Science.gov

Sample records for 7h12 liquid medium

  1. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  2. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  3. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  4. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long

  5. Performance of Vitek MS in identifying nontuberculous mycobacteria from MGIT liquid medium and Lowenstein-Jensen solid medium.

    PubMed

    Kehrmann, Jan; Schoerding, Ann-Kathrin; Murali, Roshni; Wessel, Sarah; Koehling, Hedda Luise; Mosel, Frank; Buer, Jan

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and inexpensive method for bacterial identification. The aim of this study was to analyze the performance of Vitek MS in identifying 160 nontuberculous mycobacterial isolates of 24 species from Lowenstein-Jensen solid medium and BACTEC MGIT 960 liquid medium using a bead-based method. The system correctly identified 76.9% of the isolates (123 of 160) cultivated on solid medium and 76.9% (123 of 160) of positive liquid cultures. None of the isolates included in the study was misidentified. Although the overall performance of Vitek MS with the SARAMIS 4.12 database was comparable in identifying mycobacterial species grown on solid medium and in liquid medium, the identification rate varied notably between the various species analyzed, which currently limits the utility for identification in routine diagnostics for some species. PMID:26527059

  6. Fungal transformation of metallic lead to pyromorphite in liquid medium.

    PubMed

    Rhee, Young Joon; Hillier, Stephen; Pendlowski, Helen; Gadd, Geoffrey Michael

    2014-10-01

    Many approaches have been proposed to reduce the toxicity of hazardous substances such as lead in the environment. Several techniques using microorganisms rely on metal removal from solution by non-specific biosorption. However, immobilization of metals through formation of biominerals mediated by metabolic processes offers another solution but which has been given limited attention. In this work, we have investigated lead biomineralization by Paecilomyces javanicus, a fungus isolated from a lead-contaminated soil, in a liquid medium. P. javanicus was able to grow in the presence of metallic lead, supplied as lead shot, and secondary lead minerals were deposited on the lead surfaces as revealed by scanning electron microscopy. Energy dispersive X-ray analysis and X-ray powder diffraction revealed that pyromorphite was formed in the presence of the fungus, but not in abiotic controls. Our results clearly demonstrate that fungal activities can play an important role in lead biocorrosion and biomineralization in an aqueous environment. These findings are relevant to bioremediation approaches for liquid wastes contaminated with lead, or other metals, and also to the immobilization and biorecovery of rare or valuable elements. They also provide further understanding of microbial roles in environmental lead cycling. PMID:25065784

  7. Tubular optical microcavities of indefinite medium for sensitive liquid refractometers.

    PubMed

    Tang, Shiwei; Fang, Yangfu; Liu, Zhaowei; Zhou, Lei; Mei, Yongfeng

    2016-01-01

    Optical microcavities enable circulated light to intensively interact with a detecting liquid, thus promising high sensitivity in fluidic refractometers. Based on Mie scattering theory, we propose a tubular metamaterial device for liquid sensing, which utilizes anisotropic metamaterials with hyperbolic dispersion called indefinite media (IM). Besides traditional whispering gallery modes (WGMs), such tubular cavities can support surface plasmon polariton (SPP) WGMs, enabling high sensitivity liquid detection. Three configurations of such metamaterial tubes for sensing are discussed: tube-in-liquid, hollow-tube-in-liquid and liquid-in-tube; these are analyzed using numerical formulas and compared with dielectric and metal materials. Compared with traditional dielectric media (DM), the IM tubular cavity exhibits a higher sensitivity (S), which is close to that of a metal tubular cavity. However, compared with metal media, such an IM cavity can achieve higher quality (Q) factors similar to the DM tubular cavity. Therefore, the IM tubular cavity can offer the highest figures of merit (QS) for the sensing performance among the three types of materials. Our results suggest a novel tubular optofluidic device based on metamaterials, which could be useful for liquid refractometers. PMID:26605851

  8. A new medium for liquid fermentation of Steinernema feltiae: Selection of lipid and protein sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite great progress in the past couple of decades, entomopathogenic nematode production in liquid fermentation still requires improvements to maximize efficiency, yield and nematode quality. Thus, the objective of this study was to develop a more suitable liquid medium for mass production of S. f...

  9. Deformation of liquid drops moving in a gas medium

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-10-01

    Deformation of drops (with initial characteristic sizes of 3-6 mm) of widely used liquids (water, kerosene, and ethyl alcohol) moving in air with moderate velocities (up to 5 m/s) is investigated experimentally using a high-speed (105 frames per second) video camera. The characteristic "deformation cycles" for drops are established. The duration, length, and amplitude of variation of the drop sizes in each cycle are determined. It is shown how the initial size and velocity of drops affect these characteristics. The experimental results are processed using the similarity criteria (Weber and Reynolds numbers) adopted for investigating the motion of liquid drops. The features of the processes under investigation are outlined; it is shown that the conditions and characteristics of deformation of drops are determined not only by the effect of viscous, inertial, and surface tension forces.

  10. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

  11. Acanthamoeba Encephalitis: Isolation of Genotype T1 in Mycobacterial Liquid Culture Medium

    PubMed Central

    Azzam, Rula; Badenoch, Paul R.; Francis, Michelle J.; Fernandez, Charles; Adamson, Penelope J.; Dendle, Claire; Woolley, Ian; Robson, Jenny; Korman, Tony M.

    2014-01-01

    We report a case of Acanthamoeba encephalitis diagnosed from an antemortem brain biopsy specimen, where the organism was first isolated in mycobacterial liquid medium and first identified by using a sequence generated by a commercial panfungal sequencing assay. We correlate susceptibility results with clinical outcome. PMID:25502534

  12. Destruction of molecular compounds in gaseous and liquid medium in microwave discharge plasma

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. G.; Shiyan, V. P.; Shiyan, L. N.; Magomadova, S. O.

    2015-11-01

    The paper presents the results of experimental studies of molecular destruction in gaseous and liquid medium using microwave discharge plasma at atmospheric pressure. As the gas medium hydrocarbon gas is used, the liquid medium were aqueous solutions of methylene blue and more complex organic compound in the form of humic substances. As a result of the destruction of hydrocarbon gas molecules in microwave discharge plasma new products such as hydrogen, ethylene, acetylene and carbon nanostructured material have been formed. In experiments on destruction of molecular compounds in aqueous organic solutions we used air, nitrogen and argon for plasma gases. It is shown that the process of molecular destruction in aqueous organic solutions in the microwave discharge plasma is based on oxidation-reduction reactions. It is found that the maximum efficiency of removal of organic compounds from the solution occurs when using air as the plasma gas.

  13. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Krauzin, Pavel V.

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.

  14. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.

    PubMed

    Goldobin, Denis S; Krauzin, Pavel V

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids. PMID:26764828

  15. A Novel Charged Medium Consisting of Gas-Liquid Interfacial Plasmas

    SciTech Connect

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2009-11-10

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we succeed in creating the reactive gas (plasmas)--liquid (ionic liquids) interfacial field under a low gas pressure condition, where the plasma ion behavior can be controlled. The effects of the plasma ion irradiation on the liquid medium are quantitatively revealed for the first time. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the gas-liquid interfacial plasma are investigated by changing a polarity of the electrode in the liquid to evaluate the plasma-liquid interactions. These results would contribute to synthesizing the metal nanoparticles with carbon nanotubes as a template in the ionic liquid. It is found that the high density, mono-dispersed, and isolated metal nanoparticles are synthesized between or inside the carbon nanotubes by controlling the gas-liquid interfacial plasmas. Furthermore, we can form novel nano-bio composite materials, such as DNA encapsulated carbon nanotubes using the plasma ion irradiation method in an electrolyte plasma with DNA, and demonstrate modifications of the electrical properties of the carbon nanotubes depending on the kinds of encapsulated DNA for the first time.

  16. A Novel Charged Medium Consisting of Gas-Liquid Interfacial Plasmas

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2009-11-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we succeed in creating the reactive gas (plasmas)—liquid (ionic liquids) interfacial field under a low gas pressure condition, where the plasma ion behavior can be controlled. The effects of the plasma ion irradiation on the liquid medium are quantitatively revealed for the first time. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the gas-liquid interfacial plasma are investigated by changing a polarity of the electrode in the liquid to evaluate the plasma-liquid interactions. These results would contribute to synthesizing the metal nanoparticles with carbon nanotubes as a template in the ionic liquid. It is found that the high density, mono-dispersed, and isolated metal nanoparticles are synthesized between or inside the carbon nanotubes by controlling the gas-liquid interfacial plasmas. Furthermore, we can form novel nano-bio composite materials, such as DNA encapsulated carbon nanotubes using the plasma ion irradiation method in an electrolyte plasma with DNA, and demonstrate modifications of the electrical properties of the carbon nanotubes depending on the kinds of encapsulated DNA for the first time.

  17. Dynamics of a liquid drop in porous medium saturated by another liquid under gravity

    NASA Astrophysics Data System (ADS)

    Ivantsov, A. O.; Lyubimova, T. P.

    2016-02-01

    The work deals with numerical simulations of settling or ascension process of a liquid drop in porous media saturated by another liquid. The calculations were carried out using the Darcy model by Level set method with adaptive mesh refinement algorithm that dynamically refines computational mesh near interface. It is shown that the drop is unstable and the finger instability develops at the forefront of moving drop for any ratio of the viscosities of liquids. Under modulated pressure gradient small-scale perturbations of interface are suppressed and in the case of modulation with large enough intensity drop becomes stable.

  18. Development of a serum-free liquid medium for Bartonella species.

    PubMed

    Müller, Andreas; Reiter, Michael; Mantlik, Katrin; Schötta, Anna-Margarita; Stockinger, Hannes; Stanek, Gerold

    2016-09-01

    The genus Bartonella comprises numerous species with at least 13 species pathogenic for humans. They are fastidious, aerobic, Gram negative, and facultative intracellular bacteria which cause a variety of human and non-human diseases. This study focused on the development of a serum-free liquid medium for culture of Bartonella species. Some liquid media are available commercially but all of them use undefined supplements such as fetal calf serum or defibrinated sheep blood. Our intention was to create a reproducible liquid medium for Bartonella species that can simply be prepared. We tested several supplements that could potentially support the growth of Bartonella species. Slight growth improvement was achieved with glucose and sucrose. However, hemin in particular improved the growth rate. At a temperature of 37 °C, a CO2 concentration of 5 %, a humidified atmosphere, and the use of the supplements glucose, sucrose, and hemin, we developed a medium that does not need serum as an undefined supplement any more. In conclusion, the newly developed medium supports growth of Bartonella species equal to the commercially available media but with the advantage that it has a serum-free formulation. It can be prepared fast and easy and is a useful tool in studying these bacteria. PMID:26842394

  19. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.

    PubMed

    Martelli, Fabrizio; Zaccanti, Giovanni

    2007-01-22

    In spite of many progresses achieved both with theories and with experiments in studying light propagation through diffusive media, a reliable method for accurate measurements of the optical properties of diffusive media at NIR wavelengths is, in our opinion, still missing. It is therefore difficult to create a diffusive medium with well known optical properties to be used as a reference. In this paper we describe a method to calibrate the reduced scattering coefficient, mu'(s) , of a liquid diffusive medium and the absorption coefficient, mu(a), of an absorbing medium with a standard error smaller than 2% both on mu'(s) and on mu(a). The method is based on multidistance measurements of fluence into an infinite medium illuminated by a CW source. The optical properties are retrieved with simple inversion procedures (linear fits) exploiting the knowledge of the absorption coefficient of the liquid into which the diffuser and the absorber are dispersed. In this study Intralipid diluted in water has been used as diffusive medium and Indian ink as absorber. For a full characterization of these media measurements of collimated transmittance have also been carried out, from which the asymmetry factor of the scattering function of Intralipid and the single scattering albedo of Indian ink have been determined. PMID:19532267

  20. Development of a submerged-liquid sporulation medium for the johnsongrass bioherbicide Gloeocercospora sorghi.

    PubMed

    Mitchell, James K; Njalamimba-Bertsch, Mushoba; Bradford, Nathan R; Birdsong, Julie A

    2003-10-01

    Submerged culture experiments were conducted in three phases to determine the optimal medium for rapidly producing conidia of the fungal bioherbicide Gloeocercospora sorghi. In phase I, 18 crude carbon sources were evaluated to determine which would support sporulation. Under the conditions tested, butter bean and lima bean brines (1.5-4.6 mS/cm) provided best conidiation. In phase II, a fractional-factorial design was utilized to screen 76 different medium adjuncts in combination with butter bean brine for improved sporulation. d-Mannitol and carboxymethylcellulose (CMC) were the only acceptable factors that resulted in a significant improvement. In phase III, a central composite design with response surface methodology was used to optimize concentrations of these critical factors. The model predicted optimal sporulation in a medium composed of 2.69 mS/cm butter bean brine +0.043 M d-mannitol +0.37% w/v CMC with an expected titer of 1.51x10(7) conidia/ml. Actual mean titer attained with the model-derived medium was 1.91x10(7) conidia/ml. Optimal sporulation occurred at 25.5 degrees C in this medium and conidia remained viable up to 2.71 days when stored at 12 degrees C. No significant difference was observed in virulence of conidia produced on agar vs washed conidia produced in the model-derived (liquid) medium. PMID:14530913

  1. Dynamics of shock wave propagation and interphase process in liquid-vapor medium

    SciTech Connect

    Pokusaev, B.G.; Pribaturin, N.A.

    1995-09-01

    This paper considers the experimental results and physical effects on the pressure wave dynamics of a vapour-liquid two-phase medium of bubble and slug structure. The role of destruction and collapse of bubbles and slugs, phase transition (condensation and evaporation) on pressure wave dynamics is also studied. The general mechanisms of the wave formation, behavior and instability of a vapour-liquid structure under pressure waves, basic peculiarities of the interface heat transfer are obtained. In the experiments it has been shown that for the bubble medium the shock wave can be transformed into the powerful pressure pulse with an amplitude greater then the amplitude of the initial pressure wave. For the slug medium a characteristic structure of the amplificated wave is {open_quotes}comb{close_quotes} - like wave. It has been shown that the wave amplification caused by generation of secondary waves in a medium caused by destruction and collapse of bubbles and slugs. The obtained results can be useful at transient and emergency operational regimes of nuclear reactors, fuel tank, pipelines with two-phase flows and for development of safety models for chemical industry.

  2. Bubbling behaviors induced by gas-liquid mixture permeating through a porous medium

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Li, Mingbo; Chen, Wenyu; Xie, Haibo; Fu, Xin

    2016-08-01

    This paper investigates the bubbling behaviors induced by gas-liquid mixture permeating through porous medium (PM), which was observed in developing immersion lithography system and was found having great differences with traditional bubbling behaviors injected with only gas phase through the PM. An experimental setup was built up to investigate the bubbling characteristics affected by the mixed liquid phase. Both the flow regimes of gas-liquid mixture in micro-channel (upstream of the PM) and the bubbling flow regimes in water tank (downstream of the PM) were recorded synchronously by high-speed camera. The transitions between the flow regimes are governed by gas and liquid Weber numbers. Based on the image analysis, the characteristic parameters of bubbling region, including the diameter of bubbling area on PM surface, gas-phase volume flux, and dispersion angle of bubbles in suspending liquid, were studied under different proportions of gas and liquid flow rate. Corresponding empirical correlations were developed to describe and predict these parameters. Then, the pertinent bubble characteristics in different bubbling flow regimes were systematically investigated. Specifically, the bubble size distribution and the Sauter mean diameter affected by increasing liquid flow rate were studied, and the corresponding analysis was given based on the hydrodynamics of bubble-bubble and bubble-liquid interactions. According to dimensionless analysis, the general prediction equation of Sauter mean diameter under different operating conditions was proposed and confirmed by experimental data. The study of this paper is helpful to improve the collection performance of immersion lithography and aims to reveal the differences between the bubbling behaviors on PM caused by only gas flow and gas-liquid mixture flow, respectively, for the researches of fluid flow.

  3. Anomalously slow relaxation of interacting liquid nanoclusters confined in a porous medium

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Belogorlov, A. A.; Tronin, V. N.

    2016-02-01

    Anomalously slow relaxation of clusters of a liquid confined in a disordered system of pores has been studied for the (water-L23 nanoporous medium) system. The evolution of the system of confined liquid clusters consists of a fast formation stage followed by slow relaxation of the system and its decay. The characteristic time for the formation of the initial state is τp˜10 s after the reduction of excess pressure after complete filling. Anomalously slow relaxation has been observed for times of 101- 105 s, and decay has been observed at times of >105 s. The time dependence of the volume fraction θ of pores filled with the confined liquid is described by a power law θ ˜t-α with the exponent α <0.15 . The exponent α and temperature dependence α (T ) are qualitatively described theoretically for the case of a slightly polydisperse medium in a mean-field approximation with the inclusion of the interaction of liquid clusters and averaging over various degenerate local configurations of clusters. In this approximation, slow relaxation is represented as a continuous transition through a sequence of metastable states of the system of clusters with a decreasing barrier.

  4. Anomalously slow relaxation of a nonwetting liquid in the disordered confinement of a nanoporous medium

    SciTech Connect

    Borman, V. D.; Belogorlov, A. A.; Zhuromskii, V. M.; Tronin, V. N.

    2015-12-15

    The time evolution of the water–disordered nanoporous medium Libersorb 23 (L23) system has been studied after complete filling at elevated pressure followed by full release of overpressure. It is established that relaxation of the L23 rapidly flows out during the overpressure relief time, following the variation in pressure. At a temperature below that of the dispersion transition (T < T{sub d} = 284 K), e.g., at T = 277 K, the degree of filling θ decreases from 1 to 0.8 within 10 s. The degree of filling varies with time according to the power law θ ∼ t{sup –α} with the exponent α < 0.1 over a period of t ∼ 10{sup 5} s. This process corresponds to slow relaxation of a metastable state of a nonwetting liquid in a porous medium. At times t > 10{sup 5} s, the metastable state exhibits decay, manifested as the transition to a power dependence of θ(t) with a larger exponent. The relaxation of the metastable state of nonwetting liquid in a disordered porous medium is described in the mean field approximation as a continuous sequence of metastable states with a barrier decreasing upon a decrease in the degree of filling. Using this approach, it is possible to qualitatively explain the observed relaxation process and crossover transition to the stage described by θ(t) with a larger exponent.

  5. A computer simulation study of the influence of a liquid crystal medium on polymerization.

    PubMed

    Berardi, Roberto; Micheletti, Davide; Muccioli, Luca; Ricci, Matteo; Zannoni, Claudio

    2004-11-01

    We present a simple molecular level model based on Gay-Berne monomers linked by finitely extendable nonlinear elastic potential bonds for describing main chain polymerization in liquid crystals. We apply the model to study the influence that the order of the medium has on the characteristics of the chains obtained. We find that the chains prepared from the nematic are actually straighter than those obtained from a polymerization in the isotropic phase and that they are characterized by a small number of hairpins as experimentally observed. PMID:15527380

  6. A computer simulation study of the influence of a liquid crystal medium on polymerization

    NASA Astrophysics Data System (ADS)

    Berardi, Roberto; Micheletti, Davide; Muccioli, Luca; Ricci, Matteo; Zannoni, Claudio

    2004-11-01

    We present a simple molecular level model based on Gay-Berne monomers linked by finitely extendable nonlinear elastic potential bonds for describing main chain polymerization in liquid crystals. We apply the model to study the influence that the order of the medium has on the characteristics of the chains obtained. We find that the chains prepared from the nematic are actually straighter than those obtained from a polymerization in the isotropic phase and that they are characterized by a small number of hairpins as experimentally observed.

  7. Spatially resolved distribution function and the medium-range order in metallic liquid and glass

    SciTech Connect

    Fang, Xiaowei; Wang, Cai-Zhuang; Hao, Shaogang; Kramer, Matthew; Yao, Yongxin; Mendelev, Mikhail; Napolitano, Ralph; Ho, Kai-Ming

    2011-12-23

    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu{sub 64.5}Zr{sub 35.5} alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe 'Bergman triacontahedron' packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  8. Polymer-coated fibrous extraction medium for sample preparation coupled to microcolumn liquid-phase separations.

    PubMed

    Imaizumi, Motohiro; Saito, Yoshihiro; Hayashida, Makiko; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-01-15

    Polymer-coated fibrous material has been introduced as the extraction medium for a miniaturized sample preparation method being coupled with microcolumn liquid chromatography. The preconcentration and the subsequent liquid chromatographic separation of tricyclic antidepressants (TCAs) drugs, amitriptyline, imipramine, nortriptyline and desipramine, was carried out with the hyphenated system. Several basic experimental parameters, such as extraction and separation conditions, were investigated along with the applicability of the method for the analysis of biological fluids. The results clearly showed that the on-line coupled system could be a powerful tool for the analysis of complex mixtures in biological matrix without a large solvent consumption and specially designed instruments. The lowest limit of quantification was quite acceptable for the analysis of TCAs in clinical and forensic situations. PMID:12485721

  9. Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium

    PubMed Central

    Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.

    2013-01-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  10. Development and validation of a liquid medium (M7H9C) for routine culture of Mycobacterium avium subsp. paratuberculosis to replace modified Bactec 12B medium.

    PubMed

    Whittington, Richard J; Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J; de Silva, Kumi; Purdie, Auriol C; Plain, Karren M

    2013-12-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  11. Effect of viscosity on the shaking-induced fluidization in a liquid-immersed granular medium

    NASA Astrophysics Data System (ADS)

    Yasuda, Nao; Sumita, Ikuro

    2016-02-01

    A liquid-immersed granular medium is shaken vertically under a wide range of accelerations (Γ in dimensionless form) and frequencies (f ) and its fluidization process is studied. The granular medium is formed by settling and consists of two size-graded layers (particle diameter d ) such that the upper layer is fine grained and is less permeable. When Γ >Γc , a liquid-rich layer formed by the accumulated liquid at the two-layer boundary causes a gravitational instability. The upwellings of the instability are separated horizontally by a distance (wavelength) λ , and their amplitude grows exponentially with time [∝exp(p t ) ] at a growth rate p . We conduct experiments for two liquid viscosity cases such that the particle settling velocity (Vs) of the same particle differs by a factor of 17. We find that for both cases, Γc is at a minimum in an optimum frequency band centered at f ˜100 Hz. However, the high-viscosity (HV) case has a smaller Γc, a shorter λ , and a faster dimensionless growth rate [p'=p /(Vs/d ) ] . We also measure granular rheology under an oscillatory shear and find that (i) interparticle friction decreases when the strain amplitude becomes large and (ii) friction is smaller for the HV case. From (i), we infer that the shear strain of the shaking experiments becomes largest at around f ˜100 Hz. We consider that (ii) is a consequence of liquid lubrication and is a reason for a smaller Γc for the HV case. We show that the low- and high-frequency limits of the optimum frequency band can be explained by introducing critical values of dimensionless jerk (i.e., time derivative of acceleration) J and dimensionless shaking energy S . The low-frequency limit corresponds to the requirement that in order to unjam the particles, the period of shaking (1 /f ) must be shorter than the time needed for the particles to rearrange by settling (d /Vs ), which also explains why the HV case is fluidized at a lower f compared to the LV case. We apply the

  12. Light pressure on a solid body immersed in a liquid medium

    SciTech Connect

    Makarov, Vyacheslav P; Rukhadze, Anri A

    2012-09-30

    We have solved the problem about the force with which an electromagnetic pulse in a liquid (or gaseous) medium at rest affects a solid body (also at rest) immersed in it. We have shown that under certain conditions (relating to the characteristics of the medium and the pulse shape), the formula for the force exerted per unit area of a body surface is obtained from the Landau - Lifshitz equations for static fields in the same way as, according to Pitaevskii, the field stress tensor is obtained from the static field stress tensor with the dispersion taken into account. The formula for the force acting on the wall, from which an incident quasi-monochromatic plane wave with a given intensity is reflected, differs from the corresponding formula for the case when the body is in a vacuum by the factor {+-}n{sub 1}, where n{sub 1} is the refractive index, and the upper (lower) sign corresponds to a positive (negative) group velocity of the wave in the medium. (laser applications and other topics in quantum electronics)

  13. Structural characterization, thermal, ac conductivity and dielectric properties of (C7H12N2)2[SnCl6]Cl2.1.5H2O

    NASA Astrophysics Data System (ADS)

    Hajji, Rachid; Oueslati, Abderrazek; Hajlaoui, Fadhel; Bulou, Alain; Hlel, Faouzi

    2016-05-01

    (C7H12N2)2[SnCl6]Cl2.1.5H2O is crystallized at room temperature in the monoclinic system (space group P21/n). The isolated molecules form organic and inorganic layers parallel to the (a, b) plane and alternate along the c-axis. The inorganic layer is built up by isolated SnCl6 octahedrons. Besides, the organic layer is formed by 2,4-diammonium toluene cations, between which the spaces are filled with free Cl- ions and water molecules. The crystal packing is governed by means of the ionic N-H...Cl and Ow-H...Cl hydrogen bonds, forming a three-dimensional network. The thermal study of this compound is reported, revealing two phase transitions around 360(±3) and 412(±3) K. The electrical and dielectric measurements were reported, confirming the transition temperatures detected in the differential scanning calorimetry (DSC). The frequency dependence of ac conductivity at different temperatures indicates that the correlated barrier hopping (CBH) model is the probable mechanism for the ac conduction behavior.

  14. Optical properties of a stack of cholesteric liquid crystal and isotropic medium layers

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.

    2015-12-01

    Some new optical properties of a stack consisting of cholesteric liquid crystal (CLC) and isotropic medium layers are studied. The problem is solved by the modified Ambartsumyan method for the summation of layers. Bragg conditions for the photonic band gaps of the proposed system are presented. It is shown that the choice of proper sublayer parameters can be used to control the band structure of the system. In the general case, the effect of full suppression of absorption, which is observed in a finite homogeneous CLC layer, is not detected in the presence of anisotropic absorption in CLC sublayers. It is shown that this effect can be generated in the system under study if certain conditions are imposed on the isotropic sublayer thickness. Under these conditions, the maximum photonic density of states (PDS) increases significantly at the boundaries of the corresponding band. The influence of a change in the CLC sublayer thickness and the system thickness on PDS is investigated.

  15. Production of conidia of Penicillium camemberti in liquid medium through microcycles of conidiation.

    PubMed

    Boualem, Khadidja; Gervais, Patrick; Cavin, Jean-François; Waché, Yves

    2014-11-01

    Microcycle conidiation is a survival mechanism of fungi encountering unfavorable conditions. In this phenomenon, asexual spores germinate secondary spores directly without formation of mycelium. As Penicillium camemberti conidia have the ability to produce conidiophores after germination in liquid culture induced by a thermal stress (18 and 30 °C), our work has aimed at producing conidia through this mean. Incubation at 18 and 30 °C increased the swelling of conidia and their proportion thereby producing conidiophores. Our results showed that the microcycle of conidiation can produce 5 × 10(8) conidia ml(-1) after 7 days at 18 °C of culture. The activity of these conidia was checked through culture on a solid medium. Conidia produced by microcycle conidiation formed a normal mycelium on the surface of solid media and 25 % could still germinate after 5 months of storage. PMID:24975730

  16. Optical properties of a stack of cholesteric liquid crystal and isotropic medium layers

    SciTech Connect

    Gevorgyan, A. H.

    2015-12-15

    Some new optical properties of a stack consisting of cholesteric liquid crystal (CLC) and isotropic medium layers are studied. The problem is solved by the modified Ambartsumyan method for the summation of layers. Bragg conditions for the photonic band gaps of the proposed system are presented. It is shown that the choice of proper sublayer parameters can be used to control the band structure of the system. In the general case, the effect of full suppression of absorption, which is observed in a finite homogeneous CLC layer, is not detected in the presence of anisotropic absorption in CLC sublayers. It is shown that this effect can be generated in the system under study if certain conditions are imposed on the isotropic sublayer thickness. Under these conditions, the maximum photonic density of states (PDS) increases significantly at the boundaries of the corresponding band. The influence of a change in the CLC sublayer thickness and the system thickness on PDS is investigated.

  17. EPR spectroscopy of protein microcrystals oriented in a liquid crystalline polymer medium

    NASA Astrophysics Data System (ADS)

    Caldeira, Jorge; Figueirinhas, João Luis; Santos, Celina; Godinho, Maria Helena

    2004-10-01

    Correlation of the g-tensor of a paramagnetic active center of a protein with its structure provides a unique experimental information on the electronic structure of the metal site. To address this problem, we made solid films containing metalloprotein ( Desulfovibrio gigas cytochrome c3) microcrystals. The microcrystals in a liquid crystalline polymer medium (water/hydroxypropylcellulose) were partially aligned by a shear flow. A strong orientation effect of the metalloprotein was observed by EPR spectroscopy and polarizing optical microscopy. The EPR spectra of partially oriented samples were simulated, allowing for molecular orientation distribution function determination. The observed effect results in enhanced sensitivity and resolution of the EPR spectra and provides a new approach towards the correlation of spectroscopic data, obtained by EPR or some other technique, with the three-dimensional structure of a protein or a model compound.

  18. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    PubMed

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers. PMID:24283329

  19. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes.

    PubMed

    Zong, Wen; Li, Gao-Wei; Cao, Jiang-Ming; Lei, Xinxiang; Hu, Mao-Lin; Sun, Han; Griesinger, Christian; Tan, Ren Xiang

    2016-03-01

    Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π-conjugated molecules. Moreover, sonication-induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement. PMID:26890579

  20. Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dorofeev, G. A.; Lubnin, A. N.; Lad'yanov, V. I.; Mukhgalin, V. V.; Puskkarev, B. E.

    2014-02-01

    It has been shown using X-ray diffraction, scanning electron microscopy, and chemical analysis that, upon ball milling of α-titanium in liquid organic media (toluene and n-heptane), a nanocrystalline fcc phase is formed that is a metastable carbohydride Ti(C,H) deficient in hydrogen and carbon compared to stable carbohydrides. The dimensions of powder particles after milling in toluene and n-heptane differ substantially (are 5-10 and 20-30 μm, respectively. It has been shown that the kinetics of the formation of Ti(C,H) is independent of the milling medium. The atomic ratios H/C in the products of mechanosynthesis agree well with those corresponding to the employed organic media, i.e., H/C = 1.1 for toluene and 2.3 for n-heptane. A solid-liquid mechanism of mechanosynthesis is suggested, which includes repeated processes of particle fracturing with the formation of fresh surfaces, adsorption of liquid hydrocarbons on these surfaces, and subsequent cold welding of the newly formed particles. It is assumed that the formation of the fcc phase in the process of milling is connected with the generation of stacking faults in α-Ti. Upon annealing at 550°C, the fcc phase decomposes with the formation of stable titanium carbide TiC (annealing in a vacuum) or stable titanium carbohydride and a β-Ti(H) solid solution (annealing in argon) with a partial reverse transformation Ti(C,H) → α-Ti in both cases.

  1. Liquid xenon gamma-ray imaging telescope (LXeGRIT) for medium energy astrophysics

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Egorov, Valeri; Xu, Fang; Chupp, Edward L.; Dunphy, Philip; Doke, Tadayoshi; Kikuchi, Jun; Fishman, Gerald J.; Pendleton, Geoffrey N.; Masuda, Kimiaki; Kashiwagi, Toshisuke

    1996-10-01

    As part of our ongoing research program to develop a liquid xenon gamma-ray imaging telescope (LXe-GRIT) for medium energy astrophysics, we have built a liquid xenon time projection chamber (LXeTPC) with a total volume of 10 liters and a sensitive are of 20 cm by 20 cm. The detector has been successfully tested with gamma-ray sources in the laboratory and is currently being prepared as balloon-borne payload for imaging MeV gamma-ray emission from the Crab Nebula, Cygnus X-1 and the Orion molecular cloud region. The LXe-TPC, sensitive to gamma-rays from 300 keV to 30 MeV, measures the energy and the 3-D location of each gamma-ray interaction with a resolution of 6% FWHM and 1 mm RMS at 1 MeV, within a 1 sr FOV. Its detection efficiency for Compton events is about 4% in the 1 - 3 MeV, an energy band of great astrophysical interest for both continuum and line emission. Its 3 sigma continuum sensitivity of 1.8 multiplied by 10(superscript -7) ph cm(superscript -2)s(superscript -1)keV(superscript -1) for a nominal 10 hr observation time, will allow us to study a variety of sources with an imaging accuracy as good as 1 degree. We plan to pursue a vigorous program of balloon flights with this telescope to achieve the maximum science return while continuing a strong R&D laboratory program on LXe technology. The ultimate goal is an optimized design of a satellite implementation of a liquid xenon gamma-ray imaging instrument that will lead to drastic improvements in sensitivity and angular resolution in the 0.3 - 30 MeV band and beyond.

  2. A Novel Liquid Medium for the Efficient Growth of the Salmonid Pathogen Piscirickettsia salmonis and Optimization of Culture Conditions

    PubMed Central

    Marshall, Sergio H.; Henríquez, Vitalia; Gómez, Fernando A.; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L−1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23–27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium. PMID:24039723

  3. Instability of uniform gas flow within liquid-saturated porous medium

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill

    2014-05-01

    Problem of flow instability in porous media are important for applied fields like mining, water supply, etc. There is a fundamental interest to mechanisms are influence on flow too. E.g., a viscous fingering is typical phenomenon of displacement processes in porous medium [1,2]. The instability of gas flow in liquid-saturated domain have no wide studies but it can make significant influence on heat and mass transport. If the one phase have a high saturation, the other phase will form the droplets are break and captured within pores due to the capillary forces [2-4]. It is possible to neglect the capillarity if the saturation of both fluids exceed a percolation thresholds [5,6]. We consider an infinite flat layer of uniform porous medium is saturated with gas and liquid have close saturation. Its upper boundary is impermeable for liquid phase and gas can pass freely through the border, and the down boundary is permeable for both phases. The temperature and pressure are fixed at the top while their gradients are fixed at the bottom side. Neglecting the capillarity, gas solubility, liquid evaporation and any phase transitions, we obtain a steady solution and study its' stability. The governing parameter of the flow is α = αgAPe, αg = (ρwCg )/(ρsCs), A = ρstatvstat (1) where Pe is the thermal Peclet number determines a ratio between convective and conductive heat transfer, αg is ratio of thermal capacities of fluid and matrix, and A is determined by gas density and velocity in the steady state. Analyzing the perturbations, we found that a long-wave instability realizes in the system. The critical value of parameter is: αc = a1 + k2a2 + O(ρg/ρw), (2) where a1,a2 are positive coefficients are calculated using thermal perturbations combinations and k is wave number along horizontal direction. The minimal αc equals 2.47, and it correspond the critical Peclet number near 200 in the methane-water system. An error of the dependence is of order of gas to water

  4. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained. PMID:26857993

  5. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hazardous Materials Table for a specific hazardous material; and marine portable tanks conforming to 46 CFR... and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  6. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hazardous Materials Table for a specific hazardous material; and marine portable tanks conforming to 46 CFR... and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  7. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hazardous Materials Table for a specific hazardous material; and marine portable tanks conforming to 46 CFR... and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  8. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    NASA Astrophysics Data System (ADS)

    Florea, I.; Buluc, G.; Florea, R. M.; Soare, V.; Carcea, I.

    2015-11-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO3-3%HF, 10%H2SO4, 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale.

  9. Identification of Neisseria by electron capture gas-liquid chromatography of metabolites in a chemically defined growth medium.

    PubMed Central

    Morse, C D; Brooks, J B; Kellogg, D S

    1977-01-01

    A dual-purpose study was carried out in an attempt to develop a rapid, sensitive method to identify Neisseria species by gas chromatography and to learn more about the metabolism of these organisms. Sixty-nine isolates of Neisseria were grown in a chemically defined fluid medium; the spent medium was extracted sequentially at pH 2 with diethyl ether and at pH 10 with chloroform. The pH 10 extracts were derivatized with heptafluorobutyric anhydride and analyzed by electron capture gas-liquid chromatography. The resulting spent culture medium electron capture gas-liquid chromatography profiles showed several qualitative and significant quantitative differences among the Neisseria species potentially useful in separating and identifying these organisms. Putrescine and cadaverine which were present in the spent culture medium of some Neisseria, including N. gonorrhoeae, were tentatively identified. Substituting carbohydrates for the chemically defined medium containing glucose in the base medium produced altered profiles with increased quantitative and qualitative differences. PMID:21889

  10. Identification of limiting factors for the optimum growth of fusarium oxysporum in liquid medium.

    PubMed

    Srivastava, Shilpi; Pathak, Neelam; Srivastava, Prachi

    2011-07-01

    Fusarium oxysporum is a highly ubiquitous species that infects a wide range of hosts causing various diseases such as vascular wilts, yellows, rots, and damping-off. Despite the immense economic significance of this phytopathogen, few workers have reported growth studies in this genus in submerged culture. In the present study, several parameters such as change in media pH, biomass, pattern of substrate utilization, viability of the fungal cells, and protein content were observed over a period of time. The fungal biomass increased at a slow rate for the initial 48 h and thereafter increased at an exponential rate. However, after about 8 days the rapid growth stabilized and the trend became more toward stationary phase. The concentration of glucose in the liquid media decreased rapidly up to the initial 4 days, followed by a slow decrease. The pH of the medium gradually decreased as the fungal growth progressed, the reduction being more pronounced in the initial 48 h. This study would be of immense importance for utilization of F. oxysporum for diverse applications because we can predict the growth pattern in the fungus and modulate its growth for human benefit. PMID:21976815

  11. Effect of liquid medium on size and shape of nanoparticles prepared by pulsed laser ablation of tin

    NASA Astrophysics Data System (ADS)

    Bajaj, Geetika; Soni, R. K.

    2009-11-01

    The effect of the surrounding liquid medium on the size, shape and optical absorption of synthesized nanoparticles prepared by laser ablation of pure tin in different liquids is investigated. The liquid not only confines the ablated species at the liquid-solid interface, but also it acts as a mediator for chemical reaction at the liquid-solid interface. The liquid media surrounding the target is thus an important factor affecting the shape, mean size, size distribution and composition of the particles. The ablation of tin target was carried out in deionized water, ethanol and acetone medium, leading to formation of tin and tin oxide nanoparticles of various sizes and shapes. Electron microscopy and optical absorption were employed for characterization of the particle size, shape and optical properties, respectively. The effect of surfactant was also studied by carrying out ablation in aqueous sodium dodecyl sulfate (SDS) or cetyl trimethyl ammonium bromide (CTAB) solution. It was observed that the average particle size and size distribution are considerably reduced by using surfactant.

  12. An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: II. Constant Liquid Withdrawal Rates

    SciTech Connect

    Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.

    2001-08-15

    This report describes the development of an effective continuum model to describe the nucleation and subsequent growth of a gas phase from a supersaturated, slightly compressible binary liquid in a porous medium, driven by solute diffusion.This report also focuses on the processes resulting from the withdrawal of the liquid at a constant rate. As before, the model addresses two stages before the onset of bulk gas flow, nucleation and gas phase growth. Because of negligible gradients due to gravity or viscous forces, the critical gas saturation, is only a function of the nucleation fraction.

  13. Michel's Transport Medium as an Alternative to Liquid Nitrogen for PCR Analysis of Skin Biopsy Specimens

    PubMed Central

    Boraiy, Logeina; Fontao, Lionel

    2014-01-01

    Formalin fixation and paraffin embedding are standard procedures for histopathological diagnosis and allow long-term archiving of tissue specimens. The cross-linking properties of formalin cause fragmentation of nucleic acids and reduce the sensitivity of PCR analysis. Michel's medium is a well-established transport medium used by dermatologists for biopsy transport to maintain tissue-fixed immunoreactants prior to direct immunofluorescence and immunoelectron microscopy. Here we report that Michel's medium also allows short-term preservation of DNA for PCR analysis and permits amplification of amplicons larger than 1 kb. Therefore, Michel's medium appears to be a reserve medium for performing PCR when no other samples are available. PMID:27047924

  14. Michel's Transport Medium as an Alternative to Liquid Nitrogen for PCR Analysis of Skin Biopsy Specimens.

    PubMed

    Boraiy, Logeina; Fontao, Lionel

    2014-01-01

    Formalin fixation and paraffin embedding are standard procedures for histopathological diagnosis and allow long-term archiving of tissue specimens. The cross-linking properties of formalin cause fragmentation of nucleic acids and reduce the sensitivity of PCR analysis. Michel's medium is a well-established transport medium used by dermatologists for biopsy transport to maintain tissue-fixed immunoreactants prior to direct immunofluorescence and immunoelectron microscopy. Here we report that Michel's medium also allows short-term preservation of DNA for PCR analysis and permits amplification of amplicons larger than 1 kb. Therefore, Michel's medium appears to be a reserve medium for performing PCR when no other samples are available. PMID:27047924

  15. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  16. Anomalously slow relaxation of the system of strongly interacting liquid clusters in a disordered nanoporous medium: Self-organized criticality

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.

    2016-09-01

    It has been shown that changes in the energy of a system of nonwetting liquid clusters confined in a random nanoporous medium in the process of relaxation can be written in the quasiparticle approximation in the form of the sum of the energies of local (metastable) configurations of liquid clusters interacting with clusters in the connected nearest pores. The energy spectrum and density of states of the local configuration have been calculated. It has been shown that the relaxation of the state of the system occurs through the scenario of self-organized criticality (SOC). The process is characterized by the expectation of a fluctuation necessary for overcoming a local energy barrier of the metastable state with the subsequent rapid hydrodynamic extrusion of the liquid under the action of the surface buoyancy forces of the nonwetting framework. In this case, the dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume of the confined liquid θ ∼t-α(α ∼ 0.1) . The developed model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for disordered atomic systems.

  17. Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) -- A method for testing liquid medium and whole-sediment samples

    SciTech Connect

    Traunspurger, W.; Haitzer, M.; Hoess, S.; Beier, S.; Ahlf, W.; Steinberg, C.

    1997-02-01

    The authors present a method using the free-living nematode Caenorhabditis elegans to assess toxicity in liquid medium and whole-sediment setups. Test duration is 72 h; endpoints are body length, number of eggs inside worms, percentage of gravid worms, and number of offspring per worm. The effect of CdCl{sub 2} on C. elegans in liquid-phase exposures is described as an example. Results from a field study with cadmium polluted sediments from the River Elbe (Germany) suggest that nematodes may be useful organisms in assessing toxicity of sediments in the whole phase.

  18. Resonant interaction of light with a stack of alternating layers of a cholesteric liquid crystal and an isotropic medium

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.

    2015-12-01

    Resonance properties of a stack consisting of a cholesteric liquid crystal and isotropic medium layers are investigated. Bragg's conditions for photonic band gaps are presented for the considered system. It is shown that a significant control of the system zone structure is possible in the case of a proper selection of the sublayer parameters. It is also shown that an effect of complete suppression of absorption is not usually observed in the case of anisotropic absorption in cholesteric liquid crystal sublayers. The possibility to achieve this effect in the considered system, imposing certain conditions on the thickness and the refraction index of the isotropic medium sublayers, is shown. Also, it is shown that in such conditions a large increase of the maximum of photonic density of states happens at the appropriate zone borders.

  19. One-dimensional model of a liquid metal in the effective-medium approximation in the random limit

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier E.

    1989-08-01

    In this paper it is shown that the effective-medium approximation (EMA) of Roth [Phys. Rev. B 9, 2476 (1974)] corresponds to the approximation No. 5 of Klauder [Ann. Phys. 14, 43 (1961)] in the random limit for the one-dimensional delta-function model of a liquid metal. The random EMA results are compared with the exact results obtained by Frisch and Lloyd [Phys. Rev. 120, 1175 (1960)] for this model.

  20. Waves on the surface of a boiling liquid at various medium stratifications

    SciTech Connect

    Sinkevich, O. A.

    2015-08-15

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared.

  1. Waves on the surface of a boiling liquid at various medium stratifications

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.

    2015-08-01

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor-liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor-liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared.

  2. Effect of Host Medium on the Fluorescence Emission Intensity of Rhodamine B in Liquid and Solid Phase

    NASA Astrophysics Data System (ADS)

    Fikry, M.; Omar, M. M.; Ismail, Lotfi Z.

    2011-06-01

    In this work, we study the effect of concentration, host medium, PH, ions complex and phase states on the fluorescence emission from the laser dye, Rhodamine B, pumping by UV laser as exited source. The polymethylmethacrylate PMMA used as host medium in case of solid phase samples while, ethanol and Tetrahydrofuran (THF) are used in case of liquid one. The Laser Induced Fluorescence (LIF) technique was used to study the fluorescence properties of the both cases liquid and thin film solid-state samples. In addition, the Dual Thermal Lens (DTL) technique was used to study the quantum yield of these samples. The maximum fluorescence emission observed at concentration of Rhodamine B C=3×10-4M. At this concentration of Rhodamine B, the type of solvent and polarity of the medium affect on the fluorescence emission intensity of Rhodamine B with. The measurements revile that, the behavior of both phases state was analogous and Rhodamine B/PMMA thin film sample by ratio of 4:1 and thickness 0.12 mm is the best photostability sample and its quantum yield about ≈ 0.82. Also, the fluorescence emission intensity of Rhodamine B was quenched by complex formation of Co, Al, Cu and iodide ions with Rhodamine B due to the increase of the charge density of the ions.

  3. Mathematical Modeling of Mass Transfer in Laminar Motion of a Droplet in a Liquid Medium

    NASA Astrophysics Data System (ADS)

    Elizarov, D. V.; Elizarov, V. V.; Kamaliev, T. S.; D‧yakonov, S. G.

    2016-03-01

    Consideration is given to mathematical modeling of the process of nonstationary liquid-liquid extraction in apparatuses with free motion of a dispersed phase. Solutions of nonstationary equations of transfer of momentum and mass in the boundary layer on the droplet and inside the droplet near the phase boundary are given. Equations for calculation of the coefficients of mass transfer and concentration of the extracted component are obtained. A comparison is made of the calculated data and experimental results in extracting various liquid mixtures.

  4. The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids

    NASA Astrophysics Data System (ADS)

    Mayer, Alex S.; Miller, Cass T.

    1992-11-01

    A series of experiments was performed to characterize the morphologic distribution of nonaqueous-phase liquids (NAPL's) at residual saturation, as a function of porous medium size. Morphologic characterization of NAPL distributions was accomplished using a novel in situ polymerization technique. The porous medium consisted of glass beads. Blob length, volume and shape characteristics were determined for each experiment, and pore size distributions were determined through capillary pressure-saturation experiments. Both the blob lenght and pore size distributions were fitted to a van Genuchten function. Both blob lenght and pressure-saturation data could be scaled with the same averaged porous medium characteristics. The blob length distributions were found to be wider than the pore size distributions. Estimates of representative elementary volumes (REV's) were generated from statistical analysis using a van Genuchten cumulative frequency distribution function for blob lenght and an empirical function for blob volume as a function of blob length. Simulations were also performed using a Monte Carlo method. The size of the REV needed for a given level of prediction of the residual saturation level was found to increase as a function of mean particle volume for the similar used in this study. Extrapolation of the REV analysis suggests that the size of an REV will increase rapidly as uniformity of the medium decreases. If this extrapolation holds true, significant uncertainty would exist in most determination of residual saturation for poorly sorted media that have been reported to date.

  5. One-step facile synthesis of noble metal nanocrystals with tunable morphology in a nematic liquid crystalline medium

    NASA Astrophysics Data System (ADS)

    Dan, Kaustabh; Satpati, Biswarup; Datta, Alokmay

    2016-05-01

    The present study describes in-situ synthesis of noble metal nano structures (MNCs) (Au and Ag) within a nematic liquid crystalline medium MBBA [N-(4-methoxybenzylidene)-4-butylaniline] without using any seed mediated growth protocol or without using any external stabilizing or reducing agent. Detailed Transmission Electron Microscopy (TEM) study indicates that apart from Kinetic based mechanism, the thermodynamical parameters also influence greatly the morphological evolution of these MNCs. The MNCs are of diverse shapes including nano prisms, hexagons, urchins, cubes, and rods which depend on the time of reaction and the choice of nanoparticle precursor.

  6. ACTIVE MEDIA: Dynamics of growth of inhomogeneities in the active medium of a liquid laser

    NASA Astrophysics Data System (ADS)

    Barikhin, B. A.; Ivanov, A. Yu; Kudryavkin, E. V.; Nedolugov, V. I.

    1991-07-01

    Fast cinematography of holograms and of shadow and interference patterns was combined with an acoustic method in a study of the dynamics of growth of inhomogeneities in the active medium of a coaxially pumped dye laser. The main mechanism of the formation of these inhomogeneities was related to acoustic waves created by the deformation of the walls of a dye cell created by electrical pulses applied to the pump flashlamp. Multipulse operation of this laser could be achieved and the off-duty factor could be reduced if the active medium was excited by the strongest possible pump pulses.

  7. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  8. Enhanced resolution of Mentha piperita volatile fraction using a novel medium-polarity ionic liquid gas chromatography stationary phase.

    PubMed

    Ragonese, Carla; Sciarrone, Danilo; Grasso, Elisa; Dugo, Paola; Mondello, Luigi

    2016-02-01

    The evaluation of a novel medium-polarity ionic-liquid-based gas chromatography column, SLB-IL60, towards the analysis of a complex essential oil, namely, a peppermint essential oil sample, is reported. The SLB-IL60 30 m column was subjected to bleeding measurements, by means of conventional gas chromatography with mass spectrometry. The SLB-IL60 column was then evaluated in the analysis of pure standard compounds, chosen as typical constituents of peppermint essential oil. Resolution and peak symmetry (expressed as tailing factors at 10% of peak height) were measured and the results were compared to those obtained on the most widely used columns in such an application, namely a medium-polarity [100% poly(ethyleneglycol)] stationary phase, and an apolar 5% diphenyl/95% dimethyl siloxane. The final part of the evaluation was dedicated to the gas chromatography with mass spectrometry analysis of a peppermint essential oil sample and again the data were compared to those obtained on the 100% poly(ethyleneglycol) and the 5% diphenyl/95% dimethyl siloxane phase. Linear retention indices were determined for all the identified components on the ionic liquid capillary. PMID:26613675

  9. Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium.

    PubMed

    Cotton Kelly, Kinsey; Wasserman, Jessica R; Deodhar, Sneha; Huckaby, Justin; DeCoster, Mark A

    2015-01-01

    The goal of this protocol is to describe the synthesis of two novel biocomposites with high-aspect ratio structures. The biocomposites consist of copper and cystine, with either copper nanoparticles (CNPs) or copper sulfate contributing the metallic component. Synthesis is carried out in liquid under biological conditions (37 °C) and the self-assembled composites form after 24 hr. Once formed, these composites are highly stable in both liquid media and in a dried form. The composites scale from the nano- to micro- range in length, and from a few microns to 25 nm in diameter. Field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX) demonstrated that sulfur was present in the NP-derived linear structures, while it was absent from the starting CNP material, thus confirming cystine as the source of sulfur in the final nanocomposites. During synthesis of these linear nano- and micro-composites, a diverse range of lengths of structures is formed in the synthesis vessel. Sonication of the liquid mixture after synthesis was demonstrated to assist in controlling average size of the structures by diminishing the average length with increased time of sonication. Since the formed structures are highly stable, do not agglomerate, and are formed in liquid phase, centrifugation may also be used to assist in concentrating and segregating formed composites. PMID:26274773

  10. States of a dispersed nonwetting liquid in a disordered nanoporous medium

    NASA Astrophysics Data System (ADS)

    Borman, Vladimir D.; Belogorlov, Anton A.; Grekhov, Alexey M.; Tronin, Vladimir N.

    2015-04-01

    Three different states of a dispersed nonwetting liquid (water) in the Fluka 100 C8 and Fluka 100 C18 disordered porous media, as well as transitions between these states under variation of the temperature and the degree of filling, have been revealed. It has been shown that the appearance of such states is due to the broadening of the pore size distribution function f(R), fluctuations of configurations of neighbors in the system of pores and fluctuations in the configuration of a pore and its environment consisting of filled and empty pores in the percolation cluster. These states and transitions are caused by the competition between the effective repulsion of the nonwetting liquid from the wall of the pore, which is responsible for the "extrusion" of the liquid from the pore, and the effective collective "multiparticle" attraction of the liquid cluster in the pore to clusters in the neighboring connected pores. The observed difference in the behavior of the Fluka 100 C8/water and Fluka 100 C18/water systems and the previously studied Libersorb-23 (L23)/water system indicates a significant dependence of the state of these systems on the type of disorder in them.

  11. Multiplicity of metastable nonergodic states of a dispersed nonwetting liquid in a disordered nanoporous medium

    NASA Astrophysics Data System (ADS)

    Borman, Vladimir D.; Belogorlov, Anton A.; Grekhov, Alexey M.; Tronin, Vladimir N.

    2014-10-01

    Three different metastable nonergodic states of a dispersed nonwetting liquid (water) in the Fluka 100 C8 and Fluka 100 C18 disordered porous media, as well as transitions between these states under variation of the temperature and the degree of filling, have been qualitatively described. It has been shown that the appearance of such states is due to spatial variations of the number of the nearest neighbors because of the broadening of the pore size distribution function f( R), fluctuations of various local configurations of neighbors in the system of pores, and fluctuations of a configuration of a pore and its environment consisting of filled and empty pores on a percolation cluster. These states and transitions are caused by the competition between the effective repulsion of the nonwetting liquid from the wall of the pore, which is responsible for the "extrusion" of the liquid from the pore, and the effective collective multiparticle attraction of the liquid cluster in the pore to clusters in the neighboring connected pores. The theoretical dependences obtained make it possible to qualitatively describe experimental data.

  12. Real-time quantification of viable bacteria in liquid medium using infrared thermography

    NASA Astrophysics Data System (ADS)

    Salaimeh, Ahmad A.; Campion, Jeffrey J.; Gharaibeh, Belal Y.; Evans, Martin E.; Saito, Kozo

    2011-11-01

    Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content ( EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media ( P < 0.0001), and that EC and viable counts were strongly positively correlated ( r = 0.986) over a range of 120 to approximately 5 × 10 8 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.

  13. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity

    NASA Technical Reports Server (NTRS)

    Podol'skii, I. G.; Sychev, V. N.; Levinskikh, M. A.; Strugov, O. M.; Bingham, G. E.; Salisbury, F. B. (Principal Investigator)

    1998-01-01

    Sixteen point probes monitored moisture level in the root medium of the wheat plants grown in greenhouse SVET on the MIR/NASA space science program. The article outlines types of water migration in the absence of gravity. Hydrophysical characteristics of perspective root media have been explored. Results of the water supply monitoring and control in the course of experiment are reported. The authors put forward porous root media to facilitate water migration and aeration.

  14. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture.

    PubMed

    Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C

    2016-08-01

    Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. PMID:27176942

  15. Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light.

    PubMed

    Peccianti, Marco; Assanto, Gaetano

    2002-03-01

    Nematic liquid crystals exhibit a saturable, non-instantaneous nonlinear response through light-induced reorientation. In such a material, we demonstrate that (2+1)-dimensional spatial solitary waves can be generated at milliwatt power levels not only with a coherent optical beam, but also with incoherent excitations. Self-trapping also allows the efficient guidance of a weak co-polarized probe. PMID:11909157

  16. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  17. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    PubMed

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM. PMID:27548356

  18. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium

    NASA Astrophysics Data System (ADS)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.

  19. Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium.

    PubMed

    He, Enjie; Zheng, Hairong; Zhang, Xisheng; Qu, Shixian

    2010-01-01

    Tm(3+):LaF(3) nanocrystals were synthesized with hydrothermal technique. Local-field effect on the radiative relaxation rate was studied in the system of Tm(3+):LaF(3) nanocrystals immersed in several liquid media. The fluorescence lifetime was measured. It was found that the fluorescence decay presented the characteristics of second-order exponential decay, for which the contribution from the ions inside the nanocrystal and ions at the interface of the nanocrystal were distinguished. Investigating the experimental results with proposed models, we found that the surface effect had to be eliminated. For rare earth doped LaF(3) nanocrystals, real-cavity model well explains the influence of surrounding medium on the fluorescence relaxation rate. PMID:19630086

  20. Two liquid medium systems, mycobacteria growth indicator tube and MB redox tube, for Mycobacterium tuberculosis isolation from sputum specimens.

    PubMed

    Heifets, L; Linder, T; Sanchez, T; Spencer, D; Brennan, J

    2000-03-01

    Two manual liquid medium systems, the Mycobacteria Growth Indicator Tube (MGIT) and MB Redox tube systems, were evaluated in comparison to the radiometric BACTEC-460 semiautomated system for recovery of Mycobacterium tuberculosis from sputum specimens. The highest level of recovery, from a total of 77 culture-positive specimens, occurred with the BACTEC-460 system (92.2%), followed by the MB Redox tube (80.5%) and the MGIT (63.6%) systems. The shortest time to detection was observed also among the cultures in BACTEC-460: a mean of 12 days to a growth index (GI) of 10 and 15 days to a GI of 500. The mean times for the other systems were 16 days for the MB Redox tube system and 17.4 days for the MGIT system. The proportion of cultures grown after more than 3 weeks of incubation was only 2.8 or 8.4% in BACTEC-460 (for a GI of 10 or 500) but 17.7% in MB Redox and 22.5% in MGIT. Despite these differences in comparison to the BACTEC-460 system and some differences between the MGIT and MB Redox tube systems, either of the two manual liquid medium systems presents a reasonable alternative to the BACTEC-460 system, especially for laboratories with a limited workload, and a valuable element in the laboratory protocol, in conjunction with solid media, for obtaining rapid detection of growth from about 80% of culture-positive specimens and for better overall recovery of M. tuberculosis. PMID:10699027

  1. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  2. Evidence for the involvement of nematocidal toxins of Purpureocillium lilacinum 6029 cultured on Karanja deoiled cake liquid medium.

    PubMed

    Sharma, Abhishek; Sharma, Satyawati; Mittal, Aditya; Naik, S N

    2016-05-01

    In present study, in vitro nematocidal bioassays, FT-IR and HPLC analysis were employed to demonstrate the involvement of toxins of Purpureocillium lilacinum in killing root-knot nematodes (Meloidogyne incognita). During growth study, maximum mycelial biomass (10.52 g/l) in de-oiled Karanja cake medium was achieved on 8th day while complete mortality of nematodes was obtained by 6th day filtrate (FKSM). Maximum production of crude nematocidal toxin was recorded on 7th day suggesting that the toxin production was paralleled with growth of the fungus. The median lethal concentration (LC50) determined for the crude toxin from 6th day to 10th day ranged from 89.41 to 43.21 ppm. The median lethal time (LT50) for the crude toxin of FKSM was found to be 1.46 h. This is the first report of implementing a comparative infra-red spectroscopy coupled with HPLC analysis to predict the presence of nematocidal toxin in the fungal filtrate cultured on Karanja deoiled cake liquid medium. PMID:27038952

  3. Impact of electromagnetic microwaves on the germination of spores of Streptomyces xanthochromogenes in a peat soil and in a liquid nutrient medium

    NASA Astrophysics Data System (ADS)

    Komarova, A. S.; Likhacheva, A. A.; Lapygina, E. V.; Maksimova, I. A.; Pozdnyakov, A. I.

    2010-01-01

    The impact of microwaves on the germination of spores of Streptomyces xanthochromogenes in a liquid nutrient medium and in a peat soil was studied. The treatment of inoculums with microwave radiation affected the development of the microorganisms from the stage of spore germination to the stage of the formation of microcolonies of actinomycetes upon the spore cultivation in the liquid medium. Typical hypnum-herbaceous peat was used to study the rate of germination of the actinomycetal spores in soil. The study of the dynamics of the Streptomyces xanthochromogenes population in the control soil (without treatment with microwaves) showed that the most active development of the culture took place in the soil moistened to 60% of the maximum water capacity. When the soil was moistened to the minimum adsorption capacity, the streptomyces did not complete their full cycle of development. The stimulation of the spore germination and mycelium growth with microwaves in the soil medium required a longer period in comparison with that for the liquid medium. The stimulation of the spore germination was observed in the liquid nutrient medium in the case of 30-s treatment and in the soil in the case of 60-s treatment.

  4. Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.; Byrkin, V. A.

    2016-04-01

    We propose a physical model of a relaxation of states of clusters of nonwetting liquid confined in a random nanoporous medium. The relaxation is occurred by the self-organized criticality (SOC) scenario. Process is characterized by waiting for fluctuation necessary for overcoming of a local energy barrier with the subsequent avalanche hydrodynamic extrusion of the liquid by surface forces of the nonwetting frame. The dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume θ of the confined liquid θ ∼t-ν (ν ∼ 0.2) as in the picture of relaxation in the mean field approximation. The model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for relaxation of other disordered systems.

  5. Liquid crystals with patterned molecular orientation as an electrolytic active medium

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Guo, Yubing; Conklin, Christopher; Viñals, Jorge; Shiyanovskii, Sergij V.; Wei, Qi-Huo; Lavrentovich, Oleg D.

    2015-11-01

    Transport of fluids and particles at the microscale is an important theme in both fundamental and applied science. One of the most successful approaches is to use an electric field, which requires the system to carry or induce electric charges. We describe a versatile approach to generate electrokinetic flows by using a liquid crystal (LC) with surface-patterned molecular orientation as an electrolyte. The surface patterning is produced by photoalignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte exhibits a quadratic field dependence of the flow velocities; it induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  6. Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system.

    PubMed

    Guo, Zheng; Kahveci, Derya; Ozçelik, Beraat; Xu, Xuebing

    2009-10-01

    The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols. PMID:19426844

  7. Liquid crystals with patterned molecular orientation as an electrolytic active medium.

    PubMed

    Peng, Chenhui; Guo, Yubing; Conklin, Christopher; Viñals, Jorge; Shiyanovskii, Sergij V; Wei, Qi-Huo; Lavrentovich, Oleg D

    2015-11-01

    Transport of fluids and particles at the microscale is an important theme in both fundamental and applied science. One of the most successful approaches is to use an electric field, which requires the system to carry or induce electric charges. We describe a versatile approach to generate electrokinetic flows by using a liquid crystal (LC) with surface-patterned molecular orientation as an electrolyte. The surface patterning is produced by photoalignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte exhibits a quadratic field dependence of the flow velocities; it induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications. PMID:26651712

  8. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2013-01-01

    In the framework of the French R&D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 °C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlabin order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  9. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography.

    PubMed

    Wicha, Sebastian G; Kloft, Charlotte

    2016-08-15

    For pharmacokinetic/pharmacodynamic (PK/PD) assessment of antibiotics combinations in in vitro infection models, accurate and precise quantification of drug concentrations in bacterial growth medium is crucial for derivation of valid PK/PD relationships. We aimed to (i) develop a high-performance liquid chromatography (HPLC) assay to simultaneously quantify linezolid (LZD), vancomycin (VAN) and meropenem (MER), as typical components of broad-spectrum antibiotic combination therapy, in bacterial growth medium cation-adjusted Mueller-Hinton broth (CaMHB) and (ii) determine the stability profiles of LZD, VAN and MER under conditions in in vitro infection models. To separate sample matrix components, the final method comprised the pretreatment of 100μL sample with 400μL methanol, the evaporation of supernatant and its reconstitution in water. A low sample volume of 2μL processed sample was injected onto an Accucore C-18 column (2.6μm, 100×2.1mm) coupled to a Dionex Ultimate 3000 HPLC+ system. UV detection at 251, 240 and 302nm allowed quantification limits of 0.5, 2 and 0.5μg/mL for LZD, VAN and MER, respectively. The assay was successfully validated according to the relevant EMA guideline. The rapid method (14min) was successfully applied to quantify significant degradation of LZD, VAN and MER in in vitro infection models: LZD was stable, VAN degraded to 90.6% and MER to 62.9% within 24h compared to t=0 in CaMHB at 37°C, which should be considered when deriving PK/PD relationships in in vitro infection models. Inclusion of further antibiotics into the flexible gradient-based HPLC assay seems promising. PMID:27414982

  10. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium.

    PubMed

    Gammoudi, I; Tarbague, H; Othmane, A; Moynet, D; Rebière, D; Kalfat, R; Dejous, C

    2010-12-15

    The present work deals with the development of a Love-wave bacteria-based sensor platform for the detection of heavy metals in liquid medium. The acoustic delay-line is inserted in an oscillation loop in order to record the resonance frequency in real-time. A Polydimethylsiloxane (PDMS) chip with a liquid chamber is maintained by pressure above the acoustic wave propagation path. Bacteria (Escherichia coli) were fixed as bioreceptors onto the sensitive surface of the sensor coated with a polyelectrolyte (PE) multilayer using a simple and efficient layer-by-layer (LbL) electrostatic self-assembly procedure. Poly(allylamine hydrochloride) (PAH cation) and poly(styrene sulfonate) (PSS anion) were alternatively deposited so that the strong attraction between oppositely charged polyelectrolytes resulted in the formation of a (PAH-PSS)(n)-PAH molecular multilayer. The real-time characterization of PE multilayer and bacteria deposition is based on the measurement of the resonance frequency perturbation due to mass loading during material deposition. Real-time response to various concentrations of cadmium (Cd(2+)) and mercury (Hg(2+)) has been investigated. A detection limit as low as 10(-12) mol/l has been achieved, above which the frequency increases gradually up to 10(-3) mol/l, after a delay of 60 s subsequent to their introduction onto bacterial cell-based biosensors. Beyond a 10(-3) mol/l a steep drop in frequency was observed. This response has been attributed to changes in viscoelastic properties, related to modifications in bacteria metabolism. PMID:20810269

  11. High-Throughput Isolation of Giant Viruses in Liquid Medium Using Automated Flow Cytometry and Fluorescence Staining

    PubMed Central

    Khalil, Jacques Y. B.; Robert, Stephane; Reteno, Dorine G.; Andreani, Julien; Raoult, Didier; La Scola, Bernard

    2016-01-01

    The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than 10 strains of previously known species of giant viruses and seven new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed. PMID:26858703

  12. A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability.

    PubMed

    Welch, Aaron Z; Koshland, Douglas E

    2013-12-01

    Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability. PMID:24185677

  13. High-Throughput Isolation of Giant Viruses in Liquid Medium Using Automated Flow Cytometry and Fluorescence Staining.

    PubMed

    Khalil, Jacques Y B; Robert, Stephane; Reteno, Dorine G; Andreani, Julien; Raoult, Didier; La Scola, Bernard

    2016-01-01

    The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than 10 strains of previously known species of giant viruses and seven new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed. PMID:26858703

  14. Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation.

    PubMed

    Waheed, Shimaa E

    2016-01-01

    A problem of flow and heat transfer in a non-Newtonian Maxwell liquid film over an unsteady stretching sheet embedded in a porous medium in the presence of a thermal radiation is investigated. The unsteady boundary layer equations describing the problem are transformed to a system of non-linear ordinary differential equations which is solved numerically using the shooting method. The effects of various parameters like the Darcy parameter, the radiation parameter, the Deborah number and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. It is observed that increasing values of the Darcy parameter and the Deborah number cause an increase of the local skin-friction coefficient values and decrease in the values of the local Nusselt number. Also, it is noticed that the local Nusselt number increases as the Prandtl number increases and it decreases with increasing the radiation parameter. However, it is found that the free surface temperature increases by increasing the Darcy parameter, the radiation parameter and the Deborah number whereas it decreases by increasing the Prandtl number. PMID:27462509

  15. Simulation of the interaction of electromagnetic waves with dispersed particles in the propagation of breather in the surface layer of a liquid medium

    SciTech Connect

    Zabolotin, V.V.; Uvarova, L.A.

    2015-03-10

    A numerical simulation of the interaction of laser radiation with dispersed particles in the course of propagation of breather in the surface layer of the liquid breather was performed. The shape and amplitude of the acoustic signal formed in this interaction were obtained. Two acoustic signals, before and after the impact of a breather on the process of optical sound generation, were compared. Results of the comparison showed that the breather spreading over the surface of the liquid medium affecst the acoustic signal and its effect must be considered in the measurements.

  16. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-02-01

    In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet-visible (UV-vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles' mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  17. Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium.

    PubMed

    Ralla, Kathrin; Anton, Fabienne; Scheper, Thomas; Kasper, Cornelia

    2009-03-27

    The aim of this study was to develop a chromatographic method, as a substitute for enzyme-linked immunosorbent assays, for the rapid and simultaneous detection of IgG, insulin, and transferrin present in a cell culture medium. Conjoint liquid chromatography (conjoint LC) using monolithic disks was applied for this purpose. An anion-exchange disk was combined with a Protein G affinity disk in a preparative HPLC system. IgG bound to the Protein G disk, whereas transferrin and insulin were captured on the quaternary ammonium (QA) disk. Using this method, it was possible to simultaneously determine the concentrations of IgG, transferrin, and insulin in the cell culture medium. Thus, conjoint LC could be used for the rapid and simultaneous detection of different proteins present in a cell culture medium. PMID:18945433

  18. Influence of liquid medium with different absorption and its layer thickness on bovine bone tibia ablation induced by CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Chen, Chuanguo; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Liquid-assisted laser ablation has been investigated in laser surface cleaning, laser osteotomy, and dental tissue ablation. However, the actual mechanism of liquid-assisted ablation is not clear yet. The purpose of this study was to investigate the influence of liquid medium with different absorption and the liquid thickness on laser ablation efficiency. A pulsed CO2 laser was employed to ablate bovine bone tibia under liquid layer which varied from 0.6 mm to 2 mm. The applied pulse power level was set at 5 w and each crater was produced with six laser pulses. The results showed that the ablation cross-section area produced with various levels of pure water thickness (0.6, 0.8, 1 and 2 mm)were lower than under ink, and the ablation depth gradually decreased as the water layer becoming thicker. The biggest cross-section area in liquid thickness of ink was 0.8mm, but as the layer thicker than 0.8 mm the ablation depth decreased suddenly. There was thermal damage seen on samples in all of the groups, but less in pure water.

  19. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. PMID:26768549

  20. Bulk liquid membrane for the recovery of chromium(VI) from a hydrochloric acid medium using dicyclohexano-18-crown-6 as extractant-carrier

    SciTech Connect

    Zouhri, A.; Ernst, B.; Burgard, M.

    1999-06-01

    The solvent extraction and transfer of chromic acid from hydrochloric acid medium through a bulk liquid membrane containing dicyclohexano-18-crown-6 (L) were studied. Extraction experiments pointed out that chromium(VI) was coextracted with the chloride ion which formed the complex ion pair L(H{sub 3}O{sup +})CrO{sub 3}Cl{sup {minus}} in the organic phase. The Donnan equilibrium isotherm based on the extraction, stripping, and CrO{sub 3}Cl{sup {minus}} hydrolysis equilibria allowed prediction of the performance of the semipermeable membrane to concentrate chlorochromic acid in the receiving phase. Transport experiments confirmed the ability of the liquid membrane to recover chlorochromic acid in pure water. The transport kinetics was modeled by using the two-film theory applied to the liquid membrane.

  1. Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components.

    PubMed

    Li, Yan; Dvořák, Miloš; Nesterenko, Pavel N; Stanley, Roger; Nuchtavorn, Nantana; Krčmová, Lenka Kujovská; Aufartová, Jana; Macka, Mirek

    2015-10-01

    Trends towards portable analytical instrumentation of the last decades have not been equally reflected in developments of portable liquid chromatography (LC) instrumentation for rapid on-site measurements. A miniaturised medium pressure capillary LC (MPLC) system with gradient elution capability has been designed based on a flexible modular microfluidic system using primarily off-the-shelf low cost components to ensure wide accessibility to other analysts. The microfluidic platform was assembled on a breadboard and contained microsyringe pumps and switch valves, complemented with an injection valve and on-capillary detectors, all controlled by a PC. Four miniaturised microsyringe pumps, with 5, 20 and 100 μL syringe volume options, formed the basis of the pumping system. Two pairs of pumps were used for each mobile phase to create gradient elution capability. The two microsyringe pumps in each pairs were linked by two electrically operated microfluidic switching valves and both pairs of pumps were connected through a zero void volume cross-connector, thus providing a low hold-up volume for gradient formation. Sample was injected by a 20 nL nano-LC sampling valve, directly connected to a 18 cm long 100 μm i.d. Chromolith CapRod RP-18 monolithic capillary column. On-capillary LED-based UV-vis photometric detection was conducted through a piece of equal diameter fused silica capillary connected after the column. The performance of the portable LC system was evaluated theoretically and experimentally, including the maximum operating pressure, gradient mixing performance, and the performance of the detectors. The 5 μL microsyringe pump offered the best performance, with typical maximum operating pressures up to 11.4 ± 0.4 MPa (water) and gradient pumping repeatability of between 4 and 9% for gradients between 0.10% s(-1) and 0.33% s(-1). Test analytes of charged and uncharged dyes and pharmaceuticals of varying hydrophobicity showed typical RSD values of 0

  2. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    SciTech Connect

    Massacret, N.; Jeannot, J. P.

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  3. Algal degradation of a known endocrine disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil.

    PubMed

    Sethunathan, N; Megharaj, M; Chen, Z L; Williams, B D; Lewis, Gareth; Naidu, R

    2004-05-19

    The role of algae in the persistence, transformation, and bioremediation of two endocrine disrupting chemicals, alpha-endosulfan (a cyclodiene insecticide) and its oxidation product endosulfan sulfate, in soil (incubated under light or in darkness) and a liquid medium was examined. Incubation of soil under light dramatically decreased the persistence of alpha-endosulfan and enhanced its transformation to endosulfan sulfate, over that of dark-incubated soil samples, under both nonflooded and flooded conditions. This enhanced degradation of soil-applied alpha-endosulfan was associated with profuse growth of indigenous phototrophic organisms such as algae in soil incubated under light. Inoculation of soil with green algae, Chlorococcum sp. or Scenedesmus sp., further enhanced the degradation of alpha-endosulfan. The role of algae in alpha-endosulfan degradation was convincingly demonstrated when these algae degraded alpha-endosulfan to endosulfan sulfate, the major metabolite, and endosulfan ether, a minor metabolite, in a defined liquid medium. When a high density of the algal inoculum was used, both metabolites appeared to undergo further degradation as evident from their accumulation only in small amounts and the appearance of an endosulfan-derived aldehyde. Interestingly, beta-endosulfan was detected during degradation of alpha-endosulfan by high density algal cultures. These algae were also capable of degrading endosulfan sulfate but to a lesser extent than alpha-endosulfan. Evidence suggested that both alpha-endosulfan and endosulfan sulfate were immediately sorbed by the algae from the medium, which then effected their degradation. Biosorption, coupled with their biotransformation ability, especially at a high inoculum density, makes algae effective candidates for remediation of alpha-endosulfan-polluted environments. PMID:15137849

  4. Correlation between Dynamic Heterogeneity and Medium-Range Order in Two-Dimensional Glass-Forming Liquids

    SciTech Connect

    Kawasaki, Takeshi; Araki, Takeaki; Tanaka, Hajime

    2007-11-23

    A glassy state of matter results if crystallization is avoided upon cooling or increasing density. However, the physical factors controlling the ease of vitrification and nature of the glass transition remain elusive. Using numerical simulations of polydisperse hard disks, we find a direct relation between medium-range crystalline ordering and the slow dynamics which characterizes the glass transition. This suggests an intriguing scenario that the strength of frustration controls both the ease of vitrification and nature of the glass transition. Vitrification may be a process of hidden crystalline ordering under frustration, at least in our system.

  5. Ionic liquids as a key medium for efficient extraction of copper complexes from chia seeds (Salvia hispanica L.).

    PubMed

    Wojcieszek, Justyna; Popowski, Dominik; Ruzik, Lena

    2016-05-15

    Due to insufficient information, the aim of study was to concern on the optimization of extraction procedure of selected metal complexes with flavonoids from chia seeds. Evaluation of the amount of elements in compound, not only their total concentration content, is highly important due to the fact, that only a part from total content of metal is absorbed by human body. At the beginning the total amount of elements in chia seeds was established as 14.51±0.42 µg g(-1) for copper, 57.44±1.23 µg g(-1) for manganese, 81.12±1.89 µg g(-1) for zinc and 0.35±0.13 µg g(-1) for cobalt. After the most suitable solvent was established, effects of several parameters on the efficiency of metal extraction were studied. Solvent concentration, solid-solvent ratio, extraction method, extraction time and temperature have been investigated as independent variables. The optimal extraction conditions included vortexing during 20 min in 50°C, using an ionic liquid (1-butyl-3-methylimidazolium bromide) as an extractant, with solid-solvent ratio of 1:20. The determination of total and extractable amount of metals in chia seeds was carried out by standalone ICP MS. In addition, a complementary analysis of extracted metal complexes was performed using SEC-ICP MS method. It was confirmed that the ionic liquid is able to extract different copper complexes in comparison with commonly used solvents. The study indicated that extraction by using an ionic liquid has been successfully applied for determination of metals and metal complexes in chia seeds. PMID:26992545

  6. Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal.

    PubMed

    Cartwright, Julyan H E; Checa, Antonio G; Escribano, Bruno; Sainz-Díaz, C Ignacio

    2009-06-30

    Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48-54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton-Cabrera-Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299-358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications. PMID:19528636

  7. Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal

    PubMed Central

    Cartwright, Julyan H. E.; Checa, Antonio G.; Escribano, Bruno; Sainz-Díaz, C. Ignacio

    2009-01-01

    Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48–54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton–Cabrera–Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299–358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications. PMID:19528636

  8. Measuring Young's modulus of biological objects in a liquid medium using an atomic force microscope with a special probe

    NASA Astrophysics Data System (ADS)

    Lebedev, D. V.; Chuklanov, A. P.; Bukharaev, A. A.; Druzhinina, O. S.

    2009-04-01

    A special probe with a 5-μm-diameter ball fixed at the end is developed for an atomic force microscope (AFM), with the use of which it is possible to obtain more correct values of the Young’s moduli of biological objects in liquid media and eliminate the risk of damaging the sample surface. In particular, the AFM measurements with this probe in situ revealed an increase in the Young’s modulus of rat blood vessel under the action of chlorhexidine.

  9. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures.

    PubMed

    Pragalaki, T; Bloukas, J G; Kotzekidou, P

    2013-11-01

    The antimicrobial effect of two autochthonous starter cultures of Lactobacillus sakei was evaluated in vitro (in liquid broth medium) and in situ assays. The inactivation of foodborne pathogens Listeria monocytogenes (serotype 4ab No 10) and Escherichia coli O157:H7 ATCC 43888 was investigated during the production of fermented sausage according to a typical Greek recipe using L. sakei strains as starter cultures. The inactivation kinetics were modeled using GInaFiT, a freeware tool to assess microbial survival curves. By the end of the ripening period, the inhibition of L. monocytogenes was significant in treatments with L. sakei 8416 and L. sakei 4413 compared to the control treatment. A 2.2-log reduction of the population of E. coli O157:H7 resulted from the autochthonous starter culture L. sakei 4413 during sausage processing. The use of the autochthonous starter cultures constitutes an additional improvement to the microbial safety by reducing foodborne pathogens. PMID:23793080

  10. Permeation of mixtures of four phenols through a supported liquid membrane in NaCl 1.0 mol/dm{sup 3} medium

    SciTech Connect

    Arana, G.; Borge, G.; Etxebarria, N.; Fernandez, L.A.

    1999-02-01

    The permeation of four phenols (phenol, 2-chlorophenol, 2-nitrophenol, and 2,4-dichlorophenol) through a supported liquid membrane has been studied in NaCl 1.0 mol/dm{sup 3} medium. The flux of each phenol was determined by measuring in real time the change of their concentration in the strip phase by making use of a fiber optic spectrophotometer and a multivariate calibration. The model for the permeation of phenol alone was first developed by making permeation experiments of a phenol, and then permeation studies of the mixture were carried out and the model was extended to those phenols. It was found that the permeation of a phenol is interfered with by the presence of other phenols.

  11. Purification of stearidonic acid (18:4(n-3)) and hexadecatetraenoic acid (16:4(n-3)) from algal fatty acid with lipase and medium pressure liquid chromatography.

    PubMed

    Ishihara, K; Murata, M; Kaneniwa, M; Saito, H; Komatsu, W; Shinohara, K

    2000-11-01

    Stearidonic acid (18:4(n-3)) and hexadecatetraenoic acid (16:4(n-3)) are included in some edible marine algae such as Undaria pinnatifida and Ulva pertusa with relatively high compositions (up to 40%) of total fatty acids. In order to prepare 16:4(n-3) and 18:4(n-3) enriched fatty acid concentrates, we screened for a suitable lipase which concentrates these acids by the removal of other fatty acids in the selective esterification reaction reported by Shimada et al. (Shimada et al. (1997), J. Am. Oil Chem. Soc., 74, 1465-1470). In combination with the lipase reaction and reversed-phase medium pressure liquid chromatography, we purified 18:4(n-3) and 16:4(n-3) to more than 95% purity. PMID:11193415

  12. Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography.

    PubMed

    Chen, Chi-Zen; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Huang, Jenn-Wen; Jen, Jen-Fon

    2011-08-10

    In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium. PMID:21707080

  13. Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus Trametes versicolor.

    PubMed

    Badia-Fabregat, Marina; Rodríguez-Rodríguez, Carlos E; Gago-Ferrero, Pablo; Olivares, Alba; Piña, Benjamí; Díaz-Cruz, M Silvia; Vicent, Teresa; Barceló, Damià; Caminal, Glòria

    2012-08-15

    Ultraviolet (UV) filters are xenobiotic compounds that can enter the environment through the liquid effluent of wastewater treatment plants (WWTPs) and through adsorption in the sludge by-product because of their high hydrophobicity, as the sludge is subsequently applied as a fertiliser. A solid-state treatment of WWTP sludge with the white-rot fungus Trametes versicolor is reported in the present work as a feasible method for UV filter degradation, with reductions ranging from 87% in the case of 3-(4'-methylbenzylidene) camphor (4-MBC) to 100% for benzophenone-3 (BP3) and its metabolite 4,4'-dihydroxybenzophenone (4DHB). This study represents a first step in the development of a future fungal treatment for UV filters; thus, it is essential to prove that elimination is due only to the action of the fungus and not that of other microorganisms. To this end, the sludge was sterilised prior to fungal treatment. Biological assays indicate that T. versicolor readily eliminates oestrogenic activity, although it may be inefficient at eliminating other compounds, including some with dioxin-like activity. Degradation studies of 4-MBC in liquid media were also performed, and complete removal was achieved in less than 24 h. The main metabolites were identified, and the first steps of the transformation pathway were elucidated: a mono- or di-hydroxylation by cytochrome P450 and a subsequent conjugation with a pentose. None of 4-MBC transformation products was found to be responsible for increased dioxin-like activity in the sludge. PMID:22487399

  14. Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a landfarming site.

    PubMed

    Oliveira, Núbia M; Bento, Fátima M; Camargo, Flávio A O; Knorst, Aline Jéssica; Dos Santos, Anai Loreiro; Pizzolato, Tania M; Peralba, Maria do Carmo R

    2011-01-01

    Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h. PMID:21104499

  15. Sensitive determination of glucose in Dulbecco's modified Eagle medium by high-performance liquid chromatography with 1-phenyl-3-methyl-5-pyrazolone derivatization: application to gluconeogenesis studies.

    PubMed

    Ling, Zhaoli; Xu, Ping; Zhong, Zeyu; Wang, Fan; Shu, Nan; Zhang, Ji; Tang, Xiange; Liu, Li; Liu, Xiaodong

    2016-04-01

    A new pre-column derivative high-performance liquid chromatography (HPLC) method for determination of d-glucose with 3-O-methyl-d-glucose (3-OMG) as the internal standard was developed and validated in order to study the gluconeogenesis in HepG2 cells. Samples were derivatized with 1-phenyl-3-methy-5-pyrazolone at 70°C for 50 min. Glucose and 3-OMG were extracted by liquid-liquid extraction and separated on a YMC-Triart C18 column, with a gradient mobile phase composed of acetonitrile and 20 mm ammonium acetate solution containing 0.09% tri-ethylamine at a flow rate of 1.0 mL/min. The eluate were detected using a UV detector at 250 nm. The assay was linear over the range 0.39-25 μm (R(2) = 0.9997, n = 5) and the lower limit of quantitation was 0.39 μm (0.070 mg/mL). Intra- and inter-day precision and accuracy were <15% and within ±3%, respectively. After validation, the HPLC method was applied to investigate the gluconeogenesis in Dulbecco's modified Eagle medium (DMEM) cultured HepG2 cells. Glucose concentration was determined to be about 1-2.5 μm in this gluconeogenesis assay. In conclusion, this method has been shown to determine small amounts of glucose in DMEM successfully, with lower limit of quantitation and better sensitivity when compared with common commercial glucose assay kits. PMID:26293694

  16. Preparation of surface coatings on a conductive substrate by controlled motion of graphene nanoflakes in a liquid medium

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Qin, R. S.

    2015-02-01

    Controlled motion of graphene and graphene oxide nanoflakes in a thin liquid film on metal surfaces was studied to unravel the significant variations of the electric field effects on the nanoparticles. It was found that graphene oxide flakes were negatively charged and migrated toward anode while the electrically neutral graphene flakes moved toward cathode. Therefore, thin layers of graphene as a protective coating were produced to inhibit corrosion of underlying metals and reduce friction and wear-related mechanical failures in moving mechanical systems. The method does not require an insulated substrate to confine the high electric field to the fluidic layer. The motion of the nano-particles under pulsed electric current was very efficient. The observed effects were interpreted in a possible mechanism associated to the effect of electric field on the mobility of different particles in different conductive media. This significant phenomenon, combined with unique properties of graphene and graphene oxides, represents an exciting platform for enabling diverse applications on the preparation of protective coatings on an arbitrary conductive substrate over large areas.

  17. Simultaneous Cr(VI) removal and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium.

    PubMed

    Tang, Shaoyu; Yin, Hua; Zhou, Su; Chen, Shuona; Peng, Hui; Liu, Zehua; Dang, Zhi

    2016-05-01

    Simultaneous Cr(VI) removal and 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium were investigated in this study, with the goal of elucidating the interaction between concomitant pollutants Cr(VI) and BDE-47 during microbial remediation. The experimental results revealed that the degradation efficiency of 1 mg L(-1) BDE-47 by 60 mg L(-1) biomass achieved 51.3% within 7 d when 2 mg L(-1) Cr(VI) coexisted. The degradation efficiency was accelerated at low concentrations of Cr(VI) (≤5 mg L(-1)), but inhibited at higher levels (≥10 mg L(-1)). Cr(VI) of 2 mg L(-1) facilitated the secretion of rhamnolipid from the strain, altered cell surface hydrophobicity and cell membrane permeability, and promoted intracellular BDE-47 accumulation, thus improving BDE-47 biotransformation. In addition, the stimulation of intracellular enzyme synthesis by 2 mg L(-1) Cr(VI) contributed to more BDE-47 elimination in the cells. The achievement of BDE-47 biodegradation was coupled with cell growth, enzyme extraction, cell membrane permeability change, and ATPase activity increase. The study also indicated that the improvement of Cr(VI) removal in BDE-47/Cr(VI) co-contaminated condition was mostly due to the increasing synthesis of extracellular enzyme in the presence of low concentrations of BDE-47. The whole study demonstrated that P. aeruginosa was available for the removal of toxic Cr(VI) and degradation of BDE-47 simultaneously in the liquid. PMID:26891353

  18. Ultra-wideband electronics, design methods, algorithms, and systems for dielectric spectroscopy of isolated B16 tumor cells in liquid medium

    NASA Astrophysics Data System (ADS)

    Maxwell, Erick N.

    halfwavelength resonance. In this dissertation, a simple coaxial transmission line fixture for holding liquids by dispensing with the air-core assumption inherent in previous designs was developed (patent pending 60/916,042). In addition, a genetic algorithm was applied towards extracting dielectric properties from measurement data to circumvent problems of local minima and half wavelength resonance. Finally, in this research the capacity for using dielectric properties to quantify isolated B16-F10 tumor cells in McCoy's liquid medium was investigated. In so doing, the utility of the Maxwell-Wagner mixture formula for cell quantification was demonstrated by measuring distinct dielectric properties for differing volumes of cell suspensions using frequency- and time-domain dielectric spectroscopy.

  19. Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30 °C.

    PubMed

    Hadjilouka, Agni; Molfeta, Christina; Panagiotopoulou, Olga; Paramithiotis, Spiros; Mataragas, Marios; Drosinos, Eleftherios H

    2016-05-01

    The aim of the present study was to assess the expression of key virulence genes, during growth of a Listeria monocytogenes isolate in liquid medium, on melon and rocket at different temperatures and time. For that purpose, BHI broth, rocket and melon were inoculated at 7.0-7.5 log CFU mL(-1) or g(-1)and stored at 4, 10 and 30 °C. Sampling took place upon inoculation and after 0.5, 6 and 24 h of incubation. The RNA was stabilized and the expression of hly, plcA, plcB, sigB, inlA, inlB, inlC, inlJ, lmo2672 and lmo2470 was assessed by RT-qPCR. The results obtained were summarized into two observations; the first one referring to the interactive effect of incubation temperature and type of substrate and the second one to the effect of time on gene expression. Regarding the latter, nearly all genes were regulated upon inoculation and exhibited differential expression in the subsequent sampling times indicating the existence of additional regulatory mechanisms yet to be explored. PMID:26742611

  20. Enhanced biodegradation of asphalt in the presence of Tween surfactants, Mn(2+) and H2O2 by Pestalotiopsis sp. in liquid medium and soil.

    PubMed

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-05-01

    Asphalt and fractions thereof can contaminate water and soil environments. Forming as residues in distillation products in crude oil refineries, asphalts consist mostly of asphaltene instead of aliphatics, aromatics, and resins. The high asphaltene content might be responsible for the decrease in bioavailability to microorganisms and therefore reduce the biodegradability of asphalt in the environment. In this study, the effect on asphalt biodegradation by Pestalotiopsis sp. in liquid medium and soil of nonionic Tween surfactants in the presence of Mn2+ and H2O2 was examined. The degradation was enhanced by Tween 40 or Tween 80 (0.1%) in the presence of Mn2+ (1 mM) and H2O2 (0.05 mM). A Tween surfactant, Mn2+, and H2O2 can overcome bioavailability-mediated constraints and increase ligninolytic activities, particularly manganese peroxidase and laccase activities. The study is significant for the bioremediation of asphalt and/or viscous-crude oil-contaminated environments. PMID:24331036

  1. An ultrasensitive LC-MS/MS method with liquid phase extraction to determine paclitaxel in both cell culture medium and lysate promising quantification of drug nanocarriers release in vitro.

    PubMed

    Baati, Tarek; Schembri, Thérèse; Villard, Claude; Correard, Florian; Braguer, Diane; Estève, Marie-Anne

    2015-11-10

    The quantification of paclitaxel, a chemotherapy drug used to treat different types of cancers, has been performed from complete cell culture medium and cell lysate samples using a simple liquid-liquid extraction procedure in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). A simple sample preparation using methanol and acetic acid as a weaker acid was applied to avoid paclitaxel destruction and to achieve recovery exceeding 80 % from both matrices spiked with paclitaxel and docetaxel used as internal standard. This rapid, simple, selective and sensitive method enabled the quantification of paclitaxel within the linear range of 1-250nM in culture medium and 5-250nM in cell lysate. The lower limit of quantification was achieved in cell culture medium and cell lysates at 0.2 and 1pmol, respectively. This method was successfully applied to human non-small cell lung carcinoma cells (A549 cells) in order to quantify the amount of paclitaxel in both cell culture medium and lysate after incubation with 5, 50 and 100nM of paclitaxel. This ultra-sensitive method promises the quantification of ultra-low concentrations of paclitaxel released from any nanocarriers, allowing the determination of the kinetic profile of drug release, which is an essential parameter to validate the use of nanocarriers for drug delivery in cancer therapy. PMID:26263058

  2. Fluorescence-based sensor for Pb(II) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium

    NASA Astrophysics Data System (ADS)

    Bozkurt, Serap Seyhan; Ayata, Sevda; Kaynak, Ipek

    2009-05-01

    A new optical sensor for sensing of Pb 2+ in immobilized medium (PVC film) and ethanol medium was developed by using 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl)porphyrin (TBHPP) synthesized. The sensor-based TBHPP showed a linear response towards Pb 2+ in concentration range from 5 × 10 -6 to 4 × 10 -4 mol L -1 in PVC film and 5 × 10 -6 to 3 × 10 -4 mol L -1 in ethanol medium, with a working pH 7. The detection limit was 2 × 10 -8 and 4 × 10 -8 mol L -1 for Pb 2+ in PVC film and ethanol medium respectively. The response time of Pb 2+ was found as 4 min for PVC film and 2 min for ethanol medium. The sensor developed in two different mediums was used for lead determination in standard soil sample with satisfactory results.

  3. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    SciTech Connect

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and

  4. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-05-01

    A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  5. Doped Multilayer Polymer Cholesteric-Liquid-Crystal (PCLC) Flakes: A Novel Electro-Optical Medium for Highly Reflective Color Flexible Displays

    SciTech Connect

    Marshall, K.L.; Hasman, K.; Leitch, M.; Cox, G.; Kosc, T.Z.; Trajkovska-Petkoska, A.; Jacobs, S.D.

    2008-03-17

    Polymer cholesteric-liquid-crystal (PCLC) flake/fluid-host suspensions are a novel particle display technology for full-color reflective display applications on rigid or flexible substrates. These “polarizing pigments” require no polarizers or color filters, switch rapidly at very low voltages, and produce highly saturated colors with a reflection efficiency approaching 80%.

  6. Polymer Cholesteric Liquid Crystal (PCLC) Flake/Fluid Host Suspensions: A Novel Electro-Optical Medium for Reflective Color Display Applications

    SciTech Connect

    Marshall, K.L.; Trajkovska-Petkoska, A.; Kosc, T.Z.; Jacobs, S.D.

    2006-04-17

    Polymer cholesteric liquid crystal (PCLC) flake/fluid host suspensions are a new and promising particle display technology for both full-color flexible display applications and electronic paper. Devices containing these "polarizing pigments" switch rapidly at very low voltages and produce highly saturated, circularly polarized reflectance colors without requiring polarizers or color filters.

  7. Ionic liquids as a convenient new medium for the catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable osmium/ligand.

    PubMed

    Branco, Luís C; Afonso, Carlos A M

    2004-06-25

    The use of room-temperature ionic liquids (RTILs) in the Sharpless catalytic asymmetric dihydroxylation (AD) as a cosolvent or replacement of the tert-butanol was studied in detail by screening 11 different RTILs. The AD reaction is faster in 1-n-butyl-3-methylimidazolium hexafluorophosphate [C(4)mim][PF(6)] as a cosolvent than in the conventional system of tert-butanol/H(2)O. For the range of six substrates tested, comparable or even higher yields and enantiomeric excess (ee) were found using [C(4)mim][PF(6)] or 1-n-octyl-3-methylimidazolium hexafluorophosphate [C(8)mim][PF(6)] compared to the conventional solvent system. Due to high affinity of the catalytic osmium/quiral ligand system to the ionic liquid, the use of ionic liquid/water (biphasic) or ionic liquid/water/tert-butanol (monophasic) solvent systems provides a recoverable, reusable, robust, efficient, and simple system for the AD reaction. Using 1-hexene and [C(4)mim][PF(6)] as RTIL it was possible to reuse the catalytic system for 9 cycles with only a 5% of yield reduction from the first cycle, allowing an overall yield of 87%, TON = 1566, and with similar ee. Additionally, for each cycle, after extraction of the reaction mixture with diethyl ether, the osmium content in the organic phase (containing the AD product) and in the aqueous phase was in the range of the detection limit (liquid phase retained more than 90% of the osmium content of the previous cycle. PMID:15202893

  8. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images. PMID:20578682

  9. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination.

    PubMed

    Pourreza, N; Ghanemi, K

    2010-06-15

    A novel solid phase extractor for preconcentration of cadmium at ng L(-1) levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim](+)PF(6)(-)) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L(-1) solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L(-1)of cadmium in the initial solution with r=0.9992 (n=8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S(b), n=10) was 4.6 ng L(-1). The relative standard deviation (R.S.D.) of 25 and 150 ng L(-1) of cadmium was 4.1 and 2.2% (n=8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples. PMID:20176439

  10. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.

    PubMed

    Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

    2006-09-14

    The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium. PMID:16765109

  11. The effect of various antifungal agents on aflatoxin production and growth characteristics of Aspergillus parasiticus and Aspergillus flavus in liquid medium.

    PubMed

    Stewart, R G; Wyatt, R D; Ashmore, M D

    1977-09-01

    Various antifungal agents were added to a medium of 2% yeast extract-4% sucrose. Spores of a toxigenic strain of Aspergillus parasiticus were inoculated into the medium and incubated at 26 degrees C. for 10 days. Growth of the mold and aflatoxin formation were monitored every 48 hours during the experiment. Of the antifungal agents evaluated, propionic acid and crystal violet were the most effective compounds in retarding mold growth. Propionic acid was fungicidal at concentrations greater than 3.0 microgram/ml. whereas crystal violet exhibited a mold retarding activity at levels greater than 2,0 microgram/ml. Crystal violet retarded the growth rate of the mold during the initial stages of growth, however, this retardation was overcome after 10 days of incubation. Crystal violet also retarded aflatoxin production and sporulation of Aspergillus parasiticus; however, aflatoxin production was the most sensitive parameter. A survey involving 12 toxigenic isolates of A. parasiticus and A. flavus indicated that these species vary markedly in susceptibility to crystal violet. PMID:415299

  12. Method to prepare nanoparticles on porous mediums

    DOEpatents

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  13. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    PubMed

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  14. Development of an Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Amoxicillin in Broth Medium and its Application to an In Vitro Pharmacokinetic and Pharmacodynamic Model.

    PubMed

    Zhang, Shujing; Yang, Fan; Guo, Beining; Chen, Yuancheng; Wu, Xiaojie; Liang, Wang; Shi, Yaoguo; Zhang, Jing

    2016-02-01

    A simple, rapid and highly sensitive liquid chromatographic-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for the quantification of amoxicillin in broth-a liquid bacterial culture medium. After appropriate dilution with ultrapure water, broth samples containing amoxicillin and an internal standard (IS) were extracted by acetonitrile and dichloromethane. The extract was injected into the system. The analyte and the IS were separated by a prepacked Atlantis C18 column using acetonitrile-0.1% formic acid as a mobile phase and detected by selected reaction monitoring in electrospray ionization positive ion mode. The calibration curve of amoxicillin was linear over the concentration range of 0.05-20.00 µg/mL. The mean recovery of amoxicillin from broth was 71.7%, and the intra- and interday precision and accuracies of the assay were within 10%. Amoxicillin was stable in broth for 12 h at room temperature (24°C), for 6.5 months at -80°C and for 24 h after preparation in an autosampler at room temperature. It has been successfully applied to an in vitro pharmacokinetic (PK) and pharmacodynamic (PD) model in which the broth is used for bacterial growth. The method provides high-throughput biological analysis to facilitate the in vitro PK and PD model of amoxicillin. PMID:26386906

  15. A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium.

    PubMed

    Paul, Anup; Ribeiro, Ana P C; Karmakar, Anirban; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2016-08-01

    The copper(ii) metal-organic framework (MOF) [Cu(η-1κN,N',N'':2κO,O'-L)(NO3)]n (1) [L = 4-((4-([2,2':6',2''-terpyridin]-4'-yl)benzyl)oxy)benzoate] has been synthesized from a flexible bifunctionalised terpyridine species (HL). It was characterized by elemental, FT-IR, powder and single crystal X-ray diffraction analyses. Single crystal X-ray crystallography of 1 shows a 1D polymeric architecture, whose topological analysis illustrates a uninodal (2)-connected net having topological type 2C1. 1 shows good catalytic activity and selectivity towards the hydrocarboxylation of cyclohexane to cyclohexanecarboxylic acid in water/acetonitrile or water/ionic liquid [BMPyr][NTf2] [BMPyr = 1-butyl-1 methylpyrrolidinium; NTf2 = bis(trifluoromethanesulfonyl)imide] medium. It can be recycled and reused without any significant loss of catalytic efficiency. This study provides the first example of an efficient alkane hydrocarboxylation to carboxylic acid, in an ionic liquid and under mild conditions. PMID:27460349

  16. Experimental investigation of the difference in B-term dominated band broadening between fully porous and porous-shell particles for liquid chromatography using the Effective Medium Theory.

    PubMed

    Liekens, Anuschka; Denayer, Joeri; Desmet, Gert

    2011-07-15

    The difference in B-term diffusion between fully porous and porous-shell particles is investigated using the physically sound diffusion equations originating from the Effective Medium Theory (EMT). Experimental data of the B-term diffusion obtained via peak parking measurements on six different commercial particle types have been analyzed (3 porous and 3 non porous). All particles were investigated using the same experimental design and test analytes, over a very broad range of retention factor values. First, the B-term reducing effect of the solid core (inducing an additional obstruction compared to fully porous particles) has been quantified using the Hashin-Shtrikman expression, showing that the presence of a solid core can account for a reduction of about 11% when the core diameter makes up 63% of the total particle diameter (Halo and Poroshell-particles) and a reduction of 16% when the core diameter makes up 73% (Kinetex). Remaining differences can be attributed to differences in the microscopic structure of the meso-porous material (meso-pore diameter, internal porosity or relative void volume). The much lower B-term diffusion of Halo and Kinetex particles compared to the fully porous Acquity particles (some 20-40% difference, of which about 10-15% can be attributed to the presence of the solid core) can hence largely be attributed to the much smaller internal porosity and the smaller pore size of the meso-porous material making up the shell of these particles. PMID:21628063

  17. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. PMID:25556007

  18. Sustainable Process for the Preparation of High-Performance Thin-Film Composite Membranes using Ionic Liquids as the Reaction Medium.

    PubMed

    Mariën, Hanne; Bellings, Lotte; Hermans, Sanne; Vankelecom, Ivo F J

    2016-05-23

    A new form of interfacial polymerization to synthesize thin-film composite membranes realizes a more sustainable membrane preparation and improved nanofiltration performance. By introducing an ionic liquid (IL) as the organic reaction phase, the extremely different physicochemical properties to those of commonly used organic solvents influenced the top-layer formation in several beneficial ways. In addition to the elimination of hazardous solvents in the preparation, the m-phenylenediamine (MPD) concentration could be reduced 20-fold, and the use of surfactants and catalysts became redundant. Together with the more complete recycling of the organic phase in the water/IL system, these factors resulted in a 50 % decrease in the mass intensity of the top-layer formation. Moreover, a much thinner top layer with a high ethanol permeance of 0.61 L m(-2)  h(-1)  bar(-1) [99 % Rose Bengal (RB, 1017 Da) retention; 1 bar=0.1 MPa] was formed without the use of any additives. This EtOH permeance is 555 and 161 % higher than that for the conventional interfacial polymerization (without and with additives, respectively). In reverse osmosis, high NaCl retentions of 97 % could be obtained. Finally, the remarkable decrease in the membrane surface roughness indicates the potential for reduced fouling with this new type of membrane. PMID:27116588

  19. Dispersion of Rayleigh, Scholte, Stoneley and Love waves in a model consisting of a liquid layer overlying a two-layer transversely isotropic solid medium

    NASA Astrophysics Data System (ADS)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad

    2015-10-01

    The dispersion of interface waves is studied theoretically in a model consisting of a liquid layer of finite thickness overlying a transversely isotropic solid layer which is itself underlain by a transversely isotropic solid of dissimilar elastic properties. The method of potential functions and Hankel transformation was utilized to solve the equations of motion. Two frequency equations were developed: one for Love waves and the other for the remaining surface and interface waves. Numerical group and phase velocity dispersion curves were computed for four different classes of model, in which the substratum is stiffer or weaker than the overlying layer, and for various thickness combinations of the layers. Dispersion curves are presented for generalized Rayleigh, Scholte, Stoneley and Love waves, each of which are possible in all proposed models. They show the dependence of the velocity on layer thicknesses and material properties (elastic constants). Special cases involving zero thickness for the water layer or the solid layer, and/or isotropic material properties for the solid exhibit interesting features and agree favourably with previously published results for these simpler cases, thus validating the new formulation.

  20. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    NASA Astrophysics Data System (ADS)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  1. Interactional behavior of the polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in an aqueous medium.

    PubMed

    Sharma, Renu; Kamal, Ajar; Kang, Tejwant Singh; Mahajan, Rakesh Kumar

    2015-09-28

    The present study aims to develop an understanding of the interactions between an anionic polyelectrolyte, poly sodium 4-styrene sulphonate (NaPSS), and cationic surface active imidazolium based ionic liquids (SAILs), [Cnmim][Cl] (n = 10, 12, 14) using a multi-technique approach. Various physicochemical and electrochemical techniques such as surface tension, conductivity, fluorescence, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), turbidity, potentiometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are employed to obtain comprehensive information about NaPSS-SAIL interactions. Different stages of interaction, corresponding to the critical aggregation concentration (cac), critical saturation concentration (Cs) and critical micelle concentration (cmc) have been observed owing to the strong electrostatic and hydrophobic interactions, and the results obtained from different techniques complement each other very well. The results extracted from DLS and turbidity measurements clearly indicated that the size of the micelle like aggregates first decreases and then increases in the presence of polyelectrolyte. The binding isotherms obtained using potentiometry show a concentration dependence and the highly co-operative nature of the interactions which is attributed to aggregation of the polyelectrolyte-SAIL complexes. The diffusion coefficients (Dm) of the electroactive probe in the pure and NaPSS-SAIL mixed systems were obtained, which were further used to obtain the values of the micellar self-diffusion coefficients (D) and inter-micellar interaction parameters (kd). PMID:26300416

  2. Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium.

    PubMed

    Gabriel, Alonzo A

    2012-11-01

    The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. PMID:23141645

  3. Efficient transport of Am(III) from nitric acid medium using a new conformationally constrained (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide across a supported liquid membrane.

    PubMed

    Sharma, S; Panja, S; Ghosh, S K; Dhami, P S; Gandhi, P M

    2016-03-15

    Am(III) is one of the most hazardous radionuclide present in nuclear fuel cycle. A new conformationally constrained diamide, (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide (OBDA) was studied for Am(III) transport from HNO3 medium across a Supported Liquid Membrane. Transport rate was observed to be significantly fast with ∼95% transport of Am(III) within 1h using 0.1M OBDA in the presence of 15% isodecyl alcohol (IDA)/n-dodecane as carrier. The mechanism of transport was investigated by studying various parameters like feed HNO3/NaNO3 concentration, OBDA concentration in the membrane, membrane pore size, membrane thickness etc. From these studies, the mechanism of transport was found to be diffusion controlled with diffusion co-efficient value of 5.1×10(-6)cm(2)/s. The membrane was found to be highly selective for tri- and tetra-valent actinides, and trivalent lanthanides. OBDA based membrane was found to be stable for at least for ten consecutive cycles of operation. PMID:26685064

  4. Liquid vs Solid Culture Medium to Evaluate Proportion and Time to Change in Management of Suspects of Tuberculosis—A Pragmatic Randomized Trial in Secondary and Tertiary Health Care Units in Brazil

    PubMed Central

    Moreira, Adriana da Silva Rezende; Huf, Gisele; Vieira, Maria Armanda Monteiro da Silva; da Costa, Paulo Albuquerque; Aguiar, Fábio; Marsico, Anna Grazia; Fonseca, Leila de Souza; Ricks, Mônica; Oliveira, Martha Maria; Detjen, Anne; Fujiwara, Paula Isono; Squire, Stephen Bertel; Kritski, Afranio Lineu

    2015-01-01

    Background The use of liquid medium (MGIT960) for tuberculosis (TB) diagnosis was recommended by WHO in 2007. However, there has been no evaluation of its effectiveness on clinically important outcomes. Methods and Findings A pragmatic trial was carried out in a tertiary hospital and a secondary health care unit in Rio de Janeiro City, Brazil. Participants were 16 years or older, suspected of having TB. They were excluded if only cerebral spinal fluid or blood specimens were available for analysis. MGIT960 technique was compared with the Lowenstein-Jensen (LJ) method for laboratory diagnosis of active TB. Primary outcome was the proportion of patients who had their initial medical management changed within 2 months after randomisation. Secondary outcomes were: mean time for changing the procedure, patient satisfaction with the overall treatment and adverse events. Data were analysed by intention-to-treat. Between April 2008 and September 2011, 693 patients were enrolled (348 to MGIT, 345 to LJ). Smear and culture results were positive for 10% and 15.7% of participants, respectively. Patients in the MGIT arm had their initial medical management changed more frequently than those in the LJ group (10.1% MGIT vs 3.8% LJ, RR 2.67 95% CI 1.44–.96, p = 0.002, NNT 16, 95% CI 10–39). Mean time for changing the initial procedure was greater in LJ group at both sites: 20.0 and 29.6 days in MGIT group and 52.2 and 64.3 in LJ group (MD 33.5, 95% CI 30.6–36.4, p = 0.0001). No other important differences were observed. Conclusions This study suggests that opting for the MGIT960 system for TB diagnosis provides a promising case management model for improving the quality of care and control of TB. Trial Registration Controlled-Trials.com ISRCTN79888843 PMID:26046532

  5. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  6. Minimizing liquid contaminants in natural gas liquids

    SciTech Connect

    Brown, R.L.; Wines, T.H.; Williamson, K.M.

    1996-12-31

    In processing natural gas liquids, significant contamination occurs with liquid dispersions and emulsions. Natural gas liquids (NGL) and liquid petroleum gas (LPG) streams are treated with caustic to remove residual organic sulfur compounds such as mercaptans and with amines to remove hydrogen sulfide. In both cases a liquid/liquid contactor is used. Significant amounts of the caustic or amine can be carried over into the product stream in process units that are running at rates above design capacity, are treating high sulfur feed stocks, or have other operational problems. The carried over liquid results in off-spec products, excessive loses of caustic or amine, and can cause operating problems in downstream processes. In addition, water is a significant contaminant which can cause LPG and natural gasoline to be off-specification. This paper discusses a new technique for separating very stable liquid dispersions of caustic, amine, or water from natural gas liquids using liquid/liquid cartridge coalescers constructed with specially formulated polymer and fluoropolymer medium with enhanced surface properties. In addition, factors influencing the coalescer mechanism will be discussed including interfacial tension, concentration of surface active compounds, steric repulsion, and electrostatic charge affects. Results from field tests, operating data from commercial installations, and economic benefits will also be presented.

  7. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  8. Mathematical modeling of sedimentation process of nanoparticles in gradient medium

    NASA Astrophysics Data System (ADS)

    Ezhenkova, S. I.; Chivilikhin, S. A.

    2015-11-01

    Mathematical model describing the motion of a light ray in the medium with a varying index of refraction formed by particles settling in a liquid has been built. We have received size distribution of particles settling in a liquid; calculated the light ray's trajectory in the medium; investigated the dependence of the light ray's trajectory on the initial particles concentration; received the solution of the equation of convective diffusion for nanoparticles.

  9. Compact Liquid Deaerator

    NASA Technical Reports Server (NTRS)

    Yamauchi, S. T.

    1982-01-01

    Gases are removed from liquids by a new deaerator that takes up only 5 inches (12.7 cm) at top of a medium-sized storage tank. Deaerator has a multiple cascading header that exposes more fluid at lower pressures than typical commercial deaerators. Potential applications are in hydraulic systems for aircraft and heavy machinery, in cooling systems where deaerated liquid is needed to prevent cavitation of pump.

  10. Medium Fidelity Simulation of Oxygen Tank Venting

    NASA Technical Reports Server (NTRS)

    Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)

    2001-01-01

    The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.

  11. CBI: Systems or Medium?

    ERIC Educational Resources Information Center

    Higginbotham-Wheat, Nancy L.

    This paper addresses one area of conflict in decisionmaking in computer-based instruction (CBI) research: the relationship between the researcher's definition of CBI either as a medium or as an integrated system and the design of meaningful research questions. (A medium is defined here as a device for the delivery of instruction, while an…

  12. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  13. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  14. Sintered composite medium and filter

    DOEpatents

    Bergman, Werner

    1987-01-01

    A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  15. Determination of Meteorite Porosity Using Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  16. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    NASA Technical Reports Server (NTRS)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  17. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to

  18. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  19. Holographic recording medium

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  20. Hypermedia as medium

    NASA Technical Reports Server (NTRS)

    Dede, Christopher J.

    1990-01-01

    Claims and rebuttals that hypermedia (the associative, nonlinear interconnection of multimedia materials) is a fundamentally innovative means of thinking and communicating are described. This representational architecture has many advantages that make it a major advance over other media; however, it also has several intrinsic problems that severly limits its effectiveness as a medium. These advantages and limits in applications are discussed.

  1. Direct comparison of the Ames microplate format (MPF) test in liquid medium with the standard Ames pre-incubation assay on agar plates by use of equivocal to weakly positive test compounds.

    PubMed

    Flückiger-Isler, Sini; Kamber, Markus

    2012-08-30

    The Ames microplate format (MPF™) test, which uses liquid media and in 384-well microplates with a readout based on a colour-change, has been used for over 10 years at several major pharmaceutical companies for screening the genotoxic potential of early drug candidates when compound supply is minimal. Meanwhile, Xenometrix has adapted this screen from the two-strain Ames II test for use with five tester strains, in compliance with OECD Guideline 471. A set of 15 equivocal to weakly positive chemicals selected from the National Toxicology Program (NTP) database was tested simultaneously in the Ames microplate format (MPF) and the standard Ames pre-incubation method on agar plates. Such a direct comparison of the two test methods with the same overnight culture(s), chemicals and S9-mix preparation should exclude external variability factors. Thirteen of the 15 chemicals showed concordant results in both tests despite the choice of chemicals that showed varying inter- and even intra-laboratory results in the NTP studies. These results indicate that the Ames MPF™ assay is a reliable predictive tool that can be used like the regular Ames test to evaluate compounds for mutagenicity. PMID:22579797

  2. Culture Medium for Enterobacteria

    PubMed Central

    Neidhardt, Frederick C.; Bloch, Philip L.; Smith, David F.

    1974-01-01

    A new minimal medium for enterobacteria has been developed. It supports growth of Escherichia coli and Salmonella typhimurium at rates comparable to those of any of the traditional media that have high phosphate concentrations, but each of the macronutrients (phosphate, sulfate, and nitrogen) is present at a sufficiently low level to permit isotopic labeling. Buffering capacity is provided by an organic dipolar ion, morpholinopropane sulfonate, which has a desirable pK (7.2) and no apparent inhibitory effect on growth. The medium has been developed with the objectives of (i) providing reproducibility of chemical composition, (ii) meeting the experimentally determined nutritional needs of the cell, (iii) avoiding an unnecessary excess of the major ionic species, (iv) facilitating the adjustment of the levels of individual ionic species, both for isotopic labeling and for nutritional studies, (v) supplying a complete array of micronutrients, (vi) setting a particular ion as the crop-limiting factor when the carbon and energy source is in excess, and (vii) providing maximal convenience in the manufacture and storage of the medium. PMID:4604283

  3. Waves in Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kamaya, H.

    1998-03-01

    Many hydrodynamical researches have been developed. Especially, analysis of the compressible flow is significantly improved by interstellar physicists. To obtain sufficient appreciation, we should not analyze only the effect of self-gravity of the system but also consider the property of inhomogeneity of the interstellar medium. I stress that another hydrodynamical approach is appreciated. That is the multi-phase-flow method. In the astrophysical context, there are few preliminary works of it. I intend to develop it in more suitable method for the interstellar physics. This dissertation is only the first step for me. But, fundamental properties of the multi-phase-flow are presented, considering the effect of compressibility, self-(and/or mutual) gravity, and friction between two phases. All of these properties are generally important to examine the origin, destruction and the global distribution of interstellar medium. My motivation is trying to delve into the global properties of the interstellar medium. The method of multi-phase-flow has great advantage for my aim, and its usefulness has been shown in this thesis.

  4. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  5. The Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.

    1995-01-01

    The Interstellar Medium (ISM) forms an integral part of the lifecycle of stars and the galaxy. Stars are formed by gravitational contraction of interstellar clouds. Over their life, stars return much of their mass to the ISM through winds and supernova explosions, resulting in a slow enrichment in heavy elements. Understanding the origin and evolution of the ISM is a key problem within astrophysics. The KAO has made many important contributions to studies of the interstellar medium both on the macro and on the micro scale. In this overview, I will concentrate on two breakthroughs in the last decade in which KAO observations have played a major role: (1) the importance of large Polycyclic Aromatic Hydrocarbon (PAH) molecules for the ISM (section 3) and (2) the study of Photodissociation Regions (PDRs) as an analog for the diffuse ISM at large (section 4). Appropriately, the micro and macro problem are intricately interwoven in these problems. Finally, section 5 reviews the origin of the (CII) emission observed by COBE.

  6. The Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Redfield, S.

    2006-09-01

    The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere --- the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and climate. Since the LISM shares the same volume as practically all known extrasolar planets, the prototypical debris disks systems, and nearby low-mass star-formation sites, it will be important to understand the structures of the LISM and how they may influence planetary atmospheres.

  7. Radio Is an Educational Medium.

    ERIC Educational Resources Information Center

    Duby, Aliza

    This report summarizes information found in a survey of the literature on radio as an educational medium which covered the published literature from many areas of the world. Comments on the literature reviewed are provided throughout the text, which is organized under seven major headings: (1) Radio, Mass Medium; (2) Radio, the Medium (broadening…

  8. Random lasing in a nanocomposite medium

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2013-01-31

    The characteristics of a random laser based on a nanocomposite medium consisting of a transparent dielectric and scattering doped nanocrystals are calculated. It is proposed to use ytterbium laser media with a high concentration of active ions as nanocrystals and to use gases, liquids, or solid dielectrics with a refractive index lower than that of nanocrystals as dielectric matrices for nanocrystals. Based on the concept of nonresonant distributed feedback due to the Rayleigh scattering, an expression is obtained for the minimum length of a nanocomposite laser medium at which the random lasing threshold is overcome. Expressions are found for the critical (maximum) and the optimal size of nanocrystals, as well as for the optimal relative refractive index of nanocomposites that corresponds not only to the maximum gain but also to the minimum of the medium threshold length at the optimal size of nanocrystals. It is shown that the optimal relative refractive index of a nanocomposite increases with increasing pump level, but is independent of the other nanocomposite parameters. (nanocomposites)

  9. Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium.

    PubMed

    Zhang, Haifeng; He, Xiao; Bai, Wei; Guo, Xiaomei; Zhang, Zhiyong; Chai, Zhifang; Zhao, Yuliang

    2010-12-01

    With their widespread applications in industry, agriculture and many other fields, more and more rare earth elements (REEs) are getting into the environment, especially the aquatic systems. Therefore, understanding the aquatic ecotoxicity of REEs has become more and more important. In the present work, Caenorhabditis elegans (C. elegans) was used as a test organism and life-cycle endpoints were chosen along with elemental assay to evaluate the aquatic toxicity of lanthanum (La), a representative of REEs. The results show La³+ had significant adverse effects on the growth and reproduction of worms above a concentration of 10 μmol L⁻¹. The elemental mapping by microbeam synchrotron radiation X-ray fluorescence (μ-SRXRF) illustrated how La treatment disturbed the metals distribution in the whole body of a single tiny nematode at lower levels. Our results suggested that the high-level REEs in some polluted water bodies would lead to an aquatic ecological crisis. The assessment we performed in the present work could be developed as a standardized test design for aquatic toxicological research. PMID:21510015

  10. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  11. Living liquid crystals.

    PubMed

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D; Aranson, Igor S

    2014-01-28

    Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  12. Use of conditioned medium for efficient transformation and cost-effective cultivation of Nannochloropsis salina.

    PubMed

    Kang, Nam Kyu; Lee, Bongsoo; Shin, Sung-Eun; Jeon, Seungjib; Park, Min S; Yang, Ji-Won

    2015-04-01

    The oleaginous microalga Nannochloropsis sp. has been spotlighted as a promising candidate in genetic engineering research for biodiesel production. However, one of the major bottlenecks in the genetic manipulation against Nannochloropsis sp. is low transformation efficiency. Based on the idea that they grow rapidly in broth culture, the effect of conditioned medium on colonization and transformation efficiency of Nannochloropsis salina was investigated. Cells grown on agar plates with 20-40% conditioned medium produced colonies that were approximately 2.3-fold larger than cells grown without conditioned medium. More importantly, the transformation efficiency was about 2-fold greater on plates with 30% conditioned medium relative to those without conditioned medium. In addition, FAME productivity in liquid cultures with 100% conditioned medium increased up to 20% compared with cultures of control medium. These results suggest that conditioned medium can be applied for efficient transformation and cost-effective cultivation of N. salina for biodiesel production. PMID:25656867

  13. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p[bar p] annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  14. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-12-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p{bar p} annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  15. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  16. The influence of capillary flow on the fate of evaporating wetted imprint of the sessile droplet in porous medium

    NASA Astrophysics Data System (ADS)

    Markicevic, B.; Navaz, H. K.

    2010-12-01

    The fate of a wetting liquid sessile droplet imbibed by a porous medium is formulated as a multiphase flow problem and a numerical solution is developed using the capillary network model with a microforce balance at the liquid ∣gas interface. The liquid phase capillary flow and evaporation are solved simultaneously. An exclusive evidence for a multiphase flow is already found in the capillary flow, as a liquid wets a much larger volume of porous medium compared to the wetted volume, calculated by assuming that the medium imbibes the liquid in the single-phase flow. The physics of the multiphase capillary flow includes the formation of local gas clusters and liquid ganglia. The clusters and ganglia distribution is further altered by evaporation. The evaporation tends to shrink the ganglia sizes and open the gas clusters, both due to the liquid mass loss from the porous medium. Still, the capillarity tends to disperse the liquid back into the regions from where the liquid previously evaporated. These changes in the liquid saturation produce the changes in vapor concentration within the porous medium and changes in the mass fluxes. The imprint shape varies, where, for more spherical imprints, the evaporation is enhanced due to the capillary flow. The opposite is true for the elongated imprints for which the capillarity hinders the evaporation rate. Comparing the spherical and elongated imprints, the liquid dispersion differs and the capillary flow the into protrusion direction is pronounced for the elongated imprints. The changes in the liquid dispersion and imprint shape influence the vapor concentration within the porous medium, vapor phase mass fluxes, and liquid persistence time. Finally, the previous behavior is observed for hazardous materials and warfare agents, where predicting the fate of such kind of liquids and their vapors become especially important due to their harmful effects.

  17. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  18. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  19. New medium licensed for campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A medium, “Campy-Cefex”, has been licensed by the ARS Office of Technology Transfer with Becton Dickinson (No. 1412-002) and Neogen (No. 1412-001) based on patent No. 5,891,709, “Campy-Cefex Selective and Differential Medium for Campylobacter” by Dr. Norman Stern of the Poultry Microbiological Safet...

  20. Fresnel drag of light by a moving nonlinear and nanostructured dielectric medium

    SciTech Connect

    Peiponen, Kai-Erik; Gornov, Evgeny

    2007-12-15

    The Fresnel drag is viewed in the frame of nonlinear and/or nanostructured uniformly moving media. It is shown that in the case of intense light pulse interaction with an optically nonlinear medium the relativistic frequency chirp due to self-phase modulation is smaller than in the rest frame. In the case of light interaction with optically linear or nonlinear nanostructured medium the Fresnel drag depends on the effective refractive index of the medium. While the nanostructures are in a liquid matrix the drag can be controlled by the fill fraction of the inclusions. As an example the Fresnel drag for optically linear Bruggeman liquid is considered.

  1. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  2. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  3. Liquid Flow in Biofilm Systems

    PubMed Central

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biofilm channels; simultaneous imaging of the biofilm allowed the liquid velocity to be related to the physical structure of the biofilm. Images PMID:16349345

  4. Neutron Properties in the Medium

    NASA Astrophysics Data System (ADS)

    Cloët, I. C.; Miller, Gerald A.; Piasetzky, E.; Ron, G.

    2009-08-01

    We demonstrate that for small values of momentum transfer Q2 the in-medium change of the GE/GM form factor ratio for a bound neutron is dominated by the change in the electric charge radius and predict within stated assumptions that the in-medium ratio will increase relative to the free result. This effect will act to increase the predicted cross section for the neutron recoil polarization transfer process He4(e→,e'n→)He3. This is in contrast with medium modification effects on the proton GE/GM form factor ratio, which act to decrease the predicted cross section for the He4(e→,e'p→)H3 reaction. Experiments to measure the in-medium neutron form factors are currently feasible in the range 0.1

  5. An improved holographic recording medium

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1973-01-01

    Solid, linear chain hydrocarbons with molecular weight ranging from about 300 to 2000 can serve as long-lived recording medium in optical memory system. Suitable recording hydrocarbons include microcrystalline waxes and low molecular weight polymers or ethylene.

  6. Medium-depth chemical peels.

    PubMed

    Monheit, G D

    2001-07-01

    The combination medium-depth chemical peel (Jessner's solution +35% TCA) has been accepted as a safe, reliable, and effective method for the treatment of moderate photoaging skin. This article discusses the procedure in detail, including postoperative considerations. PMID:11599398

  7. [TRANSURETHRAL CONTACT URETERAL LITHOTRIPSY IN A GASEOUS (CO2) MEDIUM].

    PubMed

    Glybochko, P V; Aljaev, Ju G; Rapoport, L M; Carichenko, D G; Arzumanjan, E G

    2015-01-01

    The paper describes for the first time the method of contact ureteral lithotripsy in gaseous (CO2) medium. It presents the results of a comparative study of urolithiasis patients treated with this treatment modality (study group, n=30) and with traditional contact ureteral lithotripsy in liquid medium (control group, n=30). The incidence of retrograde migration of calculus in the kidney in the study group was 0%, while it was 16.6% in the control group. Acute or exacerbation of chronic pyelonephritis was diagnosed in only 3 (10%) patients in the control group. The suggested method of contact ureteral lithotripsy is safe and provides several advantages over traditional contact ureteral lithotripsy in a fluid medium, such as: physiologic validity, absence of calculus hypermobility (increased mobility), improved visualization during surgery and high cost effectiveness. PMID:26237808

  8. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  9. Liquid for absorption of solar heat

    SciTech Connect

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  10. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  11. GEC Student Award for Excellence Finalist: Creation of Stable Plasma-Liquid Interfaced Reactive Field using Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Baba, Kazuhiko; Kaneko, Toshiro; Hatakeyama, Rikizo

    2008-10-01

    The gas-liquid interfacial region which is the boundary between plasmas and liquids, activating physical and chemical reactions, has attracted much attention as novel reactive field in nano-bio material creation. Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we succeeded in creating the reactive gas (plasmas)-liquid (ionic liquids) interfacial field under a low gas pressure condition, where the plasma ion behavior can be controlled. The effects of plasma ion irradiation on the liquid medium are for the first time quantitatively revealed. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the gas-liquid interfacial plasma are investigated by changing a polarity of the ionic liquid electrode in order to evaluate the ionic liquid-plasma interactions. These results would contribute to systematizing the field of gas-liquid interfacial plasma physics for its applications.

  12. Liquid marbles

    NASA Astrophysics Data System (ADS)

    Aussillous, Pascale; Quéré, David

    2001-06-01

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting `liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates.

  13. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  14. Liquid marbles.

    PubMed

    Aussillous, P; Quéré, D

    2001-06-21

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting 'liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates. PMID:11418851

  15. Recovery of platinum from spent catalysts by liquid-liquid extraction in chloride medium.

    PubMed

    Marinho, Roberta Santos; Afonso, Julio Carlos; da Cunha, José Waldemar Silva Dias

    2010-07-15

    This work examines a hydrometallurgical route for processing spent commercial catalysts (Pt and PtSnIn/A(2)O(3)) used in Brazilian refineries for recovery of the noble metal with less final wastes generation. Samples were initially pre-oxidized (500 degrees C, 5 h) in order to eliminate coke. The basis of the present route is the partial dissolution of the pre-oxidized catalyst in aqua-regia. Temperature and time necessary to dissolve all platinum were optimized in order to reduce the operation severity and aluminum solubilization. All platinum and 16-18 wt.% of aluminum were dissolved at 75 degrees C in 20-25 min. Separation of platinum from the acidic solution was accomplished by solvent extraction. The best extractant (> 99 wt.%) was Aliquat 336 (a quaternary ammonium salt) in one stage (A/O phase ratio = 1, v/v). Platinum was stripped (> 99.9 wt.%) in one stage (A/O phase ratio = 1, v/v) with aqueous sodium thiosulfate (> or = 0.75 mol L(-1)). Black platinum was obtained from this solution via reduction with magnesium or ascorbic acid. PMID:20363560

  16. Macromolecular liquids

    SciTech Connect

    Safinya, C.R.; Safran, S.A. ); Pincus, P.A. )

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  17. Cytokinin Secretion by Frankia sp. HFP ArI3 in Defined Medium.

    PubMed

    Stevens, G A; Berry, A M

    1988-05-01

    Frankia sp. HFP ArI3 (host plant Alnus rubra Bong.) was grown in defined medium and the culture solution was analyzed for the presence of various cytokinins and related compounds. N(6)- (Delta(2)-isopentenyl) adenosine was the only cytokinin detected by both high performance liquid chromatography and gas chromatography-mass spectrometry, at levels of approximately 1 ng/ml culture medium. PMID:16666092

  18. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  19. Porous liquids: A promising class of media for gas separation

    DOE PAGESBeta

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  20. Structural and Aggregation Study of Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Mattedi, S.; Martin-Pastor, M.; Iglesias, M.

    2011-12-01

    In this work there were studied structural and agreggation aspects of ionic liquids formed by the reaction between ethanolamines with low chain organic acids using NMR techniques. Three ionic liquids composed of pentanoic acid and (mono-, di- and tri-) ethanol amine were studied by 1H, and 13C solution NMR methods. NMR assisted the chemical and quantitative characterization of these three ionic liquids and provided insight in their structural arrangement of their components in the ionic liquid medium. The obtained results could be used to understand the structure and aggregation pattern of these ionic liquids and helps in the development of possible industrial applications.

  1. Thermodynamics and micro heterogeneity of ionic liquids.

    PubMed

    Gomes, Margarida F Costa; Lopes, J N Canongia; Padua, A A H

    2010-01-01

    The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed. PMID:21107797

  2. A structural signature of liquid fragility

    NASA Astrophysics Data System (ADS)

    Mauro, N. A.; Blodgett, M.; Johnson, M. L.; Vogt, A. J.; Kelton, K. F.

    2014-08-01

    Virtually all liquids can be maintained for some time in a supercooled state, that is, at temperatures below their equilibrium melting temperatures, before eventually crystallizing. If cooled sufficiently quickly, some of these liquids will solidify into an amorphous solid, upon passing their glass transition temperature. Studies of these supercooled liquids reveal a considerable diversity in behaviour in their dynamical properties, particularly the viscosity. Angell characterized this in terms of their kinetic fragility. Previous synchrotron X-ray scattering studies have shown an increasing degree of short- and medium-range order that develops with increased supercooling. Here we demonstrate from a study of several metallic glass-forming liquids that the rate of this structural ordering as a function of temperature correlates with the kinetic fragility of the liquid, demonstrating a structural basis for fragility.

  3. Medium modifications with recoil polarization

    SciTech Connect

    Brand, J.F.J. van den; Ent, R.

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  4. Medium Modification of Vector Mesons

    SciTech Connect

    Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour

    2011-03-01

    The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.

  5. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  6. Liquid atomization

    SciTech Connect

    Walzel, P. )

    1993-01-01

    A systematic review of different liquid atomizers is presented, accompanied by a discussion of various mechanisms of droplet formation in a gas atmosphere as a function of the liquid flow-regime and the geometry of the atomizer. Equations are presented for the calculation of the mean droplet-diameter. In many applications, details of the droplet size distribution are, also, important, e.g., approximate values of the breadth of the droplet formation are given. The efficiency of utilization of mechanical energy in droplet formation is indicated for the different types of atomizers. Atomization is used, in particular, for the following purposes: (1) atomization of fuels; (2) making granular products; (3) carrying out mass-transfer operations; and (4) coating of surfaces.

  7. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  8. Growth medium for the rapid isolation and identification of anthrax

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Grubbs, Teri R.; Alls, John L.

    2000-07-01

    Anthrax has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to design a culture technique to rapidly isolate and identify `live' anthrax. In liquid or solid media form, 3AT medium (3-amino-L-tyrosine, the main ingredient) accelerated germination and growth of anthrax spores in 5 to 6 hours to a point expected at 18 to 24 hours with ordinary medium. During accelerated growth, standard definitive diagnostic tests such as sensitivity to lysis by penicillin or bacteriophage can be run. During this time, the bacteria synthesized a fluorescent and thermochemiluminescent polymer. Bacteria captured by specific antibody are, therefore, already labeled. Because living bacteria are required to generate the polymer, the test converts immunoassays for anthrax into viability assays. Furthermore, the polymer formation leads to the death of the vegetative form and non-viability of the spores produced in the medium. By altering the formulation of the medium, other microbes and even animal and human cells can be grown in it and labeled (including viruses grown in the animal or human cells).

  9. Heat and Mass Transfer in a Freezing Unsaturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Jame, Yih-Wu; Norum, Donald I.

    1980-08-01

    A numerical simulation of a laboratory experiment involving coupled heat and mass transfer in a horizontal porous medium column with one end subjected to a temperature below 0°C has been carried out. The model is essentially that of Harlan (1973) and is solved numerically by the finite difference method using the Crank-Nicholson scheme. The solution yields temperature, liquid water content, and ice content profiles along the column as a function of time. Comparison of the experimental results and the simulation analysis results shows that Harlan's model, with some modification in the hydraulic conductivity of the frozen medium, can be used successfully to simulate numerically the coupled heat and mass transfer processes when ice lensing does not occur.

  10. Modified Lombard-Dowell broth as a general growth medium.

    PubMed Central

    Jessee, M T; Robinson, P J

    1977-01-01

    A new liquid medium (modified Lombard-Dowell broth) was inoculated with stock culture strains of aerobic and anaerobic bacteria and compared with prereduced chopped-meat glucose inoculated with the same anaerobes. Both broths were subcultured at 48 and 72 h to aerobic and anaerobic blood agar plates, and the numbers of colonies were compared after 48-h incubation of the agar plates. This was repeated with mixed cultures of both aerobes and anaerobes. For a period of 11 months all specimens received for anaerobic-aerobic culture were inoculated into prereduced chopped-meat glucose and modified Lombard-Dowell broth plus the appropriate plate medium. Growth from subcultures was compared with primary plate isolates. Chopped-meat glucose and modified Lombard-Dowell broth isolates agreed, with the exception of one, Fusobacterium necrophorum, that did not grow in chopped-meat glucose. PMID:925150

  11. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  12. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  13. In-medium properties of light vector mesons

    SciTech Connect

    C. Djalali; R. Nasseripour; D. P. Weygand; M. H. Wood

    2007-08-01

    The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. All three vector mesons ρ, ω and phi are observed via their decay to e+e-. The possible in-medium effects on the properties of the ρ meson are of particular interest. The ρ spectral function is extracted from the data on carbon, iron and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no effects on the mass of the ρ meson, some widening in titanium and iron is observed consistent with the collisional broadening.

  14. Scaling of bubble growth in a porous medium

    SciTech Connect

    Satik, C.; Li, X.; Yortsos, Y.C.

    1994-09-01

    Processes involving liquid-to-gas phase change in porous media are routinely encountered. Growth of a gas phase by solute diffusion in the liquid is typical of the `solution gas-drive` process for the recovery of oil. The growth of a single gas cluster in a porous medium driven by a constant supersaturation is examined. Patterns and rates of growth are derived. It is shown that the growth pattern is not compact and changes from pure percolation to pure Diffusion-Limited-Aggregation (DLA) as the size of the cluster increases. The scaling of the cluster sizes that delineate these patterns, with supersaturation and diffusivity is presented for the case of quasi-static diffusion. In 3-D, the diffusive growth law is found to be R{sub g} {approximately} t{sup 2/3}, which is different than the classical R{sub g} {approximately} t{sup 1/2}.

  15. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae.

    PubMed

    Lananan, Fathurrahman; Jusoh, Ahmad; Ali, Nora'aini; Lam, Su Shiung; Endut, Azizah

    2013-08-01

    A study was performed to determine the effect of Conway and f/2 media on the growth of microalgae genera. Genera of Chlorella sp., Dunaliella sp., Isochrysis sp., Chaetoceros sp., Pavlova sp. and Tetraselmis sp. were isolated from the South China Sea. During the cultivation period, the density of cells were determined using Syringe Liquid Sampler Particle Measuring System (SLS-PMS) that also generated the population distribution curve based on the size of the cells. The population of the microalgae genera is thought to consist of mother and daughter generations since these microalgae genera reproduce by releasing small non-motile reproductive cells (autospores). It was found that the reproduction of Tetraselmis sp., Dunaliella sp. and Pavlova sp. could be sustained longer in f/2 Medium. Higher cell density was achieved by genus Dunaliella, Chlorella and Isochrysis in Conway Medium. Different genera of microalgae had a preference for different types of cultivation media. PMID:23562179

  16. A Heterogeneous Medium Analytical Benchmark

    SciTech Connect

    Ganapol, B.D.

    1999-09-27

    A benchmark, called benchmark BLUE, has been developed for one-group neutral particle (neutron or photon) transport in a one-dimensional sub-critical heterogeneous plane parallel medium with surface illumination. General anisotropic scattering is accommodated through the Green's Function Method (GFM). Numerical Fourier transform inversion is used to generate the required Green's functions which are kernels to coupled integral equations that give the exiting angular fluxes. The interior scalar flux is then obtained through quadrature. A compound iterative procedure for quadrature order and slab surface source convergence provides highly accurate benchmark qualities (4- to 5- places of accuracy) results.

  17. Medium Effects in Parton Distributions

    SciTech Connect

    William Detmold, Huey-Wen Lin

    2011-12-01

    A defining experiment of high-energy physics in the 1980s was that of the EMC collaboration where it was first observed that parton distributions in nuclei are non-trivially related to those in the proton. This result implies that the presence of the nuclear medium plays an important role and an understanding of this from QCD has been an important goal ever since Here we investigate analogous, but technically simpler, effects in QCD and examine how the lowest moment of the pion parton distribution is modified by the presence of a Bose-condensed gas of pions or kaons.

  18. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  19. Medium-Frequency Pseudonoise Georadar

    NASA Technical Reports Server (NTRS)

    Arendt, G. Dickey; Carl, J. R.; Byerly, Kent A.; Amini, B. Jon

    2005-01-01

    Ground-probing radar systems featuring medium-frequency carrier signals phase-modulated by binary pseudonoise codes have been proposed. These systems would be used to locate and detect movements of subterranean surfaces; the primary intended application is in warning of the movement of underground water toward oil-well intake ports in time to shut down those ports to avoid pumping of water. Other potential applications include oil-well logging and monitoring of underground reservoirs. A typical prior georadar system operates at a carrier frequency of at least 50 MHz in order to provide useable range resolution. This frequency is too high for adequate penetration of many underground layers of interest. On the other hand, if the carrier frequency were to be reduced greatly to increase penetration, then bandwidth and thus range resolution would also have to be reduced, thereby rendering the system less useful. The proposed medium-frequency pseudonoise georadar systems would offer the advantage of greater penetration at lower carrier frequencies, but without the loss of resolution that would be incurred by operating typical prior georadar systems at lower frequencies.

  20. Gravitational lensing in plasmic medium

    SciTech Connect

    Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  1. Gravitational lensing in plasmic medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-07-01

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  2. 49 CFR 195.306 - Test medium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Test medium. 195.306 Section 195.306... PIPELINE Pressure Testing § 195.306 Test medium. (a) Except as provided in paragraphs (b), (c), and (d) of this section, water must be used as the test medium. (b) Except for offshore pipelines,...

  3. 27 CFR 19.914 - Medium plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.914 Medium plants. Any person wishing to establish a medium plant shall make application for and obtain...

  4. 49 CFR 195.306 - Test medium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Test medium. 195.306 Section 195.306... PIPELINE Pressure Testing § 195.306 Test medium. (a) Except as provided in paragraphs (b), (c), and (d) of this section, water must be used as the test medium. (b) Except for offshore pipelines,...

  5. Vigorous convection in a layered, heterogeneous porous medium

    NASA Astrophysics Data System (ADS)

    Hewitt, D.; Neufeld, J. A.; Lister, J. R.

    2014-12-01

    Convective flow in a porous medium plays an important role in numerous geophysical and industrial processes, and has recently been investigated in the context of geological CO2 sequestration. Previous studies of vigorous porous convection at high Rayleigh number Ra have focused on homogeneous porous media, whereas natural porous media are often highly heterogeneous. In particular, many geological porous formations are interspersed with thin, roughly horizontal, low-permeability layers. In order to gain understanding of the interaction of low-permeability layering with convective flow, and to develop simple parameterized models of the underlying physical processes, we have performed a numerical study of high-Ra convection in a two-dimensional porous medium that contains a thin, horizontal, low-permeability interior layer. The medium is heated at the lower boundary and cooled at the upper, which sets up statistically steady convective flow throughout the domain. This archetypal system is readily applicable to compositional convection, owing to an assumption of thermal equilibrium between solid and liquid phase in the medium. We show that, in the limit that both the dimensionless thickness h and permeability Π of the low-permeability layer are small, the flow is described solely by the impedance of the layer Ω= h/Π and by Ra. As Ω → 0 (i.e. h → 0), the system reduces to a homogeneous medium. We observe two notable features as Ω is increased: the dominant horizontal lengthscale of the flow increases; and, surprisingly, the heat flux through the cell, as measured by the Nusselt number Nu, can increase. For larger values of Ω, Nu always decreases. We explore the dependence of the flow on Ra, and develop simple theoretical models to describe some of the observed features of the relationship Nu(Ω). The theoretical models have implications for the simulation of convective dissolution of CO2 at reservoir scales, as heterogeneities can be much smaller than the grid

  6. Transmission of detonation from a medium with bubbles to an explosive-gas volume

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.

    2015-11-01

    For the first time, the possibility of transmission of detonation from a gas-liquid medium with bubbles of a chemically active gas mixture to an explosive-gas volume occurring above the interface is established. The experiments are fulfilled in a formulation in which bubble detonation was initiated by the explosion of a conductor located inside the bubble medium. The distance between the wire and the bubblemedium boundary was varied by decreasing it to 1 cm, when the gas volume was more frequently initiated by hot products of the conductor explosion and the discharge plasma. The dynamics of the gas-liquid interface after the arrival of the bubble-detonation wave to it is investigated. The probabilities of transmission of detonation from the bubble medium to the gas-mixture volume in dependence on the wire-immersion depth are determined, and the mechanism of ignition of the explosive-gas volume is described.

  7. Hadrons in the Nuclear Medium

    SciTech Connect

    S. Strauch, S. Malace, M. Paolone

    2011-11-01

    Nucleon properties are modified in the nuclear medium. To understand these modifications and their origin is a central issue in nuclear physics. For example, a wide variety of QCD-based models, including quark-meson coupling and chiral-quark soliton models, predict that the nuclear constituents change properties with increasing density. These changes are predicted to lead to observable changes in the nucleon structure functions and electromagnetic form factors. We present results from a series of recent experiments at MAMI and Jefferson Lab, which measured the proton recoil polarization in the {sup 4}He({rvec e},e{prime}{rvec p}){sup 3}H reaction to test these predictions. These results, with the most precise data at Q{sup 2} = 0.8 (GeV/c){sup 2} and at 1.3 (GeV/c){sup 2} from E03-104, put strong constraints on available model calculations, such that below Q{sup 2} = 1.3 (GeV/c){sup 2} the measured ratios of polarization-transfer are successfully described in a fully relativistic calculation when including a medium modification of the proton form factors or, alternatively, by strong charge-exchange final-state interactions. We also discuss possible extensions of these studies with measurements of the {sup 4}He({rvec e},e{prime}{rvec p}){sup 3}H and {sup 2}H({rvec e},e{prime}{rvec p})n reactions as well as with the neutron knockout in {sup 4}He({rvec e},e{prime}{rvec n}){sup 3}He.

  8. Biological upgrading of coal liquids. Final report

    SciTech Connect

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  9. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    ERIC Educational Resources Information Center

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  10. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    PubMed

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements. PMID:18472294

  11. Comparison of Recoveries of Mycobacterium tuberculosis Using the Automated BACTEC MGIT 960 System, the BACTEC 460 TB System, and Löwenstein-Jensen Medium

    PubMed Central

    Somoskövi, Ákos; Ködmön, Csaba; Lantos, Ákos; Bártfai, Zoltán; Tamási, Lilla; Füzy, Judit; Magyar, Pál

    2000-01-01

    Using two different liquid media and one conventional solid medium, a total of 57 mycobacterial isolates (Mycobacterium tuberculosis, n = 55; nontuberculous mycobacteria, n = 2) were recovered from 377 clinical specimens. The rates of recovery of M. tuberculosis were 96.4% with the BACTEC MGIT 960 liquid medium, 92.7% with BACTEC 12B liquid medium, and 81.8% with the Löwenstein-Jensen (LJ) medium. The mean time to detection of M. tuberculosis in smear-positive specimens was 12.6 days for BACTEC MGIT 960 medium, 13.8 days for BACTEC 12B medium, and 20.1 days for LJ medium, and in smear-negative specimens it was 15.8 days for BACTEC MGIT 960 medium, 17.7 days for BACTEC 12B medium, and 42.2 days for LJ medium. The rates of contamination were 3.7, 2.9, and 1.2% for the BACTEC MGIT 960, BACTEC 12B, and LJ media, respectively. In conclusion, the nonradiometric, fully automated 7-ml BACTEC MGIT 960 system can be considered a viable alternative to the semiautomated, radiometric BACTEC 460 TB system. PMID:10835013

  12. Using dispersive medium to control excitons in 2D materials

    NASA Astrophysics Data System (ADS)

    Klots, Andrey; Bolotin, Kirill I.

    Excitons in 2D materials (2DMs) are known to be sensitive to the surrounding environment. This makes it possible to modify 2D excitons by depositing materials with controlled dielectric constant on top of 2DMs. This possibility becomes especially interesting if we consider materials with dielectric permittivity ɛ that depends both on wavevector k (this happens if the medium is spatially non-uniform) and frequency ω. Here, we develop platforms to control ɛ (k , ω) and explore resulting changes in light-matter interactions of 2DMs. To examine the effect of wavevector-dependent permittivity of the medium, we study absorption/photoluminescence of graphene and MoS2 in the vicinity of highly non-uniform medium - an array of metal nanoparticles, 3-5 nm in diameter. In this case absorption of light can lead to creation of excitons with non-zero momentum. These dark states are not accessible via regular absorption spectroscopy. We study the case of frequency-dependent permittivity by surrounding MoS2 by a highly-dispersive media (e.g. dielectric liquids, graphene and VO2) . We demonstrate non-trivial frequency-dependent renormalization of the quasiparticle bandgap and exciton binding energies.

  13. Biological upgrading of coal liquids

    SciTech Connect

    Not Available

    1992-01-01

    The objective of this project is to develop a simple biological process for the removal of nitrogen, oxygen, and sulfur heteroatoms from coal liquids, and simultaneously reducing aromaticity. Microorganisms, employing biocatalysts, are known to degrade aromatic heteroatom compounds in nature to NH[sub 3], SO[sub 4], and CO[sub 2]. Preliminary experiments in the ERI laboratories to determine the feasibility of biological removal of N, 0, and S from coal and shale oil liquids have shown up to 20 percent nitrogen removal, 40 percent sulfur removal, and 100 percent oxygen removal in a simple one stage incubation. This project will screen known bacteria and develop isolates for N, 0, and S removal and aromaticity reduction. The performance of the best of these cultures will be optimized for complete heteroatom removal in a single step go up. An outline of the protocol used to select pure cultures and isolates for their suitability in degrading heteroatom compounds is presented. Also shown is a listing of nine model compounds to be used in culture comparison and selection studies. Preliminary results with isolate ERI4 shows that the bacterium grows on phenol as its sole carbon source and rapidly depletes the compound from the medium. Similar results are shown for ERI5, which grows on pyridine as its sole carbon and nitrogen source and rapidly removes the compound from the medium.

  14. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  15. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  16. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  17. Development of the Medium Small BWR 'DMS' (Double MS: Modular Simplified and Medium Small Reactor)

    SciTech Connect

    Tetsushi, Hino; Masao, Chaki; Kenji, Tominaga; Masayoshi, Matsuura

    2006-07-01

    A new concept of the small and medium sized light water reactor, named the DMS has been developed by Hitachi, supported by the Japan Atomic Power Company. The DMS features significantly simplified plant systems realized by adoption of a natural circulation system of coolant and a free surface separation system (FSS). The DMS employs short length fuel assemblies and this enables natural circulation with a compact RPV. By adopting the natural circulation system, recirculation pumps and their driving power sources can be eliminated. The FSS uses the concept of steam and liquid separation by gravity, which is possible because of the low steam velocity due to the natural circulation and low power density of the DMS. By adopting the FSS, steam separation equipment needed in current BWRs can be eliminated. In addition, system components are rationalized and their layouts are modularized and standardized to attain a compact PCV; these result in a construction cost per unit power output almost comparable to that of current BWRs. In this study, the core design was improved taking plant cost and fuel efficiency into consideration. It was found that the number of fuel assemblies can be reduced about 11 % while maintaining the same thermal output as before, by extending the active fuel length. This makes it possible to reduce the number of control rod drive systems by about 12 % and to cut construction cost. (authors)

  18. Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid

    PubMed Central

    McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.

    2010-01-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196

  19. Wakefields Generated by Electron Beams Passing through a Waveguide Loaded with an Active Medium

    SciTech Connect

    Tyukhtin, Andrey; Kanareykin, Alexei; Schoessow, Paul

    2006-11-27

    The wakefields of a relativistic electron beam passing through a waveguide loaded with an active medium with weak resonant dispersion have been considered. For the calculations in this paper the parameters of the medium are those of a solution of fullerene (C60) in a nematic liquid crystal that exhibits activity in the X-band. It was shown that several of the TM accelerating modes can be amplified for the geometries under consideration; structures in which higher order modes are amplified exhibit essential advantages as PASERs. In particular, the amplification of the highest mode occurs in a structure loaded with a rather thick active medium layer that maximizes the energy stored by the active medium.

  20. Liquid annulus

    NASA Technical Reports Server (NTRS)

    Ludewig, Hans

    1991-01-01

    It is shown that the specific impulse varies with the square root of the temperature and inversely with the square root of the molecular weight of the propellant. Typical values for specific impulse corresponding to various rocket concepts are shown. The Liquid Annulus core concept consists of a fuel element which will be arranged in a moderator block. The advantages as seen for the system are: high specific impulse; structural material will all run at low temperature; and lower fission product inventory because of evaporation. It is felt that this concept is worth at least a first look because of the promise of very high specific impulse. Because of the low thrust, one would probably need a cluster of engines. This is not necessarily bad because there would be some redundancy, but because of the low thrust one might have to refuel while running. Depending on the fuel vaporization, material can be included in the uranium that is injected as one is running along.

  1. Liquid supercoiling

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Habibi, Mehdi; Hosseini, Hossein; Hassan Khatami, Mohammad

    2011-11-01

    Supercoiling is defined as the large-scale secondary coiling of a slender body that is already coiled at a smaller scale (e.g., telephone cords and DNA strands). We demonstrate experimentally a novel fluid-mechanical form of supercoiling that occurs in the context of the familiar ``liquid rope coiling'' instability of a thin thread of viscous fluid falling onto a rigid surface. Under appropriate conditions, the coiling instability generates a tall pile of coils in the form of a hollow cylindrical column, which in turn becomes unstable to a secondary coiling instability with a frequency ~ 10 % of the primary one. To place this phenomenon in a broader context, we determine experimentally the phase diagram for the different possible behaviors of the thread (stagnation flow, simple coiling, rotatory folding, periodic column collapse, supercoiling) in the space of the fluid viscosity, the flow rate, and the fall height. We formulate a mathematical model for supercoiling by combining a thin-shell description of the column wall with a slender-thread description of the column as a whole. This leads to a set of coupled ordinary differential equations in one space dimension (the arclength along the axis of the coiling column) that we solve numerically using a continuation method. A comparison of the predicted and observed frequencies of secondary coiling will be shown.

  2. CRRES Medium Electrons A results

    NASA Astrophysics Data System (ADS)

    Vampola, A. L.

    1996-07-01

    The CRRES Medium Electrons A spectrometer data were used to examine the dynamics of electron fluxes in the inner zone after a series of magnetic storms increased electron fluxes by an order of magnitude down to as low as L=1.25. Comparisons of CRRES electron data with the AE8MAX particle model show good agreement in the inner zone in flux intensity, energy spectra, and pitch angle distributions up to about 600 keV pre-storm. Above 600 keV, the AE8MAX model has higher fluxes. The maximum energy spectrum over the range 0.15 MeV to 1.7 MeV observed at geosynchronous orbit altitude during the 16-month CRRES mission is presented and extrapolated to 10 MeV. The combined spectrum is characterized as the sum of three power-law segments with breakpoints at 0.8 and 2.0 MeV. The coefficients for the three segments are respectively NE=5×107E-1.5, NE=4.5×1010E-2.5, and NE=4×1015E-4. Shielding of 155 mils Al equivalent would be required to prevent deep dielectric charging problems on geosynchronous satellites by an environment as severe as this maximum spectrum.

  3. Studies in medium energy physics

    SciTech Connect

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  4. Medium-size-vessel vasculitis

    PubMed Central

    Eleftheriou, Despina; Brogan, Paul A.

    2009-01-01

    Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder disease characterised by periodic exacerbations and often associated with streptococcal infection. There is controversy as to whether this is a separate entity or part of the systemic PAN spectrum. Kawasaki disease is an acute self-limiting systemic vasculitis, the second commonest vasculitis in childhood and the commonest cause of childhood-acquired heart disease. Renal manifestations occur and include tubulointerstitial nephritis and renal failure. An infectious trigger and a genetic predisposition seem likely. Intravenous immunoglobulin (IV-Ig) and aspirin are effective therapeutically, but in resistant cases, either steroid or infliximab have a role. Greater understanding of the pathogenetic mechanisms involved in these three types of vasculitis and better long-term follow-up data will lead to improved therapy and prediction of prognosis. PMID:19946711

  5. The Circumgalactic Medium of Quasars

    NASA Astrophysics Data System (ADS)

    Hennawi, Joe

    2014-07-01

    I will argue that observations of the diffuse gas in the outskirts of quasar host galaxies, or the so called circumgalactic medium, are essential for understanding how luminous quasars evolve in a cosmological context. Such observations also provide a fruitful comparison to theory, because hydrodynamics at moderate overdensities is much easier to simulate than the complicated processes which trigger quasar activity. A novel technique will be introduced, whereby a foreground quasar can be studied in absorption against a background quasar, resolving scales as small as 30 kpc. This experiment reveals a rich absorption spectrum which contains a wealth of information about the physical conditions of diffuse gas around quasars. Hydrodynamical simulations of the massive dark matter halos which host luminous quasars under predict the amount of cool gas observed in quasar environs by a large factor, challenging our understanding of how massive galaxies form. I will also discuss a very sensitive search for Ly-alpha emission from the same gas which we study in absorption.

  6. Acidic Ionic Liquid/Water Solution as Both Medium and Proton Source for Electrocatalytic H2 Evolution by [Ni(P2N2)2]2+ Complexes

    SciTech Connect

    Pool, Douglas H.; Stewart, Michael P.; O'Hagan, Molly J.; Shaw, Wendy J.; Roberts, John A.; Bullock, R. Morris; DuBois, Daniel L.

    2012-06-08

    The electrocatalytic reduction of protons to H2 by [Ni(PPh2NC6H4-hex2)2](BF4)2 (where PPh2NC6H4-hex2 = 1,5-di(4-n-hexylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000-53,000 s-1 has been measured for hydrogen production at 25 °C when the mole fraction of water (χH2O) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s-1. Thus the use of an ionic liquid/aqueous solution enhances the observed catalytic rates by more than a factor of 50 compared to acids in traditional organic solvents such as acetonitrile. Complexes [Ni(PPh2NC6H4X2)2](BF4)2 (X = H, OMe, CH2P(O)(OEt)2, Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  7. Medium of Instruction in Thai Science Learning

    NASA Astrophysics Data System (ADS)

    Chanjavanakul, Natpat

    The goal of this study is to compare classroom discourse in Thai 9th grade science lessons with English or Thai as a medium of instruction. This is a cross-sectional study of video recordings from five lessons in an English-medium instruction class and five lessons in a Thai- medium instruction class from a Thai secondary school. The study involved two teachers and two groups of students. The findings show the use of both English and Thai in English-medium lessons. Students tend to be more responsive to teacher questions in Thai than in English. The findings suggest the use of students' native language during English-medium lessons to help facilitate learning in certain situations. Additionally, the study provides implications for research, practice and policy for using English as a medium of instruction.

  8. Medium-induced multi-photon radiation

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Salgado, Carlos A.; Tywoniuk, Konrad

    2011-01-01

    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Molière limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

  9. The performance of dense medium processes

    SciTech Connect

    Horsfall, D.W.

    1993-12-31

    Dense medium washing in baths and cyclones is widely carried out in South Africa. The paper shows the reason for the preferred use of dense medium processes rather than gravity concentrators such as jigs. The factors leading to efficient separation in baths are listed and an indication given of the extent to which these factors may be controlled and embodied in the deployment of baths and dense medium cyclones in the planning stages of a plant.

  10. Liquid metal switches for electromagnetic railgun systems

    SciTech Connect

    Mitcham, A.J.; Prothero, D.H.; Brooks, J.C. )

    1991-01-01

    The need for a reliable and effective commutating switch is essential to the operation of an HPG-driven railgun system. This switch must offer the lowest possible resistance during the current build up time and then must commutate the current quickly and efficiently into the railgun barrel. This paper considers the essential requirements for such a switch and, after briefly reviewing the available switch technologies, describes a new type of switch based on a liquid metal switching medium.