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  9. [Nuclear magnetic resonance in ischemic cardiopathy].

    PubMed

    Meave, Aloha

    2007-01-01

    Nuclear magnetic resonance is the "gold standard" technique to quantify the ventricular volume, the ejection fraction, and the myocardial mass. In patients suffering from ischemic cardiopathy, the ejection fraction is the most important prognostic parameter, even above from lessoned arteries index. An adequate diagnose between a non-viable and a viable myocardium is of great importance in the therapeutic approach for ischemic cardiopathy. By administrating a paramagnetic contrast media named gadolinium, fist pass and late-reinforcement techniques, are applied. With these, it is possible to evaluate the perfusion as well as necrotic areas. In order to identify sub-endocardium ischemia, drugs such as adenosine and dipiridamol, are employed as vasodilators. This technique allows the definition of reinforcement extension, being sub-endocardiac, which is an ailment which affects 50% of the myocardium depth, or even, transmural compromise. PMID:18938717

  10. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized. PMID:18465447

  11. Nuclear magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.T.; Weinstein, M.A.; Pavlicek, W.; Starnes, D.L.; Duchesneau, P.M.; Boumphrey, F.; Hardy, R.J. Jr.

    1984-01-01

    Forty subjects were examined to determine the accuracy and clinical usefulness of nuclear magnetic resonance (NMR) examination of the spine. The NMR images were compared with plain radiographs, high-resolution computed tomograms, and myelograms. The study included 15 patients with normal spinal cord anatomy and 25 patients whose pathological conditions included canal stenosis, herniated discs, metastatic tumors, primary cord tumor, trauma, Chiari malformations, syringomyelia, and developmental disorders. Saturation recovery images were best in differentiating between soft tissue and cerebrospinal fluid. NMR was excellent for the evaluation of the foramen magnum region and is presently the modality of choice for the diagnosis of syringomyelia and Chiari malformation. NMR was accurate in diagnosing spinal cord trauma and spinal canal block.

  12. Chronic subdural hematoma: demonstration by magnetic resonance

    SciTech Connect

    Sipponen, J.T.; Sepponen, R.E.; Sivula, A.

    1984-01-01

    The ability of magnetic resonance (MR) to identify intracranial hematomas was tested in five patients with clinical and computed tomographic signs of chronic subdural hematoma. The extracerebral collections were displayed as a zone of bright intensity using the T1-weighted inversion recovery (IR 1500/400) sequence, reflecting the lesions' short T1 relaxation times. The collections also showed high intensity using the spin echo (SE) sequence, with a longer delay of 100ms and 160ms, reflecting the long T2 relaxation time. The spin echo sequence with a repetition time of 500ms and an echo delay of 160ms (SE 500/160) almost effaced other structures in the image, thus increasing the specificity of this pulse scheme for detection of chronic blood collections. Although in two of the five patients the subdural hematomas were in the isodense CT phase, all were easily visualized with MR.

  13. Magnetic Resonance Imaging of the Knee

    PubMed Central

    Hash, Thomas W.

    2013-01-01

    Context: Magnetic resonance imaging (MRI) affords high-resolution visualization of the soft tissue structures (menisci, ligaments, cartilage, etc) and bone marrow of the knee. Evidence Acquisition: Pertinent clinical and research articles in the orthopaedic and radiology literature over the past 30 years using PubMed. Results: Ligament tears can be accurately assessed with MRI, but distinguishing partial tears from ruptures of the anterior cruciate ligament (ACL) can be challenging. Determining the extent of a partial tear is often extremely difficult to accurately assess. The status of the posterolateral corner structures, menisci, and cartilage can be accurately evaluated, although limitations in the evaluation of certain structures exist. Patellofemoral joint, marrow, tibiofibular joint, and synovial pathology can supplement physical examination findings and provide definitive diagnosis. Conclusions: MRI provides an accurate noninvasive assessment of knee pathology. PMID:24381701

  14. Simplifying cardiovascular magnetic resonance pulse sequence terminology.

    PubMed

    Friedrich, Matthias G; Bucciarelli-Ducci, Chiara; White, James A; Plein, Sven; Moon, James C; Almeida, Ana G; Kramer, Christopher M; Neubauer, Stefan; Pennell, Dudley J; Petersen, Steffen E; Kwong, Raymond Y; Ferrari, Victor A; Schulz-Menger, Jeanette; Sakuma, Hajime; Schelbert, Erik B; Larose, Éric; Eitel, Ingo; Carbone, Iacopo; Taylor, Andrew J; Young, Alistair; de Roos, Albert; Nagel, Eike

    2014-01-01

    We propose a set of simplified terms to describe applied Cardiovascular Magnetic Resonance (CMR) pulse sequence techniques in clinical reports, scientific articles and societal guidelines or recommendations. Rather than using various technical details in clinical reports, the description of the technical approach should be based on the purpose of the pulse sequence. In scientific papers or other technical work, this should be followed by a more detailed description of the pulse sequence and settings. The use of a unified set of widely understood terms would facilitate the communication between referring physicians and CMR readers by increasing the clarity of CMR reports and thus improve overall patient care. Applied in research articles, its use would facilitate non-expert readers' understanding of the methodology used and its clinical meaning. PMID:25551695

  15. Magnetic resonance imaging of pancreatitis: an update.

    PubMed

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-10-28

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  16. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  17. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  18. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  19. Could magnetic resonance provide in vivo histology?

    PubMed Central

    Dominietto, Marco; Rudin, Markus

    2014-01-01

    The diagnosis of a suspected tumor lesion faces two basic problems: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization. PMID:24454320

  20. Computed tomography and magnetic resonance findings in lipoid pneumonia.

    PubMed Central

    Bréchot, J M; Buy, J N; Laaban, J P; Rochemaure, J

    1991-01-01

    A case of exogenous lipoid pneumonia was documented by computed tomography and magnetic resonance imaging. Although strongly suggesting the presence of fat on T1 weighted images, magnetic resonance does not produce images specific for this condition. Computed tomography is the best imaging modality for its diagnosis. Images PMID:1750024

  1. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  2. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  3. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  4. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  5. Magnetic resonance characterization of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Belli, Matteo; Vellei, Antonio; Canevali, Carmen; Rotta, Davide; Paleari, Stefano; Basini, Martina

    2012-02-01

    Silicon nanowires (SiNWs) have been extensively investigated in the last decades. The interest in these nanostructures stems from both fundamental and applied research motivations. The functional properties of one- and zero-dimensional silicon structures are significantly different, at least below a certain critical dimension, from those well known in the bulk. The key and peculiar functional properties of SiNWs find applications in nanoelectronics, classical and quantum information processing and storage, optoelectronics, photovoltaics, thermoelectric, battery technology, nano-biotechnology, and neuroelectronics. We report our work on the characterization by continuous wave (CW) and pulse electron spin resonance (CW, FT-EPR) and electrically detected magnetic resonance (EDMR) measurements of silicon nanowires (SiNWs) produced by different top-down processes. SiNWs were fabricated starting from SOI wafers using standard e-beam lithography and anisotropic wet etching or by metal-assisted chemical etching. Further oxidation was used to reduce the wire cross section. Different EDMR implementations were used to address the electronic wave function of donors (P, As) and to characterize point defects at the SiNWs/SiO2 interface.

  6. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  7. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  8. The future of magnetic resonance-based techniques in neurology.

    PubMed

    2001-01-01

    Magnetic resonance techniques have become increasingly important in neurology for defining: 1. brain, spinal cord and peripheral nerve or muscle structure; 2. pathological changes in tissue structures and properties; and 3. dynamic patterns of functional activation of the brain. New applications have been driven in part by advances in hardware, particularly improvements in magnet and gradient coil design. New imaging strategies allow novel approaches to contrast with, for example, diffusion imaging, magnetization transfer imaging, perfusion imaging and functional magnetic resonance imaging. In parallel with developments in hardware and image acquisition have been new approaches to image analysis. These have allowed quantitative descriptions of the image changes to be used for a precise, non-invasive definition of pathology. With the increasing capabilities and specificity of magnetic resonance techniques it is becoming more important that the neurologist is intimately involved in both the selection of magnetic resonance studies for patients and their interpretation. There is a need for considerably improved access to magnetic resonance technology, particularly in the acute or intensive care ward and in the neurosurgical theatre. This report illustrates several key developments. The task force concludes that magnetic resonance imaging is a major clinical tool of growing significance and offers recommendations for maximizing the potential future for magnetic resonance techniques in neurology. PMID:11509077

  9. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  10. Cardiac imaging using gated magnetic resonance

    SciTech Connect

    Lanzer, P.; Botvinick, E.H.; Schiller, N.B.

    1984-01-01

    To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested; an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.

  11. Multi-dimensionally encoded magnetic resonance imaging

    PubMed Central

    Lin, Fa-Hsuan

    2013-01-01

    Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here we propose the multi-dimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel RF coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. PMID:22926830

  12. Contrast media in cardiovascular magnetic resonance.

    PubMed

    Lombardi, Massimo; Aquaro, Giovanni; Favilli, Brunella

    2005-01-01

    Among the available imaging techniques, Magnetic Resonance Imaging (MRI) is gaining an increasing role in the cardiologic setting because its specific properties such as the use of non ionising energies, the natural strong contrast between different tissues, the absence of spatial limitations, the good spatial and temporal resolution, the reduced operator dependency. To further improve the images quality and the histopathologic characterisation of tissues the use of contrast media (molecules containing gadolinium, manganese, iron, dysprosium ions) has been proposed both in the experimental and in the clinical settings. Among these ions gadolinium, which having 7 odd electrons in the external orbit has a strong magnetic momentum, is the most used. Gadolinium by itself is extremely toxic but once it is linked with a chelanting agent such as DTPA (Dietilen-Triamin-Penta-Acetic acid) the resulting complex shows a very low toxicity. The number of Gadolinium based compound is growing together with the use of contrast agents in MRI. These contrast agents are routinely used to perform Magnetic Resonance Angiography (MRA) and to a better definition of several cardiac diseases such as the presence of a intra- or paracardiac mass, the evaluation of myocardial perfusion and the evaluation of viability. Both the latter applications have relevant clinical implications. In fact the assessment of myocardial perfusion is one of the most used approach for detecting inducible myocardial ischemia due to major coronary artery disease or to assess the presence of a microvascular disease. The presence and the extent of viable myocardium is deeply modifying the clinical decision making as this viable tissue can recruit a normal function spontaneously or after revascularisation. Furthermore, the extent of viable myocardium has a strong correlation with negative prognosis. Clinical events are also time related to the detection of viable tissue. These evidences imply that the diagnostic

  13. Microrobotic navigable entities for Magnetic Resonance Targeting.

    PubMed

    Martel, Sylvain

    2010-01-01

    Magnetic Resonance Targeting (MRT) uses MRI for gathering tracking data to determine the position of microscale entities with the goal of guiding them towards a specific target in the body accessible through the vascular network. At full capabilities, a MRT platform designed to treat a human would consist of a clinical MRI scanner running special algorithms and upgraded to provide propulsion gradient up to approximately 400mT/m to enable entities as small as a few tens of micrometers in diameter and containing magnetic nanoparticles (MNP) to be steered at vessel bifurcations based on tracking information. Indeed, using a clinical MRI system, we showed that such single entity with a diameter as small as 15microm is detectable in gradient-echo scans. Among many potential interventions, targeted cancer therapy is a good initial application for such new microrobotic approach since secondary toxicity for the patient could be reduced while increasing therapeutic efficacy using lower dosages. Although many types of such entities are needed to provide a larger set of tools, here, only three initial types designed with different functionalities and for different types of cancer are briefly described. Initially designed for targeted chemo-embolization of liver tumors, the first type known as Therapeutic Magnetic Micro-Carriers (TMMC) consists in its present form of approximately 50 microm PLGA microparticles containing therapeutics and approximately 180 nm FeCo MNP. For the second type, MNP are not only used for propulsion and tracking, but also actuation based on a local elevation of the temperature. In its simplest form, it consists of approxiamtely 20 nm MNP embedded in a thermo-sensitive hydrogel known as PNIPA, allowing additional functionalities such as computer triggered drug release and targeted hyperthermia. The third type initially considered to target colorectal tumors, consists of 1-2 microm MR-trackable and controllable MC-1 Magnetotactic Bacteria (MTB) with

  14. Overhauser-enhanced magnetic resonance elastography.

    PubMed

    Salameh, Najat; Sarracanie, Mathieu; Armstrong, Brandon D; Rosen, Matthew S; Comment, Arnaud

    2016-05-01

    Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady-state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom-built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser-enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm(3) resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra-low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low-cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26915977

  15. Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

    SciTech Connect

    Leconte, M.; Beyer, P.; Benkadda, S.

    2009-01-30

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

  16. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  17. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  18. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  19. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S. PMID:26989248

  20. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  1. Ferromagnetic Resonance Studies of Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Yu, Yuwu

    1995-01-01

    Angular dependence of maximum remanence (ADMR) and/or x-ray diffraction (XRD) techniques have been used to determine particle orientation distributions for various recording media, including gamma -rm Fe_2O_3, Co- gamma-rm Fe_2O_3, CrO_2, Ba-ferrite, and MP tapes. A distribution of column directions for metal evaporated (ME) tape has been determined from transmission electron microscopy (TEM) pictures. However, the ferromagnetic resonance (FMR) results suggest a much more narrow distribution of magnetic anisotropy directions. For Ba-ferrite tapes, the distribution functions measured by ADMR are consistent with those by XRD if interparticle interactions are accounted for. The predetermined distribution function has been used to fit FMR spectra for the above tapes. Landau-Lifshitz damping constants have been measured with high accuracy for particulate recording media. An excellent correlation has been found between the damping constants and the switching constants for these media. The results suggest that the FMR technique may be useful in predicting the switching speed of particulate recording media. The FMR technique is also useful in looking for methods of increasing the damping constant of recording media. Possible methods of increasing the switching speed of Ba-ferrite media have been studied. The reduction of Ba-ferrite particles in a hydrogen atmosphere increases the damping constant significantly. It is predicted that reduced Ba-ferrite probably switches faster than ordinary Ba-ferrite. Qualitative discussions on the origin of damping for various recording media have been presented within the framework of magnon relaxation theory. The dependence of the damping constant on magnetic properties, such as particle orientation, media coercivity, and particle interactions are also discussed.

  2. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  3. Magnetic resonance spectroscopy in congenital heart disease.

    PubMed Central

    Miall-Allen, V. M.; Kemp, G. J.; Rajagopalan, B.; Taylor, D. J.; Radda, G. K.; Haworth, S. G.

    1996-01-01

    OBJECTIVE: To determine the feasibility of studying myocardial and skeletal muscle bioenergetics using 31P magnetic resonance spectroscopy (MRS) in babies and young children with congenital heart disease. SUBJECTS: 16 control subjects aged 5 months to 24 years and 18 patients with CHD, aged 7 months to 23 years, of whom 11 had cyanotic CHD, five had cardiac failure, and two had had a Senning procedure. DESIGN: 31P MRS was carried out using a 1.9 Tesla horizontal 65 cm bore whole body magnet to study the myocardium in 10 patients and skeletal muscle (gastrocnemius) in 14 patients, eight of whom were exercised, together with appropriate controls. RESULTS: In hypoxaemic patients, in skeletal muscle at rest intracellular pH (pHi) was abnormally high [7.06 (SEM 0.04) v 7.04 (0.05), P < 0.01] and showed a positive correlation with haemoglobin (P < 0.03). On exercise, hypoxaemic patients fatigued more quickly but end-exercise pHi and phosphocreatine recovery were normal, implying that an equivalent but smaller amount of work had been performed. End-exercise ADP concentration was lower. On recovery, the initial rate of phosphocreatine resynthesis was low. Skeletal muscle bioenergetics were within normal limits in those in heart failure. In the myocardium, the phosphocreatine/ATP ratio was similar in controls and hypoxaemic subjects, but low in those in heart failure. CONCLUSIONS: In heart failure, the myocardial phosphocreatine/ATP ratio was reduced, as in adults, while resting skeletal muscle studies were normal. By contrast, hypoxaemic children had normal myocardial bioenergetics, but showed skeletal muscle alkalinity, and energy reserves were more readily depleted on exercise. On recovery, the initially slow phosphocreatine resynthesis rate reflects a low rate of mitochondrial ATP synthesis, probably due to an inadequate oxygen supply. 31P MRS offers a safe, non-invasive method of studying myocardial and skeletal muscle bioenergetics in children as young as 5 months

  4. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing.

    PubMed

    Bresch, Erik; Narayanan, Shrikanth

    2010-11-01

    This article investigates using real-time magnetic resonance imaging the vocal tract shaping of 5 soprano singers during the production of two-octave scales of sung vowels. A systematic shift of the first vocal tract resonance frequency with respect to the fundamental is shown to exist for high vowels across all subjects. No consistent systematic effect on the vocal tract resonance could be shown across all of the subjects for other vowels or for the second vocal tract resonance. PMID:21110548

  5. Size Dependence of Ferromagnetic Resonance Frequency in Submicron Patterned Magnet

    NASA Astrophysics Data System (ADS)

    Manago, Takashi; Yamanoi, Kazuto; Yakata, Satoshi; Kimura, Takashi

    2013-05-01

    We investigated the size effect on ferromagnetic resonance (FMR) in a submicron-wide single permalloy bar. The resonant frequency markedly increased with decreasing bar width to less than 1 µm, since the demagnetizing field is effectively modified by changing the bar width even in thin films. The resonant frequency difference between 100- and 1000-nm-wide bars was over 4 GHz in the absence of a magnetic field. This characteristic is promising for practical microwave devices because the desired resonant frequency can be obtained simply by varying the width of narrow ferromagnetic bars so that it is not necessary to change the material or magnetic field.

  6. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    NASA Astrophysics Data System (ADS)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons

  7. Nuclear magnetic resonance spectrometric assay of beta-lactamase.

    PubMed Central

    Kono, M; O'Hara, K; Shiomi, Y

    1980-01-01

    Beta-Lactam antibiotics and the crude enzyme were mixed in deuterium oxide and placed in a nuclear magnetic resonance tube. The change of the nuclear magnetic resonance spectrum during the enzymatic reaction was then analyzed to determine beta-lactamase activity. By using beta-lactam antibiotics such as penicillins, cephalosporins, and cephamycins as substrates, a comparison of the beta-lactamase activities was made between the nuclear magnetic resonance spectrometric assay and the iodometric assay. There was a close correlation between these two methods. PMID:6986114

  8. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    PubMed

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  9. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  10. Magnetic resonance imaging structured reporting in infertility.

    PubMed

    Montoliu-Fornas, Guillermina; Martí-Bonmatí, Luis

    2016-06-01

    Our objective was to define and propose a standardized magnetic resonance (MR) imaging structured report in patients with infertility to have clinical completeness on possible diagnosis and severity. Patients should be studied preferable on 3T equipment with a surface coil. Standard MR protocol should include high-resolution fast spin-echo T2-weighted, diffusion-weighted images and gradient-echo T1-weighted fat suppression images. The report should include ovaries (polycystic, endometrioma, tumor), oviduct (hydrosalpinx, hematosalpinx, pyosalpinx, peritubal anomalies), uterus (agenesia, hypoplasia, unicornuate, uterus didelphys, bicornuate, septate uterus), myometrium (leiomyomas, adenomyosis), endometrium (polyps, synechia, atrophy, neoplasia), cervix and vagina (isthmoceles, mucosal-parietal irregularity, stenosis, neoplasia), peritoneum (deep endometriosis), and urinary system-associated abnormalities. To be clinically useful, radiology reports must be structured, use standardized terminology, and convey actionable information. The structured report must comprise complete, comprehensive, and accurate information, allowing radiologists to continuously interact with patients and referring physicians to confirm that the information is used properly to affect the decision making process. PMID:27105717

  11. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  12. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  13. Progesterone-Targeted Magnetic Resonance Imaging Probes

    PubMed Central

    2015-01-01

    Determination of progesterone receptor (PR) status in hormone-dependent diseases is essential in ascertaining disease prognosis and monitoring treatment response. The development of a noninvasive means of monitoring these processes would have significant impact on early detection, cost, repeated measurements, and personalized treatment options. Magnetic resonance imaging (MRI) is widely recognized as a technique that can produce longitudinal studies, and PR-targeted MR probes may address a clinical problem by providing contrast enhancement that reports on PR status without biopsy. Commercially available MR contrast agents are typically delivered via intravenous injection, whereas steroids are administered subcutaneously. Whether the route of delivery is important for tissue accumulation of steroid-modified MRI contrast agents to PR-rich tissues is not known. To address this question, modification of the chemistry linking progesterone with the gadolinium chelate led to MR probes with increased water solubility and lower cellular toxicity and enabled administration through the blood. This attribute came at a cost through lower affinity for PR and decreased ability to cross the cell membrane, and ultimately it did not improve delivery of the PR-targeted MR probe to PR-rich tissues or tumors in vivo. Overall, these studies are important, as they demonstrate that targeted contrast agents require optimization of delivery and receptor binding of the steroid and the gadolinium chelate for optimal translation in vivo. PMID:25019183

  14. Magnetic resonance imaging of the kidneys

    SciTech Connect

    Leung, A.W.L.; Bydder, G.M.; Steinter, R.E.; Bryant, D.J.; Young, I.R.

    1984-12-01

    A study of the magnetic resonance imaging (MRI) appearance of the kidneys in six normal volunteers and 52 patients is reported. Corticomedullary differentiation was seen with the inversion-recovery (IR 1400/400) sequence in the normal volunteers and in patients with functioning transplanted kidneys and acute tubular necrosis. Partial or total loss of corticomedullary differentiation was seen in glomerulonephritis, acute and chronic renal failure, renal artery stenosis, and transplant rejection. The T1 of the kidneys was increased in glomerulonephritis with neuphrotic syndrome, but the T1 was within the normal range for renal medulla in glomerulonephritis without nephrotic syndrome, renal artery stenosis, and chronic renal failure. A large staghorn calculus was demonstrated with MRI, but small calculi were not seen. Fluid within the hydonephrosis, simple renal cysts, and polycystic kidneys displayed very low signal intensity and long T1 values. Tumors displayed varied appearances. Hypernephromas were shown to be hypo- or hyperintense with the renal medulla on the IR 1400/400 sequence. After intravenous injection of gadolinium-DTPA, there was marked decrease in the tumor T1.

  15. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  16. Nuclear magnetic resonance imaging of the kidney

    SciTech Connect

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-02-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease.

  17. Stereotactic localization using magnetic resonance imaging.

    PubMed

    Walton, L; Hampshire, A; Forster, D M; Kemeny, A A

    1995-01-01

    A phantom study has been carried out to assess the accuracy of stereotactic localisation, using magnetic resonance imaging. The stereotactic coordinates of an array of Perspex rods within the phantom were determined and compared with measured values, in a series of transverse, coronal and sagittal images. In the transverse plane, the maximum errors experienced were X = 2.3 mm and Y = 10.7 mm. If the third fiducial plate, at the front of the frame, were not used in the scaling of the images, there was considerable improvement in the Y direction (maximum error Y = 2.1 mm). However, some deterioration in the accuracy in the X direction resulted, particularly at the extremes of Z (maximum error X = 3.5 mm). In the coronal plane, the maximum errors were X = 1.8 mm and Z = 8.0 mm. With the third plate off, the errors decreased to X = 1.9 mm and Z = 3.3 mm. In the sagittal plane, the maximum errors recorded were Y = 1.1 mm and Z = 7.5 mm. It is not possible to calibrate in this plane without the third plate. PMID:8584823

  18. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  19. Magnetic resonance--guided musculoskeletal interventional radiology.

    PubMed

    Carrino, John A; Blanco, Roberto

    2006-06-01

    As an imaging modality, magnetic resonance (MR) guidance has great potential to direct diagnostic and therapeutic procedures performed in the musculoskeletal region and influence patient management. MR-guided interventional procedures involving bone, soft tissue, intervertebral discs, and joints are safe and sufficiently effective for use in clinical practice. This article discusses and illustrates the procedural characteristics and techniques when performing MR-guided musculoskeletal interventions. Biopsy procedures are similar to other modalities for bone and soft tissue lesions. MR guidance is advantageous if the lesion is not visible by other modalities and for regions adjacent to hardware and implants, subselective targeting, intra-articular locations, and periarticular cyst aspiration. MR guidance has also been used for a host of spine injections and pain management procedures such as sacroiliac joint injections, discography, transforaminal epidural injection, selective nerve block, sympathetic block, celiac plexus block, and facet joint cryotherapy neurotomies. Future directions of clinical applications include tumor ablation and multimodality procedure suites. MR-guided musculoskeletal procedures will continue to be a growth area particularly for the diagnosis and treatment of bone and soft tissue neoplasia. PMID:16586322

  20. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  1. [Magnetic resonance angiography of the renal arteries].

    PubMed

    Matos, C; Metens, T; Nicaise, N; Golzarian, J; Dussaussois, L; Struyven, J

    1999-09-01

    Initially, the clinical use of magnetic resonance angiography (MRA) in the abdomen has been restricted because of motion and flow related artifacts. The advent of high performance gradient systems made possible the development of 3D gadolinium-enhanced MRA techniques and expanded the clinical applications of MRA into the abdominal area, particularly for the investigation of renal arteries. This technique is safe, because the administered contrast agent (gadolinium) is free of clinically detectable nephrotoxicity and has a low incidence of allergic reactions. Moreover, contrast MRA also eliminates the risks of ionizing radiation which allows repeating the examination without the accumulation of radiation exposure. The main disadvantages of the technique are its low availability and the fact that the use of contrast agents for this procedure is still not reimbursed by the social security. Many studies demonstrated that contrast MRA allows for the reliable assessment of renal artery morphology and pathologic states. Furthermore, within a single MR examination a comprehensive approach including renal artery morphology, hemodynamic significance of any stenosis and kidney perfusion is available. In this paper, we provide a review of the literature concerning the clinical performance of contrast MRA for the renal arteries and suggest its rationale for the investigation of patients suspected of renovascular disease in our specific environment. PMID:10523920

  2. Compression-sensitive magnetic resonance elastography.

    PubMed

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus. PMID:23852144

  3. Scatter-based magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Xu, Chao; Hamhaber, Uwe; Siebert, Eberhard; Bohner, Georg; Klingebiel, Randolf; Braun, Jürgen; Sack, Ingolf

    2009-04-01

    Elasticity is a sensitive measure of the microstructural constitution of soft biological tissues and increasingly used in diagnostic imaging. Magnetic resonance elastography (MRE) uniquely allows in vivo measurement of the shear elasticity of brain tissue. However, the spatial resolution of MRE is inherently limited as the transformation of shear wave patterns into elasticity maps requires the solution of inverse problems. Therefore, an MRE method is introduced that avoids inversion and instead exploits shear wave scattering at elastic interfaces between anatomical regions of different shear compliance. This compliance-weighted imaging (CWI) method can be used to evaluate the mechanical consistency of cerebral lesions or to measure relative stiffness differences between anatomical subregions of the brain. It is demonstrated that CWI-MRE is sensitive enough to reveal significant elasticity variations within inner brain parenchyma: the caudate nucleus (head) was stiffer than the lentiform nucleus and the thalamus by factors of 1.3 ± 0.1 and 1.7 ± 0.2, respectively (P < 0.001). CWI-MRE provides a unique method for characterizing brain tissue by identifying local stiffness variations.

  4. Magnetic Resonance Angiography of the Aorta

    PubMed Central

    Takehara, Yasuo; Yamashita, Shuhei; Sakahara, Harumi; Masui, Takayuki; Isoda, Haruo

    2011-01-01

    Magnetic resonance angiography (MRA) is capable of imaging arteries in the half to whole body by a single acquisition without a nephrotoxic contrast medium, and acquired images can be reconstructed into a specific cross-sectional view in an arbitrary directions. MRA is applicable for vessels non-reachable by a catheter approach, and collateral vessels can be fully visualized. Since MRA is minimally-invasive with no exposure to ionized radiation, it can be repeatedly applied for follow-up. However, there are also disadvantages: the temporal and spatial resolutions are inferior to those of X-ray angiography, and, at present, it cannot be used as a guide for intervention. Moreover, gadolinium administrations may cause NSF in patients who have lost renal function, as a new risk. Accordingly, strict consideration is required for an indication of its application. Development of non-contrast MRA and evaluation of the wall itself may draw more attention in the future. Plaque imaging is being routinely performed nowadays, and the measurement of vascular wall shear stress, which has a close association with arteriosclerosis, may become possible by utilizing the time-resolved phase-contrast method capable of measuring the time-resolved velocity vectors of blood flow throughout the body. (*English Translation of J Jpn Coll Angiol, 2009, 49: 503-516.) PMID:23555465

  5. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  6. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  7. Magnetic resonance imaging in brachial plexus injury.

    PubMed

    Caranci, F; Briganti, F; La Porta, M; Antinolfi, G; Cesarano, E; Fonio, P; Brunese, L; Coppolino, F

    2013-08-01

    Brachial plexus injury represents the most severe nerve injury of the extremities. While obstetric brachial plexus injury has showed a reduction in the number of cases due to the improvements in obstetric care, brachial plexus injury in the adult is an increasingly common clinical problem. The therapeutic measures depend on the pathologic condition and the location of the injury: Preganglionic avulsions are usually not amenable to surgical repair; function of some denervated muscles can be restored with nerve transfers from intercostals or accessory nerves and contralateral C7 transfer. Postganglionic avulsions are repaired with excision of the damaged segment and nerve autograft between nerve ends or followed up conservatively. Magnetic resonance imaging is the modality of choice for depicting the anatomy and pathology of the brachial plexus: It demonstrates the location of the nerve damage (crucial for optimal treatment planning), depicts the nerve continuity (with or without neuroma formation), or may show a completely disrupted/avulsed nerve, thereby aiding in nerve-injury grading for preoperative planning. Computed tomography myelography has the advantage of a higher spatial resolution in demonstration of nerve roots compared with MR myelography; however, it is invasive and shows some difficulties in the depiction of some pseudomeningoceles with little or no communication with the dural sac. PMID:23949940

  8. Magnetic Resonance Imaging of Pituitary Tumors.

    PubMed

    Bonneville, Jean-François

    2016-01-01

    Magnetic Resonance Imaging (MRI) is currently considered a major keystone of the diagnosis of diseases of the hypothalamic-hypophyseal region. However, the relatively small size of the pituitary gland, its location deep at the skull base and the numerous physiological variants present in this area impede the precise assessment of the anatomical structures and, particularly, of the pituitary gland itself. The diagnosis of the often tiny lesions of this region--such as pituitary microadenomas--is then difficult if the MRI technology is not optimized and if potential artifacts and traps are not recognized. Advanced MRI technology can not only depict small lesions with greater reliability, but also help in the differential diagnosis of large tumors. In these, defining the presence or absence of invasion is a particularly important task. This review describes and illustrates the radiological diagnosis of the different tumors of the sellar region, from the common prolactinomas, nonfunctioning adenomas and Rathke's cleft cysts, to the less frequent and more difficult to detect corticotroph pituitary adenomas in Cushing's disease, and other neoplastic and nonneoplastic entities. Finally, some hints are given to facilitate the differential diagnosis of sellar lesions. PMID:27003878

  9. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  10. Magnetic resonance imaging of benign prostatic hyperplasia

    PubMed Central

    Guneyli, Serkan; Ward, Emily; Thomas, Stephen; Yousuf, Ambereen Nehal; Trilisky, Igor; Peng, Yahui; Antic, Tatjana; Oto, Aytekin

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment. PMID:27015442

  11. In vivo localized 1H NMR spectroscopy at 11.7 Tesla

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Field, James; Brereton, Ian M.; Moxon, Leith N.; Shannon, Gerald F.; Doddrell, David M.

    The SPACE volume-selection technique has been used to acquire high-resolution 1H spectra from the brain of neonate mice at 11.7 T (500 MHz). Spectra were acquired from voxels smaller than 20 μl. The spectra display elevated intensities of resonances arising from taurine and reduced intensities of those arising from N-acetylaspartate, when compared to those of mature animals, correlating well with in vitro studies. An integrated probe design consisting of separate transmission and reception RF coils and linear gradient coils is described. Comments are made concerning the advantages and disadvantages of performing gradient-encoded localized spectroscopy at this field strength.

  12. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  13. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  14. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10 μs. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  15. Composite RF pulses for B1+-insensitive volume excitation at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Moore, Jay; Jankiewicz, Marcin; Zeng, Huairen; Anderson, Adam W.; Gore, John C.

    2010-07-01

    A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (˜100) short (˜10 μs) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.

  16. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  17. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  18. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). PMID:25828243

  19. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. PMID:27113352

  20. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  1. Magnetic Resonance in an Atomic Vapor Excited by a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Ju; Eardley, Matthew; Knappe, Svenja; Moreland, John; Hollberg, Leo; Kitching, John

    2006-12-01

    We demonstrate a direct resonant interaction between the mechanical motion of a mesoscopic resonator and the spin degrees of freedom of a sample of neutral atoms in the gas phase. This coupling, mediated by a magnetic particle attached to the tip of the miniature mechanical resonator, excites a coherent precession of the atomic spins about a static magnetic field. The novel coupled atom-resonator system may enable development of low-power, high-performance sensors, and enhance research efforts connected with the manipulation of cold atoms, quantum control, and high-resolution microscopy.

  2. Magnetic Resonance Fiber Tracking in a Neonate with Hemimegalencephaly

    PubMed Central

    Re, Thomas J; Scarciolla, Laura; Takahashi, Emi; Specchio, Nicola; Bernardi, Bruno; Longo, Daniela

    2015-01-01

    A magnetic resonance diffusion fiber tracking study in neonate diagnosed with left hemisphere hemimegalencephaly is presented. Despite diffuse morphologic deformities identified in conventional imaging, all major pathways were identifiable bilaterally with minor aberrations in vicinity of morphologic lesions. PMID:25655045

  3. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  4. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  5. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  6. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  7. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... the safe use of magnetic resonance imaging (MRI) and approaches to mitigate risks. The overall goal is... overview of the Connect Pro program, visit: http://www.adobe.com/go/connectpro_overview . (FDA has...

  8. Diagnosis of hematogenous pyogenic vertebral osteomyelitis by magnetic resonance imaging

    SciTech Connect

    Meyers, S.P.; Wiener, S.N. )

    1991-04-01

    The clinical information and imaging data from 27 patients with hematogenous pyogenic vertebral osteomyelitis were reviewed. All patients had roentgenographic and magnetic resonance imaging examinations. Seventeen patients had computed tomograms; 17 had technetium Tc 99m medronate bone scans; and seven had gallium citrate Ga 67 scans. Magnetic resonance imaging, when used as a part of the initial radiologic evaluation, detected abnormalities consistent with osteomyelitis in all 27 patients. Magnetic resonance imaging also demonstrated paravertebral and/or epidural extension of infection in 14 patients, including seven patients who had neurologic signs of lower-extremity weakness. Roentgenograms, computed tomograms, technetium bone scans, and gallium scans had findings suggestive of the diagnosis in 48%, 65%, 71%, and 86% of the patients, respectively. We recommend magnetic resonance imaging as an important and perhaps critical imaging modality for detection of pyogenic vertebral osteomyelitis.

  9. [Magnetic resonance tomography in injuries of the cervical spine].

    PubMed

    Meydam, K; Sehlen, S; Schlenkhoff, D; Kiricuta, J C; Beyer, H K

    1986-12-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed. PMID:3025951

  10. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  11. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  12. Implementation of Vascular-space-occupancy (VASO) MRI at 7 Tesla

    PubMed Central

    Hua, Jun; Jones, Craig K.; Qin, Qin; van Zijl, Peter C. M.

    2012-01-01

    VASO-MRI exploits the difference between blood and tissue T1 to null blood signal and measure cerebral blood volume (CBV) changes using the residual tissue signal. VASO imaging is more difficult at higher field because of sensitivity loss due to the convergence of tissue and blood T1 values and increased contamination from BOLD effects. In addition, compared to 3T, 7T MRI suffers from increased geometrical distortions, e.g. when using echo-planar-imaging (EPI), and from increased power deposition, the latter especially problematic for the spin-echo-train sequences commonly used for VASO-MRI. Third, non-steady-state blood spin effects become substantial at 7T when only a head coil is available for radiofrequency transmit. In this study, the magnetization-transfer-enhanced-VASO (MT-VASO) approach was applied to maximize tissue-blood signal difference, which boosted SNR by 149 ± 13% (n=7) compared to VASO. Second, a 3D fast gradient-echo sequence with low flip-angle (7°) and short echo-time (1.8ms) was employed to minimize the BOLD effect and to reduce image distortion and power deposition. Finally, a magnetization-reset technique was combined with a motion-sensitized-driven-equilibrium (MSDE) approach to suppress three types of non-steady-state spins. Our initial fMRI results in normal human brains at 7T with this optimized VASO sequence showed better SNR than at 3T. PMID:22585570

  13. Use of Magnetic Resonance in the Evaluation of Cranial Trauma.

    PubMed

    Altmeyer, Wilson; Steven, Andrew; Gutierrez, Juan

    2016-05-01

    MR imaging is an extremely useful tool in the evaluation of traumatic brain injury in the emergency department. Although CT still plays the dominant role in urgent patient triage, MR imaging's impact on traumatic brain injury imaging continues to expand. MR imaging has shown superiority to CT for certain traumatic processes, such as diffuse axonal injury, cerebral contusion, and infarction. Magnetic resonance angiography and magnetic resonance venography allow emergent vascular imaging for patients that should avoid ionizing radiation or intravenous contrast. PMID:27150321

  14. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine.

  15. Wide-range dynamic magnetic resonance elastography.

    PubMed

    Riek, Kerstin; Klatt, Dieter; Nuzha, Hassan; Mueller, Susanne; Neumann, Ulf; Sack, Ingolf; Braun, Jürgen

    2011-04-29

    Tissue mechanical parameters have been shown to be highly sensitive to disease by elastography. Magnetic resonance elastography (MRE) in the human body relies on the low-dynamic range of tissue mechanics <100 Hz. In contrast, MRE suited for investigations of mice or small tissue samples requires vibration frequencies 10-20 times higher than those used in human MRE. The dispersion of the complex shear modulus (G(⁎)) prevents direct comparison of elastography data at different frequency bands and, consequently, frequency-independent viscoelastic models that fit to G(*) over a wide dynamic range have to be employed. This study presents data of G(*) of samples of agarose gel, liver, brain, and muscle measured by high-resolution MRE in a 7T-animal scanner at 200-800 Hz vibration frequency. Material constants μ and α according to the springpot model and related to shear elasticity and slope of the G(*)-dispersion were determined. Both μ and α of calf brain and bovine liver were found to be similar, while a sample of fibrotic human liver (METAVIR score of 3) displayed about fifteen times higher shear elasticity, similar to μ of bovine muscle measured in muscle fiber direction. α was the highest in fibrotic liver, followed by normal brain and liver, while muscle had the lowest α-values of all biological samples investigated in this study. As expected, the least G(*)-dispersion was seen in soft gel. The proposed technique of wide-range dynamic MRE can provide baseline data for both human MRE and high-dynamic MRE for better understanding tissue mechanics of different tissue structures. PMID:21295305

  16. Fetal magnetic resonance imaging in obstetric practice

    PubMed Central

    Köşüş, Aydın; Köşüş, Nermin; Usluoğulları, Betül; Duran, Müzeyyen; Turhan, Nilgün Öztürk; Tekşam, Mehmet

    2011-01-01

    Ultrasonography (USG) is the primary imaging method for prenatal diagnosis of fetal abnormalities since its discovery. Although it is the primary method of fetal imaging, it cannot provide sufficient information about the fetus in some conditions such as maternal obesity, oligohydramnios and engagement of the fetal head. At this stage, magnetic resonance imaging (MRI) facilitates examination by providing more specific information. The need and importance of fetal MRI applications further increased by the intrauterine surgery which is currently gaining popularity. Some advantages of fetal MRI over USG are the good texture of contrast, a greater study area and visualization of the lesion and neighbourhood relations, independence of the operators. Also it is not affected by maternal obesity and severe oligohydramnios. However, MRI is inadequate in detecting fetal limb and cardiac abnormalities when compared to USG. MRI is not used routinely in pregnancy. It is used in situations where nonionizing imaging methods are inadequate or ionizing radiation is required in pregnant women. It is not recommended during the first trimester. Contrast agent (Godalinium) is not used during pregnancy. It is believed that MRI is not harmful to the fetus, although the biological risk of MRI application is not known. MRI technique is superior to USG in the detection of corpus callosum dysgenesis, third-trimester evaluation of posterior fossa malformations, bilateral renal agenesis, diaphragmatic hernia and assessment of lung maturation. Especially, it is the method of choice for evaluation of central nervous system (CNS) abnormalities. Fetal MRI has a complementary role with USG. It provides important information for prenatal diagnosis, increases diagnostic accuracy, and in turn affects the prenatal treatment, prenatal interventions and birth plan. PMID:24591956

  17. Functional magnetic resonance imaging of the lung.

    PubMed

    Biederer, J; Heussel, C P; Puderbach, M; Wielpuetz, M O

    2014-02-01

    Beyond being a substitute for X-ray, computed tomography, and scintigraphy, magnetic resonance imaging (MRI) inherently combines morphologic and functional information more than any other technology. Lung perfusion: The most established method is first-pass contrast-enhanced imaging with bolus injection of gadolinium chelates and time-resolved gradient-echo (GRE) sequences covering the whole lung (1 volume/s). Images are evaluated visually or semiquantitatively, while absolute quantification remains challenging due to the nonlinear relation of T1-shortening and contrast material concentration. Noncontrast-enhanced perfusion imaging is still experimental, either based on arterial spin labeling or Fourier decomposition. The latter is used to separate high- and low-frequency oscillations of lung signal related to the effects of pulsatile blood flow. Lung ventilation: Using contrast-enhanced first-pass perfusion, lung ventilation deficits are indirectly identified by hypoxic vasoconstriction. More direct but still experimental approaches use either inhalation of pure oxygen, an aerosolized contrast agent, or hyperpolarized noble gases. Fourier decomposition MRI based on the low-frequency lung signal oscillation allows for visualization of ventilation without any contrast agent. Respiratory mechanics: Time-resolved series with high background signal such as GRE or steady-state free precession visualize the movement of chest wall, diaphragm, mediastinum, lung tissue, tracheal wall, and tumor. The assessment of volume changes allows drawing conclusions on regional ventilation. With this arsenal of functional imaging capabilities at high spatial and temporal resolution but without radiation burden, MRI will find its role in regional functional lung analysis and will therefore overcome the sensitivity of global lung function analysis for repeated short-term treatment monitoring. PMID:24481761

  18. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  19. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  20. Fetal magnetic resonance imaging in obstetric practice.

    PubMed

    Köşüş, Aydın; Köşüş, Nermin; Usluoğulları, Betül; Duran, Müzeyyen; Turhan, Nilgün Öztürk; Tekşam, Mehmet

    2011-01-01

    Ultrasonography (USG) is the primary imaging method for prenatal diagnosis of fetal abnormalities since its discovery. Although it is the primary method of fetal imaging, it cannot provide sufficient information about the fetus in some conditions such as maternal obesity, oligohydramnios and engagement of the fetal head. At this stage, magnetic resonance imaging (MRI) facilitates examination by providing more specific information. The need and importance of fetal MRI applications further increased by the intrauterine surgery which is currently gaining popularity. Some advantages of fetal MRI over USG are the good texture of contrast, a greater study area and visualization of the lesion and neighbourhood relations, independence of the operators. Also it is not affected by maternal obesity and severe oligohydramnios. However, MRI is inadequate in detecting fetal limb and cardiac abnormalities when compared to USG. MRI is not used routinely in pregnancy. It is used in situations where nonionizing imaging methods are inadequate or ionizing radiation is required in pregnant women. It is not recommended during the first trimester. Contrast agent (Godalinium) is not used during pregnancy. It is believed that MRI is not harmful to the fetus, although the biological risk of MRI application is not known. MRI technique is superior to USG in the detection of corpus callosum dysgenesis, third-trimester evaluation of posterior fossa malformations, bilateral renal agenesis, diaphragmatic hernia and assessment of lung maturation. Especially, it is the method of choice for evaluation of central nervous system (CNS) abnormalities. Fetal MRI has a complementary role with USG. It provides important information for prenatal diagnosis, increases diagnostic accuracy, and in turn affects the prenatal treatment, prenatal interventions and birth plan. PMID:24591956

  1. Magnetic Resonance Imaging–guided Vascular Interventions

    PubMed Central

    Ozturk, Cengizhan; Guttman, Michael; McVeigh, Elliot R.; Lederman, Robert J.

    2007-01-01

    Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function. PMID:16924170

  2. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 µm in all dimensions is now routinely attained in living animals, and 10 µm3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  3. Effect of Cyclosporine on Hepatic Energy Status and on Fructose Metabolism after Portacaval Shunt in Dog as Monitored by Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy in Vivo

    PubMed Central

    Rossaro, Lorenzo; Mazzaferro, Vincenzo; Scotti-Foglieni, Carlo L.; Williams, Donald S.; Simplaceanu, Elena; Simplaceanu, Virgil; Francavilla, Antonio; Starzl, Thomas E.; Ho, Chien; Van Thiel, David H.

    2010-01-01

    The effect of cyclosporin A on the hepatic energy status and intracellular pH of the liver and its response to a fructose challenge has been investigated using in vivo phosphorus-31 nuclear magnetic resonance spectroscopy in dogs. Three experimental groups were studied: (a) control dogs (n = 5), (b) dogs 4 days after the creation of an end-to-side portacaval shunt (n = 5), and (c) dogs 4 days after portacaval shunt and continuous infusion of cyclosporin A (4 mg/kg/day) by way of the left portal vein (portacaval shunt plus cyclosporin A, n = 5). The phosphorus-31 nuclear magnetic resonance spectra were obtained at 81 MHz using a Bruker BIOSPEC II 4.7-tesla nuclear magnetic resonance system equipped with a 40-cm horizontal bore superconducting solenoid. The phosphomonoesters (p < 0.01), inorganic phosphate and ATP levels (p < 0.05) were decreased significantly in portacaval shunt–treated and in portacaval shunt-plus-cyclosporin A–treated dogs compared with unshunted control dogs. After a fructose challenge (750 mg/kg body wt, intravenously), fructose-1-phosphate metabolism was reduced in portacaval shunt–treated dogs compared with either the normal or portacaval shunt-plus-cyclosporin A–treated dogs (p < 0.05). Both portacaval shunt– and portacaval shunt-plus-cyclosporin A–treated dogs demonstrated a reduced decline in ATP levels after fructose infusion when compared with the controls (p < 0.05). Immediately after the fructose challenge, the intracellular pH decreased from 7.30 ± 0.03 to 7.00 ± 0.05 in all animals (p < 0.01) and then gradually returned to normal over 60 min. These data, obtained in vivo using phosphorus-31 nuclear magnetic resonance spectroscopy of the liver after a portacaval shunt, suggest that: (a) the energy status of the liver is reduced in dogs with a portacaval shunt compared with that of normal controls and (b) cyclosporin A treatment ameliorates the reduction in hepatic metabolism normally observed after a fructose challenge to

  4. Pressure-driven amplification and penetration of resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Helander, P.; Lazerson, S. A.; Bhattacharjee, A.

    2016-05-01

    We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core. The response is significantly amplified with increasing plasma pressure. We present a rigorous verification of nonlinear equilibrium codes against linear theory, showing excellent agreement.

  5. Patellar tendinitis: the significance of magnetic resonance imaging findings.

    PubMed

    Shalaby, M; Almekinders, L C

    1999-01-01

    We evaluated the significance of magnetic resonance imaging findings in patients with patellar tendinitis. Midline sagittal magnetic resonance images were taken of 12 knees from 10 patients and of 17 knees from 15 age- and activity-matched subjects who underwent imaging for reasons other than patellar tendinitis. Of the 12 magnetic resonance imaging scans of knees with clinical patellar tendinitis, 3 (25%) exhibited no defect and only 7 (58%) had unequivocal intratendinous lesions. Among the 17 scans of subjects without clinical patellar tendinitis, 5 (34%) showed no defect and 4 (24%) had unequivocal intratendinous lesions. Proximal tendon width was significantly larger for the tendinitis patient group (5.0 +/- 1.7 mm versus 3.9 +/- 1.0 mm), although considerable overlap was present. All subjects with unequivocal intratendinous signal changes had a significantly longer nonarticular inferior patellar pole and were significantly older (38.1 years versus 26.8 years). Only Blazina stage III lesions were associated with abnormal findings on magnetic resonance imaging. As a whole, the sensitivity and specificity of magnetic resonance imaging was 75% and 29%, respectively. In younger patients with relatively mild symptoms, magnetic resonance imaging did not show significant changes; in older, active patients changes may be present in asymptomatic knees. PMID:10352771

  6. Probe-Sample Coupling in the Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Suter, A.; Pelekhov, D. V.; Roukes, M. L.; Hammel, P. C.

    2002-02-01

    The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.

  7. Probe--sample coupling in the magnetic resonance force microscope.

    PubMed

    Suter, A; Pelekhov, D V; Roukes, M L; Hammel, P C

    2002-02-01

    The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K. PMID:11846579

  8. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  9. Ferromagnetic resonance in ϵ-Co magnetic composites.

    PubMed

    Chalapat, Khattiya; Timonen, Jaakko V I; Huuppola, Maija; Koponen, Lari; Johans, Christoffer; Ras, Robin H A; Ikkala, Olli; Oksanen, Markku A; Seppälä, Eira; Paraoanu, G S

    2014-12-01

    We investigate the electromagnetic properties of assemblies of nanoscale ϵ-cobalt crystals with size range between 5 to 35 nm, embedded in a polystyrene matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance (FMR) with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittel's FMR theory for non-interacting uniaxial spherical particles combined with the Landau-Lifshitz-Gilbert equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure. PMID:25397945

  10. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion

    NASA Astrophysics Data System (ADS)

    Elkins, Christopher J.; Alley, Marcus T.

    2007-12-01

    Magnetic resonance velocimetry (MRV) is a non-invasive technique capable of measuring the three-component mean velocity field in complex three-dimensional geometries with either steady or periodic boundary conditions. The technique is based on the phenomenon of nuclear magnetic resonance (NMR) and works in conventional magnetic resonance imaging (MRI) magnets used for clinical imaging. Velocities can be measured along single lines, in planes, or in full 3D volumes with sub-millimeter resolution. No optical access or flow markers are required so measurements can be obtained in clear or opaque MR compatible flow models and fluids. Because of its versatility and the widespread availability of MRI scanners, MRV is seeing increasing application in both biological and engineering flows. MRV measurements typically image the hydrogen protons in liquid flows due to the relatively high intrinsic signal-to-noise ratio (SNR). Nonetheless, lower SNR applications such as fluorine gas flows are beginning to appear in the literature. MRV can be used in laminar and turbulent flows, single and multiphase flows, and even non-isothermal flows. In addition to measuring mean velocity, MRI techniques can measure turbulent velocities, diffusion coefficients and tensors, and temperature. This review surveys recent developments in MRI measurement techniques primarily in turbulent liquid and gas flows. A general description of MRV provides background for a discussion of its accuracy and limitations. Techniques for decreasing scan time such as parallel imaging and partial k-space sampling are discussed. MRV applications are reviewed in the areas of physiology, biology, and engineering. Included are measurements of arterial blood flow and gas flow in human lungs. Featured engineering applications include the scanning of turbulent flows in complex geometries for CFD validation, the rapid iterative design of complex internal flow passages, velocity and phase composition measurements in

  11. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  12. Magnetically-controlled Fano resonance in wavefunction-coupled QPCs

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Gu

    In this thesis, we describe the observation of a resonant interaction between coupled quantum point contacts (QPCs) that we attribute to a Fano resonance, caused by the self-consistent formation of a bound-state (BS) in one of the QPCs. The presence of this BS (in the "swept QPC") is detected by making measurements of the conductance of the other QPC, which therefore serves as a detector. A key feature of our work is the demonstration of a strong modulation of the detector resonance by applying a perpendicular magnetic field (B⊥). This induces a distinct asymmetry (with respect to magnetic-field reversal) in the magneto-conductance of the detector, which is shown to be due to the influence magnetic electron focusing. In this effect, the electron trajectories correspond to classical skipping orbits, which undergo complete motion due to the high mobility of the two-dimensional electron gas. At even higher B⊥, the detector resonance, which at zero magnetic field is only weakly asymmetric, evolves into the classic, highly asymmetric, Fano form. Such asymmetry indicates that the nonresonant contribution to detector resonance becomes comparable to the resonant one at high fields. We explain these results in terms of two key properties of quantum-dot eigenstates in a magnetic field, namely: the tendency for their wavefunctions to be compressed towards the center of the quantum-dot potential, and; that for their eigenenergies to increase due to the associated enhancement in the effective degree of confinement. In this thesis, we confirm these ideas by performing a Fock-Darwin analysis to account for the evolution of the detector Fano resonance in the magnetic field. The strong modulations of the Fano resonance that we observe as a function of B⊥ are shown to represent a new manifestation of this ubiquitous resonance.

  13. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  14. Breast MRI at 7 Tesla with a Bilateral Coil and Robust Fat Suppression

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2013-01-01

    Purpose To develop a bilateral coil and optimized fat suppressed T1-weighted sequence for 7T breast MRI. Materials and Methods A dual-solenoid coil and 3D T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed for 7T. T1w FS image quality was characterized through image uniformity and fat/water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7 T SNR advantage. Results Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T T1w FS image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat/water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. Conclusion 7T T1w FS bilateral breast imaging is feasible with a custom RF coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. PMID:24123517

  15. Electron paramagnetic resonance of nitroxide-doped magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Alonso, A.; Silva, O.; Buske, N.

    2002-11-01

    Electron paramagnetic resonance was used to investigate surface-coated magnetite-based magnetic fluids doped with TEMPOL. Two magnetic fluid samples, having magnetite nanoparticles with average diameter of 94 Å and coated with different coating layers (lauric acid plus ethoxylated polyalcohol in one case and oleoylsarcosine in the other case), were doped with TEMPOL (6 mM and pH 7.4) and investigated as a function of the nanoparticle concentration. The resonance field and the resonance linewidth both scale linearly with the nanoparticle concentration.

  16. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the pelvic floor, ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  17. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  18. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response

    NASA Astrophysics Data System (ADS)

    Dmitriev, Pavel A.; Baranov, Denis G.; Milichko, Valentin A.; Makarov, Sergey V.; Mukhin, Ivan S.; Samusev, Anton K.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07965a

  19. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  20. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  1. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  2. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  3. Structure of magnetic resonance in 87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.; Zibrov, S. A.; Zibrov, A. A.; Yudin, V. I.; Taichenachev, A. V.; Yakovlev, V. P.; Tsygankov, E. A.; Zibrov, A. S.; Vassiliev, V. V.; Velichansky, V. L.

    2016-05-01

    Magnetic resonance at the F g = 1 rightleftarrows F e = 1 transition of the D 1 line in 87Rb has been studied with pumping and detection by linearly polarized radiation and detection at the double frequency of the radiofrequency field. The intervals of allowed values of the static and alternating magnetic fields in which magnetic resonance has a single maximum have been found. The structure appearing beyond these intervals has been explained. It has been shown that the quadratic Zeeman shift is responsible for the three-peak structure of resonance; the radiofrequency shift results in the appearance of additional extrema in resonance, which can be used to determine the relaxation constant Γ2. The possibility of application in magnetometry has been discussed.

  4. Tunable resonant transmission of electromagnetic waves through a magnetized plasma.

    PubMed

    Kee, Chul-Sik; Li, Shou-Zhe; Kim, Kihong; Lim, H

    2003-03-01

    We theoretically investigate the resonant transmission of circularly polarized electromagnetic waves in the electromagnetic stop band of a magnetized plasma slab using the invariant embedding method. The frequency and quality factor of the resonant mode for the right-handed (left-handed) circularly polarized wave created by inserting a dielectric layer into the plasma increase (decrease) as the magnitude of the external magnetic field increases. These phenomena are compared with the characteristics of resonant modes in metallic and dielectric Fabry-Perot resonators to show that they are due to the change of plasma reflectivity. We also discuss the damping effect due to the collisions of the constituent particles of the plasma on the resonant transmission of circularly polarized waves. PMID:12689184

  5. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  6. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    NASA Astrophysics Data System (ADS)

    Moores, B. A.; Eichler, A.; Tao, Y.; Takahashi, H.; Navaretti, P.; Degen, C. L.

    2015-05-01

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species (1H, 19F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  7. Spin wave resonance detection using magnetic tunnel junction structure

    NASA Astrophysics Data System (ADS)

    Bi, Chong; Fan, Xin; Pan, Liqing; Kou, Xiaoming; Wu, Jun; Yang, Qinghui; Zhang, Huaiwu; Xiao, John Q.

    2011-11-01

    We have demonstrated that spin wave resonance in a permalloy microstrip can be detected by an electrical method based on magnetic tunnel junction structures. The detection method promises high spatial resolution and sensitivity. Both even and odd spin wave resonance modes can be clearly observed in a permalloy microstrip. The spin wave induced voltage is proportional to the input microwave power at each resonance mode. Data analysis using the model of quantized dipole-exchange spin wave resonance suggests the edge pinning of spin wave sensitively depends on the order of the spin wave mode, as well as on the excitation frequency for modes of the higher order.

  8. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  10. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  11. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  12. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  13. Catheter steering using a Magnetic Resonance Imaging system.

    PubMed

    Lalande, Viviane; Gosselin, Frederick P; Martel, Sylvain

    2010-01-01

    A catheter is successfully bent and steered by applying magnetic gradients inside a Magnetic Resonance Imaging system (MRI). One to three soft ferromagnetic spheres are attached at the distal tip of the catheter with different spacing between the spheres. Depending on the interactions between the spheres, progressive or discontinuous/jumping displacement was observed for increasing magnetic load. This phenomenon is accurately predicted by a simple theoretical dipole interaction model. PMID:21096567

  14. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  15. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  16. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  17. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    NASA Astrophysics Data System (ADS)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  18. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. PMID:26113221

  19. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  20. Three-dimensional magnetic recording using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie

    2016-07-01

    To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.

  1. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    PubMed Central

    Fiorelli, Marco; Aceti, Franca; Marini, Isabella; Giacchetti, Nicoletta; Macci, Enrica; Tinelli, Emanuele; Calistri, Valentina; Meuti, Valentina; Caramia, Francesca; Biondi, Massimo

    2015-01-01

    Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression. PMID:26347585

  2. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  3. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study

    PubMed Central

    Schallmo, Michael-Paul; Grant, Andrea N.; Burton, Philip C.; Olman, Cheryl A.

    2016-01-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  4. Single Session Imaging of Cerebellum at 7 Tesla: Obtaining Structure and Function of Multiple Motor Subsystems in Individual Subjects

    PubMed Central

    Batson, Melissa A.; Petridou, Natalia; Klomp, Dennis W. J.; Frens, Maarten A.; Neggers, Sebastiaan F. W.

    2015-01-01

    The recent increase in the use of high field MR systems is accompanied by a demand for acquisition techniques and coil systems that can take advantage of increased power and accuracy without being susceptible to increased noise. Physical location and anatomical complexity of targeted regions must be considered when attempting to image deeper structures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are overcome, the concomitant increase in signal strength at higher field strength should allow for faster acquisition of MR images. Here we show that it is technically feasible to quickly and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a single one-hour session. Images were obtained using two high-density multi-element surface coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmission, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb activations. BOLD signal changes during motor activity resulted in concentrated clusters of activity within the Cb lobules associated with each task, observed consistently and independently in each subject: Oculomotor vermis (VI/VII) and CrusI/II for pro- and anti-saccades; ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and hand- activations in hemispheres VI and VIIb/VIII. Though fast temporal resolution was not attempted here, these functional patches of highly specific BOLD signal changes may reflect small-scale shunting of blood in the microvasculature of Cb. The observed improvements in acquisition time and signal detection are ideal for individualized investigations such as differentiation of

  5. Magnetic resonance imaging--first human images in Australia.

    PubMed

    Baddeley, H; Doddrell, D M; Brooks, W M; Field, J; Irving, M; Williams, J E

    1986-10-20

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is noninvasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. Magnetic resonance imaging is derived from the principle that certain atomic nuclei in a strong magnetic field will absorb pulses of radiofrequency energy; when the pulse is finished the nuclei will emit radiowaves at the same frequency. These radiowaves are received by specially designed aerials or coils and the information is collected by a computer which reconstructs an image of internal anatomy in a similar way to that of x-ray computed tomography (CT). By changing the strength of the magnetic fields and the frequency of the radiowave pulses, it is possible to examine different sections within the body. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane, and is part of the University of Queensland's Department of Radiology. PMID:3020385

  6. On-wafer magnetic resonance of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.; Russek, Stephen E.; Booth, James C.; Kabos, Pavel; Usselman, Robert J.

    2015-11-01

    Magnetic resonance measurements of ferumoxytol and TEMPO were made using an on-wafer transmission line technique with a vector network analyzer, allowing for broadband measurements of small sample volumes (4 nL) and small numbers of spins (1 nmol). On-wafer resonance measurements were compared with standard single-frequency cavity-based electron paramagnetic resonance (EPR) measurements using a new power conservation approach and the results show similar line shape. On-wafer magnetic resonance measurements using integrated microfluidics and microwave technology can significantly reduce the cost and sample volumes required for EPR spectral analysis and allow for integration of EPR with existing lab-on-a-chip processing and characterization techniques for point-of-care medical diagnostic applications.

  7. Current-induced spin torque resonance of a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Chiba, Takahiro; Niedermayr, Arthur; Lotze, Johannes; Huebl, Hans; Geprägs, Stephan; Takahashi, Saburo; Bauer, Gerrit E. W.; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-10-01

    We report the observation of current-induced spin torque resonance in yttrium iron garnet/platinum bilayers. An alternating charge current at GHz frequencies in the platinum gives rise to dc spin pumping and spin Hall magnetoresistance rectification voltages, induced by the Oersted fields of the ac current and the spin Hall effect-mediated spin transfer torque. In ultrathin yttrium iron garnet films, we observe spin transfer torque actuated magnetization dynamics which are significantly larger than those generated by the ac Oersted field. Spin transfer torques thus efficiently couple charge currents and magnetization dynamics also in magnetic insulators, enabling charge current-based interfacing of magnetic insulators with microwave devices.

  8. Resonant Landau-Zener transitions in a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-06-01

    Spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that—apart from the well-known conductance dip located at the magnetic field equal to the helical-field amplitude Bh—the additional conductance dips (with zero conductance) appear at a magnetic field different from Bh. This effect occurring in the non-adiabatic regime is explained as resulting from the resonant Landau-Zener transitions between the spin-split subbands.

  9. Desktop fast-field cycling nuclear magnetic resonance relaxometer.

    PubMed

    Sousa, Duarte Mesquita; Marques, Gil Domingos; Cascais, José Manuel; Sebastião, Pedro José

    2010-07-01

    In this paper a new type of Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer with low power consumption (200W) and cycle to cycle field stability better than 10(-4) is described. The new high-permeability magnet was designed to allow for good magnetic field homogeneity and allows for the sample rotation around an axis perpendicular to magnetic field, operating with magnetic fields between 0 and 0.21T. The power supply of the new relaxometer was specially developed in order to have steady state accurate currents and allow for magnetic field switching times less than 3ms. Additional control circuits were developed and included to compensate the Earth magnetic field component parallel to the field axis and to compensate for parasitic currents. The main aspects of the developed circuits together with some calibrating experimental results using the liquid crystal compounds 5CB and 8CB are presented and discussed. PMID:20688489

  10. Anicteric early bile duct carcinoma detection with magnetic resonance cholangiopancreatography.

    PubMed

    Oshikiri, Taro; Morita, Takayuki; Fujita, Miyoshi; Miyasaka, Yuji; Senmaru, Naoto; Yamada, Hidehisa; Kondo, Satoshi; Katoh, Hiroyuki

    2005-01-01

    The poor prognosis of extrahepatic bile duct carcinoma makes early detection and diagnosis essential for positive patient outcomes. We describe 2 cases of jaundice-free early extrahepatic bile duct carcinoma detected by magnetic resonance cholangiopancreatography. Extrahepatic bile duct carcinoma was discovered incidentally in patient 1 by magnetic resonance cholangiopancreatography during evaluation of a gallbladder stone. In patient 2, extrahepatic bile duct carcinoma was found during a routine health maintenance exam. Both patients underwent radical surgical intervention. Both patient 1 and 2 have remained in good health for over one year, 3.5 and one year, respectively, and have not exhibited any signs or symptoms of relapse or cancer recurrence. Based on these cases, it appears that magnetic resonance cholangiopancreatography can play a significant role in the early detection of extrahepatic bile duct carcinoma and improve disease prognosis. PMID:15816438

  11. Renal relevant radiology: renal functional magnetic resonance imaging.

    PubMed

    Ebrahimi, Behzad; Textor, Stephen C; Lerman, Lilach O

    2014-02-01

    Because of its noninvasive nature and provision of quantitative measures of a wide variety of physiologic parameters, functional magnetic resonance imaging (MRI) shows great potential for research and clinical applications. Over the past decade, application of functional MRI extended beyond detection of cerebral activity, and techniques for abdominal functional MRI evolved. Assessment of renal perfusion, glomerular filtration, interstitial diffusion, and parenchymal oxygenation turned this modality into an essential research and potentially diagnostic tool. Variations in many renal physiologic markers can be detected using functional MRI before morphologic changes become evident in anatomic magnetic resonance images. Moreover, the framework of functional MRI opened a window of opportunity to develop novel pathophysiologic markers. This article reviews applications of some well validated functional MRI techniques, including perfusion, diffusion-weighted imaging, and blood oxygen level-dependent MRI, as well as some emerging new techniques such as magnetic resonance elastography, which might evolve into clinically useful tools. PMID:24370767

  12. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. PMID:26979538

  13. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  14. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging

    PubMed Central

    Liu, Christina H

    2015-01-01

    MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors. PMID:25774094

  15. Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla.

    PubMed

    Mullinger, Karen; Debener, Stefan; Coxon, Ronald; Bowtell, Richard

    2008-03-01

    Although the focus of attention on data degradation during simultaneous MRI/EEG recording has to date largely been upon EEG artefacts, the presence of the conducting wires and electrodes of the EEG recording system also causes some degradation of MRI data quality. This may result from magnetic susceptibility effects which lead to signal drop-out and image distortion, as well as the perturbation of the radiofrequency fields, which can cause local signal changes and a global reduction in the signal to noise ratio (SNR) of magnetic resonance images. Here, we quantify the effect of commercially available 32 and 64 electrode caps on the quality of MR images obtained in scanners operating at magnetic fields of 1.5, 3 and 7 T, via the use of MR-based, field-mapping techniques and analysis of the SNR in echo planar image time series. The electrodes are shown to be the dominant source of magnetic field inhomogeneity, although the localised nature of the field perturbation that they produce means that the effect on the signal intensity from the brain is not significant. In the particular EEG caps investigated here, RF inhomogeneity linked to the longer ECG and EOG leads causes some reduction in the signal intensity in images obtained at 3 and 7 T. Measurements of the standard deviation of white matter signal in EPI time series indicates that the introduction of the EEG cap produces a small reduction in the image signal to noise ratio, which increases with the number of electrodes used. PMID:17689767

  16. Magnetic Resonance, Functional (fMRI) -- Brain

    MedlinePlus

    ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ... The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a ...

  17. Magnetic anisotropy of polycrystalline magnetoferritin investigated by SQUID and electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Moro, F.; de Miguel, R.; Jenkins, M.; Gómez-Moreno, C.; Sells, D.; Tuna, F.; McInnes, E. J. L.; Lostao, A.; Luis, F.; van Slageren, J.

    2014-06-01

    Magnetoferritin molecules with an average inorganic core diameter of 5.7±1.6 nm and polycrystalline internal structure were investigated by a combination of transmission electron microscopy, magnetic susceptibility, magnetization, and electron magnetic resonance (EMR) experiments. The temperature and frequency dependence of the magnetic susceptibility allowed for the determination of the magnetic anisotropy on an experimental time scale which spans from seconds to nanoseconds. In addition, angle-dependent EMR experiments were carried out for the determination of the nanoparticle symmetry and internal magnetic field. Due to the large surface to volume ratio, the nanoparticles show larger and uniaxial rather than cubic magnetic anisotropies compared to bulk maghemite and magnetite.

  18. Travelling wave magnetic resonance imaging at 3 T

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Martin, R.; Marrufo, O.; Rodriguez, A. O.

    2013-08-01

    Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore diameter limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies in magnetic resonance imaging and spectroscopy. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transverse electromagnetic modes and it can propagate any frequency. To study the potential benefits of travelling-wave excitation for whole-body imaging at 3 T, we compare numerical simulations of the principal mode propagation for a parallel-plate waveguide filled with a cylindrical phantom and two surface coils for all simulations at 1.5 T, 3 T, 4.7, 7 T, and 9.4 T. The principal mode shows very little variation of the field magnitude along the propagation direction at 3 T when compared to other higher resonant frequencies. Unlike the standard method for travelling-wave magnetic resonance imaging, a parallel-plate waveguide prototype was built and used together with a whole-body birdcage coil for signal transmission and a pair of circular coils for reception. Experimental B1 mapping was computed to investigate the feasibility of this approach and, the point spread function method was used to measure the imager performance. Human leg images were acquired to experimentally validate this approach. The numerical magnetic field and specific absorption rate of a simulated leg were computed and results are within the safety limits. The B1 mapping and point spread function results showed that it is possible to conduct travelling-wave imaging experiments with good imager performance. Human leg images were also obtained with the whole-body birdcage coil for comparison purposes. The simulated and in vivo travelling-wave results of the human leg correspond very well for the signal received. A similar image signal-to-noise ratio was observed for the

  19. Magnetic resonance imaging in entomology: a critical review

    PubMed Central

    Hart, A.G.; Bowtell, R.W.; Köckenberger, W.; Wenseleers, T.; Ratnieks, F.L.W.

    2003-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging techniques are discussed. In addition, we illustrate the images that can be obtained using MRM. We conclude that although MRM has significant potential, further improvements to the technique are still desirable if it is to become a mainstream imaging technology in entomology. Abbreviation: CSI chemical shift imaging. The dependence of the resonance frequency of a nucleus on the chemical binding of the atom or molecule in which it is contained. (N)MRI (nuclear) magnetic resonance imaging MRM magnetic resonance microscopy Voxel A contraction for volume element, which is the basic unit of MR reconstruction; represented as a pixel in the display of the MR image. PMID:15841222

  20. Computation of flow pressure fields from magnetic resonance velocity mapping.

    PubMed

    Yang, G Z; Kilner, P J; Wood, N B; Underwood, S R; Firmin, D N

    1996-10-01

    Magnetic resonance phase velocity mapping has unrivalled capacities for acquiring in vivo multi-directional blood flow information. In this study, the authors set out to derive both spatial and temporal components of acceleration, and hence differences of pressure in a flow field using cine magnetic resonance velocity data. An efficient numerical algorithm based on the Navier-Stokes equations for incompressible Newtonian fluid was used. The computational approach was validated with in vitro flow phantoms. This work aims to contribute to a better understanding of cardiovascular dynamics and to serve as a basis for investigating pulsatile pressure/flow relationships associated with normal and impaired cardiovascular function. PMID:8892202

  1. Artifacts and pitfalls in shoulder magnetic resonance imaging*

    PubMed Central

    Marcon, Gustavo Felix; Macedo, Tulio Augusto Alves

    2015-01-01

    Magnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors’ intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes. PMID:26379323

  2. Cranial and spinal magnetic resonance imaging: A guide and atlas

    SciTech Connect

    Daniels, D.L.; Haughton, V.M.

    1987-01-01

    This atlas provides a clinical guide to interpreting cranial and spinal magnetic resonance images. The book includes coverage of the cerebrum, temporal bone, and cervical, thoracic, and lumbar spine, with more than 400 scan images depicting both normal anatomy and pathologic findings. Introductory chapters review the practical physics of magnetic resonance (MR) imaging, offer guidelines for interpreting cranial MR scans, and provide coverage of each anatomic region of the cranium and spine. For each region, scans accompanied by captions, show normal anatomic sections matched with MR images. These are followed by MR scans depicting various disease states.

  3. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  4. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  5. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface.

    PubMed

    Berggren, P; Fransson, J

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  6. Magnetic Resonance Spectroscopy of siRNA-Based Cancer Therapy

    PubMed Central

    Penet, Marie-France; Chen, Zhihang; Mori, Noriko; Krishnamachary, Balaji; Bhujwalla, Zaver M.

    2016-01-01

    Small interfering RNA (siRNA) is routinely used as a biological tool to silence specific genes, and is under active investigation in cancer treatment strategies. Noninvasive magnetic resonance spectroscopy (MRS) provides the ability to assess the functional effects of siRNA-mediated gene silencing in cultured cancer cells, and following nanoparticle-based delivery in tumors in vivo. Here we describe the use of siRNA to downregulate choline kinase, a critical enzyme in choline phospholipid metabolism of cancer cells and tumors, and the use of 1H MRS of cells and 1H magnetic resonance spectroscopic imaging (MRSI) of tumors to assess the efficacy of the downregulation. PMID:26530913

  7. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  8. Implementation of NMR pulse sequences for Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Moores, Bradley; Eichler, Alexander; Degen, Christian

    2014-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning microscopy technique that allows measuring nuclear spin densities with a resolution of a few nanometers. Ongoing efforts are aiming at improving this resolution, which might ultimately facilitate non-destructive 3D scans of complex molecules or solid state systems with atomic resolution. Here, we review our current efforts to utilize in an MRFM experiment pulsing techniques borrowed from the nuclear magnetic resonance community. The use of advanced pulsing schemes may improve signal-to-noise ratio, imaging resolution, and allow the investigation of novel phenomena.

  9. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  10. Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis

    NASA Astrophysics Data System (ADS)

    Nacher, Pierre-Jean

    Two rather similar historical evolutions are evoked, each one originating in fundamental spin studies by physicists, and ending as magnetic resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the hands of medical doctors. The first one starts with the early work on nuclear magnetic resonance, the founding stone of the usual proton-based MRI, of which the basic principles are described. The second one starts with the optical pumping developments made to study the effects of spin polarization in various fundamental problems. Its unexpected outcome is a unique imaging modality, also based on MRI, for the study of lung physiology and pathologies.

  11. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  12. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems. PMID:10335581

  13. Development of magnetic resonance technology for noninvasive boron quantification

    SciTech Connect

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  14. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau–Lifshitz–Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  15. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field.

    PubMed

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau-Lifshitz-Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  16. Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Lin, Fei; Ching, T. W.

    2015-05-01

    This paper proposes a new idea for magnetic sensors charging on Mars, which aims to effectively transmit energy from Mars Rover to distributed magnetic sensors. The key is to utilize wireless power transfer (WPT) to enable multiple receptors extracting energy from the source via magnetic resonant coupling. Namely, the energy transmitter is located on the Mars Rover, whereas the energy receptor is installed in the magnetic sensor. In order to effectively transfer the power, a resonator is installed between the transmitter and the receptors. Based on the proposed idea, the system topology, operation principle, and simulation results are developed. By performing finite element magnetic field analysis, the output power and efficiency of the proposed WPT system are evaluated. It confirms that the Mars Rover carrying with the energy transmitter is capable of loitering around the resonator, while the magnetic sensors on the receptors can be simultaneously charged according to energy-on-demand.

  17. Magnetic Resonance Reversals in Optically Pumped Alkali-Metal Vapor

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Jau, Yuan-Yu; Happer, William

    2007-06-01

    We report an unusual new phenomenon, peculiar sign reversals of the ground-state magnetic resonances and of the ``zero-dip" resonance (Zeeman resonance at zero field) of optically-pumped, alkali-metal vapors. These anomalies occur when a ``weak" circular polarized D1 laser light is tuned to pump atoms predominantly from the lower ground-state hyperfine multiplet. One can understand the signal reversals in simple, semi-quantitative way with reference to this distribution. uantitative computer simulations are in excellent greement with observations.

  18. Magnetic resonance reversals in optically pumped alkali-metal vapor

    NASA Astrophysics Data System (ADS)

    Gong, F.; Jau, Y.-Y.; Happer, W.

    2007-05-01

    We report an unusual phenomenon, peculiar sign reversals of the ground-state magnetic resonances and of the zero-dip resonance (Zeeman resonance at zero field) of optically pumped, alkali-metal vapors. These anomalies occur when a weak circularly polarized D1 laser light is tuned to pump atoms predominantly from the lower ground-state hyperfine multiplet. One can understand the signal reversals in a simple, semiquantitative way with reference to the spin-temperature distribution. Quantitative computer simulations are in excellent agreement with observations.

  19. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  20. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  1. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  2. Magnetization transfer using inversion recovery during off-resonance irradiation

    PubMed Central

    Mangia, Silvia; De Martino, Federico; Liimatainen, Timo; Garwood, Michael; Michaeli, Shalom

    2011-01-01

    Estimation of magnetization transfer (MT) parameters in vivo can be compromised by an inability to drive the magnetization to a steady state using allowable levels of radiofrequency (RF) irradiation, due to safety concerns (tissue heating and specific absorption rate (SAR)). Rather than increasing the RF duration or amplitude, here we propose to circumvent the SAR limitation by sampling the formation of the steady state in separate measurements made with the magnetization initially along the −z and +z axis of the laboratory frame, i.e. with or without an on-resonance inversion pulse prior to the off-resonance irradiation. Results from human brain imaging demonstrate that this choice provides a tremendous benefit in the fitting procedure used to estimate MT parameters. The resulting parametric maps are characterized by notably increased tissue specificity as compared to those obtained with the standard MT acquisition in which magnetization is initially along the +z axis only. PMID:21601405

  3. Magnetization transfer using inversion recovery during off-resonance irradiation.

    PubMed

    Mangia, Silvia; De Martino, Federico; Liimatainen, Timo; Garwood, Michael; Michaeli, Shalom

    2011-12-01

    Estimation of magnetization transfer (MT) parameters in vivo can be compromised by an inability to drive the magnetization to a steady state using allowable levels of radiofrequency (RF) irradiation, due to safety concerns (tissue heating and specific absorption rate (SAR)). Rather than increasing the RF duration or amplitude, here we propose to circumvent the SAR limitation by sampling the formation of the steady state in separate measurements made with the magnetization initially along the -z and +z axis of the laboratory frame, i.e. with or without an on-resonance inversion pulse prior to the off-resonance irradiation. Results from human brain imaging demonstrate that this choice provides a tremendous benefit in the fitting procedure used to estimate MT parameters. The resulting parametric maps are characterized by notably increased tissue specificity as compared to those obtained with the standard MT acquisition in which magnetization is initially along the +z axis only. PMID:21601405

  4. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  5. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging.

    PubMed

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  6. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-03-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.

  7. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    SciTech Connect

    Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V.

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

  8. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  9. Interaction between magnetic agglomerates and an extended free radicals network studied by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Zolnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Berczynski, Pawel; Petridis, Dimitri

    2012-02-01

    Solids containing an extended network of free radicals have been prepared and studied by magnetic resonance techniques in the 4-290 K temperature range. One solid contained additionally a small amount of magnetic γ-Fe2O3 in the form of nanoparticle agglomerates. The solid without agglomerates displayed only a narrow, single resonance line centered at g eff = 2.0043. The magnetic resonance measurements of the solid with γ-Fe2O3 agglomerates gave a spectrum composed of two lines attributed to two different magnetic centers: a narrow line due to free radicals and a broad line arising from magnetic iron oxide agglomerates. In the high temperature range the integrated intensities of both lines decreased with decreasing temperature. The resonance field of the broad line shifted to lower magnetic fields upon lowering the temperature with the gradient ΔH r/ΔT = 2.3 G/K, while the narrow line shifted towards higher magnetic fields. The linewidth of the broader line increased with decreasing temperature while for the narrow lines in both samples this change was small. The magnetic iron oxide clusters produce a magnetic field which acts on the free radicals network and its strength depends essentially on the concentration of clusters. The reorientation process in the free radicals network is more intense in the sample without magnetic clusters.

  10. Interaction between magnetic agglomerates and an extended free radicals network studied by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Zolnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Berczynski, Pawel; Petridis, Dimitri

    2012-02-01

    Solids containing an extended network of free radicals have been prepared and studied by magnetic resonance techniques in the 4-290 K temperature range. One solid contained additionally a small amount of magnetic γ-Fe2O3 in the form of nanoparticle agglomerates. The solid without agglomerates displayed only a narrow, single resonance line centered at g eff = 2.0043. The magnetic resonance measurements of the solid with γ-Fe2O3 agglomerates gave a spectrum composed of two lines attributed to two different magnetic centers: a narrow line due to free radicals and a broad line arising from magnetic iron oxide agglomerates. In the high temperature range the integrated intensities of both lines decreased with decreasing temperature. The resonance field of the broad line shifted to lower magnetic fields upon lowering the temperature with the gradient Δ H r /Δ T = 2.3 G/K, while the narrow line shifted towards higher magnetic fields. The linewidth of the broader line increased with decreasing temperature while for the narrow lines in both samples this change was small. The magnetic iron oxide clusters produce a magnetic field which acts on the free radicals network and its strength depends essentially on the concentration of clusters. The reorientation process in the free radicals network is more intense in the sample without magnetic clusters.

  11. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  12. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  13. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  14. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  15. Magnetic Resonance Perfusion Imaging in the Study of Language

    ERIC Educational Resources Information Center

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  16. Principles of functional magnetic resonance imaging: application to auditory neuroscience.

    PubMed

    Cacace, A T; Tasciyan, T; Cousins, J P

    2000-05-01

    Functional imaging based on magnetic resonance methods is a new research frontier for exploring a wide range of central nervous system (CNS) functions, including information processing in sensory, motor, cognitive, and linguistic systems. Being able to localize and study human brain function in vivo, in relatively high resolution and in a noninvasive manner, makes this a technique of unparalleled importance. In order to appreciate and fully understand this area of investigation, a tutorial covering basic aspects of this methodology is presented. We introduce functional magnetic resonance imaging (fMRI) by providing an overview of the studies of different sensory systems in response to modality-specific stimuli, followed by an outline of other areas that have potential clinical relevance to the medical, cognitive, and communicative sciences. The discussion then focuses on the basic principles of magnetic resonance methods including magnetic resonance imaging, MR spectroscopy, fMRI, and the potential role that MR technology may play in understanding a wide range of auditory functions within the CNS, including tinnitus-related activity. Because the content of the material found herein might be unfamiliar to some, we provide a broad range of background and review articles to serve as a technical resource. PMID:10821504

  17. Magnetic resonance imaging in obstructive Müllerian anomalies.

    PubMed

    Sen, Kamal Kumar; Balasubramaniam, Dhivya; Kanagaraj, Vikrant

    2013-04-01

    Herlyn-Werner-Wunderlich (HWW) syndrome is a very rare congenital anomaly of the urogenital tract involving Müllerian ducts and Wolffian structures. It is characterized by the triad of didelphys uterus, obstructed hemivagina, and ipsilateral renal agenesis. Magnetic resonance imaging (MRI) is a sensitive, non-invasive diagnostic modality for demonstrating anatomic variation and associated complications. PMID:24082660

  18. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  19. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  20. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  1. Magnetic resonance segmentation with the bubble wave algorithm

    NASA Astrophysics Data System (ADS)

    Cline, Harvey E.; Ludke, Siegwalt

    2003-05-01

    A new bubble wave algorithm provides automatic segmentation of three-dimensional magnetic resonance images of both the peripheral vasculature and the brain. Simple connectivity algorithms are not reliable in these medical applications because there are unwanted connections through background noise. The bubble wave algorithm restricts connectivity using curvature by testing spherical regions on a propagating active contour to eliminate noise bridges. After the user places seeds in both the selected regions and in the regions that are not desired, the method provides the critical threshold for segmentation using binary search. Today, peripheral vascular disease is diagnosed using magnetic resonance imaging with a timed contrast bolus. A new blood pool contrast agent MS-325 (Epix Medical) binds to albumen in the blood and provides high-resolution three-dimensional images of both arteries and veins. The bubble wave algorithm provides a means to automatically suppress the veins that obscure the arteries in magnetic resonance angiography. Monitoring brain atrophy is needed for trials of drugs that retard the progression of dementia. The brain volume is measured by placing seeds in both the brain and scalp to find the critical threshold that prevents connections between the brain volume and the scalp. Examples from both three-dimensional magnetic resonance brain and contrast enhanced vascular images were segmented with minimal user intervention.

  2. Voriconazole-related periostitis presenting on magnetic resonance imaging.

    PubMed

    Davis, Derik L

    2015-01-01

    Painful periostitis is a complication of long-term antifungal therapy with voriconazole. A high clinical suspicion coupled with imaging and laboratory assessment is useful to establish the diagnosis. Prompt discontinuance of voriconazole typically results in the resolution of symptoms and signs. This report describes the presentation of voriconazole-related periostitis on magnetic resonance imaging. PMID:26136804

  3. Voriconazole-related periostitis presenting on magnetic resonance imaging

    PubMed Central

    Davis, Derik L.

    2015-01-01

    Summary Painful periostitis is a complication of long-term antifungal therapy with voriconazole. A high clinical suspicion coupled with imaging and laboratory assessment is useful to establish the diagnosis. Prompt discontinuance of voriconazole typically results in the resolution of symptoms and signs. This report describes the presentation of voriconazole-related periostitis on magnetic resonance imaging. PMID:26136804

  4. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  5. Estimating the size of myocardial infarction by magnetic resonance imaging.

    PubMed Central

    Turnbull, L W; Ridgway, J P; Nicoll, J J; Bell, D; Best, J J; Muir, A L

    1991-01-01

    OBJECTIVE--To develop a method to measure myocardial infarct size by magnetic resonance imaging and to compare the results with pyrophosphate scanning by single photon emission computed tomography. DESIGN--All patients underwent magnetic resonance imaging and pyrophosphate scanning 5-7 days after the onset of symptoms. Both measurements of infarct size were compared with the release of creatine kinase MB and with ventricular performance estimated by radionuclide ventriculography. PATIENTS--19 patients (age 40-68 years) who had sustained their first uncomplicated myocardial infarction and who had not been treated with thrombolytic therapy. RESULTS--The site of infarction was clearly shown by both imaging techniques and was identical in each patient. The volume of infarcted tissue measured by magnetic resonance imaging agreed well with the infarct size measured by single photon emission tomography (mean difference 2.7 cm3). Correlations of both imaging techniques with the release of creatine kinase MB were best when total release rather than peak release was used. Both imaging techniques correlated closely with the subsequent ventricular performance. CONCLUSIONS--Magnetic resonance imaging after acute infarction allows measurement of infarct size and this may prove useful in assessing new treatments designed to salvage myocardium. Images PMID:1836135

  6. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis.

    PubMed

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-03-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  7. Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm

    SciTech Connect

    Zhang Jingfu; Long, G.C; Liu Wenzhang; Deng Zhiwei; Lu Zhiheng

    2004-12-01

    The quantum clock synchronization (QCS) algorithm proposed by Chuang [Phys. Rev. Lett. 85, 2006 (2000)] has been implemented in a three qubit nuclear magnetic resonance quantum system. The time difference between two separated clocks can be determined by measuring the output states. The experimental realization of the QCS algorithm also demonstrates an application of the quantum phase estimation.

  8. Fabrication of vascular replicas from magnetic resonance images.

    PubMed

    Friedman, M H; Kuban, B D; Schmalbrock, P; Smith, K; Altan, T

    1995-08-01

    Image processing and Computer Numerical Controlled (CNC) machining techniques have been used to prepare a large-than-life investment cast of an aortic bifurcation from magnetic resonance images of a replica of the vessel. The technique will facilitate experimental studies of vascular fluid dynamics and permit the in vitro reproduction of flows in living subjects. PMID:8618391

  9. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  10. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  11. 5.4 Magnetic Resonance Imaging, Diagnostic Ultrasound

    NASA Astrophysics Data System (ADS)

    Bernhardt, J. H.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.4 Magnetic Resonance Imaging, Diagnostic Ultrasound' of the Chapter '5 Medical Radiological Protection' with the contents:

  12. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  13. Magnetic resonance imaging in obstructive Müllerian anomalies

    PubMed Central

    Sen, Kamal Kumar; Balasubramaniam, Dhivya; Kanagaraj, Vikrant

    2013-01-01

    Herlyn-Werner-Wunderlich (HWW) syndrome is a very rare congenital anomaly of the urogenital tract involving Müllerian ducts and Wolffian structures. It is characterized by the triad of didelphys uterus, obstructed hemivagina, and ipsilateral renal agenesis. Magnetic resonance imaging (MRI) is a sensitive, non-invasive diagnostic modality for demonstrating anatomic variation and associated complications. PMID:24082660

  14. Sonographic and magnetic resonance imaging findings of neurocutaneous melanosis

    PubMed Central

    Chen, Yingming Amy; Woodley-Cook, Joel; Sgro, Michael; Bharatha, Aditya

    2016-01-01

    Neurocutaneous melanosis is a rare nonfamilial phakomatosis characterized by large or multiple congenital melanocytic nevi plus the presence of central nervous system melanosis or melanoma. We report a case of a male infant with a giant posteroaxial nevus and evidence of intracranial melanosis on ultrasound and magnetic resonance imaging. PMID:26973729

  15. Low-field magnetic resonance imaging of gases

    SciTech Connect

    Schmidt, D.M.; Espy, M.A.

    1998-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main goal of this project was to develop the capability to conduct low-field magnetic resonance imaging of hyper-polarized noble gas nuclei and of thermally polarized protons in water. The authors constructed a versatile low-field NMR system using a SQUID gradiometer detector inside a magnetically shielded room. This device has sufficient low-field sensitivity to detect the small signals associated with NMR at low magnetic fields.

  16. Van der Waals Forces in Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    MacBeth, Melissa; Garbini, Joseph; Sidles, John; Dougherty, William; Chao, Shih-Hui

    2001-03-01

    Magnetic Resonance Force Microscopy detects modulated spin-gradient forces by means of a soft, high phQ cantilever. When the magnetic tip of the cantilever is brought close to the sample surface, static forces significantly change the net restoring force, altering the cantilever mechanical resonance frequency. This frequency shift can be very large compared to the width of the cantilever resonance. As previously demonstrated, active feedback control of the cantilever motion greatly improves cantilever dynamics. The control algorithm is obtained by formal optimal control techniques and implemented with a digital signal processor (DSP). We have recently enabled the DSP to continuously evaluate the frequency of the cantilever as the tip approaches the sample and seamlessly adapt control parameters for optimized performance. Tip-sample approach under adaptive control can avoid snap-in and obtain much smaller separations than uncontrolled approach, and the static potential is reliably characterized.

  17. An introduction to biomedical nuclear magnetic resonance

    SciTech Connect

    Petersen, S.B.; Muller, R.N.; Rinck, P.A.

    1985-01-01

    Separated into three sections, this book gives an overview on the principles of nuclear magnetic spectroscopy and the imaging procedures based upon this technique, an insight into the parameters which have influence on the NMR image, e.g. relaxation times, flow and contrast, and finally an account of medical applications in the brain, the spine, the cardiovascular system, the abdomen, and in tumor imaging.

  18. Magnetic resonance imaging at frequencies below 1 kHz.

    PubMed

    Hilschenz, Ingo; Körber, Rainer; Scheer, Hans-Jürgen; Fedele, Tommaso; Albrecht, Hans-Helge; Mario Cassará, Antonino; Hartwig, Stefan; Trahms, Lutz; Haase, Jürgen; Burghoff, Martin

    2013-02-01

    Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents. PMID:22898690

  19. Ultrasensitive magnetometry and magnetic resonance imaging using cantilever detection

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2009-03-01

    Micromachined cantilevers make remarkable magnetometers for nanoscale measurements of magnetic materials and for magnetic resonance imaging (MRI). We present various applications of cantilever magnetometry at low temperature using cantilevers capable of attonewton force sensitivity. Small, unexpected magnetic effects can be seen, such as anomalous damping in magnetic field. A key application is magnetic resonance force microscopy (MRFM) of both electron and nuclear spins. In recent experiments with MRFM-based NMR imaging, 3D spatial resolution better than 10 nm was achieved for protons in individual virus particles. The achieved volumetric resolution represents an improvement of 100 million compared to the best conventional MRI. The microscope is sensitive enough to detect NMR signals from adsorbed layers of hydrocarbon contamination, hydrogen in multiwall carbon nanotubes and the phosphorus in DNA. Operating with a force noise on the order of 6 aN per root hertz with a magnetic tip that produces a field gradient in excess of 30 gauss per nanometer, the magnetic moment sensitivity is ˜0.2 Bohr magnetons. The corresponding field sensitivity is ˜3 nT per root hertz. To our knowledge, this combination of high field sensitivity and nanometer spatial resolution is unsurpassed by any other form of nanometer-scale magnetometry.

  20. Towards the invisible cryogenic system for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Steinmeyer, F.; Retz, P. W.; White, K.; Lang, A.; Stautner, W.; Smith, P. N.; Gilgrass, G.

    2002-05-01

    With about 10,000 Magnetic Resonance Imaging (MRI) systems installed worldwide, helium cooled magnets have become familiar equipment in hospitals and imaging centers. Patients and operators are only aware of the hissing sound of the Gifford-MacMahon refrigerator. Service technicians, however, still work with cryogenic fluids and cold gases, e.g. for replenishing the helium reservoir, inserting retractable current leads for magnet ramps, or replacing burst disks after a magnet quench. We will describe the steps taken at Oxford Magnet Technology towards the ultimate goal of a superconducting magnet being as simple as a household fridge. Early steps included the development of resealing quench valves, as well as permanently installed transfer siphons that only open when fully cooled to 4K. On recently launched 1.5 Tesla solenoid magnets, 500 A current leads are permanently fixed into the service turret, with hardly any boil-off penalty (40-50 cc/hr total). Ramping of the magnet has been fully automated, including electronic supervision of the gas-cooled current leads. One step ahead, the 1 Tesla High Field Open magnet is refrigerated by a single 4K Gifford MacMahon coldhead, relieving the user from the necessity to refill with helium. Our conduction cooled 0.2 Tesla HTS magnet testbed does not require liquid cryogens at any time in its life, including initial cool-down.

  1. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  2. Magnetic resonance imaging in central nervous system tuberculosis

    PubMed Central

    Trivedi, Richa; Saksena, Sona; Gupta, Rakesh K

    2009-01-01

    Tuberculosis (TB) in any form is a devastating disease, which in its most severe form involves the central nervous system (CNS), with a high mortality and morbidity. Early diagnosis of CNS TB is necessary for appropriate treatment to reduce this morbidity and mortality. Routine diagnostic techniques involve culture and immunological tests of the tissue and biofluids, which are time-consuming and may delay definitive management. Noninvasive imaging modalities such as computed tomography (CT) scan and magnetic resonance imaging (MRI) are routinely used in the diagnosis of neurotuberculosis, with MRI offering greater inherent sensitivity and specificity than CT scan. In addition to conventional MRI imaging, magnetization transfer imaging, diffusion imaging, and proton magnetic resonance spectroscopy techniques are also being evaluated for better tissue characterization in CNS TB. The current article reviews the role of various MRI techniques in the diagnosis and management of CNS TB. PMID:19881100

  3. Magnetically tunable Mie resonance-based dielectric metamaterials

    PubMed Central

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-01-01

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route. PMID:25384397

  4. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-08-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

  5. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except in patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.

  6. Magnetically tunable Mie resonance-based dielectric metamaterials.

    PubMed

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-01-01

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route. PMID:25384397

  7. Magnetic resonance spectroscopy may hold promise in studying metabolites, tissues

    SciTech Connect

    Not Available

    1989-02-24

    Almost 15 years ago, in a basement at Chicago's University of Illinois Medical Center, Michael Barany, MD, PhD, measured phosphorus metabolites in an intact frog muscle using magnetic resonance spectroscopy (MRS). Prior to that, chemists used spectroscopy solely to analyze the contents of test tubes. Only a British group preceded Barany in proving that it would work in tissue as well. Today, he does spectroscopy clinically, one day a week, at the Greenberg Radiology Institute in Highland Park, IL, north of Chicago. Barany says that he can distinguish malignant from benign tumors in the living brain. The tool he uses is a standard magnetic resonance imaging (MRI) machine. While MRI capabilities have forged ahead, human MRS has been awaiting improvements in magnet and computer technology. Barany is one of a number of researchers who, since the early 1980s, have been developing MRS technology and techniques so that it can be done in the human body.

  8. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  9. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  10. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    PubMed Central

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-01-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials. PMID:27503610

  11. High pressure magnetic resonance imaging with metallic vessels.

    PubMed

    Han, Hui; Ouellette, Matthew; MacMillan, Bryce; Goora, Frederic; MacGregor, Rodney; Green, Derrick; Balcom, Bruce J

    2011-12-01

    High pressure measurements in most scientific fields rely on metal vessels given the superior tensile strength of metals. We introduce high pressure magnetic resonance imaging (MRI) measurements with metallic vessels. The developed MRI compatible metallic pressure vessel concept is very general in application. Macroscopic physical systems are now amenable to spatially resolved nuclear magnetic resonance (NMR) study at variable pressure and temperature. Metallic pressure vessels not only provide inherently high tensile strengths and efficient temperature control, they also permit optimization of the MRI RF probe sensitivity. An MRI compatible pressure vessel is demonstrated with a rock core holder fabricated using non-magnetic stainless steel. Water flooding through a porous rock under pressure is shown as an example of its applications. High pressure NMR spectroscopy plays an indispensable role in several science fields. This work will open new vistas of study for high pressure material science MRI and MR. PMID:21962929

  12. [The role of magnetic resonance tomography in diagnosis of syringomyelia].

    PubMed

    Sachkova, I Iu; Akhadov, T A; Kravtsov, A K; Belov, S A; Panova, M M

    2001-01-01

    The paper presents the analysis of the results of the examination of 90 patients with syringomyelia using magnetic-resonance "Bruker" tomograph with the intensity of the magnetic field 0.23 T. The observation was carried out according to the authors' classification. Symptom complex of syringomyelia corresponding to the anatomic disorders of the spinal cord was described. The authors made a conclusion, that the magnetic-resonance tomography, as the most informative method, was a method of choice in syringomyelia. In 21% of the patients there was idiopathic syringomyelia; in 47.3% a process spread to the caudal regions of medulla oblongata. In 79% cases syringomyelia manifested as a syndrome; in 50% of the total cases it was found in Arnold--Chiari anomaly. PMID:11243032

  13. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators.

    PubMed

    Aslam, Nabeel; Pfender, Matthias; Stöhr, Rainer; Neumann, Philipp; Scheffler, Marc; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Wrachtrup, Jörg

    2015-06-01

    Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ≈3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60-90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of 1.36 mT/√W. We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the (14)N nuclear spin shows second-long longitudinal relaxation times. PMID:26133855

  14. AGS Fast spin resonance jump, magnets and power supplies

    SciTech Connect

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  15. Cyclotron-resonance maser in a magnetic mirror.

    PubMed

    Caspi, R; Jerby, E

    1999-08-01

    A cyclotron-resonance maser (CRM) experiment is performed in a high-gradient magnetic field using a low-energy electron beam ( approximately 10 keV/1 A). The magnetic field exceeds 1.63 T, which corresponds to a 45-GHz cyclotron frequency. The CRM radiation output is observed in much lower frequencies, between 6.6 and 20 GHz only. This discrepancy is explained by the finite penetration depth of the electrons into the growing magnetic field, as in a magnetic mirror. The electrons emit radiation at the local cyclotron frequency in their reflection point from that magnetic mirror; hence, the radiation frequency depends mostly on the initial electron energy. A conceptual reflex gyrotron scheme is proposed in this paper, as a CRM analogue for the known reflex klystron. PMID:11970042

  16. Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla

    NASA Astrophysics Data System (ADS)

    Nikiel-Osuchowska, Anna; Collier, Guilhem; Głowacz, Bartosz; Pałasz, Tadeusz; Olejniczak, Zbigniew; Wȩglarz, Władysław P.; Tastevin, Geneviève; Nacher, Pierre-Jean; Dohnalik, Tomasz

    2013-09-01

    Metastability exchange optical pumping (MEOP) is experimentally investigated in 3He at 4.7 T, at room temperature and for gas pressures ranging from 1 to 267 mbar. The 23S-23P transition at 1083 nm is used for optical pumping and for detection of the laser-induced orientation of 3He atoms in the rf discharge plasma. The collisional broadening rate is measured (12.0 ± 0.4 MHz mbar-1 FHWM) and taken into account for accurate absorption-based measurements of both nuclear polarization in the ground state and atom number density in the metastable 23S state. The results lay the ground for a comprehensive assessment of the efficiency of MEOP, by comparison with achievements at lower field (1 mT-2 T) over an extended range of operating conditions. Stronger hyperfine decoupling in the optically pumped 23S state is observed to systematically lead to slower build-up of 3He orientation in the ground state, as expected. The nuclear polarizations obtained at 4.7 T still decrease at high pressure but in a less dramatic way than observed at 2 T in the same sealed glass cells. To date, thanks to the linear increase in gas density, they correspond to the highest nuclear magnetizations achieved by MEOP in pure 3He gas. The improved efficiency puts less demanding requirements for compression stages in polarized gas production systems and makes high-field MEOP particularly attractive for magnetic resonance imaging of the lungs, for instance.

  17. Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Goossens, M.; Verth, G.; Fedun, V.; Van Doorsselaere, T.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  18. A water-soluble gadolinium metallofullerenol: facile preparation, magnetic properties and magnetic resonance imaging application.

    PubMed

    Li, Jie; Wang, Taishan; Feng, Yongqiang; Zhang, Ying; Zhen, Mingming; Shu, Chunying; Jiang, Li; Wang, Yuqing; Wang, Chunru

    2016-06-01

    A new water-soluble gadolinium metallofullerenol was prepared through a solid-liquid reaction. It was characterized to have an enhanced effective magnetic moment, and improved T1-weighted relaxivity and magnetic resonance imaging performance in the liver. This material prepared by a facile method has wide application as a contrast agent and biological medicine. PMID:27064096

  19. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.

    PubMed

    Zhang, Qing; Wen, Xinglin; Li, Guangyuan; Ruan, Qifeng; Wang, Jianfang; Xiong, Qihua

    2013-12-23

    Plasmonic Fano resonance, enabled by the weak interaction between a bright super-radiant and a subradiant resonance mode, not only is fundamentally interesting, but also exhibits potential applications ranging from extraordinary optical transmission to biosensing. Here, we demonstrate strong Fano resonances in split-ring resonators/disk (SRR/D) nanocavities. The high-order magnetic modes are observed in SRRs by polarization-resolved transmission spectroscopy. When a disk is centered within the SRRs, multiple high-order magnetic modes are coupled to a broad electric dipole mode of SRR/D, leading to significant Fano resonance spectral features in near-IR regime. The strength and line shape of the Fano resonances are tuned through varying the SRR split-angle and interparticle distance between SRR and disk. Finite-difference-time-domain (FDTD) simulations are conducted to understand the coupling mechanism, and the results show good agreement with experimental data. Furthermore, the coupled structure gives a sensitivity of ∼282 nm/RIU with a figure of merit ∼4. PMID:24215162

  20. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    SciTech Connect

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.