Science.gov

Sample records for 7t multichannel phase

  1. Coil combination of multichannel MRSI data at 7 T: MUSICAL.

    PubMed

    Strasser, B; Chmelik, M; Robinson, S D; Hangel, G; Gruber, S; Trattnig, S; Bogner, W

    2013-12-01

    The goal of this study was to evaluate a new method of combining multi-channel (1)H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the (1)H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil (1)H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér-Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér-Rao lower bounds (-34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in (1)H MRSI of the human brain at 7 T, and could be extended to other (1)H MRSI techniques. PMID:24038331

  2. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals

  3. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen

    2014-01-01

    Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259

  4. APHID: A Wideband, Multichannel Radiometer for Phase Delay Correction

    NASA Astrophysics Data System (ADS)

    Staguhn, J.; Harris, A. I.; Munday, L. G.; Woody, D. P.

    Atmospheric phase fluctuations of mm and sub-mm signals are predominantly caused by line of sight fluctuations in the amount of water vapor. Measurements of the line emission from tropospheric water vapor can be used to track and correct these fluctuations. We present model calculations which led to the design of a multichannel water vapor radiometer for phase correction of millimeter arrays. Our particular emphasis is on designing a phase correction scheme for mid-latitude sites (BIMA, OVRO), and for high-altitude sites. The instrument being implemented at OVRO and BIMA is a cooled double-sideband heterodyne receiver centered on the 22.2GHz water vapor line with a 0.5 - 4.0GHz IF. The back end is a 16 channel analog lag correlator similar to the WASP spectrometer (Harris et al 1998). We present two applications for the multichannel radiometer. A line fit to the observed spectra is expected to provide sufficient accuracy for mm phase correction with the 22 GHZ line. The radiometer can also be used for the determination of the vertical water vapor distribution from the observed line shape. We discuss how this information can be used to improve the accuracy of water vapor radiometers which have too few channels to observe the line shape, and for phase correction schemes which are based on a 183 GHz water line radiometer.

  5. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T

    PubMed Central

    Sinnecker, Tim; Schumacher, Sophie; Mueller, Katharina; Pache, Florence; Dusek, Petr; Harms, Lutz; Ruprecht, Klemens; Nytrova, Petra; Chawla, Sanjeev; Niendorf, Thoralf; Kister, Ilya; Ge, Yulin; Wuerfel, Jens

    2016-01-01

    Objective: To characterize paramagnetic MRI phase signal abnormalities in neuromyelitis optica spectrum disorder (NMOSD) vs multiple sclerosis (MS) lesions in a cross-sectional study. Methods: Ten patients with NMOSD and 10 patients with relapsing-remitting MS underwent 7-tesla brain MRI including supratentorial T2*-weighted imaging and supratentorial susceptibility weighted imaging. Next, we analyzed intra- and perilesional paramagnetic phase changes on susceptibility weighted imaging filtered magnetic resonance phase images. Results: We frequently observed paramagnetic rim-like (75 of 232 lesions, 32%) or nodular (32 of 232 lesions, 14%) phase changes in MS lesions, but only rarely in NMOSD lesions (rim-like phase changes: 2 of 112 lesions, 2%, p < 0.001; nodular phase changes: 2 of 112 lesions, 2%, p < 0.001). Conclusions: Rim-like or nodular paramagnetic MRI phase changes are characteristic for MS lesions and not frequently detectable in NMOSD. Future prospective studies should ask whether these imaging findings can be used as a biomarker to distinguish between NMOSD- and MS-related brain lesions. PMID:27489865

  6. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function.

    PubMed

    van Rooden, Sanneke; Buijs, Mathijs; van Vliet, Marjolein E; Versluis, Maarten J; Webb, Andrew G; Oleksik, Ania M; van de Wiel, Lotte; Middelkoop, Huub A M; Blauw, Gerard Jan; Weverling-Rynsburger, Annelies W E; Goos, Jeroen D C; van der Flier, Wiesje M; Koene, Ted; Scheltens, Philip; Barkhof, Frederik; van de Rest, Ondine; Slagboom, P Eline; van Buchem, Mark A; van der Grond, Jeroen

    2016-09-01

    Studies have suggested that, in subjects with subjective cognitive impairment (SCI), Alzheimer's disease (AD)-like changes may occur in the brain. Recently, an in vivo study has indicated the potential of ultra-high-field MRI to visualize amyloid-beta (Aβ)-associated changes in the cortex in patients with AD, manifested by a phase shift on T2 *-weighted MRI scans. The main aim of this study was to investigate whether cortical phase shifts on T2 *-weighted images at 7 T in subjects with SCI can be detected, possibly implicating the deposition of Aβ plaques and associated iron. Cognitive tests and T2 *-weighted scans using a 7-T MRI system were performed in 28 patients with AD, 18 subjects with SCI and 27 healthy controls (HCs). Cortical phase shifts were measured. Univariate general linear modeling and linear regression analysis were used to assess the association between diagnosis and cortical phase shift, and between cortical phase shift and the different neuropsychological tests, adjusted for age and gender. The phase shift (mean, 1.19; range, 1.00-1.35) of the entire cortex in AD was higher than in both SCI (mean, 0.85; range, 0.73-0.99; p < 0.001) and HC (mean, 0.94; range, 0.79-1.10; p < 0.001). No AD-like changes, e.g. increased cortical phase shifts, were found in subjects with SCI compared with HCs. In SCI, a significant association was found between memory function (Wechsler Memory Scale, WMS) and cortical phase shift (β = -0.544, p = 0.007). The major finding of this study is that, in subjects with SCI, an increased cortical phase shift measured at high field is associated with a poorer memory performance, although, as a group, subjects with SCI do not show an increased phase shift compared with HCs. This increased cortical phase shift related to memory performance may contribute to the understanding of SCI as it is still unclear whether SCI is a sign of pre-clinical AD. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25522735

  7. Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting.

    PubMed

    Zhang, Yamei; Pan, Shilong

    2016-03-15

    A frequency-multiplying microwave photonic phase shifter with independent multichannel phase shifting capability is proposed and demonstrated using an integrated polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM) and a polarizer. By building a proper power distribution network to drive the PDM-DPMZM, two sidebands along two orthogonal polarization directions are generated with a spacing of two or four times the frequency of the driving signal. Leading the signal to a polarizer and a photodetector, a frequency-doubled or frequency-quadrupled signal with its phase adjusted by the polarization direction of the polarizer is achieved. The magnitude of the signal remains almost unchanged when the phase is adjusted. The proposed approach features compact configuration, scalable independent phase-shift channels and wide bandwidth, which can find applications in beam forming and analog signal processing for millimeter-wave or terahertz applications. PMID:26977684

  8. Image reconstruction from phased-array data based on multichannel blind deconvolution.

    PubMed

    She, Huajun; Chen, Rong-Rong; Liang, Dong; Chang, Yuchou; Ying, Leslie

    2015-11-01

    In this paper we consider image reconstruction from fully sampled multichannel phased array MRI data without knowledge of the coil sensitivities. To overcome the non-uniformity of the conventional sum-of-square reconstruction, a new framework based on multichannel blind deconvolution (MBD) is developed for joint estimation of the image function and the sensitivity functions in image domain. The proposed approach addresses the non-uniqueness of the MBD problem by exploiting the smoothness of both functions in the image domain through regularization. Results using simulation, phantom and in vivo experiments demonstrate that the reconstructions by the proposed algorithm are more uniform than those by the existing methods. PMID:26119418

  9. Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm

    SciTech Connect

    Volkov, V A; Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A

    2013-09-30

    The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth of 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)

  10. Phasing of multichannel laser radiation upon stimulated Brillouin scattering

    SciTech Connect

    Bogachev, V A; Garanin, Sergey G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Starikov, F A; Sukharev, Stanislav A; Feoktistov, V V

    2012-06-30

    We investigated the phasing of pulsed two- and fourchannel laser beams due to phase conjugation upon transient stimulated Brillouin scattering (SBS) in a double-pass amplification scheme. A high quality of beam phasing was experimentally demonstrated with the use of a microlens raster and an angular selector in the SBS-mirror scheme. The data obtained in the numerical simulation of transient SBS are in good agreement with experimental ones.

  11. Improved image reconstruction of low-resolution multichannel phase contrast angiography.

    PubMed

    P Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  12. Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator

    NASA Astrophysics Data System (ADS)

    Thomas, James A.; Fainman, Yeshaiahu

    1995-07-01

    We introduce a programmable diffractive optical element based on an electro-optic phased array implemented with a multichannel lanthanum-modified lead zirconate titanate phase modulator. The design and fabrication procedures are outlined, along with an experimental demonstration of the device. Experimental results from a 16-channel device operating with a 2 pi voltage of 300 V demonstrate selective beam steering. The programmable diffractive optical element allows for efficient, high-speed high-resolution random-access optical beam steering over a continuous scanning range.

  13. Whole-body imaging at 7T: preliminary results.

    PubMed

    Vaughan, J Thomas; Snyder, Carl J; DelaBarre, Lance J; Bolan, Patrick J; Tian, Jinfeng; Bolinger, Lizann; Adriany, Gregor; Andersen, Peter; Strupp, John; Ugurbil, Kamil

    2009-01-01

    The objective of this study was to investigate the feasibility of whole-body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the "landscape" of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. PMID:19097214

  14. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils.

    PubMed

    Boyes, Richard G; Gunter, Jeff L; Frost, Chris; Janke, Andrew L; Yeatman, Thomas; Hill, Derek L G; Bernstein, Matt A; Thompson, Paul M; Weiner, Michael W; Schuff, Norbert; Alexander, Gene E; Killiany, Ronald J; DeCarli, Charles; Jack, Clifford R; Fox, Nick C

    2008-02-15

    Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n=18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d=50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p<0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391

  15. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils

    PubMed Central

    Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.

    2008-01-01

    Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391

  16. A Phase 1 Study of 7-t-butyldimethylsilyl-10-hydroxycamptothecin (AR-67) in Adult Patients with Refractory or Metastatic Solid Malignancies

    PubMed Central

    Arnold, Susanne M.; Rinehart, John J.; Tsakalozou, Eleftheria; Eckardt, John R.; Fields, Scott Z.; Shelton, Brent J.; DeSimone, Philip A.; Kee, Bryan K.; Moscow, Jeffrey A.; Leggas, Markos

    2009-01-01

    Purpose AR-67 is a novel third generation camptothecin selected for development based on the blood stability of its pharmacologically active lactone form and high potency in preclinical models. Here we report the initial phase I experience with intravenous AR-67 in adults with refractory solid tumors. Experimental Design and Methods AR-67 was infused over 1 hour daily × 5, every 21-days, using an accelerated titration trial design. Plasma was collected on the 1st and 4th day of cycle 1 to determine pharmacokinetic parameters. Results Twenty six patients were treated at 9 dosage levels (1.2–12.4mg/m2/day). Dose limiting toxicities (DLTs) were observed in 5 patients and consisted of grade 4 febrile neutropenia, grade 3 fatigue, and grade 4 thrombocytopenia. Common toxicities included: leukopenia (23%), thrombocytopenia (15.4%), fatigue (15.4%), neutropenia (11.5%), and anemia (11.5%). No diarrhea was observed. The maximum tolerated dosage (MTD) was 7.5 mg/m2/day. The lactone form was the predominant species in plasma (>87% of AUC) at all dosages. No drug accumulation was observed on day 4. Clearance was constant with increasing dosage and hematologic toxicities correlated with exposure (p<0.001). A prolonged partial response was observed in one subject with non-small cell lung cancer (NSCLC). Stable disease was noted in patients with small cell lung cancer (SCLC), NSCLC, and duodenal cancer. Conclusions AR-67 is a novel, blood stable camptothecin with a predictable toxicity profile and linear pharmacokinetics. The recommended phase II dosage is 7.5mg/m2/day ×5 q 21 days. PMID:20068096

  17. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    NASA Astrophysics Data System (ADS)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-09-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  18. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    PubMed Central

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-01-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems. PMID:26365422

  19. Selecting the optimal anti-aliasing filter for multichannel biosignal acquisition intended for inter-signal phase shift analysis.

    PubMed

    Keresnyei, Róbert; Megyeri, Péter; Zidarics, Zoltán; Hejjel, László

    2015-01-01

    The availability of microcomputer-based portable devices facilitates the high-volume multichannel biosignal acquisition and the analysis of their instantaneous oscillations and inter-signal temporal correlations. These new, non-invasively obtained parameters can have considerable prognostic or diagnostic roles. The present study investigates the inherent signal delay of the obligatory anti-aliasing filters. One cycle of each of the 8 electrocardiogram (ECG) and 4 photoplethysmogram signals from healthy volunteers or artificially synthesised series were passed through 100-80-60-40-20 Hz 2-4-6-8th order Bessel and Butterworth filters digitally synthesized by bilinear transformation, that resulted in a negligible error in signal delay compared to the mathematical model of the impulse- and step responses of the filters. The investigated filters have as diverse a signal delay as 2-46 ms depending on the filter parameters and the signal slew rate, which is difficult to predict in biological systems and thus difficult to compensate for. Its magnitude can be comparable to the examined phase shifts, deteriorating the accuracy of the measurement. As a conclusion, identical or very similar anti-aliasing filters with lower orders and higher corner frequencies, oversampling, and digital low pass filtering are recommended for biosignal acquisition intended for inter-signal phase shift analysis. PMID:25514627

  20. A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Lai, Ying-Cheng

    2011-09-01

    We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

  1. Surface wave phase-velocity tomography based on multichannel cross-correlation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Gaherty, James B.

    2015-06-01

    We have developed a new method to retrieve seismic surface wave phase velocity using dense seismic arrays. The method measures phase variations between nearby stations based on waveform cross-correlation. The coherence in waveforms between adjacent stations results in highly precise relative phase estimates. Frequency-dependent phase variations are then inverted for spatial variations in apparent phase velocity via the Eikonal equation. Frequency-dependent surface wave amplitudes measured on individual stations are used to correct the apparent phase velocity to account for multipathing via the Helmholtz equation. By using coherence and other data selection criteria, we construct an automated system that retrieves structural phase-velocity maps directly from raw seismic waveforms for individual earthquakes without human intervention. The system is applied to broad-band seismic data from over 800 events recorded on EarthScope's USArray from 2006 to 2014, systematically building up Rayleigh-wave phase-velocity maps between the periods of 20 and 100 s for the entire continental United States. At the highest frequencies, the resulting maps are highly correlated with phase-velocity maps derived from ambient noise tomography. At all frequencies, we observe a significant contrast in Rayleigh-wave phase velocity between the tectonically active western US and the stable eastern US, with the phase velocity variations in the western US being 1-2 times greater. The Love wave phase-velocity maps are also calculated. We find that overtone contamination may produce systemic bias for the Love-wave phase-velocity measurements.

  2. Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.

    PubMed

    Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2014-07-28

    Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB. PMID:25089457

  3. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system.

    PubMed

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B(1) coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B(1) field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  4. A multi-channel image reconstruction method for grating-based X-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.

    2014-03-01

    In this work, we report on the development of an advanced multi-channel (MC) image reconstruction algorithm for grating-based X-ray phase-contrast computed tomography (GB-XPCT). The MC reconstruction method we have developed operates by concurrently, rather than independently as is done conventionally, reconstructing tomographic images of the three object properties (absorption, small-angle scattering, refractive index). By jointly estimating the object properties by use of an appropriately defined penalized weighted least squares (PWLS) estimator, the 2nd order statistical properties of the object property sinograms, including correlations between them, can be fully exploited to improve the variance vs. resolution tradeoff of the reconstructed images as compared to existing methods. Channel-independent regularization strategies are proposed. To solve the MC reconstruction problem, we developed an advanced algorithm based on the proximal point algorithm and the augmented Lagrangian method. By use of experimental and computer-simulation data, we demonstrate that by exploiting inter-channel noise correlations, the MC reconstruction method can improve image quality in GB-XPCT.

  5. Multi-point measurements of ULF wave phases using a multi-channel energetic ion detector

    NASA Technical Reports Server (NTRS)

    Lin, N.; Kivelson, M. G.; Mcpherron, R. L.; Williams, D. J.; Fritz, T. A.

    1988-01-01

    The oscillation of differential fluxes of energetic ions modulated by a ULF wave often shows a phase shift between measurements in back-to-back detectors with look directions perpendicular to the ambient magnetic field. In a plasma of a single ion species, the phase difference is caused by displacement of the effective measurement positions by one ion gyroradius to each side of the detector. As the wave phase is periodic, the observed phase shift can correspond to a family of possible wavelengths. Simultaneous measurements of the flux modulations in different energy channels, which are equivalent to measurements of the wave phase at different positions, may make it possible to single out a unique wavelength consistent with all the measurements. Using the medium-energy-particle experiments ISEE-1 and 2, each of which may serve as a back-to-back detector, the above method was applied to a compressional Pc 5 wave observed near the equatorial plane at L between about 7 and 11. The transverse propagation properties of the wave were determined unambiguously.

  6. Multichannel nonlinear distortion compensation using optical phase conjugation in a silicon nanowire.

    PubMed

    Vukovic, Dragana; Schröder, Jochen; Da Ros, Francesco; Du, Liang Bangyuan; Chae, Chang Joon; Choi, Duk-Yong; Pelusi, Mark D; Peucheret, Christophe

    2015-02-01

    We experimentally demonstrate compensation of nonlinear distortion caused by the Kerr effect in a 3 × 32-Gbaud quadrature phase-shift keying (QPSK) wavelength-division multiplexing (WDM) transmission system. We use optical phase conjugation (OPC) produced by four-wave mixing (FWM) in a 7-mm long silicon nanowire. A clear improvement in Q-factor is shown after 800-km transmission with high span input power when comparing the system with and without the optical phase conjugation module. The influence of OSNR degradation introduced by the silicon nanowire is analysed by comparing transmission systems of three different lengths. This is the first demonstration of nonlinear compensation using a silicon nanowire. PMID:25836216

  7. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase.

    PubMed

    Xin, Yunhong; Wang, Qi; Liu, Taihong; Wang, Lingling; Li, Jia; Fang, Yu

    2012-11-21

    A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity. PMID:23007322

  8. Density of states at disorder-induced phase transitions in a multichannel Majorana wire

    NASA Astrophysics Data System (ADS)

    Rieder, Maria-Theresa; Brouwer, Piet W.

    2014-11-01

    An N -channel spinless p -wave superconducting wire is known to go through a series of N topological phase transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of states shows a Dyson singularity ν (ɛ ) ∝ɛ-1|lnɛ| -3 , whereas ν (ɛ ) ∝ɛ|α |-1 has a power-law singularity for small energies ɛ away from the critical points. Using the concept of "superuniversality" [Gruzberg et al., Phys. Rev. B 71, 245124 (2005), 10.1103/PhysRevB.71.245124], we are able to relate the exponent α to the wire's transport properties at zero energy and, hence, to the mean free path l and the superconducting coherence length ξ .

  9. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  10. Loop laser cavities with self-pumped phase-conjugate mirrors in low-gain active media for phase-locked multichannel laser systems

    SciTech Connect

    Basiev, Tasoltan T; Gavrilov, A V; Ershkov, M N; Smetanin, Sergei N; Fedin, Aleksandr V; Bel'kov, K A; Boreysho, A S; Lebedev, V F

    2011-03-31

    It is proved that lasers with different loop cavities with self-pumped phase-conjugate mirrors in low-gain active media can operate under injection of external laser radiation and can be used for the development of diode-pumped phase-locked multichannel neodymium laser systems operating both on the fundamental laser transition with the wavelength {lambda} = 1.06 {mu}m and on the transition with {lambda} = 1.34 {mu}m. The phase-conjugate oscillation thresholds in the case of injection of an external signal are determined for a multiloop cavity configuration and an increased number of active elements in the cavity. It is shown that phase-conjugate oscillation can occur even if the single-pass gain of the active element is as low as only {approx}2. Under high-power side diode pumping of a multiloop Nd:YAG laser, single-mode output radiation was achieved at {lambda} = 1.064 {mu}m with a pulse energy up to 0.75 J, a pulse repetition rate up to 25 Hz, an average power up to 18.3 W, and an efficiency up to 20%. In a multiloop Nd:YAG laser with three active elements in the cavity, single-mode radiation at {lambda} = 1.34 {mu}m was obtained with a pulse energy up to 0.96 J, a pulse repetition rate up to 10 Hz, and an average power up to 8.5 W. (control of laser radiation parameters)

  11. Reconstructing very short TE phase rotation spectral data collected with multichannel phased-array coils at 3 T.

    PubMed

    Wijtenburg, S Andrea; Knight-Scott, Jack

    2011-09-01

    Phased-array volume coils were used in conjunction with the phase rotation STEAM (PR-STEAM) spectroscopy technique to acquire very short TE data from the anterior cingulate gyrus at 3 T. A method for combining PR-STEAM data from multiple subcoils is presented. The data were acquired from seven healthy participants using PR-STEAM (repetition time/mixing time/echo time=3500/10/6.5 ms, 6 cm(3), NEX=128, spectral width=2000 Hz, 2048 complex points, Δφ(1)=135°, Δφ(2)=22.5°, Δφ(3)=112.5° and Δφ(ADC)=0°). In addition to the primary metabolites, LCModel fit results suggest that glutathione and glutamate can also be identified with Cramér-Rao lower bounds of 10% or less. PMID:21550744

  12. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  13. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.

    PubMed

    Connell, Ian R O; Gilbert, Kyle M; Abou-Khousa, Mohamed A; Menon, Ravi S

    2015-04-01

    Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods. PMID:25415982

  14. Interventional loopless antenna at 7 T.

    PubMed

    Ertürk, Mehmet Arcan; El-Sharkawy, Abdel-Monem M; Bottomley, Paul A

    2012-09-01

    The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T. Here, for the first time, the signal-to-noise ratio performance and radiofrequency safety of the loopless antenna are investigated both theoretically, using the electromagnetic method-of-moments, and experimentally in a standard 7 T human scanner. The results are compared with equivalent 3 T devices. An absolute signal-to-noise ratio gain of 5.7 ± 1.5-fold was realized at 7 T vs. 3 T: more than 20-fold higher than at 1.5 T. The effective field-of-view area also increased approximately 10-fold compared with 3 T. Testing in a saline gel phantom suggested that safe operation is possible with maximum local 1-g average specific absorption rates of <12 W kg(-1) and temperature increases of <1.9°C, normalized to a 4 W kg(-1) radiofrequency field exposure at 7 T. The antenna did not affect the power applied to the scanner's transmit coil. The signal-to-noise ratio gain enabled magnetic resonance imaging microscopy at 40-50 μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-field-of-view or endoscopic magnetic resonance imaging for targeted intervention in focal disease. PMID:22161992

  15. B0 mapping with multi-channel RF coils at high field.

    PubMed

    Robinson, Simon; Jovicich, Jorge

    2011-10-01

    Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields. PMID:21608027

  16. Complex B1 Mapping and Electrical Properties Imaging of the Human Brain using a 16-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2012-01-01

    The electric properties (EPs) of biological tissue provide important diagnostic information within radio and microwave frequencies, and also play an important role in specific absorption rate (SAR) calculation which is a major safety concern at ultrahigh field (UHF). The recently proposed electrical properties tomography (EPT) technique aims to reconstruct EPs in biological tissues based on B1 measurement. However, for individual coil element in multi-channel transceiver coil which is increasingly utilized at UHF, current B1-mapping techniques could not provide adequate information (magnitude and absolute phase) of complex transmit and receive B1 which are essential for EPT, electric field, and quantitative SAR assessment. In this study, using a 16-channel transceiver coil at 7T, based on hybrid B1-mapping techniques within the human brain, a complex B1-mapping method has been developed, and in-vivo EPs imaging of the human brain has been demonstrated by applying a logarithm-based inverse algorithm. Computer simulation studies as well as phantom and human experiments have been conducted at 7T. The average bias and standard deviation for reconstructed conductivity in vivo were 28% and 67%, and 10% and 43% for relative permittivity, respectively. The present results suggest the feasibility and reliability of proposed complex B1-mapping technique and EPs reconstruction method. PMID:22692921

  17. 26 CFR 1.904-7T - Transition rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Transition rules (temporary). 1.904-7T Section 1.904-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Income from Sources Without the United States § 1.904-7T Transition rules...

  18. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  19. Multichanneled puzzle-like encryption

    NASA Astrophysics Data System (ADS)

    Amaya, Dafne; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Néstor

    2008-07-01

    In order to increase data security transmission we propose a multichanneled puzzle-like encryption method. The basic principle relies on the input information decomposition, in the same way as the pieces of a puzzle. Each decomposed part of the input object is encrypted separately in a 4 f double random phase mask architecture, by setting the optical parameters in a determined status. Each parameter set defines a channel. In order to retrieve the whole information it is necessary to properly decrypt and compose all channels. Computer simulations that confirm our proposal are presented.

  20. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  1. Cardiac Imaging at 7T: Single- and Two-Spoke RF Pulse Design with 16-channel Parallel Excitation

    PubMed Central

    Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J.; Vaughan, J. Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2013-01-01

    Purpose Higher SNR and improved contrast have been demonstrated at Ultra-high magnetic fields (≥7T) in multiple targets, often with multi-channel transmit B1+ methods to address the deleterious impact on tissue contrast due to spatial variations in B1+ profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare 2-spoke parallel transmit (pTX) RF pulses with static B1+ shimming in cardiac imaging at 7T. Methods Using a 16-channel pTX system, slice-selective 2-spoke pTX pulses and static B1+ shimming were applied in cardiac CINE imaging. B1+ and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Results 2-spoke pulses provide higher excitation homogeneity than B1+ shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for higher flip angle, hence increased tissue contrast. Image quality with 2-spoke excitation proved to be stable throughout the entire cardiac cycle. Conclusion 2-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared to B1+ shimming. PMID:24038314

  2. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  3. Multichannel Human Body Communication

    NASA Astrophysics Data System (ADS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes.

  4. Miniature multichannel biotelemeter system

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.; Sumida, J. T. (Inventor)

    1974-01-01

    A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.

  5. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  6. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  7. Multichannel analog temperature sensing system

    NASA Astrophysics Data System (ADS)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer.

  8. J-refocused coherence transfer spectroscopic imaging at 7 T in human brain.

    PubMed

    Pan, J W; Avdievich, N; Hetherington, H P

    2010-11-01

    Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B(1) sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684

  9. Multichannel birefringent filter

    NASA Technical Reports Server (NTRS)

    Gouxiang, A.; Huefeng, H.

    1985-01-01

    A birefringent filter with a large field of view and no additional polarization is discussed. It plays an important role in observing the solar monochromatic image and the solar vector magnetic field. It has only one channel. For simultaneous multichannel observations, the solar spectrograph is better than the birefringent filter. A suggestion was proposed to try to obtain a multichannel birefringent filter which will be used in a new telescope at the Huairou reservoir station of Beijing Observatory. By means of N polarizing beam splitters, (N+1) channels can be divided. In principle, any number of limitless channels can be obtained, thereby subdividing the whole solar spectrum. But since the space in a telescope is limited, the channels to be used are also limited. For the new telescope, 5 and 9 channels are being considered, and the spectral range is from lambda 3800A to lambda 7000A. Many lines are included in this range, for example, H, K, H beta, lambda lambda 5324A, 5250A, 6302A, H alpha, etc., and some of the lines are suited to measure solar velocity fields. According to the character of these lines, the half width of each channel is determined. Moreover, in some channels the solid polarizing Michelson interferometer is considered for measuring velocity field with a lm/s accuracy. The advantages of the filter and problems to be solved are listed.

  10. Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach

    NASA Astrophysics Data System (ADS)

    Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2013-07-01

    Electrical properties tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in magnetic resonance scanners. The absolute phase of the complex radio-frequency magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7 T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7 T.

  11. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  12. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  13. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  14. Compact multichannel imaging laser radar receiver

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Yun, Steven T.; Keltos, Michael L.; Kimmet, James S.

    1999-05-01

    Direct detection imaging Laser Radar (LADAR) produces 3-dimensional range imagery that can be processed to provide target acquisition and precision aimpoint definition in real time. This paper describes the current status of the Parallel Multichannel Imaging LADAR Receiver (PMR), developed under an SBIR Phase II program by the Air Force Research Laboratory, Munitions Directorate (AFRL/MN). The heart of the PMR is the Multichannel Optical Receiver Photonic Hybrid (MORPH), a high performance 16-channel LADAR receiver card which includes fiber-coupled detectors, pulse discrimination, and range counting circuitry on a 3 X 5 inch circuit card. The MORPH provides high downrange resolution (3 inches), multiple-hit (8 per channel) range and reflectance data for each detector. Silicon (Si) and indium gallium arsenide (InGaAs) pin diode or avalanche photodiode (APD) detectors are supported. The modular PMR uses an array of MORPH circuit cards to form a compact multichannel imaging LADAR receiver with any multiple of 16 channels. A 32-channel system measures 3 X 5 X 1.4 inches and weighs 1 lb. A prototype PMR system is currently undergoing field-testing. This paper focuses on field test results and applications of the PMR technology.

  15. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  16. Digital restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1989-01-01

    The Wiener solution of a multichannel restoration scheme is presented. Using matrix diagonalization and block-Toeplitz to block-circulant approximation, the inversion of the multichannel, linear space-invariant imaging system becomes feasible by utilizing a fast iterative matrix inversion procedure. The restoration uses both the within-channel (spatial) and between-channel (spectral) correlation; hence, the restored result is a better estimate than that produced by independent channel restoration. Simulations are also presented.

  17. A multichannel magneto-chiral dichroism spectrometer

    NASA Astrophysics Data System (ADS)

    Kopnov, G.; Rikken, G. L. J. A.

    2014-05-01

    In this work, we describe a multichannel magneto-chiral dichroism spectrometer for the visible and near infrared wavelength ranges. The optical signal acquisition is based on commercially available Czerny-Turner spectrograph systems equipped with solid state detector arrays. The signal analysis method is based on post-processing phase sensitive detection, where the optical properties of the sample are modulated by an alternating external magnetic field. As an illustration of the performance of this spectrometer, magneto-chiral dichroism was measured in crystals of α - NiSO4 . 6H2O and good agreement with literature results was obtained.

  18. Multichannel demultiplexer-demodulator

    NASA Technical Reports Server (NTRS)

    Courtois, Hector; Sherry, Mike; Cangiane, Peter; Caso, Greg

    1993-01-01

    One of the critical satellite technologies in a meshed VSAT (very small aperture terminal) satellite communication networks utilizing FDMA (frequency division multiple access) uplinks is a multichannel demultiplexer/demodulator (MCDD). TRW Electronic Systems Group developed a proof-of-concept (POC) MCDD using advanced digital technologies. This POC model demonstrates the capability of demultiplexing and demodulating multiple low to medium data rate FDMA uplinks with potential for expansion to demultiplexing and demodulating hundreds to thousands of narrowband uplinks. The TRW approach uses baseband sampling followed by successive wideband and narrowband channelizers with each channelizer feeding into a multirate, time-shared demodulator. A full-scale MCDD would consist of an 8 bit A/D sampling at 92.16 MHz, four wideband channelizers capable of demultiplexing eight wideband channels, thirty-two narrowband channelizers capable of demultiplexing one wideband signal into 32 narrowband channels, and thirty-two multirate demodulators. The POC model consists of an 8 bit A/D sampling at 23.04 MHz, one wideband channelizer, 16 narrowband channelizers, and three multirate demodulators. The implementation loss of the wideband and narrowband channels is 0.3dB and 0.75dB at 10(exp -7) E(sub b)/N(sub o) respectively.

  19. Classification of mouth movements using 7 T fMRI

    NASA Astrophysics Data System (ADS)

    Bleichner, M. G.; Jansma, J. M.; Salari, E.; Freudenburg, Z. V.; Raemaekers, M.; Ramsey, N. F.

    2015-12-01

    Objective. A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. Approach. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a ‘winner-takes-all’ design. Main results. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). Significance. The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  20. Multichannel Coding of Applause Signals

    NASA Astrophysics Data System (ADS)

    Hotho, Gerard; van de Par, Steven; Breebaart, Jeroen

    2007-12-01

    We develop a parametric multichannel audio codec dedicated to coding signals consisting of a dense series of transient-type events. These signals of which applause is a typical example are known to be problematic for such audio codecs. The codec design is based on preservation of both timbre and transient-type event density. It combines a very low complexity and a low parameter bit rate (0.2 kbps). In a formal listening test, we compared the proposed codec to the recently standardised MPEG Surround multichannel codec, with an associated parameter bit rate of 9 kbps. We found the new codec to have a significantly higher audio quality than the MPEG Surround codec for the two multichannel applause signals under test. Though this seems promising, the technique presented is not fully mature, for example, because issues related to integration of the proposed codec in the MPEG Surround codec were not addressed.

  1. Multichannel time-slot permuters

    NASA Astrophysics Data System (ADS)

    Jordan, Harry F.; Lee, Kyungsook Y.; Lee, Daeshik

    1993-02-01

    We consider the general switching problem known as time-space-time domain permutations in telecommunications. We present a new set of multichannel time slot permuters for L parallel frames of M time slots (L equals 2l, M equals 2m). The multichannel time slot permuters are obtained by combining L X L spatial networks and time slot permuters for a frame of M time slots. In this paper, the Benes network, the Batcher sorter and the Lambda network for spatial networks, and their counterparts, the RJS time slot permuter, the S time slot sorter, and the Lambda time slot permuter are considered.

  2. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-7T Relationship to...

  3. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 9 2014-04-01 2014-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-7T Relationship to...

  4. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Miscellaneous Provisions § 1.892-7T Relationship to other Internal...

  5. Multichannel error correction code decoder

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Ivancic, William D.

    1993-01-01

    A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.

  6. Microcomputer to Multichannel Analyzer Interface.

    ERIC Educational Resources Information Center

    Metz, Roger N.

    1982-01-01

    Describes a microcomputer-based multichannel analyzer (MCA) in which the front end is connected to a microcomputer through a custom interface. Thus an MCA System of 1024 channel resolution, programmable in Basic rather than in machine language and having moderate cost, is achieved. (Author/SK)

  7. Optical and electronic design of a calibrated multichannel electronic interferometer for quantitative flow visualization

    NASA Astrophysics Data System (ADS)

    Upton, T. D.; Watt, D. W.

    1995-09-01

    Calibrated multichannel electronic interferometry is an electro-optic technique for performing phase shifting of transient phenomena. The design of an improved system for calibrated multichannel electronic interferometry is discussed. This includes a computational method for alignment of three phase-shifted interferograms and determination of the pixel correspondence. During calibration the phase, modulation, and bias of the optical system are determined. These data are stored electronically and used to compensate for errors associated with the path differences in the interferometer, the separation of the phase-shifted interferograms, and the measurement of the phase shift.

  8. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A.

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  9. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  10. Multichannel Error Correction Code Decoder

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Digital Systems Technology Branch has an ongoing program in modulation, coding, onboard processing, and switching. Recently, NASA completed a project to incorporate a time-shared decoder into the very-small-aperture terminal (VSAT) onboard-processing mesh architecture. The primary goal was to demonstrate a time-shared decoder for a regenerative satellite that uses asynchronous, frequency-division multiple access (FDMA) uplink channels, thereby identifying hardware and power requirements and fault-tolerant issues that would have to be addressed in a operational system. A secondary goal was to integrate and test, in a system environment, two NASA-sponsored, proof-of-concept hardware deliverables: the Harris Corp. high-speed Bose Chaudhuri-Hocquenghem (BCH) codec and the TRW multichannel demultiplexer/demodulator (MCDD). A beneficial byproduct of this project was the development of flexible, multichannel-uplink signal-generation equipment.

  11. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  12. PDX multichannel interferometer

    SciTech Connect

    Bitzer, R.; Ernst, W.; Cutsogeorge, G.

    1980-10-01

    A 10 channel, 140 GHz homodyne interferometer is described for use on PDX. One feature of this interferometer is the separation of the signal source and electronics from the power splitters, delay line, and receiving systems. The latter is situated near the upper and lower vacuum ports between the toroidal field magnets. A second feature is the signal stabilization of the EIO source by means of an AFC system. The complete interferometer is described including block diagrams, circuit diagrams, test data, and magnetic field test conducted on the preamplifiers, microwave diodes, isolators, etc., to determine the extent of magnetic shielding required. The description of the tracking filters and digital phase display circuit is referenced to accompanying reports.

  13. Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T.

    PubMed

    van der Zwaag, Wietske; Marques, José P; Hergt, Martin; Gruetter, Rolf

    2009-10-01

    In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes. PMID:19261421

  14. Application of the J-matrix method to multichannel scattering

    NASA Astrophysics Data System (ADS)

    Syty, P.; Redynk, Ł.; Sienkiewicz, J. E.

    2013-10-01

    In this contribution we describe the multichannel extension to the nonrelativistic J-matrix method, and present differential cross sections for scattering of slow electrons from Argon atoms. Nonrelativistic phase shifts, then the S-matrix and the cross sections have been calculated using newly developed Fortran code, JMATRIX-MULTI. We applied the model Hartree-Fock potential as the scattering potential, which was truncated in the oscillatory basis functions.

  15. 26 CFR 1.1441-7T - General provisions relating to withholding agents (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 12 2012-04-01 2012-04-01 false General provisions relating to withholding agents (temporary). 1.1441-7T Section 1.1441-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Withholding of Tax on Nonresident Aliens and Foreign Corporations...

  16. 26 CFR 1.468A-7T - Manner of and time for making election (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (temporary). 1.468A-7T Section 1.468A-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.468A... a copy of the schedule of ruling amounts provided pursuant to the rules of § 1.468A-3T to...

  17. 26 CFR 1.382-7T - Built-in gains and losses (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Built-in gains and losses (temporary). 1.382-7T... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.382-7T Built-in gains and losses... recognized built-in gain. The term prepaid income means any amount received prior to the change date that...

  18. Simultaneous gas-phase and total water detection for airborne applications with a multi-channel TDL spectrometer at 1.4 μm and 2.6 μm

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Barthel, Jochen; Kallweit, Sören; Klostermann, Tim; Krämer, Martina; Schiller, Cornelius; Ebert, Volker

    2013-04-01

    Water vapor measurements especially within clouds are difficult, in particular due to numerous instrument-specific limitations in precision, time resolution and accuracy. Notably the quantification of the ice and gas-phase water content in cirrus clouds, which play an important role in the global climate system, require new high-speed hygrometers concepts which are capable of resolving large water vapor gradients. Previously we demonstrated a stationary concept of a Tunable Diode Laser Absorption Spectroscopy (TDLAS)-based quantification of the ice/liquid water by independent, but simultaneous measurements of A) the gas-phase water in an open-path configuration (optical-path 125 m) and B) the total water in an extractive version with a closed cell (30 m path) after evaporating the condensed water [1]. In this case we used laboratory TDLAS instrumentation in combination with a long absorption paths and applied those to the AIDA cloud camber [2]. Recently we developed an advanced, miniature version of the concept, suitable for mobile field applications and in particular for use on aircrafts. First tests of our new, fiber-coupled open-path TDLAS cell [3] for airborne applications were combined with the experiences of our extractive SEALDH instruments [4] and led to a new, multi-channel, "multi-phase TDL-hygrometer" called "HAI" ("Hygrometer for Atmospheric Investigations"). HAI, which is explicitly designed for the new German HALO (High Altitude and Long Range Research Aircraft) airplane, provides a similar, but improved functionality like the stationary, multi-phase TDLAS developed for AIDA. However HAI comes in a much more compact, six height units, 30 kg, electronics rack for the main unit and with a new, completely fiber-coupled, compact, 21 kg, dual-wavelength open-path TDL-cell which is placed in the aircraft's skin. HAI is much more complex and versatile than the AIDA precursor and can be seen as comprised of four TDL-spectrometers, as it simultaneously

  19. Multichannel Learning: Connecting All to Education.

    ERIC Educational Resources Information Center

    Anzalone, Steve, Ed.

    Drafted for the Learning Technologies for Basic Education project, this document assembles case studies which provide an overview of multichannel learning, or reinforce learning through the use of several instructional paths and various media including print, broadcast, and online. Through the cases, multichannel learning is depicted as an…

  20. Multichannel Compression, Temporal Cues, and Audibility.

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Turner, Christopher W.

    1998-01-01

    The effect of the reduction of the temporal envelope produced by multichannel compression on recognition was examined in 16 listeners with hearing loss, with particular focus on audibility of the speech signal. Multichannel compression improved speech recognition when superior audibility was provided by a two-channel compression system over linear…

  1. Multichannel Analyzer Built from a Microcomputer.

    ERIC Educational Resources Information Center

    Spencer, C. D.; Mueller, P.

    1979-01-01

    Describes a multichannel analyzer built using eight-bit S-100 bus microcomputer hardware. The output modes are an oscilloscope display, print data, and send data to another computer. Discusses the system's hardware, software, costs, and advantages relative to commercial multichannels. (Author/GA)

  2. A Student-Made Inexpensive Multichannel Pipet

    ERIC Educational Resources Information Center

    Dragojlovic, Veljko

    2009-01-01

    An inexpensive multichannel pipet designed to deliver small volumes of liquid simultaneously to wells in a multiwell plate can be prepared by students in a single laboratory period. The multichannel pipet is made of disposable plastic 1 mL syringes and drilled plastic plates, which are used to make plunger and barrel assemblies. Application of the…

  3. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  4. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  5. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  6. Multichanneled encryption via a joint transform correlator architecture.

    PubMed

    Amaya, Dafne; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Néstor

    2008-11-01

    We propose a multichanneling encryption method by using multiple random-phase mask apertures in the input plane based on a joint transform correlation scheme. In the proposal, this multiple aperture arrangement is changed as different input objects are inserted and stored. Then, during the decryption step, the appropriate use of the random-phase mask apertures can ensure the retrieval of different information. This approach provides different access levels. Computer simulations show the potential of the technique and experimental results verify the feasibility of this method. PMID:19122732

  7. Multichannel Spectrometer of Time Distribution

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.

    2015-06-01

    For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.

  8. Frequency-selective analysis of multichannel magnetic resonance spectroscopy data.

    PubMed

    Sandgren, Niclas; Stoica, Petre

    2005-01-01

    In several practical magnetic resonance spectroscopy (MRS) applications the user is interested only in the spectral content of a specific frequency band of the spectrum. A frequency-selective (or sub-band) method estimates only the parameters of those spectroscopic components that lie in a pre-selected frequency band of the spectrum in a computationally efficient manner. Multichannel MRS is a technique that employs phased-array receive coils to increase the signal-to-noise ratio (SNR) in the spectra by combining several simultaneous measurements of the magnetic resonance (MR) relaxation of an excited sample. In this paper we suggest a frequency-selective multichannel parameter estimation approach that combines the appealing features (high speed and improved SNR) of the two techniques above. The presented method shows parameter estimation accuracies comparable to those of existing fullband multichannel techniques in the high SNR case, but at a considerably lower computational complexity, and significantly better parameter estimation accuracies in low SNR scenarios. PMID:17282712

  9. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  10. A Multichannel Bioluminescence Determination Platform for Bioassays.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays. PMID:27424912

  11. Capacitance Probe Resonator for Multichannel Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T> ; Glaser, Robert J.

    2012-01-01

    A multichannel electrometer voltmeter has been developed that employs a mechanical resonator with voltage-sensing capacitance-probe electrodes that enable high-impedance, high-voltage, radiation-hardened measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. The resonator solution relies on a non-contact, voltage-sensing, sinusoidal-varying capacitor to achieve input impedances as high as 10 petaohms as determined by the resonator materials, geometries, cleanliness, and construction. The resonator is designed with one dominant mechanical degree of freedom, so it resonates as a simple harmonic oscillator and because of the linearity of the variable sense capacitor to displacement, generates a pure sinusoidal current signal for a fixed input voltage under measurement. This enables the use of an idealized phase-lock sensing scheme for optimal signal detection in the presence of noise.

  12. Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Seidel, Eva-Maria; Sladky, Ronald; Kraus, Christoph; Küblböck, Martin; Pfabigan, Daniela M; Hummer, Allan; Grahl, Arvina; Ganger, Sebastian; Windischberger, Christian; Lamm, Claus; Lanzenberger, Rupert

    2013-11-15

    Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation

  13. Multichannel scanning radiometer for remote sensing cloud physical parameters

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kyle, H. L.; Blaine, L. R.; Smith, J.; Clem, T. D.

    1981-01-01

    A multichannel scanning radiometer developed for remote observation of cloud physical properties is described. Consisting of six channels in the near infrared and one channel in the thermal infrared, the instrument can observe cloud physical parameters such as optical thickness, thermodynamic phase, cloud top altitude, and cloud top temperature. Measurement accuracy is quantified through flight tests on the NASA CV-990 and the NASA WB-57F, and is found to be limited by the harsh environment of the aircraft at flight altitude. The electronics, data system, and calibration of the instrument are also discussed.

  14. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Adjustments § 1.482-7T Methods to...

  15. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-7T Methods to determine taxable...

  16. A subfemtotesla multichannel atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Kominis, I. K.; Kornack, T. W.; Allred, J. C.; Romalis, M. V.

    2003-04-01

    The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1fTHz-1/2 (1fT = 10-15T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54fTHz-1/2 with a measurement volume of only 0.3cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01fTHz-1/2. We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2mm.

  17. A subfemtotesla multichannel atomic magnetometer.

    PubMed

    Kominis, I K; Kornack, T W; Allred, J C; Romalis, M V

    2003-04-10

    The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm. PMID:12686995

  18. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  19. Design and Simulation of a Birdcage Coil using CST Studio Suite for Application at 7T

    NASA Astrophysics Data System (ADS)

    Palau Tomas, Bernat; Li, Houmin; Anjum, M. R.

    2013-12-01

    This work describes the study of coils for Magnetic Resonance Imaging (MRI) applications. The principal objective is the design of a birdcage Radio Frequency (RF) coil to use in a 7 Tesla (7T) scanner. Higher strength field generates a better SNR and increased chemical shift effect, improving spectral fat suppression and spectroscopy. Moreover, a better SNR increases the spatial resolution or reduces the imaging time. This research work presented recent developments based on high field 7T design using CST studio. The birdcage coil achieves circular polarization and generates a high homogeneous radio frequency magnetic field under many conditions. Design of a Birdcage coil for a 7T to obtain the images from s mall animals (i.e. mouse). It opens the door to design and construct a Birdcage coil for a 7T to obtain human brain images. Firstly we design a birdcage coil then the results are obtained with simulator CST Wave Studio, creating a 3D model and generating a simulation. Finally the parameters are re adjusted to obtain our desired Larmor frequency 298.2 MHz for a correct operation in 7T. This research work demonstrates the theoretical results from our design and shows the designed antenna behavior.

  20. Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T

    PubMed Central

    Bruant, Guillaume; Lévesque, Marie-Josée; Peter, Chardeen; Guiot, Serge R.; Masson, Luke

    2010-01-01

    Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7T possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO2 fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7T chromosome. The functionality of these pathways was also confirmed by growth of P7T on CO and production of CO2 as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7T was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7T genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas. PMID:20885952

  1. Anomaly Detection using Multi-channel FLAC for Supporting Diagnosis of ECG

    NASA Astrophysics Data System (ADS)

    Ye, Jiaxing; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Otsu, Nobuyuki

    In this paper, we propose an approach for abnormality detection in multi-channel ECG signals. This system serves as front end to detect the irregular sections in ECG signals, where symptoms may be observed. Thereby, the doctor can focus on only the detected suspected symptom sections, ignoring the disease-free parts. Hence the workload of the inspection by the doctors is significantly reduced and the diagnosis efficiency can be sharply improved. For extracting the predominant characteristics of multi-channel ECG signals, we propose multi-channel Fourier local auto-correlations (m-FLAC) features on multi-channel complex spectrograms. The method characterizes the amplitude and phase information as well as temporal dynamics of the multi-channel ECG signal. At the anomaly detection stage, we employ complex subspace method for statistically modeling the normal (healthy) ECG patterns as in one-class learning. Then, we investigate the input ECG signals by measuring its deviation distance to the trained subspace. The ECG sections with disordered spectral distributions can be effectively discerned based on such distance metric. To validate the proposed approach, we conducted experiments on ECG dataset. The experimental results demonstrated the effectiveness of the proposed approach including promising performance and high efficiency, compared to conventional methods.

  2. Multichannel DBS halftoning for improved texture quality

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Pedersen, Marius

    2015-01-01

    The paper aims to develop a method for multichannel halftoning based on the Direct Binary Search (DBS) algorithm. We integrate specifics and benefits of multichannel printing into the halftoning method in order to further improve texture quality of DBS and to create halftoning that would suit for multichannel printing. Originally, multichannel printing is developed for an extended color gamut, at the same time additional channels can help to improve individual and combined texture of color halftoning. It does so in a similar manner to the introduction of the light colors (diluted inks) in printing. Namely, if one observes Red, Green and Blue inks as the light version of the M+Y, C+Y, C+M combinations, the visibility of the unwanted halftoning textures can be reduced. Analogy can be extent to any number of ink combinations, or Neugebauer Primaries (NPs) as the alternative building blocks. The extended variability of printing spatially distributed NPs could provide many practical solution and improvements in color accuracy, image quality, and could enable spectral printing. This could be done by selection of NPs per dot area location based on the constraint of the desired reproduction. Replacement with brighter NP at the location could induce a color difference where a tradeoff between image quality and color accuracy is created. With multichannel enabled DBS haftoning, we are able to reduce visibility of the textures, to provide better rendering of transitions, especially in mid and dark tones.

  3. Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T.

    PubMed

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A D; van Zijl, Peter C M

    2012-08-01

    High-resolution magnetic resonance phase- or frequency-shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor( ̅χ). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS=(χ(//)+2 χ(⊥))/3 and a magnetic susceptibility anisotropy, MSA=χ(//)-χ(⊥), where χ(//) and χ(⊥) are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°-30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1 × 1 × 1 mm(3) frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from -0.037 to -0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with the

  4. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C.-L.; Olson, W. S.

    1985-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Its properties and limitations are presented. The effect of noise was investigated and a better understanding of the performance of the algorithm with noisy data has been achieved. The restoration scheme with the selection of appropriate constraints was applied to a practical problem. The 6.6, 10.7, 18, and 21 GHz satellite images obtained by the scanning multichannel microwave radiometer (SMMR), each having different spatial resolution, were restored to a common, high resolution (that of the 37 GHz channels) to demonstrate the effectiveness of the method. Both simulated data and real data were used in this study. The restored multichannel images may be utilized to retrieve rainfall distributions.

  5. Multichannel framework for singular quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.

  6. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C. L.; Olson, W. S.

    1983-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.

  7. Software compensated multichannel pressure sensing system

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1990-01-01

    A PC-based software system is described which can be used for data acquisition and thermal-error correction of a multichannel pressure-sensor system developed for use in a cryogenic environment. The software incorporates pressure-sensitivity and sensor-offset compensation files into thermal error-correction algorithms, and the sensors are calibrated by simulating the operating conditions. The system is found to be effective in the collecting, storing, and processing of multichannel pressure-sensor data to correct thermally induced offset and sensitivity errors.

  8. Multichannel blind deconvolution of spatially misaligned images.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2005-07-01

    Existing multichannel blind restoration techniques assume perfect spatial alignment of channels, correct estimation of blur size, and are prone to noise. We developed an alternating minimization scheme based on a maximum a posteriori estimation with a priori distribution of blurs derived from the multichannel framework and a priori distribution of original images defined by the variational integral. This stochastic approach enables us to recover the blurs and the original image from channels severely corrupted by noise. We observe that the exact knowledge of the blur size is not necessary, and we prove that translation misregistration up to a certain extent can be automatically removed in the restoration process. PMID:16028551

  9. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  10. 26 CFR 1.1275-7T - Inflation-indexed debt instruments (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Inflation-indexed debt instruments (temporary... Losses § 1.1275-7T Inflation-indexed debt instruments (temporary). (a) through (h) For further guidance, see § 1.1275-7(a) through (h). (i) (j) Treasury Inflation-Protected Securities issued with more than...

  11. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  12. Multi-channel electric aerosol spectrometer

    NASA Astrophysics Data System (ADS)

    Mirme, A.; Noppel, M.; Peil, I.; Salm, J.; Tamm, E.; Tammet, H.

    Multi-channel electric mobility spectrometry is a most efficient technique for the rapid measurement of an unstable aerosol particle size spectrum. The measuring range of the spectrometer from 10 microns to 10 microns is achieved by applying diffusional and field charging mechanisms simultaneously. On-line data processing is carried out with a microcomputer. Experimental calibration ensures correctness of measurement.

  13. A multi-channel waveform digitizer system

    SciTech Connect

    Bieser, F.; Muller, W.F.J. )

    1990-04-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus.

  14. 26 CFR 1.367(a)-7T - Outbound transfers of property described in section 361(a) or (b).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Outbound transfers of property described in section 361(a) or (b). 1.367(a)-7T Section 1.367(a)-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Effects on Corporation § 1.367(a)-7T Outbound transfers of...

  15. 26 CFR 1.6038D-7T - Exceptions from the reporting of certain assets under Section 6038D (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Exceptions from the reporting of certain assets under Section 6038D (temporary). 1.6038D-7T Section 1.6038D-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038D-7T Exceptions from...

  16. Optimization of Magnetization-Prepared 3-Dimensional Fluid Attenuated Inversion Recovery Imaging for Lesion Detection at 7 T

    PubMed Central

    Saranathan, Manojkumar; Tourdias, Thomas; Kerr, Adam B.; Bernstein, Jeff D.; Kerchner, Geoffrey A.; Han, May H.; Rutt, Brian K.

    2016-01-01

    Purpose The aim of this study was to optimize the 3-dimensional (3D) fluid attenuated inversion recovery (FLAIR) pulse sequence for isotropic high-spatial-resolution imaging of white matter (WM) and cortical lesions at 7 T. Materials and Methods We added a magnetization-prepared (MP) FLAIR module to a Cube 3D fast spin echo sequence and optimized the refocusing flip angle train using extended phase graph simulations, taking into account image contrast, specific absorption rate (SAR), and signal-to-noise ratio (SNR) as well as T1/T2 values of the different species of interest (WM, grey matter, lesions) at 7 T. We also effected improved preparation homogeneity at 7 T by redesigning the refocusing pulse used in the MP segments. Two sets of refocusing flip angle trains—(a) an SNR-optimal and (b) a contrast-optimal set—were derived and used to scan 7 patients with Alzheimer disease/cognitive impairment and 7 patients with multiple sclerosis. Conventional constant refocusing flip MP-FLAIR images were also acquired for comparison. Lesion SNR, contrast, and lesion count were compared between the 2 optimized and the standard FLAIR sequences. Results Whole brain coverage with 0.8 mm3 isotropic spatial resolution in ~5-minute scan times was achieved using the optimized 3D FLAIR sequences at clinically acceptable SAR levels. The SNR efficiency of the SNR-optimal sequence was significantly better than that of conventional constant refocusing flip MP-FLAIR sequence, whereas the scan time was reduced more than 2-fold (~5 vs >10 minutes). The contrast efficiency of the contrast-optimal sequence was comparable with that of the constant refocusing flip sequence. Lesion load ascertained by lesion counting was not significantly different among the sequences. Conclusion Magnetization-prepared FLAIR-Cube with refocusing flip angle trains optimized for SNR and contrast can be used to characterize WM and cortical lesions at 7 Twith 0.8 mm3 isotropic resolution in short scan times and

  17. Voxel-based morphometry at ultra-high fields. a comparison of 7T and 3T MRI data.

    PubMed

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2015-06-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 T and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7 T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7 T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7 T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs. 7 T) and pulse sequence (MPRAGE vs. MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7 T MPRAGE and 7 T MP2RAGE. Due to the fact that 7 T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7 T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7 T. Besides minor exceptions, these results were observed for 7 T MPRAGE as well for the 7 T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7 T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7 T and also for the advanced MP2RAGE sequence. Hence, our data support the use of 7 T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of the inferior cortical regions

  18. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  19. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15-25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T.

  20. 7T MRI in natalizumab-associated PML and ongoing MS disease activity

    PubMed Central

    Sinnecker, Tim; Othman, Jalal; Kühl, Marc; Mekle, Ralf; Selbig, Inga; Niendorf, Thoralf; Kunkel, Annett; Wienecke, Peter; Kern, Peter; Faiss, Juergen; Wuerfel, Jens

    2015-01-01

    Objective: To assess the ability of ultra-high-field MRI to distinguish early progressive multifocal leukoencephalopathy (PML) from multiple sclerosis (MS) lesions in a rare case of simultaneous presentation of natalizumab–associated PML and ongoing MS activity. Methods: Advanced neuroimaging including 1.5T, 3T, and 7T MRI with a spatial resolution of up to 0.08 mm3 was performed. Results: 7T MRI differentiated between PML-related and MS-related brain damage in vivo. Ring-enhancing MS plaques displayed a central vein, whereas confluent PML lesions were preceded by punctate or milky way–like T2 lesions. Conclusions: Given the importance of early diagnosis of treatment-associated PML, future systematic studies are warranted to assess the value of highly resolving MRI in differentiating between early PML- and MS-induced brain parenchymal lesions. PMID:26568970

  1. Compressed Sensing Sodium MRI of Cartilage at 7T: Preliminary Study

    PubMed Central

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15 to 25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T. PMID:22204825

  2. Physical Mapping of Hybrid Bacteriophage T7/T3 RNA Polymerase Genes

    PubMed Central

    Ryan, Thecla; McConnell, David J.

    1982-01-01

    The late regions of the T7 and T3 bacteriophage genomes are transcribed by phage-specified RNA polymerases, the products of gene 1. Although these phage transcriptional systems share many characteristics and are obviously related, they have diverged to such an extent that neither of their respective RNA polymerases utilizes the promotor sites of the other phage at an appreciable rate. However, it is possible to construct viable T7/T3 hybrids which have hybrid gene 1 sequences; the resultant hybrid enzymes exhibit altered transcriptional patterns in that they are capable of transcribing both T7 and T3 DNA to various degrees. The aim of this study was to define more closely the region(s) of the gene 1 sequence which encodes the transcriptional selectivity determinant by correlating the genetic constitution of these hybrid gene 1 sequences with their transcriptional properties. The recombinant sites within the gene 1 regions of several T7/T3 hybrids were mapped by using restriction sites as genetic markers. The results indicated that forcing a crossover event within a particular region often results in the inadvertant selection of additional genetic rearrangements. Several of the hybrid gene 1 sequences were found to have resulted from multiple crossover events, even though only one was directly selected for. In some cases the predicted crossovers were not detected; instead, several hybrids contained recombination sites elsewhere in the gene 1 region. These findings suggest that only certain combinations of T7/T3 gene 1 sequences are compatible; it may be that active hybrid T7/T3 gene 1 sequences rarely result from single genetic rearrangements. Taken together, the results of this study suggest that more than one region of the gene 1 sequence is involved in transcriptional selectivity. More specifically, the region from approximately 25 to 59% (from the left of the gene), together with the carboxyl end, appears to play an important role. Images PMID:6292465

  3. Thalamic lesions in multiple sclerosis by 7T MRI: clinical implications and relationship to cortical pathology

    PubMed Central

    Harrison, Daniel M.; Oh, Jiwon; Roy, Snehashis; Wood, Emily T.; Whetstone, Anna; Seigo, Michaela A.; Jones, Craig K.; Pham, Dzung; van Zijl, Peter; Reich, Daniel S.; Calabresi, Peter A.

    2014-01-01

    Objective Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. Methods 7T MRI scans were obtained on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Results Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing remitting (mean ± SD, 10.7 ± 0.7 vs. 3.0 ± 0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Conclusions 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. PMID:25583851

  4. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI

    PubMed Central

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl’s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  5. Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7 T.

    PubMed

    Mullinger, Karen; Brookes, Matthew; Stevenson, Claire; Morgan, Paul; Bowtell, Richard

    2008-09-01

    The increased blood oxygenation level-dependent contrast available at high field makes the implementation of combined EEG/fMRI experiments at 7 T highly worthwhile from the point of view of fMRI data quality, but the higher field poses greater technical challenges for achieving good quality EEG data. A study of the feasibility of recording EEG signals from human subjects at 7 T using a commercially available, MR-compatible EEG system has therefore been carried out. This involved systematic measurement of the sources of noise in EEG recordings made in the 7 T scanner and measurement of RF heating effects on a gel phantom in the presence of a 32-electrode EEG cap. Having found no significant safety concerns and identified a set-up (involving switching off the magnet's cryo-cooler pumps and mounting the EEG amplifier on a cantilever) that limited scanner-induced noise, combined EEG/fMRI experiments employing visual stimulation were then successfully carried out on two human subjects. With the use of beamformer-based analysis of the EEG data, driven responses and alpha-band, event-related desynchronisation were identified in both subjects. PMID:18508217

  6. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  7. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI.

    PubMed

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl's Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  8. Focal Cortical Lesion Detection in Multiple Sclerosis: 3T DIR versus 7T FLASH-T2*

    PubMed Central

    Nielsen, A. Scott; Kinkel, R. Philip; Tinelli, Emanuele; Benner, Thomas; Cohen-Adad, Julien; Mainero, Caterina

    2014-01-01

    Purpose To evaluate the inter-rater agreement of cortical lesion detection using 7T FLASH-T2* and 3T DIR sequences. Materials and Methods Twenty-six patients with multiple sclerosis were scanned on a human 7T (Sidemen’s) and 3T MRI (TIM Trio, Sidemen’s) to acquire 3T DIR/MEMPR and 7T FLASH-T2* sequences. Four independent reviewers scored and categorized cortical lesions in the bilateral pre-central gyri (motor strips) as leukocortical, intracortical, or subpial. Inter-rater agreement was assessed according to lesion category using the kappa statistic. The sensitivity of recent MAGNIMS consensus guidelines for cortical lesion detection using 3T DIR was assessed with 7T FLASH-T2* as the reference gold standard. Results Inter-rater agreement at 7T was excellent compared to 3T (k=0.97 vs. 0.12). FLASH-T2* at 7T detected subpial lesions while 3T DIR did not. The predicted sensitivity of 3T DIR sequence for cortical lesions in vivo is modest (range of 13.6 to 18.3%). Conclusion 7T FLASH-T2* detects more cortical—particularly subpial—lesions compared to 3T DIR. In the absence of DIR/post-mortem data, 7T FLASH-T2* is a suitable gold-standard instrument and should be incorporated into future consensus guidelines. PMID:22045554

  9. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  10. Multichannel radiometer calibration: a new approach

    NASA Astrophysics Data System (ADS)

    Diaz, Susana; Booth, Charles R.; Armstrong, Roy; Brunat, Claudio; Cabrera, Sergio; Camilion, Carolina; Casiccia, Claudio; Deferrari, Guillermo; Fuenzalida, Humberto; Lovengreen, Charlotte; Paladini, Alejandro; Pedroni, Jorge; Rosales, Alejandro; Zagarese, Horacio; Vernet, Maria

    2005-09-01

    The error in irradiance measured with Sun-calibrated multichannel radiometers may be large when the solar zenith angle (SZA) increases. This could be particularly detrimental in radiometers installed at mid and high latitudes, where SZAs at noon are larger than 50° during part of the year. When a multiregressive methodology, including the total ozone column and SZA, was applied in the calculation of the calibration constant, an important improvement was observed. By combining two different equations, an improvement was obtained at almost all the SZAs in the calibration. An independent test that compared the irradiance of a multichannel instrument and a spectroradiometer installed in Ushuaia, Argentina, was used to confirm the results.

  11. Multichannel radiometer calibration: a new approach.

    PubMed

    Diaz, Susana; Booth, Charles R; Armstrong, Roy; Brunat, Claudio; Cabrera, Sergio; Camilion, Carolina; Casiccia, Claudio; Deferrari, Guillermo; Fuenzalida, Humberto; Lovengreen, Charlotte; Paladini, Alejandro; Pedroni, Jorge; Rosales, Alejandro; Zagarese, Horacio; Vernet, Maria

    2005-09-10

    The error in irradiance measured with Sun-calibrated multichannel radiometers may be large when the solar zenith angle (SZA) increases. This could be particularly detrimental in radiometers installed at mid and high latitudes, where SZAs at noon are larger than 50 degrees during part of the year. When a multiregressive methodology, including the total ozone column and SZA, was applied in the calculation of the calibration constant, an important improvement was observed. By combining two different equations, an improvement was obtained at almost all the SZAs in the calibration. An independent test that compared the irradiance of a multichannel instrument and a spectroradiometer installed in Ushuaia, Argentina, was used to confirm the results. PMID:16161648

  12. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS).

    PubMed

    Steffen, Matthias; Heimann, Konrad; Bernstein, Nina; Leonhardt, Steffen

    2008-06-01

    Non-contact heart and lung activity monitoring would be a desirable supplement to conventional monitoring techniques. Based on the potential of non-contact magnetic induction measurements, requirements for an adequate monitoring system were estimated. This formed the basis for the development of the presented extendable multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Special focus was given to the dynamic behaviour and simultaneous multichannel measurements, so that the system allows for up to 14 receiver coils working simultaneously at 6 excitation frequencies. Moreover, a real-time software concept for online signal processing visualization in combination with a fast software demodulation is presented. Finally, first steps towards a clinical application are pointed out and technical performance as well as first in vivo measurements are presented. This paper covers some aspects previously presented in Steffen and Leonhardt (2007 Proc. 13th Int. Conf. on Electrical Bioimpedance and the 8th Conf. on Electrical Impedance Tomography, Graz 2007). PMID:18544830

  13. A multichannel reflectance anisotropy spectrometer for epitaxial growth monitoring

    NASA Astrophysics Data System (ADS)

    Ariza-Flores, D.; Ortega-Gallegos, J.; Núñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Guevara-Macías, L. E.; Lastras-Martinez, A.

    2015-11-01

    We report on a reflectance anisotropy (RA) spectrometer capable of measuring reflectance spectra on the 100 ms time-scale and sensitivity in the upper 10-4 range. A multichannel lock-in amplifier was used to acquire 32 wavelengths RA spectra covering the 2.25-3.85 eV photon energy range, where the E 1 and {{E}1}+{{Δ }1} transitions of GaAs and other technologically relevant III-V semiconductor are located. The RA spectra recorded during the first stages of the GaAs homoepitaxial deposition are presented for the first 0.38 monolayers of growth, showing significative changes in the lineshape with low noise. Thanks to the capabilities of this instrument, it is possible to observe in detail, in terms of the evolution of RA spectra, the processes carried out during the migration of surface reconstruction between two stable phases present in the homoepitaxial growth of GaAs.

  14. Analysis of motion disambiguation using multi-channel circular SAR

    NASA Astrophysics Data System (ADS)

    Fasih, Ahmed R.; Rossler, Carl W.; Ash, Joshua N.; Moses, Randolph L.

    2010-04-01

    Combining moving target indication (MTI) radar with synthetic aperture radar (SAR) is of great interest to radar specialists, in terms of improving multiple-target tracking in large, urban scenes. A major obstacle to such a merger are ambiguities induced by mution. Using statistical bounds we quantify the improvement of moving target localization with multi-channel SAR over single-channel SAR and the more traditional MTI technique of displaced phase center array (DPCA) processing. We show that the potential for substantial improvements in localization performance is borne out by practical estimators based on sparse reconstruction algorithms, whose performance approach statistical bounds, even under clutter. We also outline a parallelization scheme for the nonquadratic regularized sparse reconstruction technique to utilize clusters for processing large datasets.

  15. Multichannel cochlear implants in partially ossified cochleas.

    PubMed

    Balkany, T; Gantz, B; Nadol, J B

    1988-01-01

    Deposition of bone within the fluid spaces of the cochlea is encountered commonly in cochlear implant candidates and previously has been considered a relative contraindication to the use of multichannel intracochlear electrodes. This contraindication has been based on possible mechanical difficulty with electrode insertion as well as uncertainty about the potential benefit of the multichannel device in the patient. Fifteen profoundly deaf patients with partial ossification of the basal turn of the cochlea received implants with long intracochlear electrodes (11, Nucleus; 1, University of California at San Francisco/Storz; and 3, Symbion/Inneraid). In 11 cases, ossification had been predicted preoperatively by computed tomographic scan. Electrodes were completely inserted in 14 patients, and partial insertion was accomplished in one patient. All patients currently are using their devices and nine of 12 postlingually deaf patients have achieved some degree of open-set speech discrimination. This series demonstrates that in experienced hands, insertion of long multichannel electrodes into partially ossified cochleas is possible and that results are similar to those achieved in patients who have nonossified cochleas. PMID:3140705

  16. A computerized multichannel platelet aggregometer system.

    PubMed

    Kuzara, D; Zoltan, B J; Greathouse, S L; Jordan, C W; Kohler, C A

    1986-08-01

    Commercially available instrumentation for conducting platelet aggregation studies in clinical and research laboratories consists of one-, two-, or four-channel aggregometers used in conjunction with strip chart recorders. These instruments have limited utility in large-scale drug screening and evaluation of the mode of action of drugs or in the clinical diagnosis of platelet disorders. A new instrument, a computerized multichannel aggregometer system (CMPAS) has been developed to collect, display, and analyze platelet aggregation data. The system is comprised of a 24-channel Born-type aggregometer, interfaced to a Rockwell AIM-65 microcomputer through an analogue-to-digital converter and an Epson dot-matrix printer. Each channel is individually calibrated, and aggregation data can be collected on up to 24 different platelet-rich plasma samples simultaneously. Conversational programs written in BASIC prompt the user for the addition of agonists and inhibitors. The tracings for each channel are displayed simultaneously, and a program automatically analyzes the data to generate the following parameters: baseline optical density, maximum aggregation response, positive and negative slopes, time to peak aggregation, and percentage response. Computerized multichannel aggregometer system data outputs are comparable to data generated by a standard Chronolog aggregometer unit. The advantages of the system include multichannel capability, simultaneous display of all channels allowing relative comparisons between control and experimental groups, and time savings and improved efficiency in conducting and analyzing aggregation experiments. PMID:3755779

  17. Element decoupling of 7T dipole body arrays by EBG metasurface structures: Experimental verification.

    PubMed

    Hurshkainen, Anna A; Derzhavskaya, Tatyana A; Glybovski, Stanislav B; Voogt, Ingmar J; Melchakova, Irina V; van den Berg, Cornelis A T; Raaijmakers, Alexander J E

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298MHz. To improve the detection range of the B1+ field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7T MRI machine indicated redistribution of the B1+ field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14dB accompanied by a strong field redistribution. In contrast, when put at a

  18. Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hurshkainen, Anna A.; Derzhavskaya, Tatyana A.; Glybovski, Stanislav B.; Voogt, Ingmar J.; Melchakova, Irina V.; van den Berg, Cornelis A. T.; Raaijmakers, Alexander J. E.

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7 T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7 T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7 T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298 MHz. To improve the detection range of the B1 + field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7 T MRI machine indicated redistribution of the B1 + field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14 dB accompanied by a strong field redistribution. In contrast, when put

  19. Cervical cyst of the ligamentum flavum and C7-T1 subluxation: case report.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Gorgoglione, Leonardo; Bisceglia, Michele; D'Angelo, Vincenzo

    2005-10-01

    A patient with progressive gait disturbance resulting from a cyst of the cervical ligamentum flavum associated with C7-T1 listhesis is reported. Surgical removal of the cyst improved the patient's myelopathy. Intraspinal degenerative cysts are preferentially located in the lumbar region:unusual is the cervical localization. Differential diagnosis includes ligamentum flavum cyst, synovial and ganglion cysts. Association between degenerative intraspinal cysts and listhesis is discussed. To our knowledge, this is the first case of cyst of the ligamentum flavum associated with cervical subluxation. PMID:15981000

  20. A probabilistic atlas of the basal ganglia using 7 T MRI

    PubMed Central

    Keuken, Max C.; Forstmann, Birte U.

    2015-01-01

    A common localization procedure in functional imaging studies includes the overlay of statistical parametric functional magnetic resonance imaging (fMRI) maps or coordinates with neuroanatomical atlases in standard space, e.g., MNI-space. This procedure allows the identification of specific brain regions. Most standard MRI software packages include a wide range of atlases but have a poor coverage of the subcortex. We estimated that approximately 7% of the known subcortical structures are mapped in standard MRI-compatible atlases [1]. Here we provide a data description of a subcortical probabilistic atlas based on ultra-high resolution in-vivo anatomical imaging using 7 T (T) MRI. The atlas includes six subcortical nuclei: the striatum (STR), the globus pallidus internal and external segment (GPi/e), the subthalamic nucleus (STN), the substantia nigra (SN), and the red nucleus (RN). These probabilistic atlases are shared on freely available platforms such as NITRC and NeuroVault and are published in NeuroImage “Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI” [2]. PMID:26322322

  1. Measurement of T1 of human arterial and venous blood at 7T

    PubMed Central

    Rane, S.; Gore, J.C.

    2012-01-01

    Techniques for measuring cerebral perfusion require accurate longitudinal relaxation (T1) of blood, a MRI parameter that is field dependent. T1 of arterial and venous human blood was measured at 7T using three different sources – pathology laboratory, blood bank and in vivo. The T1 of venous blood was measured from sealed samples from a pathology lab and in vivo. Samples from a blood bank were oxygenated and mixed to obtain different physiological concentrations of hematocrit and oxygenation. T1 relaxation times were estimated using a three-point fit to a simple inversion recovery equation. At 37° C, the T1 of blood at arterial pO2was 2.29 ± 0.1 s and 2.07 ± 0.12 at venous pO2. The in vivo T1 of venous blood, in three subjects, was slightly longer at 2.45 ± 0.11s. T1 of arterial and venous blood at 7T was measured and found to be significantly different. The T1 values were longer in vivo than in vitro. While the exact cause for the discrepancy is unknown, the additives in the blood samples, degradation during experiment, oxygenation differences, and the non-stagnant nature of blood in vivo could be potential contributors to the lower values of T1 in the venous samples. PMID:23102945

  2. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide.

    PubMed

    Long, Yun; Liu, Jun; Hu, Xiao; Wang, Andong; Zhou, Linjie; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Wang, Jian

    2015-12-01

    We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2  dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide. PMID:26625029

  3. GRAPPA-based Susceptibility-Weighted Imaging of Normal Volunteers and Patients with Brain Tumor at 7T

    PubMed Central

    Lupo, Janine M.; Banerjee, Suchandrima; Hammond, Kathryn E.; Kelley, Douglas A.C.; Xu, Duan; Chang, Susan M.; Vigneron, Daniel B.; Majumdar, Sharmila; Nelson, Sarah J.

    2016-01-01

    Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a GRAPPA-based SWI technique at 7 Tesla in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a 2-fold or more reduction in scan time without compromising vessel contrast and small vessel detection. Post-processing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7T revealed regions of microvascularity, hemorrhage, and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects. PMID:18823730

  4. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.

    PubMed

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays. PMID:24265823

  5. Planar Quadrature RF Transceiver Design Using Common-Mode Differential-Mode (CMDM) Transmission Line Method for 7T MR Imaging

    PubMed Central

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B.; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays. PMID:24265823

  6. Multichannel image regularization using anisotropic geodesic filtering

    SciTech Connect

    Grazzini, Jacopo A

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  7. A low power Multi-Channel Analyzer

    SciTech Connect

    Anderson, G.A.; Brackenbush, L.W.

    1993-06-01

    The instrumentation used in nuclear spectroscopy is generally large, is not portable, and requires a lot of power. Key components of these counting systems are the computer and the Multi-Channel Analyzer (MCA). To assist in performing measurements requiring portable systems, a small, very low power MCA has been developed at Pacific Northwest Laboratory (PNL). This MCA is interfaced with a Hewlett Packard palm top computer for portable applications. The MCA can also be connected to an IBM/PC for data storage and analysis. In addition, a real-time time display mode allows the user to view the spectra as they are collected.

  8. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOEpatents

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  9. Asynchronous data readout system for multichannel ASIC

    NASA Astrophysics Data System (ADS)

    Ivanov, P. Y.; Atkin, E. V.

    2016-02-01

    The data readout system of multichannel data-driven ASIC, requiring high-speed (320 Mb/s) output data serialization is described. Its structure, based on a limited number of FIFO blocks, provides a lossless data transfer. The solution has been realized as a separate test IP block in the prototyped 8 channel ASIC, intended for the muon chamber of CBM experiment at FAIR. The block was developed for the UMC 0.18 μm MMRF CMOS process and prototyped via Europractice. Main parameters of the chip are given.

  10. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  11. Nineteen-Channel Receive Array and Four-Channel Transmit Array Coil for Cervical Spinal Cord Imaging at 7T

    PubMed Central

    Zhao, Wei; Cohen-Adad, Julien; Polimeni, Jonathan R.; Keil, Boris; Guerin, Bastien; Setsompop, Kawin; Serano, Peter; Mareyam, Azma; Hoecht, Philipp; Wald, Lawrence L.

    2016-01-01

    Purpose To design and validate a radiofrequency (RF) array coil for cervical spinal cord imaging at 7T. Methods A 19-channel receive array with a four-channel transmit array was developed on a close-fitting coil former at 7T. Transmit efficiency and specific absorption rate were evaluated in a B1+ mapping study and an electromagnetic model. Receive signal-to-noise ratio (SNR) and noise amplification for parallel imaging were evaluated and compared with a commercial 3T 19-channel head–neck array and a 7T four-channel spine array. The performance of the array was qualitatively demonstrated in human volunteers using high-resolution imaging (down to 300 μm in-plane). Results The transmit and receive arrays showed good bench performance. The SNR was approximately 4.2-fold higher in the 7T receive array at the location of the cord with respect to the 3T coil. The g-factor results showed an additional acceleration was possible with the 7T array. In vivo imaging was feasible and showed high SNR and tissue contrast. Conclusion The highly parallel transmit and receive arrays were demonstrated to be fit for spinal cord imaging at 7T. The high sensitivity of the receive coil combined with ultra-high field will likely improve investigations of microstructure and tissue segmentation in the healthy and pathological spinal cord. PMID:23963998

  12. Multi-Channel Learning: A Note on Work in Progress.

    ERIC Educational Resources Information Center

    Anzalone, Stephen; And Others

    1995-01-01

    Examines multichannel learning, using learning channels such as teachers, to connect learners to knowledge, skills, and information found in the immediate learning environment and the community or delivered from a distance. Also discusses international use of multichannel learning as educational development in the Philippines and Haiti. (JMV)

  13. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation

    PubMed Central

    Bosshard, John C.; Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M.

    2015-01-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for 1H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  14. Myelin contrast across lamina at 7T, ex-vivo and in-vivo dataset.

    PubMed

    Fracasso, Alessio; van Veluw, Susanne J; Visser, Fredy; Luijten, Peter R; Spliet, Wim; Zwanenburg, Jaco J M; Dumoulin, Serge O; Petridou, Natalia

    2016-09-01

    In this article we report the complete data obtained in-vivo for the paper: "Lines of Baillarger in vivo and ex-vivo: myelin contrast across lamina at 7T MRI and histology" (Fracasso et al., 2015) [1]. Single participant data (4 participants) from the occipital lobe acquisition are reported for axial, coronal and sagittal slices; early visual area functional localization and laminar profiles are reported. Data from whole brain images are reported and described (5 participants), for axial, coronal and sagittal slices. Laminar profiles from occipital, parietal and frontal lobes are reported. The data reported in this manuscript complements the paper (Fracasso et al., 2015) [1] by providing the full set of results from the complete pool of participants, on a single-participant basis. Moreover, we provide histological images from the ex-vivo sample reported in Fracasso et al. (2015) [1]. PMID:27508254

  15. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation.

    PubMed

    Cui, Jiaming; Bosshard, John C; Rispoli, Joseph V; Dimitrov, Ivan E; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M

    2015-07-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for (1)H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  16. A radiofrequency coil configuration for imaging the human vertebral column at 7 T

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Teeuwisse, W.; Reijnierse, M.; Collins, C. M.; Smith, N. B.; Webb, A. G.

    2011-02-01

    We describe the design and testing of a quadrature transmit, eight-channel receive array RF coil configuration for the acquisition of images of the entire human spinal column at 7 T. Imaging parameters were selected to enable data acquisition in a clinically relevant scan time. Large field-of-view (FOV) scanning enabled sagittal imaging of the spine in two or three-stations, depending upon the height of the volunteer, with a total scan time of between 10 and 15 min. A total of 10 volunteers have been scanned, with results presented for the three subjects spanning the range of heights and weights, namely one female (1.6 m, 50 kg), one average male (1.8 m, 70 kg), and one large male (1.9 m, 100 kg).

  17. Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization.

    PubMed

    Zong, Xiaopeng; Park, Sang Hyun; Shen, Dinggang; Lin, Weili

    2016-01-15

    Noninvasive imaging of perivascular spaces (PVSs) may provide useful insights into their role in normal brain physiology and diseases. Fast MRI sequences with sub-millimeter spatial resolutions and high contrast-to-noise ratio (CNR) are required for accurate delineation of PVS in human. To achieve the optimal condition for PVS imaging at 7T, we carried out detailed simulation and experimental studies to characterize the dependence of CNR on imaging sequences (T1 versus T2-weighted) and sequence parameters. In addition, PVSs were segmented semi-automatically, which revealed much larger numbers of PVSs in young healthy subjects (age 21-37years) than previously reported. To the best of our knowledge, our study provides, for the first time, detailed length, volume, and diameter distributions of PVS in the white matter and subcortical nuclei, which can serve as a reference for future studies of PVS abnormalities under diseased conditions. PMID:26520772

  18. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  19. A high speed direct digital frequency synthesizer based on multi-channel structure

    NASA Astrophysics Data System (ADS)

    Ling, Yuan; Qiang, Zhang; Yin, Shi

    2015-06-01

    This paper presents a direct digital frequency synthesizer (DDFS) for high speed application based on multi-channel structure. This DDFS has phase resolution of 32 bits and magnitude resolution of 12 bits. In order to ensure the high speed and high resolution at the same time, the multi-channel sampling technique is used and a 12 bits linear digital-to-analog converter is implemented. The chip is fabricated in TSMC 130 nm CMOS technology with active area of 0.89 × 0.98 mm2 and total power consumption of 300 mW at a single 1.2 V supply voltage. The maximum operating speed is up to 2.0 GHz at room temperature.

  20. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    PubMed

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. PMID

  1. Fourier-domain multichannel autofocus for synthetic aperture radar.

    PubMed

    Liu, Kuang-Hung; Munson, David C

    2011-12-01

    Synthetic aperture radar (SAR) imaging suffers from image focus degradation in the presence of phase errors in the received signal due to unknown platform motion or signal propagation delays. We present a new autofocus algorithm, termed Fourier-domain multichannel autofocus (FMCA), that is derived under a linear algebraic framework, allowing the SAR image to be focused in a noniterative fashion. Motivated by the mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes the assumption of a low-return region, which generally is provided within the antenna sidelobes. Unlike MCA, FMCA works with the collected polar Fourier data directly and is capable of accommodating wide-angle monostatic SAR and bistatic SAR scenarios. Most previous SAR autofocus algorithms rely on the prior assumption that radar's range of look angles is small so that the phase errors can be modeled as varying along only one dimension in the collected Fourier data. And, in some cases, implicit assumptions are made regarding the SAR scene. Performance of such autofocus algorithms degrades if the assumptions are not satisfied. The proposed algorithm has the advantage that it does not require prior assumptions about the range of look angles, nor characteristics of the scene. PMID:21606028

  2. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.

    PubMed

    Kilsdonk, Iris D; Jonkman, Laura E; Klaver, Roel; van Veluw, Susanne J; Zwanenburg, Jaco J M; Kuijer, Joost P A; Pouwels, Petra J W; Twisk, Jos W R; Wattjes, Mike P; Luijten, Peter R; Barkhof, Frederik; Geurts, Jeroen J G

    2016-05-01

    The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type

  3. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  4. Multichannel quantum defect theory for polar molecules

    NASA Astrophysics Data System (ADS)

    Elfimov, Sergei V.; Dorofeev, Dmitrii L.; Zon, Boris A.

    2014-02-01

    Our work is devoted to developing a general approach for nonpenetrating Rydberg states of polar molecules. We propose a method to estimate the accuracy of calculation of their wave functions and quantum defects. Basing on this method we estimate the accuracy of Born-Oppenheimer (BO) and inverse Born-Oppenheimer (IBO) approximations for these states. This estimation enables us to determine the space and energy regions where BO and IBO approximations are valid. It depends on the interplay between l coupling (due to dipole potential of the core) and l uncoupling (due to rotation the core). Next we consider the intermediate region where both BO and IBO are not valid. For this intermediate region we propose a modification of Fano's multichannel quantum defect theory to match BO and IBO wave functions and show that it gives more reliable results. They are demonstrated on the example of SO molecule.

  5. A wireless multichannel EEG recording platform.

    PubMed

    Filipe, S; Charvet, G; Foerster, M; Porcherot, J; Bêche, J F; Bonnet, S; Audebert, P; Régis, G; Zongo, B; Robinet, S; Condemine, C; Mestais, C; Guillemaud, R

    2011-01-01

    A wireless multichannel data acquisition system is being designed for ElectroEncephaloGraphy (EEG) recording. The system is based on a custom integrated circuit (ASIC) for signal conditioning, amplification and digitization and also on commercial components for RF transmission. It supports the RF transmission of a 32-channel EEG recording sampled at 1 kHz with a 12-bit resolution. The RF communication uses the MICS band (Medical Implant Communication Service) at 402-405 Mhz. This integration is a first step towards a lightweight EEG cap for Brain Computer Interface (BCI) studies. Here, we present the platform architecture and its submodules. In vivo validations are presented with noise characterization and wireless data transfer measurements. PMID:22255783

  6. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  7. Multichannel applications of double relaxation oscillation SQUIDs

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Ho; Kwon, Hyukchan; Kim, Jin-Mok; Park, Yong-Ki

    2001-12-01

    Double relaxation oscillation SQUIDs (DROSs) provided high flux-to-voltage transfers of larger than 1 mV Φ0-1 and simple flux-locked loop circuits were used for SQUID operation. We constructed two multichannel systems based on DROSs. The first system is a 40-channel planar gradiometer system consisting of integrated first-order pickup coils. average noise level of the 40 channels is 1 fT cm-1 Hz-1/2 at 100 Hz, corresponding to a field noise of 4 fT Hz-1/2, operating inside a magnetically shielded room. The second one is a 37-channel magnetometer system with 37 integrated magnetometers distributed on a spherical surface and measures field component normal to the head surface. The average noise of the magnetometers is 3 fT Hz-1/2 at 100 Hz. The two systems were applied to measure neuromagnetic fields.

  8. Depiction of Achilles Tendon Microstructure In-Vivo Using High-Resolution 3D Ultrashort Echo-Time MRI at 7T

    PubMed Central

    Han, Misung; Larson, Peder E. Z.; Liu, Jing; Krug, Roland

    2014-01-01

    Objectives To demonstrate the feasibility of depicting the internal structure of the Achilles tendon in vivo using high-resolution 3D ultrashort echo-time (UTE) magnetic resonance imaging (MRI) at 7T. Materials and Methods For our UTE imaging, a minimum-phase radiofrequency pulse and an anisotropic field-of-view 3D radial acquisition were used to minimize the echo time and scan time. A fat saturation pulse was applied every eight spoke acquisitions to reduce blurring and chemical shift artifacts from fat and to improve dynamic range of the tendon signal. Five healthy volunteers and one patient were scanned with an isotropic spatial resolution of up to 0.6 mm. Fat-suppressed UTE images were qualitatively evaluated and compared to non-fat-suppressed UTE images and longer echo-time images. Results High-resolution UTE imaging was able to visualize the microstructure of the Achilles tendon. Fat suppression substantially improved the depiction of the internal structure. The UTE images revealed a fascicular pattern in the Achilles tendon and fibrocartilage at the tendon insertion. In a patient who had tendon elongation surgery after birth there was clear depiction of disrupted tendon structure. Conclusions High-resolution fat-suppressed 3D UTE imaging at 7T allows for evaluation of the Achilles tendon microstructure in vivo. PMID:24500089

  9. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7(T), and emended description of the genus Halotalea.

    PubMed

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; Reddy, T B K; Pati, Amrita; Ivanova, Natalia N; Markowitz, Victor M; Klenk, Hans-Peter; Woyke, Tanja; Fasseas, Constantinos; Kyrpides, Nikos C; Zervakis, Georgios I

    2015-01-01

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7(T) are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp long and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7(T) encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. An emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain. PMID:26380640

  10. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea

    SciTech Connect

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; Reddy, T. B. K.; Pati, Amrita; Ivanova, Natalia N.; Markowitz, Victor M.; Klenk, Hans-Peter; Woyke, Tanja; Fasseas, Constantinos; Kyrpides, Nikos C.; Zervakis, Georgios I.

    2015-08-13

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7T are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp long and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7T encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. Lastly, an emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.

  11. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea

    DOE PAGESBeta

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; Reddy, T. B. K.; Pati, Amrita; Ivanova, Natalia N.; Markowitz, Victor M.; Klenk, Hans-Peter; Woyke, Tanja; Fasseas, Constantinos; et al

    2015-08-13

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7T are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp longmore » and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7T encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. Lastly, an emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.« less

  12. Theory and simulation of multi-channel interference (MCI) widely tunable lasers.

    PubMed

    Chen, Quanan; Lu, Qiaoyin; Guo, Weihua

    2015-07-13

    A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented. PMID:26191863

  13. Multichannel SAR Interferometry via Classical and Bayesian Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Budillon, Alessandra; Ferraiuolo, Giancarlo; Pascazio, Vito; Schirinzi, Gilda

    2005-12-01

    Some multichannel synthetic aperture radar interferometric configurations are analyzed. Both across-track and along-track interferometric systems, allowing to recover the height profile of the ground or the moving target radial velocities, respectively, are considered. The joint use of multichannel configurations, which can be either multifrequency or multi-baseline, and of classical or Bayesian statistical estimation techniques allows to obtain very accurate solutions and to overcome the limitations due to the presence of ambiguous solutions, intrinsic in the single-channel configurations. The improved performance of the multichannel-based methods with respect to the corresponding single-channel ones has been tested with numerical experiments on simulated data.

  14. Transmit B1 Field Correction at 7T using Actively Tuned Coupled Inner Elements

    PubMed Central

    Merkle, Hellmut; Murphy-Boesch, Joseph; van Gelderen, Peter; Wang, Shumin; Li, Tie-Qiang; Koretsky, Alan P.; Duyn, Josef H.

    2011-01-01

    When volume coils are used for 1H imaging of the human head at 7T, wavelength effects in tissue cause intensity variations that are typically brighter at the center of the head and darker in the periphery. Much of this image non-uniformity can be attributed to variation in the effective transmit B1 field, which falls by about 50% to the left and right of center at mid-elevation in the brain. Because most of this B1 loss occurs in the periphery of the brain, we have explored use of actively controlled, off-resonant loop elements to locally enhance the transmit B1 field in these regions. When tuned to frequencies above the NMR frequency, these elements provide strong local enhancement of the B1 field of the transmit coil. Because they are tuned off-resonance, some volume coil detuning results, but resistive loading of the coil mode remains dominated by the sample. By digitally controlling their frequency offsets, the field enhancement of each inner element can be placed under active control. Using an array of eight, digitally-controlled elements placed around a custom-built head phantom, we demonstrate the feasibility of improving the B1 homogeneity of a transmit/receive volume coil without the need for multiple RF transmit channels. PMID:21437974

  15. Time-efficient interleaved human (23)Na and (1)H data acquisition at 7 T.

    PubMed

    de Bruin, Paul W; Koken, Peter; Versluis, Maarten J; Aussenhofer, Sebastian A; Meulenbelt, Ingrid; Börnert, Peter; Webb, Andrew G

    2015-10-01

    The aim of this study was to implement and evaluate a flexible and time-efficient interleaved imaging approach for the acquisition of proton and sodium images of the human knee at 7 T within a clinically relevant timescale. A flexible software framework was established which allowed the interleaving of multiple, different, fully specific absorption ratio (SAR)-validated scans. The system was able to switch between these different scans at flexible time points. The practical example presented consists of interleaved proton (Dixon imaging and T2* mapping) and sodium (mapping the sodium content and fluid-suppressed component separately) sequences with the key idea to perform proton MRI whilst the sodium nuclei relax towards thermal equilibrium, and vice versa. Comparisons were made between these four scans being acquired sequentially in the normal mode of scanner operation and those acquired in an interleaved fashion. Images acquired in the interleaved mode were very similar to those acquired in sequential scans with no image artifacts produced by the slight intra-sequence variation in steady-state magnetization. A reduction in scanning time of almost a factor of two was established using the interleaved scans, allowing such a protocol to be completed within 30 min. Phantom experiments and in vivo scans performed in healthy volunteers and in one patient proved the basic feasibility of this approach. This approach for the interleaving of multiple proton and sodium scans, each with different contrasts, is an efficient method for the design of new practical clinical protocols for sodium MRI. PMID:26269329

  16. Hybrid monopole/loop coil array for human head MR imaging at 7T

    PubMed Central

    Yan, Xinqiang; Wei, Long; Xue, Rong; Zhang, Xiaoliang

    2015-01-01

    The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing 4 monopole channels and 4 loop channels was developed for human head MR imaging at 7T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has higher SNR and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields. PMID:26120252

  17. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible. PMID:22692894

  18. Progress on a Multichannel, Dual-Mixer Stability Analyzer

    NASA Technical Reports Server (NTRS)

    Kirk, Albert; Cole, Steven; Stevens, Gary; Tucker, Blake; Greenhall, Charles

    2005-01-01

    Several documents describe aspects of the continuing development of a multichannel, dual-mixer system for simultaneous characterization of the instabilities of multiple precise, low-noise oscillators. One of the oscillators would be deemed to be a reference oscillator, its frequency would be offset by an amount (100 Hz) much greater than the desired data rate, and each of the other oscillators would be compared with the frequency-offset signal by operation of a combination of hardware and software. A high-rate time-tag counter would collect zero-crossing times of the approximately equal 100-Hz beat notes. The system would effect a combination of interpolation and averaging to process the time tags into low-rate phase residuals at the desired grid times. Circuitry that has been developed since the cited prior article includes an eight-channel timer board to replace an obsolete commercial time-tag counter, plus a custom offset generator, cleanup loop, distribution amplifier, zero-crossing detector, and frequency divider.

  19. Adaptive noise cancelling of multichannel magnetic resonance sounding signals

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Auken, E.; Larsen, J. J.

    2012-10-01

    Adaptive noise cancelling of multichannel magnetic resonance sounding (MRS) signals is investigated. An analysis of the noise sources affecting MRS signals show that the applicability of adaptive noise cancelling is primarily limited to cancel powerline harmonics. The problems of handling spikes in MRS signals are discussed and an efficient algorithm for spike detection is presented. The optimum parameters for multichannel adaptive noise cancelling are identified through simulations with synthetic signals added to noise-only recordings from an MRS instrument. We discuss the design and the efficiency of different stacking methods. The results from multichannel adaptive noise cancelling are compared to time-domain multichannel Wiener filtering. Our results show that within the experimental uncertainty the two methods give identical results.

  20. Multichannel photonic mixing based on cascade carrier suppression

    NASA Astrophysics Data System (ADS)

    Xu, Fangxing

    2015-10-01

    Designed a multi-channel photonic mixing system based on cascade carrier suppression, which can achieve frequency conversions simultaneously for multi-channels, effectively inhibit the generation of third-order intermodulation, and significantly reduce the insertion loss in the conversion process. Meanwhile, a simulation with the software Optisystem has been done, indicating excellent frequency-conversion characteristics and good scalability of this scheme, that shows the microwave photonic frequency conversion can be a potential application for microwave signal parallel processing.

  1. Least squares restoration of multi-channel images

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Galatsanos, Nikolas P.

    1989-01-01

    In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.

  2. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T

    PubMed Central

    Haas, Martin; Darji, Niravkumar; Speck, Oliver

    2015-01-01

    Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637

  3. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

    PubMed Central

    Xiao, YiZi; Zitella, Laura M.; Duchin, Yuval; Teplitzky, Benjamin A.; Kastl, Daniel; Adriany, Gregor; Yacoub, Essa; Harel, Noam; Johnson, Matthew D.

    2016-01-01

    Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS. PMID:27375422

  4. Whole brain 3D T2-weighted BOLD fMRI at 7T

    PubMed Central

    Hua, Jun; Qin, Qin; van Zijl, Peter C. M.; Pekar, James J.; Jones, Craig K.

    2014-01-01

    Purpose A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced. Methods It employs a T2-preparation module to induce BOLD contrast, followed by a single-shot 3D fast gradient-echo readout with short TE. It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the “dead time” due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed “3D T2prep-GRE”, was implemented at 7T with a typical spatial (2.5×2.5×2.5mm3) and temporal (TR=2.3s) resolution for fMRI and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence. Results In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination. Conclusion This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength. PMID:24338901

  5. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  6. Sodium Inversion Recovery MRI of the Knee Joint In Vivo at 7T

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-01-01

    The loss of proteoglycans in the articular cartilage is an early signature of osteoarthritis. The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on 5 healthy volunteers, with a (Nyquist) resolution of ~3.6 mm and a signal-to-noise ratio of ~30 in cartilage without IR and ~20 with IR. Due to specific absorption rate limitations, the total acquisition time was ~17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence. PMID:20813569

  7. Digit somatotopy in the human cerebellum: a 7T fMRI study.

    PubMed

    van der Zwaag, Wietske; Kusters, Remy; Magill, Arthur; Gruetter, Rolf; Martuzzi, Roberto; Blanke, Olaf; Marques, José P

    2013-02-15

    The representation of the human body in the human cerebellum is still relatively unknown, compared to the well-studied homunculus in the primary somatosensory cortex. The investigation of the body representation in the cerebellum and its somatotopic organisation is complicated because of the relatively small dimensions of the cerebellum, compared to the cerebrum. Somatotopically organised whole-body homunculi have previously been reported in both humans and rats. However, whether individual digits are represented in the cerebellum in a somatotopically organised way is much less clear. In this study, the high spatial resolution and high sensitivity to the blood oxygenation level dependent (BOLD) signal of 7T fMRI were employed to study the BOLD responses in the human cerebellum to the stroking of the skin of individual digits, the hand and forearm. For the first time, a coarse somatotopic organisation of the digits, ordered from D1-D5, could be visualised in individual human subjects in both the anterior (lobule V) and the posterior (lobule VIII) lobes of the cerebellum using a somatosensory stimulus. The somatotopic gradient in lobule V was found consistently in the posterior to anterior direction, with the thumb most posterior, while the direction of the somatotopic gradient in lobule VIII differed between subjects. No somatotopic organisation was found in Crus I. A comparison of the digit patches with the hand patch revealed that the digit regions are completely covered by the hand region in both the anterior and posterior lobes of the cerebellum, in a non-somatotopic manner. These results demonstrate the promise of ultra-high field, high-resolution fMRI for studies of the cerebellum. PMID:23238433

  8. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  9. Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1

    PubMed Central

    Polimeni, Jonathan R.; Fischl, Bruce; Greve, Douglas N.; Wald, Lawrence L.

    2010-01-01

    With sufficient image encoding, high-resolution fMRI studies are limited by the biological point-spread of the hemodynamic signal. The extent of this spread is determined by the local vascular distribution and by the spatial specificity of blood flow regulation, as well as by measurement parameters that (i) alter the relative sensitivity of the acquisition to activation-induced hemodynamic changes and (ii) determine the image contrast as a function of vessel size. In particular, large draining vessels on the cortical surface are a major contributor to both the BOLD signal change and to the spatial bias of the BOLD activation away from the site of neuronal activity. In this work, we introduce a laminar surface-based analysis method and study the relationship between spatial localization and activation strength as a function of laminar depth by acquiring 1 mm isotropic, single-shot EPI at 7 T and sampling the BOLD signal exclusively from the superficial, middle, or deep cortical laminae. We show that highly-accelerated EPI can limit image distortions to the point where a boundary-based registration algorithm accurately aligns the EPI data to the surface reconstruction. The spatial spread of the BOLD response tangential to the cortical surface was analyzed as a function of cortical depth using our surface-based analysis. Although sampling near the pial surface provided the highest signal strength, it also introduced the most spatial error. Thus, avoiding surface laminae improved spatial localization by about 40% at a cost of 36% in z-statistic, implying that optimal spatial resolution in functional imaging of the cortex can be achieved using anatomically-informed spatial sampling to avoid large pial vessels. PMID:20460157

  10. 26 CFR 1.904(f)-7T - Separate limitation loss and the separate limitation loss account (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Separate limitation loss and the separate... Without the United States § 1.904(f)-7T Separate limitation loss and the separate limitation loss account (temporary). (a) Overview of regulations. This section provides rules for determining a taxpayer's...

  11. Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader.

    PubMed

    Purswani, Jessica; Guisado, Isabel M; Gonzalez-Lopez, Jesus; Pozo, Clementina

    2016-01-01

    We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7(T) (= CECT 8558(T) = DSM 29760(T)), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties. PMID:26893420

  12. 26 CFR 1.132-7T - Treatment of employer-operated eating facilities-1985 through 1988 (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Treatment of employer-operated eating facilities... Excluded from Gross Income § 1.132-7T Treatment of employer-operated eating facilities—1985 through 1988...-operated eating facility for employees is excludable from gross income as a de minimis fringe only if—...

  13. Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader

    PubMed Central

    Guisado, Isabel M.; Gonzalez-Lopez, Jesus; Pozo, Clementina

    2016-01-01

    We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7T (= CECT 8558T = DSM 29760T), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties. PMID:26893420

  14. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6049-7T Market discount fraction... (temporary). For purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to...

  15. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES Information Returns § 1.6049-7T Market discount fraction reported with... purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to be reported with...

  16. Spectrally resolved multi-channel contributions to the harmonic emission in N2

    NASA Astrophysics Data System (ADS)

    Diveki, Z.; Camper, A.; Haessler, S.; Auguste, T.; Ruchon, T.; Carré, B.; Salières, P.; Guichard, R.; Caillat, J.; Maquet, A.; Taïeb, R.

    2012-02-01

    When generated in molecules, high-order harmonics can be emitted through different ionization channels. The coherent and ultrafast electron dynamics occurring in the ion during the generation process is directly imprinted in the harmonic signal, i.e. in its amplitude and spectral phase. In aligned N2 molecules, we find evidence for a fast variation of this phase as a function of the harmonic order when varying the driving laser intensity. Basing our analysis on a three-step model, we find that this phase variation is a signature of transitions from a single- to a multi-channel regime. In particular, we show that significant nuclear dynamics may occur in the ionization channels on the attosecond timescale, affecting both the amplitude and the phase of the harmonic signal.

  17. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  18. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Lin, Yu-Hsiang; Mase, Atsushi; Nishida, Yasushi; Cheng, C. Z.

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  19. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis.

    PubMed

    Hageman, Kristin N; Kalayjian, Zaven K; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A; Fridman, Gene Y; Dai, Chenkai; Pouliquen, Philippe O; Georgiou, Julio; Della Santina, Charles C; Andreou, Andreas G

    2016-04-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 °/s for the MVP2 and 2.0-14.2 °/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  20. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  1. Fault-tolerant multichannel demultiplexer subsystems

    NASA Technical Reports Server (NTRS)

    Redinbo, Robert

    1991-01-01

    Fault tolerance in future processing and switching communication satellites is addressed by showing new methods for detecting hardware failures in the first major subsystem, the multichannel demultiplexer. An efficient method for demultiplexing frequency slotted channels uses multirate filter banks which contain fast Fourier transform processing. All numerical processing is performed at a lower rate commensurate with the small bandwidth of each bandbase channel. The integrity of the demultiplexing operations is protected by using real number convolutional codes to compute comparable parity values which detect errors at the data sample level. High rate, systematic convolutional codes produce parity values at a much reduced rate, and protection is achieved by generating parity values in two ways and comparing them. Parity values corresponding to each output channel are generated in parallel by a subsystem, operating even slower and in parallel with the demultiplexer that is virtually identical to the original structure. These parity calculations may be time shared with the same processing resources because they are so similar.

  2. Multichannel hierarchical image classification using multivariate copulas

    NASA Astrophysics Data System (ADS)

    Voisin, Aurélie; Krylov, Vladimir A.; Moser, Gabriele; Serpico, Sebastiano B.; Zerubia, Josiane

    2012-03-01

    This paper focuses on the classification of multichannel images. The proposed supervised Bayesian classification method applied to histological (medical) optical images and to remote sensing (optical and synthetic aperture radar) imagery consists of two steps. The first step introduces the joint statistical modeling of the coregistered input images. For each class and each input channel, the class-conditional marginal probability density functions are estimated by finite mixtures of well-chosen parametric families. For optical imagery, the normal distribution is a well-known model. For radar imagery, we have selected generalized gamma, log-normal, Nakagami and Weibull distributions. Next, the multivariate d-dimensional Clayton copula, where d can be interpreted as the number of input channels, is applied to estimate multivariate joint class-conditional statistics. As a second step, we plug the estimated joint probability density functions into a hierarchical Markovian model based on a quadtree structure. Multiscale features are extracted by discrete wavelet transforms, or by using input multiresolution data. To obtain the classification map, we integrate an exact estimator of the marginal posterior mode.

  3. Time estimation with multichannel digital silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Venialgo, Esteban; Mandai, Shingo; Gong, Tim; Schaart, Dennis R.; Charbon, Edoardo

    2015-03-01

    Accuracy in timemark estimation is crucial for time-of-flight positron emission tomography, in order to ensure high quality images after reconstruction. Since the introduction of multichannel digital silicon photomultipliers, it is possible to acquire several photoelectron timestamps for each individual gamma event. We study several timemark estimators based on multiple photoelectron timestamps by means of a comprehensive statistical model. In addition, we calculate the MSE of the estimators in comparison to the Cramér-Rao lower bound as a function of the system design parameters. We investigate the effect of skipping some of the photoelectron timestamps, which is a direct consequence of the limited number of time-to-digital converters and we propose a technique to compensate for this effect. In addition, we carry out an extensive analysis to evaluate the influence of dark counts on the detector timing performance. Moreover, we investigate the improvement of the timing performance that can be obtained with dark count filtering and we propose an appropriate filtering method based on measuring the time difference between sorted timestamps. Finally, we perform a full Monte Carlo simulation to compare different timemark estimators by exploring several system design parameters. It is demonstrated that a simple weighted-average estimator can achieve a comparable performance as the more complex maximum likelihood estimator.

  4. Development of multichannel MEG system at IGCAR

    NASA Astrophysics Data System (ADS)

    Mariyappa, N.; Parasakthi, C.; Gireesan, K.; Sengottuvel, S.; Patel, Rajesh; Janawadkar, M. P.; Radhakrishnan, T. S.; Sundar, C. S.

    2013-02-01

    We describe some of the challenging aspects in the indigenous development of the whole head multichannel magnetoencephalography (MEG) system at IGCAR, Kalpakkam. These are: i) fabrication and testing of a helmet shaped sensor array holder of a polymeric material experimentally tested to be compatible with liquid helium temperatures, ii) the design and fabrication of the PCB adapter modules, keeping in mind the inter-track cross talk considerations between the electrical leads used to provide connections from SQUID at liquid helium temperature (4.2K) to the electronics at room temperature (300K) and iii) use of high resistance manganin wires for the 86 channels (86×8 leads) essential to reduce the total heat leak which, however, inevitably causes an attenuation of the SQUID output signal due to voltage drop in the leads. We have presently populated 22 of the 86 channels, which include 6 reference channels to reject the common mode noise. The whole head MEG system to cover all the lobes of the brain will be progressively assembled when other three PCB adapter modules, presently under fabrication, become available. The MEG system will be used for a variety of basic and clinical studies including localization of epileptic foci during pre-surgical mapping in collaboration with neurologists.

  5. Time estimation with multichannel digital silicon photomultipliers.

    PubMed

    Venialgo, Esteban; Mandai, Shingo; Gong, Tim; Schaart, Dennis R; Charbon, Edoardo

    2015-03-21

    Accuracy in timemark estimation is crucial for time-of-flight positron emission tomography, in order to ensure high quality images after reconstruction. Since the introduction of multichannel digital silicon photomultipliers, it is possible to acquire several photoelectron timestamps for each individual gamma event. We study several timemark estimators based on multiple photoelectron timestamps by means of a comprehensive statistical model. In addition, we calculate the MSE of the estimators in comparison to the Cramér-Rao lower bound as a function of the system design parameters. We investigate the effect of skipping some of the photoelectron timestamps, which is a direct consequence of the limited number of time-to-digital converters and we propose a technique to compensate for this effect. In addition, we carry out an extensive analysis to evaluate the influence of dark counts on the detector timing performance. Moreover, we investigate the improvement of the timing performance that can be obtained with dark count filtering and we propose an appropriate filtering method based on measuring the time difference between sorted timestamps. Finally, we perform a full Monte Carlo simulation to compare different timemark estimators by exploring several system design parameters. It is demonstrated that a simple weighted-average estimator can achieve a comparable performance as the more complex maximum likelihood estimator. PMID:25739661

  6. AOSC multichannel electronic variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Vonsovici, Adrian P.; Day, Ian E.; House, Andrew A.; Asghari, Mehdi

    2001-05-01

    Optical networks are becoming a reality as the physical layer of high-performance telecommunication networks. The deployment of wavelength-division multiplexing (WDM) technology allows the extended exploitation of installed fibers now facing an increasing traffic capacity demand. Performances of such systems can be degraded by wide variations of the optical channel power following propagation in the network. Therefore a tilt control of optical amplifiers in WDM networks and dynamic channel power regulation and equalisation in cross-connected nodes is necessary. An important tool for the system designer is the variable optical attenuator (VOA). We present the design and the realization of newly developed VOAs using the ASOC technology. This technology refers to the fabrication of integrated optics components in silicon-on-insulator (SOI) material. The device is based on the light absorption by the free-carriers that are injected in the core of a rib waveguide from a p-i-n diode. The devices incorporate horizontally and vertically tapered waveguides for minimum fiber coupling loss. The p-i-n diode for carrier injection into the active region of the rib waveguide was optimised in order to enhance the attenuation. One major advantage of the ASOC technology is the possibility of monolithic integration of many integrated optics devices on one chip. In the light of this the paper illustrates the result of characterisation of multichannel VOAs.

  7. Multi-Channel Capacitive Sensor Arrays.

    PubMed

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  8. Scalable multichannel MRI data acquisition system.

    PubMed

    Bodurka, Jerzy; Ledden, Patrick J; van Gelderen, Peter; Chu, Renxin; de Zwart, Jacco A; Morris, Doug; Duyn, Jeff H

    2004-01-01

    A scalable multichannel digital MRI receiver system was designed to achieve high bandwidth echo-planar imaging (EPI) acquisitions for applications such as BOLD-fMRI. The modular system design allows for easy extension to an arbitrary number of channels. A 16-channel receiver was developed and integrated with a General Electric (GE) Signa 3T VH/3 clinical scanner. Receiver performance was evaluated on phantoms and human volunteers using a custom-built 16-element receive-only brain surface coil array. At an output bandwidth of 1 MHz, a 100% acquisition duty cycle was achieved. Overall system noise figure and dynamic range were better than 0.85 dB and 84 dB, respectively. During repetitive EPI scanning on phantoms, the relative temporal standard deviation of the image intensity time-course was below 0.2%. As compared to the product birdcage head coil, 16-channel reception with the custom array yielded a nearly 6-fold SNR gain in the cerebral cortex and a 1.8-fold SNR gain in the center of the brain. The excellent system stability combined with the increased sensitivity and SENSE capabilities of 16-channel coils are expected to significantly benefit and enhance fMRI applications. PMID:14705057

  9. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  10. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium

  11. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were

  12. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  13. 7-T MRI in Cerebrovascular Diseases: Challenges to Overcome and Initial Results.

    PubMed

    Harteveld, Anita A; van der Kolk, Anja G; Zwanenburg, Jaco J M; Luijten, Peter R; Hendrikse, Jeroen

    2016-04-01

    . In this review, we will describe the key developments in the last decade of 7-T MRI of cerebrovascular diseases, subdivided for these 3 levels of assessment. PMID:27049246

  14. A high speed optical multichannel analyzer.

    PubMed

    Cole, J W; Hendler, R W; Smith, P D; Fredrickson, H A; Pohida, T J; Friauf, W S

    1997-12-01

    An optical multichannel analyzer capable of recording spectra at sampling rates up to 100 kHz is described. The instrument, designed to gather data on the kinetic reaction mechanisms of biological preparations such as cytochrome oxidase and bacteriorhodopsin, features a massively parallel approach in which each photosensing element of the detector array has a dedicated amplifier, integrator, analog to digital converter, and sample buffer. The design has 92 such elements divided in two separate arrays, each of which sits at the focal plane of a 1/4 m Ebert spectrometer. The spectrometers may be tuned to cover independent, 130 nm wide, regions of the spectrum from 350 nm to 900 nm with a dispersion of 2.8 nm per element. Each detection channel has 12-bit resolution with an electronic dark count of 1 count and may be sampled 1024 times during a single experiment with dynamically variable sampling intervals from 10 microseconds to several seconds. Time averaging of up to thousands of consecutive laser-initiated kinetic cycles allows analyses of spectral changes < 0.001 optical density units. A personal computer with custom software provides a number of features: entry of experiment parameters; transfer of data from temporary buffers to permanent files; real time display; multiple spectrum averaging; and control and synchronization of associated system hardware. Optical fibers or lenses provide coupling from a parabolic reflector Xenon arc monitoring light source, through the sample chamber, to the entry slit of the monochromator. The instrument has been used for extensive studies on the rapid kinetics and definition of reaction sequences of the energy-transducing enzymes cytochrome oxidase and bacteriorhodopsin. Some results from these studies are discussed. PMID:9470095

  15. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 t with 3d spectral‐spatial EPI

    PubMed Central

    Miller, Jack J.; Lau, Angus Z.; Teh, Irvin; Schneider, Jürgen E.; Kinchesh, Paul; Smart, Sean; Ball, Vicky; Sibson, Nicola R.

    2015-01-01

    Purpose Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. Methods We present here a fly‐back spectral‐spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo‐planar imaging readout followed, with centric ordered z‐phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. Results We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm3 and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. Conclusion The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi‐organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magn Reson Med 000:000–000, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1515–1524, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991606

  16. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  17. High resolution polymer gel dosimetry for small beam irradiation using a 7T micro-MRI scanner

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng; Olsen, John; Best, Ryan; Bennett, Marcus; McGowin, Inna; Dorand, Jennifer; Link, Kerry; Bourland, J. Daniel

    2010-11-01

    The use of small field radiation beams has greatly increased with advanced radiation therapy techniques such as IMRT, rotational IMRT, and stereotactic body radiotherapy. In this work small field 3D dose distributions have been measured with high spatial resolution using polymer gels and 7T micro-MR imaging. A MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) polymer gel [1] phantom was used to capture the 3D dose distributions for two small field (5 × 5 mm2 and 10 × 10 mm2) for a 6MV x-ray beam. High resolution 3D T2 maps were obtained with 7T micro-MRI (0.156mm × 0.156mm × 1mm, MSME pulse sequence). For comparison T2 maps, the gel phantom was scanned in a 3T MRI clinical scanner (0.254mm × 0.254mm × 2mm, FSE pulse sequence). Normalized 3D dose maps were calculated in Matlab. Results show that 7T micro-MRI 3D gel dosimetry measurements are much more stable, less noisy, and have higher spatial resolution than those obtained using a 3T clinical scanner for the same amount of scan time. In general, 3D gel dosimetry results also agree with simultaneously-obtained radiochromic film dosimetry. This study indicates that the MAGIC polymer gel with 7T micro-MRI for 3D dose readout could potentially be used for small radiation beams, including measurements for micro-beams (field size ~ 100um).

  18. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  19. Development of a Multi-Channel Dielectric Resonator Oscillator for Space Communication Applications

    NASA Astrophysics Data System (ADS)

    Dennis, M. S.; Mysoor, N. R.; Cook, B. M.

    2005-08-01

    A novel multi-channel dielectric resonator oscillator (DRO) for Advanced Transponder use is developed for deep-space communication applications. The Advanced Transponder receives a 7.2-GHz (X-band) uplink signal and generates an 8.4-GHz (X-band) coherent or non-coherent downlink signal. The Advanced Transponder architecture incorporates two miniature DROs. These DROs are used in receiver and exciter frequency synthesis phase-locked loops (PLLs) in the Advanced Transponder. The DRO is capable of tuning over 27 Deep Space Network (DSN) X-band uplink channels (30 MHz). The DROs are designed with custom monolithic microwave integrated-circuit (MMIC) negative-resistance voltage-controlled oscillator chips. The receiver DRO design demonstrated a free-running single-sideband phase noise of -107 dBc/Hz at 100 kHz off the carrier frequency, a tuning linearity of +/- 3 percent over the channel locking range, and output power of +10 dBm +/-1 dB. Advantages of the multi-channel DRO include in-flight selection of transponder channel frequency, the enabling of novel mission operations techniques, frequency agility, and a single transponder design that will serve many missions and simplify hardware sparing strategies.

  20. Frequency up-conversion of optical microwaves for multichannel optical microwave system on a WDM network

    NASA Astrophysics Data System (ADS)

    Shin, Myunghun; Kumar, Prem

    2012-07-01

    We propose a multichannel optical microwave system employing a frequency up-converting optoelectronic oscillator (FU-OEO) [FU-OEO: frequency up-converting optoelectronic oscillator] as a low-phase noise local oscillator (LO) and a multichannel frequency up-converter. Employing the FU-OEO, we demonstrated an optical microwave system capable of 16 optical microwave links in the C-band on a WDM network; the generated optical microwaves were distributed to their designated remote stations according to the channel wavelength. When the FU-OEO was used as the system LO, the phase noise of the optical microwaves was under -80 dBc/Hz at a 10 kHz offset from a 20 GHz carrier frequency. As a frequency up-converter, the FU-OEO simultaneously up-converted all optical data channels at a 1.25 Gbps data rate for optical microwaves in the 20 GHz band of an optical carrier suppression mode having almost 100% modulation depth. The overall system performance was verified by measuring the bit error rates (BER) of the data recovered from optical microwaves received through single-mode fibers. The measured BER indicated that the system can transmit over 50 km with a power penalty of less than 1 dB. This method can be useful for high-frequency applications where the generation and transmission of optical microwaves are greatly restricted by optical or electrical bandwidths.

  1. Investigating neuronal activity by SPYCODE multi-channel data analyzer.

    PubMed

    Bologna, Luca Leonardo; Pasquale, Valentina; Garofalo, Matteo; Gandolfo, Mauro; Baljon, Pieter Laurens; Maccione, Alessandro; Martinoia, Sergio; Chiappalone, Michela

    2010-08-01

    Multi-channel acquisition from neuronal networks, either in vivo or in vitro, is becoming a standard in modern neuroscience in order to infer how cell assemblies communicate. In spite of the large diffusion of micro-electrode-array-based systems, researchers usually find it difficult to manage the huge quantity of data routinely recorded during the experimental sessions. In fact, many of the available open-source toolboxes still lack two fundamental requirements for treating multi-channel recordings: (i) a rich repertoire of algorithms for extracting information both at a single channel and at the whole network level; (ii) the capability of autonomously repeating the same set of computational operations to 'multiple' recording streams (also from different experiments) and without a manual intervention. The software package we are proposing, named SPYCODE, was mainly developed to respond to the above constraints and generally to offer the scientific community a 'smart' tool for multi-channel data processing. PMID:20554151

  2. Restoration of color images by multichannel Kalman filtering

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1991-01-01

    A Kalman filter for optimal restoration of multichannel images is presented. This filter is derived using a multichannel semicausal image model that includes between-channel degradation. Both stationary and nonstationary image models are developed. This filter is implemented in the Fourier domain and computation is reduced from O(Lambda3N3M4) to O(Lambda3N3M2) for an M x M N-channel image with degradation length Lambda. Color (red, green, and blue (RGB)) images are used as examples of multichannel images, and restoration in the RGB and YIQ domains is investigated. Simulations are presented in which the effectiveness of this filter is tested for different types of degradation and different image model estimates.

  3. Nonadiabatic multichannel dynamics of a spin-orbit-coupled condensate

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Zheng, Jun-hui; Wang, Daw-wei

    2015-06-01

    We investigate the nonadiabatic dynamics of a driven spin-orbit-coupled Bose-Einstein condensate in both weak and strong driven force. It is shown that the standard Landau-Zener (LZ) tunneling fails in the regime of weak driven force and/or strong spin-orbital coupling, where the full nonadiabatic dynamics requires a new mechanism through multichannel effects. Beyond the semiclassical approach, our numerical and analytical results show an oscillating power-law decay in the quantum limit, different from the exponential decay in the semiclassical limit of the LZ effect. Furthermore, the condensate density profile is found to be dynamically fragmented by the multichannel effects and enhanced by interaction effects. Our work therefore provides a complete picture to understand the nonadiabatic dynamics of a spin-orbit coupled condensate, including various ranges of driven force and interaction effects through multichannel interference. The experimental indication of these nonadiabatic dynamics is also discussed.

  4. Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Ozols, Maris

    2004-07-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.

  5. Multichannel MAC Layer In Mobile Ad—Hoc Network

    NASA Astrophysics Data System (ADS)

    Logesh, K.; Rao, Samba Siva

    2010-11-01

    This paper we presented the design objectives and technical challenges in Multichannel MAC protocols in Mobile Ad-hoc Network. In IEEE 802.11 a/b/g standards allow use of multiple channels, only a single channel is popularly used, due to the lack of efficient protocols that enable use of Multiple Channels. Even though complex environments in ad hoc networks require a combined control of physical (PHY) and medium access control (MAC) layers resources in order to optimize performance. And also we discuss the characteristics of cross-layer frame and give a multichannel MAC approach.

  6. Handling Deafness Problem of Scheduled Multi-Channel Polling MACs

    NASA Astrophysics Data System (ADS)

    Jiang, Fulong; Liu, Hao; Shi, Longxing

    Combining scheduled channel polling with channel diversity is a promising way for a MAC protocol to achieve high energy efficiency and performance under both light and heavy traffic conditions. However, the deafness problem may cancel out the benefit of channel diversity. In this paper, we first investigate the deafness problem of scheduled multi-channel polling MACs with experiments. Then we propose and evaluate two schemes to handle the deafness problem. Our experiment shows that deafness is a significant reason for performance degradation in scheduled multi-channel polling MACs. A proper scheme should be chosen depending on the traffic pattern and the design objective.

  7. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray.

    PubMed

    Liu, Jinpeng; Min, Changjun; Lei, Ting; Du, Luping; Yuan, Yangsheng; Wei, Shibiao; Wang, Yiping; Yuan, X-C

    2016-01-11

    We theoretically demonstrate the generation and detection of broadband multi-channel Orbital Angular Momentum(OAM) by a micrometer-scale meta-reflectarray. The meta-reflectarray composed of patterned silicon bars on a silver ground plane can be designed to realize phase modulation and work as chip-level OAM devices. Compared to traditional methods of OAM generation and detection, our approach shows superiorities of very compact structure size, broadband working wavelength (1250-1750 nm), high diffraction efficiency (~70%), simultaneously handling multiplex OAMs, and tunable reflection angle (0-45°). These fascinating advantages provides great potential applications in photonic integrated devices and systems for high-capacity and multi-channel OAM communication. PMID:26832252

  8. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  9. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  10. 26 CFR 1.832-7T - Treatment of salvage and reinsurance in computing “losses incurred” deduction, taxable years...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Treatment of salvage and reinsurance in computing âlosses incurredâ deduction, taxable years beginning before January 1, 1990 (temporary). 1.832-7T Section 1.832-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Other...

  11. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  12. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  13. 26 CFR 1.103(n)-7T - Election to allocate State ceiling to certain facilities for local furnishing of electricity...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Election to allocate State ceiling to certain facilities for local furnishing of electricity (temporary). 1.103(n)-7T Section 1.103(n)-7T Internal Revenue... certain facilities for local furnishing of electricity (temporary). (a) Election—(1) In general....

  14. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  15. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  16. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  17. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  18. Multichannel Analysis of Surface Waves and Dam Safety

    NASA Astrophysics Data System (ADS)

    Karastathis, V. K.

    2012-12-01

    Geophysical methodologies and particularly the Multichannel Analysis of Surface Waves (MASW) effectively proved their efficiency in the non-destructive testing of the dams, in the last decade, after many successful applications worldwide. The MASW method developed in the outset of this decade considerably improved the prospects and the validity of these geophysical applications. Since MASW and the other geophysical techniques do not require drilling they progressively increased their popularity significantly. The Multichannel Analysis of Surface Waves can be applied for the assessment of both earthen and concrete dams. Nevertheless, mostly cases of earthen dams can be found in the literature. The method can detect and map low shear wave velocity areas potentially associated with low cohesion zones due to differential settlement events in the core or increased seepage. The advantage of MASW is that it is not influenced by the water saturation of the interior of the dam contrary to other methods eg. p-wave tomography. Usually, a joint application of MASW with the p-wave techniques can be an optimal choice since the two methodologies can act complementary. An application of MASW on a three-dimensional structure, such as a dam, however, can actually be considered as a complicated problem since the effects of the lateral structural anomalies can strongly affect the results. For example, in an earthen dam the investigation of the core can be influenced by the presence of the shells. Therefore, the problem should be carefully examined by modeling all these the lateral anomalies with the aim to avoid a misinterpretation of the results. The effectiveness of MASW to the dam safety assessment is presented through two example applications, one at the Mornos Dam, an earthen dam responsible for the water supply of Athens, and a second one at the Marathon Dam which is a concrete dam also used for the water supply of Athens. In the case of Mornos Dam, MASW detected areas affected

  19. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI

    PubMed Central

    Hu, Xiaoqing; Chen, Xiao; Liu, Xin; Zheng, Hairong

    2014-01-01

    An 8-channel planar phased array was proposed based on the common-mode differential-mode (CMDM) structure for ultrahigh field MRI. The parallel imaging performance of the 8-channel CMDM planar array was numerically investigated based on electromagnetic simulations and Cartesian sensitivity encoding (SENSE) reconstruction. The signal-to-noise ratio (SNR) of multichannel images combined using root-sum-of-squares (rSoS) and covariance weighted root-sum-of-squares (Cov-rSoS) at various reduction factors were compared between 8-channel CMDM array and 4-channel CM and DM array. The results of the study indicated the 8-channel CMDM array excelled the 4-channel CM and DM in SNR. The g-factor maps and artifact power were calculated to evaluate parallel imaging performance of the proposed 8-channel CMDM array. The artifact power of 8-channel CMDM array was reduced dramatically compared with the 4-channel CM and DM arrays demonstrating the parallel imaging feasibility of the CMDM array. PMID:24649433

  20. Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Shao, Yufeng; Chi, Nan

    2012-09-24

    We propose and experimentally demonstrate a novel scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a recirculating frequency shifter (RFS) loop based on multi-wavelength frequency shifting single side band (MWFS-SSB) modulation. In this scheme, optical subcarriers with multiple wavelengths can be generated each round. Furthermore, the generated MCMC are frequency- and phase-locked within each channel, and therefore can be effectively used for WDM superchannel. Dual-wavelength frequency shifting SSB modulation is carried out with dual-wavelength optical seed source in our experimental demonstration. Using this scheme, we successfully generate dual-channel multi-carriers, and one channel has 28 subcarriers while the other has 29 ones with 25-GHz subcarrier spacing. We also experimentally demonstrate that this kind of source can be used to carry 50-Gb/s optical polarization-division-multiplexing quadrature phase shift keying (PDM-QPSK) signal. PMID:23037333

  1. Phoneme Recognition and Confusions with Multichannel Cochlear Implants: Vowels.

    ERIC Educational Resources Information Center

    Valimaa, Taina T.; Maatta, Taisto K.; Lopponen, Heikki J.; Sorri, Martti J.

    2002-01-01

    A study investigated how 19 Finnish adults who were postlingually severely or profoundly hearing impaired would relearn to recognize vowels after receiving multi-channel cochlear implants. Average vowel recognition was 68% 6 months after switch-on, and 80% 24 months after switch-on. Vowels y, e, and o were most difficult. (Contains references.)…

  2. Phoneme Recognition and Confusions with Multichannel Cochlear Implants: Consonants.

    ERIC Educational Resources Information Center

    Valimaa, Taina T.; Maatta, Taisto K.; Lopponen, Heikki J.; Sorri, Martti J.

    2002-01-01

    A study investigated how 19 Finnish adults who were postlingually severely or profoundly hearing impaired would relearn to recognize consonants after receiving multi-channel cochlear implants. Two years after the switch-on, the mean recognition for consonants was 71%. Consonants with alveolar, palatal, or velar transitions were better recognized.…

  3. Reading Skills in Children with Multichannel Cochlear-Implant Experience.

    ERIC Educational Resources Information Center

    Spencer, Linda; Tomblin, J. Bruce; Gantz, Bruce J.

    1997-01-01

    A study compared reading-achievement level of 40 children with deafness who received the Nucleus multichannel cochlear implants between ages 2 and 13 with that of children with deafness without cochlear implants. Nearly one half of children with cochlear implants were reading at or within 8 months of grade level. (Author/CR)

  4. The Use of a Microcomputer as a Multichannel Analyser.

    ERIC Educational Resources Information Center

    Hodgkinson, J. A.

    1985-01-01

    The use of a microcomputer as the basis of a multichannel analyzer (MCA) system is described. Principles of microcomputer MCA, choice of microcomputer, input-output port, data display, MCA program, and interrupt routine (with flowchart) are the topic areas considered. (JN)

  5. Instructional Design in Multi-Channel Learning System.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Marmar; Parhar, Madhu

    2001-01-01

    Discusses instructional design and explains the multi-channel learning environment which was developed to allow the use of various media to provide alternative learning paths to accommodate differences in learning styles and media preferences. Highlights include taxonomies of learning; social aspects of learning; self-learning in distance…

  6. Microwave photonic integrator based on a multichannel fiber Bragg grating.

    PubMed

    Zhang, Jiejun; Yao, Jianping

    2016-01-15

    We propose and experimentally demonstrate a microwave photonic integrator based on a multichannel fiber Bragg grating (FBG) working in conjunction with a dispersion compensating fiber (DCF) to provide a step group delay response with no in-channel dispersion-related distortion. The multichannel FBG is designed based on the spectral Talbot effect, which provides a large group delay dispersion (GDD) within each channel. A step group delay response can then be achieved by cascading the multichannel FBG with a DCF having a GDD opposite the in-channel GDD. An optical comb, with each comb line located at the center of each channel of the FBG, is modulated by a microwave signal to be integrated. At the output of the DCF, multiple time-delayed replicas of the optical signal, with equal time delay spacing are obtained and are detected and summed at a photodetector (PD). The entire operation is equivalent to the integration of the input microwave signal. For a multichannel FBG with an in-channel GDD of 730 ps/nm and a DCF with an opposite GDD, an integrator with a bandwidth of 2.9 GHz and an integration time of 7 ns is demonstrated. PMID:26766692

  7. Multichannel pulse height analyzer is inexpensive, features low power requirements

    NASA Technical Reports Server (NTRS)

    Ewald, C. J.; Sarkady, A. A.

    1967-01-01

    Consumption multichannel pulse height analyzer performs balloon and rocket investigations of solar neutrons with energies greater than 10 MeV. The lightweight unit can operate in a temperature range of minus 30 degrees to plus 70 degrees C and withstand storage temperatures from minus 50 degrees to plus 90 degrees C.

  8. Recent advances in Multi-Channel Algebraic Scattering

    SciTech Connect

    Karataglidis, S.; Fraser, P. R.; Amos, K.; Canton, L.; Pisent, G.; Svenne, J. P.; Knijff, D. van der

    2011-10-28

    For coupled-channel descriptions of low-energy nucleon-induced interactions involving nuclei with particle-unstable exited states, it is necessary to include the widths of the target states. How those widths may affect the elastic scattering cross sections is examined within the framework of the Multi-Channel Algebraic Scattering (MCAS) method.

  9. Development of data acquisition and analysis software for multichannel detectors

    SciTech Connect

    Chung, Y.

    1988-06-01

    This report describes the development of data acquisition and analysis software for Apple Macintosh computers, capable of controlling two multichannel detectors. With the help of outstanding graphics capabilities, easy-to-use user interface, and several other built-in convenience features, this application has enhanced the productivity and the efficiency of data analysis. 2 refs., 6 figs.

  10. Individual trial analysis for 7T fMRI data by a data-driven multi scale approach.

    PubMed

    da Rocha Amaral, Selene

    2014-03-01

    An important interest in event-related single trial fMRI is the possibility of studying cognitive processes that vary in time (e.g. learning or adaptation). Region-specific modelling and the inter-trial variability of the evoked response play an important role. We showed how the use of the iterated multigrid priors (iMGP) method, a previously introduced data-driven multi scale Bayesian iterative approach, may be extended for a trial-by-trial analysis on ultra-high magnetic field data. We used both artificial (present real physiological noise) and real (unilateral finger tapping experiment) data at 7T and compared to other methods. Since the iMGP does not need to spatially smooth the data, avoiding a loss of sensitivity, we take advantage of the high SNR available at 7T. For artificial data, we showed receiver operating characteristic curves parametrized by the activity threshold and by the addition of extra thermal noise and compared with correlation technique results.The method showed be very robust in terms of specificity for very noisy data and capable of capturing the temporal variability imposed artificially across regions. For real data, we examined the inter-trial spatial relationships for four subjects and the time-to-peak of the evoked response estimated by the iMGP across trials, regions and subjects. To stress the reliability of the iMGP in single trial studies, an illustrative comparison with the variational Bayes approach (implemented in the very popular Statistical Parametric Mapping software) was done for a single subject. Despite the extravascular signals are still present at 7T and the confounds of physiological noise and hemodynamic variability affecting single trial approaches, we showed that with the iMGP method it is possible to detect individual HR robustly. PMID:23813209

  11. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  12. Multi-contrast T2(⁎)-relaxometry upon visual stimulation at 3T and 7T.

    PubMed

    Berger, Moritz C; Bachert, Peter; Gröbner, Jens; Nagel, Armin M

    2016-09-01

    This study aims to quantify the mean change of the effective transverse relaxation time T2(⁎) in active brain regions of human volunteers at field strengths of B0=3T and 7T. Besides the mono-exponential signal decay model an extended model is tested that considers mesoscopic field gradients across imaging voxels. Both models are checked for cross-talk and correlations between the parameters. A visual checkerboard-stimulation experiment with pause and stimulation periods of 50s and six repetitions was performed on healthy volunteers. Eleven contrasts were acquired in about 1.47s/1.43s at 3T/7T using a segmented multi-contrast echo-planar imaging (EPI) sequence. Average BOLD-signal time courses were calculated in a multi-step (non-)linear least-squares process. Baseline T2(⁎) values of 37.72ms/24.99ms (47.34ms/33.71ms) with stimulus-correlated changes ∆T2(⁎)of 1.32ms/0.74ms (1.99ms/1.43ms) resulted from the mono-exponential (extended) model for 3T/7T. A dependence of those values on the initial intensity S0 was observed. Stimulus-correlated changes of S0 in the order of 1% were measured at both field strengths. The mono-exponential model was found to be less prone to instabilities in the regression of both parameters. Signal alterations due to inflow were observed. Measured relaxation times agree with values from literature using repetitive stimulation. A strong dependence of the measured relaxation times on the inflow-related model parameter was found for both models. The extended model is applicable to dynamic neurofunctional measurements, but is currently limited due to the low number of contrasts acquired. PMID:27046057

  13. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T

    NASA Astrophysics Data System (ADS)

    Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam

    2015-06-01

    The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.

  14. Multi-channel transimpedance measurement of a planar electromagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Chen, Dixiang; Xie, Ruifang; Zhou, Weihong; Hu, Hengjiang; Pan, Mengchun

    2015-02-01

    Planar electromagnetic sensor arrays have advantages such as nice coherence, fast response speed and high sensitivity, which can be used for micro damage inspection of crucial parts in equipment, and the key point in improving the inspection performance is to achieve a precise measurement of multi-channel transimpedances (the inductive voltages divided by the exciting current of the sensor). The principle and characteristics of planar electromagnetic sensor arrays are introduced in this paper, and a digital lock-in impedance measurement algorithm was investigated, with which the interference and noise in inductive voltage signals can be restrained effectively and the amplitude and phase of the transimpedance can be obtained with good repeatability. An eight channel impedance measurement system was established based on a field programmable gate array and utilized to inspect the micro damage in metal materials, and the experimental data were analyzed. The experimental results show that the impedance measurement has excellent repeatability when the sensor array is placed in air, and the maximum measurement error of the complete transimpedance measurement system is lower than 10%. A micro crack with a size of 1 mm (length) × 0.1 mm (width) × 1 mm (depth) can be detected through the measurement of multi-channel transimpedance in the planar electromagnetic sensor array.

  15. Correction of Gradient Nonlinearity Artifacts in Prospective Motion Correction for 7T MRI

    PubMed Central

    Yarach, U.; Luengviriya, C.; Danishad, K.A.; Stucht, D.; Godenschweger, F.; Schulze, P.; Speck, O.

    2014-01-01

    Purpose To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient non-linearity artifacts in prospective motion correction (Mo-Co). Methods Non-linear gradients can induce geometric distortions in MRI, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction. The gradient-related displacements are approximated using Spherical Harmonic (SPH) functions. In addition, the combination of this method with a retrospective correction of the changes in the coil sensitivity profiles relative to the object (augmented SENSE) was evaluated in simulation and experimental data. Results Prospective Mo-Co under gradient fields and coils sensitivity inconsistencies results in residual blurring, spatial distortion, and coil sensitivity mismatch artifacts. These errors can be considerably mitigated by the proposed method. High image quality with very little remaining artifacts was achieved after a few iterations. The relative image errors decreased from 25.7% to below 17.3% after 10 iterations. Conclusion The combined correction of gradient non-linearity and sensitivity map variation leads to a pronounced reduction of residual motion artifacts in prospectively motion-corrected data. PMID:24798889

  16. Variable power combiner for RF mode shimming in 7-T MR imaging.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus; Bitz, Andreas K

    2012-09-01

    This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level. PMID:22752102

  17. Multichannel X-Band Dielectric-Resonator Oscillator

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan; Dennis, Matthew; Cook, Brian

    2006-01-01

    A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from 7,040 to 7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels. The oscillator (see figure) includes a custom-designed voltage-controlled-oscillator (VCO) monolithic microwave integrated circuit (MMIC), a dielectric resonator disk (puck), and two varactor-coupling circuits, all laid out on a 25-mil (0.635-mm)-thick alumina substrate having a length and width of 17.8 mm. The resonator disk has a diameter of 8.89 mm and a thickness of 4.01 mm. The oscillator is mounted in an 8.9-mm-deep cavity in a metal housing. The VCO MMIC incorporates a negative- resistance oscillator amplifier along with a buffer amplifier. The resonator disk is coupled to a microstrip transmission line connected to the negative-resistance port of the VCO MMIC. The two varactor-coupling circuits include microstrip lines, laid out orthogonally to each other, for coupling with the resonator disk. Each varactor microstrip line is DC-coupled to an external port via a microwave choke. One varactor is used for coarse tuning to select a channel; the other varactor is used (1) for fine tuning across the 1.16-MHz width of each channel and (2) as a feedback port for a phase-lock loop. The resonator disk is positioned to obtain (1) the most desirable bandwidth, (2) relatively tight coupling with the microstrip connected to the coarse-tuning varactor, and (3) relatively loose coupling with the microstrip connected to the fine-tuning varactor. Measurements of performance showed that the oscillator can be

  18. Multichannel seismic/oceanographic/biological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.

    2011-12-01

    Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent

  19. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    PubMed

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T. PMID:27078089

  20. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    NASA Astrophysics Data System (ADS)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  1. The utility of multichannel local field potentials for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Hwang, Eun Jung; Andersen, Richard A.

    2013-08-01

    Objective. Local field potentials (LFPs) that carry information about the subject's motor intention have the potential to serve as a complement or alternative to spike signals for brain-machine interfaces (BMIs). The goal of this study is to assess the utility of LFPs for BMIs by characterizing the largely unknown information coding properties of multichannel LFPs. Approach. Two monkeys were implanted, each with a 16-channel electrode array, in the parietal reach region where both LFPs and spikes are known to encode the subject's intended reach target. We examined how multichannel LFPs recorded during a reach task jointly carry reach target information, and compared the LFP performance to simultaneously recorded multichannel spikes. Main Results. LFPs yielded a higher number of channels that were informative about reach targets than spikes. Single channel LFPs provided more accurate target information than single channel spikes. However, LFPs showed significantly larger signal and noise correlations across channels than spikes. Reach target decoders performed worse when using multichannel LFPs than multichannel spikes. The underperformance of multichannel LFPs was mostly due to their larger noise correlation because noise de-correlated multichannel LFPs produced a decoding accuracy comparable to multichannel spikes. Despite the high noise correlation, decoders using LFPs in addition to spikes outperformed decoders using only spikes. Significance. These results demonstrate that multichannel LFPs could effectively complement spikes for BMI applications by yielding more informative channels. The utility of multichannel LFPs may be further augmented if their high noise correlation can be taken into account by decoders.

  2. Bayesian Analysis and Segmentation of Multichannel Image Sequences

    NASA Astrophysics Data System (ADS)

    Chang, Michael Ming Hsin

    This thesis is concerned with the segmentation and analysis of multichannel image sequence data. In particular, we use maximum a posteriori probability (MAP) criterion and Gibbs random fields (GRF) to formulate the problems. We start by reviewing the significance of MAP estimation with GRF priors and study the feasibility of various optimization methods for implementing the MAP estimator. We proceed to investigate three areas where image data and parameter estimates are present in multichannels, multiframes, and interrelated in complicated manners. These areas of study include color image segmentation, multislice MR image segmentation, and optical flow estimation and segmentation in multiframe temporal sequences. Besides developing novel algorithms in each of these areas, we demonstrate how to exploit the potential of MAP estimation and GRFs, and we propose practical and efficient implementations. Illustrative examples and relevant experimental results are included.

  3. Multichannel HPD for high-speed single photon counting

    NASA Astrophysics Data System (ADS)

    Fukasawa, Atsuhito; Egawa, Yasuyuki; Ishizu, Tomohiro; Kageyama, Akihiro; Kamiya, Akifumi; Muramatsu, Terukimi; Nakano, Gaku; Negi, Yasuharu

    2016-03-01

    We have developed a multichannel Hybrid Photo-Detector with fast time response, good timing resolution and low noise after a genuine signal (afterpulse). For this purpose, a prototype has been developed to encapsulate a newly designed multichannel avalanche diode with low capacitance, 3 pF. The channel number is 32 in one chip, arranged as 2 lines of 16 pixels each 0.8 mm×0.8 mm in size. The gain uniformity of one line (16 channels) is within 3%. The timing resolution is 114 ps FWHM, including a pulse width of 77 ps from the light source and a timing jitter of approximately 30 ps from the measurement system. An afterpulse with extremely low probability has been confirmed under the delay of 180 ns from the genuine signal, and it is a negligible value in most applications.

  4. Multichannel CdZnTe gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Doty, F. P.; Lingren, C. L.; Apotovsky, B. A.; Brunsch, J.; Butler, J. F.; Collins, T.; Conwell, R. L.; Friesenhahn, S.; Gormley, J.; Pi, B.; Zhao, S.; Augustine, F. L.; Bennett, B. A.; Cross, E.; James, R. B.

    1999-02-01

    A 3 cm 3 multichannel gamma spectrometer for DOE applications is under development by Digirad Corporation. The device is based on a position sensitive detector packaged in a compact multi-chip module (MCM) with integrated readout circuitry. The modular, multichannel design will enable identification and quantitative analysis of radionuclides in extended sources, or sources containing low levels of activity. The MCM approach has the advantages that the modules are designed for imaging applications, and the sensitivity can be arbitrarily increased by increasing the number of pixels, i.e. adding modules to the instrument. For a high sensitivity probe, the outputs for each pixel can be corrected for gain and offset variations, and summed digitally. Single pixel results obtained with discrete low noise readout indicate energy resolution of 3 keV can be approached with currently available CdZnTe. The energy resolution demonstrated to date with MCMs for 511 keV gamma rays is 10 keV.

  5. Superchannel transmission system based on multi-channel equalization.

    PubMed

    Zeng, Tao

    2013-06-17

    We proposed a new method for superchannel transmission based on the newly proposed multi-channel equalization technique. This method allows us to realize tight channel spacing (equal to the baud rate) without using frequency-locked lasers and complex spectral shaping techniques at the transmitter. The inter-channel interference originated from the tight channel spacing is removed at the receiver by joint equalization of multiple adjacent channels. When the channel spacing is equal to the baud rate, our simulation results show that, with conventional oversample ratio (2 samples per symbol), realistic laser frequency offset and laser linewidth, the proposed multi-channel-equalization based method can achieve better performance than the traditional method using spectral shaping plus single channel equalization, although at the expense of a moderate increase in DSP complexity. The paper also gives a simple method to process the data after conventional chromatic dispersion compensation, which enables subsequent multi-channel equalization for long-haul transmissions. PMID:23787667

  6. A miniaturized ASIC-based multichannel scaler instrument

    SciTech Connect

    Ericson, M.N.; Turner, G.W.; McMillan, D.E.; Hoffheins, B.S.; Todd, R.A.; Hiller, J.M.

    1993-12-31

    A miniaturized multichannel scaler instrument has been developed to address size and operational constraints for data acquisition in a portable laser-induced luminescence system. The multichannel scaling (MCS) function is implemented as a programmable application specific integrated circuit (ASIC) with standard interfaces for control and data acquisition. The instrument is microcontroller-based with sufficient computing power for data manipulation and algorithmic processing. The unit includes electronics for laser control, and amplification and pulse height discrimination of PMT pulses. Modification of the instrument should allow use in nuclear, chemical, and spectroscopy related applications including Mossbauer experiments. Interfaces are incorporated allowing both computer-controlled and stand alone operation. Implementation of the MCS function as an ASIC and comparison with conventional implementations are discussed. Full characterization of the MCS is presented including differential non-linearity (DNL), bin dead time, and bandwidth measurements.

  7. Estimating T1 from multichannel variable flip angle SPGR sequences.

    PubMed

    Trzasko, Joshua D; Mostardi, Petrice M; Riederer, Stephen J; Manduca, Armando

    2013-06-01

    Quantitative estimation of T1 is a challenging but important task inherent to many clinical applications. The most commonly used paradigm for estimating T1 in vivo involves performing a sequence of spoiled gradient-recalled echo acquisitions at different flip angles, followed by fitting of an exponential model to the data. Although there has been substantial work comparing different fitting methods, there has been little discussion on how these methods should be applied for data acquired using multichannel receivers. In this note, we demonstrate that the manner in which multichannel data is handled can have a substantial impact on T1 estimation performance and should be considered equally as important as choice of flip angles or fitting strategy. PMID:22807160

  8. Estimating T1 from Multichannel Variable Flip Angle SPGR Sequences

    PubMed Central

    Trzasko, Joshua D.; Mostardi, Petrice M.; Riederer, Stephen J.; Manduca, Armando

    2013-01-01

    Quantitative estimation of T1 is a challenging but important task inherent to many clinical applications. The most commonly used paradigm for estimating T1 in vivo involves performing a sequence of spoiled gradient-recalled echo acquisitions at different flip angles, followed by fitting of an exponential model to the data. Although there has been substantial work comparing different fitting methods, there has been little discussion on how these methods should be applied for data acquired using multichannel receivers. In this note, we demonstrate that the manner in which multichannel data is handled can have a substantial impact on T1 estimation performance and should be considered equally as important as choice of flip angles or fitting strategy. PMID:22807160

  9. Electronically scanned multichannel pressure transducer system for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1990-01-01

    Research into the application of custom doped piezoresistive silicon pressure sensors has led to a multichannel pressure sensor design that will operate accurately and reliably at cryogenic temperatures. The thermal effects upon multichannel pressure sensors are mapped by thermal calibrations and are represented by sets of nth order coefficients specific to each sensor. The thermal offset and sensitivity variations are corrected by computer algorithms which scan the sensors, recall correction coefficients from thermally induced sensor variations, and apply these to correct the sensor's output measurement uncertainty to within 0.5 percent of full scale output for combined offset and sensitivity. A prototype sensor system has been fabricated, and performance test data are presented.

  10. Noise Cancelling of Multichannel MRS Signals with a Time Dependent Harmonic Model

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Dalgaard, E.; Auken, E.

    2013-12-01

    Magnetic resonance sounding (MRS) is a non-invasive geophysical technique applicable to groundwater investigations and provides a direct quantification of the subsurface water content from surface measurements. The technique is susceptible to electromagnetic noise and signal processing must be employed to retrieve the NMR signal from noisy measurements. The latest generation of MRS equipment is multichannel systems where a primary coil records the noisy NMR signal. Additional coils, physically displaced from the primary coil, synchronously measure the noise which is then subtracted from the primary coil with multichannel Wiener filtering. Unfortunately, this approach fails to take into account that noise can originate from several sources and as a result the noise cancelling is not always optimum. To remedy this problem it can be utilized that one of the major noise components in MRS signals is powerline harmonics, i.e. the noise is a sum of sinusoidal signals all harmonically related to the same fundamental powerline frequency. This implies that it is possible to create a model of the powerline harmonic noise that can be fitted to the MRS recordings and subtracted from these before employing multichannel Wiener filtering as we have recently demonstrated. A fundamental assumption in that work was that the powerline frequency and the amplitude and phase of each harmonic remained constant throughout a signal record of approximately 1 s duration. This assumption is often valid, but not always. In this study we present an extension of this method where the variations in the powerline signal are accounted for by a time dependent model. The signal records from each coil are divided into short overlapping segments, with a typical duration of 100 ms, and a harmonic model with time independent parameters is fitted to each segment. The fitting parameters from each segment are subsequently splined to a full harmonic model where all parameters; fundamental powerline frequency

  11. The selection of field acquisition parameters for dispersion images from multichannel surface wave data

    USGS Publications Warehouse

    Zhang, S.X.; Chan, L.S.; Xia, J.

    2004-01-01

    The accuracy and resolution of surface wave dispersion results depend on the parameters used for acquiring data in the field. The optimized field parameters for acquiring multichannel analysis of surface wave (MASW) dispersion images can be determined if preliminary information on the phase velocity range and interface depth is available. In a case study on a fill slope in Hong Kong, the optimal acquisition parameters were first determined from a preliminary seismic survey prior to a MASW survey. Field tests using different sets of receiver distances and array lengths showed that the most consistent and useful dispersion images were obtained from the optimal acquisition parameters predicted. The inverted S-wave velocities from the dispersion curve obtained at the optimal offset distance range also agreed with those obtained by using direct refraction survey.

  12. [Multi-channel Synchronization Analysis of Mild Cognitive Impairment in Type 2 Diabetes Patients].

    PubMed

    Cui, Dong; Liu, Jing; Bian, Zhijie; Wang, Jinhuan; Li, Qiuli; Li, Xiaoli; Wang, Lei

    2015-04-01

    The cognitive impairment of type 2 diabetes patients caused by long-term metabolic disorders has been the current focus of attention. In order to find the related electroencephalogram (EEG) characteristics to the mild cognitive impairment (MCI) of diabetes patients, this study analyses the EEG synchronization with the method of multichannel synchronization analysis--S estimator based on phase synchronization. The results showed that the S estimator values in each frequency band of diabetes patients with MCI were almost lower than that of control group. Especially, the S estimator values decreased significantly in the delta and alpha band, which indicated the EEG synchronization decrease. The MoCA scores and S value had a significant positive correlation in alpha band. PMID:26211240

  13. Magnetic ordering and non-Fermi-liquid behavior in the multichannel Kondo-lattice model

    NASA Astrophysics Data System (ADS)

    Irkhin, Valentin Yu.

    2016-05-01

    Scaling equations for the Kondo lattice in the paramagnetic and magnetically ordered phases are derived to next-leading order with account of spin dynamics. The results are applied to describe various mechanisms of the non-Fermi-liquid (NFL) behavior in the multichannel Kondo-lattice model where a fixed point occurs in the weak-coupling region. The corresponding temperature dependences of electronic and magnetic properties are discussed. The model describes naturally formation of a magnetic state with soft boson mode and small moment value. An important role of Van Hove singularities in the magnon spectral function is demonstrated. The results are rather sensitive to the type of magnetic ordering and space dimensionality, the conditions for NFL behavior being more favorable in the antiferromagnetic and 2D cases.

  14. Doppler line profile analysis for a multichannel Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Hays, P. B.

    1984-01-01

    A new method of instrument calibration and data analysis is presented for single-etalon interferometric measurements of winds, temperatures, and emission line intensities. The technique has been developed for the multichannel Fabry-Perot interferometer on the Dynamics Explorer spacecraft. A numerical representation of the instrumental transfer function is used based on a truncated Fourier series with empirically determined coefficients. The numerical form is compared with the conventional analytic form. The Fourier coefficients describing the instrument function are generated at the wavelength of a stable He-Ne laser and are translated to other wavelengths using an interpolation technique for both phase and power. A quasi-linear least-squares fitting process involving matrices provides for a rapid and accurate data reduction.

  15. Stabilizing soliton-based multichannel transmission with frequency dependent linear gain-loss

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debananda; Peleg, Avner; Nguyen, Quan M.

    2016-07-01

    We report several major theoretical steps towards realizing stable long-distance multichannel soliton transmission in Kerr nonlinear waveguide loops. We find that transmission destabilization in a single waveguide is caused by resonant formation of radiative sidebands and investigate the possibility to increase transmission stability by optimization with respect to the Kerr nonlinearity coefficient γ. Moreover, we develop a general method for transmission stabilization, based on frequency dependent linear gain-loss in Kerr nonlinear waveguide couplers, and implement it in two-channel and three-channel transmission. We show that the introduction of frequency dependent loss leads to significant enhancement of transmission stability even for non-optimal γ values via decay of radiative sidebands, which takes place as a dynamic phase transition. For waveguide couplers with frequency dependent linear gain-loss, we observe stable oscillations of soliton amplitudes due to decay and regeneration of the radiative sidebands.

  16. Multichannel surface recordings on the visual cortex: implications for a neuroprosthesis

    NASA Astrophysics Data System (ADS)

    Chelvanayagam, D. K.; Vickery, R. M.; Kirkcaldie, M. T. K.; Coroneo, M. T.; Morley, J. W.

    2008-06-01

    Using a multi-channel platinum surface electrode array, recordings from cat primary visual cortex were obtained in response to visual stimuli, and electrical stimuli delivered using the elements of the array itself. Neural responses to electrical stimuli were consistent, regardless of stimulus polarity or leading phase (biphasic), although thresholds were lower for monophasic than biphasic pulses. Both visual and electrical stimuli reliably evoked responses with characteristic components, which interacted with each other in a nonlinear summation showing first facilitation then suppression during the window of interaction. The chronaxie for eliciting threshold cortical responses was about 100 µs, and the charge density with a pulse width of 50-100 µs was around 55 µC cm-2. These data form the basis of understanding the types of cortical responses to stimuli delivered by devices suitable for chronic implantation.

  17. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    PubMed Central

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-01-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8x and 4.9x for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone. PMID:21402488

  18. Initial findings with a wearable multichannel vibrotactile aid.

    PubMed

    Osberger, M J; Robbins, A M; Todd, S L; Brown, C J

    1991-01-01

    Data are presented on the speech perception performance of two profoundly hearing-impaired subjects while using a two-channel vibrotactile aid (Tactaid II) or a new, seven-channel instrument. Both subjects, one a profoundly hearing-impaired teenager and one a postlingually deaf adult, are experienced users of tactile aids. The data suggest better recognition of speech features, words, environmental sounds, and enhancement of lipreading skills with the new multichannel instrument than with the two-channel device. PMID:2069179

  19. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    PubMed Central

    Zhang, Yunhai; Hu, Bian; Dai, Yakang; Yang, Haomin; Huang, Wei; Xue, Xiaojun; Li, Fazhi; Zhang, Xin; Jiang, Chenyu; Gao, Fei; Chang, Jian

    2013-01-01

    We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments. PMID:23585775

  20. Transumbilical Retrieval of Surgical Specimens Through a Multichannel Port

    PubMed Central

    Ju, Da Hye; Lee, Sang Soo; Sohn, Woo Seok

    2014-01-01

    Background: Laparoscopic surgery is often used to excise adnexal masses; however, the retrieval of specimens such as large cystic masses through conventional 5- or 10-mm ports is difficult and time-consuming. We compared outcomes between conventional laparoscopic surgery for adnexal masses and transumbilical specimen retrieval through a multichannel port during single- or 2-port laparoscopy. Methods: A total of 341 patients who underwent laparoscopic surgery for adnexal masses from November 2006 to December 2010 were included. The patients were divided into 2 groups: group I consisted of 249 patients who underwent conventional laparoscopy, and group II consisted of 92 patients who underwent single- or 2-port laparoscopy using a multichannel port. The clinical characteristics and operative outcomes of the 2 groups were compared. Results: The mean operation time was 51.8 ± 21.5 minutes in group I and 57.2 ± 23.9 minutes in group II. The mean specimen retrieval time was longer in group I (2.9 ± 4.0 minutes) than in group II (2.2 ± 1.8 minutes). Endoscopic bag rupture during specimen retrieval occurred in 11 patients in group I and in no patients in group II. Conclusions: The transumbilical retrieval of surgical specimens through a multichannel port with a wound retractor was safe and did not result in leakage of the cystic contents. This technique reduced the specimen retrieval time, especially for large masses. However, the mean operation time was not shortened with this procedure, because of the learning period and the time required to prepare the umbilical multichannel port. PMID:25408603

  1. Multichannel optical atomic magnetometer operating in unshielded environment

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Giuseppe; Biancalana, Valerio; Chessa, Piero; Dancheva, Yordanka

    2016-04-01

    A multichannel atomic magnetometer operating in an unshielded environment is described and characterised. The magnetometer is based on D_1 optical pumping and D_2 polarimetry of Cs vapour contained in gas-buffered cells. Several technical implementations are described and discussed in detail. The demonstrated sensitivity of the set-up is 100 fT/√{Hz} when operating in the difference mode.

  2. Construction of a CCD multichannel fiberoptic spectrometer and its application

    SciTech Connect

    Y. Qiu; X.Z. Qu; Q. Song

    1996-12-31

    A multichannel spectrometer was constructed with a linear CCD and a fiber-optic probe, which can perform in situ and quick spectrum measurement. Being linked to a PC computer, this spectrometer is especially suitable for dynamical process monitoring. The application of this instrumentation in the research of peroxyoxalate chemiluminescence has revealed the wavelength shift of the light emitting spectrum of rhodamine 6G during the chemiluminescent reaction. 8 refs., 7 figs.

  3. Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    ter Brake, H. J. M.; Fleuren, F. H.; Ulfrnan, J. A.; Flokstra, J.

    Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement of the feedback loops which causes the flux-transformer circuits to become currentless. The feasibility of the method is verified experimentally.

  4. A multichannel EEG telemetry system utilizing a PCM subcarrier

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1974-01-01

    A multichannel personal-type telemetry system is described that utilizes PCM encoding for the most effective range with minimum RF bandwidth and noise interference. Recent IC developments (COS MOS) make it possible to implement a sophisticated encoding system (PCM) within the low power and size constraints necessary for a personal biotelemetry system. This system includes low-level high-impedance preamplifiers to make the system suitable for EEG recording.

  5. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai

    2014-04-01

    This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.

  6. Phase locking of a seven-channel continuous wave fibre laser system by a stochastic parallel gradient algorithm

    SciTech Connect

    Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Sinyavin, D N; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A

    2014-11-30

    A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)

  7. In vivo γ‐aminobutyric acid measurement in rats with spectral editing at 4.7T

    PubMed Central

    Jupp, Bianca; Taylor, Tom; Caprioli, Daniele; Carpenter, T. Adrian; Dalley, Jeffrey W.

    2015-01-01

    Purpose To evaluate the feasibility of spectral editing for quantification of γ‐aminobutyric acid (GABA) in the rat brain and to determine whether altered GABA concentration in the ventral striatum is a neural endophenotype associated with trait‐like impulsive behavior. Materials and Methods Spectra were acquired at 4.7T for 23 male Lister‐hooded rats that had been previously screened for extremely low and high impulsivity phenotypes on an automated behavioral task (n = 11 low‐impulsive; n = 12 high‐impulsive). Voxels of 3 × 7 × 4 mm3 (84 μL) centered bilaterally across the ventral striatum were used to evaluate GABA concentration ratios. Results Quantifiable GABA signals in the ventral striatum were obtained for all rats. Mean‐edited GABA to n‐acetyl aspartate (NAA) ratios in the ventral striatum were 0.22 (95% confidence interval [CI] [0.18, 0.25]). Mean GABA/NAA ratios in this region were significantly decreased by 28% in high‐impulsive rats compared to low‐impulsive rats (P = 0.02; 95% CI [–53%, –2%]). Conclusion These findings demonstrate that spectral editing at 4.7T is a feasible method to assess in vivo GABA concentrations in the rat brain. The results show that diminished GABA content in the ventral striatum may be a neural endophenotype associated with impulsivity. J. Magn. Reson. Imaging 2016;43:1308–1312. PMID:26633759

  8. Automatic segmentation and classification of multiple sclerosis in multichannel MRI.

    PubMed

    Akselrod-Ballin, Ayelet; Galun, Meirav; Gomori, John Moshe; Filippi, Massimo; Valsasina, Paola; Basri, Ronen; Brandt, Achi

    2009-10-01

    We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context. These features are then fed into a decision forest classifier, trained with data labeled by experts, enabling the detection of lesions at all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments on two types of real MR images: a multichannel proton-density-, T2-, and T1-weighted dataset of 25 MS patients and a single-channel fluid attenuated inversion recovery (FLAIR) dataset of 16 MS patients. Comparing our results with lesion delineation by a human expert and with previously extensively validated results shows the promise of the approach. PMID:19758850

  9. Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew; Greene, Chris

    2016-05-01

    A generalized class of exotic long-range Rydberg molecules consisting of a multichannel Rydberg atom bound to a distant ground state atom by the Rydberg electron is predicted. These molecules are characterized by the rich physics provided by the strongly perturbed multichannel Rydberg spectra of divalent atoms, in contrast to the regular Rydberg series of the alkali atoms used to form Rydberg molecules to date. These multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number n. In particular, the nd Rydberg state of calcium becomes nearly degenerate with states of high orbital angular momentum over the range 17 < n < 22 , promoting its admixture into the high l deeply bound ``trilobite'' molecule states and thereby circumventing the usual difficulty posed by electric dipole selection rules. Further novel molecular states are predicted to occur in the low- J states of silicon, which are strongly perturbed due to channel interactions between Rydberg series leading to the spin-orbit split ionization thresholds. These interactions manifest themselves in potential curves exhibiting two distinct length scales, providing novel opportunities for quantum manipulation. Supported in part by the National Science Foundation under Grant No. PHY-1306905.

  10. Raman and multichannel Raman spectroscopy of biological systems

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Caramazza, R.; Fagnano, C.

    1991-05-01

    Raman and multichannel Raman spectroscopy are molecular techniques able to monitor the bulk and surface structure of a biomaterial, in a non destructive and non invasive way, giving therefore useful information on physical and chemical aspects of biocompatibility. The same techniques can also be adequately used for the characterization of the biomaterial-host tissue interface, hence providing structural information on the biochemical aspect of biocompatibility. Moreover, multichannel Raman spectroscopy can also determine "in vivo" and "in situ" the bulk and surface structure of a biomaterial and the molecular interactions between biomaterials and tissues. Useful information at a molecular level on the biomaterial-tissue system can so be deduced. In particular, the application of traditional Paman spectroscopy to bioactive glasses (glasses derived from Hench's bioglass and meta and oligophosphates of calcium by themselves and with the addition of sodium and aluminium) useful in orthopedics and the application to hydrophobic (PMMA) and hydrophilic (PHEMA and PVP) organic polymers useful in ophthalmology are shown. Instead the applications of multichannel Paman spectroscopy are elucidated in the case of intraocular lenses (lOLs) based on PMMA and contact lenses (CLs) based on hydrophi I ic polymers.

  11. A method for multichannel dosimetry with EBT3 radiochromic films

    SciTech Connect

    Pérez Azorín, Jose Fernando

    2014-06-15

    Purpose: An improved method for multichannel dosimetry is presented. This method explicitly takes into account the information provided by the unexposed image of the film. Methods: The method calculates the dose by applying a couple of perturbations to the scanned dose, one dependent and the other independent on the color channel. The method has been compared with previous multichannel and two single channel methods (red and green) against measurements using two different tests: first, five percentage depth dose profiles covering a wide range of doses; second, the dose map perpendicular to the beam axis for a 15 × 15cm{sup 2} square field. Finally, the results of 30 IMRT quality assurances tests are presented. All tests have been evaluated using the gamma analysis. Results: The coefficient of variation was found to be similar for all methods in a wide range of doses. The results of the proposed method are more in agreement with the experimental measurements and with the treatment planning system. Furthermore, the differences in the mean gamma pass rates are statistically significant. Conclusions: The improved multichannel dosimetric method is able to remove many of the common disturbances usually present in radiochromic films and improves the gamma analysis results compared with the other three methods.

  12. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  13. A compact multichannel spectrometer for Thomson scattering

    SciTech Connect

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  14. Spectral analysis of multichannel MRS data

    NASA Astrophysics Data System (ADS)

    Sandgren, Niclas; Stoica, Petre; Frigo, Frederick J.; Selén, Yngve

    2005-07-01

    The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton ( 1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner.

  15. Spectral analysis of multichannel MRS data.

    PubMed

    Sandgren, Niclas; Stoica, Petre; Frigo, Frederick J; Selén, Yngve

    2005-07-01

    The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton (1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner. PMID:15949751

  16. Multichannel Ultrasonic Data Communications in Air Using Range-Dependent Modulation Schemes.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-01-01

    There are several well-developed technologies of wireless communication such as radio frequency (RF) and infrared (IR), but ultrasonic methods can be a good alternative in some situations. A multichannel airborne ultrasonic data communication system is described in this paper. ON-OFF keying (OOK) and binary phase-shift keying (BPSK) modulation schemes were implemented successfully in the system by using a pair of commercially available capacitive ultrasonic transducers in a relatively low multipath indoor laboratory environment. Six channels were used from 50 to 110 kHz with a channel spacing of 12 kHz, allowing multiple 8-bit data packets to be transmitted simultaneously. The system data transfer rate achieved was up to 60 kb/s and ultrasonic wireless synchronization was implemented instead of using a hard-wired link. A model developed in the work could accurately predict ultrasonic signals through the air channels. Signal root mean square (rms) values and system bit error rates (BERs) were analyzed over different distances. Error-free decoding was achieved over ranges up to 5 m using a multichannel OOK modulation scheme. To obtain the highest data transfer rate and the longest error-free transmission distance, a range-dependent multichannel scheme with variable data rates, channel frequencies, and different modulation schemes, was also studied in the work. Within 2 m, error-free transmission was achieved using a five-channel OOK with a data rate of 63 kb/s. Between 2 and 5 m, six-channel OOK with 60 kb/s data transfer rate was error free. Beyond 5 m, the error-free transmission range could be extended up to 10 m using three-channel BPSK with a reduced data rate of 30 kb/s. The situation when two transducers were misaligned using three-channel OOK and BPSK schemes was also investigated in the work. It was concluded that error-free transmission could still be achieved with a lateral displacement of less than 7% and oblique angles of less than 7°, and three

  17. A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common saturation transfer (ST) techniques. One well-recognized issue with IT is the complexity of data analysis in comparison with much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP , can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7 T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP to m˙Pi, the rate of Pi magnetization change. The kPi→γATP value is accessed from m˙Pi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s(-1) , in agreement with literature-reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a (31) P IT experiment in about 10 min or less at 7 T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25943328

  18. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI

    PubMed Central

    Da Costa, Sandra; Bourquin, Nathalie M.-P.; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds. PMID:25938430

  19. Decoding the direction of imagined visual motion using 7T ultra-high field fMRI.

    PubMed

    Emmerling, Thomas C; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A; Goebel, Rainer

    2016-01-15

    There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673

  20. Functional magnetic resonance imaging of the rat cerebellum during electrical stimulation of the fore- and hindpaw at 7 T

    NASA Astrophysics Data System (ADS)

    Peeters, Ronald; Verhoye, Marleen; Vos, Bart; De Schutter, Erik; Van der Linden, Anne-Marie

    1999-05-01

    Blood oxygenation level dependent contrast (BOLD) functional MRI responses at 7T were observed in the cerebellum of alpha- chloralose anesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing a high level of reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and medio-lateral band organization, more pronounced ipsilaterally. There was no overlap between the cerebellar activations caused by forepaw or hindpaw stimulation. Most remarkable was the overall horizontal organization of these responses: for both stimulation paradigms the patches and bands of activation were roughly positioned in either a cranial or caudal plane running antero-posteriorly through the whole cerebellum. This is the first fMRI study in the cerebellum of the rat. We relate our findings to the known projection patterns found with other techniques and to human fMRI studies. The horizontal organization found wasn't observed before in other studies using other techniques.

  1. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  2. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

    PubMed

    Teeuwisse, W M; Brink, W M; Haines, K N; Webb, A G

    2012-04-01

    High permittivity "dielectric pads" have been shown to increase image quality at high magnetic fields in regions of low radiofrequency transmit efficiency. This article presents a series of electromagnetic simulations to determine the effects of pad size and geometry, relative permittivity value, as well as thickness on the transmit radiofrequency fields for neuroimaging at 7 T. For a 5-mm thick pad, there is virtually no effect on the transmit field for relative permittivity values lower than ∼90. Significant improvements are found for values between 90 and ∼180. If the relative permittivity is increased above ∼180 then areas of very low transmit efficiency are produced. For a 1-cm thick pad, the corresponding numbers are ∼60 and ∼120, respectively. Based upon the findings, a new material (barium titanate, relative permittivity ∼150) is used to produce thin (∼5 mm) dielectric pads which can easily be placed within a standard receive head array. Experimental measurements of transmit sensitivities, as well as acquisition of T(2) - and T 2*-weighted images show the promise of this approach. PMID:22287360

  3. Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    PubMed Central

    Fite, Brett Z.; Liu, Yu; Kruse, Dustin E.; Caskey, Charles F.; Walton, Jeffrey H.; Lai, Chun-Yen; Mahakian, Lisa M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C. PMID:22536396

  4. Frequency Division Multiplexed Multichannel High-Speed Fluorescence Confocal Microscope

    PubMed Central

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y.; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-01-01

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  5. An Adaptive Multi-Channel Spectroellipsometer for Ecological Monitoring

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, F. A.; Kovalev, V. I.; Klimov, V. V.

    2011-09-01

    The creation of multichannel polarization optical instrumentation and use of spectroellipsometric technology are very important for the real-time ecological control of aquatic environment. Spectroellipsometric devices give us high precision of measurements. This report is aimed to describe: •A technology of combined use of spectroellipsometry and algorithms of identification and recognition that allowed the creation of a standard integral complex of instrumental, algorithmic, modular and software tools for the collection and processing of data on the aquatic environment quality with forecasting and decision - making functions. •A compact measuring - information multichannel spectroellipsometric system (device) for monitoring the quality of aquatic environment, that is based on the combined use of spectroellipsometry and training, classification, and identification algorithms. This spectroellipsometric system will differ from modern foreign analogues by the use of a new and very promising method of ellipsometric measurements, an original element base of polarization optics and a complex mathematical approach to estimating the quality of a water object subjected to anthropogenic influence.Unlike foreign analogues, the system has no rotating polarization elements. This allows one to increase the signal-to-noise ratio and the long-term stability of measurements, to simplify and reduce the price of multichannel spectroellipsometers. The system will be trainable to the recognition of the pollutants of aquatic environment. A spectroellipsometer in laboratories of V.A. Kotelnikov's Institute of Radioengineering and Electronics, Russian Academy of Sciences is designed for in-situ real time measurements of spectra of ellipsometric parameters Psi and Delta with consequent changeover to spectra of transmitted and reflected signal from water media in frames of used physical model of water environment.

  6. Exploring functional connectivity networks with multichannel brain array coils.

    PubMed

    Anteraper, Sheeba Arnold; Whitfield-Gabrieli, Susan; Keil, Boris; Shannon, Steven; Gabrieli, John D; Triantafyllou, Christina

    2013-01-01

    The use of multichannel array head coils in functional and structural magnetic resonance imaging (MRI) provides increased signal-to-noise ratio (SNR), higher sensitivity, and parallel imaging capabilities. However, their benefits remain to be systematically explored in the context of resting-state functional connectivity MRI (fcMRI). In this study, we compare signal detectability within and between commercially available multichannel brain coils, a 32-Channel (32Ch), and a 12-Channel (12Ch) at 3T, in a high-resolution regime to accurately map resting-state networks. We investigate whether the 32Ch coil can extract and map fcMRI more efficiently and robustly than the 12Ch coil using seed-based and graph-theory-based analyses. Our findings demonstrate that although the 12Ch coil can be used to reveal resting-state connectivity maps, the 32Ch coil provides increased detailed functional connectivity maps (using seed-based analysis) as well as increased global and local efficiency, and cost (using graph-theory-based analysis), in a number of widely reported resting-state networks. The exploration of subcortical networks, which are scarcely reported due to limitations in spatial-resolution and coil sensitivity, also proved beneficial with the 32Ch coil. Further, comparisons regarding the data acquisition time required to successfully map these networks indicated that scan time can be significantly reduced by 50% when a coil with increased number of channels (i.e., 32Ch) is used. Switching to multichannel arrays in resting-state fcMRI could, therefore, provide both detailed functional connectivity maps and acquisition time reductions, which could further benefit imaging special subject populations, such as patients or pediatrics who have less tolerance in lengthy imaging sessions. PMID:23510203

  7. Resource allocation for multichannel broadcasting visible light communication

    NASA Astrophysics Data System (ADS)

    Le, Nam-Tuan; Jang, Yeong Min

    2015-11-01

    Visible light communication (VLC), which offers the possibility of using light sources for both illumination and data communications simultaneously, will be a promising incorporation technique with lighting applications. However, it still remains some challenges especially coverage because of field-of-view limitation. In this paper, we focus on this issue by suggesting a resource allocation scheme for VLC broadcasting system. By using frame synchronization and a network calculus QoS approximation, as well as diversity technology, the proposed VLC architecture and QoS resource allocation for the multichannel-broadcasting MAC (medium access control) protocol can solve the coverage limitation problem and the link switching problem of exhibition service.

  8. An experimental investigation of pulsed multichannel discharge across solid insulators

    NASA Technical Reports Server (NTRS)

    Lakdawala, V. K.; Ko, S. T.; Lee, J. H.

    1985-01-01

    An experimental study of pulsed surface flashover across a solid insulator in a vacuum is reported, with application of fast impulse voltages of a few tens of ns rise time and a few microsec tail time. Following the flashover voltage experiments, no visible degradation of the surface was found for the BaTiO3 sample, whereas for the TiO2 sample a distinct track mark could be seen where the flashover occurred. Three schemes for obtaining multichannel discharges were studied for plexiglass specimens, and results showed the number of shots to decrease as the number of channels increased.

  9. Development of multichannel low-energy neutron spectrometer.

    PubMed

    Arikawa, Y; Nagai, T; Abe, Y; Kojima, S; Sakata, S; Inoue, H; Utsugi, M; Iwasa, Y; Murata, T; Sarukura, N; Nakai, M; Shiraga, H; Fujioka, S; Azechi, H

    2014-11-01

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments. PMID:25430304

  10. Portable multichannel surface plasmon resonance imaging (SPRI) device

    NASA Astrophysics Data System (ADS)

    Chen, Chih Han; Chuang, Hsin-Yuan; Chen, How-Foo

    2016-03-01

    For the purpose of point of care (POC), a disposable polymer-molding prism with two parabolic side surfaces is employed for the ultra compact SPRI biosensor. A compact SPRI biosensor downsized to a form factor of 20 cm *15 cm*5 cm with extremely high sensitivity and large dynamic range is proposed in this study. With the cost effective and disposable polymer-molding prism design, the cross contamination between samples can be avoided. In this demonstration, we integrated the CCD detection system and multichannel fluidic system into this device that allows users to quickly screen various samples simultaneously.

  11. A single chip microcontroller based portable multichannel analyzer

    NASA Astrophysics Data System (ADS)

    Khan, Shahid

    1987-06-01

    The development of a portable multichannel analyzer for gamma spectroscopy applications is described. The developed unit is based on the Intel 8751 single chip microcontroller and has CRT and liquid crystal displays, preamplifying and amplifying sections, high voltage supply, built-in printer and runs on rechargeable batteries. The design uses standard off the shelf components, minimizes chip count by using all the microcontroller's resources and implementing most functions in software, and this results in a low cost system with good performance. Hardware and software design along with their integration are discussed.

  12. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  13. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  14. A Case of Aerophagia Diagnosed by Multichannel Intraluminal Impedance Monitoring.

    PubMed

    Sohn, Ki Chang; Jeong, Young Hoon; Jo, Dong Ho; Heo, Won Gak; Yeom, Dong Han; Choi, Suck Chei; Ryu, Han Seung

    2015-11-01

    Aerophagia is a disorder caused by abnormal accumulation of air in the gastrointestinal tract as a result of repetitive and frequent inflow of air through the mouth. For the diagnosis of this condition, it is difficult to objectively measure the air swallowing. However, multichannel intraluminal impedance monitoring facilitates the differential diagnosis between normal air swallowing and pathologic aerophagia, and can aid in the determination of the frequency and amount of air swallowed. In this report, in addition to a literature review, we describe a case of 36-year-old man with abdominal distension who was diagnosed with aerophagia using esophageal impedance monitoring and was treated with clonazepam. PMID:26586352

  15. Multi-channel Scaler Cards Improve Data Collection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists interested in exploring the intricacies and dynamics of Earth's climate and ecosystems continually need smaller, lighter instrumentation that can be placed onboard various sensing platforms, such as Unmanned Aerial Vehicles (UAVs). Responding to a need for improved data collection for remote atmospheric measurement systems, ASRC Aerospace Corporation, of Greenbelt, Maryland, developed a series of low-power, highly integrated, multichannel scaler (MCS) cards. The cards were designed to meet the needs of NASA's ground-based and airborne Light Detection and Ranging (LIDAR) photoncounting programs. They can rapidly collect thousands of data points during a continuous scan of the atmosphere.

  16. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  17. Multichannel Fabry-Perot spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Boyle, R. J.

    1986-01-01

    A multichannel design which makes use of the radiation normally rejected in a Fabry-Perot spectrometer is described, with application to infrared astronomy. The present optical design minimizes the diameters of the etalon and optics. The use of spherical mirrors ensures that no radiation is lost through the entrance aperture, and the beams can be completely collimated at the etalon. Laboratory studies demonstrate that the ability to employ eight channels increases by a factor of four the flux integrated during a given time period compared with that of a single-channel instrument. The spectrometer is nondispersive, and the source can be imaged at each of several output spectral positions.

  18. Multichannels high voltage programmable driver for piezoelectric transducer.

    PubMed

    Flaxer, Eli

    2008-03-01

    A complete design of a compact, high voltage, multichannel programmable waveform generator, using an 8 bit microcontroller, 12 bit digital to analog converter, and high voltage operation amplifier, is presented. The user can generate the waveform by several options: classic waveform, calculator, freehand drawing, and using excel or text file. All the waveform data are stored in a nonvolatile memory of the microcontroller. The generator can work as a stand-alone instrument or conjoined with a personal computer. We used this generator as a controller for piezoelectric inertial slider. PMID:18377042

  19. Multichannels high voltage programmable driver for piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Flaxer, Eli

    2008-03-01

    A complete design of a compact, high voltage, multichannel programmable waveform generator, using an 8bit microcontroller, 12bit digital to analog converter, and high voltage operation amplifier, is presented. The user can generate the waveform by several options: classic waveform, calculator, freehand drawing, and using excel or text file. All the waveform data are stored in a nonvolatile memory of the microcontroller. The generator can work as a stand-alone instrument or conjoined with a personal computer. We used this generator as a controller for piezoelectric inertial slider.

  20. Architecture of the multichannel data-driven ASIC

    NASA Astrophysics Data System (ADS)

    Normanov, D. D.; Atkin, E. V.

    2016-02-01

    The development architecture of a multichannel data-driven ASIC is presented. It provides the selection of useful events at an early stage of reading out detector signals. The architecture is based on fast cross-point switches of analog signals, followed by their digitization by a limited set of ADCs and high-speed output data serialization. Such approach reduces the number of subsequent ADCs as well as digital processing channels. That leads to lower power consumption and chip area. The results of a prototype ASIC development, based on this architecture and intended for the CBM experiment at FAIR, are given.

  1. Speech recognition for 40 patients receiving multichannel cochlear implants.

    PubMed

    Dowell, R C; Mecklenburg, D J; Clark, G M

    1986-10-01

    We collected data on 40 patients who received the Nucleus multichannel cochlear implant. Results were reviewed to determine if the coding strategy is effective in transmitting the intended speech features and to assess patient benefit in terms of communication skills. All patients demonstrated significant improvement over preoperative results with a hearing aid for both lipreading enhancement and speech recognition without lipreading. Of the patients, 50% demonstrated ability to understand connected discourse with auditory input only. For the 23 patients who were tested 12 months postoperatively, there was substantial improvement in open-set speech recognition. PMID:3755975

  2. Multichannel quench-flow microreactor chip for parallel reaction monitoring.

    PubMed

    Bula, Wojciech P; Verboom, Willem; Reinhoudt, David N; Gardeniers, Han J G E

    2007-12-01

    This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation. PMID:18030392

  3. A new multichannel interferometer system on HL-2A

    SciTech Connect

    Zhou, Y.; Deng, Z. C.; Liu, Z. T.; Yi, J.; Tang, Y. W.; Gao, B. Y.; Tian, C. L.; Li, Y. G.; Ding, X. T.

    2007-11-15

    A new multichannel HCN interferometer has been developed on HL-2A tokamak, which is characterized by two techniques: (1) the wave-guide HCN laser with cavity length of 6 m to increase the optical resource power and (2) high response room temperature waveguide Schottky diode detectors to obtain good beat signal. The space resolution is 7 cm by the use of focusing metal mirrors mounted on the vacuum chamber and a compensated optical system. In the 2006 experiment campaign, this new interferometer has been applied for plasma density profile and density sawtooth measurement.

  4. Susceptibility-weighted MR Imaging of Radiation Therapy-induced Cerebral Microbleeds in Patients with Glioma: A Comparison Between 3T and 7T

    PubMed Central

    Bian, Wei; Hess, Christopher P.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2016-01-01

    Introduction Cerebral microbleeds have been observed in normal-appearing brain tissue of patients with glioma years after receiving radiation therapy. The contrast of these paramagnetic lesions varies with field strength due to differences in the effects of susceptibility. The purpose of this study was to compare 3T and 7T MRI as platforms for detecting cerebral microbleeds in patients treated with radiotherapy using SWI. Methods SWI was performed with both 3T and 7T MR scanners on 10 patients with glioma who had received prior radiotherapy. Imaging sequences were optimized to obtain data within a clinically acceptable scan time. Both T2*-weighted magnitude images and SWI data were reconstructed, minimum-intensity projection was implemented, and microbleeds were manually identified. The number of microbleeds was counted and compared among datasets. Results Significantly more microbleeds were identified on SWI than magnitude images at both 7T (p=0.002) and 3T (p=0.023). 7T SWI detected significantly more microbleeds than 3T SWI for 7 out of 10 patients who had tumors located remote from deep brain regions (p=0.016), but when the additional 3 patients with more inferior tumors were included, the difference was not significant. Conclusion SWI is more sensitive for detecting microbleeds than magnitude images at both 3T and 7T. For areas without heightened susceptibility artifacts, 7T SWI is more sensitive to detecting radiation therapy-induced microbleeds than 3T SWI. Tumor location should be considered in conjunction with field strength when selecting the most appropriate strategy for imaging microbleeds. PMID:24281386

  5. Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose: initial results

    PubMed Central

    Noebauer-Huhmann, Iris-Melanie; Szomolanyi, P.; Kronnerwetter, C.; Widhalm, G.; Weber, M.; Nemec, S.; Juras, V.; Ladd, M. E.; Prayer, D.; Trattnig, S.

    2015-01-01

    Objectives To compare the contrast agent effect of a full dose and half the dose of gadobenate dimeglumine in brain tumours at 7 Tesla (7T) MR versus 3 Tesla (3T). Methods Ten patients with primary brain tumours or metastases were examined. Signal intensities were assessed in the lesion and normal brain. Tumour-to-brain contrast and lesion enhancement were calculated. Additionally, two independent readers subjectively graded the image quality and artefacts. Results The enhanced mean tumour-to-brain contrast and lesion enhancement were significantly higher at 7T than at 3T for both half the dose (91.8±45.8 vs. 43.9±25.3 [p=0.010], 128.1±53.7 vs. 75.5±32.4 [p=0.004]) and the full dose (129.2±50.9 vs. 66.6±33.1 [p=0.002], 165.4±54.2 vs. 102.6±45.4 [p=0.004]). Differences between dosages at each field strength were also significant. Lesion enhancement was higher with half the dose at 7T than with the full dose at 3T (p=.037), while the tumour-to-brain contrast was not significantly different. Subjectively, contrast enhancement, visibility, and lesion delineation were better at 7T and with the full dose. All parameters were rated as good, at the least. Conclusion Half the routine contrast agent dose at 7T provided higher lesion enhancement than the full dose at 3T which indicates the possibility of dose reduction at 7T. PMID:25194707

  6. 47 CFR 1.824 - Random selection procedures for Multichannel Multipoint Distribution Service and Multipoint...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Random selection procedures for Multichannel Multipoint Distribution Service and Multipoint Distribution Service H-Channel stations. 1.824 Section 1.824... for Multichannel Multipoint Distribution Service and Multipoint Distribution Service...

  7. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference from a multichannel video programming distributor (MVPD). 76.613 Section 76.613 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference...

  8. Modelling Temporal Stability of EPI Time Series Using Magnitude Images Acquired with Multi-Channel Receiver Coils

    PubMed Central

    Hutton, Chloe; Balteau, Evelyne; Lutti, Antoine; Josephs, Oliver; Weiskopf, Nikolaus

    2012-01-01

    In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of image SNR (SNR0). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters, and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed extended model includes an additional parameter κ which reflects the impact of noise correlations between receiver channels on the data and scales an apparent image SNR (SNR′0) measured directly from root-sum-of-squares reconstructed magnitude images so that κ = SNR′0/SNR0 (under the condition of SNR0>50 and number of channels ≤32). Using Monte Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the parameter κ was validated using an independent measure of the actual SNR0 for non-accelerated phantom data acquired at 3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular, the extended model improves the prediction of low to medium tSNR values and so can play an important role in the optimization of high-resolution fMRI experiments at lower SNR levels. PMID:23284874

  9. Multi-channel access technology based on wavelength division multiplexing in wireless UV communication mesh network

    NASA Astrophysics Data System (ADS)

    Zhao, Tai-fei; Zhang, Ai-li; Xue, Rong-li

    2013-05-01

    In this paper, the multi-channel access technology of wavelength division multiplexing (WDM) in the wireless ultraviolet (UV) scattering communication is studied. A multi-interface and multi-channel device is deployed in each UV transceiver node. The band-pass filter is configured in the receiving node so as to realize the multi-channel access by use of the UV WDM technology. Both the UV communication node model and the UV channel model are established. Three types of UV no-line-of-sight (NLOS) multi-channel communications are simulated in the mesh topologies with NS2. The results show that the UV multi-channel access technology can increase network throughput effectively with using WDM.

  10. Multi-channel compact optical zoom module by using microlenses

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Hsiang; Su, Guo-Dung J.

    2015-09-01

    In this paper, we propose a multi-channel imaging system, which combines the principles of an insect's compound eye and optical zoom. We use the distance between two aspherical lenses to achieve zoom effect. In order to shrink the thickness of the system, we use the multi-channel structure which consists of curved micolens array. With this architecture, we can achieve the same effect like lens group. Each partial image passes through each channel separately and is stitched together at the image sensor. In our design, the thickness is 6.57 mm (wide), 6.25 mm (mid), 6.4 mm (tele) and the effective focal length is 2.2 mm( wide), 2.97 mm (mid), 4.04 mm (tele). Zoom ratio is close to 2 times. The size of image sensor is 6 mm in diameter. Due to the advance in microlens fabrication of microlens, this design has the potential to bed used inside mobile phone camera in future.

  11. International Live Endoscopic Multichannel Demonstration Using Superfast Broadband Internet Connections

    PubMed Central

    Lee, Sang Pyo; Lee, Hang Lak; Choi, Ho Soon; Joe, Inwhee; Shimizu, Shuji

    2012-01-01

    Background/Aims Telemedicine is a convenient and efficient tool for remote education in various fields. The telemedicine system can also be used to educate doctors and medical students. The aim of our study was to establish the effectiveness of the telemedical system for use in a live endoscopic multichannel demonstration conference and to test the effectiveness and usefulness of a multicenter-based live endoscopic demonstration through live, interactive, high resolution video transmission using advanced networks and the digital video transport system (DVTS). Methods This study is a prospective multicenter pilot study. A live demonstration of an endoscopic submucosal dissection (ESD) and an endoscopic retrograde cholangiopancreatography (ERCP) using advanced network technology was performed. Results The DVTS successfully transmitted uncompressed, high-resolution, digital lectures with endoscopy video during a multichannel endoscopic live demonstration of ESD and ERCP over multiple advanced networks. The overall satisfaction rating when the endoscopic lecture demonstration was performed by combining DVTS was generally good. Conclusions We believe that a multicenter-based live endoscopic demonstration is a very effective conferencing method when using advanced networks and DVTS. PMID:22741135

  12. A duple watermarking strategy for multi-channel quantum images

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Sun, Bo; Venegas-Andraca, Salvador E.; Dong, Fangyan; Hirota, Kaoru

    2015-05-01

    Utilizing a stockpile of efficient transformations consisting of channel of interest, channel swapping, and quantum Fourier transforms, a duple watermarking strategy on multi-channel quantum images is proposed. It embeds the watermark image both into the spatial domain and the frequency domain of the multi-channel quantum carrier image, while also providing a quantum measurement-based algorithm to generate an unknown key that is used to protect the color information, which accompanies another key that is mainly used to scramble the spatial content of the watermark image in order to further safeguard the copyright of the carrier image. Simulation-based experiments using a watermark logo and nine building images as watermark image and carrier images, respectively, offer a duple protection for the copyright of carrier images in terms of the visible quality of the watermarked images. The proposed stratagem advances available literature in the quantum watermarking research field and sets the stage for the applications aimed at quantum data protection.

  13. Multidimensional filter bank signal reconstruction from multichannel acquisition.

    PubMed

    Law, Ka Lung; Do, Minh N

    2011-02-01

    We study the theory and algorithms of an optimal use of multidimensional signal reconstruction from multichannel acquisition by using a filter bank setup. Suppose that we have an N-channel convolution system, referred to as N analysis filters, in M dimensions. Instead of taking all the data and applying multichannel deconvolution, we first reduce the collected data set by an integer M×M uniform sampling matrix [Formula: see text], and then search for a synthesis polyphase matrix which could perfectly reconstruct any input discrete signal. First, we determine the existence of perfect reconstruction (PR) systems for a given set of finite-impulse response (FIR) analysis filters. Second, we present an efficient algorithm to find a sampling matrix with maximum sampling rate and to find a FIR PR synthesis polyphase matrix for a given set of FIR analysis filters. Finally, once a particular FIR PR synthesis polyphase matrix is found, we can characterize all FIR PR synthesis matrices, and then find an optimal one according to design criteria including robust reconstruction in the presence of noise. PMID:20729172

  14. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  15. Single and Multi-Channel Carbon-based Quantum Dragons

    NASA Astrophysics Data System (ADS)

    Inkoom, Godfred; Abdurazakov, Omadillo; Novotny, Mark

    2015-03-01

    In the coherent regime for electrical conductance measurements, two semi-infinite leads are connected to a finite nanostructure, and the nano-device conductance is calculated using the Landauer formula. Any channel k that has transmission for electrons with energy E, \\calTk (E) =1 contributes the conductance quantum G0 = 2e2 / h . Any nano-device with at least one \\calTk (E) =1 is called a quantum dragon. The transmission probability \\calTk (E) can be obtained from the solution of the time-independent Schrödinger equation. Uniform leads connected to armchair single-walled carbon nanotubes (SWCNTs) have calT (E) =1, while when connected to zigzag SWCNT the calT (E) is less than unity. Appropriately dimerized leads connected to zigzag SWCNTs are quantum dragons, while when connected to armchair SWCNTs calT (E) is less than unity. We have generalized the matrix method and mapping methods of in order to investigate SWCNTs that can be multi-channel quantum dragons. For example, one can use armchair SWCNT leads to connect to an armchair SWCNT to try to produce a multi-channel quantum dragon. Supported in part by NSF Grant DMR-1206233.

  16. Multi-channel fiber photometry for population neuronal activity recording

    PubMed Central

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-01-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals. PMID:26504642

  17. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded. PMID:25609637

  18. Neurodegenerative evidences during early onset of depression in CMS rats as detected by proton magnetic resonance spectroscopy at 7 T.

    PubMed

    Hemanth Kumar, B S; Mishra, Sushanta Kumar; Rana, Poonam; Singh, Sadhana; Khushu, Subash

    2012-06-15

    Depression is a complex psychiatric disorder characterized by anhedonia and feeling of sadness and chronic mild stress (CMS) seems to be a valuable animal model of depression. CMS animal model was induced and validated using behavioral studies. In the present study we investigated the neuro-metabolite changes occurring in prefrontal cortex and hippocampus during the onset of depression, in CMS rat model using in vivo proton magnetic resonance spectroscopy ((1)H MRS) at field strength of 7 T. Results showed that CMS caused depression-like behavior in rats, as indicated by the decrease in sucrose consumption and locomotor activity. (1)H MRS was performed in both control and CMS rats (n=10, in each group) and the quantitative assessment of the neurometabolites was done using LC model. Relative concentrations of all the metabolites along with the macromolecules were calculated for analysis. The results revealed a significant decrease of glutamate (Glu), glutamine (Gln), NAA+NAAG, Glx and GABA levels in both hippocampus and prefrontal cortex of CMS animals and an elevated level of myo-ionisitol (mI) and taurine (Tau) was observed only in hippocampus. These metabolite fluctuations revealed by proton MRS indicate that there might be change in the neuronal integrity of the glial cells and neurons within prefrontal cortex and hippocampus in CMS model of depression. The present study also suggests that there may be a degenerative process concerning the brain morphology in the CMS rats. The overall finding using (1)H MRS suggests that, there might be a major role of the glia and neuron in the onset of depression. PMID:22449862

  19. Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.

    PubMed

    Park, Sang Hyun; Zong, Xiaopeng; Gao, Yaozong; Lin, Weili; Shen, Dinggang

    2016-07-01

    Quantitative study of perivascular spaces (PVSs) in brain magnetic resonance (MR) images is important for understanding the brain lymphatic system and its relationship with neurological diseases. One of the major challenges is the accurate extraction of PVSs that have very thin tubular structures with various directions in three-dimensional (3D) MR images. In this paper, we propose a learning-based PVS segmentation method to address this challenge. Specifically, we first determine a region of interest (ROI) by using the anatomical brain structure and the vesselness information derived from eigenvalues of image derivatives. Then, in the ROI, we extract a number of randomized Haar features which are normalized with respect to the principal directions of the underlying image derivatives. The classifier is trained by the random forest model that can effectively learn both discriminative features and classifier parameters to maximize the information gain. Finally, a sequential learning strategy is used to further enforce various contextual patterns around the thin tubular structures into the classifier. For evaluation, we apply our proposed method to the 7T brain MR images scanned from 17 healthy subjects aged from 25 to 37. The performance is measured by voxel-wise segmentation accuracy, cluster-wise classification accuracy, and similarity of geometric properties, such as volume, length, and diameter distributions between the predicted and the true PVSs. Moreover, the accuracies are also evaluated on the simulation images with motion artifacts and lacunes to demonstrate the potential of our method in segmenting PVSs from elderly and patient populations. The experimental results show that our proposed method outperforms all existing PVS segmentation methods. PMID:27046107

  20. A radiofrequency coil to facilitate B₁⁺ shimming and parallel imaging acceleration in three dimensions at 7 T.

    PubMed

    Gilbert, Kyle M; Curtis, Andrew T; Gati, Joseph S; Klassen, L Martyn; Menon, Ravi S

    2011-08-01

    A 15-channel transmit-receive (transceive) radiofrequency (RF) coil was developed to image the human brain at 7 T. A hybrid decoupling scheme was implemented that used both capacitive decoupling and the partial geometric overlapping of adjacent coil elements. The decoupling scheme allowed coil elements to be arrayed along all three Cartesian axes; this facilitated shimming of the transmit field, B₁⁺, and parallel imaging acceleration along the longitudinal direction in addition to the standard transverse directions. Each channel was independently controlled during imaging using a 16-channel console and a 16 × 1-kW RF amplifier-matrix. The mean isolation between all combinations of coil elements was 18 ± 7 dB. After B₁⁺ shimming, the standard deviation of the transmit field uniformity was 11% in an axial plane and 32% over the entire brain superior to the mid-cerebellum. Transmit uniformity was sufficient to acquire fast spin echo images of this region of the brain with a single B₁⁺ shim solution. Signal-to-noise ratio (SNR) maps showed higher SNR in the periphery vs center of the brain, and higher SNR in the occipital and temporal lobes vs the frontal lobe. Parallel imaging acceleration in a rostral-caudal oblique plane was demonstrated. The implication of the number of channels in a transmit-receive coil was discussed: it was determined that improvements in SNR and B₁⁺ shimming can be expected when using more than 15 independently controlled transmit-receive channels. PMID:21834005

  1. Sensitivity and specificity of human brain glutathione concentrations measured using short-TE (1) H MRS at 7 T.

    PubMed

    Deelchand, Dinesh K; Marjańska, Małgorzata; Hodges, James S; Terpstra, Melissa

    2016-05-01

    Although the MR editing techniques that have traditionally been used for the measurement of glutathione (GSH) concentrations in vivo address the problem of spectral overlap, they suffer detriments associated with inherently long TEs. The purpose of this study was to characterize the sensitivity and specificity for the quantification of GSH concentrations without editing at short TE. The approach was to measure synthetically generated changes in GSH concentrations from in vivo stimulated echo acquisition mode (STEAM) spectra after in vitro GSH spectra had been added to or subtracted from them. Spectra from five test subjects were synthetically altered to mimic changes in the GSH signal. To account for different background noise between measurements, retest spectra (from the same individuals as used to generate the altered data) and spectra from five other individuals were compared with the synthetically altered spectra to investigate the reliability of the quantification of GSH concentration. Using STEAM spectroscopy at 7 T, GSH concentration differences on the order of 20% were detected between test and retest studies, as well as between differing populations in a small sample (n = 5) with high accuracy (R(2) > 0.99) and certainty (p ≤ 0.01). Both increases and decreases in GSH concentration were reliably quantified with small impact on the quantification of ascorbate and γ-aminobutyric acid. These results show the feasibility of using short-TE (1) H MRS to measure biologically relevant changes and differences in human brain GSH concentration. Although these outcomes are specific to the experimental approach used and the spectral quality achieved, this study serves as a template for the analogous scrutiny of quantification reliability for other compounds, methodologies and spectral qualities. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26900755

  2. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex. PMID:25788020

  3. 26 CFR 1.897-7T - Treatment of certain partnership interests as entirely U.S. real property interests under...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... extent that the gain on the disposition is attributable to U.S. real property interests (and not cash... entirely U.S. real property interests under sections 897(g) and 1445(e) (temporary). 1.897-7T Section 1.897... entirely U.S. real property interests under sections 897(g) and 1445(e) (temporary). (a) Rule. Pursuant...

  4. 26 CFR 20.2031-7T - Valuation of annuities, interests for life or term of years, and remainder or reversionary...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Gross Estate § 20.2031-7T Valuation of... section 7520 rate for the month in which the decedent died is 5.6 percent. Under Table S in paragraph (d... and 5 months old. In the month in which the decedent died, the section 7520 rate was 6.2...

  5. 26 CFR 20.2031-7T - Valuation of annuities, interests for life or term of years, and remainder or reversionary...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Gross Estate § 20.2031-7T Valuation of... section 7520 rate for the month in which the decedent died is 5.6 percent. Under Table S in paragraph (d... and 5 months old. In the month in which the decedent died, the section 7520 rate was 6.2...

  6. Application of multi-channel photoelastic imaging technology in array type ultrasonic nondestructive testing

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-zhong; Bi, Chao

    2015-08-01

    With the rapid development of modern nondestructive testing technologies, ultrasonic phased array and Ultrasonic array testing technology has been used widely, at the same time the propagation process of ultrasonic in the material becomes more and more complex. In order to make the ultrasonic propagation path become visible and researchers can observe the acoustic field directly, considering the properties of the ultrasonic as a stress wave, according to the theory of polarized light interference, a multi-channel dynamic photoelastic imaging system is developed successfully. The system can generate many kinds of focusing ultrasonic fields in optical specimen by controlling the ultrasonic transmission delay time of each equipment channel, and the system has the ability to simulate the acoustic field's focusing process of the ultrasonic phased array. The image shot by CCD camera reflects the propagation process of the acoustic field in the specimen, and the dynamic video is formed under control of the timing circuit, and the system has the ability to save the captured image in the computer.

  7. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  8. A multi-channel biomimetic neuroprosthesis to support treadmill gait training in stroke patients.

    PubMed

    Chia, Noelia; Ambrosini, Emilia; Baccinelli, Walter; Nardone, Antonio; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra; Ferrante, Simona

    2015-08-01

    This study presents an innovative multi-channel neuroprosthesis that induces a biomimetic activation of the main lower-limb muscles during treadmill gait training to be used in the rehabilitation of stroke patients. The electrostimulation strategy replicates the physiological muscle synergies used by healthy subjects to walk on a treadmill at their self-selected speed. This strategy is mapped to the current gait sub-phases, which are identified in real time by a custom algorithm. This algorithm divides the gait cycle into six sub-phases, based on two inertial sensors placed laterally on the shanks. Therefore, the pre-defined stimulation profiles are expanded or stretched based on the actual gait pattern of each single subject. A preliminary experimental protocol, involving 10 healthy volunteers, was carried out to extract the muscle synergies and validate the gait-detection algorithm, which were afterwards used in the development of the neuroprosthesis. The feasibility of the neuroprosthesis was tested on one healthy subject who simulated different gait patterns, and a chronic stroke patient. The results showed the correct functioning of the system. A pilot study of the neurorehabilitation treatment for stroke patients is currently being carried out. PMID:26737943

  9. On multichannel film dosimetry with channel-independent perturbations

    SciTech Connect

    Méndez, I. Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  10. Statistical Characterisation of the Maximum Eigenvalue of a Wishart Distribution with Application to Multi-Channel SAR System

    NASA Astrophysics Data System (ADS)

    Erten, E.; Zandoná-Schneider, R.; Reigber, A.

    2009-04-01

    Multi-channel SAR system characterise the target with multicomponent Gaussian circular vector whose number of components m is equal to the number of polarimetric and/or interferometric channels of the system. In the case of the multivariate (multi-channel) Gaussian system, the second order statistics known as covariance matrix contains all the necessary information to characterise the target vector. In this framework, the eigendecomposition of the covariance matrix have demonstrated as a important analysis in the physical parameter estimation and target detection. Especially, the maximum eigenvalue related to the first eigenvector of the covariance matrix is the most interesting parameter in a wide selection of application, i.e. polarimetry, GMTI (ground moving target indication) and interferometric phase filtering. Related to this, the cornerstone study considering the statistical description of the covariance matrix eigendecomposition in polarimetry has been carried out in [1]. However, the majority of the analysis in [1] was performed on the basis of numerical methods. In this paper we support the results of [1] by addressing analytical solutions. Specifically, we derive new exact closed form expressions for Probability Density Function (PDF), for Cumulative Dis tribution Function (CDF) and for the Moment Generating Function (MGF) of the multi channel SAR system covariance matrix maximum eigenvalue, thus enabling the exact evaluation of the performance analysis of the estimation and the detection problem considering the number of averaged samples and different correlation scenario. Our results are analysed by means of simulated data.

  11. Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Peiwan; Shi, Zhongbing; Chen, Wei; Zhong, Wulyu; Yang, Zengchen; Jiang, Min; Zhang, Boyu; Li, Yonggao; Yu, Liming; Liu, Zetian; Ding, Xuantong

    2016-07-01

    A multichannel microwave interferometer system has been developed on the HL-2A tokomak. Its working frequency is well designed to avoid the fringe jump effect. Taking the structure of HL-2A into account, its antennas are installed in the horizontal direction, i.e. one launcher in high field side (HFS) and four receivers in low field side (LFS). The fan-shaped measurement area covers those regions where the magnetohydrodynamics (MHD) instabilities are active. The heterodyne technique contributes to its high temporal resolution (1 μs). It is possible for the multichannel system to realize simultaneous measurements of density and its fluctuation. The quadrature phase detection based on the zero-crossing method is introduced to density measurement. With this system, reliable line-averaged densities and density profiles are obtained. The location of the saturated internal kink mode can be figured out from the mode showing different intensities on four channels, and the result agrees well with that measured by electron cyclotron emission imaging (ECEI). supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB104002, 2013GB107002, 2014GB107001) and National Natural Science Foundation of China (Nos. 11475058, 11475057, 11261140326, 11405049)

  12. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-01-01

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data. PMID:26959034

  13. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    PubMed Central

    Warren, Kristen M.; Harvey, Joshua R.; Chon, Ki H.; Mendelson, Yitzhak

    2016-01-01

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data. PMID:26959034

  14. A calibration method of the multi-channel imaging lidar

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Liu, Jun; Shu, Rong

    2014-06-01

    We design a kind of imaging LiDAR with sixteen channels, which consists of a fiber laser source, dual scanning galvanometers, range measurement circuits and information processing circuits etc. The image LiDAR provides sixteen range measurements for one laser shot and the distance accuracy of each channel is about 4cm. This paper provides a calibrate method to correct point cloud images captured with the multi-channel LiDAR. The method needs to construct different slanted planes to cover the imaging field, and establish precise plane equations in the known ground coordinates, then fit planes with point clouds data and calculate correction parameters of all channels through the error model. The image accuracy is better than 5cm processed by this calibration method.

  15. A study of fault injection in multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1991-01-01

    NASA/Marshall Space Flight Center proposes to implement fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Among the elements to be studied are the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power is being performed to yield a list of the most common power system faults. The results of this study are being applied to a multichannel high-voltage DC spacecraft power system called the Large Autonomous Spacecraft Electrical Power System Breadboard. Some of the reactions of the breadboard to some of the faults which have been encountered are presented along with the results of this study.

  16. Reducing temporal fluctuations in MRI with the multichannel method SENSE

    NASA Astrophysics Data System (ADS)

    Moeller, Steen; Van de Moortele, Pierre-Francois; Goerke, Ute; Uğurbil, Kâmil

    2006-03-01

    Multi-channel acquisition is employed in MRI to decrease total imaging time. In this paper, artifact free images are calculated by utilizing the difference in spatial encoding of the MR signal from neighboring channels. The encoding functions are estimated in the presence of noise and motion. For fMRI studies, the temporal stability of the signal is essential, since neuronal activity in the brain is detected by probing subtle BOLD (blood oxygen level dependent) signal changes. To ensure artifact free noise representation a new type of weight is used. By effectively selecting and eliminating low SNR pixels, increased temporal stability is achieved. Using the parallel imaging method SENSE the proposed method is tested with in-vivo data to ensure noise suppression and demonstrate correct assignment of fMRI activation.

  17. Improving virtual channel discrimination in a multi-channel context.

    PubMed

    Srinivasan, Arthi G; Shannon, Robert V; Landsberger, David M

    2012-04-01

    Improving spectral resolution in cochlear implants is key to improving performance in difficult listening conditions (e.g. speech in noise, music, etc.). Current focusing might reduce channel interaction, thereby increasing spectral resolution. Previous studies have shown that combining current steering and current focusing reduces spread of excitation and improves virtual channel discrimination in a single-channel context. It is unclear whether the single-channel benefits from current focusing extend to a multi-channel context, in which the physical and perceptual interference of multiple stimulated channels might overwhelm the benefits of improved spectral resolution. In this study, signal discrimination was measured with and without current focusing, in the presence of competing stimuli on nearby electrodes. Results showed that signal discrimination was consistently better with current focusing than without, regardless of the amplitude of the competing stimuli. Therefore, combining current steering and current focusing may provide more effective spectral cues than are currently available. PMID:22616092

  18. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  19. A scalable correlator for multichannel diffuse correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Kolodziejski, Noah J.; McAdams, Daniel; Podolsky, Matthew J.; Fernandez, Daniel E.; Farkas, Dana; Christian, James F.

    2016-03-01

    Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.

  20. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  1. A multichannel PWM telemetry system for kinematic gait analysis.

    PubMed

    Harris, G F; Jeutter, D C; Bergner, B C; Matesi, D V; Pelc, N J

    1987-12-01

    A multichannel biotelemetry system using pulse-width modulation-frequency modulation (PWM-FM) is described in detail for laboratory construction. Its application in a kinematic gait-analysis system is demonstrated, employing minimally encumbering electrogoniometry and foot-contact switches. The triaxial electrogoniometers sense rotational joint motion, and four foot-switches under the sole of each foot provide information on placement and temporal contact. Signals from the multiple sensors are amplified, encoded by pulse-width modulation, and transmitted at an FM radio frequency of 107 MHz. Received data are decoded and then sampled by a minicomputer for analysis. Results from a comparative study of kinematic gait in five normal subjects and five children with cerebral palsy demonstrate system effectiveness in providing quantitative data and various intrasubject and intersubject gait differences. Factors reviewed in the analysis include swing and stance times; cadence; hip-joint motion in sagittal, coronal, and transverse planes; and sequence of foot placement. PMID:3431495

  2. Detection of forced oscillations in power systems with multichannel methods

    SciTech Connect

    Follum, James D.

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  3. Large capacity, high-speed multiparameter multichannel analysis system

    SciTech Connect

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources.

  4. Multichannel DC SQUID sensor array for biomagnetic applications

    SciTech Connect

    Hoenig, H.E.; Daalmans, G.M.; Bar, L.; Bommel, F.; Paulus, A.; Uhl, D.; Weisse, H.J. ); Schneider, S.; Seifert, H.; Reichenberger, H.; Abraham-Fuchs, K. )

    1991-03-01

    This paper reports on a biomagnetic multichannel system for medical diagnosis of brain and heart KRENIKON has been developed. 37 axial 2st order gradiometers - manufactured as flexible superconducting printed circuits - are arranged in a circular flat array of 19 cm diameter. Additionally, 3 orthogonal magnetometers are provided. The DC SQUIDs are fabricated in all-Nb technology, ten on a chip. The sensor system is operated in a shielded room with two layers of soft magnetic material and one layer of Al. The every day noise level is 10 fT/Hz{sup 1/2} at frequencies above 10 Hz. Within 2 years of operation in a normal urban surrounding, useful clinical applications have been demonstrated (e.g. for epilepsy and heart arrhythmias).

  5. RFcap: a software analysis tool for multichannel cochlear implant signals.

    PubMed

    Lai, Wai Kong; Dillier, Norbert

    2013-03-01

    Being able to display and analyse the output of a speech processor that encodes the parameters of complex stimuli to be presented by a cochlear implant (CI) is useful for software and hardware development as well as for diagnostic purposes. This firstly requires appropriate hardware that is able to receive and decode the radio frequency (RF)-coded signals, and then processing the decoded data using suitable software. The PCI-IF6 clinical hardware for the Nucleus CI system, together with the Nucleus Implant Communicator and Nucleus Matlab Toolbox research software libraries, provide the necessary functionality. RFcap is a standalone Matlab application that encapsulates the relevant functions to capture, display, and analyse the RF-coded signals intended for the Nucleus CI24M/R, CI24RE, and CI500 multichannel CIs. PMID:21762546

  6. Ground moving target indication via multi-channel airborne SAR

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2011-06-01

    We consider moving target detection and velocity estimation for multi-channel synthetic aperture radar (SAR) based ground moving target indication (GMTI). Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Furthermore, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. An iterative adaptive approach (IAA), which is robust and user parameter free, is used to form velocity versus cross-range images for each range bin of interest. Moreover, we discuss calibration techniques to combat near-field coupling problems encountered in practical systems. Furthermore, we present a sparse signal recovery approach for stationary clutter cancellation. We conclude by demonstrating the effectiveness of our approaches by using the Air Force Research Laboratory (AFRL) publicly-released Gotcha airborne SAR based GMTI data set.

  7. Automatic landslide and mudflow detection method via multichannel sparse representation

    NASA Astrophysics Data System (ADS)

    Chao, Chen; Zhou, Jianjun; Hao, Zhuo; Sun, Bo; He, Jun; Ge, Fengxiang

    2015-10-01

    Landslide and mudflow detection is an important application of aerial images and high resolution remote sensing images, which is crucial for national security and disaster relief. Since the high resolution images are often large in size, it's necessary to develop an efficient algorithm for landslide and mudflow detection. Based on the theory of sparse representation and, we propose a novel automatic landslide and mudflow detection method in this paper, which combines multi-channel sparse representation and eight neighbor judgment methods. The whole process of the detection is totally automatic. We make the experiment on a high resolution image of ZhouQu district of Gansu province in China on August, 2010 and get a promising result which proved the effective of using sparse representation on landslide and mudflow detection.

  8. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  9. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  10. Multichannel Brain-Signal-Amplifying and Digitizing System

    NASA Technical Reports Server (NTRS)

    Gevins, Alan

    2005-01-01

    An apparatus has been developed for use in acquiring multichannel electroencephalographic (EEG) data from a human subject. EEG apparatuses with many channels in use heretofore have been too heavy and bulky to be worn, and have been limited in dynamic range to no more than 18 bits. The present apparatus is small and light enough to be worn by the subject. It is capable of amplifying EEG signals and digitizing them to 22 bits in as many as 150 channels. The apparatus is controlled by software and is plugged into the USB port of a personal computer. This apparatus makes it possible, for the first time, to obtain high-resolution functional EEG images of a thinking brain in a real-life, ambulatory setting outside a research laboratory or hospital.

  11. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms

    NASA Astrophysics Data System (ADS)

    Rana, Subinoy; Le, Ngoc D. B.; Mout, Rubul; Saha, Krishnendu; Tonga, Gulen Yesilbag; Bain, Robert E. S.; Miranda, Oscar R.; Rotello, Caren M.; Rotello, Vincent M.

    2015-01-01

    Screening methods that use traditional genomic, transcriptional, proteomic and metabonomic signatures to characterize drug mechanisms are known. However, they are time consuming and require specialized equipment. Here, we present a high-throughput multichannel sensor platform that can profile the mechanisms of various chemotherapeutic drugs in minutes. The sensor consists of a gold nanoparticle complexed with three different fluorescent proteins that can sense drug-induced physicochemical changes on cell surfaces. In the presence of cells, fluorescent proteins are rapidly displaced from the gold nanoparticle surface and fluorescence is restored. Fluorescence ‘turn on’ of the fluorescent proteins depends on the drug-induced cell surface changes, generating patterns that identify specific mechanisms of cell death induced by drugs. The nanosensor is generalizable to different cell types and does not require processing steps before analysis, offering an effective way to expedite research in drug discovery, toxicology and cell-based sensing.

  12. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  13. Primate reaching cued by multichannel spatiotemporal cortical microstimulation.

    PubMed

    Fitzsimmons, N A; Drake, W; Hanson, T L; Lebedev, M A; Nicolelis, M A L

    2007-05-23

    Both humans and animals can discriminate signals delivered to sensory areas of their brains using electrical microstimulation. This opens the possibility of creating an artificial sensory channel that could be implemented in neuroprosthetic devices. Although microstimulation delivered through multiple implanted electrodes could be beneficial for this purpose, appropriate microstimulation protocols have not been developed. Here, we report a series of experiments in which owl monkeys performed reaching movements guided by spatiotemporal patterns of cortical microstimulation delivered to primary somatosensory cortex through chronically implanted multielectrode arrays. The monkeys learned to discriminate microstimulation patterns, and their ability to learn new patterns and new behavioral rules improved during several months of testing. Significantly, information was conveyed to the brain through the interplay of microstimulation patterns delivered to multiple electrodes and the temporal order in which these electrodes were stimulated. This suggests multichannel microstimulation as a viable means of sensorizing neural prostheses. PMID:17522304

  14. Multichannel arrays on polymer substrates: toward a disposable proteomics chip

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Ehrfeld, Wolfgang; Pommersheim, Rainer

    1999-03-01

    Miniaturization is dramatically changing the shape of biotechnology. After the first wave of discoveries inventions in the field of analytical methods and DNA-probes on silicon chips, the trend in recent years has been to more complex and integrated systems in terms of microfabrication for production purposes mainly focused on polymer substrates. Additionally, an increased complexity in the biochemical functionality for tasks like cell handling, cell lysis, polymerase chain reaction, DNA-sequencing and recently in the field of proteomics research can be observed. In this paper we describe the practical approach to a polymer substrate based, microfabricated chip-based multichannel array for 2D capillary electrophoresis. This chip can be fabricated by classical mass production techniques like hot embossing or injection modeling, and has the potential for on-chip-integration of electrodes and detection system.

  15. Efficient quadrature multichannel processor algorithms for MCD applications

    NASA Astrophysics Data System (ADS)

    Corden, I. R.; Carrasco, R. A.

    1992-06-01

    The forthcoming third generation of satellites incorporating multichannel demodulator (MCD) processors, and the needs apparent within aviation systems, induce the requirement for efficient band processing algorithms with specific regard to the quadrature processing arrangement. This paper presents a coherent z-domain formulation of the pertinent digital transmultiplexer algorithms for the on-board processing (OBP) scenario, with a view to establishig a set of desirable algorithmic properties suitable for the preferred complex oriented quadrature processing algorithms. Stemming from the principles set forth, an ensemble of new algorithms based upon mixes of Hilbert transforming and real transform algorithms is presented, wherein the established concepts relating to the telephone network transmultiplexer algorithms are able to be exploited in certain cases. Further, the computational load of one of the methods is lower than that of a known prominent OBP related technique. The computational necessities of the various algorithms are laid down for comparative purposes in addition to the mathematical descriptions.

  16. Wireless multichannel integrated potentiostat for distributed neurotransmitter sensing.

    PubMed

    Murari, Kartikeya; Sauer, Christian; Stanacevic, Milutin; Cauwenberghs, Gert; Thakor, Nitish

    2005-01-01

    Sensing neurotransmitters is critical in studying neural pathways and neurological disorders. An integrated device is presented which incorporates a potentiostat and a power harvesting and telemetry module. The potentiostat features 16 channels with multiple scales from microamperes to picoamperes. The wireless module is able to harvest power through inductively coupled coils and uses the same link to transmit data to and from the potentiostat. An integrated prototype is fabricated in CMOS technology, and experimentally characterized. Test results show RF powering introduces noise levels of 0.42% and 0.18% on potentiostat current scales of 500pA and 4nA respectively. Real-time multi-channel acquisition of dopamine concentration in vitro is performed with carbon fiber sensors. PMID:17281973

  17. Integrated SQUID sensors for low cross-talk multichannel systems

    NASA Astrophysics Data System (ADS)

    Granata, C.; Vettoliere, A.; Luiso, M.; Russo, M.

    2006-06-01

    We present a fully integrated dc-SQUID magnetometer based on niobium technology including a new feedback coil design. In respect to a standard SQUID design, such a feedback-coil design was optimized in order to reduce the mutual inductance with the neighbours and to increase the coupling with the pick-up coil of the SQUID itself. In such a way, it is possible to reduce cross-talks due to both feedback coil and wires. Experimental results about the characterization of the device and the crosstalk measurements are reported. The measurements have been performed in liquid helium using a low noise readout electronics specifically designed for large multichannel SQUID based instrumentations. The experimental data have shown a substantial reduction of cross-talk between neighbouring sensors.

  18. Tunable multi-channel terahertz wave power splitter

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-12-01

    The combination of terahertz technology and photonic crystal provides a new approach to realize compact terahertz wave devices. Relying on a conventional photonic crystal waveguide and photonic crystal surface-mode waveguides, a tunable multi-channel terahertz-wave power splitter is proposed. The mechanism of such a power splitter is further theoretically analyzed and numerically investigated with the aid of the plane-wave-expansion method and the finite-difference time-domain method. With an appropriate design, the proposed device can split the input terahertz wave energy equally into six output ports at the frequency of 0.6 THz. When changing the external magnetic field, the input terahertz wave can be equally divided into four output ports with the aid of a magnetic-sensitive material. Furthermore, the present device is very compact and the total size is of 4.4×6.0 mm2.

  19. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  20. The design of a robotic multichannel platform for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hu, Yida; Finlay, Jarod C.; Zhu, Timothy C.

    2009-06-01

    A compact robotic platform is designed for simultaneous multichannel motion control for light delivery and dosimetry during interstitial photodynamic therapy (PDT). Movements of light sources and isotropic detectors are controlled by individual motors along different catheters for interstitial PDT. The robotic multichannel platform adds feedback control of positioning for up to 16 channels compared to the existing dual-motor system, which did not have positioning encoders. A 16-channel servo motion controller and micro DC motors, each with high resolution optical encoder, are adopted to control the motions of up to 16 channels independently. Each channel has a resolution of 0.1mm and a speed of 5cm/s. The robotic platform can perform light delivery and dosimetry independently, allowing arbitrary positioning of light sources and detectors in each catheter. Up to 16 compact translational channels can be combined according to different operational scheme with real-time optimal motion planning. The characteristic of high speed and coordinating motion will make it possible to use short linear sources (e.g., 1- cm) to deliver uniform PDT treatment to a bulk tumor within reasonable time by source stepping optimization of multiple sources simultaneously. Advanced robotic control algorithm handles the various unexpected circumstance in clinical procedure, e.g., positiontorque/ current control will be applied to prevent excessive force in the case of resistance in the fiber or motorized mechanism. The robotic platform is fully compatible with operation room (OR) environment and improves the light delivery and dosimetry in PDT. It can be adopted for diffusing optical tomography (DOT), spectroscopic DOT and fluorescent spectroscopy.

  1. Multichannel scattering and loss processes of ultracold atoms in anisotropic harmonic waveguides

    NASA Astrophysics Data System (ADS)

    Shadmehri, Sara; Saeidian, Shahpoor; Melezhik, Vladimir S.

    2016-06-01

    We have developed the general grid method for multichannel scattering of bosonic atoms inside a harmonic waveguide with transverse anisotropy. This approach is employed to analyze elastic as well as inelastic multichannel confined scattering. For the elastic scattering, the effects of the range and form of interatomic potential and the waveguide anisotropy on the confinement-induced resonance are studied. We have also investigated quantitatively the reactive rate constant in confined atom-atom collisions. It is found that a slight anisotropy to the confining trap considerably enhances the reactive rate constant in multichannel regime.

  2. Hydrotalcite formed by alteration of R7T7 nuclear waste glass and basaltic glass in salt brine at 190{degrees}C

    SciTech Connect

    Abdelouas, A.; Crovisier, J.L.; Lutze, W.; Mueller, R.; Bernotat, W.

    1994-12-31

    The R7T7 and synthetic basaltic glasses were submitted to corrosion in a saline MgCl{sub 2} dominated solution at 190{degrees}C. For both glasses, the early alteration product is a hydrotalcite-like compound in which HPO{sub 4}{sup 2{minus}}, SO{sub 4}{sup 2{minus}} and Cl{sup {minus}} substitutes to CO{sub 3}{sup 2{minus}}. The measured d{sub 003} spacing is 7.68 {angstrom} for the hydrotalcite formed from R7T7 glass and 7.62 {angstrom} for the hydrotalcite formed from basaltic glass which reflect the high aluminium content. Chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after few months.

  3. Objective research and application of multi-channel human meridian impedance dynamic testing system

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Jun; Jiao, Jianling

    2008-10-01

    This paper is an in-depth study on the basis of the passed summary of relevant technologies. Multi-channel ring electrode has been developed to point impedance testing of the human body for the first time. Here, we build such a system, which bases on the hardware platform of AT89C52 combined with M82C54-2, besides, the integrated software development tools micro-soft visual c++ and the technical advantages such as multi-threading, databases, serial communication and the characteristics of real-time supported by Windows XP are used in here too. Except for the point impedance testing of the human body, the conductive volume of the human meridian and infrared-photoelectric absorption properties of physical quantities can also be detected by such an on-site data acquisition, analysis, display, record and communicate with the PC portable System. Currently, the system was being in the testing phase, we have collected some real data of human body with this vehicle, whose results are expected to be more satisfactory in the near future.

  4. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  5. A mesospheric airglow multichannel photometer and an optical method to measure mesospheric AGW intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Mangognia, Anthony; Swenson, Gary; Vargas, Fabio; Liu, Alan

    2016-05-01

    A multichannel photometer (MCP) instrument, designed with filters for three specific airglow emissions, OH Meinel (5-1), (6-2), 840 nm; O2 (b) (0,1), 865 nm; and O(1S), 557.7 nm, as well as background, is used to observe atmospheric wave perturbations to layers in the local zenith with high temporal resolution (∼5 s). By measuring the relative phase of propagating waves through the layers, with known altitude separation, we deduce the vertical wavelength. We describe here the instrument attributes, a unique background subtraction technique, and the validation of a new method for determining intrinsic wave parameters via MCP and imager data that can be taken from various platforms, including ground-based and spacecraft platforms. Vertical wavelengths deduced using this method are in close agreement with those measured using LIDAR temperatures as well as those calculated with the dispersion relation using a combination of all-sky imager (horizontal wavelength) and meteor radar (winds) data.

  6. Rapid acquisition of auditory subcortical steady state responses using multichannel recordings✩

    PubMed Central

    Bharadwaj, Hari M.; Shinn-Cunningham, Barbara G.

    2015-01-01

    Objective Auditory subcortical steady state responses (SSSRs), also known as frequency following responses (FFRs), provide a non-invasive measure of phase-locked neural responses to acoustic and cochlear-induced periodicities. SSSRs have been used both clinically and in basic neurophysiological investigation of auditory function. SSSR data acquisition typically involves thousands of presentations of each stimulus type, sometimes in two polarities, with acquisition times often exceeding an hour per subject. Here, we present a novel approach to reduce the data acquisition times significantly. Methods Because the sources of the SSSR are deep compared to the primary noise sources, namely background spontaneous cortical activity, the SSSR varies more smoothly over the scalp than the noise. We exploit this property and extract SSSRs efficiently, using multichannel recordings and an eigendecomposition of the complex cross-channel spectral density matrix. Results Our proposed method yields SNR improvement exceeding a factor of 3 compared to traditional single-channel methods. Conclusions It is possible to reduce data acquisition times for SSSRs significantly with our approach. Significance The proposed method allows SSSRs to be recorded for several stimulus conditions within a single session and also makes it possible to acquire both SSSRs and cortical EEG responses without increasing the session length. PMID:24525091

  7. Multi-channel linear descriptors for event-related EEG collected in brain computer interface

    NASA Astrophysics Data System (ADS)

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (Ω), field power (Σ) and frequency of field changes (Φ), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of Ω, Σ and Φ could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors Ω, Σ and Φ for characterizing event-related EEG. The preliminary results show that Ω, Σ together with Φ have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  8. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T.

    PubMed

    Hare, Hannah V; Blockley, Nicholas P; Gardener, Alexander G; Clare, Stuart; Bulte, Daniel P

    2015-05-15

    Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2. PMID:25783207

  9. Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation.

    PubMed

    Cline, Christopher C; Johnson, Nessa N; He, Bin

    2015-08-01

    The goal of this work is to develop a focal transcranial magnetic stimulation (TMS) system using a multichannel coil array for high-resolution neuromodulation. We proposed a novel spatially-distributed stimulation strategy to significantly improve the focality of TMS. Computer simulations were conducted to evaluate the proposed approach and test the merits of multichannel TMS. Three different multichannel coil arrays were modeled in addition to a conventional figure-8 coil for comparison. Simulations were performed on finite element head models of six subjects constructed from anatomical MR images via an automated pipeline. Multichannel TMS arrays exhibited significantly more focal induced electric field magnitudes compared to the figure-8 coil. Additionally, electrical steering of stimulation sites without physical movement of the coil array was demonstrated. PMID:26736698

  10. Experimental and numerical analysis of B1(+) field and SAR with a new transmit array design for 7T breast MRI.

    PubMed

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1(+) field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1(+) intensity (μT) and homogeneity represented by coefficient of variation (CoV=standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7T. PMID:27240143

  11. Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project.

    PubMed

    Sotiropoulos, Stamatios N; Hernández-Fernández, Moisés; Vu, An T; Andersson, Jesper L; Moeller, Steen; Yacoub, Essa; Lenglet, Christophe; Ugurbil, Kamil; Behrens, Timothy E J; Jbabdi, Saad

    2016-07-01

    Determining the acquisition parameters in diffusion magnetic resonance imaging (dMRI) is governed by a series of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Considering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same subjects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k- and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial resolution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of combining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both datasets from the same subject into a single joint analysis. We use a generative model for performing parametric spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing each of the datasets individually. PMID:27071694

  12. Experimental and numerical analysis of B1+ field and SAR with a new transmit array design for 7 T breast MRI

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S.

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1+ field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7 T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1+ intensity (μT) and homogeneity represented by coefficient of variation (CoV = standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7 T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7 T.

  13. Timing Performance of a MCP Photon Detector Read Out with Multi-Channel Electronics for the Torch System

    NASA Astrophysics Data System (ADS)

    Castillo García, L.; Fopma, J. M.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.

    2014-06-01

    As part of the R&D phase of the (Time Of internally Reflected Cherenkov light) TORCH project, 8×8 pad micro-channel plate photon detectors are being characterized. Multichannel electronics based on fast amplifier discriminator and time digitization conversion ASICs are used to read out and time the charge signals from single photoelectrons. The MCP performance is investigated with a 20ps pulsed blue laser diode. A time resolution of 90ps is achieved. Timing properties are obtained at modest MCP gain, without time walk correction and no fine calibration of the time-to-digital converter circuit. The reference time is provided by a single-channel MCP photon detector coupled to a Constant Fraction Discriminator. Photoelectron detection efficiencies and back-scattering effect are discussed together with the laser source influence on the timing performance.

  14. Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR.

    PubMed

    Nakazawa, Masataka; Yoshida, Masato; Hirooka, Toshihiko

    2014-12-15

    We describe the nondestructive measurement of mode coupling along a few-mode fiber using a synchronous multi-channel optical time-domain reflectometer (OTDR). By installing a few-mode fiber (FMF) coupler made with a phase mask method, we excite the LP01 mode in an FMF under the test as an input mode, and then we detect backward Rayleigh scattered LP11a or LP11b modes, which were generated as a result of the mode coupling through the coupler. The mode coupling distribution between the LP01 and LP11a,b modes along the test FMF was successfully measured with a 10-m spatial resolution by obtaining the ratio between the backscattered LP01 mode and LP11a or LP11b. The value of the mode coupling obtained with the present method agreed well with that obtained with the conventional transmission method. PMID:25607078

  15. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    SciTech Connect

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2012-08-15

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.

  16. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  17. MO-H-19A-04: Multichannel CW Ultrasonic Thermometry for Imaging Therapeutic Dose Fields in Water

    SciTech Connect

    Tosh, R

    2014-06-15

    Purpose: To develop a scalable, multichannel ultrasonic thermometry system suitable for imaging clinical-beam dose distributions in a water phantom. Method: A small, glass-walled rectangular water phantom (15 cm × 20 cm × 30 cm) was filled with distilled water, and two ultrasonic transducers were placed on the outside, against opposing walls, approximately 5 cm below the water line, and were aligned to optimize transmission/reception of ultrasound between them. Two synchronized lock-in amplifiers were connected to the transducers to enable full-duplex operation of two separate ultrasonic frequency channels configured to transmit simultaneously through the same volume of water and thereby provide independent measurements of the temperature-dependent ultrasonic phase lag. Controlled heating of the water via immersed power resistors provided a means to study dependence of measured phase lag on temperature change for both channels; cross-correlation of the phase outputs enabled much smaller temperature fluctuations in the phantom to be used to ascertain the noise floor and achievable temperature resolution. Results: Temperature measurements from both channels, converted from phase measurements via polynomials available in the literature, exhibited the expected linear dependence of ultrasonic phase on temperature change (measured via calibrated thermistor probe). Cross-correlation analysis of phase fluctuations yielded rms noise estimates of approximately 1-2 microKelvin, comparable to that observed in standard water calorimeters. Conclusion: Phase-sensitive detection of cw ultrasound has been shown to provide temperature sensitivity needed for calorimetry of external treatment beams, and the present simple demonstration establishes that multiple channels may be run simultaneously without phase disturbances that currently affect time-of-flight techniques utilizing phase-detection. Immediate plans include doubling the number of sensors, to enable a simple tomographic

  18. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: a comparison with gradient-echo EPI using a color-word Stroop task.

    PubMed

    Boyacioğlu, Rasim; Schulz, Jenni; Müller, Nils C J; Koopmans, Peter J; Barth, Markus; Norris, David G

    2014-08-15

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo (GE) EPI multiband sequence (TR of 1.4 s) using a color-word Stroop task. PINS RF pulses were used for refocusing to reduce RF amplitude requirements and SAR, summed and phase-optimized standard pulses were used for excitation enabling a transverse or oblique slice orientation. The distortions were minimized with the use of parallel imaging in the phase encoding direction and a post-acquisition distortion correction. In general, GE-EPI shows higher efficiency and higher CNR in most brain areas except in some parts of the visual cortex and superior frontal pole at both the group and individual-subject levels. Gradient-echo EPI was able to detect robust activation near the air/tissue interfaces such as the orbito-frontal and subcortical regions due to reduced intra-voxel dephasing because of the thin slices used and high in-plane resolution. PMID:24736172

  19. Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Barra, Vincent; Delouille, Véronique; Hochedez, Jean-François

    2008-09-01

    The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.

  20. Experience with a multichannel system for biomagnetic study.

    PubMed

    Schneider, S; Abraham-Fuchs, K; Reichenberger, H; Seifert, H; Hoenig, H E; Röhrlein, G

    1993-11-01

    The components of the biomagnetic multichannel system Krenikon are described. The combination of biomagnetically yielded localizations with anatomic images gained from MR or CT is discussed as well as the enhancement of the signal-to-noise ratio by using a correlation technique. The overall localization accuracy is tested with technical phantoms. With volunteers measurements of auditory, visual and somatosensory evoked fields are performed to evaluate the system performance in vivo. Clinical studies were performed mainly with partners from the Universities of Erlangen-Nünberg and Ulm. The data acquisition time typically is 2-10 min which is tolerable both for the patient and the clinical staff. Electric potentials even with invasive electrodes can be recorded simultaneously with the magnetic fields. MEG gives important information for the presurgical diagnosis of epileptic patients and for the understanding of the epilepsy genesis. With MCG, centres of biologic excitation such as ventricular ectopies or accessory bundles in WPW syndrome have been successfully localized. PMID:8274986

  1. Multichannel waveguides for the simultaneous detection of disease biomarkers

    SciTech Connect

    Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K; Swanson, Basil I

    2009-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease or for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.

  2. A low-noise receiver for multichannel wireless neural recording.

    PubMed

    Yin, Ming; Ghovanloo, M

    2008-01-01

    We present a high performance wideband receiver for multichannel wireless implantable neural recording systems (WINeR) utilizing pulse width modulation of time division multiplexed (PWM-TDM) samples. The receiver consists of a 50 MHz approximately 1 GHz tunable down-converter with 75 MHz bandwidth, frequency shift keying and PWM demodulators, and a high throughput USB interface. Several IF gain stages, passive LC filters, and an FPGA-based time-to-digital converter (TDC) with time interval resolution of 428 ps have significantly enhanced the receiver performance and extended its receiving range. A 2 MB SDRAM is used as a buffer between the TDC and USB to ensure continuous throughput for the digitized raw data at data rates up to 10 Mb/s. The receiver performance is evaluated with a 6-channel WINeR transmitter, showing that the entire system input referred noise with this receiver is 9.8 and 12.7 microV(rms) at 0.5 and 3.5 m distances, respectively, which are equivalent to 8.2 and 7.9 bits of resolution at 640 ksample/s. PMID:19163091

  3. Quasiclassical theory of disordered multi-channel Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Neven, Patrick; Bagrets, Dmitry; Altland, Alexander

    2013-05-01

    Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.

  4. Dynamic multi-channel TMS with reconfigurable coil.

    PubMed

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil. PMID:23193321

  5. Multi-channel amplitude analyzer for x-ray investigations

    NASA Astrophysics Data System (ADS)

    Karetnikov, M. D.; Klimov, A. I.; Zaitsev, V. I.

    2005-07-01

    The suggested device is implemented as one-module instrument including: a spectrometric amplifier providing superposition rejection, basic level restoration, track-and-hold functions, a precision ADC completed with the buffer memory; high-voltage power supply for X-ray detector; hardware interface with PC. All this resulted in a compact, functionally completed instrument for X-ray analysis. The device is a convenient instrument for X-ray fluorescent analysis, radiation diffraction studies, determination of element composition of a substance, customs and forensic expertise, medical diagnostics, testing of food products for presence of heavy elements, and other studies associated with X-ray applications. The functional diagram of the multi-channel amplitude analyzer is given in Fig. 1. The control circuit includes programmable logic device (PLD) EPM7128AETC100-lO manufactured by Altera Corporation, high performance C8051A021 processor by Cygnal Integrated Products and AS7C3256-12TC static memory by Cypress.

  6. Estimating neugebauer primaries for multi-channel spectral printing modeling

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Coppel, Ludovic G.; Olen, Melissa; Hardeberg, Jon Yngve

    2014-02-01

    Multichannel printer modeling has been an active area of research in the field of spectral printing. The most commonly used models for characterization of such systems are the spectral Neugebauer (SN) and its extensions. This work addresses issues that can arise during calibration and testing of the SN model when modelling a 7-colorant printer. Since most substrates are limited in their capacity to take in large amount of ink, it is not always possible to print all colorant combinations necessary to determine the Neugebauer primaries (NP). A common solution is to estimate the nonprintable Neugebauer primaries from the single colorant primaries using the Kubelka-Munk (KM) optical model. In this work we test whether a better estimate can be obtained using general radiative transfer theory, which better represents the angular variation of the reflectance from highly absorbing media, and takes surface scattering into account. For this purpose we use the DORT2002 model. We conclude DORT2002 does not offer significant improvements over KM in the estimation of the NPs, but a significant improvement is obtained when using a simple surface scattering model. When the estimated primaries are used as inputs to the SN model instead of measured ones, it is found the SN model performs the same or better in terms of color difference and spectral error. If the mixed measured and estimated primaries are used as inputs to the SN model, it performs better than using either measured or estimated.

  7. The SRI24 Multi-Channel Brain Atlas

    PubMed Central

    Rohlfing, Torsten; Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2009-01-01

    We present a new standard atlas of the human brain based on magnetic resonance images. The atlas was generated using unbiased population registration from high-resolution images obtained by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises three anatomical channels (T1-weighted, early and late spin echo), three diffusion-related channels (fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by nonrigid transformations between the 24 subject images, as well as distortion-correction alignments between the image channels in each subject. The atlas can, therefore, be generated at essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without compounding interpolation artifacts. We demonstrate in this paper two different applications of the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the increased sharpness of our atlas compared with other available atlases, and (b) spatial normalization is enabled by its average shape property. In summary, our atlas has unique features and will be made available to the scientific community as a resource and reference system for future imaging-based studies of the human brain. PMID:19183706

  8. A robotic multi-channel platform for interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sharikova, Anna V.; Finlay, Jarod C.; Dimofte, Andreea; Zhu, Timothy C.

    2013-03-01

    A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel's motor had an optical encoder for position feedback, with resolution of 0.05 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials.

  9. Design of multichannel image processing on the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    2000-07-01

    The multi-channel image processing system on the Space Solar Telescope (SST) is described in this paper. This system is main part of science data unit (SDU), which is designed for dealing with the science data from every payload on the SST. First every payload on the SST and its scientific objective are introduced. They are main optic telescope, four soft X- ray telescopes, an H-alpha and white light (full disc) telescope, a coronagraph, a wide band X-ray and Gamma-ray spectrometer, and a solar and interplanetary radio spectrometer. Then the structure of SDU is presented. In this part, we discuss the hardware and software structure of SDU, which is designed for multi-payload. The science data scream of every payload is summarized, too. Solar magnetic and velocity field processing that occupies more than 90% of the data processing of SDU is discussed, which includes polarizing unit, image receiver and image adding unit. Last the plan of image data compression and mass memory that is designed for science data storage are presented.

  10. A software tool for analyzing multichannel cochlear implant signals.

    PubMed

    Lai, Wai Kong; Bögli, Hans; Dillier, Norbert

    2003-10-01

    A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems. PMID:14534409

  11. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  12. Gauge transformations in multichannel laser-interaction Hamiltonians

    NASA Astrophysics Data System (ADS)

    Armstrong, G. S. J.; Esry, B. D.

    2015-05-01

    In our previous studies of molecular photodissociation, we solved the time-dependent Schrödinger equation in full dimensionality, casting the laser-molecule interaction in a length-gauge form. The nuclear wave function is then expanded on a basis of symmetric top functions in the angular coordinates. However, a velocity gauge representation of the nuclear motion may be advantageous, and may reduce the number of partial waves required in the angular basis expansion. In molecular problems, the standard transformation between length and velocity gauge must take account of the presence of short-range non-linear radial dependence of the dipole. In problems involving a single channel, the short-range behavior is not removed by the gauge transformation, leading to a short-range mixed-gauge Hamiltonian. Having derived the form of this Hamiltonian, we extend our analysis to multichannel problems, where the gauge transformation is further complicated by off-diagonal dipole terms. We examine the impact of this transformation in full-dimensional calculations, particularly its effectiveness in reducing the required size of the angular basis. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S.A.

  13. A photon-counting multichannel spectrometer. [for astronomical optical spectroscopy

    NASA Technical Reports Server (NTRS)

    Shectman, S. A.; Hiltner, W. A.

    1977-01-01

    A multichannel detector system is described in which the positions of individual photon events in a high-gain image intensifier are decoded in the output of a video detector. The high-gain intensifier consists of a pair of three-stage electrostatic image-tube assemblies each containing three fiber-optically-coupled tubes potted in a rugged package with an internal high-voltage supply. Operation of the electrooptical system is discussed along with the pulse-detection process and the operation of the spectrograph in which the image-tube assembly is mounted. It is noted that the spectrometer detects 1.0 count/sec per A for an object of magnitude 13.0 at the peak of its response in the visual band when no light is lost on the slit, that a 10% coincidence correction is reached at an overall count rate of 860 per sec, and that the response follows an exponential law up to count rates of about 4000 per sec. The measured spectrum of the Seyfert galaxy NGC 5548 is provided as an example of the raw data produced by the instrument on a 1.5 meter telescope.

  14. Multichannel analysis of surface wave method with the autojuggie

    USGS Publications Warehouse

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  15. Multichannel quantum defect theory of strontium bound Rydberg states

    NASA Astrophysics Data System (ADS)

    Vaillant, C. L.; Jones, M. P. A.; Potvliege, R. M.

    2014-08-01

    Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory (MQDT) models for the singlet and triplet S, P, D and F states of strontium below the first ionization limit, based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series’ perturbers. Comparison between the predictions of the new models and those of previous empirical and ab initio studies reveals good agreement with most series; however, some discrepancies are highlighted. Using the MQDT wave functions derived from our models we calculate other observables such as Landé {{g}J}-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium.

  16. Biomimetic Micropatterned Multi-channel Nerve Guides by Templated Electrospinning

    PubMed Central

    Jeffries, Eric; Wang, Yadong

    2012-01-01

    This report describes a new approach for fabricating micro-channels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33-176μm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination. PMID:22179932

  17. Direct Hydrocarbon Detection Using Multi-channel Transient Electromagnetics

    NASA Astrophysics Data System (ADS)

    Hobbs, B. A.; Ziolkowski, A. M.; Wright, D. A.

    We present a transient electromagnetic method for the detection of hydrocarbons and for monitoring their movement within a reservoir. Replacement of brine by gas or oil can cause a change in electrical resistivity of a porous rock of as much as 4 orders of magnitude. Seismic methods on the other hand are generally poor at detecting fluid content because the fluid content of a media has only a slight effect on its acoustic impedance. The data presented in this paper were collected as part of two Multi-channel Transient ElectroMagnetic (MTEM) surveys carried out in 1994 and 1996 over an underground gas storage reservoir at St. Illiers la Ville in France. The reservoir is a 30% porosity sandstone anticline about 30m thick at a depth of around 700m. In the summer gas is pumped in and the gas-water contact falls; in the winter gas is extracted and the gas- water contact rises. The position of the contact is known from constant monitoring at over 40 wells. The surveys had two objectives: first, to attempt to detect the reservoir directly from the data; second, to detect the movement of the gas water contact be- tween the 2 survey times. A recent breakthrough in the understanding of the system has allowed both these objectives to be achieved.

  18. Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry.

    PubMed

    Ohira, Shin-Ichi; Kirk, Andrea B; Dasgupta, Purnendu K

    2009-01-15

    Urinary creatinine analysis is required for clinical diagnosis, especially for evaluation of renal function. Creatinine adjustment is also widely used to estimate 24-h excretion from spot samples. Few convenient validated approaches are available for in-house creatinine measurement for small- to medium-scale studies. Here we apply the Jáffe reaction to creatinine determination with zone fluidic multichannel kinetic spectrophotometry. Diluted urine sample and reagent, alkaline picric acid, were mixed by a computer-programmed dispenser and rapidly delivered to a four-channel detection cell. The absorbance change was monitored by a flow-through light-emitting diode-photodiode-based detector. Validation results against high-performance liquid chromatography-ultraviolet (HPLC-UV)/mass spectrometry (MS) are presented. Responses for 10-fold diluted samples were linear within clinically relevant ranges (0-250 mg/L after dilution). The system can analyze 70 samples per hour with a limit of detection of 0.76 mg/L. The relative standard deviation was 1.29% at 100 mg/L creatinine (n=225). Correlation with the HPLC (UV quantitation/MS confirmation) system was excellent (linear, r2=0.9906). The developed system allows rapid, simple, cost-effective, and robust creatinine analysis and is suitable for the analysis of large numbers of urine samples. PMID:18977332

  19. A multichannel telemetry system for single unit neural recordings.

    PubMed

    Obeid, Iyad; Nicolelis, Miguel A L; Wolf, Patrick D

    2004-02-15

    We present the design, testing, and evaluation of a 16 channel wearable telemetry system to facilitate multichannel single unit recordings from freely moving test subjects. Our design is comprised of (1) a 16-channel analog front end board to condition and sample signals derived from implanted neural electrodes, (2) a digital board for processing and buffering the digitized waveforms, and (3) an index-card sized 486 PC equipped with an IEEE 802.11b wireless ethernet card. Digitized data (up to 12 bits of resolution at 31.25k samples/s per channel) is transferred to the PC and sent to a nearby host computer on a wireless local area network. Up to 12 of the 16 channels were transmitted simultaneously for sustained periods at a range of 9 m. The device measures 5.1 cm x 8.1 cm x 12.4 cm, weighs 235 g, and is powered from rechargeable lithium ion batteries with a lifespan of 45 min at maximum transmission power. The device was successfully used to record signals from awake, chronically implanted macaque and owl monkeys. PMID:14757342

  20. Experimental study of the potential of multichannel acoustic thermotomography

    NASA Astrophysics Data System (ADS)

    Krotov, Eugene V.; Xenophontov, S. Y.; Mansfeld, Anatoly D.; Reyman, Alexander M.; Sanin, A. G.

    2001-06-01

    The results of experimental studies of 2D temperature profiles reconstruction inside soft tissues are presented. The 2D images are obtained as the result of mathematical data processing in multichannel scanning acoustic thermotomograph (AT). Operation of this device is based on the receiving of weak acoustic emission produced by thermal motion of medium particles. The intensity of received signal is proportional to the acoustical brightness temperature of emitting object, i.e. to its temperature and sound absorption. Some evident applications of this method are related with early tumor detection and internal temperature measurement during hyperthermal treatment. This kind of passive scanning provides great safety of investigation combined with rather good spatial resolution due to short wavelength and high directivity of AT antenna. Our experiments demonstrated localization of overheated phantom objects inside tissue-like absorbing media with temperature contrast about 0.4 K and 2 mm resolution at 2D images with area size 210x40 mm. The advantages and possible applications of this kind of clinical investigations are illustrated by the results of in vivo experiments on the variation of acoustic brightness temperature of human limbs and liver during some physiological tests. This work was supported by RFBR (project #00-02-16600).

  1. A scalable, fast, and multichannel arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Baig, M. T.; Johanning, M.; Wiese, A.; Heidbrink, S.; Ziolkowski, M.; Wunderlich, C.

    2013-12-01

    This article reports on the development of a multichannel arbitrary waveform generator that simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using a field programmable gate array. The device is operated using an internal clock and can be synced to other devices by means of transistor-transistor logic (TTL) pulses. The device can provide up to 24 independent voltages in the range of up to ± 9 V with a dynamic update-rate of up to 25 Msps and a power consumption of less than 35 W. Every channel can be programmed for 16 independent arbitrary waveforms that can be accessed during run time with a minimum switching delay of 160 ns. The device has a low-noise of 250 μVrms and provides a stable long-term operation with a drift rate below 10 μV/min and a maximum deviation less than ± 300 μVpp over a period of 2 h.

  2. High transformer ratio of multi-channel dielectric wakefield structures

    NASA Astrophysics Data System (ADS)

    Shchelkunov, Sergey V.; Marshall, Thomas C.; Sotnikov, Gennadij V.; Hirshfield, Jay L.

    2016-09-01

    Dielectric wakefield (DWA) accelerator concepts are receiving attention on account of their promising performance, mechanical simplicity, and anticipated low cost. Interest in DWA physics directed toward an advanced high-gradient accelerator has been enhanced by a finding that some dielectrics can withstand very high fields (>1 GV/m) for the short times during the passage of charged bunches along dielectric-lined channels. In a two-channel structure, a drive bunch train propagates in a first channel, and in the second adjacent channel where a high gradient wakefield develops, a witness bunch is accelerated. Compared with single-channel DWA's, a two-beam accelerator delivers a high transformer ratio, and thereby reduces the number of drive beam sections needed to achieve a given final test beam energy. An overview of multi-channel DWA structures will be given, with an emphasis on two-channel structures, presenting their advantages and drawbacks, and potential impact on the field. Studies aimed to examine charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications are presented in a separate paper in the EAAC-2015 conference proceedings.

  3. Open-loop dereverberation of multichannel room impulse responses

    NASA Astrophysics Data System (ADS)

    Lee, Bowon; Hasegawa-Johnson, Mark A.; Goudeseune, Camille

    2003-04-01

    We are developing the audio display for a CAVE-type virtual reality theater, a 3-m cube with displays covering all six rigid faces. The user's headgear continuously reports ear positions so headphones would be possible, but we nevertheless prefer loudspeakers because this enhances the sense of total immersion. Because sounds produced at the loudspeakers are distorted by the room impulse responses, we therefore face the problem of controlling the sound at the listener's two ears. Our proposed solution consists of open-loop acoustic point control, i.e., dereverberation. The room impulse responses from each loudspeaker to each ear of the listener are inverted using multichannel inversion methods, to create exactly the desired sound field at the listener's ears. Because the actual room impulse responses cannot be measured in real time (as the listener walks around), instead the impulse responses simulated by the image-source method is used. A new evaluation criterion is proposed to quantitatively evaluate both the simulation and the open-loop dereverberation. The actual impulse responses used for this evaluation are measured with a starter pistol, since this best approximates the point source assumed by the image-source method.

  4. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  5. Single particle multichannel bio-aerosol fluorescence sensor.

    PubMed

    Kaye, P; Stanley, W R; Hirst, E; Foot, E V; Baxter, K L; Barrington, S J

    2005-05-16

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1mum in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials. PMID:19495264

  6. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  7. Fast Adaptive Blind MMSE Equalizer for Multichannel FIR Systems

    NASA Astrophysics Data System (ADS)

    Kacha, Ibrahim; Abed-Meraim, Karim; Belouchrani, Adel

    2006-12-01

    We propose a new blind minimum mean square error (MMSE) equalization algorithm of noisy multichannel finite impulse response (FIR) systems, that relies only on second-order statistics. The proposed algorithm offers two important advantages: a low computational complexity and a relative robustness against channel order overestimation errors. Exploiting the fact that the columns of the equalizer matrix filter belong both to the signal subspace and to the kernel of truncated data covariance matrix, the proposed algorithm achieves blindly a direct estimation of the zero-delay MMSE equalizer parameters. We develop a two-step procedure to further improve the performance gain and control the equalization delay. An efficient fast adaptive implementation of our equalizer, based on the projection approximation and the shift invariance property of temporal data covariance matrix, is proposed for reducing the computational complexity from[InlineEquation not available: see fulltext.] to[InlineEquation not available: see fulltext.], where[InlineEquation not available: see fulltext.] is the number of emitted signals,[InlineEquation not available: see fulltext.] the data vector length, and[InlineEquation not available: see fulltext.] the dimension of the signal subspace. We then derive a statistical performance analysis to compare the equalization performance with that of the optimal MMSE equalizer. Finally, simulation results are provided to illustrate the effectiveness of the proposed blind equalization algorithm.

  8. The SRI24 multichannel brain atlas: construction and applications

    NASA Astrophysics Data System (ADS)

    Rohlfing, Torsten; Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2008-03-01

    We present a new standard atlas of the human brain based on magnetic resonance images. The atlas was generated using unbiased population registration from high-resolution images obtained by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises three anatomical channels (T I-weighted, early and late spin echo), three diffusion-related channels (fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by nonrigid transformations between the 24 subject images, as well as distortion-correction alignments between the image channels in each subject. The atlas can, therefore, be generated at essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without compounding interpolation artifacts. We demonstrate in this paper two different applications of the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the increased sharpness of our atlas compared with other available atlases, and (b) spatial normalization is enabled by its average shape property. In summary, our atlas has unique features and will be made available to the scientific community as a resource and reference system for future imaging-based studies of the human brain.

  9. The Optimum Loudspeaker Arrangements for Multichannel Sound System

    NASA Astrophysics Data System (ADS)

    Hiyama, Koichiro; Komiyama, Setsu; Hamasaki, Kimio

    2002-09-01

    This paper discusses the number of loudspeakers for multichannel sound systems to reproduce the spatial impression of diffuse sound field, such as in auditorium. Some subjective experiments were conducted in order to find suitable numbers and arrangement of loudspeakers. On the experiments, reference diffuse sound filed was produced by 24 loudspeakers that were placed at every 15 degrees along a concentric circle around the listener in an anechoic room. And then, the number of loudspeakers, which radiated sound sources or reverberations, was reduced from 24 to 12, 8, 6, 4, 3, 2 and then each spatial impression was compared with the reference sound of 24 loudspeakers. For the sound source of these experiments, noises and musical sounds were used. It becomes clear that the spatial impression of diffuse sound field can be reproduced by only two symmetrical pairs of loudspeakers (that is, four loudspeakers in all). On this arrangement, one pair of loudspeakers should be place in the frontal area around the listener with in angle of about 60 deg, and the other pair should be in the rear area with an angle of 120 to 180 deg.

  10. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGESBeta

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes mb = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  11. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  12. A multi-channel fiber optic proximity sensor

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Kwon; Joo, Ki-Nam

    2016-03-01

    In this investigation, we propose an efficient multi-channel optical proximity sensor based on the spectrally-resolved interferometric principle. This sensor consists of a single optical source, a spectrometer and fiber optic components such as an optical circulator, a coarse wavelength division multiplexer (CWDM) and fiber optic probes. A spectrometer is used to detect the spectral interferograms of the measuring probes according to their own spectral bandwidths and the interference signals can be separated by the spectral filtering by a CWDM. The principle of the proposed sensor system was verified with feasibility experiments with the home-built 4 channel sensor system. The measuring range of each channel was 1 mm and the resolution was a few tens of nanometers determined by the deviation of linear motions. The stability of the sensor was less than 30 nm. With the aid of a broadband source and a spectrometer, the measurement channel can be extended further by using a suitable CWDM.

  13. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  14. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  15. Reproducibility and optimization of in vivo human diffusion-weighted MRS of the corpus callosum at 3 T and 7 T.

    PubMed

    Wood, Emily T; Ercan, Ayse Ece; Branzoli, Francesca; Webb, Andrew; Sati, Pascal; Reich, Daniel S; Ronen, Itamar

    2015-08-01

    Diffusion-weighted MRS (DWS) of brain metabolites enables the study of cell-specific alterations in tissue microstructure by probing the diffusion of intracellular metabolites. In particular, the diffusion properties of neuronal N-acetylaspartate (NAA), typically co-measured with N-acetylaspartyl glutamate (NAAG) (NAA + NAAG = tNAA), have been shown to be sensitive to intraneuronal/axonal damage in pathologies such as stroke and multiple sclerosis. Lacking, so far, are empirical assessments of the reproducibility of DWS measures across time and subjects, as well as a systematic investigation of the optimal acquisition parameters for DWS experiments, both of which are sorely needed for clinical applications of the method. In this study, we acquired comprehensive single-volume DWS datasets of the human corpus callosum at 3 T and 7 T. We investigated the inter- and intra-subject variability of empirical and modeled diffusion properties of tNAA [D(avg) (tNAA) and D(model) (tNAA), respectively]. Subsequently, we used a jackknife-like resampling approach to explore the variance of these properties in partial data subsets reflecting different total scan durations. The coefficients of variation (C(V)) and repeatability coefficients (C(R)) for D(avg) (tNAA) and D(model) (tNAA) were calculated for both 3 T and 7 T, with overall lower variability in the 7 T results. Although this work is limited to the estimation of the diffusion properties in the corpus callosum, we show that a careful choice of diffusion-weighting conditions at both field strengths allows the accurate measurement of tNAA diffusion properties in clinically relevant experimental time. Based on the resampling results, we suggest optimized acquisition schemes of 13-min duration at 3T and 10-min duration at 7 T, whilst retaining low variability (C(V) ≈ 8%) for the tNAA diffusion measures. Power calculations for the estimation of D(model )(tNAA) and D(avg) (tNAA) based on the suggested schemes show that

  16. Advanced technology for a satellite multichannel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Abramovitz, Irwin J.; Flechsig, Drew E.; Matteis, Richard M., Jr.

    1994-01-01

    Satellite on-board processing is needed to efficiently service multiple users while at the same time minimizing earth station complexity. The processing satellite receives a wideband uplink at 30 GHz and down-converts it to a suitable intermediate frequency. A multichannel demultiplexer then separates the composite signal into discrete channels. Each channel is then demodulated by bulk demodulators, with the baseband signals routed to the downlink processor for retransmission to the receiving earth stations. This type of processing circumvents many of the difficulties associated with traditional bent-pipe repeater satellites. Uplink signal distortion and interference are not retransmitted on the downlink. Downlink power can be allocated in accordance with user needs, independent of uplink transmissions. This allows the uplink users to employ different data rates as well as different modulation and coding schemes. In addition, all downlink users have a common frequency standard and symbol clock on the satellite, which is useful for network synchronization in time division multiple access schemes. The purpose of this program is to demonstrate the concept of an optically implemented multichannel demultiplexer (MCD). A proof-of-concept (POC) model has been developed which has the ability to receive a 40 MHz wide composite signal consisting of up to 1000 40 kHz QPSK modulated channels and perform the demultiplexing process. In addition a set of special test equipment (STE) has been configured to evaluate the performance of the POC model. The optical MCD is realized as an acousto-optic spectrum analyzer utilizing the capability of Bragg cells to perform the required channelization. These Bragg cells receive an optical input from a laser source and an RF input (the signal). The Bragg interaction causes optical output diffractions at angles proportional to the RF input frequency. These discrete diffractions are optically detected and output to individual demodulators for

  17. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  18. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  19. Optimisation of T₂*-weighted MRI for the detection of small veins in multiple sclerosis at 3 T and 7 T.

    PubMed

    Dixon, Jennifer Elizabeth; Simpson, Ashley; Mistry, Niraj; Evangelou, Nikos; Morris, Peter Gordon

    2013-05-01

    T₂*-weighted magnetic resonance imaging at 7 T has recently been shown to allow differentiation between white-matter multiple sclerosis lesions and asymptomatic white-matter lesions, by the presence or absence of a detectable central blood vessel. The aim of the present work is to improve the technique by increasing the sensitivity to veins at both 3 T and 7 T, and to assess the benefit of ultra-high-field imaging. Signal-to-noise ratio (SNR) measurements and simulations are used to compare the sensitivity of magnitude T₂*-weighted and susceptibility-weighted images for the detection of small veins (<1 pixel in diameter), both with and without the use of gadolinium. The simulations are used to predict the optimal scanning parameters in order to increase the sensitivity to these veins at both field strengths, and to reduce the inherent dependence on vessel orientation. The sensitivities of the sequences at both field strengths are compared, theoretically and experimentally, in order to quantify the benefit of imaging at ultra-high-field. Subjects with multiple sclerosis (MS) are scanned at both field strengths, using the optimised sequence parameters, as well as those used in previously published work, and the optimisation is shown to improve the detection of veins within lesions. PMID:22138119

  20. 7-T (1) H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil.

    PubMed

    Boer, V O; van Lier, A L H M W; Hoogduin, J M; Wijnen, J P; Luijten, P R; Klomp, D W J

    2011-11-01

    In vivo MRS of the human brain at ultrahigh field allows for the identification of a large number of metabolites at higher spatial resolutions than currently possible in clinical practice. However, the in vivo localization of single-voxel spectroscopy has been shown to be challenging at ultrahigh field because of the low bandwidth of refocusing radiofrequency (RF) pulses. Thus far, the proposed methods for localized MRS at 7 T suffer from long TE, inherent signal loss and/or a large chemical shift displacement artifact that causes a spatial displacement between resonances, and results in a decreased efficiency in editing sequences. In this work, we show that, by driving a standard volume coil with two RF amplifiers, focusing the B 1+ field in a certain location and using high-bandwidth adiabatic refocusing pulses, a semi-LASER (semi-localized by adiabatic selective refocusing) localization is feasible at short TE in the human brain with full signal acquisition and a low chemical shift displacement artifact at 7 T. PMID:21294206

  1. 7-T magnetic resonance imaging of the inner ear's anatomy by using dual four-element radiofrequency coil arrays and the VIBE sequence

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-02-01

    An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.

  2. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  3. Processing of multichannel seismic reflection data acquired in 2013 for seismic investigations of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Miller, John J.; Agena, Warren F.; Haines, Seth S.; Hart, Patrick E.

    2016-01-01

    As part of a cooperative effort among the U.S. Geological Survey (USGS), the U.S. Department of Energy, and the U.S. Department of the Interior Bureau of Ocean Energy Management, two grids of two-dimensional multichannel seismic reflection data were acquired in the Gulf of Mexico over lease blocks Green Canyon 955 and Walker Ridge 313 between April 18 and May 3, 2013. The purpose of the data acquisition was to fill knowledge gaps in an ongoing study of known gas hydrate accumulations in the area. These data were initially processed onboard the recording ship R/V Pelican for more quality control during the recording. The data were subsequently processed in detail by the U.S. Geological Survey in Denver, Colorado, in two phases. The first phase was to create a “kinematic” dataset that removed extensive noise present in the data but did not preserve relative amplitudes. The second phase was to create a true relative amplitude dataset that included noise removal and “wavelet” deconvolution that preserved the amplitude information. This report describes the processing techniques used to create both datasets.

  4. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  5. Recent Progress of the HL-2A Multi-Channel HCOOH Laser Interferometer/Polarimeter

    NASA Astrophysics Data System (ADS)

    Li, Yonggao; Zhou, Yan; Deng, Zhongchao; Li, Yuan; Yi, Jiang; Wang, Haoxi

    2015-05-01

    A multichannel methanoic acid (HCOOH, λ = 432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ = 337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of ˜30 mW, and a power stability <10% in 50 min. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase-comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign. supported by the National Magnetic Confinement Fusion Science Programs of China (Nos. 2010GB101002 and 2014GB109001), and National Natural Science Foundation of China (Nos. 11075048 and 11275059)

  6. Multichannel inversion of scattered teleseismic body waves: Practical considerations and applicability

    NASA Astrophysics Data System (ADS)

    Rondenay, Stéphane; Bostock, Michael G.; Fischer, Karen M.

    We investigate the resolving power and applicability of a recently developed technique for multichannel inversion of scattered teleseismic body waves recorded at dense seismic arrays. The problem is posed for forward- and back-scattered wavefields generated at discontinuities in a 2D isotropic medium, with the backprojection operator cast as a generalized Radon transform (GRT). The approach allows for the treatment of incident plane waves from arbitrary backazimuths, and recovers estimates of material property perturbations about a smoothly varying reference model. An investigation of the main factors affecting resolution indicates that: (1) comprehensive source/station coverage is necessary to optimize geometrical resolution and recover accurate material property perturbations; (2) the range in dip resolution diminishes with increasing depth and is inversely proportional to array width (e.g., reaches [-45°,45°] at depths equivalent to ˜1/2 array width); (3) distortion of the image due to spatial aliasing is only significant at depths ≤2 × [station spacing]; and (4) unaccounted for departures from model assumptions (i.e., isotropy and 2D geometry) result in defocusing and mismapping of structure. Two applications to field data are presented. The first considers data from the Abitibi 1996 broadband array, in which stations were deployed at ˜20 km intervals. Imaging results show that this level of spatial sampling, which is characteristic of modern broadband arrays, is sufficient to adequately resolve structure below mid-crustal depths. For these data, we introduce a new preprocessing algorithm that uses eigenimage decomposition of seismic sections to suppress wavefield contamination by PcP and PP phases. The second application involves short period data from the Los Angeles Region Seismic Experiment and shows that images obtained from high frequency records are subject to significant contamination by scattered surface waves.

  7. Time-varying bispectral analysis of visually evoked multi-channel EEG

    NASA Astrophysics Data System (ADS)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  8. Gaussian mixture modeling and clustering of hidden objects with multichannel passive millimeter wave images

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dong-Su; Lee, Hyoung; Son, Jung-Young; Guschin, V. P.

    2014-06-01

    In this paper, we review automatic concealed object recognition with multi-channel passive millimeter wave images. A four-channel passive millimeter wave imaging system operates in the 8 and 3 mm wavelength regimes with linear vertical and horizontal polarization directions. Registration between multi-channel images and segmentation of concealed objects are addressed. Multi-channel image registration is performed by means of the affine transform derived by the geometric feature matching. Gaussian mixture models are adopted to cluster hidden object pixels in the images. Multi-level segmentation separates the human body region from the background, and concealed objects from the body region, sequentially. In the experiments, the metallic and non-metallic objects concealed under clothing are captured and processed.

  9. Maximum a posteriori video super-resolution using a new multichannel image prior.

    PubMed

    Belekos, Stefanos P; Galatsanos, Nikolaos P; Katsaggelos, Aggelos K

    2010-06-01

    Super-resolution (SR) is the term used to define the process of estimating a high-resolution (HR) image or a set of HR images from a set of low-resolution (LR) observations. In this paper we propose a class of SR algorithms based on the maximum a posteriori (MAP) framework. These algorithms utilize a new multichannel image prior model, along with the state-of-the-art single channel image prior and observation models. A hierarchical (two-level) Gaussian nonstationary version of the multichannel prior is also defined and utilized within the same framework. Numerical experiments comparing the proposed algorithms among themselves and with other algorithms in the literature, demonstrate the advantages of the adopted multichannel approach. PMID:20129860

  10. Note: Design and investigation of a multichannel plasma-jet triggered gas switch

    NASA Astrophysics Data System (ADS)

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  11. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  12. Multivariate multiscale entropy: a tool for complexity analysis of multichannel data.

    PubMed

    Ahmed, Mosabber Uddin; Mandic, Danilo P

    2011-12-01

    This work generalizes the recently introduced univariate multiscale entropy (MSE) analysis to the multivariate case. This is achieved by introducing multivariate sample entropy (MSampEn) in a rigorous way, in order to account for both within- and cross-channel dependencies in multiple data channels, and by evaluating it over multiple temporal scales. The multivariate MSE (MMSE) method is shown to provide an assessment of the underlying dynamical richness of multichannel observations, and more degrees of freedom in the analysis than standard MSE. The benefits of the proposed approach are illustrated by simulations on complexity analysis of multivariate stochastic processes and on real-world multichannel physiological and environmental data. PMID:22304127

  13. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

    SciTech Connect

    Houfek, Karel

    2008-09-01

    Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

  14. Improving auditory steady-state response detection using independent component analysis on multichannel EEG data.

    PubMed

    Van Dun, Bram; Wouters, Jan; Moonen, Marc

    2007-07-01

    Over the last decade, the detection of auditory steady-state responses (ASSR) has been developed for reliable hearing threshold estimation at audiometric frequencies. Unfortunately, the duration of ASSR measurement can be long, which is unpractical for wide scale clinical application. In this paper, we propose independent component analysis (ICA) as a tool to improve the ASSR detection in recorded single-channel as well as multichannel electroencephalogram (EEG) data. We conclude that ICA is able to reduce measurement duration significantly. For a multichannel implementation, near-optimal performance is obtained with five-channel recordings. PMID:17605353

  15. Multichannel active control of nonlinear noise processes using diagonal structure bilinear FXLMS algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Yuan, Ding; Li, Tan; Sidan, Du

    2015-12-01

    A novel nonlinear adaptive algorithm named as diagonal structure bilinear filtered-x least mean square (DBFXLMS) for multichannel nonlinear active noise control is proposed in this paper. The performances of the proposed algorithm are shown below and the computational complexity is compared with the second-order Volterra filtered-x LMS (VFXLMS) algorithm and the filtered-s least mean square (FSLMS) algorithm, in terms of normalized mean square error (NMSE), for multichannel active control of nonlinear noise processes. Both the simulations and the computational complexity analyses demonstrate that the proposed method has an improvement as compared to the proposed algorithms.

  16. Single-frame multichannel blind deconvolution by nonnegative matrix factorization with sparseness constraints

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica

    2005-12-01

    Single-frame multichannel blind deconvolution is formulated by applying a bank of Gabor filters to a blurred image. The key observation is that spatially oriented Gabor filters produce sparse images and that a multichannel version of the observed image can be represented as a product of an unknown nonnegative sparse mixing vector and an unknown nonnegative source image. Therefore a blind-deconvolution problem is formulated as a nonnegative matrix factorization problem with a sparseness constraint. No a priori knowledge about the blurring kernel or the original image is required. The good experimental results demonstrate the viability of the proposed concept.

  17. Single-frame multichannel blind deconvolution by nonnegative matrix factorization with sparseness constraints.

    PubMed

    Kopriva, Ivica

    2005-12-01

    Single-frame multichannel blind deconvolution is formulated by applying a bank of Gabor filters to a blurred image. The key observation is that spatially oriented Gabor filters produce sparse images and that a multichannel version of the observed image can be represented as a product of an unknown nonnegative sparse mixing vector and an unknown nonnegative source image. Therefore a blind-deconvolution problem is formulated as a nonnegative matrix factorization problem with a sparseness constraint. No a priori knowledge about the blurring kernel or the original image is required. The good experimental results demonstrate the viability of the proposed concept. PMID:16342700

  18. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  19. Innovative RF Design Unites Benefits of Multiplexed and Multi-Channel System

    NASA Astrophysics Data System (ADS)

    Mavrič, Uroš

    2004-11-01

    The main advantages of the implemented innovative RF design are reproducibility, accuracy, low measurement uncertainty, and compact design. They were achieved by implementing the direct RF sampling and the completely new, patent pending technological approach of quasi-crossbar multiplexing and associated measurement method. The innovative quasi-crossbar switch matrix unites the benefits of both the multi-channel and the multiplexed system and at the same time compensates the disadvantages of the two. We achieve reproducibility and good "beam vs. current" dependence, which are multiplexed system characteristics and, using a multi-channel approach, we ensure a broader band of operation.

  20. Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength.

    PubMed

    Brahm, Anika; Wilms, Annika; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Notni, Gunther; Tünnermann, Andreas

    2014-06-01

    We present Terahertz (THz) imaging with a 1D multichannel time-domain spectroscopy (TDS) system which operates with a photoconductive array of 15 detection channels excited by a 1030 nm femtosecond fiber laser. The emitter and detector are photoconductive antennas based on InGaAs/InAlAs multi-layer heterostructures (MLHS). We characterized the THz optics and the resolution of the system. The performance is demonstrated by the multichannel imaging of two samples. A simultaneous measurement of 15 THz pulses with a pixel pitch of 1 mm increases the measurement speed of the TDS system by factor 15. PMID:24921495

  1. Flexibly tunable multichannel filter and bandpass filter based on long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Hyuck Kim, Sang; Lee, Sang Bae

    2004-05-01

    The voltage-controllable multichannel filter based on multiply cascaded long-period fiber gratings with a divided coil heater will be proposed and experimentally demonstrated. It has several advantages of the large tuning range in both C- and L-band, multichannel operation, multiwavelength electivity, and bandwidth controllability. The tunable bandpass filter based on long-period fiber gratings ith the broad bandwidth over 6.5 nm, large tuning range over 30 nm, and excellent side mode suppression more than 40 dB will be also discussed.

  2. Multichannel magnetic stimulation system design considering mutual couplings among the stimulation coils.

    PubMed

    Han, Byung H; Chun, In K; Lee, Sang C; Lee, Soo Y

    2004-05-01

    We introduce some simulation and experiment results of the multichannel magnetic stimulator development that has been carried out as an initial attempt to realize a multichannel functional magnetic stimulator. For efficient functional magnetic stimulations, precise spatial localization of stimulation sites without any movements of the stimulation coils is very important. We have found that the mutual coupling effect among the adjacent stimulation coils in the coil array has to be considered in the determination of the charge voltages in some coil array configurations. Experimental results obtained with a 4-channel magnetic stimulator are presented. PMID:15132507

  3. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Buselli, G.; Lu, Kanglin

    2001-08-01

    Electrical and ground-based electromagnetic surveys have been carried out at the Ranger minesite in the Northern Territory, Australia to investigate their use in detecting any seepage from structures used to store ore processing tailings. The main aim of this work has been to develop a clearer understanding of any seepage problems at this minesite using a combination of self-potential (SP), direct current (DC) resistivity, induced polarisation (IP), and transient electromagnetic (TEM) methods, with the results being interpreted in conjunction with hydrogeological data. Ultimately, it is aimed to apply an optimal combination of the methods to long-term monitoring of potential seepage. A 64-channel system developed at the Cooperative Research Centre for Australian Mineral Exploration Technologies (CRC AMET) has been used to record simultaneously the response at a number of electrodes with the SP, DC resistivity and IP methods. A 2D array of electrodes was set up to monitor the SP response over an area measuring 200×300 m. The simultaneous measurements enable time-varying telluric noise associated with SP responses to be minimised. In-line array DC resistivity and IP measurements were made efficiently at 10-m station intervals with the multichannel system, e.g. complete Schlumberger soundings centred at 30 separate stations were made in approximately half a day. Data collected in October and December 1998 north of the Ranger minesite tailings dam are the first of a long-term project, in which changes of responses will be monitored. A trend of increasing chargeability is observed towards a fault that is the main path of any seepage from the tailings dam. At this stage, maps of the SP response measured with the 2D array at different times indicate that the results are reproducible, and there is an association of an SP anomaly with the presence of seepage in an intersection of two faults. It appears that the IP and SP methods offer the best possibility for the direct

  4. Estimation de la durée de vie du verre R7T7 dans différents milieux

    NASA Astrophysics Data System (ADS)

    Vernaz, Étienne Y.

    2002-10-01

    Fission product containment glasses were the first matrices for which long-term behavior studies were undertaken. A substantial body of results has been obtained over the last twenty years, international scientific cooperation programs have been developed, and a strict methodology has progressively been defined to predict the behavior of these materials on a time scale of several tens of thousands of years. The excellent self-irradiation resistance of the French 'R7T7' glass has been demonstrated. Models of aqueous alteration under optimized but realistic geological disposal conditions suggest a glass package lifetime of several million years. To cite this article: É.Y. Vernaz, C. R. Physique 3 (2002) 813-825.

  5. Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively

    PubMed Central

    Ribot, Emeline J.; Wecker, Didier; Trotier, Aurélien J.; Dallaudière, Benjamin; Lefrançois, William; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2015-01-01

    Introduction The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. Methods In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging. Results The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV. Conclusion In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications. PMID:26426849

  6. Investigation of the possibility of creating a multichannel photodetector based on the avalanche MRS-structure

    NASA Astrophysics Data System (ADS)

    Sadyigov, Z. Y.; Gasanov, A. G.; Yusipov, N. Y.; Golovin, V. M.; Gulanian, Emin H.; Vinokurov, Y. S.; Simonov, A. V.

    1991-11-01

    Investigation results of the avalanche process in MRS-structure are given and the possibility of creating the multichannel avalanche photodetector based on such a structure for the one- dimensional hologram disk memory system is considered. The experimental sample of the photodetector has sensitivity approximately 104 A/W with wavelength (lambda) approximately equals 0.63 micrometers and response speed approximately 5 nsec.

  7. Designing Multi-Channel Web Frameworks for Cultural Tourism Applications: The MUSE Case Study.

    ERIC Educational Resources Information Center

    Garzotto, Franca; Salmon, Tullio; Pigozzi, Massimiliano

    A framework for the design of multi-channel (MC) applications in the cultural tourism domain is presented. Several heterogeneous interface devices are supported including location-sensitive mobile units, on-site stationary devices, and personalized CDs that extend the on-site experience beyond the visit time thanks to personal memories gathered…

  8. Studies of midaltitude cyclone structure with SEASAT scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The data provided by the atmospheric water channels of SEASAT's Scanning Multichannel Microwave Radiometer (SMMR) is used to investigate mesoscale structure at various stages of the development of a midlatitude cyclone. Seasonal and graphic differences in the storms are also studied.

  9. Schwinger multichannel study of the 2Pi(g) shape resonance in N2

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent

    1987-01-01

    The results of a study on electron-target correlations in the 2Pi(g) shape resonance of elastic e-N2 scattering, using the Schwinger multichannel formulation, are reported. The effects of basis set, orbital representation, and closed-channel-configurations are delineated. The different roles of radial and angular correlations are compared.

  10. Program Type Preference and Program Choice in Multi-Channel Situation.

    ERIC Educational Resources Information Center

    Youn, Sug-Min

    A study investigated the relationship between television program type preference and program choice in a multichannel situation. Program type categories were constructed which tapped in the program type distinction mentally represented in viewers' minds and a more elaborate measure of program choice options was developed. A total of 442…

  11. Performance over Time of Congenitally Deaf and Postlingually Deafened Children Using a Multichannel Cochlear Implant.

    ERIC Educational Resources Information Center

    Fryauf-Bertschy, Holly; And Others

    1992-01-01

    The speech perception performance of 10 congenitally deaf and 3 postlingually deafened children who received multichannel cochlear implants were compared at preimplant and 6-month intervals up to 2 years. The congenitally deaf children did not exhibit measurably improved performance until after 12 months or more of implant use, whereas…

  12. Visual Representation of Eye Gaze Is Coded by a Nonopponent Multichannel System

    ERIC Educational Resources Information Center

    Calder, Andrew J.; Jenkins, Rob; Cassel, Anneli; Clifford, Colin W. G.

    2008-01-01

    To date, there is no functional account of the visual perception of gaze in humans. Previous work has demonstrated that left gaze and right gaze are represented by separate mechanisms. However, these data are consistent with either a multichannel system comprising separate channels for distinct gaze directions (e.g., left, direct, and right) or an…

  13. A Longitudinal Evaluation of the Speech Perception Capabilities of Children Using Multichannel Tactile Vocoders.

    ERIC Educational Resources Information Center

    Eilers, Rebecca E.; And Others

    1996-01-01

    Thirty children with profound hearing impairments were followed over a three-year period with a semiannual battery of speech perception tests. Testing utilized multichannel tactile vocoders in variations of tactile and/or auditory/visual conditions. Performance in the tactile plus auditory condition generally exceeded that in other conditions,…

  14. Multichannel Learning Research Applied to Principles of Television Production: A Review and Synthesis of the Literature.

    ERIC Educational Resources Information Center

    Hanson, LuEtt

    1989-01-01

    Reviews multichannel learning research to find the best ways to combine audio and video in television to improve learning, and summarizes the research findings into principles for instructional television production. Highlights include the effects of redundancy on learning and on audience attention, message clarity, and problems in instructional…

  15. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR). PMID:25882406

  16. A possible edge effect in enhanced network. [solar K-line observations by multichannel spectrometer

    NASA Technical Reports Server (NTRS)

    Jones, H. P.; Brown, D. R.

    1977-01-01

    K-line observations of enhanced network taken with the NASA/SPO Multichannel Spectrometer on September 28, 1975, in support of OSO-8 are discussed. The data show a correlation between core brightness and asymmetry for spatial scans which cross enhanced network boundaries. The implications of this result concerning mass flow in and near supergranule boundaries are discussed.

  17. Consequences of Broad Auditory Filters for Identification of Multichannel-Compressed Vowels

    ERIC Educational Resources Information Center

    Souza, Pamela; Wright, Richard; Bor, Stephanie

    2012-01-01

    Purpose: In view of previous findings (Bor, Souza, & Wright, 2008) that some listeners are more susceptible to spectral changes from multichannel compression (MCC) than others, this study addressed the extent to which differences in effects of MCC were related to differences in auditory filter width. Method: Listeners were recruited in 3 groups:…

  18. Azimuthal entanglement and multichannel Schmidt-type decomposition of noncollinear biphotons

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.

    2016-03-01

    Purely azimuthal entanglement is analyzed for noncollinear frequency-degenerate biphoton states. The degree of azimuthal entanglement is found to be very high, with the Schmidt parameter K on the order of the ratio of the pump waist to its wavelength. A scheme is suggested for partial realization of this high entanglement resource in the form of a multichannel Schmidt-type decomposition.

  19. Digital filter suppresses effects of nonstatistical noise bursts on multichannel scaler digital averaging systems

    NASA Technical Reports Server (NTRS)

    Goodman, L. S.; Salter, F. O.

    1968-01-01

    Digital filter suppresses the effects of nonstatistical noise bursts on data averaged over multichannel scaler. Interposed between the sampled channels and the digital averaging system, it uses binary logic circuitry to compare the number of counts per channel with the average number of counts per channel.

  20. Multichannel fNIRS Assessment of Overt and Covert Confrontation Naming

    ERIC Educational Resources Information Center

    Moriai-Izawa, Ayano; Dan, Haruka; Dan, Ippeita; Sano, Toshifumi; Oguro, Keiji; Yokota, Hidenori; Tsuzuki, Daisuke; Watanabe, Eiju

    2012-01-01

    Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to…

  1. Multichannel Decoded Local Binary Patterns for Content-Based Image Retrieval.

    PubMed

    Dubey, Shiv Ram; Singh, Satish Kumar; Singh, Rajat Kumar

    2016-09-01

    Local binary pattern (LBP) is widely adopted for efficient image feature description and simplicity. To describe the color images, it is required to combine the LBPs from each channel of the image. The traditional way of binary combination is to simply concatenate the LBPs from each channel, but it increases the dimensionality of the pattern. In order to cope with this problem, this paper proposes a novel method for image description with multichannel decoded LBPs. We introduce adder- and decoder-based two schemas for the combination of the LBPs from more than one channel. Image retrieval experiments are performed to observe the effectiveness of the proposed approaches and compared with the existing ways of multichannel techniques. The experiments are performed over 12 benchmark natural scene and color texture image databases, such as Corel-1k, MIT-VisTex, USPTex, Colored Brodatz, and so on. It is observed that the introduced multichannel adder- and decoder-based LBPs significantly improve the retrieval performance over each database and outperform the other multichannel-based approaches in terms of the average retrieval precision and average retrieval rate. PMID:27295674

  2. A Multi-Channel Approach for Collaborative Web-Based Learning

    ERIC Educational Resources Information Center

    Azeta, A. A.

    2008-01-01

    This paper describes an architectural framework and a prototype implementation of a web-based multi-channel e-Learning application that allows students, lecturers and the research communities to collaborate irrespective of the communication device a user is carrying. The application was developed based on the concept of "right once run on any…

  3. Self-adaptive method for high frequency multi-channel analysis of surface wave method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...

  4. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  5. The Objective and Subjective Evaluation of Multichannel Expansion in Wide Dynamic Range Compression Hearing Instruments

    ERIC Educational Resources Information Center

    Plyler, Patrick N.; Lowery, Kristy J.; Hamby, Hilary M.; Trine, Timothy D.

    2007-01-01

    Purpose: The effects of multichannel expansion on the objective and subjective evaluation of 20 listeners fitted binaurally with 4-channel, digital in-the-ear hearing instruments were investigated. Method: Objective evaluations were conducted in quiet using the Connected Speech Test (CST) and in noise using the Hearing in Noise Test (HINT) at 40,…

  6. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  7. Predictable Equilibrium Multichannel Network Characteristizes The Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, Paul

    2015-04-01

    PREDICTABLE EQUILIBRIUM MULTICHANNEL NETWORK CHARACTERIZES THE INDUS RIVER, PAKISTAN Carling, P.A.1, Trieu, H.1, Hornby, D.2, Darby, S.E.1, Sear, D.A.1, Hutton, C.2, Ali, Z.3, Iqbal, I.3 1Geography & Environment, University of Southampton, Southampton, UK; 2GeoData, University of Southampton, Southampton, UK; 3SUPARCO, Karachi, Pakistan The Indus River in Pakistan between Chasma and Taunsa is a 304 river km reach characterised by islands dividing multiple channels. Previously, the behaviour of such channel networks has been considered unpredictable. Crosato & Mosselman (2009) argue that physics-based predictors of channel splitting developed for braided-river bars apply poorly to island-divided rivers and recommend the application of regime theory (Bettess & White, 1983) to predict the number (n) of channels in rivers such as the Indus. The Indus is characterized by two to 11 channels at each cross section with, on average, about four channels being active during the dry season and five during the monsoon. Thus the expansion of the network during the monsoon is slight and is due to reoccupation of channels that are dry during low flows. The network evolves on an annual basis primarily due to bendway progression, whilst avulsions to form major new channels are relatively rare (one or two in the reach per year) and are matched by a similar number of closures. Thus the network structure, if not its shape, is relatively stable year to year. The standard deviation of channel numbers comparing sections throughout the reach is practically identical at c. two channels and there is no significant variation between years. Theory indicates that stable networks have three to four channels, thus the stability in the number of active channels through the annual monsoon and between years accords with the presence of a near-equilibrium reach-scale channel network that demonstrates local disequilibrium when 3 > n > 4, being perturbed by the annual monsoon. Application of the

  8. RF/microwave system high-fidelity modeling and simulation: application to airborne multi-channel receiver system for angle of arrival estimation

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Rajan, Sreeraman; Young, Anne; O'Regan, Christina

    2014-06-01

    In this paper, a high-fidelity RF modeling and simulation framework is demonstrated to model an airborne multi-channel receiver system that is used to estimate the angle of arrival (AoA) of received signals from a stationary emitter. The framework is based on System Tool Kit (STK®), Matlab and SystemVue®. The SystemVue-based multi-channel receiver estimates the AoA of incoming signals using adjacent channel amplitude and phase comparisons, and it estimates the Doppler frequency shift of the aircraft by processing the transmitted and received signals. The estimated AoA and Doppler frequency are compared with the ground-truth data provided by STK to validate the efficacy of the modeling process. Unlike other current RF electronic warfare simulation frameworks, the received signal described herein is formed using the received power, the propagation delay and the transmitted waveform, and does not require information such as Doppler frequency shift or radial velocity of the moving platform from the scenario; hence, the simulation is more computationally efficient. In addition, to further reduce the overall modeling and simulation time, since the high-fidelity model computation is costly, the high-fidelity electronic system model is evoked only when the received power is higher than a predetermined threshold.

  9. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  10. Characteristics of nighttime reflux assessed using multichannel intraluminal impedance pH monitoring and a portable electroencephalograph.

    PubMed

    Fujiwara, Y; Kohata, Y; Nakahara, K; Tanigawa, T; Yamagami, H; Shiba, M; Watanabe, K; Tominaga, K; Watanabe, T; Arakawa, T

    2016-04-01

    Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Although the mechanisms of this association have not been fully elucidated, nighttime reflux plays a central role. However, the detailed characteristics of nighttime reflux occurring during sleep are unknown. The aim of the present study was to examine the characteristics and prevalence of nighttime reflux in the natural sleep environment of GERD patients. Seventeen patients experiencing daily moderate-to-severe heartburn and/or regurgitation were studied using multichannel intraluminal impedance pH monitoring and electroencephalography off-proton pump inhibitor treatment. Nighttime reflux was divided based on reflux type (liquid or gas), acidity (acidic, weakly acidic, or alkaline) and extent (distal only or proximal migration) according to the standard criteria. Nighttime phases were divided as follows: recumbent-awake before falling asleep, nonrapid eye movement, rapid eye movement, awakening from sleep, and post-awakening in the morning. Among 184 nighttime refluxes, 43 (23%) occurred during recumbent-awake before falling asleep, 28 (15%) during nonrapid eye movement, 14 (8%) during rapid eye movement, 86 (46%) during awakening from sleep, and 13 (7%) during post-awakening in the morning. Liquid reflux was more common in awakening during sleep (92%), nonrapid eye movement (100%), and rapid eye movement (100%) compared with awakening before falling asleep (68%). The prevalence of proximal migration was significantly lower in nonrapid eye movement and rapid eye movement than in the other phases. There were no differences in acidity and bolus clearance time among the phases. Thirteen (65%) of 20 events with GERD symptoms had nighttime reflux, suggesting that only 7.1% (13 of 184) of nighttime refluxes were symptomatic. Nighttime reflux was observed in 48 (11%) of 425 awakening episodes during sleep. Different reflux patterns at each phase during nighttime might explain the

  11. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

    PubMed

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny J J

    2015-06-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields. PMID:25837601

  12. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.

    PubMed

    Henning, Anke; Fuchs, Alexander; Murdoch, James B; Boesiger, Peter

    2009-08-01

    In comparison to 1.5 and 3 T, MR spectroscopic imaging at 7 T benefits from signal-to-noise ratio (SNR) gain and increased spectral resolution and should enable mapping of a large number of metabolites at high spatial resolutions. However, to take full advantage of the ultra-high field strength, severe technical challenges, e.g. related to very short T(2) relaxation times and strict limitations on the maximum achievable B(1) field strength, have to be resolved. The latter results in a considerable decrease in bandwidth for conventional amplitude modulated radio frequency pulses (RF-pulses) and thus to an undesirably large chemical-shift displacement artefact. Frequency-modulated RF-pulses can overcome this problem; but to achieve a sufficient bandwidth, long pulse durations are required that lead to undesirably long echo-times in the presence of short T(2) relaxation times. In this work, a new magnetic resonance spectroscopic imaging (MRSI) localization scheme (free induction decay acquisition localized by outer volume suppression, FIDLOVS) is introduced that enables MRSI data acquisition with minimal SNR loss due to T(2) relaxation and thus for the first time mapping of an extended neurochemical profile in the human brain at 7 T. To overcome the contradictory problems of short T(2) relaxation times and long pulse durations, the free induction decay (FID) is directly acquired after slice-selective excitation. Localization in the second and third dimension and skull lipid suppression are based on a T(1)- and B(1)-insensitive outer volume suppression (OVS) sequence. Broadband frequency-modulated excitation and saturation pulses enable a minimization of the chemical-shift displacement artefact in the presence of strict limits on the maximum B(1) field strength. The variable power RF pulses with optimized relaxation delays (VAPOR) water suppression scheme, which is interleaved with OVS pulses, eliminates modulation side bands and strong baseline distortions. Third

  13. Passive multi-channel analysis of surface waves with cross-correlations and beamforming. Application to a sea dike

    NASA Astrophysics Data System (ADS)

    Le Feuvre, M.; Joubert, A.; Leparoux, D.; Côte, P.

    2015-03-01

    We introduce the use of cross-correlations in the passive multi-channel analysis of surface waves (MASW), and report an improvement in the determination of subsurface shear velocities from ambient seismic noise. Velocities are measured from phase-shifts that are also related to the source location. Consequently, the accuracy with which velocities can be inferred depends on the ability of the array to locate noise sources. The computation of cross-correlations for each receiver pair allows increasing the effective spatial sampling of the array. For this reason, we show that beamforming is more efficient with cross-correlated signals. Consequently, MASW performed with cross-correlations produces a dispersion diagram where aliasing is reduced and signal-to-noise ratio increased. The proposed method is validated with synthetic records. It is then applied on passive recordings obtained on top of a sea dike at high tide, where sea waves were acting as continuous seismic sources. Surface wave velocities that favorably compare with hammer shot measurements are inferred.

  14. Implementation of the multi-channel monolith reactor in an optimisation procedure for heterogeneous oxidation catalysts based on genetic algorithms.

    PubMed

    Breuer, Christian; Lucas, Martin; Schütze, Frank-Walter; Claus, Peter

    2007-01-01

    A multi-criteria optimisation procedure based on genetic algorithms is carried out in search of advanced heterogeneous catalysts for total oxidation. Simple but flexible software routines have been created to be applied within a search space of more then 150,000 individuals. The general catalyst design includes mono-, bi- and trimetallic compositions assembled out of 49 different metals and depleted on an Al2O3 support in up to nine amount levels. As an efficient tool for high-throughput screening and perfectly matched to the requirements of heterogeneous gas phase catalysis - especially for applications technically run in honeycomb structures - the multi-channel monolith reactor is implemented to evaluate the catalyst performances. Out of a multi-component feed-gas, the conversion rates of carbon monoxide (CO) and a model hydrocarbon (HC) are monitored in parallel. In combination with further restrictions to preparation and pre-treatment a primary screening can be conducted, promising to provide results close to technically applied catalysts. Presented are the resulting performances of the optimisation process for the first catalyst generations and the prospect of its auto-adaptation to specified optimisation goals. PMID:17266517

  15. Experimental investigation of aqueous corrosion of R7T7 nuclear glass at 90{degrees}C in the presence of humic acids: A kinetic approach

    SciTech Connect

    Gin, S.; Godon, N.; Mestre, J.P.; Vernaz, E.Y.

    1994-12-31

    The dissolution kinetics of the French {open_quotes}R7T7{close_quotes} nonradioactive LWR reference glass in solutions containing dissolved humic acids were investigated at 9O{degrees}C during static tests with imposed or free pH. Experiments conducted in highly dilute media, with a glass-surface-area-to-solution-volume (SA/V) ratio of 5 m{sup -1}, showed that the glass dissolution surface reaction is catalyzed by humic acids. With higher degrees of reaction progress (SA/V = 100 m{sup -1} and free pH) the humic acids impose pH modifications on the system compared with inorganic media; moreover, they directly or indirectly enhance the dissolution of certain alkali metals and transition elements, forming aqueous complexes with the latter. During experiments with an imposed pH of 8.5 (SA/V = 1300 and 5300 m{sup -1}), the humic acids appear to cause increased silica solubility that cannot be accounted for by the formation of silica complexes. A residual corrosion rate in the humic acid media exceeding the rate measured in inorganic media suggests that, in addition to silica, one or more element complexes formed by humic acids may be a kinetically limiting factor. This hypothesis must be confirmed, however, as the quantity of humic acids per unit glass surface area was too small in this experiment to allow unambiguous characterization of the phenomenon.

  16. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K

    SciTech Connect

    Nagendran, R.; Thirumurugan, N.; Chinnasamy, N.; Janawadkar, M. P.; Sundar, C. S.

    2011-01-15

    We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd{sub 2}O{sub 3} was also used as another reference material for the calibration and the effective magnetic moment of the Gd{sup 3+} could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10{sup -7} emu at low magnetic fields and about 10{sup -5} emu at high magnetic fields {approx}7 T.

  17. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  18. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  19. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.

    PubMed

    Nagendran, R; Thirumurugan, N; Chinnasamy, N; Janawadkar, M P; Sundar, C S

    2011-01-01

    We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd(2)O(3) was also used as another reference material for the calibration and the effective magnetic moment of the Gd(3+) could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10(-7) emu at low magnetic fields and about 10(-5) emu at high magnetic fields ∼7 T. PMID:21280860

  20. Effects of MgO on the short- and long-term stability of R7T7 and M7 nuclear waste glass in aqueous media

    SciTech Connect

    Advocat, T.; Dussossoy, J.L.; Vernaz, E.; Crovisier, J.L.

    1993-12-31

    Experiments were conducted in initially pure water at 90{degrees}C and 100{degrees}C with glass specimens enriched in MgO and in alkali metals relative to the standard light water R7T7 reference glass. Three experimental protocols were implemented: Soxhlet testing with leachant renewal, static leaching according to a modified MCC-1 method with an SA/V ratio of 50 m{sup -1}, and static leaching with glass powder for an SA/V ratio of 8000 m{sup -1}. The results clearly show that the short and, especially, the long term dissolution rates depend on the initial glass composition. Higher MgO, Na{sub 2}O, Li{sub 2}O, and B{sub 2}O{sub 3} concentrations reduce the glass resistance to aqueous corrosion, as already indicated by the calculated hydration energy values. These experiment illustrate the importance of the glass composition in insuring long-term material integrity.