Science.gov

Sample records for 7tm receptor c-terminal

  1. Functionally biased signalling properties of 7TM receptors – opportunities for drug development for the ghrelin receptor

    PubMed Central

    Sivertsen, B; Holliday, N; Madsen, A N; Holst, B

    2013-01-01

    The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several different signalling pathways including Gαq, Gαi/o, Gα12/13 and arrestin recruitment. These multiple signalling pathways allow for functionally biased signalling, where one signalling pathway may be favoured over another either by selective ligands or through mutations in the receptor. In the present review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G–protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have been demonstrated to signal more strongly through the Gαq-coupled pathway than the Gα12/13-coupled pathway. Similarly a ligand that promotes Gαq coupling over Gαi coupling has been described and it has been suggested that several different active conformations of the receptor may exist dependent on the properties of the agonist. Importantly, ligands with such biased signalling properties may allow the development of drugs that selectively modulate only the therapeutically relevant physiological functions, thereby decreasing the risk of side effects. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:24032557

  2. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective.

    PubMed

    Galandrin, Ségolène; Onfroy, Lauriane; Poirot, Mathias Charles; Sénard, Jean-Michel; Galés, Céline

    2016-08-01

    During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed. PMID:27107932

  3. Cell surface nucleolin interacts with CXCR4 receptor via the 212 c-terminal portion.

    PubMed

    Niu, Hongxin; Yang, Xiangshan; Xu, Zhongfa; Du, Tong; Wang, Ruogu

    2015-02-01

    Previously, we reported that CXCR4 receptor interacted with cell surface nucleolin, and the synergy of CXCR4 and nucleolin plays an essential role in malignant transformation. Here, we continued to conduct a structure-function analysis of nucleolin to identify which portion can efficaciously bind to CXCR4. In the present study, the expression of CXCR4 and nucleolin in 100 cases of papillary thyroid cancer (PTC) samples was investigated through immunohistochemistry (IHC). Subsequently, using nucleolin mutants and pull-down assay, we investigated precise interactions between CXCR4 and nucleolin in HEK-293 cells. A previous study demonstrated CXCR4 and nucleolin co-expressed in cell lines, and the present study further identified that CXCR4 and nucleolin co-expressed in PTC tissues, instead of normal tissues. The nucleolin mutant analysis revealed that nucleolin can efficaciously bind CXCR4 to activate CXCR4 signaling by 212 C-terminal domain. Conversely, N-terminal, RBD and GAR mutants of nucleolin showed no sign of activation of CXCR4 signaling, and differences were statistically insignificant (p > 0.05). In conclusion, these results suggested nucleolin is essential to activate CXCR4 signaling via 212 C-terminal domain, which is required for cell growth, migration, and invasiveness. Furthermore, nucleolin may interact with more G protein-coupled receptors, at least chemokine receptor. Our study will lay a new foundation for cancer therapy by antagonizing nucleolin and CXCR4. PMID:25326811

  4. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability.

    PubMed

    Ebersole, Brittany; Petko, Jessica; Woll, Matthew; Murakami, Shoko; Sokolina, Kate; Wong, Victoria; Stagljar, Igor; Lüscher, Bernhard; Levenson, Robert

    2015-01-01

    We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R. PMID:26535572

  5. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability

    PubMed Central

    Ebersole, Brittany; Petko, Jessica; Woll, Matthew; Murakami, Shoko; Sokolina, Kate; Wong, Victoria; Stagljar, Igor; Lüscher, Bernhard; Levenson, Robert

    2015-01-01

    We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R. PMID:26535572

  6. Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia.

    PubMed

    Wang, Wei; Wang, Yan; Zhang, Wei; Jin, Xiaoju; Liu, Yusheng; Xu, Shiqin; Lei, Liming; Shen, Xiaofeng; Guo, Xirong; Xia, Xiaoqiong; Wang, Fuzhou

    2016-08-01

    Opioids are still the most popular form of pain treatment, but many unavoidable side effects make opioids a big challenge in effective pain management. Opioid-induced hyperalgesia (OIH), a paradoxical phenomenon, portrays an increased sensitivity to harmful stimuli caused by opioid exposure. Changes in the neural modulation are considered a major contributor to the development of OIH. Activation of opioid receptors (ORs) and corresponding downstream molecules are the vital composition of functional performance of opioids. Increasing interests were proposed of the interaction between ORs and other neural transmitter systems such as glutamatergic, GABAergic and adrenergic ones to the genesis of OIH. G protein coupled μ-opioid receptor (MOR) was studied comprehensively on its role in the development of OIH. In addition to the relationship between MOR and other neurotransmitter receptors, a new intracellular MOR that has six transmembrane (6TM) domains was identified, and found to perform a pro-nociceptive task in contrast to the counterpart 7TM isoform. A mechanistic model of OIH in which both 6TM and 7TM MORs undergoing membrane redistribution upon opioid exposure is proposed which eventually facilitates the neurons more sensitive to nociceptive stimulation than that of the preceding opioid exposure. PMID:27116700

  7. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  8. Effects of Sorafenib on C-Terminally Truncated Androgen Receptor Variants in Human Prostate Cancer Cells

    PubMed Central

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J.; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V.; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  9. Effects of sorafenib on C-terminally truncated androgen receptor variants in human prostate cancer cells.

    PubMed

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  10. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins

    PubMed Central

    Enz, Ralf

    2012-01-01

    Metabotropic glutamate receptors (mGluRs) regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning, and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds, and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g., night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson's disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors' C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners. PMID:22536173

  11. NMR and computational evidence that high-affinity bradykinin receptor antagonists adopt C-terminal beta-turns.

    PubMed

    Kyle, D J; Blake, P R; Smithwick, D; Green, L M; Martin, J A; Sinsko, J A; Summers, M F

    1993-05-14

    Three tetrapeptides were prepared, each corresponding to the four C-terminal amino acid residues of highly potent, second-generation bradykinin receptor antagonists. The tetrapeptides are (IA) Ser-D-Phe-Oic-Arg, (IIA) Ser-D-Tic-Oic-Arg, and (IIIA) Ser-D-Hype(trans-propyl)-Oic-Arg. Solution conformations for each were determined by incorporating interproton distance restraints, determined by 2D NMR experiments performed in water at neutral pH, into a series of distance geometry/simulated annealing model building calculations. Similarly, systematic conformational analyses were performed for each using molecular mechanics calculations. Both the NMR-derived structures, as well as the calculated structures, are shown to adopt a beta-turn as the primary conformation. Excellent agreement between the predicted structures and the NMR-derived structures is demonstrated. Aside from being the first examples of linear tetrapeptides reported to be ordered in aqueous solvent, the results presented support the hypothesis that high-affinity bradykinin receptor antagonists must adopt C-terminal beta-turn conformations. PMID:8388469

  12. The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover

    PubMed Central

    Lu, Xingwu; Liu, Songmei; Kornberg, Thomas B.

    2006-01-01

    Patched (Ptc) is a membrane protein whose function in Hedgehog (Hh) signal transduction has been conserved among metazoans and whose malfunction has been implicated in human cancers. Genetic analysis has shown that Ptc negatively regulates Hh signal transduction, but its activity and structure are not known. We investigated the functional and structural properties of Drosophila Ptc and its C-terminal domain (CTD), 183 residues that are predicted to reside in the cytoplasm. Our results show that Ptc, as well as truncated Ptc deleted of its CTD, forms a stable trimer. This observation is consistent with the proposal that Ptc is structurally similar to trimeric transporters. The CTD itself trimerizes and is required for both Ptc internalization and turnover. Two mutant forms of the CTD, one that disrupts trimerization and the other that mutates the target sequence of the Nedd4 ubiquitin ligase, stabilize Ptc but do not prevent internalization and sequestration of Hh. Ptc deleted of its CTD is stable and localizes to the plasma membrane. These data show that degradation of Ptc is regulated at a step subsequent to endocytosis, although endocytosis is a likely prerequisite. We also show that the CTD of mouse Ptc regulates turnover. PMID:16980583

  13. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain

    PubMed Central

    Jakób, Michał; Kołodziejczyk, Robert; Orłowski, Marek; Krzywda, Szymon; Kowalska, Agnieszka; Dutko-Gwóźdź, Joanna; Gwóźdź, Tomasz; Kochman, Marian; Jaskólski, Mariusz; Ożyhar, Andrzej

    2007-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95 Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs. PMID:17426125

  14. Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor.

    PubMed

    Singh, Kailash; Senthil, Vijayalakshmi; Arokiaraj, Aloysius Wilfred Raj; Leprince, Jérôme; Lefranc, Benjamin; Vaudry, David; Allam, Ahmed A; Ajarem, Jamaan; Chow, Billy K C

    2016-01-01

    The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional virtual homology model and identify a peptide agonist and/or antagonist for the human secretin receptor (hSR), the significance of the primary sequence of secretin peptides in allosteric binding and activation was elucidated using virtual docking, FRET competitive binding and assessment of the cAMP response. Secretin analogs containing various N- or C-terminal modifications were prepared based on previous findings of the role of these domains in receptor binding and activation. These analogs exhibited very low or no binding affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro studies revealed instability of these peptide analogs to bind and activate the receptor. PMID:26930505

  15. Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor

    PubMed Central

    Arokiaraj, Aloysius Wilfred Raj; Leprince, Jérôme; Lefranc, Benjamin; Vaudry, David; Allam, Ahmed A.; Ajarem, Jamaan; Chow, Billy K. C.

    2016-01-01

    The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional virtual homology model and identify a peptide agonist and/or antagonist for the human secretin receptor (hSR), the significance of the primary sequence of secretin peptides in allosteric binding and activation was elucidated using virtual docking, FRET competitive binding and assessment of the cAMP response. Secretin analogs containing various N- or C-terminal modifications were prepared based on previous findings of the role of these domains in receptor binding and activation. These analogs exhibited very low or no binding affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro studies revealed instability of these peptide analogs to bind and activate the receptor. PMID:26930505

  16. Selective suppression of the human aryl hydrocarbon receptor function can be mediated through binding interference at the C-terminal half of the receptor.

    PubMed

    Ren, Lina; Thompson, John D; Cheung, Michael; Ngo, Katherine; Sung, Sarah; Leong, Scott; Chan, William K

    2016-05-01

    The human aryl hydrocarbon receptor is a cytosolic signaling molecule which affects immune response and aberrant cell growth. Canonical signaling of the receptor requires the recruitment of coactivators to the promoter region to remodel local chromatin structure. We predicted that interference of this recruitment would block the aryl hydrocarbon receptor function. To prove that, we employed phage display to identify nine peptides of twelve-amino-acid in length which target the C-terminal half of the human aryl hydrocarbon receptor, including the region where coactivators bind. Eight 12mer peptides, in the form of GFP fusion, suppressed the ligand-dependent transcription of six AHR target genes (cyp1a1, cyp1a2, cyp1b1, ugt1a1, nqo1, and ahrr) in different patterns in Hep3B cells, whereas the AHR antagonist CH-223191 suppressed all these target genes similarly. Three of the 12mer peptides (namely 11-3, 1-7, and 7-3) suppressed the 3MC-induced, CYP1A1-dependent EROD activity and the ROS production caused by benzo[a]pyrene. These 12mer peptides suppressed the AHR function synergistically with CH-223191. In conclusion, we provide evidence that targeting the C-terminal half of the human aryl hydrocarbon receptor is a viable, new approach to selectively block the receptor function. PMID:26970402

  17. N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor.

    PubMed

    Bouley, R; Pérodin, J; Plante, H; Rihakova, L; Bernier, S G; Maletínská, L; Guillemette, G; Escher, E

    1998-02-19

    ]angiotensin II. Aliphatic residues, especially those of reduced size, caused a significant decrease in affinity especially [Sarcosine1, Gly8]angiotensin II who showed a 30-fold decrease. Introduction of a positive charge (Lys) at position 8 reduced the affinity even further. Stereoisomers in position 8 (L-->D configuration) also induced lower affinities. The angiotensin AT2 receptor display a structure-activity relationship similar to that observed on the AT1 receptor for the C-terminal position of the peptide hormone. Position 1 structure-activity relationships are however fundamentally different between the angiotensin AT1 and AT2 receptor. PMID:9570482

  18. Internalization of gonadotropin-releasing hormone receptors (GnRHRs): does arrestin binding to the C-terminal tail target GnRHRs for dynamin-dependent internalization?

    PubMed

    Hislop, James N; Caunt, Christopher J; Sedgley, Kathleen R; Kelly, Eammon; Mundell, Stuart; Green, Lisa D; McArdle, Craig A

    2005-08-01

    Activation of seven-transmembrane receptors is typically followed by desensitization and arrestin-dependent internalization via vesicles that are pinched off by a dynamin collar. Arrestins also scaffold Src, which mediates dynamin-dependent internalization of beta2-adrenergic receptors. Type I mammalian gonadotropin-releasing hormone receptors (GnRHRs) do not rapidly desensitize or internalize (characteristics attributed to their unique lack of C-terminal tails) whereas non-mammalian GnRHRs (that have C-terminal tails) are rapidly internalized and desensitized. Moreover, internalization of Xenopus (X) GnRHRs is dynamin-dependent whereas that of human (h) GnRHRs is not, raising the possibility that binding of arrestin to the C-terminal tails of GnRHRs targets them to the dynamin-dependent internalization pathway. To test this we have compared wild-type GnRHRs with chimeric receptors (XGnRHR C-terminal tail added to the hGnRHR alone (h.XtGnRHR) or with exchange of the third intracellular loops (h.Xl.XtGnRHR)). We show that adding the XGnRHR C-terminal tail facilitates arrestin- and dynamin-dependent internalization as well as arrestin/green fluorescent protein translocation, but Src (or mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) inhibition does not slow internalization, and h.XtGnRHR internalization is slower than that of the hGnRHR. Moreover, arrestin expression increased XGnRHR internalization even when dynamin was inhibited and h.Xl.XtGnRHR underwent rapid arrestin-dependent internalization without signaling to G(q/11). Thus, although the C-terminal tail can direct GnRHRs for arrestin- and dynamin-dependent internalization, this effect is not dependent on Src activation and arrestin can also facilitate dynamin-independent internalization. PMID:16087731

  19. Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor.

    PubMed

    Kovacs, Erika; Das, Rahul; Wang, Qi; Collier, Timothy S; Cantor, Aaron; Huang, Yongjian; Wong, Kathryn; Mirza, Amar; Barros, Tiago; Grob, Patricia; Jura, Natalia; Bose, Ron; Kuriyan, John

    2015-09-01

    The ∼230-residue C-terminal tail of the epidermal growth factor receptor (EGFR) is phosphorylated upon activation. We examined whether this phosphorylation is affected by deletions within the tail and whether the two tails in the asymmetric active EGFR dimer are phosphorylated differently. We monitored autophosphorylation in cells using flow cytometry and found that the first ∼80 residues of the tail are inhibitory, as demonstrated previously. The entire ∼80-residue span is important for autoinhibition and needs to be released from both kinases that form the dimer. These results are interpreted in terms of crystal structures of the inactive kinase domain, including two new ones presented here. Deletions in the remaining portion of the tail do not affect autophosphorylation, except for a six-residue segment spanning Tyr 1086 that is critical for activation loop phosphorylation. Phosphorylation of the two tails in the dimer is asymmetric, with the activator tail being phosphorylated somewhat more strongly. Unexpectedly, we found that reconstitution of the transmembrane and cytoplasmic domains of EGFR in vesicles leads to a peculiar phenomenon in which kinase domains appear to be trapped between stacks of lipid bilayers. This artifactual trapping of kinases between membranes enhances an intrinsic functional asymmetry in the two tails in a dimer. PMID:26124280

  20. Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kovacs, Erika; Das, Rahul; Wang, Qi; Collier, Timothy S.; Cantor, Aaron; Huang, Yongjian; Wong, Kathryn; Mirza, Amar; Barros, Tiago; Grob, Patricia; Jura, Natalia; Bose, Ron

    2015-01-01

    The ∼230-residue C-terminal tail of the epidermal growth factor receptor (EGFR) is phosphorylated upon activation. We examined whether this phosphorylation is affected by deletions within the tail and whether the two tails in the asymmetric active EGFR dimer are phosphorylated differently. We monitored autophosphorylation in cells using flow cytometry and found that the first ∼80 residues of the tail are inhibitory, as demonstrated previously. The entire ∼80-residue span is important for autoinhibition and needs to be released from both kinases that form the dimer. These results are interpreted in terms of crystal structures of the inactive kinase domain, including two new ones presented here. Deletions in the remaining portion of the tail do not affect autophosphorylation, except for a six-residue segment spanning Tyr 1086 that is critical for activation loop phosphorylation. Phosphorylation of the two tails in the dimer is asymmetric, with the activator tail being phosphorylated somewhat more strongly. Unexpectedly, we found that reconstitution of the transmembrane and cytoplasmic domains of EGFR in vesicles leads to a peculiar phenomenon in which kinase domains appear to be trapped between stacks of lipid bilayers. This artifactual trapping of kinases between membranes enhances an intrinsic functional asymmetry in the two tails in a dimer. PMID:26124280

  1. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    PubMed

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  2. Identification of a Src kinase SH3 binding site in the C-terminal domain of the human ErbB2 receptor tyrosine kinase.

    PubMed

    Bornet, Olivier; Nouailler, Matthieu; Feracci, Michaël; Sebban-Kreuzer, Corinne; Byrne, Deborah; Halimi, Hubert; Morelli, Xavier; Badache, Ali; Guerlesquin, Françoise

    2014-06-01

    Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region. NMR analysis of this motif supports a PPII helix conformation and the binding to Fyn-SH3 domain. The interaction of a kinase of the Src family with ErbB2 C-terminal domain could contribute to synergistic intracellular signaling and enhanced oncogenesis. PMID:24815698

  3. Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein.

    PubMed

    Coleman, Sarah K; Cai, Chunlin; Mottershead, David G; Haapalahti, Jukka-Pekka; Keinänen, Kari

    2003-02-01

    Dynamic regulation of the number and activity of AMPA receptors is believed to underlie many forms of synaptic plasticity and is presumably mediated by specific protein-protein interactions involving the C-terminal domain of the receptor. Several proteins interacting with the C-terminal tails of the glutamate receptor (GluR)-A and GluR-B subunits have been identified and implicated in the regulation of endocytosis and exocytosis, clustering, and anchoring of AMPA receptors to the cytoskeleton. In contrast, little is known of the molecular interactions of the GluR-D subunit, or of the mechanisms regulating the traffic of GluR-D-containing AMPA receptors. We analyzed the subcellular localization of homomeric GluR-D receptors carrying C-terminal deletions in transfected human embryonic kidney (HEK) 293 cells and in primary neurons by immunofluorescence microscopy and ELISA. A minimal requirement for a 14-residue cytoplasmic segment for the surface expression of homomeric GluR-D receptors was identified. Previously, a similar region in the GluR-A subunit was implicated in an interaction with 4.1 family proteins. Coimmunoprecipitation demonstrated that GluR-D associated with 4.1 protein(s) in both HEK293 cells and rat brain. Moreover, glutathione S-transferase pull-down experiments showed that the same 14-residue segment is critical for 4.1 binding to GluR-A and GluR-D. Point mutations within this segment dramatically decreased the surface expression of GluR-D in HEK293 cells, with a concomitant loss of the 4.1 interaction. Our findings demonstrate a novel molecular interaction for the GluR-D subunit and suggest that the association with the 4.1 family protein(s) plays an essential role in the transport to and stabilization of GluR-D-containing AMPA receptors at the cell surface. PMID:12574408

  4. Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N,N'-dimethyltryptamine forming enzyme, indole-N-methyl transferase.

    PubMed

    Mavlyutov, T A; Epstein, M L; Liu, P; Verbny, Y I; Ziskind-Conhaim, L; Ruoho, A E

    2012-03-29

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein-coupled receptors (GPCR). In the CNS, the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and S1Rs suggest that DMT is synthesized locally to effectively activate S1R in MN. PMID:22265729

  5. DEVELOPMENT OF THE SIGMA-1 RECEPTOR IN C-TERMINALS OF MOTONEURONS AND COLOCALIZATION WITH THE N,N’-DIMETHYLTRYPTAMINE FORMING ENZYME, INDOLE-N-METHYL TRANSFERASE

    PubMed Central

    Mavlyutov, Timur A.; Epstein, Miles L.; Liu, Patricia; Verbny, Yakov I.; Ziskind-Conhaim, Lea; Ruoho, Arnold E.

    2012-01-01

    The function of the sigma-1 receptor (S1R) has been linked to modulating the activities of ion channels and G-protein coupled receptors (GPCR). In the CNS the S1R is expressed ubiquitously but is enriched in mouse motoneurons (MN), where it is localized to subsurface cisternae of cholinergic postsynaptic densities, also known as C-terminals. We found that S1R is enriched in mouse spinal MN at late stages of embryonic development when it is first visualized in the endoplasmic reticulum. S1Rs appear to concentrate at C-terminals of mouse MN only on the second week of postnatal development. We found that Indole-N-methyl transferase (INMT), an enzyme that converts tryptamine into the sigma-1 ligand dimethyltryptamine (DMT), is also localized to postsynaptic sites of C-terminals in close proximity to the S1R. This close association of INMT and SIRs suggest that DMT is synthesized locally to effectively activate S1R in MN. PMID:22265729

  6. Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8.

    PubMed

    Hill, S R; Majeed, S; Ignell, R

    2015-08-01

    A birth-and-death evolutionary model for odorant receptor gene repertoires presumes the creation of repertoires with the capacity for high-level diversity and rapid ligand specificity change. This changes the recognised odour space, directly affecting fitness-related behaviours and ultimately affecting adaptation to new environments and resources. The proximate molecular mechanisms underlying the tuning of odorant receptor repertoires, and thus peripheral olfaction, are unclear. In the present study, we report a concrete example of this model of odorant receptor evolution leading to rapid changes in receptor tuning that leave the peripheral neuronal circuitry intact. We identified a conserved odorant receptor gene in mosquitoes, Or8, which in Culex quinquefasciatus underwent a duplication and inversion event. The paralogues differ in only minor structural changes manifesting at the C-terminus. We assessed the specificity of the paralogous odorant receptors and receptor neurones. We found that the functional tuning of the receptor was indeed reflected in minor differences in amino acid structure. Specifically, we found that enantiomeric specificity of these mosquito Or8 paralogues relies on eight C-terminal amino acids encoded in the final exon of the gene; thus, the birth of a paralogous odorant receptor can change the tuning of the peripheral olfactory system. PMID:26033210

  7. Solution Structure and Sugar-Binding Mechanism of Mouse Latrophilin-1 RBL: a 7TM Receptor-Attached Lectin-Like Domain

    PubMed Central

    Vakonakis, Ioannis; Langenhan, Tobias; Prömel, Simone; Russ, Andreas; Campbell, Iain D.

    2008-01-01

    Summary Latrophilin-1 (Lat-1), a target receptor for α-Latrotoxin, is a putative G protein-coupled receptor implicated in synaptic function. The extracellular portion of Lat-1 contains a rhamnose binding lectin (RBL)-like domain of unknown structure. RBL domains, first isolated from the eggs of marine species, are also found in the ectodomains of other metazoan transmembrane proteins, including a recently discovered coreceptor of the neuronal axon guidance molecule SLT-1/Slit. Here, we describe a structure of this domain from the mouse Lat-1. RBL adopts a unique α/β fold with long structured loops important for monosaccharide recognition, as shown in the structure of a complex with L-rhamnose. Sequence alignments and mutagenesis show that residues important for carbohydrate binding are often absent in other receptor-attached examples of RBL, including the SLT-1/Slit coreceptor. We postulate that this domain class facilitates direct protein-protein interactions in many transmembrane receptors. PMID:18547526

  8. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1. PMID:25706089

  9. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif

    PubMed Central

    Bender, Julia; Engeholm, Maik; Ederer, Marion S.; Breu, Johannes; Møller, Thor C.; Michalakis, Stylianos; Rasko, Tamas; Wanker, Erich E.; Biel, Martin; Martinez, Karen L.; Wurst, Wolfgang; Deussing, Jan M.

    2015-01-01

    The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function. PMID:26352593

  10. C-terminal tail phosphorylation of N-formyl peptide receptor: differential recognition of two neutrophil chemoattractant receptors by monoclonal antibodies NFPR1 and NFPR2.

    PubMed

    Riesselman, Marcia; Miettinen, Heini M; Gripentrog, Jeannie M; Lord, Connie I; Mumey, Brendan; Dratz, Edward A; Stie, Jamal; Taylor, Ross M; Jesaitis, Algirdas J

    2007-08-15

    The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils. PMID:17675514

  11. The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor.

    PubMed

    Filippelli-Silva, Rafael; Martin, Renan P; Rodrigues, Eliete S; Nakaie, Clovis R; Oliveira, Laerte; Pesquero, João B; Shimuta, Suma I

    2016-04-01

    Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues. PMID:26584354

  12. Identification of two C-terminal autophosphorylation sites in the PDGF beta-receptor: involvement in the interaction with phospholipase C-gamma.

    PubMed Central

    Rönnstrand, L; Mori, S; Arridsson, A K; Eriksson, A; Wernstedt, C; Hellman, U; Claesson-Welsh, L; Heldin, C H

    1992-01-01

    Two novel sites of autophosphorylation were localized to the C-terminal tail of the PDGF beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants in which Tyr1009, Tyr1021 or both were replaced with phenylalanine residues, were expressed in porcine aortic endothelial (PAE) cells. These mutants were similar to the wild type receptor with regard to protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. However, both the Y1009F and Y1021F mutants showed a decreased ability to mediate association with and the tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) compared to the wild type PDGF beta-receptor; in the case of the Y1009F/Y1021F double mutant, no association or phosphorylation of PLC-gamma could be detected. These data show that tyrosine phosphorylation of PLC-gamma is dependent on autophosphorylation of the PDGF beta-receptor at Tyr1009 and Tyr1021. Images PMID:1396585

  13. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-[beta] receptor promoter DNA

    SciTech Connect

    Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie; Tahirov, Tahir H.

    2010-10-08

    Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.

  14. Crystal Structure of Mouse Elf3 C-terminal DNA-binding Domain in Complex with Type II TGF-[beta] Receptor Promoter DNA

    SciTech Connect

    Agarkar, Vinod B.; Babayeva, Nigar D.; Wilder, Phillip J.; Rizzino, Angie; Tahirov, Tahir H.

    2010-08-18

    The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-{beta} receptor gene (T{beta}R-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site. Here, we report the 2.2 {angstrom} resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-{beta} receptor promoter DNA (mT{beta}R-II{sub DNA}). Elf3 contacts the core GGAA motif of the B-site from a major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity.

  15. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-β receptor promoter DNA

    PubMed Central

    Agarkar, Vinod B.; Babayeva, Nigar D.; Wilder, Phillip J.; Rizzino, Angie; Tahirov, Tahir H.

    2010-01-01

    The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-β receptor gene (TβR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, A-site and B-site. Here we report the 2.2 Å resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-β receptor promoter DNA (mTβR-IIDNA). Elf3 contacts the core GGAA motif of the B-site from major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity. PMID:20079749

  16. A C-terminal segment of the V{sub 1}R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    SciTech Connect

    Adikesavan, Nallini Vijayarangan; Mahmood, Syed Saad; Stanley, Nithianantham; Xu, Zhen; Wu, Nan; Thibonnier, Marc; Shoham, Menachem

    2005-04-01

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V{sub 1} vascular vasopressin receptor (V{sub 1}R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V{sub 1}R has been cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V{sub 1}R.

  17. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    PubMed Central

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Mezquita, Jovita; Mezquita, Cristóbal

    2014-01-01

    One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer. PMID:24709904

  18. Ancient interaction between the teneurin C-terminal associated peptides (TCAP) and latrophilin ligand-receptor coupling: a role in behavior

    PubMed Central

    Woelfle, Rebecca; D'Aquila, Andrea L.; Pavlović, Téa; Husić, Mia; Lovejoy, David A.

    2015-01-01

    Teneurins are multifunctional transmembrane proteins that are found in all multicellular animals and exist as four paralogous forms in vertebrates. They are highly expressed in the central nervous system, where they exert their effects, in part, by high-affinity binding to latrophilin (LPHN), a G-protein coupled receptor (GPCR) related to the adhesion and secretin GPCR families. The teneurin C-terminal associated peptides (TCAPs) are encoded by the terminal exon of all four teneurins, where TCAPs 1 and 3 are independently transcribed as soluble peptides, and TCAPs 2 and 4 remain tethered to their teneurin proprotein. Synthetic TCAP-1 interacts with LPHN, with an association with β-dystroglycan, to induce a tissue-dependent signal cascade to modulate cytoskeletal dynamics. TCAP-1 reduces stress-induced behaviors associated with anxiety, addiction and depression in a variety of models, in part, by regulating synaptic plasticity. Therefore, the TCAP-1-teneurin-LPHN interaction represents a novel receptor-ligand model and may represent a key mechanism underlying the association of behavior and neurological conditions. PMID:25964737

  19. The p55 tumour necrosis factor receptor TNFR1 contains a trans-Golgi network localization signal in the C-terminal region of its cytoplasmic tail.

    PubMed Central

    Storey, Helen; Stewart, Abigail; Vandenabeele, Peter; Luzio, J Paul

    2002-01-01

    It has been reported in some human cells that, in addition to a plasma membrane localization, members of the tumour necrosis factor receptor superfamily may be localized to the Golgi complex. We have shown by immunofluorescence and immunoelectron microscopy that the p55 tumour necrosis factor receptor, TNFR1, is principally localized to the trans-Golgi network in the human breast carcinoma cell line, MCF7. Chimaeras consisting of the extracellular and transmembrane domains of CD8 together with the cytoplasmic tail of TNFR1 were targeted to the trans-Golgi network in stably transfected rat fibroblastic cells. Deletions in the cytoplasmic tails of these chimaeras demonstrated the requirement for the C-terminal sequence of 23 amino acids for this targeting. The 23 amino acid sequence is mostly outside the death domain and contains both an acid patch and a dileucine motif. Interaction of this sequence with membrane traffic adaptor proteins may play an important role in controlling the responses of cells to tumour necrosis factor, since binding of signalling adaptor proteins has only been demonstrated for plasma membrane, and not Golgi-localized, TNFR1. PMID:11985495

  20. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein.

    PubMed Central

    Lloyd, G S; Busby, S J; Savery, N J

    1998-01-01

    During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538

  1. C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons.

    PubMed Central

    Gil, Carles; Chaib-Oukadour, Imane; Aguilera, José

    2003-01-01

    Previous publications from our group [Gil, Chaib, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182; Gil, Chaib, Blasi and Aguilera (2001) Biochem. J. 356, 97-103] have reported the activation, in rat brain synaptosomes, of several phosphoproteins, such as neurotrophin tyrosine kinase (Trk) A receptor, phospholipase Cgamma-1, protein kinase C (PKC) isoforms and extracellular-signal-regulated kinases 1 and 2 (ERK-1/2). In the present study, we examined, by means of phospho-specific antibodies, the activation of the signalling cascades involving neurotrophin Trk receptor, Akt kinase and ERK pathway, in cultured cortical neurons from foetal rat brain, by tetanus toxin (TeTx) as well as by the C-terminal part of its heavy chain (H(C)-TeTx). TeTx and H(C)-TeTx induce fast and transient phosphorylation of Trk receptor at Tyr(674) and Tyr(675), but not at Tyr(490), although the potency of TeTx in this action was higher when compared with H(C)-TeTx action. Moreover, H(C)-TeTx and TeTx also induced phosphorylation of Akt (at Ser(473) and Thr(308)) and of ERK-1/2 (Thr(202)/Tyr(204)), in a time- and concentration-dependent manner. The detection of TeTx- and H(C)-TeTx-induced phosphorylation at Ser(9) of glycogen synthase kinase 3beta confirms Akt activation. In the extended analysis of the ERK pathway, phosphorylation of the Raf, mitogen-activated protein kinase kinase (MEK)-1/2 and p90Rsk kinases and phosphorylation of the transcription factor cAMP-response-element-binding protein were detected. The use of tyrphostin AG879, an inhibitor of Trk receptors, demonstrates their necessary participation in the H(C)-TeTx-induced activation of Akt and ERK pathways, as well as in the phosphorylation of phospholipase Cgamma-1. Furthermore, both pathways are totally dependent on phosphatidylinositol 3-kinase action, and they are independent of PKC action, as assessed using wortmannin and Ro-31-8220 as inhibitors. The activation of PKC isoforms was determined by their translocation

  2. The Arginine Residue within the C-Terminal Active Core of Bombyx mori Pheromone Biosynthesis-Activating Neuropeptide is Essential for Receptor Binding and Activation

    PubMed Central

    Kawai, Takeshi; Lee, Jae Min; Nagata, Koji; Matsumoto, Shogo; Tanokura, Masaru; Nagasawa, Hiromichi

    2012-01-01

    In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). Bombyx mori PBAN (BomPBAN) consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R) residue at the second position from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to clarify the role of the Arg residue in the BomPBAN active core. We synthesized 10-residue peptides corresponding to the C-terminal part of BomPBAN with a series of replacements at the second position from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca2+ influx in insect cells expressing a fluorescent PBAN receptor chimera (PBANR–EGFP) using the fluorescent Ca2+ indicator, Fura Red–AM. The PBAN analogs with the C2 position replaced with alanine (Ala, A), aspartic acid (Asp, D), serine (Ser, S), or l-2-aminooctanoic acid (Aoc) decreased PBAN-like activity. RC2A (SKTRYFSPALamide) and RC2D (SKTRYFSPDLamide) had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide). We also prepared Rhodamine Red-labeled peptides of the PBAN analogs and examined their ability to bind PBANR. In contrast to Rhodamine Red-PBAN C10 at 100 nM, none of the synthetic analogs exhibited PBANR binding at the same concentration. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation. PMID:22654866

  3. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins

    PubMed Central

    Hall, Randy A.; Ostedgaard, Lynda S.; Premont, Richard T.; Blitzer, Jeremy T.; Rahman, Nadeem; Welsh, Michael J.; Lefkowitz, Robert J.

    1998-01-01

    The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the β2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the β2 receptor. Mutagenesis studies of the β2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the β2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling. PMID:9671706

  4. Prolonged activation of phospholipase D in Chinese hamster ovary cells expressing platelet-activating-factor receptor lacking cytoplasmic C-terminal tail.

    PubMed

    Liu, B; Nakashima, S; Adachi, T; Ito, Y; Takano, T; Shimizu, T; Nozawa, Y

    1997-10-01

    The mechanism and role of phospholipase D (PLD) activation by platelet-activating factor (PAF) were examined with Chinese hamster ovary cells stably expressing wild-type PAF receptor (WT-H cells) and truncated PAF receptor lacking the C-terminal cytoplasmic tail (D-H cells). Treatment of D-H cells with PAF resulted in the rapid formation of Ins(1,4,5)P3, which was followed by a sustained phase for more than 10 min. In these cells, PAF-induced PLD activation lasted for more than 20 min. In contrast, PLD activation in WT-H cells was transient. PAF stimulation caused the biphasic formation of 1,2-diacylglycerol (DG) in both types of cell. The first phase was rapid and transient, coinciding with the Ins(1,4,5)P3 peak. The second sustained phase of DG formation was attenuated by butanol, which produces phosphatidylbutanol at the expense of phosphatidic acid (PA) by transphosphatidylation activity of PLD, and by propranolol, a selective inhibitor for PA phosphohydrolase catalysing the conversion of PA into DG. The DG level returned nearly to basal at 20 min after PAF stimulation in WT-H cells, whereas in D-H cells the elevated DG level was sustained for more than 20 min. The profile of translocation of protein kinase Calpha (PKCalpha) to membrane was similar to that of DG formation. In WT-H cells, PKCalpha was transiently associated with membranes and then returned to the cytosol. However, in D-H cells PKCalpha was rapidly translocated to and remained in membranes for more than 20 min. Butanol suppressed this sustained translocation of PKCalpha. Furthermore the mRNA levels of c-fos and c-jun by PAF in WT-H cells were much lower than those in D-H cells. Propranolol and butanol at concentrations that inhibited the formation of DG suppressed the PAF-induced mRNA expression of c-fos and c-jun. Taken together, the prolonged PLD activation in D-H cells confirmed a primary role for phospholipase C/PKC in PLD activation by PAF. Furthermore the results obtained here suggest that

  5. Tyrosine kinase activity of a chimeric insulin-like-growth-factor-1 receptor containing the insulin receptor C-terminal domain. Comparison with the tyrosine kinase activities of the insulin and insulin-like-growth-factor-1 receptors using a cell-free system.

    PubMed

    Mothe, I; Tartare, S; Kowalski-Chauvel, A; Kaliman, P; Van Obberghen, E; Ballotti, R

    1995-03-15

    In a previous study, we showed that a chimeric insulin-like-growth-factor-1 (IGF-1) receptor, with the beta subunit C-terminal part of the insulin receptor was more efficient in stimulating glycogen synthesis and p44mapk activity compared to the wild-type IFG-1 receptor [Tartare, S., Mothe, I., Kowalski-Chauvel, A., Breittmayer, J.-P., Ballotti, R. & Van Obberghen, E. (1994) J. Biol. Chem. 269, 11449-11455]. These data indicate that the receptor C-terminal domain plays an important role in the transmission of biological effects. To understand the molecular basis of the differences in receptor specificity, we studied the characteristics of insulin, IGF-1 and chimeric receptor tyrosine kinase activities in a cell-free system. We found that, compared to wild-type insulin and IGF-1 receptors, the chimeric receptor showed a decrease in (a) autophosphorylation, (b) tyrosine kinase activity towards insulin receptor substrate-1 and the insulin receptor-(1142-1158)-peptide, and (c) the ability to activate phosphatidylinositol 3-kinase. However, for all the effects measured in a cell-free system, the chimeric receptor displayed an increased response to IGF-1 compared to the native IGF-1 receptor. Concerning the cation dependence of the tyrosine kinase activity, we showed that, at 10 mM Mg2+, the ligand-stimulated phosphorylation of poly(Glu80Tyr20) by both insulin receptor and chimeric receptor was increased by Mn2+. Conversely at 50 mM Mg2+, the chimeric receptor behaved like the IGF-1 receptor, since the presence of Mn2+ decreased the stimulatory effect of IGF-1 on their kinase activity. Furthermore, the Km of the chimeric receptor for ATP was increased compared to the wild-type receptors. These data demonstrate that the replacement of the C-terminal tail of the IGF-1 receptor by that of the insulin receptor has changed the receptor characteristics studied in a cell-free system. Our findings indicate that the C-terminal domain of the insulin receptor beta subunit plays a

  6. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  7. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12.

    PubMed

    Wang, J; Hofnung, M; Charbit, A

    2000-01-01

    Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, its cell-surface receptor. We fused C-terminal portions of J, the tail fiber protein of lambda, to maltose-binding protein. Solid-phase binding assays demonstrated that a purified fusion protein comprising only the last 249 residues of J could bind to LamB trimers and inhibited recognition by anti-LamB antibodies. Electron microscopy further demonstrated that the fusion protein could also bind to LamB at the surface of intact cells. This interaction prevented lambda adsorption but affected only partially maltose uptake. PMID:10629200

  8. A Conserved Motif in the Membrane Proximal C-Terminal Tail of Human Muscarinic M1 Acetylcholine Receptors Affects Plasma Membrane Expression

    PubMed Central

    Ehlert, Frederick J.; Shults, Crystal A.

    2010-01-01

    We investigated the functional role of a conserved motif, F(x)6LL, in the membrane proximal C-tail of the human muscarinic M1 (hM1) receptor. By use of site-directed mutagenesis, several different point mutations were introduced into the C-tail sequence 423FRDTFRLLL431. Wild-type and mutant hM1 receptors were transiently expressed in Chinese hamster ovary cells, and the amount of plasma membrane-expressed receptor was determined by use of intact, whole-cell [3H]N-methylscopolamine binding assays. The plasma membrane expression of hM1 receptors possessing either L430A or L431A or both point mutations was significantly reduced compared with the wild type. The hM1 receptor possessing a L430A/L431A double-point mutation was retained in the endoplasmic reticulum (ER), and atropine treatment caused the redistribution of the mutant receptor from the ER to the plasma membrane. Atropine treatment also caused an increase in the maximal response and potency of carbachol-stimulated phosphoinositide hydrolysis elicited by the L430A/L431A mutant. The effect of atropine on the L430A/L431A receptor mutant suggests that L430 and L431 play a role in folding hM1 receptors, which is necessary for exit from the ER. Using site-directed mutagenesis, we also identified amino acid residues at the base of transmembrane-spanning domain 1 (TM1), V46 and L47, that, when mutated, reduce the plasma membrane expression of hM1 receptors in an atropine-reversible manner. Overall, these mutagenesis data show that amino acid residues in the membrane-proximal C-tail and base of TM1 are necessary for hM1 receptors to achieve a transport-competent state. PMID:19841475

  9. Galaxy7TM: flexible GPCR-ligand docking by structure refinement.

    PubMed

    Lee, Gyu Rie; Seok, Chaok

    2016-07-01

    G-protein-coupled receptors (GPCRs) play important physiological roles related to signal transduction and form a major group of drug targets. Prediction of GPCR-ligand complex structures has therefore important implications to drug discovery. With previously available servers, it was only possible to first predict GPCR structures by homology modeling and then perform ligand docking on the model structures. However, model structures generated without explicit consideration of specific ligands of interest can be inaccurate because GPCR structures can be affected by ligand binding. The Galaxy7TM server, freely accessible at http://galaxy.seoklab.org/7TM, improves an input GPCR structure by simultaneous ligand docking and flexible structure refinement using GALAXY methods. The server shows better performance in both ligand docking and GPCR structure refinement than commonly used programs AutoDock Vina and Rosetta MPrelax, respectively. PMID:27131365

  10. Galaxy7TM: flexible GPCR–ligand docking by structure refinement

    PubMed Central

    Lee, Gyu Rie; Seok, Chaok

    2016-01-01

    G-protein-coupled receptors (GPCRs) play important physiological roles related to signal transduction and form a major group of drug targets. Prediction of GPCR–ligand complex structures has therefore important implications to drug discovery. With previously available servers, it was only possible to first predict GPCR structures by homology modeling and then perform ligand docking on the model structures. However, model structures generated without explicit consideration of specific ligands of interest can be inaccurate because GPCR structures can be affected by ligand binding. The Galaxy7TM server, freely accessible at http://galaxy.seoklab.org/7TM, improves an input GPCR structure by simultaneous ligand docking and flexible structure refinement using GALAXY methods. The server shows better performance in both ligand docking and GPCR structure refinement than commonly used programs AutoDock Vina and Rosetta MPrelax, respectively. PMID:27131365

  11. The electrostatic interactions of relaxin-3 with receptor RXFP4 and the influence of its B-chain C-terminal conformation.

    PubMed

    Wang, Xin-Yi; Guo, Yu-Qi; Zhang, Wei-Jie; Shao, Xiao-Xia; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2014-07-01

    Relaxin-3 (also known as insulin-like peptide 7) is an insulin/relaxin-superfamily peptide hormone that can bind and activate three relaxin-family peptide receptors: RXFP3, RXFP4, and RXFP1. Recently, we identified key electrostatic interactions between relaxin-3 and its cognate receptor RXFP3 by using a charge-exchange mutagenesis approach. In the present study, the electrostatic interactions between relaxin-3 and RXFP4 were investigated with the same approach. Mutagenesis of the negatively charged extracellular residues of human RXFP4 identified a conserved EXXXD(100-104) motif that is essential for RXFP4 activation by relaxin-3. Mutagenesis of the conserved positively charged Arg residues of relaxin-3 demonstrated that B12Arg, B16Arg and B26Arg were all involved in the binding and activation of RXFP4, especially B26Arg. The activity complementation between the mutant ligands and the mutant receptors suggested two probable electrostatic interaction pairs: Glu100 of RXFP4 versus B26Arg of relaxin-3, and Asp104 of RXFP4 versus both B12Arg and B16Arg of relaxin-3. For interaction with the essential EXXXD motifs of both RXFP3 and RXFP4, a folding-back conformation of the relaxin-3 B-chain C-terminus seems to be critical, because it brings B26Arg sufficiently close to B12Arg and B16Arg. To test this hypothesis, we replaced the conserved B23Gly-B24Gly dipeptide of relaxin-3 with an Ala-Ser dipeptide that occupied the corresponding position of insulin-like peptide 5 and resulted in an extended helical conformation. The mutant relaxin-3 showed a significant decrease in receptor-activation potency towards both RXFP3 and RXFP4, suggesting that a folding-back conformation of the B-chain C-terminus was important for relaxin-3 to efficiently interact with the EXXXD motifs of both receptors. PMID:24802387

  12. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos.

    PubMed

    Sun, Guanni; Hu, Zhirui; Min, Zheying; Yan, Xiaohua; Guan, Zhenpo; Su, Hanxia; Fu, Yu; Ma, Xiaopeng; Chen, Ye-Guang; Zhang, Michael Q; Tao, Qinghua; Wu, Wei

    2015-07-10

    Germ layer induction is one of the earliest events shortly after fertilization that initiates body formation of vertebrate embryos. In Xenopus, the maternally deposited transcriptional factor VegT promotes the expression of zygotic Nodal/Activin ligands that further form a morphogen gradient along the vegetal-animal axis and trigger the induction of the three germ layers. Here we found that SCP3 (small C-terminal domain phosphatase 3) is maternally expressed and vegetally enriched in Xenopus embryos and is essential for the timely induction of germ layers. SCP3 is required for the full activation of Nodal/Activin and bone morphogenetic protein signals and functions via dephosphorylation in the linker regions of receptor-regulated Smads. Consistently, the linker regions of receptor-regulated Smads are heavily phosphorylated in fertilized eggs, and this phosphorylation is gradually removed when embryos approach the midblastula transition. Knockdown of maternal SCP3 attenuates these dephosphorylation events and the activation of Nodal/Activin and bone morphogenetic protein signals after midblastula transition. This study thus suggested that the maternal SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation by the upcoming ligands during germ layer induction of Xenopus embryos. PMID:26013826

  13. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response.

    PubMed

    Zhong, Li; Chen, Xiao-Fen; Zhang, Zhen-Lian; Wang, Zhe; Shi, Xin-Zhen; Xu, Kai; Zhang, Yun-Wu; Xu, Huaxi; Bu, Guojun

    2015-06-19

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a DAP12-associated receptor expressed in microglia, macrophages, and other myeloid-derived cells. Previous studies have suggested that TREM2/DAP12 signaling pathway reduces inflammatory responses and promotes phagocytosis of apoptotic neurons. Recently, TREM2 has been identified as a risk gene for Alzheimer disease (AD). Here, we show that DAP12 stabilizes the C-terminal fragment of TREM2 (TREM2-CTF), a substrate for γ-secretase. Co-expression of DAP12 with TREM2 selectively increased the level of TREM2-CTF with little effects on that of full-length TREM2. The interaction between DAP12 and TREM2 is essential for TREM2-CTF stabilization as a mutant form of DAP12 with disrupted interaction with TREM2 failed to exhibit such an effect. Silencing of either Trem2 or Dap12 gene significantly exacerbated pro-inflammatory responses induced by lipopolysaccharides (LPS). Importantly, overexpression of either full-length TREM2 or TREM2-CTF reduced LPS-induced inflammatory responses. Taken together, our results support a role of DAP12 in stabilizing TREM2-CTF, thereby protecting against excessive pro-inflammatory responses. PMID:25957402

  14. Potent inhibition of angiotensin AT1 receptor signaling by RGS8: importance of the C-terminal third exon part of its RGS domain.

    PubMed

    Song, Dan; Nishiyama, Mariko; Kimura, Sadao

    2016-10-01

    R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in regulation of many GPCR-mediated responses. Multiple RGS proteins are usually expressed in a cell, and it is difficult to point out which RGS protein species are functionally important in the cell. To evaluate intrinsic potency of these RGS proteins, we compared inhibitory effects of RGS1, RGS2, RGS3, RGS4, RGS5, RGS8 and RGS16 on AT1 receptor signaling. Intracellular Ca(2+) responses to angiotensin II were markedly attenuated by transiently expressed RGS2, RGS3 and RGS8, compared to weak inhibition by RGS1, RGS4, RGS5 and RGS16. N-terminally deleted RGS2 (RGS2 domain) lost this potent inhibitory effect, whereas RGS domains of RGS3 and RGS8 showed strong inhibition similar to those of the full-length proteins. To investigate key determinants that specify the differences in potency, we constructed chimeric domains by replacing one or two of three exon parts of RGS8 domain with the corresponding part of RGS5. The chimeric RGS8 domains containing the first or the second exon part of RGS5 showed strong inhibitory effects similar to that of wild type RGS8, but the chimeric domain with the third exon part of RGS5 lost its activity. On the contrary, replacement of the third exon part of RGS5 with the corresponding residues of RGS8 increased the inhibitory effect. The role of the third exon part of RGS8 domain was further confirmed with the chimeric RGS8/RGS4 domains. These results indicate the potent inhibitory activity of RGS8 among R4/B subfamily proteins and importance of the third exon. PMID:26754208

  15. Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from FcγRII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression

    PubMed Central

    Laine, David; Trescol-Biémont, Marie-Claude; Longhi, Sonia; Libeau, Geneviève; Marie, Julien C.; Vidalain, Pierre-Olivier; Azocar, Olga; Diallo, Adama; Canard, Bruno; Rabourdin-Combe, Chantal; Valentin, Hélène

    2003-01-01

    During acute measles virus (MV) infection, an efficient immune response occurs, followed by a transient but profound immunosuppression. MV nucleoprotein (MV-N) has been reported to induce both cellular and humoral immune responses and paradoxically to account for immunosuppression. Thus far, this latter activity has been attributed to MV-N binding to human and murine FcγRII. Here, we show that apoptosis of MV-infected human thymic epithelial cells (TEC) allows the release of MV-N in the extracellular compartment. This extracellular N is then able to bind either to MV-infected or uninfected TEC. We show that recombinant MV-N specifically binds to a membrane protein receptor, different from FcγRII, highly expressed on the cell surface of TEC. This new receptor is referred to as nucleoprotein receptor (NR). In addition, different Ns from other MV-related morbilliviruses can also bind to FcγRII and/or NR. We show that the region of MV-N responsible for binding to NR maps to the C-terminal fragment (NTAIL). Binding of MV-N to NR on TEC triggers sustained calcium influx and inhibits spontaneous cell proliferation by arresting cells in the G0 and G1 phases of the cell cycle. Finally, MV-N binds to both constitutively expressed NR on a large spectrum of cells from different species and to human activated T cells, leading to suppression of their proliferation. These results provide evidence that MV-N, after release in the extracellular compartment, binds to NR and thereby plays a role in MV-induced immunosuppression. PMID:14557619

  16. Sugar-induced endocytosis of plant 7TM-RGS proteins

    PubMed Central

    Phan, Nguyen; Urano, Daisuke; Srba, Miroslav; Fischer, Lukas; Jones, Alan M.

    2013-01-01

    Plant cells use sugars mainly as a source or store of energy and carbon skeletons for anabolic reactions and for osmotic regulation. The perception of sugars and their responses are rather complex including the heterotrimeric G protein pathway and a seven-transmembrane RGS molecule. Previously, we found that endocytosis of the 7TM-RGS leads to sustained activation of the G protein pathway in the genetic model Arabidopsis. Here we show that other plants possess similar endocytosis systems of the 7TM-RGS proteins. A phosphorylation site essential for the endocytosis is well conserved in land plant 7TM-RGS proteins. In addition, conifer and tobacco 7TM-RGS proteins are internalized in response to sugar. These results indicate a universal mechanism to activate G signaling by endocytosis in plant cells that have 7TM-RGS proteins. PMID:23154506

  17. Soluble form of complement C3b/C4b receptor (CR1) results from a proteolytic cleavage in the C-terminal region of CR1 transmembrane domain.

    PubMed Central

    Hamer, I; Paccaud, J P; Belin, D; Maeder, C; Carpentier, J L

    1998-01-01

    The complement C3b/C4b receptor (CR1) is an integral protein, anchored in the plasma membrane through a hydrophobic domain of 25 amino acids, but is also found in the plasma in soluble form (sCR1). A recombinant, soluble form of CR1 has been demonstrated to reduce complement-dependent tissue injury in animal models of ischaemia/reperfusion. In view of the important pathophysiological relevance of sCR1, we have investigated the mechanisms governing CR1 release by using various mutated and chimaeric receptors transiently expressed in COS cells. Pulse-chase experiments revealed that (1) sCR1 is produced by a proteolytic process, (2) the cleavage site lies within the C-terminus of CR1 transmembrane domain, (3) the proteolytic process involves a fully glycosylated CR1 form and (4) this process takes place in late secretory vesicles or at the plasma membrane. PMID:9405292

  18. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues.

    PubMed

    Liao, Yuan; Lu, Bin; Ma, Qiang; Wu, Gang; Lai, Xiangru; Zang, Jiashu; Shi, Ying; Liu, Dongxiang; Han, Feng; Zhou, Naiming

    2016-04-01

    Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo. PMID:26865629

  19. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling.

    PubMed

    Kuhn, Kilian K; Ertl, Thomas; Dukorn, Stefanie; Keller, Max; Bernhardt, Günther; Reiser, Oliver; Buschauer, Armin

    2016-07-14

    The diastereomeric mixture of d/l-2,7-diaminooctanedioyl-bis(YRLRY-NH2) (BVD-74D, 2) was described in the literature as a high affinity Y4 receptor agonist. Here we report on the synthesis and pharmacological characterization of the pure diastereomers (2R,7R)- and (2S,7S)-2 and a series of homo- and heterodimeric analogues in which octanedioic acid was used as an achiral linker. To investigate the role of the Arg residues, one or two arginines were replaced by Ala. Moreover, N(ω)-(6-aminohexylaminocarbonyl)Arg was introduced as an arginine replacement (17). (2R,7R)-2 was superior to (2S,7S)-2 in binding and functional cellular assays and equipotent with 17. [(3)H]Propionylation of one amino group in the linker of (2R,7R)-2 or at the primary amino group in 17 resulted in high affinity Y4R radioligands ([(3)H]-(2R,7R)-10, [(3)H]18) with subnanomolar Kd values. PMID:27223253

  20. A Novel Signaling Pathway Mediated by the Nuclear Targeting of C-Terminal Fragments of Mammalian Patched 1

    PubMed Central

    Kagawa, Hiroki; Shino, Yuka; Kobayashi, Daigo; Demizu, Syunsuke; Shimada, Masumi; Ariga, Hiroyoshi; Kawahara, Hiroyuki

    2011-01-01

    Background Patched 1 (Ptc1) is a polytopic receptor protein that is essential for growth and differentiation. Its extracellular domains accept its ligand, Sonic Hedgehog, while the function of its C-terminal intracellular domain is largely obscure. Principal Findings In this study, we stably expressed human Ptc1 protein in HeLa cells and found that it is subjected to proteolytic cleavage at the C-terminus, resulting in the generation of soluble C-terminal fragments. These fragments accumulated in the nucleus, while the N-terminal region of Ptc1 remained in the cytoplasmic membrane fractions. Using an anti-Ptc1 C-terminal domain antibody, we provide conclusive evidence that C-terminal fragments of endogenous Ptc1 accumulate in the nucleus of C3H10T1/2 cells. Similar nuclear accumulation of endogenous C-terminal fragments was observed not only in C3H10T1/2 cells but also in mouse embryonic primary cells. Importantly, the C-terminal fragments of Ptc1 modulate transcriptional activity of Gli1. Conclusions Although Ptc1 protein was originally thought to be restricted to cell membrane fractions, our findings suggest that its C-terminal fragments can function as an alternative signal transducer that is directly transported to the cell nucleus. PMID:21533246

  1. In vitro pharmacological evaluation of the radiolabeled C-terminal substance P analogue Lys-Phe-Phe-Gly-Leu-Met-NH2: Does a specific binding site exist?

    PubMed

    Tomczyszyn, Aleksandra; Csibrany, Balazs; Keresztes, Attila; Mallareddy, Jayapal Reddy; Dyniewicz, Jolanta; Misicka, Aleksandra; Toth, Geza; Lipkowski, Andrzej W

    2014-01-01

    In the present paper, we report the synthesis, radiolabeling and comprehensive pharmacological evaluation of a C-terminally truncated tachykinin derivative, 3H-KFFGLM-NH2. The C-terminal fragments of endogenous tachykinins are pharmacophores responsible for interaction with the tachykinin receptors NK1, NK2 and NK3. The N-terminal fragments are responsible for modulation of receptor selectivity and interactions with other receptor systems. To evaluate and separate the function of an NK-pharmacophore from the activity of its parent neurokinin, KFFGLM-NH2 was synthesized in both tritiated and unlabeled forms. It has been proposed that the obtained NK-binding profiles of specific reference ligands and KFFGLM-NH2 differentiate monomeric and dimeric forms of NK receptors. We hypothesize that dimers of NK receptors could be specific receptor(s) for C-terminal fragments of all neurokinins as well as their C-terminal fragments, including H-KFFGLM-NH2. Dissociation of dimers into monomers opens access to additional allosteric binding sites. Fully elongated undecapeptide substance P interacts with both the "tachykinin pocket" and the "allosteric pocket" on the monomeric NK1 receptor, resulting in high and selective activation. However, C-terminal hexapeptide fragment analogues, recognizing only the "tachykinin pocket", may have less specific interactions with all tachykinin receptors in both monomeric and dimeric forms. PMID:25574743

  2. Design and Synthesis of Peptide YY Analogues with C-terminal Backbone Amide-to-Ester Modifications

    PubMed Central

    2013-01-01

    Peptide YY (PYY) is a gut hormone that activates the G protein-coupled neuropeptide Y (NPY) receptors, and because of its appetite reducing actions, it is evaluated as an antiobesity drug candidate. The C-terminal tail of PYY is crucial for activation of the NPY receptors. Here, we describe the design and preparation of a series of PYY(3–36) depsipeptide analogues, in which backbone amide-to-ester modifications were systematically introduced in the C-terminal. Functional NPY receptor assays and circular dichroism revealed that the ψ(CONH) bonds at positions 30–31 and 33–34 are particularly important for receptor interaction and that the latter is implicated in Y2 receptor selectivity. PMID:24900634

  3. Reactivity of C-terminal cysteines with HNO.

    PubMed

    Keceli, Gizem; Toscano, John P

    2014-06-10

    Nitroxyl (HNO), a potential heart failure therapeutic, is known to target cysteine residues to form sulfinamides and/or disulfides. Because HNO-derived modifications may depend on their local environment, we have investigated the reactivity of HNO with cysteine derivatives and C-terminal cysteine-containing peptides at physiological pH and temperature. Our findings indicate that the nature of HNO-derived modifications of C-terminal cysteines is affected by the C-terminal carboxylate. Apart from the lack of sulfinamide formation, these studies have revealed the presence of new products, a sulfohydroxamic acid derivative (RS(O)2NHOH) and a thiosulfonate (RS(O)2SR), presumably produced under our experimental conditions via the intermediacy of a cyclic structure that is hydrolyzed to give a sulfenic acid (RSOH). Moreover, these modifications are formed independent of oxygen. PMID:24869490

  4. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  5. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  6. The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues

    PubMed Central

    2004-01-01

    The yeast SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein Ykt6 was shown to mediate palmitoylation of the fusion factor Vac8 in a reaction essential for the fusion of vacuoles. Here I present evidence that hYkt6 (human Ykt6) has self-palmitoylating activity. Incubation of recombinant hYkt6 with [3H]Pal-CoA ([3H]palmitoyl-CoA) leads to covalent attachment of palmitate to C-terminal cysteine residues. The N-terminal domain of human Ykt6 contains a Pal-CoA binding site and is required for the reaction. PMID:15479160

  7. C-Terminal Protein Characterization by Mass Spectrometry: Isolation of C-Terminal Fragments from Cyanogen Bromide-Cleaved Protein

    PubMed Central

    Nika, Heinz; Hawke, David H.; Angeletti, Ruth Hogue

    2014-01-01

    A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures. PMID:24688319

  8. C-Terminal Engineering of CXCL12 and CCL5 Chemokines: Functional Characterization by Electrophysiological Recordings

    PubMed Central

    Petit-Hartlein, Isabelle; Sadir, Rabia; Revilloud, Jean; Caro, Lydia; Vivaudou, Michel; Fieschi, Franck; Moreau, Christophe; Vivès, Corinne

    2014-01-01

    Chemokines are chemotactic cytokines comprised of 70–100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures. PMID:24498095

  9. Solid Phase Synthesis of C-Terminal Boronic Acid Peptides.

    PubMed

    Behnam, Mira A M; Sundermann, Tom R; Klein, Christian D

    2016-05-01

    Peptides and peptidomimetics with a C-terminal boronic acid group have prolific applications in numerous fields of research, but their synthetic accessibility remains problematic. A convenient, high yield synthesis of peptide-boronic acids on a solid support is described here, using commercially available 1-glycerol polystyrene resin. The method is compatible with Fmoc chemistry and offers a versatile approach to aryl and alkyl aminoboronic acids without additional purification steps. PMID:27104613

  10. Crystallization of the C-terminal globular domain of avian reovirus fibre

    SciTech Connect

    Raaij, Mark J. van; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-07-01

    Partial proteolysis of the avian reovirus cell-attachment protein σC yields a major homotrimeric C-terminal fragment that presumably contains the receptor-binding domain. This fragment has been crystallized in the presence and absence of zinc sulfate and cadmium sulfate. One of the crystal forms diffracts synchrotron X-rays to 2.2–2.3 Å. Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6{sub 3}22 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the Zn{sup II}- and Cd{sup II}-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine.

  11. Nonlinear dynamics of C-terminal tails in cellular microtubules

    NASA Astrophysics Data System (ADS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  12. Nonlinear dynamics of C-terminal tails in cellular microtubules.

    PubMed

    Sekulic, Dalibor L; Sataric, Bogdan M; Zdravkovic, Slobodan; Bugay, Aleksandr N; Sataric, Miljko V

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process. PMID:27475079

  13. The C-Terminal Region Mesd Peptide Mimics Full-Length Mesd and Acts as an Inhibitor of Wnt/β-Catenin Signaling in Cancer Cells

    PubMed Central

    Lin, Cuihong; Lu, Wenyan; Zhang, Wei; Londoño-Joshi, Angelina I.; Buchsbaum, Donald J.; Bu, Guojun; Li, Yonghe

    2013-01-01

    While Mesd was discovered as a specialized molecular endoplasmic reticulum chaperone for the Wnt co-receptors LRP5 and LRP6, recombinant Mesd protein is able to bind to mature LRP5 and LRP6 on the cell surface and acts as a universal antagonist of LRP5/6 modulators. In our previous study, we found that the C-terminal region of Mesd, which is absent in sequences from invertebrates, is necessary and sufficient for binding to mature LRP6 on the cell surface. In the present studies, we further characterized the interaction between the C-terminal region Mesd peptide and LRP5/6. We found that Mesd C-terminal region-derived peptides block Mesd binding to LRP5 at the cell surface too. We also showed that there are two LRP5/6 binding sites within Mesd C-terminal region which contain several positively charged residues. Moreover, we demonstrated that the Mesd C-terminal region peptide, like the full-length Mesd protein, blocked Wnt 3A- and Rspodin1-induced Wnt/β-catenin signaling in LRP5- and LRP6- expressing cells, suppressed Wnt/β-catenin signaling in human breast HS578T cells and prostate cancer PC-3 cells, and inhibited cancer cell proliferation, although the full-length Mesd protein is more potent than its peptide. Finally, we found that treatment of the full-length Mesd protein and its C-terminal region peptide significantly increased chemotherapy agent Adriamycin-induced cytotoxicity in HS578T and PC-3 cells. Together, our results suggest that Mesd C-terminal region constitutes the major LRP5/6-binding domain, and that Mesd protein and its C-terminal region peptide have a potential therapeutic value in cancer. PMID:23469146

  14. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    PubMed

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture. PMID:27059239

  15. Expression and purification of the C-terminal fragments of TRPV5/6 channels.

    PubMed

    Kovalevskaya, Nadezda V; Schilderink, Nathalie; Vuister, Geerten W

    2011-11-01

    The transient receptor potential vanniloid 5 and 6 (TRPV5 and TRPV6) Ca(2+)-ion channels are crucial for the regulation of minute-to-minute whole body calcium homeostasis. They act as the gatekeepers of active Ca(2+) reabsorption in kidney and intestine, respectively. In spite of the great progress in the TRP channels characterization, very little is known at the atomic level about their structure and interactions with other proteins. To the major extent it is caused by difficulties in obtaining suitable samples. Here, we report expression and purification of 36 intracellular C-terminal fragments of TRPV5 and TRPV6 channels, for which no structural information is reported thus far. We demonstrate that these proteins contain intrinsically disordered regions and identify fragments suitable for biophysical characterization. By combining bioinformatic predictions and experimental results, we propose several criteria that may aid in designing a scheme for large-scale production of difficult proteins. PMID:21664972

  16. Effect of surface coating of KYb2F7:Tm(3+) on optical properties and biomedical applications.

    PubMed

    Pedraza, Francisco J; Avalos, Julio C; Yust, Brian G; Tsin, Andrew; Sardar, Dhiraj K

    2016-09-23

    This project aims to provide an insight on the effects of biocompatible polymers on the optical properties and the nanoparticle-cell interaction of KYb2F7:Tm(3+) nanocrystals that exhibit strong near infrared (NIR) fluorescence. KYb2F7:Tm(3+) nanocrystals were synthesized with a diameter of 20-30 nm and surface modified with poly(ethylene glycol), Pluronic(®) F-127, and poly(N-vinylpyrrolidone), due to the associated advantages. Some of these include biocompatibility and biodistribution in the instance of agglomeration and hydrophobicity as well as the addition of a targeting agent and drug loading by further functionalization. Despite the decrease in fluorescence intensity induced by the surface modification, thulium's emission fingerprint was easily detected. Moreover, surface modified KYb2F7:Tm(3+) nanocrystals failed to induce a toxic response on endothelial cells following a 24 h uptake period up to concentrations of 100 μg ml(-1). In vitro toxicity and confocal imaging have demonstrated the versatility of these NIR fluorescence nanocrystals in biomedical imaging, drug delivery, and photodynamic therapy. PMID:27518385

  17. Effect of surface coating of KYb2F7:Tm3+ on optical properties and biomedical applications

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2016-09-01

    This project aims to provide an insight on the effects of biocompatible polymers on the optical properties and the nanoparticle-cell interaction of KYb2F7:Tm3+ nanocrystals that exhibit strong near infrared (NIR) fluorescence. KYb2F7:Tm3+ nanocrystals were synthesized with a diameter of 20–30 nm and surface modified with poly(ethylene glycol), Pluronic® F-127, and poly(N-vinylpyrrolidone), due to the associated advantages. Some of these include biocompatibility and biodistribution in the instance of agglomeration and hydrophobicity as well as the addition of a targeting agent and drug loading by further functionalization. Despite the decrease in fluorescence intensity induced by the surface modification, thulium’s emission fingerprint was easily detected. Moreover, surface modified KYb2F7:Tm3+ nanocrystals failed to induce a toxic response on endothelial cells following a 24 h uptake period up to concentrations of 100 μg ml‑1. In vitro toxicity and confocal imaging have demonstrated the versatility of these NIR fluorescence nanocrystals in biomedical imaging, drug delivery, and photodynamic therapy.

  18. A TRPV4 Channel C-terminal Folding Recognition Domain Critical for Trafficking and Function*

    PubMed Central

    Lei, Lei; Cao, Xu; Yang, Fan; Shi, Di-Jing; Tang, Yi-Quan; Zheng, Jie; Wang, KeWei

    2013-01-01

    The Ca2+-permeable transient receptor potential vanilloid subtype 4 (TRPV4) channel mediates crucial physiological functions, such as calcium signaling, temperature sensing, and maintaining cell volume and energy homeostasis. Noticeably, most disease-causing genetic mutations are concentrated in the cytoplasmic domains. In the present study, we focused on the role of the TRPV4 C terminus in modulating protein folding, trafficking, and activity. By examining a series of C-terminal deletions, we identified a 20-amino acid distal region covering residues 838–857 that is critical for channel folding, maturation, and trafficking. Surface biotinylation, confocal imaging, and fluorescence-based calcium influx assay demonstrated that mutant proteins missing this region were trapped in the endoplasmic reticulum and unglycosylated, leading to accelerated degradation and loss of channel activity. Rosetta de novo structural modeling indicated that residues 838–857 assume a defined conformation, with Gly849 and Pro851 located at critical positions. Patch clamp recordings confirmed that lowering the temperature from 37 to 30 °C rescued channel activity of folding-defective mutants. Moreover, biochemical tests demonstrated that, in addition to participating in C-C interaction, the C terminus also interacts with the N terminus. Taken together, our findings indicate that the C-terminal region of TRPV4 is critical for channel protein folding and maturation, and the short distal segment plays an essential role in this process. Therefore, selectively disrupting the folding-sensitive region may present therapeutic potential for treating overactive TRPV4-mediated diseases, such as pain and skeletal dysplasias. PMID:23457335

  19. Structural differences between C-terminal regions of tropomyosin isoforms

    PubMed Central

    Śliwińska, Małgorzata

    2013-01-01

    Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions. PMID:24167776

  20. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses

    PubMed Central

    van der Plas, Mariena J. A.; Bhongir, Ravi K. V.; Kjellström, Sven; Siller, Helena; Kasetty, Gopinath; Mörgelin, Matthias; Schmidtchen, Artur

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21, which inhibits pro-inflammatory responses to several pathogen-associated molecular patterns in vitro and in vivo by preventing toll-like receptor dimerization and subsequent activation of down-stream signalling pathways. Thus, P. aeruginosa ‘hijacks' an endogenous anti-inflammatory peptide-based mechanism, thereby enabling modulation and circumvention of host responses. PMID:27181065

  1. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses.

    PubMed

    van der Plas, Mariena J A; Bhongir, Ravi K V; Kjellström, Sven; Siller, Helena; Kasetty, Gopinath; Mörgelin, Matthias; Schmidtchen, Artur

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21, which inhibits pro-inflammatory responses to several pathogen-associated molecular patterns in vitro and in vivo by preventing toll-like receptor dimerization and subsequent activation of down-stream signalling pathways. Thus, P. aeruginosa 'hijacks' an endogenous anti-inflammatory peptide-based mechanism, thereby enabling modulation and circumvention of host responses. PMID:27181065

  2. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  3. Extrusion of the C-terminal Helix in Navel Orangeworm Moth Pheromone-Binding Protein (AtraPBP1) Controls Pheromone Binding†

    PubMed Central

    Xu, Wei; Xu, Xianzhong; Leal, Walter S.; Ames, James B.

    2011-01-01

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present a mutational analysis on a PBP from Amyelois transitella (AtraPBP1) to evaluate how the C-terminal helix in this protein controls pheromone binding as a function of pH. Pheromone binds tightly to AtraPBP1 at neutral pH, but the binding is much weaker at pH below 5. Deletion of the entire C-terminal helix (residues 129–142) causes more than 100-fold increase in pheromone binding affinity at pH 5 and only a 1.5-fold increase at pH 7. A similar pH-dependent increase in pheromone binding is also seen for the H80A/H95A double mutant that promotes extrusion of the C-terminal helix by disabling salt bridges at each end of the helix. The single mutants (H80A and H95A) also exhibit pheromone binding at pH below 5, but with ~2-fold weaker affinity. NMR and circular dichroism data demonstrate a large overall structural change in each of these mutants at pH 4.5, indicating an extrusion of the C-terminal helix that profoundly affects the overall structure of the low pH form. Our results confirm that sequestration of the C-terminal helix at low pH as seen in the recent NMR structure may serve to block pheromone binding. We propose that extrusion of these C-terminal residues at neutral pH (or by the mutations in this study) exposes a hydrophobic cleft that promotes high affinity pheromone binding. PMID:21130734

  4. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  5. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity.

    PubMed Central

    Marshall, M S; Hill, W S; Ng, A S; Vogel, U S; Schaber, M D; Scolnick, E M; Dixon, R A; Sigal, I S; Gibbs, J B

    1989-01-01

    The cDNA for bovine ras p21 GTPase activating protein (GAP) has been cloned and the 1044 amino acid polypeptide encoded by the clone has been shown to bind the GTP complexes of both normal and oncogenic Harvey (Ha) ras p21. To identify the regions of GAP critical for the catalytic stimulation of ras p21 GTPase activity, a series of truncated forms of GAP protein were expressed in Escherichia coli. The C-terminal 343 amino acids of GAP (residues 702-1044) were observed to bind Ha ras p21-GTP and stimulate Ha ras p21 GTPase activity with the same efficiency (kcat/KM congruent to 1 x 10(6) M-1 s-1 at 24 degrees C) as GAP purified from bovine brain or full-length GAP expressed in E. coli. Deletion of the final 61 amino acid residues of GAP (residues 986-1044) rendered the protein insoluble upon expression in E. coli. These results define a distinct catalytic domain at the C terminus of GAP. In addition, GAP contains amino acid similarity with the B and C box domains conserved among phospholipase C-II, the crk oncogene product, and the non-receptor tyrosine kinase oncogene products. This homologous region is located in the N-terminal half of GAP outside of the catalytic domain that stimulates ras p21 GTPase activity and may constitute a distinct structural or functional domain within the GAP protein. Images PMID:2545441

  6. Solution structure and dynamics of C-terminal regulatory domain of Vibrio vulnificus extracellular metalloprotease

    SciTech Connect

    Yun, Ji-Hye; Kim, Heeyoun; Park, Jung Eun; Lee, Jung Sup; Lee, Weontae

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We have determined solution structures of vEP C-terminal regulatory domain. Black-Right-Pointing-Pointer vEP C-ter100 has a compact {beta}-barrel structure with eight anti-parallel {beta}-strands. Black-Right-Pointing-Pointer Solution structure of vEP C-ter100 shares its molecular topology with that of the collagen-binding domain of collagenase. Black-Right-Pointing-Pointer Residues in the {beta}3 region of vEP C-ter100 might be important in putative ligand/receptor binding. Black-Right-Pointing-Pointer vEP C-ter100 interacts strongly with iron ion. -- Abstract: An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clotting that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel {beta}-strands with a unique fold that has a compact {beta}-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe{sup 3+}). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates

  7. Age-dependent loss of the C-terminal amino acid from alpha crystallin

    NASA Technical Reports Server (NTRS)

    Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum made against the C-terminal region of alpha-A crystallin was used to monitor the purification of a tryptic peptide containing the C-terminus of the molecule from fetal versus adult bovine lenses. Mass spectral analysis of the peptide preparations obtained from these lenses demonstrated the presence of a peptide (T20) containing an intact C-terminus from fetal lenses and the presence of an additional peptide (T20') from older lenses that contained a cleaved C-terminal serine. These results demonstrate an age-dependent processing of alpha-A crystallin in the bovine lens, resulting in removal of the C-terminal amino acid residue.

  8. The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90

    PubMed Central

    Haslbeck, Veronika; Eckl, Julia M.; Drazic, Adrian; Rutz, Daniel A.; Lorenz, Oliver R.; Zimmermann, Kerstin; Kriehuber, Thomas; Lindemann, Claudia; Madl, Tobias; Richter, Klaus

    2015-01-01

    Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex. PMID:26593036

  9. Identification of a new scaffold for hsp90 C-terminal inhibition.

    PubMed

    Zhao, Huiping; Moroni, Elisabetta; Colombo, Giorgio; Blagg, Brian S J

    2014-01-01

    Inhibition of Hsp90 C-terminal function is an advantageous therapeutic paradigm for the treatment of cancer. Currently, the majority of Hsp90 C-terminal inhibitors are derived from novobiocin, a natural product traditionally used as an antibiotic. Assisted by molecular docking studies, a scaffold containing a biphenyl moiety in lieu of the coumarin ring system found in novobiocin was identified for development of new Hsp90 C-terminal inhibitors. Initial structure-activity studies led to derivatives that manifest good antiproliferative activity against two breast cancer cell lines through Hsp90 inhibition. This platform serves as a scaffold upon which new Hsp90 C-terminal inhibitors can be readily assembled for further investigation. PMID:24900777

  10. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates.

    PubMed

    Vinogradov, Alexander A; Simon, Mark D; Pentelute, Bradley L

    2016-03-18

    A method for chemo- and regioselective conjugation of nucleophiles to fully unprotected peptides and proteins via in situ generation of C-terminal isocyanates is reported. Oxidation of C-terminal peptide hydrazides in aqueous media followed by Curtius rearrangement of acyl azides reliably generates isocyanates, which react with a variety of external nucleophiles, such as hydrazines, hydrazides, aromatic thiols, and hydroxylamines. Multiple peptides and a 53 kDa protein hydrazide were conjugated to different nucleophiles using this reaction. PMID:26948719

  11. Contribution of Chitinase A’s C-Terminal Vacuolar Sorting Determinant to the Study of Soluble Protein Compartmentation

    PubMed Central

    Stigliano, Egidio; Di Sansebastiano, Gian-Pietro; Neuhaus, Jean-Marc

    2014-01-01

    Plant chitinases have been studied for their importance in the defense of crop plants from pathogen attacks and for their peculiar vacuolar sorting determinants. A peculiarity of the sequence of many family 19 chitinases is the presence of a C-terminal extension that seems to be important for their correct recognition by the vacuole sorting machinery. The 7 amino acids long C-terminal vacuolar sorting determinant (CtVSD) of tobacco chitinase A is necessary and sufficient for the transport to the vacuole. This VSD shares no homology with other CtVSDs such as the phaseolin’s tetrapeptide AFVY (AlaPheValTyr) and it is also sorted by different mechanisms. While a receptor for this signal has not yet been convincingly identified, the research using the chitinase CtVSD has been very informative, leading to the observation of phenomena otherwise difficult to observe such as the presence of separate vacuoles in differentiating cells and the existence of a Golgi-independent route to the vacuole. Thanks to these new insights in the endoplasmic reticulum (ER)-to-vacuole transport, GFPChi (Green Fluorescent Protein carrying the chitinase A CtVSD) and other markers based on chitinase signals will continue to help the investigation of vacuolar biogenesis in plants. PMID:24945312

  12. Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities

    PubMed Central

    Moroni, Elisabetta; Zhao, Huiping; Blagg, Brian S.J.; Colombo, Giorgio

    2014-01-01

    The interaction that occurs between molecules is a dynamic process that impacts both structural and conformational properties of the ligand and the ligand binding site. Herein, we investigate the dynamic cross-talk between a protein and the ligand as a source for new opportunities in ligand design. Analysis of the formation/disappearance of protein pockets produced in response to a first-generation inhibitor assisted in the identification of functional groups that could be introduced onto scaffolds to facilitate optimal binding, which allowed for increased binding with previously uncharacterized regions. MD simulations were used to elucidate primary changes that occur in the Hsp90 C-terminal binding pocket in the presence of first-generation ligands. This data was then used to design ligands that adapt to these receptor conformations, which provides access to an energy landscape that is not visible in a static model. The newly synthesized compounds demonstrated anti-proliferative activity at ~150 nanomolar concentration. The method identified herein may be used to design chemical probes that provide additional information on structural variations of Hsp90 C-terminal binding site. PMID:24397468

  13. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail.

    PubMed

    Amendt, B A; Sutherland, L B; Russo, A F

    1999-10-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  14. Multifunctional Role of the Pitx2 Homeodomain Protein C-Terminal Tail

    PubMed Central

    Amendt, Brad A.; Sutherland, Lillian B.; Russo, Andrew F.

    1999-01-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  15. Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains

    SciTech Connect

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.; Kelly, Charles; Mitchell, Tim J.; Brady, L. Jeannine; Deivanayagam, Champion

    2012-05-29

    The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.

  16. Arrestin2/Clathrin Interaction is Regulated by Key N- and C-terminal Regions in Arrestin2+

    PubMed Central

    Kern, Ronald C.; Kang, Dong Soo; Benovic, Jeffrey L.

    2009-01-01

    The interaction of non-visual arrestins with clathrin is an important step in mediating the endocytosis of cell surface receptors. Previous studies have shown that mutation of the clathrin-binding box in arrestin leads to severe defects in arrestin mediated trafficking. However, little is known about how arrestin/clathrin interaction is regulated. Here we show that both the N- and C-terminal regions of arrestin2 function to inhibit basal interaction with clathrin. Truncation analysis revealed that clathrin binding increases as the C-tail of arrestin2 is shortened while site-directed mutagenesis identified Glu-404, Glu-405, and Glu-406 as being primarily responsible for this inhibition. Mutagenesis also identified Lys-4, Arg-7, Lys-10, and Lys-11 within the N-terminus as playing a key role regulating clathrin binding. Based on similarities with visual arrestin, Lys-10 and Lys-11 likely function as phospho-sensors in arrestin2 to initially discriminate the phosphorylation status of target receptors. Analysis of the arrestin2 structure reveals that Arg-7, Lys-10 and Lys-11 are in close proximity to Glu-389 and Asp-390, suggesting that these residues may form intramolecular interactions. In fact, simultaneous mutation of Glu-389 and Asp-390 also leads to enhanced clathrin binding. These results reveal that multiple intramolecular interactions coordinately regulate arrestin2 interaction with clathrin, highlighting this interaction as a critical step in regulating receptor trafficking. PMID:19555118

  17. 1H NMR sequential assignments and secondary structure analysis of human fibrinogen gamma-chain C-terminal residues 385-411

    SciTech Connect

    Mayo, K.H.; Burke, C.; Lindon, J.N.; Kloczewiak, M. )

    1990-04-03

    The human fibrinogen gamma-chain, C-terminal fragment, residues 385-411, i.e., KIIPFNRLTIGEGQQHHLGGAKQAGDV, contains two biologically important functional domains: (1) fibrinogen gamma-chain polymerization center and (2) platelet receptor recognition domain. This peptide was isolated from cyanogen bromide degraded human fibrinogen and was investigated by 1H NMR (500 MHz) spectroscopy. Sequence-specific assignments of NMR resonances were obtained for backbone and side-chain protons via analysis of 2D NMR COSY, double quantum filtered COSY, HOHAHA, and NOESY spectra. The N-terminal segment from residues 385-403 seems to adopt a relatively fixed solution conformation. Strong sequential alpha CH-NH NOESY connectivities and a continuous run of NH-NH NOESY connectivities and several long-lived backbone NH protons strongly suggest the presence of multiple-turn or helix-like structure for residues 390 to about 402. The conformation of residues 403-411 seems to be much less constrained as evidenced by the presence of weaker and sequential alpha CH-NH NOEs, the absence of sequential NH-NH NOEs, and the lack of longer lived amides. Chemical shifts of resonances from backbone and side-chain protons of the C-terminal dodecapeptide, residues 400-411, differ significantly from those of the parent chain, suggesting that some preferred C-terminal conformation does exist.

  18. Effect of C-terminal truncation on enzyme properties of recombinant amylopullulanase from Thermoanaerobacter pseudoethanolicus.

    PubMed

    Lin, Fu-Pang; Ho, Yi-Hsuan; Lin, Hsu-Yang; Lin, Hui-Ju

    2012-05-01

    The smallest and enzymatically active molecule, TetApuQ818, was localized within the C-terminal Q818 amino acid residue after serial C-terminal truncation analysis of the recombinant amylopullulanase molecule (TetApuM955) from Thermoanaerobacter pseudoethanolicus. Kinetic analyses indicated that the overall catalytic efficiency, k (cat)/K (m), of TetApuQ818 was 8-32% decreased for the pullulan and the soluble starch substrate, respectively. Changes to the substrate affinity, K (m), and the turnover rate, k (cat), were decreased significantly in both enzymatic activities of TetApuQ818. TetApuQ818 exhibited less thermostability than TetApuM955 when the temperature was raised above 85°C, but it had similar substrate-binding ability and hydrolysis products toward various substrates as TetApuM955 did. Both enzymes showed similar spectroscopies of fluorescence and circular dichroism, suggesting the active folding conformation was maintained after this C-terminal Q818 deletion. This study suggested that the binding ability of insoluble starch by TetApuM955 did not rely on the putative C-terminal carbohydrate binding module family 20 (CBM20) and two FnIII regions of TetApu, though the integrity of the AamyC module of TetApuQ818 was required for the enzyme activity. PMID:22392283

  19. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain.

    PubMed

    Becker, Michael; Krämer, Reinhard

    2015-10-01

    Corynebacterium glutamicum is used in microbial biotechnology for the production of amino acids, e.g., glutamate and lysine. Excretion of glutamate into the surrounding medium under production conditions is mediated by MscCG, an MscS-type mechanosensitive channel. In difference to most other MscS-type channel proteins, MscCG carries, in addition to the N-terminal pore domain, a long C-terminal domain that amounts to about half of the size of the protein and harbors an additional transmembrane segment. Here we study the impact of the C-terminal domain on both functions of MscCG as mechanosensitive channel and as glutamate exporter. Sequential truncations of the C-terminal domain were applied, as well as deletion of particular subdomains, replacement of these segments by other amino acid sequences, and sequence randomization. Several parameters of cell physiology and bioenergetics of the obtained mutants related to both glutamate excretion and response to osmotic stress were quantified. All three subdomains of the C-terminal domain, i.e., the periplasmic loop, the fourth transmembrane segment, and the cytoplasmic loop, proved to be of core significance for MscCG function, in particular for glutamate excretion. PMID:26033538

  20. Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant.

    PubMed

    Lykkemark, Simon; Mandrup, Ole Aalund; Friis, Niels Anton; Kristensen, Peter

    2014-01-01

    Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression. PMID:25426869

  1. Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction.

    PubMed

    Green, Matthew; Hatter, Louise; Brookes, Emre; Soultanas, Panos; Scott, David J

    2016-01-29

    The bacterial single-stranded DNA (ssDNA) binding protein SSB is a strictly conserved and essential protein involved in diverse functions of DNA metabolism, including replication and repair. SSB comprises a well-characterized tetrameric core of N-terminal oligonucleotide binding OB folds that bind ssDNA and four intrinsically disordered C-terminal domains of unknown structure that interact with partner proteins. The generally accepted, albeit speculative, mechanistic model in the field postulates that binding of ssDNA to the OB core induces the flexible, undefined C-terminal arms to expand outwards encouraging functional interactions with partner proteins. In this structural study, we show that the opposite is true. Combined small-angle scattering with X-rays and neutrons coupled to coarse-grained modeling reveal that the intrinsically disordered C-terminal arms are relatively collapsed around the tetrameric OB core and collapse further upon ssDNA binding. This implies a mechanism of action, in which the disordered C-terminal domain collapse traps the ssDNA and pulls functional partners onto the ssDNA. PMID:26707201

  2. A summary of staphylococcal C-terminal SH3b_5 cell wall binding domains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcal peptidoglycan hydrolases are a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown for some to be essential for accurate cell wall recognition and subsequent staphylolytic activity, propert...

  3. Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant

    PubMed Central

    Lykkemark, Simon; Mandrup, Ole Aalund; Friis, Niels Anton; Kristensen, Peter

    2014-01-01

    Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression. PMID:25426869

  4. Alpha-A crystallin: quantitation of C-terminal modification during lens aging

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Gopalakrishnan, S.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Previous studies have demonstrated that the C-terminal region of alpha-A crystallin is susceptible to age-dependent, posttranslational modification. To quantitate the amount of modification, alpha-A crystallin was purified from total proteins of the aging bovine lens, then digested with lys-C endoproteinase. Reverse phase, high pressure liquid chromatography was used to resolve and quantitate the resulting peptides, to determine the amount of C-terminal peptide relative to peptides from other regions of the protein that have not been reported to undergo modification. The results indicate that relative to alpha-A crystallin from newborn lens, posttranslational modification has occurred in approximately 45-55% of the C-terminal region from mature lens. These results demonstrate extensive modification of the C-terminal region of alpha-A crystallin from the mature lens, indicating that during the aging process, posttranslational modifications in this region may make significant contributions to the aggregated state and/or molecular chaperone properties of the molecule.

  5. IMPLICATION OF C-TERMINAL DELETION ON THE STRUCTURE AND STABILITY OF BOVINE B-CASEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of bovine Beta-casein with its C-terminal 20 residues removed by chymosin digestion, 1-192 fragment (f1-192), were examined and compared to the parent protein (Beta-casein). The f1-192 molecule could not form a complex with the hydrophobic probe ANS; this convincingly illustrates that...

  6. A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect kinins are present in a wide variety of insects and function as potent diuretic peptides in flies. A C-terminal aldehyde insect kinin analog, Fmoc-RFFPWG-H (R-LK-CHO), demonstrates stimulation of Malpighian tubule fluid secretion in crickets, but shows inhibition of both in vitro and in v...

  7. Predictors of intact and C-terminal fibroblast growth factor 23 in Gambian children

    PubMed Central

    Braithwaite, Vickie; Jones, Kerry S; Assar, Shima; Schoenmakers, Inez; Prentice, Ann

    2013-01-01

    Elevated C-terminal fibroblast growth factor 23 (C-FGF23) concentrations have been reported in Gambian children with and without putative Ca-deficiency rickets. The aims of this study were to investigate whether i) elevated C-FGF23 concentrations in Gambian children persist long term; ii) they are associated with higher intact FGF23 concentrations (I-FGF23), poor iron status and shorter 25-hydroxyvitamin D half-life (25OHD-t1/2); and iii) the persistence and predictors of elevated FGF23 concentrations differ between children with and without a history of rickets. Children (8–16 years, n=64) with a history of rickets and a C-FGF23 concentration >125 RU/ml (bone deformity (BD), n=20) and local community children with a previously measured elevated C-FGF23 concentration (LC+, n=20) or a previously measured C-FGF23 concentration within the normal range (LC−, n=24) participated. BD children had no remaining signs of bone deformities. C-FGF23 concentration had normalised in BD children, but remained elevated in LC+ children. All the children had I-FGF23 concentration within the normal range, but I-FGF23 concentration was higher and iron status poorer in LC+ children. 1,25-dihydroxyvitamin D was the strongest negative predictor of I-FGF23 concentration (R2=18%; P=0.0006) and soluble transferrin receptor was the strongest positive predictor of C-FGF23 concentration (R2=33%; P≤0.0001). C-FGF23 and I-FGF23 concentrations were poorly correlated with each other (R2=5.3%; P=0.07). 25OHD-t1/2 was shorter in BD children than in LC− children (mean (s.d.): 24.5 (6.1) and 31.5 (11.5) days respectively; P=0.05). This study demonstrated that elevated C-FGF23 concentrations normalised over time in Gambian children with a history of rickets but not in local children, suggesting a different aetiology; that children with resolved rickets had a shorter 25OHD-t1/2, suggesting a long-standing increased expenditure of 25OHD, and that iron deficiency is a predictor of elevated C

  8. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  9. Evidence for new C-terminally truncated variants of α- and β-tubulins

    PubMed Central

    Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M.; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo

    2016-01-01

    Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. PMID:26739754

  10. Evidence for new C-terminally truncated variants of α- and β-tubulins.

    PubMed

    Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo

    2016-02-15

    Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the -EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same -EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with -EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. PMID:26739754

  11. Fmoc solid-phase synthesis of C-terminal modified peptides by formation of a backbone cyclic urethane moiety.

    PubMed

    Elashal, Hader E; Cohen, Ryan D; Raj, Monika

    2016-08-11

    C-terminally modified peptides are of high significance due to the therapeutic properties that accompany various C-terminal functional groups and the ability to manipulate them for further applications. Thus, there is a great necessity for an effective solid phase technique for the synthesis of C-terminally modified peptides. Here, we report a universal solid phase strategy for the synthesis of various C-terminal modified peptides which is independent of the type of resins, linkers, and unnatural moieties typically needed for C-terminal modifications. The technique proceeds by the modification of C-terminal serine to a cyclic urethane moiety which results in the activation of the backbone amide chain for nucleophilic displacement by various nucleophiles to generate C-terminally modified acids, esters, N-aryl amides, and alcohols. This cyclic urethane technique (CUT) also provides a general strategy for synthesis of C-terminal protected peptides that can be used for convergent synthesis of large peptides. The C-terminal protecting groups are cleaved by facile hydrolysis to release the free peptide. PMID:27407005

  12. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    SciTech Connect

    Singh, Pratibha; Savithri, H.S.

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  13. A C-TERMINAL INSECT KININ ANALOG ENHANCES INHIBITION OF WEIGHT GAIN AND INDUCES SIGNIFICANT MORTALITY IN HELICOVERPA ZEA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first reported examples of C-terminal aldehyde analogs of an insect neuropeptide are described. They are hexapeptide insect kinin analogs Boc-VFFPWG-H and Fmoc-RFFPWG-H. Activity observed for these modified analogs in an in vitro insect diuretic assay confirms that the C-terminal aldehyde group...

  14. The N-terminal to C-terminal motif in protein folding and function.

    PubMed

    Krishna, Mallela M G; Englander, S Walter

    2005-01-25

    Essentially all proteins known to fold kinetically in a two-state manner have their N- and C-terminal secondary structural elements in contact, and the terminal elements often dock as part of the experimentally measurable initial folding step. Conversely, all N-C no-contact proteins studied so far fold by non-two-state kinetics. By comparison, about half of the single domain proteins in the Protein Data Bank have their N- and C-terminal elements in contact, more than expected on a random probability basis but not nearly enough to account for the bias in protein folding. Possible reasons for this bias relate to the mechanisms for initial protein folding, native state stability, and final turnover. PMID:15657118

  15. Structure of a C-terminal [alpha]-helix cap in a synthetic peptide

    SciTech Connect

    Zhou, H.X.; Kallenbach, N.R. ); Lyu, P.C.; Wemmer, D.E. )

    1994-02-09

    We report here a novel C-terminal capping structure in a peptide helix, in which the NH of the side chain of asparagine forms an H-bond with the helix main chain CO four residues away. The backbone forms a local 3[sub 10] helix at the C-terminus, with the side chain contributing an additional H-bonded loop. This structure reveals formation of H-bonds by the side chain and main chain of a single residue that serve as a fundamental signal at the C-terminus of helices. The structure formed in this way blocks continuation of the [alpha]helix, hence providing a stronger C-termination signal than Pro 19, as seen in the relative CD values. 12 refs., 2 figs., 1 tab.

  16. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17

    PubMed Central

    Garcia-Doval, Carmela; van Raaij, Mark J.

    2012-01-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371–553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P212121 (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C2221 (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. PMID:22297990

  17. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17.

    PubMed

    Garcia-Doval, Carmela; van Raaij, Mark J

    2012-02-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371-553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P2(1)2(1)2(1) (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C222(1) (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. PMID:22297990

  18. Viral suppression function of intracellular antibody against C-terminal domain of rabies virus phosphoprotein.

    PubMed

    Liu, Yang; Sun, Lina; Yu, Pengcheng; Li, Aqian; Li, Chuan; Tang, Qing; Li, Dexin; Liang, Mifang

    2015-10-01

    Rabies virus (RV) causes a fatal disease in both human and animals. The disease can be prevented by post-exposure prophylaxis in individuals exposed to RV. However, the neutralization effect is limited after the virus enters into the host cells. So, it is important to identify new targets for rabies therapy. In this study, a human antibody RV1A2 specific to RV phosphoprotein (RV-P) was generated from a human naïve immune antibody library. The antibody recognized all forms of the phosphoproteins including the full length (P1) and short length of the P proteins (P2, P3, P4, and P5). The epitope mapping and the molecular docking of antigen-antibody complex showed that the antibody targets at a conserved epitope of 'VLGWV' ranging from amino acid (aa) 262 to 266 at C-terminal domain of the P protein, which locates at a hydrophobic pocket region in the C-terminal of the RV-P. The aa W265 within the epitope is on the flat surface of the domain, suggesting that it may be a critical amino acid for the functions of the P protein. Our results further showed that intracellular antibody RV1A2 which targets at the C-terminal domain of the P protein could effectively inhibit RV propagation 2-4 days post infection. These results suggest that the conserved C-terminal domain may be used as a new target for drug discovery, which highlights an intracellular inhibition of RV propagation and provides a potential novel way to treat RV infection. PMID:26188200

  19. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    PubMed Central

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  20. Localization of the hydrophilic C terminal part of the ATP synthase subunit 8 of saccharomyces cerevisiae

    SciTech Connect

    Velours, J.; Guerin, B.

    1986-07-16

    The hydrophobic subunit 8 of the yeast ATP synthase was modified using the non-penetrating amino reactive specific reagent: isethionylacetimidate. The polypeptide was modified when using the isolated ATP synthase and sodium bromide-treated submitochondrial particles. It is shown that the only lysine of the protein was modified by the reagent. It is concluded that the hydrophilic C terminal part of the protein containing lysine 47 is located on the inner side of the inner mitochondrial membrane.

  1. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.

    PubMed

    Qian, Zhi-Gang; Zhou, Ming-Liang; Song, Wen-Wen; Xia, Xiao-Xia

    2015-11-01

    Stimuli-responsive hydrogels have great potentials in biomedical and biotechnological applications. Due to the advantages of precise control over molecular weight and being biodegradable, protein-based hydrogels and their applications have been extensively studied. However, protein hydrogels with dual thermosensitive properties are rarely reported. Here we present the first report of dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. First, we found that recombinant C-terminal domain of major ampullate spidroin 1 (MaSp1) of the spider Nephila clavipes formed hydrogels when cooled to approximately 2 °C or heated to 65 °C. The conformational changes and self-assembly of the recombinant protein were studied to understand the mechanism of the gelation processes using multiple methods. It was proposed that the gelation in the low-temperature regime was dominated by hydrogen bonding and hydrophobic interaction between folded protein molecules, whereas the gelation in the high-temperature regime was due to cross-linking of the exposed hydrophobic patches resulting from partial unfolding of the protein upon heating. More interestingly, genetic fusion of the C-terminal domain to a short repetitive region of N. clavipes MaSp1 resulted in a chimeric protein that formed a hydrogel with significantly improved mechanical properties at low temperatures between 2 and 10 °C. Furthermore, the formation of similar hydrogels was observed for the recombinant C-terminal domains of dragline silk of different spider species, thus demonstrating the conserved ability to form dual thermosensitive hydrogels. These findings may be useful in the design and construction of novel protein hydrogels with tunable multiple thermosensitivity for applications in the future. PMID:26457360

  2. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments.

    PubMed

    Kuzmenkov, Alexey I; Fedorova, Irina M; Vassilevski, Alexander A; Grishin, Eugene V

    2013-02-01

    Venom of Lachesana tarabaevi (Zodariidae, "ant spiders") exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices. PMID:23088912

  3. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  4. Membrane curvature sensing by the C-terminal domain of complexin

    NASA Astrophysics Data System (ADS)

    Snead, David; Wragg, Rachel T.; Dittman, Jeremy S.; Eliezer, David

    2014-09-01

    Complexin functions at presynaptic nerve terminals to inhibit spontaneous SNARE-mediated synaptic vesicle (SV) exocytosis, while enhancing stimulated neurotransmitter release. The C-terminal domain (CTD) of complexin is essential for its inhibitory function and has been implicated in localizing complexin to SVs via direct membrane interactions. Here we show that complexin’s CTD is highly sensitive to membrane curvature, which it senses via tandem motifs, a C-terminal motif containing a mix of bulky hydrophobic and positively charged residues, and an adjacent amphipathic region that can bind membranes in either a disordered or a helical conformation. Helix formation requires membrane packing defects found on highly curved membrane surfaces. Mutations that disrupt helix formation without disrupting membrane binding compromise complexin’s inhibitory function in vivo. Thus, this membrane curvature-dependent conformational transition, combined with curvature-sensitive binding by the adjacent C-terminal motif, constitute a novel mechanism for activating complexin’s inhibitory function on the surface of SVs.

  5. Mutagenic Analysis of the C-Terminal Extension of Lsm1

    PubMed Central

    Tharun, Sundaresan

    2016-01-01

    The Sm-like proteins (also known as Lsm proteins) are ubiquitous in nature and exist as hexa or heptameric RNA binding complexes. They are characterized by the presence of the Sm-domain. The Lsm1 through Lsm7 proteins are highly conserved in eukaryotes and they form a hetero-octameric complex together with the protein Pat1. The Lsm1-7-Pat1 complex plays a key role in mRNA decapping and 3’-end protection and therefore is required for normal mRNA decay rates in vivo. Lsm1 is a key subunit that is critical for the unique RNA binding properties of this complex. We showed earlier that unlike most Sm-like proteins, Lsm1 uniquely requires both its Sm domain and its C-terminal extension to contribute to the function of the Lsm1-7-Pat1 complex and that the C-terminal segment can associate with the rest of the complex and support the function even in trans. The studies presented here identify a set of residues at the very C-terminal end of Lsm1 to be functionally important and suggest that these residues support the function of the Lsm1-7-Pat1 complex by facilitating RNA binding either directly or indirectly. PMID:27434131

  6. The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein

    PubMed Central

    Dziubańska, Paulina J.; Derewenda, Urszula; Ellena, Jeffrey F.; Engel, Daniel A.; Derewenda, Zygmunt S.

    2014-01-01

    Ebolavirus (EBOV) causes severe hemorrhagic fever with a mortality rate of up to 90%. EBOV is a member of the order Mononegavirales and, like other viruses in this taxonomic group, contains a negative-sense single-stranded (ss) RNA. The EBOV ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. Like other EBOV proteins, NP is multifunctional. It is tightly associated with the viral genome and is essential for viral transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. NP is unusual among the Mononegavirales in that it contains two distinct regions, or putative domains, the C-terminal of which shows no homology to any known proteins and is purported to be a hub for protein–protein interactions within the nucleocapsid. The atomic structure of NP remains unknown. Here, the boundaries of the N- and C-terminal domains of NP from Zaire EBOV are defined, it is shown that they can be expressed as highly stable recombinant proteins in Escherichia coli, and the atomic structure of the C-terminal domain (residues 641–739) derived from analysis of two distinct crystal forms at 1.98 and 1.75 Å resolution is described. The structure reveals a novel tertiary fold that is distantly reminiscent of the β-grasp architecture. PMID:25195755

  7. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation.

    PubMed

    Chen, Zan; Dempsey, Daniel R; Thomas, Stefani N; Hayward, Dawn; Bolduc, David M; Cole, Philip A

    2016-07-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380-385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612

  8. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    SciTech Connect

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-07-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2{sub 1} and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R{sub free} = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction.

  9. Delineation of the core aggregation sequences of TDP-43 C-terminal fragment.

    PubMed

    Saini, Akash; Chauhan, Virander Singh

    2011-11-01

    Ubiquitinated cytoplasmic inclusions of TDP-43 and its C-terminal cleavage products are the pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitinated inclusions. The C-terminal fragments (CTFs) of TDP-43 are increasingly considered to play an important role in its aggregation and in disease. Here, we employed a set of synthetic peptides spanning the length of the TDP-43 CTF (220-414) in order to find out its core aggregation domains. Two regions, one in the RRM-2 domain (246-255) and the other in the C-terminal domain (311-320) of TDP-43, stand out as highly aggregation prone. Studies done on recombinant purified TDP-43 CTF and its three mutants, in which these sequences were deleted individually and together, suggested that the 311-320 region has a more crucial role to play than the 246-255 in its aggregation. The study helps in defining specific peptide sequences that might form the core of TDP-43 aggregation. Identification of these sequences could help in designing peptide based inhibitors of TDP-43 aggregation. PMID:21905193

  10. A C-terminal Membrane Anchor Affects the Interactions of Prion Proteins with Lipid Membranes*

    PubMed Central

    Chu, Nam K.; Shabbir, Waheed; Bove-Fenderson, Erin; Araman, Can; Lemmens-Gruber, Rosa; Harris, David A.; Becker, Christian F. W.

    2014-01-01

    Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrPC into pathogenic PrPSc. Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23–231, FL_PrP), N-terminally truncated PrP (residues 90–231, T_PrP), and PrP missing its central hydrophobic region (Δ105–125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions. PMID:25217642

  11. Conserved C-Terminal Domain of Spider Tubuliform Spidroin 1 Contributes to Extensibility in Synthetic Fibers

    SciTech Connect

    Gnesa, Eric; Hsia, Yang; Yarger, Jeffery L.; Weber, Warner; Lin-Cereghino, Joan; Lin-Cereghino, Geoff; Tang, Simon; Agari, Kimiko; Vierra, Craig

    2012-05-24

    Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.

  12. The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured.

    PubMed

    Nardini, Marco; Svergun, Dmitri; Konarev, Peter V; Spanò, Stefania; Fasano, Mauro; Bracco, Chiara; Pesce, Alessandra; Donadini, Alessandra; Cericola, Claudia; Secundo, Francesco; Luini, Alberto; Corda, Daniela; Bolognesi, Martino

    2006-05-01

    C-terminal binding proteins (CtBPs) are moonlighting proteins involved in nuclear transcriptional corepression and in Golgi membrane tubule fission. Structural information on CtBPs is available for their substrate-binding domain, responsible for transcriptional repressor recognition/binding, and for the nucleotide-binding domain, involved in NAD(H)-binding and dimerization. On the contrary, little is known about the structure of CtBP C-terminal region ( approximately 90 residues), hosting sites for post-translational modifications. In the present communication we apply a combined approach based on bioinformatics, nuclear magnetic resonance, circular dichroism spectroscopy, and small-angle X-ray scattering, and we show that the CtBP C-terminal region is intrinsically unstructured in the full-length CtBP and in constructs lacking the substrate- and/or the nucleotide-binding domains. The flexible nature of this protein region, and its structural transitions, may be instrumental for CtBP recognition and binding to diverse molecular partners. PMID:16597837

  13. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.

    PubMed

    Sapkota, Gopal; Knockaert, Marie; Alarcón, Claudio; Montalvo, Ermelinda; Brivanlou, Ali H; Massagué, Joan

    2006-12-29

    Smad proteins transduce bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta) signals upon phosphorylation of their C-terminal SXS motif by receptor kinases. The activity of Smad1 in the BMP pathway and Smad2/3 in the TGFbeta pathway is restricted by pathway cross-talk and feedback through protein kinases, including MAPK, CDK2/4, p38MAPK, JNK, and others. These kinases phosphorylate Smads 1-3 at the region that links the N-terminal DNA-binding domain and the C-terminal transcriptional domain. Phosphatases that dephosphorylate the linker region are therefore likely to play an integral part in the regulation of Smad activity. We reported previously that small C-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate Smad1 C-terminal tail, thereby attenuating BMP signaling. Here we provide evidence that SCP1-3 also dephosphorylate the linker regions of Smad1 and Smad2/3 in vitro, in mammalian cells and in Xenopus embryos. Overexpression of SCP 1, 2, or 3 decreased linker phosphorylation of Smads 1, 2 and 3. Moreover, RNA interference-mediated knockdown of SCP1/2 increased the BMP-dependent phosphorylation of the Smad1 linker region as well as the C terminus. In contrast, SCP1/2 knockdown increased the TGFbeta-dependent linker phosphorylation of Smad2/3 but not the C-terminal phosphorylation. Consequently, SCP1/2 knockdown inhibited TGFbeta transcriptional responses, but it enhanced BMP transcriptional responses. Thus, by dephosphorylating Smad2/3 at the linker (inhibitory) but not the C-terminal (activating) site, the SCPs enhance TGFbeta signaling, and by dephosphorylating Smad1 at both sites, the SCPs reset Smad1 to the basal unphosphorylated state. PMID:17085434

  14. Probing the Impact of the EchinT C-Terminal Domain on Structure and Catalysis

    SciTech Connect

    S Bardaweel; J Pace; T Chou; V Cody; C Wagner

    2011-12-31

    Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P2{sub 1} with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the T{sub m} value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step

  15. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease.

    PubMed

    Zilberman-Rudenko, Jevgenia; Shawver, Linda Monaco; Wessel, Alex W; Luo, Yongquan; Pelletier, Martin; Tsai, Wanxia Li; Lee, Younglang; Vonortas, Spiridon; Cheng, Laurence; Ashwell, Jonathan D; Orange, Jordan S; Siegel, Richard M; Hanson, Eric P

    2016-02-01

    Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease. PMID:26802121

  16. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    PubMed

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  17. Deletion of extra C-terminal segment and its effect on the function and structure of artemin.

    PubMed

    Shirzad, Fatemeh; Sajedi, Reza H; Shahangian, S Shirin; Rasti, Behnam; Mosadegh, Bita; Taghdir, Majid; Hosseinkhani, Saman

    2011-10-01

    Artemin acts as a molecular chaperone by protecting Artemia embryos undergoing encystment from damage, caused by heat or other forms of stress. According to the amino acid sequence alignment, although artemin shows a fair amount of homology with ferritin, it also contains an extra C-terminal. Analysis of the C-terminal extension of artemin model in previous studies has shown that there are some favorable interactions between this region and its surrounding cleft. In the current study we tried to investigate the role of this C-terminal in chaperone activity of artemin. This extra C-terminal (39 residues) was deleted and the truncated gene was cloned and expressed in Escherichia coli. According to in vivo chaperone-like activity studies, both full-length and C-terminal truncated artemin conferred thermotolerance on transfected E. coli cells. However, bacteria expressing truncated derivative of artemin was less resistant than those producing native artemin against heat. Moreover, the activity recovery on carbonic anhydrase (CA), as protein substrate, was less in the presence of truncated artemin than that of full-length artemin. The results demonstrated that C-terminal deletion decreases the ability of artemin for chaperone-like activity. Theoretical investigations showed that deletion of artemin C-terminal extension makes substantial structural alterations in a way that structural stability and overall integrity of artemin decrease. PMID:21600915

  18. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells.

    PubMed

    Hu, Zhilan; Zhang, Henry; Haley, Benjamin; Macchi, Frank; Yang, Feng; Misaghi, Shahram; Elich, Joseph; Yang, Renee; Tang, Yun; Joly, John C; Snedecor, Bradley R; Shen, Amy

    2016-10-01

    Heterogeneity of C-terminal lysine levels often observed in therapeutic monoclonal antibodies is believed to result from the proteolysis by endogenous carboxypeptidase(s) during cell culture production. Identifying the responsible carboxypeptidase(s) for C-terminal lysine cleavage in CHO cells would provide valuable insights for antibody production cell culture processes development and optimization. In this study, five carboxypeptidases, CpD, CpM, CpN, CpB, and CpE, were studied for message RNA (mRNA) expression by qRT-PCR analysis in two most commonly used blank hosts (DUXB-11 derived DHFR-deficient DP12 host and DHFR-positive CHOK1 host), used for therapeutic antibody production, as well an antibody-expressing cell line derived from each host. Our results showed that CpD had the highest mRNA expression. When CpD mRNA levels were reduced by RNAi (RNA interference) technology, C-terminal lysine levels increased, whereas there was no obvious change in C-terminal lysine levels when a different carboxypeptidase mRNA level was knocked down suggesting that carboxypeptidase D is the main contributor for C-terminal lysine processing. Most importantly, when CpD expression was knocked out by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, C-terminal lysine cleavage was completely abolished in CpD knockout cells based on mass spectrometry analysis, demonstrating that CpD is the only endogenous carboxypeptidase that cleaves antibody heavy chain C-terminal lysine in CHO cells. Hence, our work showed for the first time that the cleavage of antibody heavy chain C-terminal lysine is solely mediated by the carboxypeptidase D in CHO cells and our finding provides one solution to eliminating C-terminal lysine heterogeneity for therapeutic antibody production by knocking out CpD gene expression. Biotechnol. Bioeng. 2016;113: 2100-2106. © 2016 Wiley Periodicals, Inc. PMID:26989081

  19. Differential Roles of C-terminal Eps15 Homology Domain Proteins as Vesiculators and Tubulators of Recycling Endosomes*

    PubMed Central

    Cai, Bishuang; Giridharan, Sai Srinivas Panapakkam; Zhang, Jing; Saxena, Sugandha; Bahl, Kriti; Schmidt, John A.; Sorgen, Paul L.; Guo, Wei; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein. PMID:24019528

  20. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2

    PubMed Central

    Shen, Chih-Lung; Gonzalez-Hurtado, Elsie; Zhang, Zhi-Min; Xu, Muyu; Martinez, Ernest; Peng, Chih-Wen; Song, Jikui

    2016-01-01

    Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. PMID:26845565

  1. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen.

    PubMed

    Southan, C; Thompson, E; Panico, M; Etienne, T; Morris, H R; Lane, D A

    1985-10-25

    The C-terminal region of the fibrinogen gamma chain is known to participate in several functional interactions including fibrin polymerization. This part of the molecule is retained on the gamma chain of fragment D (FgD) when fibrinogen is digested by plasmin in the presence of calcium to produce the fragment D-fragment E (FgD X FgE) complex but is lost if FgD is prepared in the absence of calcium. In an attempt to characterize the C-terminal polymerization domain we have used three techniques to examine this further degradation of FgD following the addition of EDTA and plasmin. Analysis of the digestion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a progressive cleavage of the gamma chain to two small remnants. The polymerization-inhibitory activity of the whole digest was studied using acid-solubilized fibrin. A progressive loss of inhibitory activity was associated with gamma chain shortening, reaching greater than a 120-fold reduction at the end of digestion. The cleavage of peptides was followed by reverse-phase high performance liquid chromatography and the release of a characteristic peptide triplet was associated with gamma chain cleavage. Manual sequencing, amino acid analysis, and fast atom bombardment mass spectrometry established the three peptides as gamma 303-356, 357-373, and 374-405. These peptides have sequences in common with those peptides recently reported by other investigators to be potent polymerization inhibitors. However, when a mixture of the three peptides was added in a 200-fold molar excess to polymerizing fibrin, no inhibitory activity could be demonstrated. It is concluded that the C-terminal polymerization domain of fibrinogen may be an extended region which includes the sequence gamma 303-405, when this is contiguous with the remainder of the gamma chain. PMID:2932434

  2. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations

    PubMed Central

    Mehler, Vera J.; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  3. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    PubMed

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  4. Decreased Adherence of Enterohemorrhagic Escherichia coli to HEp-2 Cells in the Presence of Antibodies That Recognize the C-Terminal Region of Intimin

    PubMed Central

    Gansheroff, Lisa J.; Wachtel, Marian R.; O'Brien, Alison D.

    1999-01-01

    Antiserum raised against intimin from enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 has been shown previously by our laboratory to inhibit adherence of this strain to HEp-2 cells. In the present study, we sought to identify the region(s) of intimin important for the effect of anti-intimin antisera on EHEC adherence and to determine whether antisera raised against intimin from an O157:H7 strain could reduce adherence of other strains. Compared to preimmune serum controls, polyclonal sera raised against the histidine-tagged intimin protein RIHisEae (intiminO157) or against His-tagged C-terminal fragments of intimin from strain 86-24 reduced adherence of this strain. Furthermore, an antibody fraction purified from the anti-RIHisEae serum that contained antibodies to the C-terminal third of intimin, the putative receptor-binding domain, also reduced adherence of strain 86-24, but a purified fraction containing antibodies to the N-terminal two-thirds of intimin did not inhibit adherence. The polyclonal anti-intiminO157 serum raised against RIHisEae inhibited, to different degrees, the adherence of another O157:H7 strain, an EHEC O55:H7 strain, one of two independent EHEC O111:NM isolates tested, and one of two EHEC O26:H11 strains tested. Adherence of the other O26:H11 and O111:NM strains and an EPEC O127:H6 strain was not reduced. Finally, immunoblot analysis indicated a correlation between the antigenic divergence in the C-terminal third of intimins from different strains and the capacity of anti-intiminO157 antiserum to reduce adherence of heterologous strains. Taken together, these data suggest that intiminO157 could be used as an immunogen to elicit adherence-blocking antibodies against O157:H7 strains and closely-related EHEC. PMID:10569757

  5. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.

    PubMed

    Wrighton, Katharine H; Willis, Danielle; Long, Jianyin; Liu, Fang; Lin, Xia; Feng, Xin-Hua

    2006-12-15

    Transforming growth factor-beta (TGF-beta) controls a diverse set of cellular processes, and its canonical signaling is mediated via TGF-beta-induced phosphorylation of receptor-activated Smads (2 and 3) at the C-terminal SXS motif. We recently discovered that PPM1A can dephosphorylate Smad2/3 at the C-terminal SXS motif, implicating a critical role for phosphatases in regulating TGF-beta signaling. Smad2/3 activity is also regulated by phosphorylation in the linker region (and N terminus) by a variety of intracellular kinases, making it a critical platform for cross-talk between TGF-beta and other signaling pathways. Using a functional genomic approach, we identified the small C-terminal domain phosphatase 1 (SCP1) as a specific phosphatase for Smad2/3 dephosphorylation in the linker and N terminus. A catalytically inactive SCP1 mutant (dnSCP1) had no effect on Smad2/3 phosphorylation in vitro or in vivo. Of the other FCP/SCP family members SCP2 and SCP3, but not FCP1, could also dephosphorylate Smad2/3 in the linker/N terminus. Depletion of SCP1/2/3 enhanced Smad2/3 linker phosphorylation. SCP1 increased TGF-beta-induced transcriptional activity in agreement with the idea that phosphorylation in the Smad2/3 linker must be removed for a full transcriptional response. SCP1 overexpression also counteracts the inhibitory effect of epidermal growth factor on TGF-beta-induced p15 expression. Taken together, this work identifies the first example of a Smad2/3 linker phosphatase(s) and reveals an important new substrate for SCPs. PMID:17035229

  6. Sec1p and Mso1p C-terminal tails cooperate with the SNAREs and Sec4p in polarized exocytosis

    PubMed Central

    Weber-Boyvat, Marion; Aro, Nina; Chernov, Konstantin G.; Nyman, Tuula; Jäntti, Jussi

    2011-01-01

    The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p. PMID:21119007

  7. Sec1p and Mso1p C-terminal tails cooperate with the SNAREs and Sec4p in polarized exocytosis.

    PubMed

    Weber-Boyvat, Marion; Aro, Nina; Chernov, Konstantin G; Nyman, Tuula; Jäntti, Jussi

    2011-01-15

    The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2-1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1-657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1-657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p. PMID:21119007

  8. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    PubMed

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-01

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  9. Induction of the C-terminal proteolytic cleavage of AβPP by statins.

    PubMed

    Descamps, Olivier; Zhang, Qiang; John, Varghese; Bredesen, Dale E

    2011-01-01

    Statins are drugs commonly used to inhibit cholesterol synthesis, with the goal of reducing vascular diseases such as myocardial infarction and stroke. Statins have also been suggested as a therapeutic option for Alzheimer's disease (AD), although their benefit in AD remains controversial. We have previously shown that the intracellular C-terminal cleavage of the amyloid-β protein precursor (AβPP) is a major contributor to the neuronal toxicity seen in AD, and that this cleavage can be induced by amyloid-β. We now report that certain brain permeable statins are also able to induce the C-terminal cleavage of AβPP and associated cell death, whereas other statins do not. This statin effect on AβPP exceeded the effects of all other FDA-approved drugs in a library composed of these compounds, suggesting that this effect on AβPP cleavage is unique to a subset of the statins. Furthermore, the greatest effect occurred with cerivastatin, which has previously been shown to be the statin associated with the greatest risk of rhabdomyolysis. These results may have implications for the choice of which statins to evaluate in AD therapeutic trials; furthermore, the results may inform statin choice in individuals who are at high risk for the development of AD, such as those with an apolipoprotein E ε4 allele. PMID:21422530

  10. Regulation of retinal transducin by C-terminal peptides of rhodopsin.

    PubMed Central

    Takemoto, D J; Takemoto, L J; Hansen, J; Morrison, D

    1985-01-01

    Transducin is a multi-subunit guanine-nucleotide-binding protein that mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase in retinal rod outer segments. Whereas the T alpha subunit of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunit may function to link physically T alpha with photolysed rhodopsin. In order to determine the binding sites of rhodopsin to transducin, we have synthesized eight peptides (Rhod-1 etc.) that correspond to the C-terminal regions of rhodopsin and to several external and one internal loop region. These peptides were tested for their inhibition of restored GTPase activity of purified transducin reconstituted into depleted rod-outer-segment disc membranes. A marked inhibition of GTPase activity was observed when transducin was pre-incubated with peptides Rhod-1, Rhod-2 and Rhod-3. These peptides correspond to opsin amino acid residues 332-339, 324-331 and 317-321 respectively. Peptides corresponding to the three external loop regions or to the C-terminal residues 341-348 did not inhibit reconsituted GTPase activity. Likewise, Rhod-8, a peptide corresponding to an internal loop region of rhodopsin, did not inhibit GTPase activity. These findings support the concept that these specific regions of the C-terminus of rhodopsin serve as recognition sites for transducin. PMID:3867351

  11. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding

    PubMed Central

    Kushwaha, Ambuj K.; Grove, Anne

    2012-01-01

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins. PMID:23167261

  12. Structure of a plant β-galactosidase C-terminal domain.

    PubMed

    Rimlumduan, Thipwarin; Hua, Yan-Ling; Tanaka, Toshiyuki; Ketudat Cairns, James R

    2016-10-01

    Most plant β-galactosidases, which belong to glycoside hydrolase family 35, have a C-terminal domain homologous to animal galactose and rhamnose-binding lectins. To investigate the structure and function of this domain, the C-terminal domain of the rice (Oryza sativa L.) β-galactosidase 1 (OsBGal1 Cter) was expressed in Escherichia coli and purified to homogeneity. The free OsBGal1 Cter is monomeric with a native molecular weight of 15kDa. NMR spectroscopy indicated that OsBGal1 Cter comprises five β-strands and one α-helix. The structure of this domain is similar to lectin domains from animals, but loops A and C of OsBGal1 Cter are longer than the corresponding loops from related animal lectins with known structures. In addition, loop A of OsBGal1 Cter was not well defined, suggesting it is flexible. Although OsBGal1 Cter was predicted to be a galactose/rhamnose-binding domain, binding with rhamnose, galactose, glucose, β-1,4-d-galactobiose and raffinose could not be observed in NMR experiments. PMID:27451952

  13. Characterization of the C-terminal ER membrane anchor of PTP1B

    SciTech Connect

    Anderie, Ines Schulz, Irene; Schmid, Andreas

    2007-09-10

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure.

  14. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity.

    PubMed

    Carroll, Clinton; Bansbach, Carol E; Zhao, Runxiang; Jung, Sung Yun; Qin, Jun; Cortez, David

    2014-01-01

    SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through evolution and it regulates SMARCAL1 activity. Specifically, S889 phosphorylation increases the DNA-stimulated ATPase activity of SMARCAL1 and increases its ability to catalyze replication fork regression. A phosphomimetic S889 mutant is also hyperactive when expressed in cells, while a non-phosphorylatable mutant is less active. S889 lies within a C-terminal region of the SMARCAL1 protein. Deletion of the C-terminal region also creates a hyperactive SMARCAL1 protein suggesting that S889 phosphorylation relieves an auto-inhibitory function of this SMARCAL1 domain. Thus, S889 phosphorylation is one mechanism by which SMARCAL1 activity is regulated to ensure the proper level of fork remodeling needed to maintain genome integrity during DNA synthesis. PMID:24150942

  15. Structure of the Escherichia coli RNA polymerase a Subunit C-terminal Domain

    SciTech Connect

    Lara-Gonzalez, S.; Birktoft, J; Lawson, C

    2010-01-01

    The {alpha} subunit C-terminal domain ({alpha}CTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli {alpha}CTD ({alpha} subunit residues 245-329) determined to 2.0 {angstrom} resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2{sub 1} and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R{sub free} = 0.236) has improved geometry compared with prior lower resolution determinations of the {alpha}CTD structure [Jeon et al. (1995), Science, 270, 1495-1497; Benoff et al. (2002), Science, 297, 1562-1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of {alpha}CTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction.

  16. Amine modification of digested peptide at C-terminal end during protein digestion by protease.

    PubMed

    Ito, Toshiyuki; Sugita, Yoshiaki; Takao, Koichi; Ikeguchi, Yoshihiko; Shirahata, Akira

    2007-10-01

    We recently reported that C-terminal polyamine modification occurs when proteins are digested with trypsin in the presence of polyamine [Biochem. Biophys. Res. Commun., 356, 159-162 (2007)]. In the present study, the characteristics of this C-terminal modification in the presence of protease and amine were investigated. When hemoglobin (HB) was digested with trypsin in the presence of N-(2-pyridyl)-1,4-diaminobutane (Py4), formation of the modified peptide was dependent on time and on HB or Py4 concentration. When synthetic peptide was treated with trypsin in the presence of Py4, ca. 0.1% of the peptide was modified with Py4. When HB or cytochrome C was treated with a range of serine proteases in the presence of various amines (Py4, N-(2-pyridyl)-1,3-diaminopropane, tranexamic acid, isonicotinic acid hydrazide and ampicillin), the modified peptide was detected in all cases tested, thus suggesting that amine modification widely accompanies digestion by proteases. PMID:17917247

  17. Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation.

    PubMed

    Rougé, Lionel; Bainbridge, Travis W; Kwok, Michael; Tong, Raymond; Di Lello, Paola; Wertz, Ingrid E; Maurer, Till; Ernst, James A; Murray, Jeremy

    2016-08-01

    The deubiquitinating enzyme USP7 has a pivotal role in regulating the stability of proteins involved in fundamental cellular processes of normal biology and disease. Despite the importance of USP7, the mechanisms underlying substrate recognition and catalytic activation are poorly understood. Here we present structural, biochemical, and biophysical analyses elucidating the molecular mechanism by which the C-terminal 19 amino acids of USP7 (residues 1084-1102) enhance the ubiquitin cleavage activity of the deubiquitinase (DUB) domain. Our data demonstrate that the C-terminal peptide binds the activation cleft in the catalytic domain and stabilizes the catalytically competent conformation of USP7. Additional structures of longer fragments of USP7, as well as solution studies, provide insight into full-length USP7, the role of the UBL domains, and demonstrate that both substrate recognition and deubiquitinase activity are highly regulated by the catalytic and noncatalytic domains of USP7, a feature that could be essential for the proper function of multi-domain DUBs. PMID:27452404

  18. An inhibitory C-terminal region dictates the specificity of A-adding enzymes

    PubMed Central

    Tretbar, Sandy; Neuenfeldt, Anne; Betat, Heike; Mörl, Mario

    2011-01-01

    For efficient aminoacylation, tRNAs carry the conserved 3′-terminal sequence C-C-A, which is synthesized by highly specific tRNA nucleotidyltransferases (CCA-adding enzymes). In several prokaryotes, this function is accomplished by separate enzymes for CC- and A-addition. As A-adding enzymes carry an N-terminal catalytic core identical to that of CCA-adding enzymes, it is unclear why their activity is restricted. Here, it is shown that C-terminal deletion variants of A-adding enzymes acquire full and precise CCA-incorporating activity. The deleted region seems to be responsible for tRNA primer selection, restricting the enzyme’s specificity to tRNAs ending with CC. The data suggest that A-adding enzymes carry an intrinsic CCA-adding activity that can be reactivated by the introduction of deletions in the C-terminal domain. Furthermore, a unique subtype of CCA-adding enzymes could be identified that evolved out of A-adding enzymes, suggesting that mutations and deletions in nucleotidyltransferases can lead to altered and even more complex activities, as a simple A-incorporation is converted into sequence-specific addition of C and A residues. Such activity-modifying events may have had an important role in the evolution of tRNA nucleotidyltransferases. PMID:22167803

  19. Alzheimer's Amyloid-β Sequesters Caspase-3 in Vitro via Its C-Terminal Tail.

    PubMed

    Chang, Yu-Jen; Linh, Nguyen Hoang; Shih, Yao Hsiang; Yu, Hui-Ming; Li, Mai Suan; Chen, Yun-Ru

    2016-08-17

    Amyloid-β (Aβ), the main constituent in senile plaques found in the brain of patients with Alzheimer's disease (AD), is considered as a causative factor in AD pathogenesis. The clinical examination of the brains of patients with AD has demonstrated that caspase-3 colocalizes with senile plaques. Cellular studies have shown that Aβ can induce neuronal apoptosis via caspase-3 activation. Here, we performed biochemical and in silico studies to investigate possible direct effect of Aβ on caspase-3 to understand the molecular mechanism of the interaction between Aβ and caspase-3. We found that Aβ conformers can specifically and directly sequester caspase-3 activity in which freshly prepared Aβ42 is the most potent. The inhibition is noncompetitive, and the C-terminal region of Aβ plays an important role in sequestration. The binding of Aβ to caspase-3 was examined by cross-linking and proteolysis and by docking and all-atom molecular dynamic simulations. Experimental and in silico results revealed that Aβ42 exhibits a higher binding affinity than Aβ40 and the hydrophobic C-terminal region plays a key role in the caspase-Aβ interaction. Overall, our study describes a novel mechanism demonstrating that Aβ sequesters caspase-3 activity via direct interaction and facilitates future therapeutic development in AD. PMID:27227450

  20. Structure of the C-terminal Domain of Transcription Facto IIB from Trypanosoma brucei

    SciTech Connect

    Ibrahim, B.; Kanneganti, N; Rieckhof, G; Das, A; Laurents, D; Palenchar, J; Bellofatto, V; Wah, D

    2009-01-01

    In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIBC). The tTFIIBC structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIBC contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.

  1. Structure of the C-terminal domain of nsp4 from feline coronavirus

    SciTech Connect

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  2. Functional analysis of the C-terminal extension of telomerase reverse transcriptase. A putative "thumb" domain.

    PubMed

    Hossain, Shabbir; Singh, Sunitha; Lue, Neal F

    2002-09-27

    Telomerase is an RNA-protein complex responsible for the extension of one strand of telomere terminal repeats. The catalytic protein subunit of telomerase, known generically as telomerase reverse transcriptase (TERT), exhibits significant homology to reverse transcriptases (RTs) encoded by retroviruses and retroelements. The mechanisms of telomerase may therefore be similar to those of the conventional reverse transcriptases. In this report, we explore potential similarity between these two classes of proteins in a region with no evident sequence similarity. Previous analysis has implicated a C-terminal domain of retroviral RTs (known as the "thumb" domain) in template-primer binding and in processivity control. The equivalent region of TERTs, although similar to one another, does not exhibit significant sequence homology to retroviral RTs. However, we found that removal of this region of yeast TERT similarly resulted in a decrease in the stability of telomerase-DNA complex and in the processivity of telomerase-mediated nucleotide addition. Moreover, the C-terminal domain of TERT exhibits a nucleic acid binding activity when recombinantly expressed and purified. Finally, amino acid substitutions of conserved residues in this region of TERT were found to impair telomerase activity and processivity. We suggest that mechanistic similarity between telomerase and retroviral RTs may extend beyond the regions with apparent sequence similarity. PMID:12151386

  3. The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters

    PubMed Central

    Algarra, B.; Han, L.; Soriano-Úbeda, C.; Avilés, M.; Coy, P.; Jovine, L.; Jiménez-Movilla, M.

    2016-01-01

    OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg. PMID:27601270

  4. Investigating the Roles of the C-Terminal Domain of Plasmodium falciparum GyrA

    PubMed Central

    Nagano, Soshichiro; Seki, Eiko; Lin, Ting-Yu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Heddle, Jonathan G.

    2015-01-01

    Malaria remains as one of the most deadly diseases in developing countries. The Plasmodium causative agents of human malaria such as Plasmodium falciparum possess an organelle, the apicoplast, which is the result of secondary endosymbiosis and retains its own circular DNA. A type II topoisomerase, DNA gyrase, is present in the apicoplast. In prokaryotes this enzyme is a proven, effective target for antibacterial agents, and its discovery in P. falciparum opens up the prospect of exploiting it as a drug target. Basic characterisation of P. falciparum gyrase is important because there are significant sequence differences between it and the prokaryotic enzyme. However, it has proved difficult to obtain soluble protein. Here we have predicted a new domain boundary in P. falciparum GyrA that corresponds to the C-terminal domain of prokaryotic GyrA and successfully purified it in a soluble form. Biochemical analyses revealed many similarities between the C-terminal domains of GyrA from E. coli and P. falciparum, suggesting that despite its considerably larger size, the malarial protein carries out a similar DNA wrapping function. Removal of a unique Asn-rich region in the P. falciparum protein did not result in a significant change, suggesting it is dispensable for DNA wrapping. PMID:26566222

  5. Claws, Disorder, and Conformational Dynamics of the C-Terminal Region of Human Desmoplakin.

    PubMed

    McAnany, Charles E; Mura, Cameron

    2016-08-25

    Multicellular organisms consist of cells that interact via elaborate adhesion complexes. Desmosomes are membrane-associated adhesion complexes that mechanically tether the cytoskeletal intermediate filaments (IFs) between two adjacent cells, creating a network of tough connections in tissues such as skin and heart. Desmoplakin (DP) is the key desmosomal protein that binds IFs, and the DP·IF association poses a quandary: desmoplakin must stably and tightly bind IFs to maintain the structural integrity of the desmosome. Yet, newly synthesized DP must traffic along the cytoskeleton to the site of nascent desmosome assembly without "sticking" to the IF network, implying weak or transient DP···IF contacts. Recent work reveals that these contacts are modulated by post-translational modifications (PTMs) in DP's C-terminal tail (DPCTT). Using molecular dynamics simulations, we have elucidated the structural basis of these PTM-induced effects. Our simulations, nearing 2 μs in aggregate, indicate that phosphorylation of S2849 induces an "arginine claw" in desmoplakin's C-terminal tail. If a key arginine, R2834, is methylated, the DPCTT preferentially samples conformations that are geometrically well-suited as substrates for processive phosphorylation by the cognate kinase GSK3. We suggest that DPCTT is a molecular switch that modulates, via its conformational dynamics, DP's overall efficacy as a substrate for GSK3. Finally, we show that the fluctuating DPCTT can contact other parts of DP, suggesting a competitive binding mechanism for the modulation of DP···IF interactions. PMID:27188911

  6. The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters.

    PubMed

    Algarra, B; Han, L; Soriano-Úbeda, C; Avilés, M; Coy, P; Jovine, L; Jiménez-Movilla, M

    2016-01-01

    OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg. PMID:27601270

  7. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    PubMed Central

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P21 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallo­graphy and electron-microscopy reconstruction. PMID:20606261

  8. The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II.

    PubMed Central

    Caron, P R; Watt, P; Wang, J C

    1994-01-01

    A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results. Images PMID:8164675

  9. Groundnut Bud Necrosis Virus Encoded NSm Associates with Membranes via Its C-Terminal Domain

    PubMed Central

    Singh, Pratibha; Indi, Shantinath S.; Savithri, Handanahal S.

    2014-01-01

    Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200–250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell. PMID:24919116

  10. The distinct C-terminal acidic domains of HMGB proteins are functionally relevant in Schistosoma mansoni.

    PubMed

    de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Vicentino, Amanda Roberta Revoredo; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Thiengo, Silvana; Fernandez, Monica Ammon; Fantappié, Marcelo Rosado

    2016-04-01

    The Schistosoma mansoni High Mobility Group Box (HMGB) proteins SmHMGB1, SmHMGB2 and SmHMGB3 share highly conserved HMG box DNA binding domains but have significantly different C-terminal acidic tails. Here, we used three full-length and tailless forms of the S. mansoni HMGB proteins to examine the functional roles of their acidic tails. DNA binding assays revealed that the different lengths of the acidic tails among the three SmHMGB proteins significantly and distinctively influenced their DNA transactions. Spectroscopic analyses indicated that the longest acidic tail of SmHMGB3 contributes to the structural stabilisation of this protein. Using immunohistochemical analysis, we showed distinct patterns of SmHMGB1, SmHMGB2 and SmHMGB3 expression in different tissues of adult worms. RNA interference approaches indicated a role for SmHMGB2 and SmHMGB3 in the reproductive system of female worms, whereas for SmHMGB1 no clear phenotype was observed. Schistosome HMGB proteins can be phosphorylated, acetylated and methylated. Importantly, the acetylation and methylation of schistosome HMGBs were greatly enhanced upon removal of the acidic tail. These data support the notion that the C-terminal acidic tails dictate the differences in the structure, expression and function of schistosome HMGB proteins. PMID:26820302

  11. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST

    PubMed Central

    Shrimal, Shiteshu; Trueman, Steven F.

    2013-01-01

    Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65–75 residues of a glycoprotein will not contact the translocation channel–associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites. PMID:23530066

  12. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.

    PubMed

    Senda, Yoshie; Murata-Kamiya, Naoko; Hatakeyama, Masanori

    2016-07-01

    Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis. PMID:27116701

  13. Interaction of the Tim44 C-terminal domain with negatively charged phospholipids.

    PubMed

    Marom, Milit; Safonov, Roman; Amram, Shay; Avneon, Yoav; Nachliel, Esther; Gutman, Menachem; Zohary, Keren; Azem, Abdussalam; Tsfadia, Yossi

    2009-12-01

    The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latter's hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids. PMID:19863062

  14. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes.

    PubMed

    Hewawasam, Ruwani P; Liu, Dan; Casarotto, Marco G; Board, Philip G; Dulhunty, Angela F

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  15. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain.

    PubMed

    Poirier, Steve; Hamouda, Hocine Ait; Villeneuve, Louis; Demers, Annie; Mayer, Gaétan

    2016-01-01

    PCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke. Herein, we fused monomeric fluorescent proteins to PCSK9 and LDLR to visualize their intra- and extracellular trafficking dynamics by live confocal microscopy. Fluorescence recovery after photobleaching (FRAP) showed that PCSK9 LOF R46L mutant and GOF mutations S127R and D129G, but not the LDLR high-affinity mutant D374Y, significantly accelerate PCSK9 exit from the endoplasmic reticulum (ER). Quantitative analysis of inverse FRAP revealed that only R46L presented a much slower trafficking from the trans-Golgi network (TGN) to the plasma membrane and a lower mobile fraction likely suggesting accumulation or delayed exit at the TGN as an underlying mechanism. While not primarily involved in LDLR binding, PCSK9 C-terminal domain (CTD) was found to be essential to induce LDLR degradation both upon its overexpression in cells or via the extracellular pathway. Our data revealed that PCSK9 CTD is required for the localization of PCSK9 at the TGN and increases its LDLR-mediated endocytosis. Interestingly, intracellular lysosomal targeting of PCSK9-ΔCTD was able to rescue its capacity to induce LDLR degradation emphasizing a role of the CTD in the sorting of PCSK9-LDLR complex towards late endocytic compartments. Finally, we validated our dual fluorescence system as a cell based-assay by preventing PCSK9 internalization using a PCSK9-LDLR blocking antibody, which may be expended to identify protein, peptide or small molecule inhibitors of PCSK9. PMID:27280970

  16. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction

    PubMed Central

    Spring, Ashlyn M.; Brusich, Douglas J.; Frank, C. Andrew

    2016-01-01

    Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating

  17. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain

    PubMed Central

    Villeneuve, Louis; Demers, Annie; Mayer, Gaétan

    2016-01-01

    PCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke. Herein, we fused monomeric fluorescent proteins to PCSK9 and LDLR to visualize their intra- and extracellular trafficking dynamics by live confocal microscopy. Fluorescence recovery after photobleaching (FRAP) showed that PCSK9 LOF R46L mutant and GOF mutations S127R and D129G, but not the LDLR high-affinity mutant D374Y, significantly accelerate PCSK9 exit from the endoplasmic reticulum (ER). Quantitative analysis of inverse FRAP revealed that only R46L presented a much slower trafficking from the trans-Golgi network (TGN) to the plasma membrane and a lower mobile fraction likely suggesting accumulation or delayed exit at the TGN as an underlying mechanism. While not primarily involved in LDLR binding, PCSK9 C-terminal domain (CTD) was found to be essential to induce LDLR degradation both upon its overexpression in cells or via the extracellular pathway. Our data revealed that PCSK9 CTD is required for the localization of PCSK9 at the TGN and increases its LDLR-mediated endocytosis. Interestingly, intracellular lysosomal targeting of PCSK9-ΔCTD was able to rescue its capacity to induce LDLR degradation emphasizing a role of the CTD in the sorting of PCSK9-LDLR complex towards late endocytic compartments. Finally, we validated our dual fluorescence system as a cell based-assay by preventing PCSK9 internalization using a PCSK9-LDLR blocking antibody, which may be expended to identify protein, peptide or small molecule inhibitors of PCSK9. PMID:27280970

  18. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5.

    PubMed

    Topiol, Sid; Sabio, Michael

    2016-01-15

    We illustrate, with a focus on mGluR5, how the recently published, first X-ray structures of mGluR 7TM domains, specifically those of mGluR1 and mGluR5 complexed with negative allosteric modulators (NAMs), will begin to influence ligand- (e.g., drug- or sweetener-) discovery efforts involving class C GPCRs. With an extensive docking study allowing full ligand flexibility and full side chain flexibility of all residues in the ligand-binding cavity, we have predicted and analyzed the binding modes of a variety of structurally diverse mGluR5 NAM ligands, showing how the X-ray structures serve to effectively rationalize each ligand's binding characteristics. We demonstrated that the features that are inherent in our earlier overlay model are preserved in the protein structure-based docking models. We identified structurally diverse compounds, which potentially act as mGluR NAMs, and revealed binding-site differences by performing high-throughput docking using a database of approximately six million structures of commercially available compounds and the mGluR1 and mGluR5 X-ray structures. By comparing the 7TM domains of the mGluR5 and mGluR1 X-rays structures, we identified selectivity factors within group I of the mGluRs. Similarly, using homology models that we built for mGluR2 and mGluR4, we have identified the factors leading to the selectivity between group I and groups II and III for ligands occupying the deepest portion of the mGluR5 binding cavity. Finally, we have proposed a structure-based explanation of the pharmacological switching within a set of positive allosteric modulators (PAMs) and their corresponding, very close NAM analogs. PMID:26706173

  19. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin.

    PubMed Central

    Takemoto, D J; Morrison, D; Davis, L C; Takemoto, L J

    1986-01-01

    In vertebrate retinal rod outer segments, transducin, a guanine-nucleotide-binding protein, mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase. Whereas the T alpha subunit (39 kDa) of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunits (35 and 10 kDa) may function to physically link T alpha with photolysed rhodopsin. We have previously reported that a site of binding of transducin is on the C-terminus of bovine rhodopsin. By using competition with synthetic peptides, the recognition region was localized to bovine opsin amino acid residues 317-339. Further studies are detailed which determine the boundaries of this binding site on rhodopsin, as well as some of the critical amino acids needed for transducin binding. These results suggest that the serine and threonine residues in the rhodopsin C-terminal peptides Rhod-1 and Rhod-3 are critical for reconstitution of transducin GTPase activity. PMID:3461782

  20. Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals

    PubMed Central

    Goobes, Gil; Goobes, Rivka; Schueler-Furman, Ora; Baker, David; Stayton, Patrick S.; Drobny, Gary P.

    2006-01-01

    Statherin is an enamel pellicle protein that inhibits hydroxyapatite (HAP) nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. We report here from solid-state NMR measurements that the protein's C-terminal region folds into an α-helix upon adsorption to HAP crystals. This region contains the binding sites for bacterial fimbriae that mediate bacterial cell adhesion to the surface of the tooth. The helical segment is shown through long-range distance measurements to fold back onto the intermediate region (residues Y16–P28) defining the global fold of the protein. Statherin, previously shown to be unstructured in solution, undergoes conformation selection on its substrate mineral surface. This surface-induced folding of statherin can be related to its functionality in inhibiting HAP crystal growth and can explain how oral pathogens selectively recognize HAP-bound statherin. PMID:17060618

  1. Potential Clinical Utility of Copeptin (C-terminal provasopressin) measurements in clinical medicine.

    PubMed

    Lewandowski, K C; Brabant, G

    2016-03-01

    Copeptin is a 39-amino-acids containing glycosylated peptide derived from the C-terminal part of the arginine vasopressin (AVP) precursor. In the process of proteolysis the AVP precursor is processed to AVP, neurophysin II, and copeptin in equimolar amounts. In contrast to AVP, copeptin remains stable for several days at room temperature in serum or plasma. Hence, copeptin serves as a bona fide biomarker of AVP release. We briefly summarise clinical utility of copeptin in the diagnosis of diabetes insipidus. We also discuss potential applications of copeptin measurements in hyponatraemic states, assessment of an anterior pituitary function, as well as a wide range of several acute and chronic medical conditions, such as myocardial infarction, stroke or diabetes mellitus. PMID:27008633

  2. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2013-02-01

    The genetic and molecular biological studies mainly in Arabidopsis and in some other plants have begun to uncover the various components of ripening signaling pathway in plants. Although transcriptional regulation of major ripening genes have been studied in detail, information on role of phosphorylation in regulating the activity and stability of core ripening pathway associated proteins in relation to ethylene biosynthesis during fruit ripening is still limited. Recently we have demonstrated the evidence for post-translational regulation of MA-ACS1 (Musa acuminata ACC synthase 1), the rate limiting step enzyme regulating ripening ethylene production in banana, through phosphorylation at the C-terminal Ser 476 and 479 residues by a 41-kDa Ser/Thr protein kinase. (1) Here we have further discussed role of protein phosphorylation in regulation of stability and activity of ACS enzymes and the mechanistic and evolutionary perspective of phosphorylation pattern of Type I ACC synthase enzymes. PMID:23221778

  3. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo

    PubMed Central

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.

    2016-01-01

    ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed

  4. Control of cytoplasmic dynein force production and processivity by its C-terminal domain

    NASA Astrophysics Data System (ADS)

    Nicholas, Matthew P.; Höök, Peter; Brenner, Sibylle; Wynne, Caitlin L.; Vallee, Richard B.; Gennerich, Arne

    2015-02-01

    Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force production by mammalian dynein have called interspecies differences into question. We report that functional differences between yeast and mammalian dynein are real and attributable to a C-terminal motor element absent in yeast, which resembles a ‘cap’ over the central pore of the mammalian dynein motor domain. Removal of this cap increases the force generation of rat dynein from 1 pN to a yeast-like 6 pN and greatly increases its travel distance. Our findings identify the CT-cap as a novel regulator of dynein function.

  5. The C-terminal domain of Cernunnos/XLF is dispensable for DNA repair in vivo.

    PubMed

    Malivert, Laurent; Callebaut, Isabelle; Rivera-Munoz, Paola; Fischer, Alain; Mornon, Jean-Paul; Revy, Patrick; de Villartay, Jean-Pierre

    2009-03-01

    The core nonhomologous end-joining DNA repair pathway is composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, XRCC4 (X4), DNA ligase IV (L4), and Cernunnos/XLF (Cernunnos). Although Cernunnos and X4 are structurally related and participate in the same complex together with L4, they have distinct functions during DNA repair. L4 relies on X4 but not on Cernunnos for its stability, and L4 is required for optimal interaction of Cernunnos with X4. We demonstrate here, using in vitro-generated Cernunnos mutants and a series of functional assays in vivo, that the C-terminal region of Cernunnos is dispensable for its activity during DNA repair. PMID:19103754

  6. Conformationally restricted C-terminal peptides of substance P. Synthesis, mass spectral analysis and pharmacological properties.

    PubMed

    Theodoropoulos, D; Poulos, C; Gatos, D; Cordopatis, P; Escher, E; Mizrahi, J; Regoli, D; Dalietos, D; Furst, A; Lee, T D

    1985-10-01

    Four cyclic analogues of the C-terminal hepta- or hexapeptide of substance P were prepared by the solution method. The cyclizations were obtained by substituting with cysteine the residues normally present in positions 5 or 6 or 11 of substance P and by subsequent disulfide bond formation. The final products were identified by ordinary analytical procedures and advanced mass spectroscopy. The biological activities were determined on three bioassays: the guinea pig ileum, the guinea pig trachea and the rabbit mesenteric vein. Results obtained with these assays indicate that all peptides with a disulfide bridgehead in position 11 are inactive and that a cycle between positions 5 and 6 already strongly reduces the biological activity. The acyclic precursors containing thiol protection groups display weak biological activities. These results further underline the importance of the side chain in position 11 of substance P and suggest that optimal biological activities may require a linear peptide sequence. PMID:2413208

  7. C-Terminal-oriented Immobilization of Enzymes Using Sortase A-mediated Technique.

    PubMed

    Hata, Yuto; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2015-10-01

    In the present study, sortase A-mediated immobilization of enzymes was used for the preparation of immobilized enzymes. Thermobifida fusca YX β-glucosidase (BGL) or Streptococcus bovis 148 α-amylase (AmyA) were produced with C-terminal sortase A recognition sequences. The resulting fusion proteins were successfully immobilized on nanoparticle surfaces using sortase A. Some properties (activity, stability, and reusability) of the immobilized fusion proteins were evaluated. Both immobilized BGL and immobilized AmyA prepared by the sortase A-mediated technique retained their catalytic activity, exhibiting activities 3.0- or 1.5-fold (respectively) of those seen with the same enzymes immobilized by chemical crosslinking. Immobilized enzymes prepared by the sortase A-mediated technique did not undergo dramatic changes in stability compared with the respective free enzymes. Thus, the sortase A-mediated technique provides a promising method for immobilization of active, stable enzymes. PMID:26098063

  8. Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal.

    PubMed

    Vestergaard, Mun'delanji; Matsumoto, Sachiko; Nishikori, Shingo; Shiraki, Kentaro; Hirata, Kazumasa; Takagi, Masahiro

    2008-02-01

    The interactions between Cd(2+) and the C-terminal region of phytochelatin (PC) synthase using recombinant wild-type and mutant PC synthase were studied. We show that site-directed mutagenesis of Cys residues at C(358)C(359)XXXC(363)XXC(366) motif decreases the number of Cd(2+) and other heavy metal ions interacting with the enzyme, and that the motif binds the metals discriminatingly. The optimum binding ratio of PC synthase to Cd(2+) was also determined. The findings indicate that Cys exists as a free SH residue and that it is involved in the regulation of PC enzyme activity by transferring the metals into closer proximity with the catalytic domain. These results are important in understanding heavy metal detoxification mechanisms in higher plants, a step towards phytoremediated-applications. PMID:18270423

  9. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone

    PubMed Central

    Coggins, John R.; Kray, William; Shaw, Elliott

    1974-01-01

    Methods are described for the synthesis of peptides terminating in Lys-CH2Cl. The products were examined as affinity labels for several enzymes of trypsin-like specificity which are resistant to Tos-Lys-CH2Cl. In part, the inertness of the latter may be due to the sulphonamide group, since Z-Lys-CH2Cl was more effective. However, a number of tripeptides with C-terminal Lys-CH2Cl were superior in their ability to inactivate subtilisin, thrombin and plasma kallikrein. The possibility of developing enzyme-specific reagents selective for members within the trypsin-like group is demonstrated by Ala-Phe-Lys-CH2Cl, which readily inactivates plasma kallikrein but not thrombin. PMID:4422496

  10. Dimeric peptides of the C-terminal region of CXCL14 function as CXCL12 inhibitors.

    PubMed

    Tanegashima, Kosuke; Tsuji, Kohei; Suzuki, Kenji; Shigenaga, Akira; Otaka, Akira; Hara, Takahiko

    2013-11-29

    We recently reported that CXCL14 binds to CXCR4 with high affinity and inhibits CXCL12-mediated chemotaxis. Here we found that the C-terminal 51-77 amino acid residues of CXCL14 are responsible for CXCR4 binding. A disulfide dimer peptide of CXCL14(51-77) bound to CXCR4 with comparable affinity to full length CXCL14, and exhibited CXCL12 inhibitor activity. CXCR4 was efficiently internalized upon binding of dimeric CXCL14(51-77), thereby being reduced on the cell surface. Substitution of 5 amino acid residues in combination with the use of an oxime linker for dimerization increased the solubility and chemical stability of the dimeric CXCL14(51-77). PMID:24161674

  11. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.

    PubMed Central

    De Bosscher, Karolien; Hill, Caroline S; Nicolás, Francisco J

    2004-01-01

    Smad4 is an essential signal transducer of the transforming growth factor beta (TGF-beta) signalling pathway and has been identified as a tumour suppressor, being mutated in approx. 50% of pancreatic cancers and approx. 15% of colorectal cancers. Two missense mutations in the C-terminal domain of Smad4, D351H (Asp351-->His) and D537Y (Asp537-->Tyr), have been described recently in the human colorectal cancer cell lines CACO-2 and SW948 respectively [Woodford-Richens, Rowan, Gorman, Halford, Bicknell, Wasan, Roylance, Bodmer and Tomlinson (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 9719-9723]. Previous work in vitro suggested that only Asp-351 was required for interaction with Smad2 [Wu, Fairman, Penry and Shi (2001) J. Biol. Chem. 276, 20688-20694]. In the present study, we investigate the functional consequences of these point mutations in vivo. We demonstrate that neither of these colorectal cancer cells undergo growth arrest in response to TGF-beta, which can be explained, at least in part, by their inability to up-regulate cyclin-dependent kinase inhibitors p21 (CIP1 ) or p15 ( INK4b) after TGF-beta stimulation. Although the point-mutated Smad4s are expressed at normal levels in these colorectal cancer cells, they cannot interact with either TGF-beta-induced phosphorylated Smad2 or Smad3. As a result, these Smad4 mutants do not accumulate in the nucleus after TGF-beta stimulation, are not recruited to DNA by relevant Smad-binding transcription factors and cannot generate transcriptionally active DNA-bound complexes. Therefore both these colorectal tumour cells completely lack functional Smad4 activity owing to the missense mutations. Given the location of these mutations in the three-dimensional structure of the Smad4 C-terminal domain, the results also give us significant insights into Smad complex formation. PMID:14715079

  12. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  13. Properties of the C-terminal domain of 4.1 proteins.

    PubMed

    Scott, C; Phillips, G W; Baines, A J

    2001-07-01

    At the C-terminus of all known 4.1 proteins is a sequence domain unique to these proteins, known as the C-terminal domain (CTD). Mammalian CTDs are associated with a growing number of protein-protein interactions, although such activities have yet to be associated with invertebrate CTDs. Mammalian CTDs are generally defined by sequence alignment as encoded by exons 18-21. Comparison of known vertebrate 4.1 proteins with invertebrate (Caenorhabditis elegans and Drosophila melanogaster) 4.1 proteins indicates that mammalian 4.1 exon 19 represents a vertebrate adaptation that extends the sequence of the CTD with a Ser/Thr-rich sequence. The CTD was first described as a 22/24-kDa domain by chymotryptic digestion of erythrocyte 4.1 (4.1R) [Leto, T.L. & Marchesi, V.T. (1984) J. Biol. Chem. 259, 4603-4608]. Here we show that in 4.1R the 22/24-kDa fragment is not stable but rapidly processed to a 15-kDa fragment by chymotrypsin. The 15-kDa fragment is extremely stable, being resistant to overnight digestion in chymotrypsin on ice. Analysis of this fragment indicates that it is derived from residues 709-858 (SwissProt accession no. P48193), and represents the CTD of 4.1R. The fragment behaves as a globular monomer in solution. Secondary-structure predictions indicate that this domain is composed of five or six beta strands with an alpha helix before the most C-terminal of these. Together these data indicate that the CTD probably represents an independent folding structure which has gained function since the divergence of vertebrates from invertebrates. PMID:11432737

  14. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Bedi, Sukhmani Kaur; Huynh, David; Raghavan, Malini

    2016-05-01

    Calreticulin is a calcium-binding chaperone that is normally localized in the endoplasmic reticulum. Calreticulin is detectable on the surface of apoptotic cells under some apoptosis-inducing conditions, where it promotes the phagocytosis and immunogenicity of dying cells. However, the precise mechanism by which calreticulin, a soluble protein, localizes to the outer surface of the plasma membrane of dying cells is unknown, as are the molecular mechanisms that are relevant to calreticulin-induced cellular phagocytosis. Calreticulin comprises three distinct structural domains: a globular domain, an extended arm-like P-domain, and a C-terminal acidic region containing multiple low-affinity calcium binding sites. We show that calreticulin, via its C-terminal acidic region, preferentially interacts with phosphatidylserine (PS) compared with other phospholipids and that this interaction is calcium dependent. Additionally, exogenous calreticulin binds apoptotic cells via a higher-affinity calcium-dependent mode that is acidic region dependent. Exogenous calreticulin also binds live cells, including macrophages, via a second, lower-affinity P-domain and globular domain-dependent, but calcium-independent binding mode that likely involves its generic polypeptide binding site. Truncation constructs lacking the acidic region or arm-like P-domain of calreticulin are impaired in their abilities to induce apoptotic cell phagocytosis by murine peritoneal macrophages. Taken together, the results of this investigation provide the first molecular insights into the phospholipid binding site of calreticulin as a key anchor point for the cell surface expression of calreticulin on apoptotic cells. These findings also support a role for calreticulin as a PS-bridging molecule that cooperates with other PS-binding factors to promote the phagocytosis of apoptotic cells. PMID:27036911

  15. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  16. Autoinhibition of Bacteriophage T4 Mre11 by Its C-terminal Domain*

    PubMed Central

    Gao, Yang; Nelson, Scott W.

    2014-01-01

    Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil. PMID:25077970

  17. N- and C-terminal Transactivation Domains of GATA1 Protein Coordinate Hematopoietic Program*

    PubMed Central

    Kaneko, Hiroshi; Kobayashi, Eri; Yamamoto, Masayuki; Shimizu, Ritsuko

    2012-01-01

    Transcription factor GATA1 regulates the expression of a cluster of genes important for hematopoietic cell differentiation toward erythroid and megakaryocytic lineages. Three functional domains have been identified in GATA1, a transactivation domain located in the N terminus (N-TAD) and two zinc finger domains located in the middle of the molecule. Although N-TAD is known as a solitary transactivation domain for GATA1, clinical observations in Down syndrome leukemia suggest that there may be additional transactivation domains. In this study, we found in reporter co-transfection assays that transactivation activity of GATA1 was markedly reduced by deletion of the C-terminal 95 amino acids without significant attenuation of the DNA binding activity or self-association potential. We therefore generated transgenic mouse lines that expressed GATA1 lacking the C-terminal region (GATA1-ΔCT). When we crossed these transgenic mouse lines to the Gata1-deficient mouse, we found that the GATA1-ΔCT transgene rescued Gata1-deficient mice from embryonic lethality. The embryos rescued with an almost similar level of GATA1-ΔCT to endogenous GATA1 developed beyond embryonic 13.5 days, showing severe anemia with accumulation of immature erythroid cells, as was the case for the embryos rescued by endogenous levels of GATA1 lacking N-TAD (GATA1-ΔNT). Distinct sets of target genes were affected in the embryos rescued by GATA1-ΔCT and GATA1-ΔNT. We also found attenuated GATA1 function in cell cycle control of immature megakaryocytes in both lines of rescued embryos. These results thus demonstrate that GATA1 has two independent transactivation domains, N-TAD and C-TAD. Both N-TAD and C-TAD retain redundant as well as specific activities for proper hematopoiesis in vivo. PMID:22556427

  18. An autoinhibitory helix in the C-terminal region of phospholipase C-[beta] mediates G[alpaha subscript q] activation

    SciTech Connect

    Lyon, Angeline M.; Tesmer, Valerie M.; Dhamsania, Vishan D.; Thal, David M.; Gutierrez, Joanne; Chowdhury, Shoaib; Suddala, Krishna C.; Northup, John K.; Tesmer, John J.G.

    2012-03-16

    The enzyme phospholipase C-{beta} (PLC{beta}) is a crucial regulator of intracellular calcium levels whose activity is controlled by heptahelical receptors that couple to members of the G{sub q} family of heterotrimeric G proteins. We have determined atomic structures of two invertebrate homologs of PLC{beta} (PLC21) from cephalopod retina and identified a helix from the C-terminal regulatory region that interacts with a conserved surface of the catalytic core of the enzyme. Mutations designed to disrupt the analogous interaction in human PLC{beta}3 considerably increase basal activity and diminish stimulation by G{alpha}{sub q}. G{alpha}{sub q} binding requires displacement of the autoinhibitory helix from the catalytic core, thus providing an allosteric mechanism for activation of PLC{beta}.

  19. YscU/FlhB of Yersinia pseudotuberculosis Harbors a C-terminal Type III Secretion Signal.

    PubMed

    Login, Frédéric H; Wolf-Watz, Hans

    2015-10-23

    All type III secretion systems (T3SS) harbor a member of the YscU/FlhB family of proteins that is characterized by an auto-proteolytic process that occurs at a conserved cytoplasmic NPTH motif. We have previously demonstrated that YscUCC, the C-terminal peptide generated by auto-proteolysis of Yersinia pseudotuberculosis YscU, is secreted by the T3SS when bacteria are grown in Ca(2+)-depleted medium at 37 °C. Here, we investigated the secretion of this early T3S-substrate and showed that YscUCC encompasses a specific C-terminal T3S signal within the 15 last residues (U15). U15 promoted C-terminal secretion of reporter proteins like GST and YopE lacking its native secretion signal. Similar to the "classical" N-terminal secretion signal, U15 interacted with the ATPase YscN. Although U15 is critical for YscUCC secretion, deletion of the C-terminal secretion signal of YscUCC did neither affect Yop secretion nor Yop translocation. However, these deletions resulted in increased secretion of YscF, the needle subunit. Thus, these results suggest that YscU via its C-terminal secretion signal is involved in regulation of the YscF secretion. PMID:26338709

  20. The C-terminal helix in subdomain 4 of the regulatory light chain is essential for myosin regulation.

    PubMed Central

    Rowe, T; Kendrick-Jones, J

    1993-01-01

    In vertebrate smooth/non-muscle myosins, phosphorylation of the regulatory light chains by a specific calmodulin-activated kinase controls both myosin head interaction with actin and assembly of the myosin into filaments. Previous studies have shown that the C-terminal domain of the regulatory light chain is crucial for the regulation of these myosin functions. To further dissect the role of this region of the light chain in myosin regulation, a series of chicken smooth muscle myosin regulatory light chain mutants has been constructed with successive C-terminal deletions. These mutants were synthesized in Escherichia coli and analysed by their ability to restore Ca2+ regulation to scallop myosin that had been stripped of its native regulatory light chains ('desensitized'). The results show that regulatory light chain mutants with deletions in the C-terminal helix in subdomain 4 were able to reform the regulatory Ca2+ binding site on the scallop myosin head, but had lost the ability to suppress scallop myosin filament assembly and interaction with actin in the absence of Ca2+. Further deletions in the C-terminal domain led to a gradual loss of ability to restore the regulatory Ca2+ binding site. Thus, the regions in the C-terminal half of the regulatory light chain responsible for myosin regulation can be identified. Images PMID:8223496

  1. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  2. Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex

    PubMed Central

    Li, Jingzhi; Wu, Yunkun; Qian, Xinguo; Sha, Bingdong

    2006-01-01

    Heat shock protein (Hsp) 40 facilitates the critical role of Hsp70 in a number of cellular processes such as protein folding, assembly, degradation and translocation in vivo. Hsp40 and Hsp70 stay in close contact to achieve these diverse functions. The conserved C-terminal EEVD motif in Hsp70 has been shown to regulate Hsp40–Hsp70 interaction by an unknown mechanism. Here, we provide a structural basis for this regulation by determining the crystal structure of yeast Hsp40 Sis1 peptide-binding fragment complexed with the Hsp70 Ssa1 C-terminal. The Ssa1 extreme C-terminal eight residues, G634PTVEEVD641, form a β-strand with the domain I of Sis1 peptide-binding fragment. Surprisingly, the Ssa1 C-terminal binds Sis1 at the site where Sis1 interacts with the non-native polypeptides. The negatively charged residues within the EEVD motif in Ssa1 C-terminal form extensive charge–charge interactions with the positively charged residues in Sis1. The structure-based mutagenesis data support the structural observations. PMID:16737444

  3. Relevance of the C-terminal Arg-Phe sequence in γ2-melanocyte-stimulating hormone (γ2-MSH) for inducing cardiovascular effects in conscious rats

    PubMed Central

    Nijsen, M J M A; de Ruiter, G J W; Kasbergen, C M; Hoogerhout, P; de Wildt, D J

    2000-01-01

    The cardiovascular effects by γ2-melanocyte-stimulating hormone (γ2-MSH) are probably not due to any of the well-known melanocortin subtype receptors. We hypothesize that the receptor for Phe-Met-Arg-Phe-amide (FMRFa) or Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide (neuropeptide FF; NPFFa), other Arg-Phe containing peptides, is the candidate receptor. Therefore, we studied various Arg-Phe containing peptides to compare their haemodynamic profile with that of γ2-MSH(6–12), the most potent fragment of γ2-MSH. Mean arterial pressure (MAP) and heart rate (HR) changes were measured in conscious rats after intravenous administration of γ2-MSH related peptides. Phe-Arg-Trp-Asp-Arg-Phe-Gly (γ2-MSH(6–12)), FMRFa, NPFFa, Met-enkephalin-Arg-Phe-amide (MERFa), Arg-Phe-amide (RFa), acetyl-Phe-norLeu-Arg-Phe-amide (acFnLRFa) and desamino-Tyr-Phe-norLeu-Arg-Phe-amide (daYFnLRFa) caused a dose-dependent increase in MAP and HR. γ2-MSH(6–12) showed the most potent cardiovascular effects (ED50=12 nmol kg−1 for ΔMAP; 7 nmol kg−1 for ΔHR), as compared to the other Arg-Phe containing peptides (ED50=177–292 nmol kg−1 for ΔMAP; 130–260 nmol kg−1 for ΔHR). Peptides, which lack the C-terminal Arg-Phe sequence (Lys-Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Pro-Gly (γ2-pro11-MSH), desamino-Tyr-Phe-norLeu-Arg-[L-1,2,3,4 tetrahydroisoquinoline-3-carboxylic acid]-amide (daYFnLR[TIC]a) and Met-enkephalin (ME)), were devoid of cardiovascular actions. The results indicate that the baroreceptor reflex-mediated reduction of tonic sympathetic activity due to pressor effects is inhibited by γ2-MSH(6–12) and that its cardiovascular effects are dependent on the presence of a C-terminal Arg-Phe sequence. It is suggested that the FMRFa/NPFFa receptor is the likely candidate receptor, involved in these cardiovascular effects. PMID:11090122

  4. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.

    PubMed Central

    Wisniewski, J; Orosz, A; Allada, R; Wu, C

    1996-01-01

    The heat shock transcription factor (HSF) is constitutively expressed in Drosophila cells as an inactive monomer. Upon heat shock HSF undergoes trimerization and acquires high affinity DNA binding ability leading to specific interaction with its cognate elements in heat shock promoters. Here we show that the transactivation function of HSF is conferred by the extreme C-terminal region of the protein. Deletion analysis of HSF fragments fused to the GAL4 DNA-binding domain demonstrates that transactivation is dependent on HSF residues 610-691. This domain is located beyond the C-terminal heptad repeat (leucine zipper 4) whose presence or integrity is dispensable for transactivation. The transactivation domain is functional in the absence of heat shock and can be replaced by the extreme C-terminal region of human HSF1. The Drosophila and human HSF transactivation domains are both rich in hydrophobic and acidic residues and may be structurally conserved, despite limited sequence identity. PMID:8628664

  5. Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia.

    PubMed

    Ostedgaard, Lynda S; Randak, Christoph; Rokhlina, Tatiana; Karp, Philip; Vermeer, Daniel; Ashbourne Excoffon, Katherine J; Welsh, Michael J

    2003-02-18

    To better understand the function of the conserved C terminus of the cystic fibrosis (CF) transmembrane conductance regulator, we studied constructs containing deletions in the C-terminal tail. When expressed in well differentiated CF airway epithelia, each construct localized predominantly to the apical membrane and generated transepithelial Cl(-) current. The results suggested that neither the C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-interacting motif nor other C-terminal sequences were absolutely required for apical expression in airway epithelia. Surprisingly, deleting an acidic cluster near the C terminus reduced both channel opening rate and transepithelial Cl(-) transport, indicating that it influences channel gating. These results may help explain the relative paucity of CF-associated mutations in the C terminus. PMID:12578973

  6. Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia

    PubMed Central

    Ostedgaard, Lynda S.; Randak, Christoph; Rokhlina, Tatiana; Karp, Philip; Vermeer, Daniel; Ashbourne Excoffon, Katherine J.; Welsh, Michael J.

    2003-01-01

    To better understand the function of the conserved C terminus of the cystic fibrosis (CF) transmembrane conductance regulator, we studied constructs containing deletions in the C-terminal tail. When expressed in well differentiated CF airway epithelia, each construct localized predominantly to the apical membrane and generated transepithelial Cl− current. The results suggested that neither the C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-interacting motif nor other C-terminal sequences were absolutely required for apical expression in airway epithelia. Surprisingly, deleting an acidic cluster near the C terminus reduced both channel opening rate and transepithelial Cl− transport, indicating that it influences channel gating. These results may help explain the relative paucity of CF-associated mutations in the C terminus. PMID:12578973

  7. The C-terminal domain of NifL is sufficient to inhibit NifA activity.

    PubMed Central

    Narberhaus, F; Lee, H S; Schmitz, R A; He, L; Kustu, S

    1995-01-01

    In Klebsiella pneumoniae, transcription of all nif (nitrogen fixation) operons except the regulatory nifLA operon itself is regulated by the proteins NifA and NifL. NifA, an enhancer-binding protein, activates transcription by RNA polymerase containing the alternative sigma factor sigma 54. The central catalytic domain of NifA is sufficient for transcriptional activation, which can occur from solution. In vivo, NifL antagonizes the action of NifA in the presence of molecular oxygen or combined nitrogen. Inhibition has also been shown in vitro, but it was not responsive to environmental signals. Assuming a two-domain structure of NifL, we localized inhibition by NifL to its carboxy (C)-terminal domain, which is more soluble than the intact protein. The first line of evidence for this is that internal deletions of NifL containing an intact C-terminal domain were able to inhibit transcriptional activation by NifA in a coupled transcription-translation system. The second line of evidence is that the isolated C-terminal domain of NifL (assayed as a fusion to the soluble maltose-binding protein [MBP]) was sufficient to inhibit transcriptional activation by the central domain of NifA in a purified transcription system. The final line of evidence is that an MBP fusion to the C-terminal domain of NifL inhibited transcriptional activation by NifA in vivo. On the basis of these data, we postulate that the inhibitory function of NifL lies in its C-terminal domain and hence infer that this domain is responsible for interaction with NifA. Gel filtration experiments with MBP-NifL fusion derivatives lacking portions of the N- or C-terminal domain of the protein revealed that the C-terminal domain is the most soluble part of NifL. Up to 50% of two MBP-NifL truncations containing only the C-terminal domain appeared to be in a defined dimeric state. PMID:7665487

  8. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase

    PubMed Central

    Dar, Mohd J; Monel, Blandine; Krishnan, Lavanya; Shun, Ming-Chieh; Di Nunzio, Francesca; Helland, Dag E; Engelman, Alan

    2009-01-01

    Background The 18 residue tail abutting the SH3 fold that comprises the heart of the C-terminal domain is the only part of HIV-1 integrase yet to be visualized by structural biology. To ascertain the role of the tail region in integrase function and HIV-1 replication, a set of deletion mutants that successively lacked three amino acids was constructed and analyzed in a variety of biochemical and virus infection assays. HIV-1/2 chimers, which harbored the analogous 23-mer HIV-2 tail in place of the HIV-1 sequence, were also studied. Because integrase mutations can affect steps in the replication cycle other than integration, defective mutant viruses were tested for integrase protein content and reverse transcription in addition to integration. The F185K core domain mutation, which increases integrase protein solubility, was furthermore analyzed in a subset of mutants. Results Purified proteins were assessed for in vitro levels of 3' processing and DNA strand transfer activities whereas HIV-1 infectivity was measured using luciferase reporter viruses. Deletions lacking up to 9 amino acids (1-285, 1-282, and 1-279) displayed near wild-type activities in vitro and during infection. Further deletion yielded two viruses, HIV-11-276 and HIV-11-273, that displayed approximately two and 5-fold infectivity defects, respectively, due to reduced integrase function. Deletion mutant HIV-11-270 and the HIV-1/2 chimera were non-infectious and displayed approximately 3 to 4-fold reverse transcription in addition to severe integration defects. Removal of four additional residues, which encompassed the C-terminal β strand of the SH3 fold, further compromised integrase incorporation into virions and reverse transcription. Conclusion HIV-11-270, HIV-11-266, and the HIV-1/2 chimera were typed as class II mutant viruses due to their pleiotropic replication defects. We speculate that residues 271-273 might play a role in mediating the known integrase-reverse transcriptase interaction, as

  9. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin.

    PubMed

    Mukhi, Nitika; Dhindwal, Sonali; Uppal, Sheetal; Kapoor, Abhijeet; Arya, Richa; Kumar, Pravindra; Kaur, Jagreet; Kundu, Suman

    2016-03-29

    Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site

  10. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region

    PubMed Central

    Faraj, Santiago E.; González-Lebrero, Rodolfo M.; Roman, Ernesto A.; Santos, Javier

    2016-01-01

    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics. PMID:26856628

  11. Structure of the C-terminal domain of nsp4 from feline coronavirus

    PubMed Central

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Snijder, Eric J.; Gorbalenya, Alexander E.; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-01-01

    Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions. PMID:19622868

  12. C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function

    PubMed Central

    Blaurock, Nancy; Schmerler, Diana; Hünniger, Kerstin; Kurzai, Oliver; Ludewig, Katrin; Baier, Michael; Brunkhorst, Frank Martin; Imhof, Diana; Kiehntopf, Michael

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is a life threatening condition and the leading cause of death in intensive care units. Although single aspects of pathophysiology have been described in detail, numerous unknown mediators contribute to the progression of this complex disease. The aim of this study was to elucidate the pathophysiological role of CAAP48, a C-terminal alpha-1 antitrypsin fragment, that we found to be elevated in septic patients and to apply this peptide as diagnostic marker for infectious and noninfectious etiologies of SIRS. Incubation of human polymorphonuclear neutrophils with synthetic CAAP48, the SNP-variant CAAP47, and several control peptides revealed intense neutrophil activation, induction of neutrophil chemotaxis, reduction of neutrophil viability, and release of cytokines. We determined the abundance of CAAP48 in patients with severe sepsis, severe SIRS of noninfectious origin, and viral infection. CAAP48 levels were 3-4-fold higher in patients with sepsis compared to SIRS of noninfectious origin and allowed discrimination of those patients with high sensitivity and specificity. Our results suggest that CAAP48 is a promising discriminatory sepsis biomarker with immunomodulatory functions, particularly on human neutrophils, supporting its important role in the host response and pathophysiology of sepsis. PMID:27382189

  13. C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine

    PubMed Central

    Suzuki, Hidehiko; Watari, Akihiro; Hashimoto, Eri; Yonemitsu, Miki; Kiyono, Hiroshi; Yagi, Kiyohito; Kondoh, Masuo; Kunisawa, Jun

    2015-01-01

    Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection. PMID:26018248

  14. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region.

    PubMed

    Faraj, Santiago E; González-Lebrero, Rodolfo M; Roman, Ernesto A; Santos, Javier

    2016-01-01

    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich's Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics. PMID:26856628

  15. C-terminal amino acids are essential for human heat shock protein 70 dimerization.

    PubMed

    Marcion, Guillaume; Seigneuric, Renaud; Chavanne, Evelyne; Artur, Yves; Briand, Loïc; Hadi, Tarik; Gobbo, Jessica; Garrido, Carmen; Neiers, Fabrice

    2015-01-01

    The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70. The protein displayed both an ATPase and a refolding activity when combined to the human Hsp40. Multi-angle light scattering and bio-layer interferometry analyses demonstrated the ability of hHsp70 to homodimerize. The role of the C-terminal part of hHsp70 was identified and confirmed by a study of a truncated version of hHsp70 that could neither dimerize nor present refolding activity. PMID:25030382

  16. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication

    PubMed Central

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R.

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  17. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau.

    PubMed

    Scaramozzino, Francesca; Peterson, Dylan W; Farmer, Patrick; Gerig, J T; Graves, Donald J; Lew, John

    2006-03-21

    Alzheimer's disease most closely correlates with the appearance of the neurofibrillary tangles (NFTs), intracellular fibrous aggregates of the microtubule-associated protein, tau. Under native conditions, tau is an unstructured protein, and its physical characterization has revealed no clues about the three-dimensional structural determinants essential for aggregation or microtubule binding. We have found that the natural osmolyte trimethylamine N-oxide (TMAO) induces secondary structure in a C-terminal fragment of tau (tau(187)) and greatly promotes both self-aggregation and microtubule (MT) assembly activity. These processes could be distinguished, however, by a single-amino acid substitution (Tyr(310) --> Ala), which severely inhibited aggregation but had no effect on MT assembly activity. The inability of this mutant to aggregate could be completely reversed by TMAO. We propose a model in which TMAO induces partial order in tau(187), resulting in conformers that may correspond to on-pathway intermediates of either aggregation or tau-dependent MT assembly or both. These studies set the stage for future high-resolution structural characterization of these intermediates and the basis by which Tyr(310) may direct pathologic versus normal tau function. PMID:16533051

  18. Peptide library approach to uncover phosphomimetic inhibitors of the BRCA1 C-terminal domain.

    PubMed

    White, E Railey; Sun, Luxin; Ma, Zhong; Beckta, Jason M; Danzig, Brittany A; Hacker, David E; Huie, Melissa; Williams, David C; Edwards, Ross A; Valerie, Kristoffer; Glover, J N Mark; Hartman, Matthew C T

    2015-05-15

    Many intracellular protein-protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein-protein interactions mediated by serine phosphorylation. PMID:25654734

  19. β-Catenin C-terminal signals suppress p53 and are essential for artery formation.

    PubMed

    Riascos-Bernal, Dario F; Chinnasamy, Prameladevi; Cao, Longyue Lily; Dunaway, Charlene M; Valenta, Tomas; Basler, Konrad; Sibinga, Nicholas E S

    2016-01-01

    Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. PMID:27499244

  20. Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains.

    PubMed

    Veiga, Esteban; Sugawara, Etsuko; Nikaido, Hiroshi; de Lorenzo, Víctor; Fernández, Luis Angel

    2002-05-01

    An investigation was made into the oligomerization, the ability to form pores and the secretion-related properties of the 45 kDa C-terminal domain of the IgA protease (C-IgAP) from Neisseria gonorrhoeae. This protease is the best studied example of the autotransporters (ATs), a large family of exoproteins from Gram-negative bacteria that includes numerous virulence factors from human pathogens. These proteins contain an N-terminal passenger domain that em bodies the secreted polypeptide, while the C-domain inserts into the outer membrane (OM) and trans locates the linked N-module into the extracellular medium. Here we report that purified C-IgAP forms an oligomeric complex of approximately 500 kDa with a ring-like structure containing a central cavity of approximately 2 nm diameter that is the conduit for the export of the N-domains. These data overcome the previous model for ATs, which postulated the passage of the N-module through the hydrophilic channel of the beta-barrel of each monomeric C-domain. Our results advocate a secretion mechanism not unlike other bacterial export systems, such as the secretins or fimbrial ushers, which rely on multimeric complexes assembled in the OM. PMID:11980709

  1. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis

    PubMed Central

    Pečar Fonović, Urša; Kos, Janko

    2015-01-01

    Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1—clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1. PMID:26325675

  2. Piezo1 ion channel pore properties are dictated by C-terminal region

    PubMed Central

    Coste, Bertrand; Murthy, Swetha E.; Mathur, Jayanti; Schmidt, Manuela; Mechioukhi, Yasmine; Delmas, Patrick; Patapoutian, Ardem

    2015-01-01

    Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30–40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions. PMID:26008989

  3. The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles.

    PubMed

    De Pablos, Luis Miguel; Díaz Lozano, Isabel María; Jercic, Maria Isabel; Quinzada, Markela; Giménez, Maria José; Calabuig, Eva; Espino, Ana Margarita; Schijman, Alejandro Gabriel; Zulantay, Inés; Apt, Werner; Osuna, Antonio

    2016-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite's genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite. PMID:27270330

  4. Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement

    PubMed Central

    2009-01-01

    Background Rhs genes are prominent features of bacterial genomes that have previously been implicated in genomic rearrangements in E. coli. By comparing rhs repertoires across the Enterobacteriaceae, this study provides a robust explanation of rhs diversification and evolution, and a mechanistic model of how rhs diversity is gained and lost. Results Rhs genes are ubiquitous and comprise six structurally distinct lineages within the Enterobacteriaceae. There is considerable intergenomic variation in rhs repertoire; for instance, in Salmonella enterica, rhs are restricted to mobile elements, while in Escherichia coli one rhs lineage has diversified through transposition as older lineages have been deleted. Overall, comparative genomics reveals frequent, independent gene gains and losses, as well as occasional lateral gene transfer, in different genera. Furthermore, we demonstrate that Rhs 'core' domains and variable C-termini are evolutionarily decoupled, and propose that rhs diversity is driven by homologous recombination with circular intermediates. Existing C-termini are displaced by laterally acquired alternatives, creating long arrays of dissociated 'tips' that characterize the appearance of rhs loci. Conclusion Rhs repertoires are highly dynamic among Enterobacterial genomes, due to repeated gene gains and losses. In contrast, the primary structures of Rhs genes are evolutionarily conserved, indicating that rhs sequence diversity is driven, not by rapid mutation, but by the relatively slow evolution of novel core/tip combinations. Hence, we predict that a large pool of dissociated rhs C-terminal tips exists episomally and these are potentially transmitted across taxonomic boundaries. PMID:19968874

  5. The E. coli thioredoxin folding mechanism: the key role of the C-terminal helix.

    PubMed

    Vazquez, Diego S; Sánchez, Ignacio E; Garrote, Ana; Sica, Mauricio P; Santos, Javier

    2015-02-01

    In this work, the unfolding mechanism of oxidized Escherichia coli thioredoxin (EcTRX) was investigated experimentally and computationally. We characterized seven point mutants distributed along the C-terminal α-helix (CTH) and the preceding loop. The mutations destabilized the protein against global unfolding while leaving the native structure unchanged. Global analysis of the unfolding kinetics of all variants revealed a linear unfolding route with a high-energy on-pathway intermediate state flanked by two transition state ensembles TSE1 and TSE2. The experiments show that CTH is mainly unfolded in TSE1 and the intermediate and becomes structured in TSE2. Structure-based molecular dynamics are in agreement with these experiments and provide protein-wide structural information on transient states. In our model, EcTRX folding starts with structure formation in the β-sheet, while the protein helices coalesce later. As a whole, our results indicate that the CTH is a critical module in the folding process, restraining a heterogeneous intermediate ensemble into a biologically active native state and providing the native protein with thermodynamic and kinetic stability. PMID:25463044

  6. PrP106-126 peptide disrupts lipid membranes: Influence of C-terminal amidation

    SciTech Connect

    Zheng Wenfu; Wang Lijun; Hong Yuankai; Sha Yinlin

    2009-02-06

    PrP106-126 is located within the important domain concerning membrane related conformational conversion of human Prion protein (from cellular isoform PrP{sup C} to scrapie isoform PrP{sup Sc}). Recent advances reveal that the pathological and physicochemical properties of PrP106-126 peptide are very sensitive to its N-terminal amidation, however, the detailed mechanism remains unclear. In this work, we studied the interactions of the PrP106-126 isoforms (PrP106-126{sub CONH2} and PrP106-126{sub COOH}) with the neutral lipid bilayers by atomic force microscopy, surface plasmon resonance and fluorescence spectroscopy. The membrane structures were disturbed by the two isoforms in a similarly stepwise process. The distinct morphological changes of the membrane were characterized by formation of semi-penetrated defects and sigmoidal growth of flat high-rise domains on the supported lipid bilayers. However, PrP106-126{sub COOH} displayed a higher peptide-lipid binding affinity than PrP106-126{sub CONH2} ({approx}2.9 times) and facilitated the peptide-lipid interactions by shortening the lag time. These results indicate that the C-terminal amidation may influence the pathological actions of PrP106-126 by lowering the interaction potentials with lipid membranes.

  7. Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels.

    PubMed

    Do, Thanh D; LaPointe, Nichole E; Nelson, Rebecca; Krotee, Pascal; Hayden, Eric Y; Ulrich, Brittany; Quan, Sarah; Feinstein, Stuart C; Teplow, David B; Eisenberg, David; Shea, Joan-Emma; Bowers, Michael T

    2016-01-20

    In order to evaluate potential therapeutic targets for treatment of amyloidoses such as Alzheimer's disease (AD), it is essential to determine the structures of toxic amyloid oligomers. However, for the amyloid β-protein peptide (Aβ), thought to be the seminal neuropathogenetic agent in AD, its fast aggregation kinetics and the rapid equilibrium dynamics among oligomers of different size pose significant experimental challenges. Here we use ion-mobility mass spectrometry, in combination with electron microscopy, atomic force microscopy, and computational modeling, to test the hypothesis that Aβ peptides can form oligomeric structures resembling cylindrins and β-barrels. These structures are hypothesized to cause neuronal injury and death through perturbation of plasma membrane integrity. We show that hexamers of C-terminal Aβ fragments, including Aβ(24-34), Aβ(25-35) and Aβ(26-36), have collision cross sections similar to those of cylindrins. We also show that linking two identical fragments head-to-tail using diglycine increases the proportion of cylindrin-sized oligomers. In addition, we find that larger oligomers of these fragments may adopt β-barrel structures and that β-barrels can be formed by folding an out-of-register β-sheet, a common type of structure found in amyloid proteins. PMID:26700445

  8. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region

    NASA Astrophysics Data System (ADS)

    Faraj, Santiago E.; González-Lebrero, Rodolfo M.; Roman, Ernesto A.; Santos, Javier

    2016-02-01

    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.

  9. Structural and functional roles of the N- and C-terminal extended modules in channelrhodopsin-1.

    PubMed

    Doi, Satoko; Mori, Arisa; Tsukamoto, Takashi; Reissig, Louisa; Ihara, Kunio; Sudo, Yuki

    2015-09-26

    Channelrhodopsins have become a focus of interest because of their ability to control neural activity by light, used in a technology called optogenetics. The channelrhodopsin in the eukaryote Chlamydomonas reinhardtii (CrChR-1) is a light-gated cation channel responsible for motility changes upon photo-illumination and a member of the membrane-embedded retinal protein family. Recent crystal structure analysis revealed that CrChR-1 has unique extended modules both at its N- and C-termini compared to other microbial retinal proteins. This study reports the first successful expression of a ChR-1 variant in Escherichia coli as a holoprotein: the ChR-1 variant lacking both the N- and C-termini (CrChR-1_82-308). However, compared to ChR-1 having the extended modules (CrChR-1_1-357), truncation of the termini greatly altered the absorption maximum and photochemical properties, including the pKa values of its charged residues around the chromophore, the reaction rates in the photocycle and the photo-induced ion channeling activity. The results of some experiments regarding ion transport activity suggest that CrChR-1_82-308 has a proton channeling activity even in the dark. On the basis of these results, we discuss the structural and functional roles of the N- and C-terminal extended modules in CrChR-1. PMID:26098533

  10. Structure and inhibition analysis of the mouse SAD-B C-terminal fragment.

    PubMed

    Ma, Hui; Wu, Jing-Xiang; Wang, Jue; Wang, Zhi-Xin; Wu, Jia-Wei

    2016-10-01

    The SAD (synapses of amphids defective) kinases, including SAD-A and SAD-B, play important roles in the regulation of neuronal development, cell cycle, and energy metabolism. Our recent study of mouse SAD-A identified a unique autoinhibitory sequence (AIS), which binds at the junction of the kinase domain (KD) and the ubiquitin-associated (UBA) domain and exerts autoregulation in cooperation with UBA. Here, we report the crystal structure of the mouse SAD-B C-terminal fragment including the AIS and the kinase-associated domain 1 (KA1) at 2.8 Å resolution. The KA1 domain is structurally conserved, while the isolated AIS sequence is highly flexible and solvent-accessible. Our biochemical studies indicated that the SAD-B AIS exerts the same autoinhibitory role as that in SAD-A. We believe that the flexible isolated AIS sequence is readily available for interaction with KD-UBA and thus inhibits SAD-B activity. PMID:27251228

  11. Segmental expression and C-terminal labeling of protein ERp44 through protein trans-splicing.

    PubMed

    Dai, Xudong; Liu, Xiang-Qin; Meng, Qing

    2015-08-01

    Endoplasmic reticulum resident protein 44 (ERp44) is a member of the protein disulfide isomerase family and functions in oxidative protein folding in the endoplasmic reticulum. A structurally flexible C-terminal tail (C-tail) of ERp44 plays critical roles in dynamically regulating ERp44's function in protein folding quality control. The structure-function dynamics of ERp44's C-tail may be studied further using fluorescence and other techniques, if methods are found to label the C-tail site-specifically with a fluorescent group or segmentally with other desired labels. Here we have developed such methods, employing split inteins capable of protein trans-splicing, and identifying atypical S1 split inteins able to function efficiently at a suitable split site in the ERp44 sequence. One method demonstrated segmental expression of ERp44 for segmental labeling of the C-tail, another method efficiently added a commercially available fluorescent group to the C-terminus of ERp44, and both methods may also be generally useful for studying other proteins. PMID:25907381

  12. Microtubule C-Terminal Tails Can Change Characteristics of Motor Force Production.

    PubMed

    Shojania Feizabadi, Mitra; Janakaloti Narayanareddy, Babu Reddy; Vadpey, Omid; Jun, Yonggun; Chapman, Dail; Rosenfeld, Steven; Gross, Steven P

    2015-10-01

    Control of intracellular transport is poorly understood, and functional ramifications of tubulin isoform differences between cell types are mostly unexplored. Motors' force production and detachment kinetics are critical for their group function, but how microtubule (MT) details affect these properties--if at all--is unknown. We investigated these questions using both a vesicular transport human kinesin, kinesin-1, and also a mitotic kinesin likely optimized for group function, kinesin-5, moving along either bovine brain or MCF7(breast cancer) MTs. We found that kinesin-1 functioned similarly on the two sets of MTs--in particular, its mean force production was approximately the same, though due to its previously reported decreased processivity, the mean duration of kinesin-1 force production was slightly decreased on MCF7 MTs. In contrast, kinesin-5's function changed dramatically on MCF7 MTs: its average detachment force was reduced and its force-velocity curve was different. In spite of the reduced detachment force, the force-velocity alteration surprisingly improved high-load group function for kinesin-5 on the cancer-cell MTs, potentially contributing to functions such as spindle-mediated chromosome separation. Significant differences were previously reported for C-terminal tubulin tails in MCF7 versus bovine brain tubulin. Consistent with this difference being functionally important, elimination of the tails made transport along the two sets of MTs similar. PMID:26094820

  13. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication.

    PubMed

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  14. β-Catenin C-terminal signals suppress p53 and are essential for artery formation

    PubMed Central

    Riascos-Bernal, Dario F.; Chinnasamy, Prameladevi; Cao, Longyue (Lily); Dunaway, Charlene M.; Valenta, Tomas; Basler, Konrad; Sibinga, Nicholas E. S.

    2016-01-01

    Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. PMID:27499244

  15. The C-terminal amyloidogenic peptide contributes to self-assembly of Avibirnavirus viral protease

    PubMed Central

    Zheng, Xiaojuan; Jia, Lu; Hu, Boli; Sun, Yanting; Zhang, Yina; Gao, Xiangxiang; Deng, Tingjuan; Bao, Shengjun; Xu, Li; Zhou, Jiyong

    2015-01-01

    Unlike other viral protease, Avibirnavirus infectious bursal disease virus (IBDV)-encoded viral protease VP4 forms unusual intracellular tubule-like structures during viral infection. However, the formation mechanism and potential biological functions of intracellular VP4 tubules remain largely elusive. Here, we show that VP4 can assemble into tubules in diverse IBDV-infected cells. Dynamic analysis show that VP4 initiates the assembly at early stage of IBDV infection, and gradually assembles into larger size of fibrils within the cytoplasm and nucleus. Intracellular assembly of VP4 doesn’t involve the host cytoskeleton, other IBDV-encoded viral proteins or vital subcellular organelles. Interestingly, the last C-terminal hydrophobic and amyloidogenic stretch 238YHLAMA243 with two “aggregation-prone” alanine residues was found to be essential for its intracellular self-assembly. The assembled VP4 fibrils show significantly low solubility, subsequently, the deposition of highly assembled VP4 structures ultimately deformed the host cytoskeleton and nucleus, which was potentially associated with IBDV lytic infection. Importantly, the assembly of VP4 significantly reduced the cytotoxicity of protease activity in host cells which potentially prevent the premature cell death and facilitate viral replication. This study provides novel insights into the formation mechanism and biological functions of the Avibirnavirus protease-related fibrils. PMID:26440769

  16. Serpin A1 C-Terminal Peptides as Collagen Turnover Modulators.

    PubMed

    Pascarella, Simona; Tiberi, Caterina; Sabatino, Giuseppina; Nuti, Francesca; Papini, Anna Maria; Giovannelli, Lisa; Rovero, Paolo

    2016-08-19

    The modulation of collagen turnover can be a relevant pharmacological target in the context of treating either pathological or pathophysiological conditions, such as collagen-related diseases and skin aging. Our recent work has focused on the search for short-chain peptides as lead compounds for further development of compounds that enhance the production of type I collagen. In this study we selected and synthesized overlapping peptides of the C-terminal portion of serpin A1 (residues 393-418), the impact of which on collagen production has been reported previously, in order to identify shorter and still active fragments and to provide insight on the mechanisms involved. The biological activity of each fragment was evaluated with cultured normal human dermal fibroblasts, and changes in the amounts of collagen were monitored in collected culture media by a sandwich ELISA technique developed in house. Interestingly, we identified a decapeptide, termed SA1-III (Ac-MGKVVNPTQK-NH2 ), as a promising candidate for our purposes; it is able to induce a significant increase in type I collagen levels in the culture medium of treated cells at micromolar concentrations. PMID:26615979

  17. The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles

    PubMed Central

    De Pablos, Luis Miguel; Díaz Lozano, Isabel María; Jercic, Maria Isabel; Quinzada, Markela; Giménez, Maria José; Calabuig, Eva; Espino, Ana Margarita; Schijman, Alejandro Gabriel; Zulantay, Inés; Apt, Werner; Osuna, Antonio

    2016-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite’s genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite. PMID:27270330

  18. Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains

    PubMed Central

    Hutchinson, Jordana B.; Cheema, Manjinder S.; Wang, Jason; Missiaen, Krystal; Finn, Ron; Gonzalez Romero, Rodrigo; Th’ng, John P. H.; Hendzel, Michael; Ausió, Juan

    2015-01-01

    Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD–CTD to the nucleosome. PMID:26182371

  19. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    NASA Astrophysics Data System (ADS)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  20. Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments

    PubMed Central

    Wang, Haizhi; Sang, Nianli; Zhang, Can; Raghupathi, Ramesh; Tanzi, Rudolph E.; Saunders, Aleister

    2015-01-01

    Alzheimer's disease (AD) is characterized by the deposition of amyloid β (Aβ), a peptide generated from proteolytic processing of its precursor, amyloid precursor protein (APP). Canonical APP proteolysis occurs via α-, β-, and γ-secretases. APP is also actively degraded by protein degradation systems. By pharmacologically inhibiting protein degradation with ALLN, we observed an accumulation of several novel APP C-terminal fragments (CTFs). The two major novel CTFs migrated around 15 and 25 kDa and can be observed across multiple cell types. The process was independent of cytotoxicity or protein synthesis. We further determine that the accumulation of the novel CTFs is not mediated by proteasome or calpain inhibition, but by cathepsin L inhibition. Moreover, these novel CTFs are not generated by an increased amount of BACE. Here, we name the CTF of 25 kDa as η-CTF (eta-CTF). Our data suggest that under physiological conditions, a subset of APP undergoes alternative processing and the intermediate products, the 15 kDa CTFs, and the η-CTFs aret rapidly degraded and/or processed via the protein degradation machinery, specifically, cathepsin L. PMID:25910068

  1. Peptide Library Approach to Uncover Phosphomimetic Inhibitors of the BRCA1 C-Terminal Domain

    PubMed Central

    White, E. Railey; Sun, Luxin; Ma, Zhong; Beckta, Jason M.; Danzig, Brittany A.; Hacker, David E.; Huie, Melissa; Williams, David C.; Edwards, Ross A.; Valerie, Kristoffer; Mark Glover, J. N.; Hartman, Matthew C. T.

    2015-01-01

    Many intracellular protein–protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein–protein interactions mediated by serine phosphorylation. PMID:25654734

  2. C-terminal 13-residue truncation induces compact trigger factor conformation and severely impairs its dimerization ability.

    PubMed

    Shi, Yi; Yu, Ling; Kihara, Hiroshi; Zhou, Jun-Mei

    2014-05-01

    Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding within bacteria. TF possesses a three-state equilibrium in vivo: monomeric TF bound to ribosome, free monomeric, and dimeric TF in cytoplasm. TF consists of an N-terminal ribosome binding domain, a middle peptidyl-prolyl cis/trans isomerase (PPIase) domain and a C-terminal domain involved in substrate binding and dimerization. Investigation of the effect of C-terminal 13 region on TF structure and function will help to further the understanding of its mechanism as a chaperone in vitro and in vivo. Here we present TF419, a TF mutant from which the C-terminal 13 residues were deleted to investigate the role of these residues in the structure stability and function of intact molecules. Small angle X-ray scattering (SAXS), fluorescence measurements and limited proteolysis results suggested that TF transitioned to a compact conformation when the Cterminal 13 residues were truncated. Further biochemical results reveal that TF dimerization was decreased as a result of the truncation. These results suggested that the C-terminal 13 residues play an important role in structural stability and chaperone function of TF. PMID:24555433

  3. C-Terminal Protein Characterization by Mass Spectrometry using Combined Micro Scale Liquid and Solid-Phase Derivatization

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A sample preparation method for protein C-terminal peptide isolation has been developed. In this strategy, protein carboxylate glycinamidation was preceded by carboxyamidomethylation and optional α- and ϵ-amine acetylation in a one-pot reaction, followed by tryptic digestion of the modified protein. The digest was adsorbed on ZipTipC18 pipette tips for sequential peptide α- and ϵ-amine acetylation and 1-ethyl-(3-dimethylaminopropyl) carbodiimide-mediated carboxylate condensation with ethylenediamine. Amino group-functionalized peptides were scavenged on N-hydroxysuccinimide-activated agarose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were exchanged directly on the support, eliminating sample transfer between the reaction steps. By this sequence of solid-phase reactions, the C-terminal peptide could be uniquely recognized in mass spectra of unfractionated digests of moderate complexity. The use of the sample preparation method was demonstrated with low-level amounts of a model protein. The C-terminal peptides were selectively retrieved from the affinity support and proved highly suitable for structural characterization by collisionally induced dissociation. The sample preparation method provides for robustness and simplicity of operation using standard equipment readily available in most biological laboratories and is expected to be readily expanded to gel-separated proteins. PMID:23543807

  4. NMR assignments of the C-terminal domain of human polypeptide release factor eRF1.

    PubMed

    Mantsyzov, Alexey B; Ivanova, Elena V; Birdsall, Berry; Kolosov, Petr M; Kisselev, Lev L; Polshakov, Vladimir I

    2007-12-01

    We report NMR assignments of the protein backbone of the C-terminal domain (163 a.a.) of human class 1 translation termination factor eRF1. It was found that several protein loop residues exist in two slowly interconverting conformational states. PMID:19636860

  5. The sea urchin mitochondrial transcription factor A binds and bends DNA efficiently despite its unusually short C-terminal tail.

    PubMed

    Malarkey, Christopher S; Lionetti, Claudia; Deceglie, Stefania; Roberti, Marina; Churchill, Mair E A; Cantatore, Palmiro; Loguercio Polosa, Paola

    2016-07-01

    Mitochondrial transcription factor A (TFAM) is a key component for the protection and transcription of the mitochondrial genome. TFAM belongs to the high mobility group (HMG) box family of DNA binding proteins that are able to bind to and bend DNA. Human TFAM (huTFAM) contains two HMG box domains separated by a linker region, and a 26 amino acid C-terminal tail distal to the second HMG box. Previous studies on huTFAM have shown that requisites for proper DNA bending and specific binding to the mitochondrial genome are specific intercalating residues and the C-terminal tail. We have characterized TFAM from the sea urchin Paracentrotus lividus (suTFAM). Differently from human, suTFAM contains a short 9 amino acid C-terminal tail, yet it still has the ability to specifically bind to mtDNA. To provide information on the mode of binding of the protein we used fluorescence resonance energy transfer (FRET) assays and found that, in spite of the absence of a canonical C-terminal tail, suTFAM distorts DNA at a great extent and recognizes specific target with high affinity. Site directed mutagenesis showed that the two Phe residues placed in corresponding position of the two intercalating Leu of huTFAM are responsible for the strong bending and the great binding affinity of suTFAM. PMID:27101895

  6. Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage.

    PubMed Central

    Dudhia, J; Davidson, C M; Wells, T M; Vynios, D H; Hardingham, T E; Bayliss, M T

    1996-01-01

    The content of the C-terminal region of aggrecan was investigated in samples of articular cartilage from individuals ranging in age from newborn to 65 years. This region contains the globular G3 domain which is known to be removed from aggrecan in mature cartilage, probably by proteolytic cleavage, but the age-related changes in its abundance in human cartilage have not been described previously. The analysis was performed by immunosorbant assay using an antiserum (JD5) against recombinant amino acid residues of human aggrecan, on crude extracts of cartilage without further purification of aggrecan. The results showed that the content of the C-terminal region decreased with age relative to the G1 domain content (correlation coefficient = 0.463). This represented a 92% fall in the content of this region of the molecule from newborn to 65 years of age. furthermore, when the G1 content of the cartilage extracts was corrected to only include the G1 attached to aggrecan and to exclude the G1 fragments which accumulate as a by-product of normal aggrecan turnover (free G1), the age-related decrease in the C-terminal region remained very pronounced. Analysis by composite agarose/PAGE showed that the number of subpopulations of aggrecan resolved increased from one in newborn to three in adult cartilage. All of these reacted with an antiserum to the human G1 domain, but only the slowest migrating species reacted with the C-terminal region antiserum (JD5). Similar analysis by SDS/PAGE confirmed the presence of high-molecular-mass (200 kDa) proteins reactive with JD5, but no reactive fragments of lower electrophoretic mobility were detected. In contrast, when probed with the antiserum to the human G1 domain, the immunoblots showed protein species corresponding to the free G1 and G1-G2 fragments, which were present at high concentrations in adult cartilage. The results suggest that the loss of the C-terminal region is not directly part of the process of aggrecan turnover, but

  7. Conformational states of the full-length glucagon receptor

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang

    2015-07-01

    Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism.

  8. Conformational states of the full-length glucagon receptor

    PubMed Central

    Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang

    2015-01-01

    Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism. PMID:26227798

  9. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  10. Structure Predictions of Two Bauhinia variegata Lectins Reveal Patterns of C-Terminal Properties in Single Chain Legume Lectins

    PubMed Central

    Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572

  11. The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions

    PubMed Central

    2014-01-01

    Background Plant defensins are small (45–54 amino acids), basic, cysteine-rich proteins that have a major role in innate immunity in plants. Many defensins are potent antifungal molecules and are being evaluated for their potential to create crop plants with sustainable disease resistance. Defensins are produced as precursor molecules which are directed into the secretory pathway and are divided into two classes based on the absence (class I) or presence (class II) of an acidic C-terminal propeptide (CTPP) of about 33 amino acids. The function of this CTPP had not been defined. Results By transgenically expressing the class II plant defensin NaD1 with and without its cognate CTPP we have demonstrated that NaD1 is phytotoxic to cotton plants when expressed without its CTPP. Transgenic cotton plants expressing constructs encoding the NaD1 precursor with the CTPP had the same morphology as non-transgenic plants but expression of NaD1 without the CTPP led to plants that were stunted, had crinkled leaves and were less viable. Immunofluorescence microscopy and transient expression of a green fluorescent protein (GFP)-CTPP chimera were used to confirm that the CTPP is sufficient for vacuolar targeting. Finally circular dichroism and NMR spectroscopy were used to show that the CTPP adopts a helical confirmation. Conclusions In this report we have described the role of the CTPP on NaD1, a class II defensin from Nicotiana alata flowers. The CTPP of NaD1 is sufficient for vacuolar targeting and plays an important role in detoxification of the defensin as it moves through the plant secretory pathway. This work may have important implications for the use of defensins for disease protection in transgenic crops. PMID:24495600

  12. Prediction of bacterial type IV secreted effectors by C-terminal features

    PubMed Central

    2014-01-01

    Background Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors. Therefore, an effective inter-species T4SS effector prediction tool is urgently needed to help discover new effectors in a variety of bacterial species, especially those with few known effectors, e.g., Helicobacter pylori. Results In this research, we first manually annotated a full list of validated T4SS effectors from different bacteria and then carefully compared their C-terminal sequential and position-specific amino acid compositions, possible motifs and structural features. Based on the observed features, we set up several models to automatically recognize T4SS effectors. Three of the models performed strikingly better than the others and T4SEpre_Joint had the best performance, which could distinguish the T4SS effectors from non-effectors with a 5-fold cross-validation sensitivity of 89% at a specificity of 97%, based on the training datasets. An inter-species cross prediction showed that T4SEpre_Joint could recall most known effectors from a variety of species. The inter-species prediction tool package, T4SEpre, was further used to predict new T4SS effectors from H. pylori, an important human pathogen associated with gastritis, ulcer and cancer. In total, 24 new highly possible H. pylori T4S effector genes were computationally identified. Conclusions We conclude that T4SEpre, as an effective inter-species T4SS effector prediction software package, will help find new pathogenic T4SS effectors efficiently in a variety of pathogenic bacteria. PMID:24447430

  13. The C-Terminal Sequence of IFITM1 Regulates Its Anti-HIV-1 Activity

    PubMed Central

    Pan, Qinghua; Liu, Shan-Lu; Qiao, Wentao; Liang, Chen

    2015-01-01

    The interferon-inducible transmembrane (IFITM) proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1) strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3) is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117–125), which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117–125) mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117–125) to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117–125), mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization. PMID:25738301

  14. Structure of the C-terminal domain of the arginine repressor protein from Mycobacterium tuberculosis

    SciTech Connect

    Cherney, Leonid T.; Cherney, Maia M.; Garen, Craig R.; Lu, George J.; James, Michael N. G.

    2008-09-01

    The structure of the core domain of the arginine repressor protein from M. tuberculosis has been determined with (1.85 Å resolution) and without (2.15 Å resolution) the arginine corepressor bound. Three additional arginine molecules have been found to bind to the core domain hexamer at high (0.2 M) arginine concentration. The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the l-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 Å resolution with bound arginine and at 2.15 Å resolution in the unliganded form. These structures show that six molecules of MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11° upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.

  15. Evolutionary Origins of C-Terminal (GPP)n 3-Hydroxyproline Formation in Vertebrate Tendon Collagen

    PubMed Central

    Hudson, David M.; Werther, Rachel; Weis, MaryAnn; Wu, Jiann-Jiu; Eyre, David R.

    2014-01-01

    Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species. PMID:24695516

  16. DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain.

    PubMed

    Morrill, Summer A; Exner, Alexandra E; Babokhov, Michael; Reinfeld, Bradley I; Fuchs, Stephen M

    2016-05-27

    The C-terminal domain (CTD) of RNA polymerase II in eukaryotes is comprised of tandemly repeating units of a conserved seven-amino acid sequence. The number of repeats is, however, quite variable across different organisms. Furthermore, previous studies have identified evidence of rearrangements within the CTD coding region, suggesting that DNA instability may play a role in regulating or maintaining CTD repeat number. The work described here establishes a clear connection between DNA instability and CTD repeat number in Saccharomyces cerevisiae First, analysis of 36 diverse S. cerevisiae isolates revealed evidence of numerous past rearrangements within the DNA sequence that encodes the CTD. Interestingly, the total number of CTD repeats was relatively static (24-26 repeats in all strains), suggesting a balancing act between repeat expansion and contraction. In an effort to explore the genetic plasticity within this region, we measured the rates of repeat expansion and contraction using novel reporters and a doxycycline-regulated expression system for RPB1 In efforts to determine the mechanisms leading to CTD repeat variability, we identified the presence of DNA secondary structures, specifically G-quadruplex-like DNA, within the CTD coding region. Furthermore, we demonstrated that mutating PIF1, a G-quadruplex-specific helicase, results in increased CTD repeat length polymorphisms. We also determined that RAD52 is necessary for CTD repeat expansion but not contraction, identifying a role for recombination in repeat expansion. Results from these DNA rearrangements may help explain the CTD copy number variation seen across eukaryotes, as well as support a model of CTD expansion and contraction to maintain CTD integrity and overall length. PMID:27026700

  17. Evolutionary origins of C-terminal (GPP)n 3-hydroxyproline formation in vertebrate tendon collagen.

    PubMed

    Hudson, David M; Werther, Rachel; Weis, MaryAnn; Wu, Jiann-Jiu; Eyre, David R

    2014-01-01

    Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species. PMID:24695516

  18. DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain*

    PubMed Central

    Morrill, Summer A.; Exner, Alexandra E.; Babokhov, Michael; Reinfeld, Bradley I.

    2016-01-01

    The C-terminal domain (CTD) of RNA polymerase II in eukaryotes is comprised of tandemly repeating units of a conserved seven-amino acid sequence. The number of repeats is, however, quite variable across different organisms. Furthermore, previous studies have identified evidence of rearrangements within the CTD coding region, suggesting that DNA instability may play a role in regulating or maintaining CTD repeat number. The work described here establishes a clear connection between DNA instability and CTD repeat number in Saccharomyces cerevisiae. First, analysis of 36 diverse S. cerevisiae isolates revealed evidence of numerous past rearrangements within the DNA sequence that encodes the CTD. Interestingly, the total number of CTD repeats was relatively static (24–26 repeats in all strains), suggesting a balancing act between repeat expansion and contraction. In an effort to explore the genetic plasticity within this region, we measured the rates of repeat expansion and contraction using novel reporters and a doxycycline-regulated expression system for RPB1. In efforts to determine the mechanisms leading to CTD repeat variability, we identified the presence of DNA secondary structures, specifically G-quadruplex-like DNA, within the CTD coding region. Furthermore, we demonstrated that mutating PIF1, a G-quadruplex-specific helicase, results in increased CTD repeat length polymorphisms. We also determined that RAD52 is necessary for CTD repeat expansion but not contraction, identifying a role for recombination in repeat expansion. Results from these DNA rearrangements may help explain the CTD copy number variation seen across eukaryotes, as well as support a model of CTD expansion and contraction to maintain CTD integrity and overall length. PMID:27026700

  19. C-terminal turn stability determines assembly: differences between Aβ40 and Aβ42

    PubMed Central

    Roychaudhuri, Robin; Yang, Mingfeng; Deshpande, Atul; Cole, Gregory M.; Frautschy, Sally; Lomakin, Aleksey; Benedek, George B.; Teplow, David B.

    2012-01-01

    Oligomerization of the amyloid β-protein (Aβ) is a seminal event in Alzheimer’s disease (AD). Aβ42, which is only two amino acids longer than Aβ40, is particularly pathogenic. Why this is so has not been elucidated fully. We report here results of computational and experimental studies revealing a C-terminal turn at Val36-Gly37 in Aβ42 that is not present in Aβ40. The dihedral angles of residues 36 and 37 in an Ile31–Ala42 peptide were consistent with β-turns, and a β-hairpin-like structure was indeed observed that was stabilized by hydrogen bonds and by hydrophobic interactions between residues 31–35 and residues 38–42. In contrast, Aβ(31–40) mainly existed as a statistical coil. To study the system experimentally, Aβ peptides containing amino acid substitutions designed to stabilize or destabilize the hairpin were chemically synthesized. The triple substitution Gly33Val–Val36Pro–Gly38Val (“VPV”) facilitated Aβ42 hexamer and nonamer formation, while inhibiting formation of classical amyloid-type fibrils. These assemblies were as toxic as were assemblies from wild type Aβ42. When substituted into Aβ40, the VPV substitution caused the peptide to oligomerize similarly to Aβ42. The modified Aβ40 was significantly more toxic than Aβ40. The double substitution D-Pro36-L-Pro37 abolished hexamer and dodecamer formation by Aβ42 and produced an oligomer size distribution similar to that of Aβ40. Our data suggest that the Val36-Gly37 turn could be the sine qua non of Aβ42. If true, this structure would be an exceptionally important therapeutic target. PMID:23154165

  20. Identification of a C-terminal cdc25 sequence required for promotion of germinal vesicle breakdown.

    PubMed Central

    Powers, E A; Thompson, D P; Garner-Hamrick, P A; He, W; Yem, A W; Bannow, C A; Staples, D J; Waszak, G A; Smith, C W; Deibel, M R; Fisher, C

    2000-01-01

    Glutathione S-transferase (GST)-cdc25B(31-566) induced germinal vesicle breakdown (GVBD) when microinjected into Xenopus oocytes. Purified, N-terminally truncated forms of cdc25B did not induce GVBD, even though many had phosphatase activity and activated cdc2 in vitro. N-terminally truncated forms of cdc25B inhibited induction of GVBD by longer forms of the enzyme suggesting a direct interaction in vivo. cdc25B(356-556), but not cdc25B(364-529), inhibited GVBD induction by GST-cdc25B(31-566) suggesting that a region of cdc25B near to the C-terminus was responsible for the inhibition. To determine the region of peptide sequence that was inhibitory, cdc25B(356-556) was subjected to proteolysis with endoproteinase lys-C. Following a demonstration that the resulting peptide mixture inhibited GST-cdc25B-dependent GVBD, a series of peptides spanning amino acids at the C-terminus were synthesized. The peptide TRSWAGERSR inhibited GVBD induced by GST-cdc25B. An alanine scan of the peptide revealed residues critical for GVBD inhibition, and site-directed mutagenesis of the corresponding residues in GST-cdc25B(31-566) eliminated its ability to induce GVBD. These results demonstrate that a cdc25B C-terminal domain, involved in dominant-negative inhibition of GVBD-competent cdc25B, is required for induction of GVBD following microinjection into oocytes. PMID:10769167

  1. Interaction of CheY with the C-terminal peptide of CheZ

    SciTech Connect

    Guhaniyogi,J.; Wu, T.; Patel, S.; Stock, A.

    2008-01-01

    Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P{approx}CheY). The steady-state level of P{approx}CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P{approx}CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZC) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work, we presented high-resolution crystal structures of CheY in complex with the CheZC peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZC interaction. In addition, we present kinetic studies of the CheZC-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.

  2. The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses.

    PubMed

    Kong, Sam-Geun; Kinoshita, Toshinori; Shimazaki, Ken-Ichiro; Mochizuki, Nobuyoshi; Suzuki, Tomomi; Nagatani, Akira

    2007-09-01

    Phototropins mediate various blue-light responses such as phototropism, chloroplast relocation, stomatal opening and leaf flattening in plants. Phototropins are hydrophilic chromoproteins that are mainly bound to the plasma membrane. One of two phototropins in Arabidopsis thaliana, phot2, associates with the Golgi apparatus in a light-dependent manner. In this study, we analyzed the biological activities of the N-terminal photosensory and C-terminal kinase domains of phot2. For this purpose, these domains were fused to green fluorescent protein (GFP) and ectopically expressed in the wild-type and a phot1 phot2 double mutant of Arabidopsis. The kinase domain fused to GFP (P2CG) was localized to the plasma membrane and the Golgi apparatus, whereas the photosensory domain fused to GFP (P2NG) was uniformly localized in the cytosol. Hence, the kinase domain rather than the photosensory domain is responsible for the membrane association. Interestingly, the P2CG plants exhibited constitutive blue-light responses even in dark conditions, i.e. stomata were open and chloroplasts were in the avoidance position. By contrast, P2CG with a mutation that abolishes the kinase activity (P2C[D720/N]G) failed to exhibit these responses. phot2 kinase is therefore suggested to be correctly localized to functional sites in the cell and to trigger light signal transduction through its kinase activity. In contrast to P2CG, P2NG did not affect the phot2 responses, except for partial inhibition of the phototropic response caused by the endogenous phototropins. PMID:17662032

  3. A helix-turn motif in the C-terminal domain of histone H1.

    PubMed

    Vila, R; Ponte, I; Jiménez, M A; Rico, M; Suau, P

    2000-04-01

    The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs. PMID:10794405

  4. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.

    PubMed Central

    Sanford, J C; Pan, Y; Wessling-Resnick, M

    1995-01-01

    Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue. Images PMID:7749197

  5. Replacement of glycine with dicarbonyl and related moieties in analogues of the C-terminal pentapeptide of cholecystokinin: CCK(2) agonists displaying a novel binding mode.

    PubMed

    Bellier, B; Million, M E; DaNascimento, S; Meudal, H; Kellou, S; Maigret, B; Garbay, C

    2000-10-01

    Recent advances in the field of cholecystokinin have indicated the possible occurrence of multiple affinity states of the CCK(2) receptor. Besides, numerous pharmacological experiments performed "in vitro" and "in vivo" support the eventuality of different pharmacological profiles associated to CCK(2) ligands. Indeed, some agonists are essentially anxiogenic and uneffective in memory tests, whereas others are not anxiogenic and appear as able to reinforce memory. The reference compound for the latter profile is the CCK-8 analogue BC 264 (Boc-Tyr(SO(3)H)-gNle-mGly-Trp-(NMe)Nle-Asp-Phe-NH(2)). However, although tetrapeptide ligands based on CCK-4 (Trp-Met-Asp-Phe-NH(2)) are known to possess sufficient structural features for CCK(2) recognition, none shares the properties of BC 264. Hence we have developed new short peptidic or pseudo-peptidic derivatives containing the C-terminal tetrapeptide of BC 264. Our results indicate that some compounds characterized by the presence of two carbonyl groups at the N-terminus, as in 2b (HO(2)C-CH(2)-CONH-Trp-(NMe)Nle-Asp-Phe-NH(2)), are likely to show a BC 264-like profile, bind to the CCK(2) receptor in a specific way, and display remarkable affinities (2b: 0.28 nM on guinea-pig cortex membrane preparations). This original binding mode is discussed and further enlightened by NMR and molecular modeling studies. PMID:11020275

  6. Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity

    PubMed Central

    D'Antuono, Alejandra; Loureiro, Maria Eugenia; Foscaldi, Sabrina; Marino-Buslje, Cristina

    2014-01-01

    ABSTRACT The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be

  7. Solution structure, hydrodynamics and thermodynamics of the UvrB C-terminal domain.

    PubMed

    Alexandrovich, A; Czisch, M; Frenkiel, T A; Kelly, G P; Goosen, N; Moolenaar, G F; Chowdhry, B Z; Sanderson, M R; Lane, A N

    2001-10-01

    The solution structure, thermodynamic stability and hydrodynamic properties of the 55-residue C-terminal domain of UvrB that interacts with UvrC during excision repair in E. coli have been determined using a combination of high resolution NMR, ultracentrifugation, 15N NMR relaxation, gel permeation, NMR diffusion, circular dichroism and differential scanning calorimetry. The subunit molecular weight is 7,438 kDa., compared with 14.5+/-1.0 kDa. determined by equilibrium sedimentation, indicating a dimeric structure. The structure determined from NMR showed a stable dimer of anti-parallel helical hairpins that associate in an unusual manner, with a small and hydrophobic interface. The Stokes radius of the protein decreases from a high plateau value (ca. 22 A) at protein concentrations greater than 4 microM to about 18 A at concentrations less than 0.1 microM. The concentration and temperature-dependence of the far UV circular dichroism show that the protein is thermally stable (Tm ca. 71.5 degrees C at 36 microM). The simplest model consistent with these data was a dimer dissociating into folded monomers that then unfolds co-operatively. The van't Hoff enthalpy and dissociation constant for both transition was derived by fitting, with deltaH1=23 kJ mol(-1). K1(298)=0.4 microM and deltaH2= 184 kJ mol(-1). This is in good agreement with direct calorimetric analysis of the thermal unfolding of the protein, which gave a calorimetric enthalpy change of 181 kJ mol(-1) and a van't Hoff enthalpy change of 354 kJ mol(-1), confirming the dimer to monomer unfolding. The thermodynamic data can be reconciled with the observed mode of dimerisation. 15N NMR relaxation measurements at 14.1 T and 11.75 T confirmed that the protein behaves as an asymmetric dimer at mM concentrations, with a flexible N-terminal linker for attachment to the remainder of the UvrB protein. The role of dimerisation of this domain in the excision repair mechanism is discussed. PMID:11697728

  8. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    SciTech Connect

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K.

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  9. Crystal Structure in the Vivo-Assembled Bacillus subtilis Spx/RNA Polymerase alpha Subunit C-Terminal Domain Complex

    SciTech Connect

    Lamour, V.; Westblade, L; Campbell, E; Darst, S

    2009-01-01

    The Bacillus subtilis Spx protein is a global transcription factor that interacts with the C-terminal domain of the RNA polymerase {alpha} subunit ({alpha}CTD) and regulates transcription of genes involved in thiol-oxidative stress, sporulation, competence, and organosulfur metabolism. Here we determined the X-ray crystal structure of the Spx/{alpha}CTD complex from an entirely new crystal form than previously reported [Newberry, K.J., Nakano, S., Zuber, P., Brennan, R.G., 2005. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc. Natl. Acad. Sci. USA 102, 15839-15844]. Comparison of the previously reported sulfate-bound complex and our sulfate-free complex reveals subtle conformational changes that may be important for the role of Spx in regulating organosulfur metabolism.

  10. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    PubMed

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction. PMID:25703821

  11. Crystallization and preliminary X-ray analysis of the C-terminal fragment of Ski7 from Saccharomyces cerevisiae

    PubMed Central

    Lee, Ji-Young; Park, Si Hoon; Jeong, Byung-Cheon; Song, Hyun Kyu

    2014-01-01

    Ski7 (superkiller protein 7) plays a critical role in the mRNA surveillance pathway. The C-terminal fragment of Ski7 (residues 520–747) from Saccharo­myces cerevisiae was heterologously expressed in Escherichia coli and purified to homogeneity. It was successfully crystallized and preliminary X-ray data were collected to 2.0 Å resolution using synchrotron radiation. The crystal belonged to a trigonal space group, either P3121 or P3221, with unit-cell parameters a = b = 73.5, c = 83.6 Å. The asymmetric unit contains one molecule of the C-terminal fragment of Ski7 with a corresponding crystal volume per protein mass (V M) of 2.61 Å3 Da−1 and a solvent content of 52.8% by volume. The merging R factor is 6.6%. Structure determination by MAD phasing is under way. PMID:25195903

  12. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.

    PubMed

    Dennison, Sarah R; Mura, Manuela; Harris, Frederick; Morton, Leslie H G; Zvelindovsky, Andrei; Phoenix, David A

    2015-05-01

    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8 mN m(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8 m Nm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infectives. PMID:25640709

  13. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    PubMed Central

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro. Images PMID:2398901

  14. Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor

    PubMed Central

    Shi, Yi; Fan, Dong-Jie; Li, Shu-Xin; Zhang, Hong-Jie; Perrett, Sarah; Zhou, Jun-Mei

    2007-01-01

    Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a Kd of 16 μM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS–labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by α-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function. PMID:17525465

  15. The C-terminal domain is sufficient for host-binding activity of the Mu phage tail-spike protein.

    PubMed

    Suzuki, Hidetaka; Yamada, Seiko; Toyama, Yoshiharu; Takeda, Shigeki

    2010-09-01

    The Mu phage virion contains tail-spike proteins beneath the baseplate, which it uses to adsorb to the outer membrane of Escherichia coli during the infection process. The tail spikes are composed of gene product 45 (gp45), which contains 197 amino acid residues. In this study, we purified and characterized both the full-length and the C-terminal domains of recombinant gp45 to identify the functional and structural domains. Limited proteolysis resulted in a Ser64-Gln197 sequence, which was composed of a stable C-terminal domain. Analytical ultracentrifugation of the recombinant C-terminal domain (gp45-C) indicated that the molecular weight of gp45-C was about 58 kDa and formed a trimeric protomer in solution. Coprecipitation experiments and a quartz crystal microbalance (QCM) demonstrated that gp45-C irreversibly binds to the E. coli membrane. These results indicate that gp45 shows behaviors similar to tail-spike proteins of other phages; however, gp45 did not show significant sequence homology with the other phage tail-spike structures that have been identified. PMID:20478417

  16. Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

    SciTech Connect

    Zhang,L.; Shen, J.; Guarnieri, M.; Heroux, A.; Yang, K.; Zhao, R.

    2007-01-01

    Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an / structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn{sup 2+} coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn{sup 2+}-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.

  17. Synthesis and Evaluation of Novologues as C-Terminal Hsp90 Inhibitors with Cytoprotective Activity against Sensory Neuron Glucotoxicity

    PubMed Central

    Kusuma, Bhaskar Reddy; Zhang, Liang; Sundstrom, Teather; Peterson, Laura B.; Dobrowsky, Rick T.; Blagg, Brian S. J.

    2012-01-01

    Compound 2 (KU-32) is a first-generation novologue (a novobiocin-based, C-terminal, heat shock protein 90 (Hsp90) inhibitor), that decreases glucose-induced death of primary sensory neurons and reverses numerous clinical indices of diabetic peripheral neuropathy in mice. The current study sought to exploit the C-terminal binding site of Hsp90 to determine whether the optimization of hydrogen bonding and hydrophobic interactions of second generation novologues could enhance neuroprotective activity. Using a series of substituted phenylboronic acids to replace the coumarin lactone of 2, we identified electronegative atoms placed at the meta-position of the B-ring exhibit improved cytoprotective activity, which is believed to result from favorable interactions with Lys539 in the Hsp90 C-terminal binding pocket. Consistent with these results, a meta-3-fluorophenyl substituted novologue (13b) exhibited a 14-fold lower ED50 compared to 2 for protection against glucose-induced toxicity of primary sensory neurons. PMID:22702513

  18. The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3

    PubMed Central

    Troeberg, Linda; Fushimi, Kazunari; Scilabra, Simone D.; Nakamura, Hiroyuki; Dive, Vincent; Thøgersen, Ida B.; Enghild, Jan J.; Nagase, Hideaki

    2010-01-01

    We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3. PMID:19643179

  19. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope

    PubMed Central

    Seybold, Christian; Elserafy, Menattallah; Rüthnick, Diana; Ozboyaci, Musa; Neuner, Annett; Flottmann, Benjamin; Heilemann, Mike; Wade, Rebecca C.

    2015-01-01

    The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1’s function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31–Cdc31 interactions between Sfi1–Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation. PMID:26076691

  20. Deletion of the N- or C-Terminal Helix of Apolipophorin III To Create a Four-Helix Bundle Protein.

    PubMed

    Dwivedi, Pankaj; Rodriguez, Johana; Ibe, Nnejiuwa U; Weers, Paul M M

    2016-07-01

    Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein found in insects and plays an important function in lipid transport. The protein has an unusual five-helix bundle architecture, deviating from the common four-helix bundle motif. To understand the role of the additional helix in apoLp-III, the N-terminal or C-terminal helix was deleted to create a putative four-helix bundle protein. While the protein lacking helix-1 could be expressed in bacteria albeit at reduced yields, apoLp-III lacking helix-5 could not be produced. Mutational analysis by truncating helix-5 showed that a minimum segment of approximately one-third of the C-terminal helix is required for protein expression. The variant lacking helix-5 was produced by inserting a methionine residue between helix-4 and -5; subsequent cyanogenbromide cleavage generated the four-helix variant. Both N- and C-terminal helix deletion variants displayed significantly reduced helical content, protein stability, and tertiary structure. Despite the significantly altered structure, the variants were still fully functional. The rate of dimyristoylphosphatidylcholine vesicle solubilization was enhanced 4-5-fold compared to the wild-type protein, and the deletion variants were effective in binding to lipolyzed low density lipoprotein thereby preventing lipoprotein aggregation. These results show that the additional helix of apoLp-III is not essential for lipid binding but is required for proper folding to keep the protein into a stable conformation. PMID:27280697

  1. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

    PubMed Central

    Wiedemann, Christoph; Szambowska, Anna; Häfner, Sabine; Ohlenschläger, Oliver; Gührs, Karl-Heinz; Görlach, Matthias

    2015-01-01

    The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain. PMID:25712103

  2. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC.

    PubMed

    Slootweg, Jack C; van der Wal, Steffen; Quarles van Ufford, H C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-12-18

    Functionalization of the lantibiotic nisin with fluorescent reporter molecules is highly important for the understanding of its mode of action as a potent antimicrobial peptide. In addition to this, multimerization of nisin to obtain multivalent peptide constructs and conjugation of nisin to bioactive molecules or grafting it on surfaces can be attractive methods for interference with bacterial growth. Here, we report a convenient method for the synthesis of such nisin conjugates and show that these nisin derivatives retain both their antimicrobial activity and their membrane permeabilizing properties. The synthesis is based on the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) as a bioorthogonal ligation method for large and unprotected peptides in which nisin was C-terminally modified with propargylamine and subsequently efficiently conjugated to a series of functionalized azides. Two fluorescently labeled nisin conjugates together with a dimeric nisin construct were prepared while membrane insertion as well as antimicrobial activity were unaffected by these modifications. This study shows that C-terminal modification of nisin does not deteriorate biological activity in sharp contrast to N-terminal modification and therefore C-terminally modified nisin analogues are valuable tools to study the antibacterial mode of action of nisin. Furthermore, the ability to use stoichiometric amounts of the azide containing molecule opens up possibilities for surface tethering and more complex multivalent structures. PMID:24266643

  3. Collision-Induced Dissociation Fragmentation Inside Disulfide C-Terminal Loops of Natural Non-Tryptic Peptides

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Y.; Vorontsov, Egor A.; Gorshkov, Vladimir A.; Artemenko, Konstantin A.; Zubarev, Roman A.; Ytterberg, Jimmy A.; Lebedev, Albert T.

    2013-07-01

    Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S-S bonds is often used in "bottom up" sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the "hidden" C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S-S bond rupture does not occur in this case.

  4. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. PMID:26002961

  5. The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3.

    PubMed

    Troeberg, Linda; Fushimi, Kazunari; Scilabra, Simone D; Nakamura, Hiroyuki; Dive, Vincent; Thøgersen, Ida B; Enghild, Jan J; Nagase, Hideaki

    2009-10-01

    We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better K(i) value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3. PMID:19643179

  6. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    PubMed

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  7. Effects of the HN gene c-terminal extensions on the Newcastle disease virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. Sequence analysis revealed that the HN gene of many extremely low virulence NDV strains encodes a larger open reading frame...

  8. Comparative evaluation of recombinant HSP70 (N & C-terminal) fragments in the detection of equine trypanosomosis.

    PubMed

    Kumar, Jaideep; Chaudhury, A; Yadav, S C

    2016-06-15

    Trypanosomosis (Surra) is an economically important disease caused by Trypanosoma evansi which is an extracellular parasite present in the plasma, tissues and other body fluids of a wide range of hosts including domesticated animals. Currently, serological reports are based on detection of antibodies by ELISA using whole cell lysate (WCL) antigen, which has a limitation of persistence of anti-trypanosomal antibodies after successful treatment of the disease. Moreover, it has some ethical issues also like requirement of mice for in vivo maintenance of parasite for preparing the antigen. Therefore, in the present study, an attempt was made to evaluate the in vitro production of recombinant heat shock protein 70 (HSP70) for detection of antibodies in experimentally infected ponies. The amino acid sequence analysis of HSP70 revealed that N-terminal region of the protein was highly conserved while the C-terminal region was most divergent. The four different regions of HSP70 protein viz. HSP-1, HSP-2, HSP-3 and HSP-4 were cloned and expressed, among which HSP-1 (N-terminal region) & HSP-2 (C-terminal region) were truncated while HSP-3 & HSP-4 were complete C-terminal proteins. The recombinant fragments were probed with sequentially pooled experimental serum samples where antibodies were detected in these fragments from 10(th) day post infection till the termination of the experiment. Further, these recombinant fragments were also comparatively evaluated with WCL antigen in ELISA using experimental as well as field serum samples. It was observed that after successful treatment of infected ponies, there was a sharp fall in antibodies (within 90 days) when tested with recombinant HSP's fragments, while antibodies persisted even after 469 days when tested against WCL antigen. The sensitivity and specificity of all HSP70 fragments were also estimated from field serum samples with reference to WCL antigen ELISA. The HSP-1 showed minimum sensitivity (41.03%) among all the

  9. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    SciTech Connect

    Mukhopadhyay, Sudit S. . E-mail: suditmukhopadhy@yahoo.com; Rosen, Jeffrey M. . E-mail: jrosen@bcm.tmc.edu

    2007-07-06

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5.

  10. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin.

    PubMed

    Halff, Els F; Diebolder, Christoph A; Versteeg, Marian; Schouten, Arie; Brondijk, T Harma C; Huizinga, Eric G

    2012-11-01

    The NOD-like receptors NAIP5 and NLRC4 play an essential role in the innate immune response to the bacterial tail protein flagellin. Upon flagellin detection, NAIP5 and NLRC4 form a hetero-oligomeric inflammasome that induces caspase-1-dependent cell death. So far, both the mechanism of formation of the NAIP5-NLRC4 inflammasome and its structure are poorly understood. In this study we combine inflammasome reconstitution in HEK293 cells, purification of inflammasome components, and negative stain electron microscopy to address these issues. We find that a Salmonella typhimurium flagellin fragment comprising the D0 domain and the neighboring spoke region is able to co-precipitate NAIP5 and induce formation of the NAIP5-NLRC4 inflammasome. Comparison with smaller fragments indicates that flagellin recognition is mediated by its C-terminal residues as well as the spoke region. We reconstitute the inflammasome from purified flagellin, NAIP5, and NLRC4, thus proving that no other cellular components are required for its formation. Electron micrographs of the purified inflammasome provide unprecedented insight into its architecture, revealing disk-like complexes consisting of 11 or 12 protomers in which NAIP5 and NLRC4 appear to occupy equivalent positions. On the basis of our data, we propose a model for inflammasome formation wherein direct interaction of flagellin with a single NAIP5 induces the recruitment and progressive incorporation of NLRC4, resulting in the formation of a hetero-oligomeric inflammasome. PMID:23012363

  11. Oxytocin and a C-terminal derivative (Z-prolyl-D-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain.

    PubMed

    Kovács, G L; Horváth, Z; Sarnyai, Z; Faludi, M; Telegdy, G

    1985-05-01

    The effects of oxytocin (OXT) and of dipeptides derived from the C-terminal portion of oxytocin (Z-prolyl-leucine and Z-prolyl-D-leucine) on the development of acute and chronic tolerance to, and dependence on morphine were tested in the mouse. Oxytocin and the dipeptides attenuated the development of acute and chronic tolerance to the antinociceptive effect of morphine and delayed the onset of the naloxone-precipitated withdrawal syndrome. Both oxytocin and Z-prolyl-D-leucine affected drug-induced behavioural responses related to dopamine (DA) in the brain. Thus, oxytocin potentiated the hypermotility induced by a large dose of apomorphine and decreased the supersensitivity of the DA receptors. Small doses of Z-prolyl-D-leucine inhibited the hypomotility elicited by a small dose of apomorphine and potentiated the hyperactivity induced by amphetamine. The data indicate that both oxytocin and Z-prolyl-D-leucine affect tolerance to and dependence on morphine. While oxytocin interacts mainly with postsynaptic DA-ergic neuronal elements, the dipeptide primarily affects DA-ergic neurotransmission at the presynaptic level. PMID:2991800

  12. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions

    PubMed Central

    Wang, Juan; Liu, Guomu; Li, Qiongshu; Wang, Fang; Xie, Fei; Zhai, Ruiping; Guo, Yingying; Chen, Tanxiu; Zhang, Nannan; Ni, Weihua; Yuan, Hongyan; Tai, Guixiang

    2015-01-01

    Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-β)1, TGF-β type I receptor (TβRI) inhibitor, TGF-β1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-β via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by TβRI inhibitor or TGF-β1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-β/TβRI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy. PMID:26057631

  13. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.

    PubMed

    Thöing, Christian; Oldemeyer, Sabine; Kottke, Tilman

    2015-05-13

    Plant cryptochromes are photosensory receptors that regulate various central aspects of plant growth and development. These receptors consist of a photolyase homology region (PHR) carrying the oxidized flavin adenine dinucleotide (FAD) cofactor, and a cryptochrome C-terminal extension (CCT), which is essential for signaling. Absorption of blue/UVA light leads to formation of the FAD neutral radical as the likely signaling state, and ultimately activates the CCT. Little is known about the signal transfer from the flavin to the CCT. Here, we investigated the photoreaction of the PHR by time-resolved step-scan FT-IR spectroscopy complemented by UV-vis spectroscopy. The first spectrum at 500 ns shows major contributions from the FAD anion radical, which is demonstrated to then be protonated by aspartic acid 396 to the neutral radical within 3.5 μs. The analysis revealed the existence of three intermediates characterized by changes in secondary structure. A marked loss of β-sheet structure is observed in the second intermediate evolving with a time constant of 500 μs. This change is accompanied by a conversion of a tyrosine residue, which is identified as the formation of a tyrosine radical in the UV-vis. The only β-sheet in the PHR is located within the α/β subdomain, ∼25 Å away from the flavin. This subdomain has been previously attributed a role as a putative antenna binding site, but is now suggested to have evolved to a component in the signaling of plant cryptochromes by mediating the interaction with the CCT. PMID:25909499

  14. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule

    PubMed Central

    Daryadel, Arezoo; Haubitz, Monika; Figueiredo, Marta; Steubl, Dominik; Roos, Marcel; Mäder, Armin; Hettwer, Stefan

    2016-01-01

    Agrin, a multidomain proteoglycan and neurotrypsin, a neuronal serine protease, are important for forming (neuromuscular) synapses. Proteolytical activity of neurotrypsin produces a C-terminal fragment of agrin, termed CAF, of approximately 22 kDA molecular size which also circulates in blood. The presence of CAF in urine suggests either glomerular filtration or secretion into urine. Blood levels of CAF have been identified as a potential novel marker of kidney function. Here we describe that several nephron segments in the mouse kidney express agrin and neutrotrypsin in addition to the localization of both protein in the glomerulum. Agrin mRNA and protein was detected in almost all nephron segments and mRNA abundance was highest in the inner medullary collecting duct. Neurotrypsin mRNA was mostly detected in the thick ascending limb of the loop of Henle, the distal convoluted tubule, and the inner medullary collecting duct. Moreover, we show that the proximal tubule absorbs injected recombinant CAF by a process shared with receptor-mediated and fluid phase endocytosis. Co-injection of CAF with recombinant human transferrin, a substrate of the receptor-mediated endocytic pathway as well as with FITC-labelled dextran (10 kDa), a marker of fluid phase endocytosis, showed partial colocalization of CAF with both markers. Further colocalization of CAF with the lysosomal marker cathepsin B suggested degradation of CAF by the lysosome in the proximal tubule. Thus, the murine kidney expresses agrin and neurotrypsin in nephron segments beyond the glomerulum. CAF is filtered by the glomerulum and is reabsorbed by endocytosis by the proximal tubule. Thus, impaired kidney function could impair glomerular clearance of CAF and thereby increase circulating CAF levels. PMID:27380275

  15. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction.

    PubMed Central

    Gil, C; Chaib-Oukadour, I; Blasi, J; Aguilera, J

    2001-01-01

    A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component. PMID:11336640

  16. Brain-derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals.

    PubMed

    Roux, Sylvie; Saint Cloment, Cécile; Curie, Thomas; Girard, Emmanuelle; Miana Mena, Francisco-Javier; Barbier, Julien; Osta, Rosario; Molgó, Jordi; Brûlet, Philippe

    2006-09-01

    In a previous study it was reported that fusion proteins composed of the atoxic C-terminal fragment of tetanus toxin (TTC) and green fluorescent protein or beta-galactosidase (GFP-TTC and beta-gal-TTC, respectively) rapidly cluster at motor nerve terminals of the mouse neuromuscular junction (NMJ). Because this traffic involves presynaptic activity, probably via the secretion of active molecules, we examined whether it is affected by brain-derived neurotrophic factor (BDNF). Quantitative confocal microscopy and a fluorimetric assay for beta-gal activity revealed that co-injecting BDNF and the fusion proteins significantly increased the kinetics and amount of the proteins' localization at the NMJ and their internalization by motor nerve terminals. The observed increases were independent of synaptic vesicle recycling because BDNF did not affect spontaneous quantal acetylcholine release. In addition, injecting anti-BDNF antibody shortly before injecting GFP-TTC, and before co-injecting GFP-TTC and BDNF, significantly reduced the fusion protein's localization at the NMJ. Co-injecting GFP-TTC with neurotrophin-4 (NT-4) or glial-derived neurotrophic factor (GDNF), but not with nerve growth factor, neurotrophin-3 or ciliary neurotrophic factor, also significantly increased the fusion protein's localization at the NMJ. Thus, TTC probes may use for their neuronal internalization endocytic pathways normally stimulated by BDNF, NT-4 and GDNF binding. Different tyrosine kinase receptors with similar signalling pathways are activated by BDNF/NT-4 and GDNF binding. Thus, activated components of these signalling pathways may be involved in the TTC probes' internalization, perhaps by facilitating localization of receptors of TTC in specific membrane microdomains or by recruiting various factors needed for internalization of TTC. PMID:17004918

  17. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.

    PubMed

    Bortolotti, Ana; Sánchez-Azqueta, Ana; Maya, Celia M; Velázquez-Campoy, Adrián; Hermoso, Juan A; Medina, Milagros; Cortez, Néstor

    2014-01-01

    To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP(+) than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding. PMID:24016470

  18. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    SciTech Connect

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  19. Consequences of C-terminal domains and N-terminal signal peptide deletions on LEKTI secretion, stability, and subcellular distribution.

    PubMed

    Jayakumar, Arumugam; Kang, Ya'an; Henderson, Ying; Mitsudo, Kenji; Liu, Xiaoling; Briggs, Katrina; Wang, Mary; Frederick, Mitchell J; El-Naggar, Adel K; Bebök, Zsuzsa; Clayman, Gary L

    2005-03-01

    The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion. PMID:15680911

  20. The Last C-Terminal Residue of VP3, Glutamic Acid 257, Controls Capsid Assembly of Infectious Bursal Disease Virus

    PubMed Central

    Chevalier, Christophe; Lepault, Jean; Da Costa, Bruno; Delmas, Bernard

    2004-01-01

    Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH2-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process. PMID:15016850

  1. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    PubMed

    Hansmann, Britta; Schröder, Jens-Michael; Gerstel, Ulrich

    2015-09-01

    Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials. PMID:26371476

  2. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    PubMed Central

    Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier; Guallar, Victor; Martínez, Angel T.

    2014-01-01

    The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn2+-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn2+ oxidation by the internal propionate, but prevents the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd2+ binds at the Mn2+-oxidation site and competitively inhibits oxidation of both Mn2+ and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences. PMID:25478843

  3. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    SciTech Connect

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  4. Characterization of a Synaptic Vesicle Binding Motif on the Distal CaV2.2 Channel C-terminal

    PubMed Central

    Gardezi, Sabiha R.; Nath, Arup R.; Li, Qi; Stanley, Elise F.

    2016-01-01

    Neurotransmitter is released from synaptic vesicles (SVs) that are gated to fuse with the presynaptic membrane by calcium ions that enter through voltage-gated calcium channels (CaVs). There is compelling evidence that SVs associate closely with the CaVs but the molecular linking mechanisms remain poorly understood. Using a cell-free, synaptic vesicle-pull-down assay method (SV-PD) we have recently demonstrated that SVs can bind both to the intact CaV2.2 channel and also to a fusion protein comprising the distal third, C3 segment, of its long C-terminal. This site was localized to a 49 amino acid region just proximal to the C-terminal tip. To further restrict the SV binding site we generated five, 10 amino acid mimetic blocking peptides spanning this region. Of these, HQARRVPNGY effectively inhibited SV-PD and also inhibited SV recycling when cryoloaded into chick brain nerve terminals (synaptosomes). Further, SV-PD was markedly reduced using a C3 fusion protein that lacked the HQARRVPNGY sequence, C3HQless. We zeroed in on the SV binding motif within HQARRVPNGY by means of a palette of mutant blocking peptides. To our surprise, peptides that lacked the highly conserved VPNGY sequence still blocked SV-PD. However, substitution of the HQ and RR amino acids markedly reduced block. Of these, the RR pair was essential but not sufficient as the full block was not observed without H suggesting a CaV2.2 SV binding motif of HxxRR. Interestingly, CaV2.1, the other primary presynaptic calcium channel, exhibits a similar motif, RHxRR, that likely serves the same function. Bioinformatic analysis showed that variations of this binding motif, +(+) xRR (where + is a positively charged aa H or R), are conserved from lung-fish to man. Further studies will be necessary to identify the C terminal motif binding partner on the SV itself and to determine the role of this molecular interaction in synaptic transmission. We hypothesize that the distal C-terminal participates in the capture

  5. Chemical shift assignments of the C-terminal EF-hand domain of α-actinin-1.

    PubMed

    Turner, Matthew; Anderson, David E; Rajan, Sahana; Hell, Johannes W; Ames, James B

    2016-04-01

    The regulation and localization of the neuronal voltage gated Ca(2+) channel CaV1.2 is important for synaptic plasticity associated with learning and memory. The cytoskeletal protein, α-actinin-1 is known to interact with CaV1.2 and stabilize its localization at the postsynaptic membrane. Here we report both backbone and sidechain NMR assignments for the C-terminal EF-hands (EF3 and EF4) of α-actinin-1 (residues 824-892, called ACTN_EF34) bound to the IQ-motif (residues 1644-1665) from CaV1.2 (BMRB accession no. 25902). PMID:26861220

  6. Incorporation of Acid-Labile Masking Groups for the Traceless Synthesis of C-Terminal Peptide α-Ketoacids.

    PubMed

    Thuaud, Frédéric; Rohrbacher, Florian; Zwicky, André; Bode, Jeffrey W

    2016-08-01

    An optimized protocol for the masking of α-ketoacids with acid-labile cyclic acetal protecting groups is reported. Unlike prior approaches, these new conditions allow the synthesis of protected α-ketoacids bearing aromatic, hindered alkyl, and protected polar side chains. Attachment to a Wang-type linker and solid support provides a resin that delivers fully unprotected C-terminal peptide α-ketoacids upon resin cleavage. These peptides are the key starting materials for chemical protein synthesis using the α-ketoacid-hydroxylamine ligation. PMID:27439001

  7. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    SciTech Connect

    Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier; Guallar, Victor; Martínez, Angel T.

    2014-12-01

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their

  8. Biased and G Protein-Independent Signaling of Chemokine Receptors

    PubMed Central

    Steen, Anne; Larsen, Olav; Thiele, Stefanie; Rosenkilde, Mette M.

    2014-01-01

    Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor), different receptors (with the same ligand), or different tissues or cells (for the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of “classic” redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor-, or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the solution

  9. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    SciTech Connect

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M. . E-mail: kkaye@rics.bwh.harvard.edu

    2007-01-20

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes.

  10. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA

    PubMed Central

    Dwivedi, Gajendradhar R.; Srikanth, Kolluru D.; Anand, Praveen; Naikoo, Javed; Srilatha, N. S.; Rao, Desirazu N.

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  11. Crystallization and preliminary X-ray diffraction studies of the C-terminal domain of Chlamydia trachomatis CdsD.

    PubMed

    Meriläinen, Gitte; Wierenga, Rik K

    2014-10-01

    The inner membrane ring of the bacterial type III secretion system (TTSS) is composed of two proteins. In Chlamydia trachomatis this ring is formed by CdsD (gene name CT_664) and CdsJ (gene name CTA_0609). CdsD consists of 829 amino acids. The last 400 amino acids at its C-terminal end relate it to the type III secretion system YscD/HrpQ protein family. The C-terminal domain, consisting of amino acids 558-771, of C. trachomatis CdsD was overexpressed in Escherichia coli and purified using immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. The protein was crystallized using the vapour-diffusion method. A data set was collected to 2.26 Å resolution. The crystals have the symmetry of space group C2, with unit-cell parameters a = 106.60, b = 23.91, c = 118.65 Å, β = 104.95°. According to the data analysis there is expected to be one molecule in the asymmetric unit, with a Matthews coefficient of 3.0 Å(3) Da(-1). PMID:25286957

  12. C-terminal domain of MEIS1 converts PKNOX1 (PREP1) into a HOXA9-collaborating oncoprotein.

    PubMed

    Bisaillon, Richard; Wilhelm, Brian T; Krosl, Jana; Sauvageau, Guy

    2011-10-27

    The three-amino-acid loop extension (TALE) class homeodomain proteins MEIS1 and PKNOX1 (PREP1) share the ability to interact with PBX and HOX family members and bind similar DNA sequences but appear to play opposing roles in tumor development. Elevated levels of MEIS1 accelerate development of HOX- and MLL-induced leukemias, and this pro-tumorigenic property has been associated with transcriptional activity of MEIS1. In contrast, reduction of PKNOX1 levels has been linked with cancer development despite the absence of an identifiable transactivating domain. In this report, we show that a chimeric protein generated by fusion of the MEIS1 C-terminal region encompassing the transactivating domain with the full-length PKNOX1 (PKNOX1-MC) acquired the ability to accelerate the onset of Hoxa9-induced leukemia in the mouse bone marrow transduction/transplantation model. Gene expression profiling of primary bone marrow cells transduced with Hoxa9 plus Meis1, or Hoxa9 plus Pknox1-MC revealed perturbations in overlapping functional gene subsets implicated in DNA packaging, chromosome organization, and in cell cycle regulation. Together, results presented in this report suggest that the C-terminal domain of MEIS1 confers to PKNOX1 an ectopic transactivating function that promotes leukemogenesis by regulating expression of genes involved in chromatin accessibility and cell cycle progression. PMID:21900201

  13. An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region

    PubMed Central

    Hashimoto, Kohsuke; Igarashi, Hisako; Mano, Shoji; Takenaka, Chikako; Shiina, Takashi; Yamaguchi, Masatoshi; Demura, Taku; Nishimura, Mikio; Shimmen, Teruo; Yokota, Etsuo

    2008-01-01

    Myosin XI, a class of myosins expressed in plants is believed to be responsible for cytoplasmic streaming and the translocation of organelles and vesicles. To gain further insight into the translocation of organelles and vesicles by myosin XI, an isoform of Arabidopsis myosin XI, MYA2, was chosen and its role in peroxisome targeting was examined. Using the yeast two-hybrid screening method, two small GTPases, AtRabD1 and AtRabC2a, were identified as factors that interact with the C-terminal tail region of MYA2. Both recombinant AtRabs tagged with His bound to the recombinant C-terminal tail region of MYA2 tagged with GST in a GTP-dependent manner. Furthermore, AtRabC2a was localized on peroxisomes, when its CFP-tagged form was expressed transiently in protoplasts prepared from Arabidopsis leaf tissue. It is suggested that MYA2 targets the peroxisome through an interaction with AtRabC2a. PMID:18703495

  14. Post-translational modifications to Toxoplasma gondii α- and β-tubulins include novel C-terminal methylation

    PubMed Central

    Xiao, Hui; Bissati, Kamal El; Verdier-Pinard, Pascal; Burd, Berta; Zhang, Hongshan; Kim, Kami; Fiser, Andras; Angeletti, Ruth Hogue; Weiss, Louis M.

    2009-01-01

    Toxoplasma gondii is an apicomplexan of both medical and veterinary importance which is classified as an NIH Category B priority pathogen. It is best known for its ability to cause congenital infection in immune competent hosts and encephalitis in immune compromised hosts. The highly stable and specialized microtubule-based cytoskeleton participates in the invasion process. The genome encodes three isoforms of both α- and β-tubulin and we show that the tubulin is extensively altered by specific post-translational modifications (PTMs) in this paper. T. gondii tubulin PTMs were analyzed by mass spectrometry and immunolabeling using specific antibodies. The PTMs identified on α-tubulin included acetylation of Lys40, removal of the last C-terminal amino acid residue Tyr453 (detyrosinated tubulin) and truncation of the last five amino acid residues. Polyglutamylation was detected on both α- and β-tubulins. An antibody directed against mammalian α-tubulin lacking the last two C-terminal residues (Δ2-tubulin) labeled the apical region of this parasite. Detyrosinated tubulin was diffusely present in subpellicular microtubules and displayed an apparent accumulation at the basal end. Methylation, a PTM not previously described on tubulin, was also detected. Methylated tubulins were not detected in the host cells, human foreskin fibroblasts, suggesting that this may be a modification specific to the Apicomplexa. PMID:19886702

  15. Hevea brasiliensis prohevein possesses a conserved C-terminal domain with amyloid-like properties in vitro.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Peruch, Frédéric

    2016-04-01

    Prohevein is a wound-induced protein and a main allergen from latex of Hevea brasiliensis (rubber tree). This 187 amino-acid protein is cleaved in two fragments: a N-terminal 43 amino-acids called hevein, a lectin bearing a chitin-binding motif with antifungal properties and a C-terminal domain (C-ter) far less characterized. We provide here new insights on the characteristics of prohevein, hevein and C-terminal domain. Using complementary biochemical (ThT/CR/chitin binding, agglutination) and structural (modeling, ATR-FTIR, TEM, WAXS) approaches, we show that this domain clearly displays all the characteristics of an amyloid-like proteins in vitro, that could confer agglutination activity in synergy with its chitin-binding activity. Additionally, this C-ter domain is highly conserved and present in numerous plant prohevein-like proteins or pathogenesis-related (PR and WIN) proteins. This could be the hallmark of the eventual presence of proteins with amyloid properties in plants, that could potentially play a role in defense through aggregation properties. PMID:26805576

  16. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding.

    PubMed

    Bell, C E; Frescura, P; Hochschild, A; Lewis, M

    2000-06-23

    Interactions between transcription factors bound to separate operator sites commonly play an important role in gene regulation by mediating cooperative binding to the DNA. However, few detailed structural models for understanding the molecular basis of such cooperativity are available. The c1 repressor of bacteriophage lambda is a classic example of a protein that binds to its operator sites cooperatively. The C-terminal domain of the repressor mediates dimerization as well as a dimer-dimer interaction that results in the cooperative binding of two repressor dimers to adjacent operator sites. Here, we present the x-ray crystal structure of the lambda repressor C-terminal domain determined by multiwavelength anomalous diffraction. Remarkably, the interactions that mediate cooperativity are captured in the crystal, where two dimers associate about a 2-fold axis of symmetry. Based on the structure and previous genetic and biochemical data, we present a model for the cooperative binding of two lambda repressor dimers at adjacent operator sites. PMID:10892750

  17. C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8.

    PubMed Central

    Dörfler, P; Busslinger, M

    1996-01-01

    Pax-5 encodes the transcription factor BSAP which plays an essential role in early B cell development and midbrain patterning. In this study we have analysed the structural requirements for transcriptional activation by BSAP. In vitro mutagenesis and transient transfection experiments indicate that the C-terminal serine/threonine/proline-rich region of BSAP contains a potent transactivation domain of 55 amino acids which is active from promoter and enhancer positions. This transactivation domain was found to be inactivated by a naturally occurring frameshift mutation in one PAX-5 allele of the acute lymphoblastic leukemia cell line REH. The function of the transactivation domain is negatively regulated by adjacent sequences from the extreme C-terminus. The activating and inhibitory domains function together as an independent regulatory module in different cell types as shown by fusion to the GAL4 DNA binding domain. The same arrangement of positively and negatively acting sequences has been conserved in the mammalian Pax-2 and Pax-8, the zebrafish Pax-b as well as the sea urchin Pax-258 proteins. These data demonstrate that the transcriptional competence of a subfamily of Pax proteins is determined by a C-terminal regulatory module composed of activating and inhibitory sequences. Images PMID:8617244

  18. Expression, purification and preliminary crystallographic studies of the C-terminal SH3 domain of human Tks4.

    PubMed

    Huang, Yuxin; Qian, Huolian; Wang, Xiaoying; Cheng, Zhong; Ren, Jixia; Zhao, Weichen; Xie, Yong

    2014-03-01

    The Src homology 3 (SH3) domain is a small, noncatalytic domain with a conserved sequence of about 60 amino-acid residues that interacts with proline-rich peptides to form a protein complex. In this study, the C-terminal SH3 domain of human Tks4 (residues 853-911) was expressed, purified and crystallized. X-ray diffraction data were collected to 2.3 Å resolution. The crystal belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = b = 83.87, c = 108.44 Å, α = β = 90, γ = 120°. Calculating the self-rotation and the native Patterson function did not lead to the detection of any noncrystallographic translational symmetry. Six, seven or eight protein molecules are likely to be present in the asymmetric unit, resulting in a Matthews coefficient and approximate solvent content of 2.71 Å(3) Da(-1) and 55%, 2.32 Å(3) Da(-1) and 47%, and 2.03 Å(3) Da(-1) and 39%, respectively. To solve the crystal structure of the C-terminal SH3 domain of human Tks4, the isomorphous replacement method is presently being utilized. PMID:24598923

  19. Contribution of the C-Terminal Region of a Group II Chaperonin to its Interaction with Prefoldin and Substrate Transfer.

    PubMed

    Zako, Tamotsu; Sahlan, Muhamad; Fujii, Sayaka; Yamamoto, Yohei Y; Tai, Phan The; Sakai, Kotaro; Maeda, Mizuo; Yohda, Masafumi

    2016-06-01

    Prefoldin is a molecular chaperone that captures an unfolded protein substrate and transfers it to a group II chaperonin. Previous studies have shown that the interaction sites for prefoldin are located in the helical protrusions of group II chaperonins. However, it does not exclude the possibility of the existence of other interaction sites. In this study, we constructed C-terminal truncation mutants of a group II chaperonin and examined the effects of these mutations on the chaperone's function and interaction with prefoldin. Whereas the mutants with up to 6 aa truncation from the C-terminus retained more than 90% chaperone activities for protecting citrate synthase from thermal aggregation and refolding of green fluorescent protein and isopropylmalate dehydrogenase, the truncation mutants showed decreased affinities for prefoldin. Consequently, the truncation mutants showed reduced transfer efficiency of the denatured substrate protein from prefoldin and subsequent chaperonin-dependent refolding. The results clearly show that the C-terminal region of group II chaperonins contributes to their interactions with prefoldin, the transfer of the substrate protein from prefoldin and its refolding. PMID:27079363

  20. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    SciTech Connect

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  1. Structure of the human Tim44 C-terminal domain in complex with pentaethylene glycol: ligand-bound form

    SciTech Connect

    Handa, N.; Kishishita, S.; Morita, S.; Akasaka, R.; Jin, Z.; Chrzas, J.; Chen, L.; Liu, Z.-J.; Wang, B.-C.; Sugano, S.; Tanaka, A.; Terada, T.; Shirouzu, M.; Yokoyama, S.

    2008-06-23

    Familial oncocytic thyroid carcinoma is associated with a missense mutation, P308Q, in the C-terminal domain of Tim44. Tim44 is the mitochondrial inner-membrane translocase subunit and it functions as a membrane anchor for the mitochondrial heat-shock protein 70 (mtHsp70). Here, the crystal structure of the human Tim44 C-terminal domain complexed with pentaethylene glycol has been determined at 1.9 {angstrom} resolution. The overall structure resembles that of the nuclear transport factor 2-like domain. In the crystal structure, pentaethylene glycol molecules are associated at two potential membrane-binding sites: the large hydrophobic cavity and the highly conserved loop between the {alpha} 1 and {alpha} 2 helices near Pro308. A comparison with the yeast homolog revealed that lipid binding induces conformational changes around the {alpha} 1-{alpha} 2 loop, leading to slippage of the {alpha} 1 helix along the large {beta}-sheet. These changes may play important roles in the translocation of polypeptides across the mitochondrial inner membrane.

  2. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA.

    PubMed

    Dwivedi, Gajendradhar R; Srikanth, Kolluru D; Anand, Praveen; Naikoo, Javed; Srilatha, N S; Rao, Desirazu N

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  3. Structure of a bacterial putative acetyltransferase defines the fold of the human O-GlcNAcase C-terminal domain

    PubMed Central

    Rao, Francesco V.; Schüttelkopf, Alexander W.; Dorfmueller, Helge C.; Ferenbach, Andrew T.; Navratilova, Iva; van Aalten, Daan M. F.

    2013-01-01

    The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT. PMID:24088714

  4. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    PubMed Central

    Scharinger, Anja; Eckrich, Stephanie; Vandael, David H.; Schönig, Kai; Koschak, Alexandra; Hecker, Dietmar; Kaur, Gurjot; Lee, Amy; Sah, Anupam; Bartsch, Dusan; Benedetti, Bruno; Lieb, Andreas; Schick, Bernhard; Singewald, Nicolas; Sinnegger-Brauns, Martina J.; Carbone, Emilio; Engel, Jutta; Striessnig, Jörg

    2015-01-01

    Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability. PMID:26379493

  5. Crystallization of the C-terminal redox domain of the sulfur-assimilatory enzyme APR1 from Arabidopsis thaliana

    PubMed Central

    Chen, Fang-Fang; Chang, Yu-Yung; Cho, Chao-Cheng; Hsu, Chun-Hua

    2014-01-01

    Plant-type APS reductase (APR), which catalyzes the reduction of activated sulfate to sulfite in plants, consists of a reductase domain and a C-terminal redox domain showing sequence homology to thioredoxin but possessing the activity of glutaredoxin. In order to understand the structural and biochemical properties of the redox domain of plant-type APS reductase, the C-terminal domain of APR1 (APR1C) from Arabidopsis thaliana was crystallized using the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to a resolution of 2.70 Å on the SPXF beamline BL13B1 at the NSRRC, Taiwan. The crystals belonged to space group P43212 or P41212, with unit-cell parameters a = b = 58.2, c = 86.7 Å. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V M) is 2.64 Å3 Da−1, which corresponds to a solvent content of approximately 53.49%. Further structure-based functional studies of APR1C would extend knowledge of the molecular mechanism and regulation of APR. PMID:25195893

  6. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress1[OPEN

    PubMed Central

    Zhang, Lingang; Kondo, Hideki

    2016-01-01

    Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1. PMID:27208228

  7. Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?

    PubMed Central

    De Bock, Marijke; Wang, Nan; Decrock, Elke; Bultynck, Geert; Leybaert, Luc

    2015-01-01

    The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury. PMID:26424967

  8. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis.

    PubMed

    Syal, Kirtimaan; Joshi, Himanshu; Chatterji, Dipankar; Jain, Vikas

    2015-10-01

    Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra- and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response. PMID:26179484

  9. The C-Terminal Domain of Yeast PCNA Is Required for Physical And Functional Interactions With Cdc9 DNA Ligase

    SciTech Connect

    Vijayakumar, S.; Chapados, B.R.; Schmidt, K.H.; Kolodner, R.D.; Tainer, J.A.; Tomkinson, A.E.

    2007-07-13

    There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the {beta}-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the coordinated, sequential action of these enzymes.

  10. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies.

    PubMed

    Jiang, Guoying; Yu, Christopher; Yadav, Daniela B; Hu, Zhilan; Amurao, Annamarie; Duenas, Eileen; Wong, Marc; Iverson, Mark; Zheng, Kai; Lam, Xanthe; Chen, Jia; Vega, Roxanne; Ulufatu, Sheila; Leddy, Cecilia; Davis, Helen; Shen, Amy; Wong, Pin Y; Harris, Reed; Wang, Y John; Li, Dongwei

    2016-07-01

    Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes. PMID:27262204

  11. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    SciTech Connect

    Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; Raaij, Mark J. van

    2006-05-01

    Avian adenovirus long-fibre head trimers were expressed, purified and crystallized. The crystals belong to space group C2 (unit-cell parameters a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°). A complete highly redundant data set was collected to 2.2 Å resolution at 100 K using a rotating-anode X-ray source. Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress.

  12. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    PubMed Central

    van den Bremer, Ewald TJ; Beurskens, Frank J; Voorhorst, Marleen; Engelberts, Patrick J; de Jong, Rob N; van der Boom, Burt G; Cook, Erika M; Lindorfer, Margaret A; Taylor, Ronald P; van Berkel, Patrick HC; Parren, Paul WHI

    2015-01-01

    Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential. PMID:26037225

  13. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  14. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre

    SciTech Connect

    El Bakkouri, Majida; Seiradake, Elena; Cusack, Stephen; Ruigrok, Rob W.H. Schoehn, Guy

    2008-08-15

    There are more than 100 known adenovirus serotypes, including 50 human serotypes. They can infect all 5 major vertebrate classes but only Aviadenovirus infecting birds and Mastadenovirus infecting mammals have been well studied. CELO (chicken embryo lethal orphan) adenovirus is responsible for mild respiratory pathologies in birds. Most studies on CELO virus have focussed on its genome sequence and organisation whereas the structural work on CELO proteins has only recently started. Contrary to most adenoviruses, the vertices of CELO virus reveal pentons with two fibres of different lengths. The distal parts (or head) of those fibres are involved in cellular receptor binding. Here we have determined the atomic structure of the short-fibre head of CELO (amino acids 201-410) at 2.0 A resolution. Despite low sequence identity, this structure is conserved compared to the other adenovirus fibre heads. We have used the existing CELO long-fibre head structure and the one we show here for a structure-based alignment of 11 known adenovirus fibre heads which was subsequently used for the construction of an evolutionary tree. Both the fibre head sequence and structural alignments suggest that enteric human group F adenovirus 41 (short fibre) is closer to the CELO fibre heads than the canine CAdV-2 fibre head, that lies closer to the human virus fibre heads.

  15. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids.

    PubMed

    Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk

    2016-04-01

    Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel. PMID:26631167

  16. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel

    SciTech Connect

    Lau, Sze-Yi; Procko, Erik; Gaudet, Rachelle

    2012-11-01

    Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.

  17. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases

    PubMed Central

    2013-01-01

    Background Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the asparagine residue in the N-glycosylation sequons. The catalytic subunits of the OST enzyme are STT3 in eukaryotes, AglB in archaea and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three paralogous AglB proteins. We previously solved the crystal structures of the C-terminal globular domains of two paralogs, AglB-Short 1 and AglB-Short 2. Results We determined the crystal structure of the C-terminal globular domain of the third AglB paralog, AglB-Long, at 1.9 Å resolutions. The crystallization of the fusion protein with maltose binding protein (MBP) afforded high quality protein crystals. Two MBP-AglB-L molecules formed a swapped dimer in the crystal. Since the fusion protein behaved as a monomer upon gel filtration, we reconstituted the monomer structure from the swapped dimer by exchanging the swapped segments. The C-terminal domain of A. fulgidus AglB-L includes a structural unit common to AglB-S1 and AglB-S2. This structural unit contains the evolutionally conserved WWDYG and DK motifs. The present structure revealed that A. fulgidus AglB-L contained a variant type of the DK motif with a short insertion, and confirmed that the second signature residue, Lys, of the DK motif participates in the formation of a pocket that binds to the serine and threonine residues at the +2 position of the N-glycosylation sequon. Conclusions The structure of A. fulgidus AglB-L, together with the two previously solved structures of AglB-S1 and AglB-S2, provides a complete overview of the three AglB paralogs encoded in the A. fulgidus genome. All three AglBs contain a variant type of the DK motif. This finding supports a previously proposed rule: The STT3/AglB/PglB paralogs in one organism always contain the same type of Ser/Thr-binding pocket. The present structure will be useful as a

  18. ZipA-Induced Bundling of FtsZ Polymers Mediated by an Interaction between C-Terminal Domains†

    PubMed Central

    Hale, Cynthia A.; Rhee, Amy C.; de Boer, Piet A. J.

    2000-01-01

    FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA− cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor. PMID:10960100

  19. Central injections of nocistatin or its C-terminal hexapeptide exert anxiogenic-like effect on behaviour of mice in the plus-maze test.

    PubMed

    Gavioli, Elaine C; Rae, Giles A; Calo', Girolamo; Guerrini, Remo; De Lima, Thereza C M

    2002-07-01

    . Nocistatin (NST) antagonizes several actions of nociceptin/orphanin FQ (N/OFQ), but acts on distinct receptors. As N/OFQ exerts anxiolytic-like actions in various tests, its behavioural actions in the elevated plus-maze (EPM) test were compared with those of bovine NST. 2. Five minutes after i.c.v. treatment, mice were placed on the EPM for 5 min and entries into and time spent on open and closed arms were recorded alongside other parameters. 3. NST (0.1 - 3 pmol) reduced percentages of entries into (control 39.6+/-3.1%, peak effect at 1 pmol NST 8.5+/-2.9%) and time spent on open arms (control 30.8+/-2.3%, NST 2.7+/-1.5%). The C-terminal hexapeptide of NST (NST-C6; 0.01 - 10 pmol) closely mimicked these actions of NST, with peak effects at 0.1 pmol. 4. N/OFQ (1 - 100 pmol) increased percentages of entries into (control 38.5+/-3.4%; peak effect at 10 pmol N/OFQ 67.9+/-4.9%) and time spent on open arms (control 32.0+/-3.8%; N/OFQ 74.9+/-5.8%). Closed arm entries, an index of locomotor activity, were unchanged by all peptides. 5. Effects of NST or NST-C6, but not N/OFQ, were still detectable 15 min after injection. Behaviour of animals co-injected with NST (1 pmol) or NST-C6 (0.1 pmol) plus N/OFQ (10 pmol) was indistinguishable from that of controls. 6. These results reveal potent anxiogenic-like actions of NST and NST-C6, and confirm the anxiolytic-like properties of N/OFQ. As NST and N/OFQ both derive from preproN/OF, anxiety may be modulated in opposing directions depending on how this precursor is processed. PMID:12086986

  20. Spin transport in epitaxial graphene on the C-terminated ( 000 1 ¯ )-face of silicon carbide

    NASA Astrophysics Data System (ADS)

    van den Berg, J. J.; Yakimova, R.; van Wees, B. J.

    2016-07-01

    We performed a temperature dependent study of the charge and spin transport properties of epitaxial graphene on the C-terminated ( 000 1 ¯ ) face of silicon carbide (SiC), a system without a carbon buffer layer between the graphene and the SiC. Using spin Hanle precession in the nonlocal geometry, we measured a spin relaxation length of λS = 0.7 μm at room temperature, lower than in exfoliated graphene. We show that the charge and spin diffusion coefficient, DC and DS, respectively, increasingly deviate from each other during electrical measurements up to a difference of a factor 4. Thus, we show that a model of localized states that was previously used to explain DC ≠ DS, can also be applied to epitaxial graphene systems without a carbon buffer layer. We attribute the effect to charge trap states in the interface between the graphene and the SiC.

  1. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis

    PubMed Central

    Harriss, June; Das, Chhaya; Zhu, Li; Edwards, Melissa; Shaaban, Salam; Tucker, Haley

    2015-01-01

    The SMYD3 histone methyl transferase (HMTase) and the nuclear chaperone, HSP90, have been independently implicated as proto-oncogenes in several human malignancies. We show that a degenerate tetratricopeptide repeat (TPR)-like domain encoded in the SMYD3 C-terminal domain (CTD) mediates physical interaction with HSP90. We further demonstrate that the CTD of SMYD3 is essential for its basal HMTase activity and that the TPR-like structure is required for HSP90-enhanced enzyme activity. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within the nucleus, thereby losing its chromatin association. This results in reduction of SMYD3-mediated cell proliferation and, potentially, impairment of SMYD3′s oncogenic activity. These results suggest a novel approach for blocking HSP90-driven malignancy in SMYD3-overexpressing cells with a reduced toxicity profile over current HSP90 inhibitors. PMID:25738358

  2. Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin.

    PubMed

    Chinison, Jessica; Aguilar, Jose S; Avalos, Alan; Huang, Ying; Wang, Zhijun; Cameron, D Joshua; Hao, Jijun

    2016-01-01

    Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish "eyeless" phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide. PMID:27596363

  3. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2.

    PubMed

    Karlsson, Göran; Persson, Cecilia; Mayzel, Maxim; Hedenström, Mattias; Backman, Lars

    2016-04-01

    Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker. PMID:26800385

  4. Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin

    PubMed Central

    Chinison, Jessica; Aguilar, Jose S.; Avalos, Alan; Huang, Ying; Wang, Zhijun; Cameron, D. Joshua; Hao, Jijun

    2016-01-01

    Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish “eyeless” phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide. PMID:27596363

  5. α-Helical to β-Helical Conformation Change in the C-Terminal of the Mammalian Prion Protein

    NASA Astrophysics Data System (ADS)

    Singh, Jesse; Whitford, Paul; Hayre, Natha; Cox, Daniel; Onuchic, José.

    2011-03-01

    We employ all-atom structure-based models with mixed basis contact maps to explore whether there are any significant geometric or energetic constraints limiting conjectured conformational transitions between the alpha-helical (α H) and the left handed beta helical (LHBH) conformations for the C-terminal (residues 166-226) of the mammalian prion protein. The LHBH structure has been proposed to describe infectious oligomers and one class of in vitro grown fibrils, as well as possibly self- templating the conversion of normal cellular prion protein to the infectious form. Our results confirm that the kinetics of the conformation change are not strongely limited by large scale geometry modification and there exists an overall preference for the LHBH conformation.

  6. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1.

    PubMed

    Tsuchiya, Yuko; Jounai, Nao; Takeshita, Fumihiko; Ishii, Ken J; Mizuguchi, Kenji

    2016-07-01

    The innate immune protein Stimulator of interferon genes (STING) promotes the induction of interferon beta (IFN-β) production via the phosphorylation of its C-terminal tail (CTT) by TANK-binding kinase 1 (TBK1). Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP) induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation. PMID:27333035

  7. Crystallization of the C-terminal domain of the fibre protein from snake adenovirus 1, an atadenovirus.

    PubMed

    Singh, Abhimanyu K; Menéndez-Conejero, Rosa; San Martín, Carmen; van Raaij, Mark J

    2013-12-01

    Adenovirus fibre proteins play an important role in determining viral tropism. The C-terminal domain of the fibre protein from snake adenovirus type 1, a member of the Atadenovirus genus, has been expressed, purified and crystallized. Crystals were obtained belonging to space groups P2(1)2(1)2(1) (two different forms), I2(1)3 and F23. The best of these diffracted synchrotron radiation to a resolution of 1.4 Å. As the protein lacks methionines or cysteines, site-directed mutagenesis was performed to change two leucine residues to methionines. Crystals of selenomethionine-derivatized crystals of the I2(1)3 form were also obtained and a multi-wavelength anomalous dispersion data set was collected. PMID:24316834

  8. Elastase inhibition by the C-terminal domains of alpha-crystallin and small heat-shock protein.

    PubMed

    Voorter, C E; de Haard-Hoekman, W; Merck, K B; Bloemendal, H; de Jong, W W

    1994-01-11

    alpha-Crystallin, an abundant eye-lens protein and a stress protein in other tissues, shows structural and functional similarities with the small heat-shock proteins. One of the properties in common is the inhibition of elastase. We now report that the separated subunits of alpha-crystallin, alpha A and alpha B, also exhibit elastase inhibition, whereas phosphorylation of these subunits apparently has no influence on the inhibitory capacity. Furthermore, for both alpha A-crystallin and mouse HSP25 the putative C-terminal structural domain, comprising the major region of homology between these proteins, is sufficient to give elastase inhibition. With database search no homology could be found between the three proteins under investigation and any of the known consensus sequences of proteinase inhibitor families. PMID:8305474

  9. Graphene on C-terminated face of 4H-SiC observed by noncontact scanning nonlinear dielectric potentiometry

    NASA Astrophysics Data System (ADS)

    Yamasue, Kohei; Fukidome, Hirokazu; Tashima, Keiichiro; Suemitsu, Maki; Cho, Yasuo

    2016-08-01

    We studied graphene synthesized on the C-terminated face (C-face) of a 4H-SiC substrate by noncontact scanning nonlinear dielectric potentiometry. As already reported by other researchers, multilayer graphene sheets with moiré patterns were observed in our sample, which indicates the existence of rotational disorder between adjacent layers. We found that the potentials of graphene on the C-face are almost neutral and significantly smaller than those observed on the Si-terminated face (Si-face). In addition, the neutrality of potentials is not affected by various topographic features underlying the multilayer graphene sheets. These results indicate that graphene on the C-face of SiC is decoupled or screened from the underlying structures and substrate, unlike graphene on the Si-face.

  10. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. PMID:25449652

  11. TRIP8b regulates HCN1 channel trafficking and gating through two distinct C-terminal interaction sites

    PubMed Central

    Santoro, Bina; Hu, Lei; Liu, Haiying; Saponaro, Andrea; Pian, Phillip; Piskorowski, Rebecca A.; Moroni, Anna; Siegelbaum, Steven A.

    2011-01-01

    Hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the brain associate with their auxiliary subunit TRIP8b (also known as PEX5R), a cytoplasmic protein expressed as a family of alternatively spliced isoforms. Recent in vitro and in vivo studies have shown that association of TRIP8b with HCN subunits both inhibits channel opening and alters channel membrane trafficking, with some splice variants increasing and others decreasing channel surface expression. Here, we address the structural bases of the regulatory interactions between mouse TRIP8b and HCN1. We find that HCN1 and TRIP8b interact at two distinct sites: an upstream site where the C-linker/cyclic nucleotide-binding domain of HCN1 interacts with an 80 amino acid domain in the conserved central core of TRIP8b, and a downstream site where the C-terminal -SNL tripeptide of the channel interacts with the tetratricopeptide repeat domain of TRIP8b. These two interaction sites play distinct functional roles in the effects of TRIP8b on HCN1 trafficking and gating. Binding at the upstream site is both necessary and sufficient for TRIP8b to inhibit channel opening. It is also sufficient to mediate the trafficking effects of those TRIP8b isoforms that downregulate channel surface expression, in combination with the trafficking motifs present in the N-terminal region of TRIP8b. In contrast, binding at the downstream interaction site serves to stabilize the C-terminal domain of TRIP8b, allowing for optimal interaction between HCN1 and TRIP8b as well as for proper assembly of the molecular complexes that mediate the effects of TRIP8b on HCN1 channel trafficking. PMID:21411649

  12. NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor.

    PubMed

    Mantsyzov, Alexey B; Ivanova, Elena V; Birdsall, Berry; Alkalaeva, Elena Z; Kryuchkova, Polina N; Kelly, Geoff; Frolova, Ludmila Y; Polshakov, Vladimir I

    2010-06-01

    Termination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277-437) has been determined in solution. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal structure. The structure of the minidomain (residues 329-372), which was ill-defined in the crystal structure, has been determined in solution. The protein backbone dynamics, studied using (15)N-relaxation experiments, showed that the C-terminal tail 414-437 and the minidomain are the most flexible parts of the human C-domain. The minidomain exists in solution in two conformational states, slowly interconverting on the NMR timescale. Superposition of this NMR solution structure of the human C-domain onto the available crystal structure of full-length human eRF1 shows that the minidomain is close to the stop codon-recognizing N-terminal domain. Mutations in the tip of the minidomain were found to affect the stop codon specificity of the factor. The results provide new insights into the possible role of the C-domain in the process of translation termination. PMID:20553496

  13. Clustered-charge to alanine scanning mutagenesis of the Mal63 MAL-activator C-terminal regulatory domain.

    PubMed

    Danzi, Sara E; Bali, Mehtap; Michels, Corinne A

    2003-12-01

    The MAL-activator genes of Saccharomyces cerevisiae encode regulatory proteins required for the expression of the structural genes encoding maltose permease and maltase. Residues within the C-terminal region of the Mal63 protein required for negative regulation were previously identified. Evidence suggested that the C-terminal domain is also involved in positive regulatory functions, such as inducer responsiveness and transactivation in the context of a full-length protein. Charged-cluster to alanine scanning mutagenesis of the regulatory domain of MAL63 and the constitutive MAL43-C were undertaken to identify distinct regions within Mal63p involved in positive functions and to define their roles in induction. Mutations that affect the ability to activate transcription in the inducible MAL63 but have no effect in the constitutive MAL43-C define regions that function in induction. Those that affect both the inducible and constitutive alleles define regions involved in activation more generally. Mutations in MAL63 fell into three classes, those that have little or no impact on activity, those that decrease activity, and those that enhance function. Mutations from these classes mapped to distinct regions of the protein, identifying a region of approximately 90 residues (residues 331-423) involved in maltose sensing and an approximately 50-residue region at the extreme C-terminus (residues 420-470) required for activation, such as the formation and/or maintenance of an active state. These studies support a model for MAL-activator function which involves complex protein-protein interactions and overlapping negative and positive regulatory regions. PMID:14508602

  14. Cysteine-free non-canonical C-intein for versatile protein C-terminal labeling through trans-splicing.

    PubMed

    Dai, Xudong; Xun, Qijing; Liu, Xiang-Qin; Meng, Qing

    2015-10-01

    Site-specific protein labeling are powerful means of protein research and engineering; however, new and improved labeling methods are greatly needed. Split inteins catalyze a protein trans-splicing reaction that can be used for enzymatic and nearly seamless protein labeling. Non-canonical S11 split intein has been used in an earlier method of protein C-terminal labeling; however, its relatively large (~150 aa) N-intein fused to the target protein often hindered protein expression, folding, and solubility. To solve this problem, here, we have designed and demonstrated a new method of protein C-terminal labeling, by first engineering a functional non-canonical S1 split intein that has an extremely small (12 aa) N-intein and a cysteine-free C-intein. An engineered Rma DnaB S1 split intein was modified to have a cysteine-free C-intein, while still retaining its robust trans-splicing function, which permitted the C-extein in a C-precursor to have a single cysteine for easy and specific linkage with desired labeling groups. The resulting new and generally useful method has two unique advantages: (1) The extremely small (12 aa) N-intein, which must be fused to the C terminus of the target protein, is less likely to hinder the protein expression, folding, and solubility; and (2) the single cysteine in the C-extein may be readily linked to a variety of labeling or modification groups using commercially available reagents. PMID:26227407

  15. Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin.

    PubMed

    Pochapsky, T C; Ratnaswamy, G; Patera, A

    1994-05-31

    Putidaredoxin (Pdx) is a 106-residue Fe2S2 ferredoxin which acts as the physiological reductant and effector of cytochrome P-450cam. Pdx has two accessible oxidation states, Fe+3-Fe+3 (oxidized) and Fe+3-Fe+2 (reduced), and exhibits redox-dependent binding affinities for cytochrome P-450cam, with reduced Pdx binding over 100-fold more tightly than oxidized Pdx to the oxidized cytochrome P-450cam [Hintz, M. J., Mock, D. M., Peterson, L. L., Tuttle, K., & Peterson, J. A. (1982) J. Biol. Chem. 257, 14324-14332]. The analysis of two-dimensional 1H NMR experiments has yielded sequential 1H resonance assignments for the diamagnetic regions of the reduced form of Pdx, which are compared to those of oxidized Pdx, described previously [Ye, X. M., Pochapsky, T. C., & Pochapsky, S. S. (1992) Biochemistry 31, 1961-1968]. Increased unpaired electron-spin density on the metal cluster in reduced relative to oxidized Pdx increases the number of 1H resonances which are broadened by the metal cluster, and the pattern of paramagnetic broadening provides information concerning the placement of the metal cluster within the protein. Two-dimensional exchange experiments on half-reduced samples of Pdx indicate that electron self-exchange is slow on the chemical shift time scale, with a second-order rate constant < or = 66 M-1 s-1 at 290 K. Spectral changes unrelated to increases in unpaired electron-spin density are also observed. The largest changes of this type are observed for features structurally contiguous with the C-terminal region Pro 102-Trp 106. The C-terminal residue Trp 106 has been implicated in binding to cytochrome P-450cam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8204576

  16. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin

    PubMed Central

    Martin, Christine M.; Parthsarathy, Vadivel; Hasib, Annie; Ng, Ming T.; McClean, Stephen; Flatt, Peter R.; Gault, Victor A.; Irwin, Nigel

    2016-01-01

    Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18–25 and xenin 18–25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18–25 and xenin 18–25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18–25 or xenin 18–25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18–25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18–25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18–25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18–25 Gln, have potential therapeutic utility for type 2 diabetes. PMID:27032106

  17. Dual-tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments.

    PubMed

    Villegas, Christine; Muresan, Virgil; Ladescu Muresan, Zoia

    2014-03-15

    The amyloid-β precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, N- and C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous N- and C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributed vesicle-like structures. The experimental treatments that selectively destabilize the acetylated microtubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. They also point to a compartment associated with acetylated microtubules in the neuronal soma--not the neurite terminals--as a major site of APP cleavage, and segregation of NTFs from CTFs. PMID:24203698

  18. Thermodynamics of the binding of the C-terminal repeat domain of Streptococcus sobrinus glucosyltransferase-I to dextran.

    PubMed

    Komatsu, Hideyuki; Katayama, Motoki; Sawada, Masaki; Hirata, Yukie; Mori, Miyuki; Inoue, Tetsuyoshi; Fukui, Kazuhiro; Fukada, Harumi; Kodama, Takao

    2007-07-17

    Glucosyltransferases (GTFs) secreted by mutans streptococci and some other lactic acid bacteria catalyze glucan synthesis from sucrose, and possess a C-terminal glucan-binding domain (GBD) containing homologous, directly repeating units. We prepared a series of C-terminal truncated forms of the GBD of Streptococcus sobrinus GTF-I and studied their binding to dextran by isothermal titration calorimetry. The binding of all truncates was strongly exothermic. Their titration curves were analyzed assuming that the GBD recognizes and binds to a stretch of dextran chain, not to a whole dextran molecule. Both the number of glucose units constituting the dextran stretch (n) and the accompanying enthalpy change (DeltaH degrees ) are proportional to the molecular mass of the GBD truncate, with which the Gibbs energy change calculated by the relation DeltaG degrees = -RT ln K (R, the gas constant; T, the absolute temperature; K, the binding constant of a truncate for a dextran stretch of n glucose units) also increases linearly. For the full-length GBD (508 amino acid residues), n = 33.9, K = 4.88 x 10(7) M-1, and DeltaH degrees = -289 kJ mol-1 at 25 degrees C. These results suggest that identical, independent glucose-binding subsites, each comprising 14 amino acid residues on average, are arranged consecutively from the GBD N-terminus. Thus, the GBD binds tightly to a stretch of dextran chain through the adding up of individually weak subsite/glucose interactions. Furthermore, the entropy change accompanying the GBD/dextran interaction as given by the relation DeltaS degrees = (DeltaG degrees - DeltaH degrees)/T has a very large negative value, probably because of a loss of the conformational freedom of dextran and GBD after binding. PMID:17580962

  19. Characterization of C-terminal Splice Variants of Cav1.4 Ca2+ Channels in Human Retina.

    PubMed

    Haeseleer, Françoise; Williams, Brittany; Lee, Amy

    2016-07-22

    Voltage-gated Ca(2+) channels (Cav) undergo extensive alternative splicing that greatly enhances their functional diversity in excitable cells. Here, we characterized novel splice variants of the cytoplasmic C-terminal domain of Cav1.4 Ca(2+) channels that regulate neurotransmitter release in photoreceptors in the retina. These variants lack a portion of exon 45 and/or the entire exon 47 (Cav1.4Δex p45, Cav1.4Δex 47, Cav1.4Δex p45,47) and are expressed in the retina of primates but not mice. Although the electrophysiological properties of Cav1.4Δex p45 are similar to those of full-length channels (Cav1.4FL), skipping of exon 47 dramatically alters Cav1.4 function. Deletion of exon 47 removes part of a C-terminal automodulatory domain (CTM) previously shown to suppress Ca(2+)-dependent inactivation (CDI) and to cause a positive shift in the voltage dependence of channel activation. Exon 47 is crucial for these effects of the CTM because variants lacking this exon show intense CDI and activate at more hyperpolarized voltages than Cav1.4FL The robust CDI of Cav1.4Δex 47 is suppressed by CaBP4, a regulator of Cav1.4 channels in photoreceptors. Although CaBP4 enhances activation of Cav1.4FL, Cav1.4Δex 47 shows similar voltage-dependent activation in the presence and absence of CaBP4. We conclude that exon 47 encodes structural determinants that regulate CDI and voltage-dependent activation of Cav1.4, and is necessary for modulation of channel activation by CaBP4. PMID:27226626

  20. NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein

    PubMed Central

    Haba, Noam Y.; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H.

    2013-01-01

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIPC, a C-terminal domain fragment of WIP that includes residues 407–503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIPC and the high occurrence (25%) of proline residues, we employed 5D-NMR13C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, 15N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446–456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468–478. The 13C-detected approach allows chemical-shift assignment in the WIPC polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIPC. Thus, we conclude that the disordered WIPC fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function. PMID:23870269

  1. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    PubMed

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants. PMID:27059958

  2. Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins

    PubMed Central

    Magidovich, Elhanan; Orr, Irit; Fass, Deborah; Abdu, Uri; Yifrach, Ofer

    2007-01-01

    The interaction of membrane-embedded voltage-activated potassium channels (Kv) with intracellular scaffold proteins, such as the postsynaptic density 95 (PSD-95) protein, is mediated by the channel C-terminal segment. This interaction underlies Kv channel clustering at unique membrane sites and is important for the proper assembly and functioning of the synapse. In the current study, we address the molecular mechanism underlying Kv/PSD-95 interaction. We provide experimental evidence, based on hydrodynamic and spectroscopic analyses, indicating that the isolated C-terminal segment of the archetypical Shaker Kv channel (ShB-C) is a random coil, suggesting that ShB-C belongs to the recently defined class of intrinsically disordered proteins. We show that isolated ShB-C is still able to bind its scaffold protein partner and support protein clustering in vivo, indicating that unfoldedness is compatible with ShB-C activity. Pulldown experiments involving C-terminal chains differing in flexibility or length further demonstrate that intrinsic disorder in the C-terminal segment of the Shaker channel modulates its interaction with the PSD-95 protein. Our results thus suggest that the C-terminal domain of the Shaker Kv channel behaves as an entropic chain and support a “fishing rod” molecular mechanism for Kv channel binding to scaffold proteins. The importance of intrinsically disordered protein segments to the complex processes of synapse assembly, maintenance, and function is discussed. PMID:17666528

  3. Analysis of the C-Terminal Membrane Anchor Domains of Hepatitis C Virus Glycoproteins E1 and E2: toward a Topological Model

    PubMed Central

    Charloteaux, Benoit; Lins, Laurence; Moereels, Henri; Brasseur, Robert

    2002-01-01

    The hepatitis C virus (HCV) glycoproteins E1 and E2 should be anchored in the viral membrane by their C-terminal domains. During synthesis, they are translocated to the endoplasmic reticulum (ER) lumen where they remain. The 31 C-terminal residues of the E1 protein and the 29 C-terminal residues of the E2 protein are implicated in the ER retention. Moreover, the E1 and E2 C termini are implicated in E1-E2 heterodimerization. We studied the E1 and E2 C-terminal sequences of 25 HCV strains in silico using molecular modeling techniques. We conclude that both C-terminal domains should adopt a similar and peculiar configuration: one amphipathic α-helix followed by a pair of transmembrane β-strands. Several three-dimensional (3-D) models were generated. After energy minimization, their ability to interact with membranes was studied using the molecular hydrophobicity potentials calculation and the IMPALA procedure. The latter simulates interactions with a membrane by a Monte Carlo minimization of energy. These methods suggest that the β-hairpins could anchor the glycoproteins in the ER membrane at least transiently. Anchoring could be stabilized by the adsorption of the nearby amphipathic α-helices at the membrane surface. The 3-D models correlate with experimental results which indicate that the E1-E2 transmembrane domains are involved in the heterodimerization and have ER retention properties. PMID:11799189

  4. Role of the C-terminal domains of rice (Oryza sativa L.) bZIP proteins RF2a and RF2b in regulating transcription

    PubMed Central

    Liu, Yi; Dai, Shunhong; Beachy, Roger N.

    2007-01-01

    Rice (Oryza sativa L.) transcription factors RF2a and RF2b are bZIP (basic leucine zipper) proteins that interact with, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter. Here we characterize the C-terminal domains of RF2a and RF2b: these domains are rich in glutamine and proline/glutamine, respectively. Affinity pull-down assays demonstrated that the C-terminal domains of RF2a and RF2b can associate to form either homodimers or heterodimers; however, they do not interact with other domains of RF2a or RF2b. Results of in vitro transcription assays using a rice whole-cell extract demonstrate that the C-terminal domains of both RF2a and RF2b activate transcription from the RTBV promoter. In addition, dimerization of the RF2a C-terminal domain is involved in regulating the transcription activation function of RF2a. The predicted helical region within the RF2a C-terminal glutamine-rich domain was determined to be involved in inter-molecular dimerization, and contributed to the regulatory functions of RF2a in these assays. PMID:17371296

  5. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2

    PubMed Central

    Park, Young-Jun; Budiarto, Tanya; Wu, Meiting; Pardon, Els; Steyaert, Jan; Hol, Wim G. J.

    2012-01-01

    Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ∼20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1. PMID:22561373

  6. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription.

    PubMed

    Saxena, Ashish; Ma, Beicong; Schramm, Laura; Hernandez, Nouria

    2005-11-01

    The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II. PMID:16227591

  7. Structure-Function Analysis of the Human TFIIB-Related Factor II Protein Reveals an Essential Role for the C-Terminal Domain in RNA Polymerase III Transcription

    PubMed Central

    Saxena, Ashish; Ma, Beicong; Schramm, Laura; Hernandez, Nouria

    2005-01-01

    The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAPc, a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II. PMID:16227591

  8. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding

    PubMed Central

    Dixon-Clarke, Sarah E.; Elkins, Jonathan M.; Cheng, S.-W. Grace; Morin, Gregg B.; Bullock, Alex N.

    2015-01-01

    Cyclin-dependent kinase 12 (CDK12) promotes transcriptional elongation by phosphorylation of the RNA polymerase II C-terminal domain (CTD). Structure-function studies show that this activity is dependent on a C-terminal kinase extension, as well as the binding of cyclin K (CycK). To better define these interactions we determined the crystal structure of the human CDK12/CycK complex with and without the kinase extension in the presence of AMP-PNP. The structures revealed novel features for a CDK, including a large β4-β5 loop insertion that contributes to the N-lobe interaction with the cyclin. We also observed two different conformations of the C-terminal kinase extension that effectively open and close the ATP pocket. Most notably, bound AMP-PNP was only observed when trapped in the closed state. Truncation of this C-terminal structure also diminished AMP-PNP binding, as well as the catalytic activity of the CDK12/CycK complex. Further kinetic measurements showed that the full length CDK12/CycK complex was significantly more active than the two crystallised constructs suggesting a critical role for additional domains. Overall, these results demonstrate the intrinsic flexibility of the C-terminal extension in CDK12 and highlight its importance for both ATP binding and kinase activity. PMID:26597175

  9. Endosomal proteolysis of insulin-like growth factor-I at its C-terminal D-domain by cathepsin B.

    PubMed

    Authier, François; Kouach, Mostafa; Briand, Gilbert

    2005-08-15

    IGF-I is degraded within the endosomal apparatus as a consequence of receptor-mediated endocytosis. However, the nature of the responsible protease and the position of the cleavage sites in the IGF-I molecule remain undefined. In vitro proteolysis of IGF-I using an endosomal lysate required an acidic pH and was sensitive to CA074, an inhibitor of the cathepsin B enzyme. By nondenaturing immunoprecipitation, the acidic IGF-I-degrading activity was attributed to the luminal species of endosomal cathepsin B with apparent molecular masses of 32- and 28-kDa. The cathepsin B precursor, procathepsin B, was processed in vitro within isolated endosomes at pH 5 or at 7 in the presence of ATP, the substrate of the vacuolar H(+)-ATPase. The rate of IGF-I hydrolysis using an endosomal lysate or pure cathepsin B was found to be optimal at pH 5-6 and moderate at pH 4 and 7. Competition studies revealed that EGF and IGF-I share a common binding site on the cathepsin B enzyme, with native IGF-I displaying the lowest affinity for the protease (IC50 approximately 1.5 microM). Hydrolysates of IGF-I generated at low pH by endosomal IGF-I-degrading activity and analyzed by reverse-phase HPLC and mass spectrometry revealed cleavage sites at Lys68-Ser69, Ala67-Lys68, Pro66-Ala67 and Lys65-Pro66 within the C-terminal D-domain of IGF-I. Treatment of human HepG2 hepatoma cells with the cathepsin B proinhibitor CA074-Me reduced, in vivo, the intracellular degradation of internalized [125I]IGF-I and, in vitro, the degradation of exogenous [125I]IGF-I incubated with the cell-lysates at pH 5. Inhibitors of cathepsin B and pro-cathepsin B processing, which abolish endosomal proteolysis of IGF-I and alter tumor cell growth and IGF-I receptor signalling, merit investigation as antimetastatic drugs. PMID:16051222

  10. The C-terminal α-helix of YsxC is essential for its binding to 50S ribosome and rRNAs.

    PubMed

    Wicker-Planquart, Catherine; Ceres, Nicoletta; Jault, Jean-Michel

    2015-07-22

    YsxC is an essential P-loop GTPase that interacts with the 50S subunit of the ribosome. The putative implication in ribosome binding of two basic clusters of YsxC, a conserved positively charged patch including R31, R116, H117 and K146 lying adjacent to the nucleotide-binding site, and the C-terminal alpha helix, was investigated. C-terminal truncation variants of YsxC were unable to bind to both ribosome and rRNAs, whereas mutations in the other cluster did not affect YsxC binding. Our results indicate that the basic C-terminal region of YsxC is required for its binding to the 50S ribosomal subunit. PMID:26103561

  11. Determination of [D-Ala2,D-Leu5]enkephalin and the metabolites containing C-terminal D-leucine by high-performance liquid chromatography.

    PubMed

    Hasegawa, H; Nakamura, A; Shinohara, Y; Baba, S

    1997-02-21

    A high-performance liquid chromatographic procedure has been developed for the determination of [D-Ala2,D-Leu5]enkephalin (DADLE) and the fragments containing D-leucine in rat blood. The procedure was applied to the determination of blood levels of [3H-D-Leu5]DADLE and the C-terminal fragments after intravenous administration of [3H-D-Leu5]DADLE to a rat. Unlabelled DADLE and the C-terminal fragments were spiked as carriers to rat blood samples and the blood samples were extracted with 1% trifluoroacetic acid in methanol. The recoveries from rat blood were quantitative for all compounds. DADLE and the C-terminal four fragments were well separated on a reversed-phase column with gradient elution using a mobile phase composed of 0.14% HClO4 and acetonitrile. PMID:9080313

  12. Regulation of plasminogen receptors.

    PubMed

    Herren, Thomas; Swaisgood, Carmen; Plow, Edward F

    2003-01-01

    Many eukaryotic and prokaryotic cells bind plasminogen in a specific and saturable manner. When plasminogen is bound to cell-surface proteins with C-terminal lysines via its lysine binding sites, its activation to plasmin is accelerated, and cell-bound plasmin is protected from inactivation by natural inhibitors. Plasmin mediates direct or indirect degradation of the extracellular matrix, and bound plasmin is used by cells to facilitate migration through extracellular matrices. Since cell migration and tissue remodelling are the underpinnings of many physiological and pathological responses, the modulation of plasminogen receptors may serve as a primary regulatory mechanism for control of many cellular responses. Specific examples of cell types on which plasminogen receptors undergo modulation include: fibroblasts, where modulation may contribute to cartilage and bone destruction in rheumatoid arthritis; leukemic cells, where enhanced plasminogen binding may contribute to the heightened fibrinolytic state in the patients; other tumor cells, where up-regulation may support invasion and metastasis; bacteria, where enhanced plasminogen binding may facilitate tissue destruction and invasion; platelets, where up-regulation of plasminogen binding may play a role in regulating clot lysis; and adipocytes, where the modulation of plasminogen receptor expression may regulate cell differentiation and fat accumulation. Two pathways for modulation of plasminogen receptors have been characterized: A protease-dependent pathway can either up-regulate or down-regulate plasminogen binding to cells by changing the availability of plasminogen-binding proteins with C-terminal lysines. New receptors may be generated by trypsin-like proteases, including plasmin, which create new C-terminal lysines; other enzymes may expose existing membrane proteins by altering the cell surface; or receptor function may be lost by removal of C-terminal lysines. The basic carboxypeptidases of blood

  13. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR

    PubMed Central

    Monleón, Daniel; Esteve, Vicent; Kovacs, Helena; Calvete, Juan J.; Celda, Bernardo

    2004-01-01

    Echistatin is a potent antagonist of the integrins αvβ3, α5β1 and αIIbβ3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a β-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30°. Internal angular motions in the 100–300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin–αvβ3 docking model suggests that echistatin's C-terminal amino acids may contact αv-subunit residues and provides new insights to delineate structure–function correlations. PMID:15535803

  14. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair.

    PubMed

    Sin, Yooksil; Tanaka, Kiyoji; Saijo, Masafumi

    2016-01-15

    Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER. PMID:26620705

  15. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin.

    PubMed

    Yao, Wenwu; Kang, Lin; Gao, Shan; Zhuang, Xiangjin; Zhang, Tao; Yang, Hao; Ji, Bin; Xin, Wenwen; Wang, Jinglin

    2015-06-15

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified. PMID:25912943

  16. Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Total alpha-A crystallin was purified from young versus old lens, followed by digestion with cyanogen bromide. Laser desorption mass spectrometry of the C-terminal fragment demonstrated age-dependent loss of one and five amino acids from the C-terminus of alpha-A crystallin from both bovine and human lens. These results demonstrate specific peptide bonds of alpha-A crystallin are cleaved during the aging process of the normal lens. The C-terminal region is cleaved in two places between the two hydroxyl-containing amino acids present in the sequence -P-S(T)-S-.

  17. The preparation and partial characterization of N-terminal and C-terminal iron-binding fragments from rabbit serum transferrin.

    PubMed Central

    Heaphy, S; Williams, J

    1982-01-01

    Two iron-binding fragments of Mr 36 000 and 33 000 corresponding to the N-terminal domain of rabbit serum transferrin were prepared. One iron-binding fragment of Mr 39 000 corresponding to the C-terminal domain was prepared. The N-terminal amino acid sequence of rabbit serum transferrin is: Val-Thr-Glu-Lys-Thr-Val-Asn-Trp-?-Ala-Val-Ser. One glycan unit is presented in rabbit serum transferrin and it is located in the C-terminal domain. Images Fig. 2. Fig. 3. Fig. 4. PMID:6816218

  18. Native Chemical Ligation Strategy to Overcome Side Reactions during Fmoc-Based Synthesis of C-Terminal Cysteine-Containing Peptides.

    PubMed

    Lelièvre, Dominique; Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent

    2016-03-01

    The Fmoc-based solid phase synthesis of C-terminal cysteine-containing peptides is problematic, due to side reactions provoked by the pronounced acidity of the Cα proton of cysteine esters. We herein describe a general strategy consisting of the postsynthetic introduction of the C-terminal Cys through a key chemoselective native chemical ligation reaction with N-Hnb-Cys peptide crypto-thioesters. This method was successfully applied to the demanding peptide sequences of two natural products of biological interest, giving remarkably high overall yields compared to that of a state of the art strategy. PMID:26878883

  19. The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni.

    PubMed

    Tan, Fu-Qing; Ma, Xiao-Xin; Zhu, Jun-Quan; Yang, Wan-Xi

    2013-12-10

    In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structures, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, the testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the

  20. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer.

    PubMed

    Namadurai, Sivakumar; Jain, Deepti; Kulkarni, Dhananjay S; Tabib, Chaitanya R; Friedhoff, Peter; Rao, Desirazu N; Nair, Deepak T

    2010-01-01

    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage. PMID:21060849

  1. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides.

    PubMed Central

    Jimenez, M. A.; Evangelio, J. A.; Aranda, C.; Lopez-Brauet, A.; Andreu, D.; Rico, M.; Lagos, R.; Andreu, J. M.; Monasterio, O.

    1999-01-01

    We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of

  2. WXG100 Protein Superfamily Consists of Three Subfamilies and Exhibits an α-Helical C-Terminal Conserved Residue Pattern

    PubMed Central

    Poulsen, Christian; Panjikar, Santosh; Holton, Simon J.; Wilmanns, Matthias; Song, Young-Hwa

    2014-01-01

    Members of the WXG100 protein superfamily form homo- or heterodimeric complexes. The most studied proteins among them are the secreted T-cell antigens CFP-10 (10 kDa culture filtrate protein, EsxB) and ESAT-6 (6 kDa early secreted antigen target, EsxA) from Mycobacterium tuberculosis. They are encoded on an operon within a gene cluster, named as ESX-1, that encodes for the Type VII secretion system (T7SS). WXG100 proteins are secreted in a full-length form and it is known that they adopt a four-helix bundle structure. In the current work we discuss the evolutionary relationship between the homo- and heterodimeric WXG100 proteins, the basis of the oligomeric state and the key structural features of the conserved sequence pattern of WXG100 proteins. We performed an iterative bioinformatics analysis of the WXG100 protein superfamily and correlated this with the atomic structures of the representative WXG100 proteins. We find, firstly, that the WXG100 protein superfamily consists of three subfamilies: CFP-10-, ESAT-6- and sagEsxA-like proteins (EsxA proteins similar to that of Streptococcus agalactiae). Secondly, that the heterodimeric complexes probably evolved from a homodimeric precursor. Thirdly, that the genes of hetero-dimeric WXG100 proteins are always encoded in bi-cistronic operons and finally, by combining the sequence alignments with the X-ray data we identify a conserved C-terminal sequence pattern. The side chains of these conserved residues decorate the same side of the C-terminal α-helix and therefore form a distinct surface. Our results lead to a putatively extended T7SS secretion signal which combines two reported T7SS recognition characteristics: Firstly that the T7SS secretion signal is localized at the C-terminus of T7SS substrates and secondly that the conserved residues YxxxD/E are essential for T7SS activity. Furthermore, we propose that the specific α-helical surface formed by the conserved sequence pattern including YxxxD/E motif is a key

  3. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites.

    PubMed

    Hayashi, Takashi; Rumbaugh, Gavin; Huganir, Richard L

    2005-09-01

    Modification of AMPA receptor function is a major mechanism for the regulation of synaptic transmission and underlies several forms of synaptic plasticity. Post-translational palmitoylation is a reversible modification that regulates localization of many proteins. Here, we report that palmitoylation of the AMPA receptor regulates receptor trafficking. All AMPA receptor subunits are palmitoylated on two cysteine residues in their transmembrane domain (TMD) 2 and in their C-terminal region. Palmitoylation on TMD 2 is upregulated by the palmitoyl acyl transferase GODZ and leads to an accumulation of the receptor in the Golgi and a reduction of receptor surface expression. C-terminal palmitoylation decreases interaction of the AMPA receptor with the 4.1N protein and regulates AMPA- and NMDA-induced AMPA receptor internalization. Moreover, depalmitoylation of the receptor is regulated by activation of glutamate receptors. These data suggest that regulated palmitoylation of AMPA receptor subunits modulates receptor trafficking and may be important for synaptic plasticity. PMID:16129400

  4. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex

    SciTech Connect

    Sampathkumar, Parthasarathy; Gheyi, Tarun; Miller, Stacy A.; Bain, Kevin T.; Dickey, Mark; Bonanno, Jeffrey B.; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K.

    2012-10-23

    Nuclear pore complexes (NPCs), responsible for the nucleo-cytoplasmic exchange of proteins and nucleic acids, are dynamic macromolecular assemblies forming an eight-fold symmetric co-axial ring structure. Yeast (Saccharomyces cerevisiae) NPCs are made up of at least 456 polypeptide chains of {approx}30 distinct sequences. Many of these components (nucleoporins, Nups) share similar structural motifs and form stable subcomplexes. We have determined a high-resolution crystal structure of the C-terminal domain of yeast Nup133 (ScNup133), a component of the heptameric Nup84 subcomplex. Expression tests yielded ScNup133(944-1157) that produced crystals diffracting to 1.9{angstrom} resolution. ScNup133(944-1157) adopts essentially an all {alpha}-helical fold, with a short two stranded {beta}-sheet at the C-terminus. The 11 {alpha}-helices of ScNup133(944-1157) form a compact fold. In contrast, the previously determined structure of human Nup133(934-1156) bound to a fragment of human Nup107 has its constituent {alpha}-helices are arranged in two globular blocks. These differences may reflect structural divergence among homologous nucleoporins.

  5. Recombinant expression, purification and preliminary biophysical and structural studies of C-terminal carbohydrate recognition domain from human galectin-4.

    PubMed

    Rustiguel, Joane K; Kumagai, Patricia S; Dias-Baruffi, Marcelo; Costa-Filho, Antonio J; Nonato, Maria Cristina

    2016-02-01

    Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities. PMID:26432949

  6. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms

    PubMed Central

    Cheon, Solmi; Row, Hansang; Lee, Jiyeon; Han, Dong-Hee; Cho, Sehyung; Kim, Kyungjin

    2015-01-01

    The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1. PMID:26394143

  7. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders

    PubMed Central

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  8. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    SciTech Connect

    Kadohira, Ikuko; Abe, Yoichiro Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-12-12

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [{sup 32}P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  9. Efficient DNA Transfection Mediated by the C-Terminal Domain of Human Immunodeficiency Virus Type 1 Viral Protein R

    PubMed Central

    Kichler, Antoine; Pages, Jean-Christophe; Leborgne, Christian; Druillennec, Sabine; Lenoir, Christine; Coulaud, Dominique; Delain, Etienne; Le Cam, Eric; Roques, Bernard P.; Danos, Olivier

    2000-01-01

    Viral protein R (Vpr) of human immunodeficiency virus type 1 is produced late in the virus life cycle and is assembled into the virion through binding to the Gag protein. It is known to play a significant role early in the viral life cycle by facilitating the nuclear import of the preintegration complex in nondividing cells. Vpr is also able to interact with nucleic acids, and we show here that it induces condensation of plasmid DNA. We have explored the possibility of using these properties in DNA transfection experiments. We report that the C-terminal half of the protein (Vpr52–96) mediates DNA transfection in a variety of human and nonhuman cell lines with efficiencies comparable to those of the best-known transfection agents. Compared with polylysine, a standard polycationic transfection reagent, Vpr52–96 was 10- to 1,000-fold more active. Vpr52–96-DNA complexes were able to reach the cell nucleus through a pH-independent mechanism. These observations possibly identify an alternate pathway for DNA transfection. PMID:10823846

  10. Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping.

    PubMed Central

    Krieger, Inna; Kostyukova, Alla; Yamashita, Atsuko; Nitanai, Yasushi; Maéda, Yuichiro

    2002-01-01

    Tropomodulin is the unique pointed-end capping protein of the actin-tropomyosin filament. By blocking elongation and depolymerization, tropomodulin regulates the architecture and the dynamics of the filament. Here we report the crystal structure at 1.45-A resolution of the C-terminal half of tropomodulin (C20), the actin-binding moiety of tropomodulin. C20 is a leucine-rich repeat domain, and this is the first actin-associated protein with a leucine-rich repeat. Binding assays suggested that C20 also interacts with the N-terminal fragment, M1-M2-M3, of nebulin. Based on the crystal structure, we propose a model for C20 docking to the actin subunit at the pointed end. Although speculative, the model is consistent with the idea that a tropomodulin molecule competes with an actin subunit for a pointed end. The model also suggests that interactions with tropomyosin, actin, and nebulin are all possible sources of influences on the dynamic properties of pointed-end capping by tropomodulin. PMID:12414704

  11. Crystal structures of GCN2 protein kinase C-terminal domains suggest regulatory differences in yeast and mammals.

    PubMed

    He, Hongzhen; Singh, Isha; Wek, Sheree A; Dey, Souvik; Baird, Thomas D; Wek, Ronald C; Georgiadis, Millie M

    2014-05-23

    In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences. PMID:24719324

  12. Purification, solution properties and crystallization of SIV integrase containing a continuous core and C-terminal domain.

    PubMed

    Li, Y; Yan, Y; Zugay-Murphy, J; Xu, B; Cole, J L; Witmer, M; Felock, P; Wolfe, A; Hazuda, D; Sardana, M K; Chen, Z; Kuo, L C; Sardana, V V

    1999-11-01

    The C-terminal two-thirds segment of integrase derived from the simian immunodeficiency virus has been cloned, expressed in Escherichia coli, and purified to greater than 95% homogeneity. The protein encompasses amino-acid residues 50-293 and contains a F185H substitution to enhance solubility. In dilute solutions at concentrations below 1 mg ml(-1), the enzyme is predominantly dimeric. At the higher concentrations (>10 mg ml(-1)) required to enable crystallization, the enzyme self-associates to form species with molecular weights greater than 200 kDa. Despite the apparent high aggregation in solution, the enzyme crystallizes from a 8%(v/v) polyethylene glycol (molecular weight 6000) solution in a form suitable for X-ray diffraction studies. The resulting single crystals belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 79.76, b = 99.98, c = 150.2 A, alpha = beta = gamma = 90 degrees and Z = 4. Under X-ray irradiation generated with a rotating-anode generator, the crystals diffract to 2.8 A resolution and allow collection of a native 3 A resolution diffraction data set. PMID:10531491

  13. Crystal structure of the magnetobacterial protein MtxA C-terminal domain reveals a new sequence-structure relationship

    PubMed Central

    Davidov, Geula; Müller, Frank D.; Baumgartner, Jens; Bitton, Ronit; Faivre, Damien; Schüler, Dirk; Zarivach, Raz

    2015-01-01

    Magnetotactic bacteria (MTB) are a diverse group of aquatic bacteria that have the magnetotaxis ability to align themselves along the geomagnetic field lines and to navigate to a microoxic zone at the bottom of chemically stratified natural water. This special navigation is the result of a unique linear assembly of a specialized organelle, the magnetosome, which contains a biomineralized magnetic nanocrystal enveloped by a cytoplasmic membrane. The Magnetospirillum gryphiswaldense MtxA protein (MGR_0208) was suggested to play a role in bacterial magnetotaxis due to its gene location in an operon together with putative signal transduction genes. Since no homology is found for MtxA, and to better understand the role and function of MtxA in MTBés magnetotaxis, we initiated structural and functional studies of MtxA via X-ray crystallography and deletion mutagenesis. Here, we present the crystal structure of the MtxA C-terminal domain and provide new insights into its sequence-structure relationship. PMID:26052516

  14. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction.

    PubMed

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M

    2016-08-15

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology. PMID:27515257

  15. Substitutions of Conserved Residues in the C-terminal Region of DnaC Cause Thermolability in Helicase Loading.

    PubMed

    Felczak, Magdalena M; Sage, Jay M; Hupert-Kocurek, Katarzyna; Aykul, Senem; Kaguni, Jon M

    2016-02-26

    The DnaB-DnaC complex binds to the unwound DNA within the Escherichia coli replication origin in the helicase loading process, but the biochemical events that lead to its stable binding are uncertain. This study characterizes the function of specific C-terminal residues of DnaC. Genetic and biochemical characterization of proteins bearing F231S and W233L substitutions of DnaC reveals that their activity is thermolabile. Because the mutants remain able to form a complex with DnaB at 30 and 37 °C, their thermolability is not explained by an impaired interaction with DnaB. Photo-cross-linking experiments and biosensor analysis show an altered affinity of these mutants compared with wild type DnaC for single-stranded DNA, suggesting that the substitutions affect DNA binding. Despite this difference, their activity in DNA binding is not thermolabile. The substitutions also drastically reduce the affinity of DnaC for ATP as measured by the binding of a fluorescent ATP analogue (MANT-ATP) and by UV cross-linking of radiolabeled ATP. Experiments show that an elevated temperature substantially inhibits both mutants in their ability to load the DnaB-DnaC complex at a DnaA box. Because a decreased ATP concentration exacerbates their thermolabile behavior, we suggest that the F231S and W233L substitutions are thermolabile in ATP binding, which correlates with defective helicase loading at an elevated temperature. PMID:26728455

  16. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

    PubMed Central

    Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T

    2016-01-01

    Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060

  17. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function

    PubMed Central

    Arakel, Eric C.; Richter, Kora P.; Clancy, Anne; Schwappach, Blanche

    2016-01-01

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  18. CK2-dependent C-terminal phosphorylation at T{sup 30} directs the nuclear transport of TSPY protein

    SciTech Connect

    Krick, Roswitha; Aschrafi, Amaz; Hasguen, Dilek; Arnemann, Joachim |. E-mail: Joachim_Arnemann@web.de

    2006-03-10

    TSPY (testis-specific protein, Y-encoded) is a member of the greater SET/NAP family of molecules with various functions, e.g., in chromatin remodeling, regulation of gene expression, and has been implicated to play a role in the malignant development of gonadoblastoma, testicular and prostate cancer. Here we demonstrate that the C-terminus has a functional role for the nucleo-cytoplasmatic shuttling of the TSPY protein. Using various combinations of in vitro mutagenesis and enhanced green fluorescent protein reporter gene-expression experiments we were able to show that while the deletion of C-terminus leads to a decreased stability and enhanced degradation of the protein, the selective mutation of a C-terminal CK2 phosphorylation site (T{sup 30}) prevents the TSPY protein from entering the nucleus. We conclude that phosphorylation of the (T{sup 30}) residue is a necessary and functional prerequisite for TSPY's transport into the nucleus reminding of comparable data from a related Drosophila molecule, NAP1.

  19. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders.

    PubMed

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  20. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions

    PubMed Central

    Khwaja, Aya; Galilee, Meytal; Marx, Ailie; Alian, Akram

    2016-01-01

    Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed. PMID:27102180

  1. Interaction between FOG-1 and the Corepressor C-Terminal Binding Protein Is Dispensable for Normal Erythropoiesis In Vivo

    PubMed Central

    Katz, Samuel G.; Cantor, Alan B.; Orkin, Stuart H.

    2002-01-01

    The hematopoietic, zinc-finger protein FOG-1 is essential for the development of the erythroid and megakaryocytic lineages. FOG-1's function in hematopoiesis is dependent on its ability to interact with the transcription factor GATA-1. FOG-1 has also been observed to interact with the corepressor molecule C-terminal binding protein (CtBP) through a peptide motif shared by all FOG family members. In this study, we confirmed that FOG-1 and CtBP interact by coimmunoprecipitation. We further demonstrate that a FOG-1 mutant unable to interact with CtBP has increased erythropoietic (but not megakaryocytic) rescue (relative to the wild type) of a FOG-1−/− cell line. To analyze further the physiological role of the FOG-1-CtBP interaction, we generated knock-in mice that express a FOG-1 variant unable to bind CtBP. Surprisingly, these mice are normal and fertile. Furthermore, erythropoiesis at all stages of development is normal in these mice. Erythrocyte production is similar in mutant and wild-type mice even under conditions of erythropoietic stress stimulated by either exogenously added erythropoietin or phenylhydrazine-induced anemia. Thus, despite conservation of the FOG-CtBP interaction site, the in vivo function of FOG-1 in erythroid development is not affected by its inability to interact with the corepressor CtBP. PMID:11940669

  2. The impact of the C-terminal domain on the gating properties of MscCG from Corynebacterium glutamicum.

    PubMed

    Nakayama, Yoshitaka; Becker, Michael; Ebrahimian, Haleh; Konishi, Tomoyuki; Kawasaki, Hisashi; Krämer, Reinhard; Martinac, Boris

    2016-01-01

    The mechanosensitive (MS) channel MscCG from the soil bacterium Corynebacterium glutamicum functions as a major glutamate exporter. MscCG belongs to a subfamily of the bacterial MscS-like channels, which play an important role in osmoregulation. To understand the structural and functional features of MscCG, we investigated the role of the carboxyl-terminal domain, whose relevance for the channel gating has been unknown. The chimeric channel MscS-(C-MscCG), which is a fusion protein between the carboxyl terminal domain of MscCG and the MscS channel, was examined by the patch clamp technique. We found that the chimeric channel exhibited MS channel activity in Escherichia coli spheroplasts characterized by a lower activation threshold and slow closing compared to MscS. The chimeric channel MscS-(C-MscCG) was successfully reconstituted into azolectin liposomes and exhibited gating hysteresis in a voltage-dependent manner, especially at high pipette voltages. Moreover, the channel remained open after releasing pipette pressure at membrane potentials physiologically relevant for C. glutamicum. This contribution to the gating hysteresis of the C-terminal domain of MscCG confers to the channel gating properties highly suitable for release of intracellular solutes. PMID:26494188

  3. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites

    PubMed Central

    Binolfi, Andres; Limatola, Antonio; Verzini, Silvia; Kosten, Jonas; Theillet, Francois-Xavier; May Rose, Honor; Bekei, Beata; Stuiver, Marchel; van Rossum, Marleen; Selenko, Philipp

    2016-01-01

    Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal α-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of α-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered α-Syn in cells. PMID:26807843

  4. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization

    SciTech Connect

    Passos, Dario O.; Quaresma, Alexandre J.C.; Kobarg, Joerg . E-mail: jkobarg@lnls.br

    2006-07-28

    Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.

  5. Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain

    PubMed Central

    Moss, Tyler J.; Andreazza, Camilla; Verma, Avani; Daga, Andrea; McNew, James A.

    2011-01-01

    The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila atlastin dimerizes in the presence of GTPγS but is monomeric with GDP or without nucleotide. Oligomerization requires the juxtamembrane middle domain three-helix bundle, as does efficient GTPase activity. A soluble version of the N-terminal cytoplasmic domain that contains the GTPase domain and the middle domain three-helix bundle serves as a potent, concentration-dependent inhibitor of membrane fusion both in vitro and in vivo. However, atlastin domains lacking the middle domain are without effect. GTP-dependent dimerization of atlastin generates an enzymatically active protein that drives membrane fusion after nucleotide hydrolysis and conformational reorganization. PMID:21690399

  6. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue.

    PubMed

    Shams, Fariza; Oldfield, Neil J; Lai, Si Kei; Tunio, Sarfraz A; Wooldridge, Karl G; Turner, David P J

    2016-04-01

    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6-bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu-plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved. PMID:26732512

  7. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  8. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions.

    PubMed

    Roux, Sylvie; Colasante, Cesare; Saint Cloment, Cécile; Barbier, Julien; Curie, Thomas; Girard, Emmanuelle; Molgó, Jordi; Brûlet, Philippe

    2005-09-01

    The distribution, dynamics, internalization, and retrograde axonal traffic of a fusion protein composed of green fluorescent protein (GFP) and the atoxic C-terminal fragment of tetanus toxin (TTC) were studied after its in vivo injection. Confocal microscopy and immunogold electron microscopy revealed that the fusion protein (GFP-TTC) rapidly clustered in motor nerve terminals of the neuromuscular junction. Clathrin-coated pits, and axolemma infoldings located between active zones appeared to be involved in the internalization of the fusion protein. Biochemical analysis of detergent-extracted neuromuscular preparations showed that the GFP-TTC fusion protein was associated with lipid microdomains. We suggest that GFP-TTC clustering in these lipid microdomains favors the recruitment of other proteins involved in its endocytosis and internalization in motor nerve terminals. During its retrograde trafficking, GFP-TTC accumulated in different axonal compartments than those used by cholera toxin B-subunit suggesting that these two proteins are transported by different pathways and cargos. PMID:16023367

  9. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions.

    PubMed

    Roux, Sylvie; Colasante, Cesare; Saint Cloment, Cécile; Barbier, Julien; Curie, Thomas; Girard, Emmanuelle; Molgó, Jordi; Brûlet, Philippe

    2005-12-01

    The distribution, dynamics, internalization, and retrograde axonal traffic of a fusion protein composed of green fluorescent protein (GFP)and the atoxic C-terminal fragment of tetanus toxin (TTC) were studied after its in vivo injection. Confocal microscopy and immuno-gold electron microscopy revealed that the fusion protein (GFP-TTC) rapidly clustered in motor nerve terminals of the neuromuscular junction. Clathrin-coated pits, and axolemma infoldings located between active zones appeared to be involved in the internalization of the fusion protein. Biochemical analysis of detergent-extracted neuromuscular preparations showed that the GFP-TTC fusion protein was associated with lipid microdomains. We suggest that GFP-TTC clustering in these lipid microdomains favors the recruitment of other proteins involved in its endocytosis and internalization in motor nerve terminals. During its retrograde trafficking, GFP-TTC accumulated indifferent axonal compartments than those used by cholera toxin B-subunit suggesting that these two proteins are transported by different pathways and cargos. PMID:16456925

  10. Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB

    SciTech Connect

    Roujeinikova, Anna

    2008-04-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a putative peptidoglycan-binding domain of H. pylori MotB, a stator component of the bacterial flagellar motor, are reported. The C-terminal domain of MotB (MotB-C) contains a putative peptidoglycan-binding motif and is believed to anchor the MotA/MotB stator unit of the bacterial flagellar motor to the cell wall. Crystals of Helicobacter pylori MotB-C (138 amino-acid residues) were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 50.8, b = 89.5, c = 66.3 Å, β = 112.5°. The crystals diffract X-rays to at least 1.6 Å resolution using a synchrotron-radiation source. Self-rotation function and Matthews coefficient calculations suggest that the asymmetric unit contains one tetramer with 222 point-group symmetry. The anomalous difference Patterson maps calculated for an ytterbium-derivative crystal using diffraction data at a wavelength of 1.38 Å showed significant peaks on the v = 1/2 Harker section, suggesting that ab initio phase information could be derived from the MAD data.

  11. The C-terminal Domain Supports a Novel Function for CETPI as a New Plasma Lipopolysaccharide-Binding Protein

    PubMed Central

    García-González, Victor; Gutiérrez-Quintanar, Nadia; Mas-Oliva, Jaime

    2015-01-01

    Described by our group a few years ago, the cholesteryl-ester transfer protein isoform (CETPI), exclusively expressed in the small intestine and present in human plasma, lacked a functional identification for a role of physiological relevance. Now, this study introduces CETPI as a new protein with the potential capability to recognise, bind and neutralise lipopolysaccharides (LPS). Peptides derived from the C-terminal domain of CETPI showed that CETPI not only might interact with several LPS serotypes but also might displace LPS bound to the surface of cells. Peptide VSAK, derived from the last 18 residues of CETPI, protected against the cytotoxic effect of LPS on macrophages. At high concentrations, when different cell types were tested in culture, it did not exhibit cytotoxicity by itself and it did prevent the expression of pro-inflammatory cytokines as well as the generation of oxidative stress conditions. In a rabbit model of septic shock, the infusion of peptide VSAK exerted a protective effect against the effects of LPS and reduced the presence of tumor necrosis factor-alpha (TNFα) in plasma. Therefore, CETPI is proposed as a new protein with the capability to advance the possibilities for better understanding and treatment of the dangerous effects of LPS in vivo. PMID:26537318

  12. P13, an Integral Membrane Protein of Borrelia burgdorferi, Is C-Terminally Processed and Contains Surface-Exposed Domains

    PubMed Central

    Noppa, Laila; Östberg, Yngve; Lavrinovicha, Marija; Bergström, Sven

    2001-01-01

    To elucidate antigens present on the bacterial surface of Borrelia burgdorferi sensu lato that may be involved in pathogenesis, we characterized a protein, P13, with an apparent molecular mass of 13 kDa. The protein was immunogenic and was expressed in large amounts during in vitro cultivation compared to other known antigens. An immunofluorescence assay, immunoelectron microscopy, and protease sensitivity assays indicated that P13 is surface exposed. The deduced sequence of the P13 peptide revealed a possible signal peptidase type I cleavage site, and computer analysis predicted that P13 is an integral membrane protein with three transmembrane-spanning domains. Mass spectrometry, in vitro translation, and N- and C-terminal amino acid sequencing analyses indicated that P13 was posttranslationally processed at both ends and modified by an unknown mechanism. Furthermore, p13 belongs to a gene family with five additional members in B. burgdorferi sensu stricto. The p13 gene is located on the linear chromosome of the bacterium, in contrast to five paralogous genes, which are located on extrachromosomal plasmids. The size of the p13 transcript was consistent with a monocistronic transcript. This new gene family may be involved in functions that are specific for this spirochete and its pathogenesis. PMID:11292755

  13. Drosophila DBT Autophosphorylation of Its C-Terminal Domain Antagonized by SPAG and Involved in UV-Induced Apoptosis.

    PubMed

    Fan, Jin-Yuan; Means, John C; Bjes, Edward S; Price, Jeffrey L

    2015-07-01

    Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBT(C/ala)) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBT(C/ala) did not affect circadian behavior differently from wild-type DBT (DBT(WT)), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBT(WT) protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBT(C/ala) did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis. PMID:25939385

  14. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain.

    PubMed Central

    Zhang, Zhizhou; Varanasi, Ushasri; Trumbly, Robert J

    2002-01-01

    In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential alpha-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2. PMID:12136003

  15. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function.

    PubMed

    Arakel, Eric C; Richter, Kora P; Clancy, Anne; Schwappach, Blanche

    2016-06-21

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  16. A Novel Fold in the Tral Relaxase-Helicase C-Terminal Domain Is Essential for Conjugative DNA Transfer

    SciTech Connect

    Guogas, Laura M.; Kennedy, Sarah A.; Lee, Jin-Hyup; Redinbo, Matthew R.

    2009-06-04

    TraI relaxase-helicase is the central catalytic component of the multiprotein relaxosome complex responsible for conjugative DNA transfer (CDT) between bacterial cells. CDT is a primary mechanism for the lateral propagation of microbial genetic material, including the spread of antibiotic resistance genes. The 2.4-{angstrom} resolution crystal structure of the C-terminal domain of the multifunctional Escherichia coli F (fertility) plasmid TraI protein is presented, and specific structural regions essential for CDT are identified. The crystal structure reveals a novel fold composed of a 28-residue N-terminal {alpha}-domain connected by a proline-rich loop to a compact {alpha}/{beta}-domain. Both the globular nature of the {alpha}/{beta}-domain and the presence as well as rigidity of the proline-rich loop are required for DNA transfer and single-stranded DNA binding. Taken together, these data establish the specific structural features of this noncatalytic domain that are essential to DNA conjugation.

  17. C-terminal domains of a histone demethylase interact with a pair of transcription factors and mediate specific chromatin association

    PubMed Central

    Zhang, Shuaibin; Zhou, Bing; Kang, Yanyuan; Cui, Xia; Liu, Ao; Deleris, Angelique; Greenberg, Maxim V. C.; Cui, Xiekui; Qiu, Qi; Lu, Falong; Wohlschlegel, James A.; Jacobsen, Steven E.; Cao, Xiaofeng

    2015-01-01

    JmjC domain containing protein 14 (JMJ14) is an H3K4-specific histone demethylase that plays important roles in RNA-mediated gene silencing and flowering time regulation in Arabidopsis. However, how JMJ14 is recruited to its target genes remains unclear. Here, we show that the C-terminal FYRN and FYRC domains of JMJ14 are required for RNA silencing and flowering time regulation. Chromatin binding of JMJ14 is lost upon deletion of its FYRN and FYRC domains, and H3K4me3 is increased. FYRN and FYRC domains interact with a pair of NAC domain containing transcription factors, NAC050 and NAC052. Genome-wide ChIP analysis revealed that JMJ14 and NAC050/052 share a set of common target genes with CTTGNNNNNCAAG consensus sequences. Mutations in either NAC052 or NAC050 impair RNA-mediated gene silencing. Together, our findings demonstrate an important role of FYRN and FYRC domains in targeting JMJ14 through direct interaction with NAC050/052 proteins, which reveals a novel mechanism of histone demethylase recruitment. PMID:26617990

  18. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    SciTech Connect

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  19. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction

    PubMed Central

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M.

    2016-01-01

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology. PMID:27515257

  20. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

    PubMed Central

    Lübker, Carolin; Dove, Stefan; Tang, Wei-Jen; Urbauer, Ramona J. Bieber; Moskovitz, Jackob; Urbauer, Jeffrey L.; Seifert, Roland

    2015-01-01

    Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen species (ROS) used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils. PMID:26184312

  1. Autoproteolysis and Intramolecular Dissociation of Yersinia YscU Precedes Secretion of Its C-Terminal Polypeptide YscUCC

    PubMed Central

    Frost, Stefan; Ho, Oanh; Login, Frédéric H.; Weise, Christoph F.; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2012-01-01

    Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscUCC. Here we show that depletion of calcium induces intramolecular dissociation of YscUCC from YscU followed by secretion of the YscUCC polypeptide. Thus, YscUCC behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscUCC in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscUCC dissociation for Yop secretion. We propose that YscUCC orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms. PMID:23185318

  2. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants

    PubMed Central

    Kobayashi, Yusuke; Otani, Takuto; Ishibashi, Kota; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana. To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon–helix–helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris. The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein. PMID:27189994

  3. A Superhelical Spiral in the Escherichia coli DNA Gyrase A C-terminal Domain Imparts Unidirectional Supercoiling Bias

    SciTech Connect

    Ruthenburg,A.; Graybosch, D.; Huetsch, J.; Verdine, G.

    2005-01-01

    DNA gyrase is unique among type II topoisomerases in that its DNA supercoiling activity is unidirectional. The C-terminal domain of the gyrase A subunit (GyrA-CTD) is required for this supercoiling bias. We report here the x-ray structure of the Escherichia coli GyrA-CTD (Protein Data Bank code 1ZI0). The E. coli GyrA-CTD adopts a circular-shaped {beta}-pinwheel fold first seen in the Borrelia burgdorferi GyrA-CTD. However, whereas the B. burgdorferi GyrA-CTD is flat, the E. coli GyrA-CTD is spiral. DNA relaxation assays reveal that the E. coli GyrA-CTD wraps DNA inducing substantial (+) superhelicity, while the B. burgdorferi GyrA-CTD introduces a more modest (+) superhelicity. The observation of a superhelical spiral in the present structure and that of the Bacillus stearothermophilus ParC-CTD structure suggests unexpected similarities in substrate selectivity between gyrase and Topo IV enzymes. We propose a model wherein the right-handed ((+) solenoidal) wrapping of DNA around the E. coli GyrA-CTD enforces unidirectional (-) DNA supercoiling.

  4. Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori.

    PubMed

    Abdul Rehman, Syed Arif; Verma, Vijay; Mazumder, Mohit; Dhar, Suman K; Gourinath, S

    2013-06-01

    To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues. PMID:23585534

  5. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex.

    PubMed

    Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T

    2016-01-01

    Complexin regulates spontaneous and activates Ca(2+)-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. PMID:27253060

  6. Functional Insight into the C-Terminal Extension of Halolysin SptA from Haloarchaeon Natrinema sp. J7

    PubMed Central

    Xu, Zhisheng; Du, Xin; Li, Tingting; Gan, Fei; Tang, Bing; Tang, Xiao-Feng

    2011-01-01

    Halolysin SptA from haloarchaeon Natrinema sp. J7 consists of a subtilisin-like catalytic domain and a C-terminal extension (CTE) containing two cysteine residues. In this report, we have investigated the function of the CTE using recombinant enzymes expressed in Haloferax volcanii WFD11. Deletion of the CTE greatly reduced but did not abolish protease activity, which suggests that the CTE is not essential for enzyme folding. Mutational analysis suggests that residues Cys303 and Cys338 within the CTE form a disulfide bond that make this domain resistant to autocleavage and proteolysis under hypotonic conditions. Characterization of full-length and CTE-truncation enzymes indicates the CTE not only confers extra stability to the enzyme but also assists enzyme activity on protein substrates by facilitating binding at high salinities. Interestingly, homology modeling of the CTE yields a β-jelly roll-like structure similar to those seen in Claudin-binding domain of Clostridium perfringens enterotoxin (clostridial C-CPE) and collagen binding domain (CBD), and the CTE also possesses collagen-binding activity, making it a potential candidate as an anchoring unit in drug delivery systems. PMID:21886797

  7. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF.

    PubMed

    Hamada, Fumihiko; Bienz, Mariann

    2004-11-01

    Adenomatous polyposis coli (APC) is an important tumor suppressor in the colon. APC antagonizes the transcriptional activity of the Wnt effector beta-catenin by promoting its nuclear export and its proteasomal destruction in the cytoplasm. Here, we show that a third function of APC in antagonizing beta-catenin involves C-terminal binding protein (CtBP). APC is associated with CtBP in vivo and binds to CtBP in vitro through its conserved 15 amino acid repeats. Failure of this association results in elevated levels of beta-catenin/TCF complexes and of TCF-mediated transcription. Notably, CtBP is neither associated with TCF in vivo nor does mutation of the CtBP binding motifs in TCF-4 alter its transcriptional activity. This questions the idea that CtBP is a direct corepressor of TCF. Our evidence indicates that APC is an adaptor between beta-catenin and CtBP and that CtBP lowers the availability of free nuclear beta-catenin for binding to TCF by sequestering APC/beta-catenin complexes. PMID:15525529

  8. RNA Polymerase II C-terminal Heptarepeat Domain Ser-7 Phosphorylation Is Established in a Mediator-dependent Fashion*

    PubMed Central

    Boeing, Stefan; Rigault, Caroline; Heidemann, Martin; Eick, Dirk; Meisterernst, Michael

    2010-01-01

    The largest subunit of RNA polymerase II (RNAPII) C-terminal heptarepeat domain (CTD) is subject to phosphorylation during initiation and elongation of transcription by RNA polymerase II. Here we study the molecular mechanisms leading to phosphorylation of Ser-7 in the human enzyme. Ser-7 becomes phosphorylated before initiation of transcription at promoter regions. We identify cyclin-dependent kinase 7 (CDK7) as one responsible kinase. Phosphorylation of both Ser-5 and Ser-7 is fully dependent on the cofactor complex Mediator. A subform of Mediator associated with an active RNAPII is critical for preinitiation complex formation and CTD phosphorylation. The Mediator-RNAPII complex independently recruits TFIIB and CDK7 to core promoter regions. CDK7 phosphorylates Ser-7 selectively in the context of an intact preinitiation complex. CDK7 is not the only kinase that can modify Ser-7 of the CTD. ChIP experiments with chemical inhibitors provide evidence that other yet to be identified kinases further phosphorylate Ser-7 in coding regions. PMID:19901026

  9. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants.

    PubMed

    Kobayashi, Yusuke; Otani, Takuto; Ishibashi, Kota; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon-helix-helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein. PMID:27189994

  10. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    PubMed

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. PMID:26405031

  11. Characterization of the effects of C-terminal pro-sequence on self-inactivation of Stereum purpureum endopolygalacturonase I.

    PubMed

    Hamada, Shigeki; Toda, Kensuke; Ogawa, Sayaka; Kubota, Keisuke; Miyairi, Kazuo

    2015-09-01

    Endpolygalacturonase I from Stereum purpureum has been identified as a causative substance for the silver-leaf disease in apples. It possesses a unique pro-sequence in the C-terminal region that lacks endpolygalacturonases from any other origin. In this study, we analyzed and compared enzymatic characteristics between pro-form (pro-endoPG I) and mature form processed by V8 protease (endoPG I) and described the suppression activity of the pro-sequence. Of note, the optimal pH for pro-endoPG I activity shifted to pH 4.0 from pH 4.5-5.0 of endoPG I. The kinetic parameters indicated that the activity inhibition resulted from a pH-independent decrease of substrate affinity and pH-dependent deterioration of velocity by the pro-sequence. Analysis of site-directed mutations within pro-endoPG I showed that its α-helical structure includes two glutamates (E364 and E366) and alanine (A365), and its orientation by prolines (especially P348) in the pro-sequence played a significant role in its suppression activity. As for mutations in the mature domain, a marked reduction of suppression was observed for enzymes with mutations in H150, R220 and K253, indicating that the pro-sequence interacts with the active cleft by a few ionic bonds. PMID:26293910

  12. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming.

    PubMed

    Boller, Sören; Ramamoorthy, Senthilkumar; Akbas, Duygu; Nechanitzky, Robert; Burger, Lukas; Murr, Rabih; Schübeler, Dirk; Grosschedl, Rudolf

    2016-03-15

    Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape. PMID:26982363

  13. The C-terminal Lysine of Ogg2 DNA Glycosylases is a Major Molecular Determinant for Guanine/8-Oxoguanine Distinction

    SciTech Connect

    Faucher, Frédérick; Wallace, Susan S.; Doublié, Sylvie

    2010-08-12

    7,8-Dihydro-8-oxoguanine (8-oxoG) is a major oxidative lesion found in DNA. The 8-oxoguanine DNA glycosylases (Ogg) responsible for the removal of 8-oxoG are divided into three families Ogg1, Ogg2 and AGOG. The Ogg2 members are devoid of the recognition loop used by Ogg1 to discriminate between 8-oxoG and guanine and it was unclear until recently how Ogg2 enzymes recognize the oxidized base. We present here the first crystallographic structure of an Ogg2 member, Methanocaldococcus janischii Ogg, in complex with a DNA duplex containing the 8-oxoG lesion. This structure highlights the crucial role of the C-terminal lysine, strictly conserved in Ogg2, in the recognition of 8-oxoG. The structure also reveals that Ogg2 undergoes a conformational change upon DNA binding similar to that observed in Ogg1 glycosylases. Furthermore, this work provides a structural rationale for the lack of opposite base specificity in this family of enzymes.

  14. Crystallographic characterization of the C-terminal coiled-coil region of mouse Bicaudal-D1 (BICD1)

    PubMed Central

    Terawaki, Shin-ichi; Ootsuka, Hiroki; Higuchi, Yoshiki; Wakamatsu, Kaori

    2014-01-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein which is evolutionarily conserved from Drosophila to mammals and facilitates the attachment of specific cargo factors to the dynein motor complex. The C-terminal coiled-coil region (CC3) of BICD1 plays an important role in sorting cargo, linking proteins such as the small GTPase Rab6 and the nuclear pore complex component Ran-binding protein 2 (RanBP2) to the dynein motor complex. This report describes the crystallization and X-ray data collection of the BICD1 CC3 region, as well as the preparation of the complex of BICD1 CC3 with a constitutively active mutant of Rab6. The crystals of the BICD1 CC3 region belonged to space group C2, with unit-cell parameters a = 59.0, b = 36.8, c = 104.3 Å, α = γ = 90, β = 99.8°. The X-ray diffraction data set was collected to 1.50 Å resolution. PMID:25084392

  15. Calorimetric and spectroscopic investigation of the interaction between the C-terminal domain of Enzyme I and its ligands.

    PubMed

    Yun, Young-Joo; Suh, Jeong-Yong

    2012-11-01

    Enzyme I initiates a series of phosphotransfer reactions during sugar uptake in the bacterial phosphotransferase system. Here, we have isolated a stable recombinant C-terminal domain of Enzyme I (EIC) of Escherichia coli and characterized its interaction with the N-terminal domain of Enzyme I (EIN) and also with various ligands. EIC can phosphorylate EIN, but their binding is transient regardless of the presence of phosphoenolpyruvate (PEP). Circular dichroism and NMR indicate that ligand binding to EIC induces changes near aromatic groups but not in the secondary structure of EIC. Binding of PEP to EIC is an endothermic reaction with the equilibrium dissociation constant (K(D) ) of 0.28 mM, whereas binding of the inhibitor oxalate is an exothermic reaction with K(D) of 0.66 mM from calorimetry. The binding thermodynamics of EIC and PEP compared to that of Enzyme I (EI) and PEP reveals that domain-domain motion in EI can contribute as large as ∼-3.2 kcal/mol toward PEP binding. PMID:22936614

  16. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions.

    PubMed

    Khwaja, Aya; Galilee, Meytal; Marx, Ailie; Alian, Akram

    2016-01-01

    Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed. PMID:27102180

  17. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    PubMed

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus. PMID:24386845

  18. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II.

    PubMed Central

    Lee, J M; Greenleaf, A L

    1989-01-01

    The unique C-terminal repeat domain (CTD) of the largest subunit (IIa) of eukaryotic RNA polymerase II consists of multiple repeats of the heptapeptide consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The number of repeats ranges from 26 in yeast to 42 in Drosophila to 52 in mouse. The CTD is essential in vivo, but its structure and function are not yet understood. The CTD can be phosphorylated at multiple serine and threonine residues, generating a form of the largest subunit (II0) with markedly reduced mobility in NaDodSO4/polyacrylamide gels. To investigate this extensive phosphorylation, which presumably modulates functional properties of RNA polymerase II, we began efforts to purify a specific CTD kinase. Using CTD-containing fusion proteins as substrates, we have purified a CTD kinase from the yeast Saccharomyces cerevisiae. The enzyme extensively phosphorylates the CTD portion of both the fusion proteins and intact subunit IIa, producing products with reduced electrophoretic mobilities. The properties of the CTD kinase suggest that it is distinct from previously described protein kinases. Analogous activities were also detected in Drosophila and HeLa cell extracts. Images PMID:2657724

  19. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II.

    PubMed Central

    Li, Y; Kornberg, R D

    1994-01-01

    RNA polymerase II lacking a C-terminal domain (CTD) was active in transcription with purified proteins from yeast but failed to support transcription in a yeast extract. CTD dependence could be reconstituted in the purified system by addition of two fractions from the extract. An inhibitory fraction abolished transcription by both wild-type and CTD-less RNA polymerases; a stimulatory fraction restored activity of the wild-type polymerase but had a much lesser effect on the CTD-less enzyme. Parallel results were obtained with the use of a kinase inhibitor that prevents phosphorylation of the CTD by RNA polymerase II initiation factor b. The kinase inhibitor abolished transcription by wild-type polymerase in yeast extract but had no significant effect in the purified system. The requirement for both the CTD and kinase action for transcription in an extract indicates that CTD phosphorylation is involved in opposing the negative effector in the extract. Factor b must play a role(s) in addition to phosphorylation of the CTD because it was still required for transcription with polymerase lacking a CTD in the purified system. Images PMID:8134400

  20. Solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP).

    PubMed

    Liew, Chu Kong; Crossley, Merlin; Mackay, Joel P; Nicholas, Hannah R

    2007-02-16

    The THAP (Thanatos-associated protein) domain is a recently discovered zinc-binding domain found in proteins involved in transcriptional regulation, cell-cycle control, apoptosis and chromatin modification. It contains a single zinc atom ligated by cysteine and histidine residues within a Cys-X(2-4)-Cys-X(35-53)-Cys-X(2)-His consensus. We have determined the NMR solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP) and show that it adopts a fold containing a treble clef motif, bearing similarity to the zinc finger-associated domain (ZAD) from Drosophila Grauzone. The CtBP THAP domain contains a large, positively charged surface patch and we demonstrate that this domain can bind to double-stranded DNA in an electrophoretic mobility-shift assay. These data, together with existing reports, indicate that THAP domains might exhibit a functional diversity similar to that observed for classical and GATA-type zinc fingers. PMID:17174978

  1. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    SciTech Connect

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2014-11-15

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.

  2. The β1 adrenergic effects of antibodies against the C-terminal end of the ribosomal P2β protein of Trypanosoma cruzi associate with a specific pattern of epitope recognition

    PubMed Central

    Bergami, P Lopez; Gómez, KA; Levy, GV; Grippo, V; Baldi, A; Levin, MJ

    2005-01-01

    BALB/c mice immunized with recombinant Trypanosoma cruzi ribosomal P2β protein (TcP2β) develop a strong and specific antibody response against its 13 residue-long C-terminal epitope (peptide R13: EEEDDDMGFGLFD) that has a concomitant β1-adrenergic stimulating activity. However, other animals that undergo similar immunizations seem tolerant to this epitope. To evaluate further the antibody response against the ribosomal P proteins, 25 BALB/c and 25 Swiss mice were immunized with TcP2β. From the 50 animals, 31 developed a positive anti-R13 response, whereas 19 were non-responsive. From the 31 anti-R13 positive mice, 25 had anti-R13 antibodies that recognized the discontinuous motif ExDDxGF, and their presence correlated with the recording of supraventricular tachycardia. The other six had anti-R13 antibodies but with a normal electrocardiographic recording. These anti-R13 antibodies recognized the motif DDxGF shared by mammals and T. cruzi and proved to be a true anti-P autoantibody because they were similar to those elicited in Swiss, but not in BALB/c mice, by immunization with the C-terminal portion of the mouse ribosomal P protein. Our results show that the recognition of the glutamic acid in position 3 of peptide R13 defines the ability of anti-R13 antibodies to react with the motif AESDE of the second extracellular loop of the β1-adrenergic receptor, setting the molecular basis for their pathogenic β1 adrenoceptor stimulating activity. PMID:16178868

  3. Two Distinct Binding Modes Define the Interaction of Brox with the C-Terminal Tails of CHMP5 and CHMP4B

    SciTech Connect

    Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Sette, Paola; Rudd, Victoria; Chuenchor, Watchalee; Bello, Nana F.; Bouamr, Fadila; Xiao, Tsan Sam

    2012-05-21

    Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic {alpha} helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an {alpha} helix, the CHMP5 C-terminal tail adopts a tandem {beta}-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a {beta}-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.

  4. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair

    PubMed Central

    McGovern, Stephen; Baconnais, Sonia; Roblin, Pierre; Nicolas, Pierre; Drevet, Pascal; Simonson, Héloïse; Piétrement, Olivier; Charbonnier, Jean-Baptiste; Le Cam, Eric; Noirot, Philippe; Lecointe, François

    2016-01-01

    Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region. PMID:26961308

  5. Differential contributions of porcine bocavirus NP1 protein N- and C-terminal regions to its nuclear localization and immune regulation.

    PubMed

    Zhang, Ruoxi; Fang, Liurong; Cai, Kaimei; Zeng, Songlin; Wu, Wei; An, Kang; Chen, Huanchun; Xiao, Shaobo

    2016-05-01

    Porcine bocavirus (PBoV), a newly identified parvovirus in the family Parvoviridae, has been reported worldwide in swine with post-weaning multisystemic wasting syndrome, respiratory disease or diarrhoea and in asymptomatic swine. NP1 is a protein unique to the genus Bocavirus and its function is not fully understood. In this study, we show that the N-terminal region of PBoV NP1 contains two classical nuclear localization signals (cNLSs) and a non-classical NLS. The N-terminal region also inhibits the promoter activity of IFN-β and IFN-stimulated response element activity the same as full-length NP1 protein, but the PBoV NP1 C-terminal region does not. PBoV NP1 also induces NFκB activation by increasing the phosphorylation of p65, and we demonstrate that the C-terminal region (aa 168-218) is responsible for the induction of NFκB, although the cNLS region of NP1 enhances this activation. The data suggest that PBoV NP1 contains two functionally independent domains in its N- and C-terminal regions. Thus, the N-terminal region of PBoV NP1 is critical for its nuclear localization and IFN-related promoter inhibition, and the C-terminal region is critical for its induction of NFκB. PMID:26813332

  6. Structural and Biochemical Studies of the C-Terminal Domain of Mouse Peptide-N-glycanase Identify it as a Mannose-Binding Module

    SciTech Connect

    Zhou,X.; Zhao, G.; Truglio, J.; Wang, L.; Li, G.; Lennarz, W.; Schindelin, H.

    2006-01-01

    The inability of certain N-linked glycoproteins to adopt their native conformation in the endoplasmic reticulum (ER) leads to their retrotranslocation into the cytosol and subsequent degradation by the proteasome. In this pathway the cytosolic peptide-N-glycanase (PNGase) cleaves the N-linked glycan chains off denatured glycoproteins. PNGase is highly conserved in eukaryotes and plays an important role in ER-associated protein degradation. In higher eukaryotes, PNGase has an N-terminal and a C-terminal extension in addition to its central catalytic domain, which is structurally and functionally related to transglutaminases. Although the N-terminal domain of PNGase is involved in protein-protein interactions, the function of the C-terminal domain has not previously been characterized. Here, we describe biophysical, biochemical, and crystallographic studies of the mouse PNGase C-terminal domain, including visualization of a complex between this domain and mannopentaose. These studies demonstrate that the C-terminal domain binds to the mannose moieties of N-linked oligosaccharide chains, and we further show that it enhances the activity of the mouse PNGase core domain, presumably by increasing the affinity of mouse PNGase for the glycan chains of misfolded glycoproteins.

  7. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from coptotermes formosanus and expressed in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...

  8. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling.

    PubMed

    Rui, Hong-Liang; Fan, Ernest; Zhou, Hai-Meng; Xu, Zhen; Zhang, Yi; Lin, Sheng-Cai

    2002-11-01

    Axin is a multifunctional protein, regulating Wnt signaling and the c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK) pathway as well as tumorigenesis. In the present study, we found that Axin interacts with three SUMO-1 (small ubiquitin-related modifier) conjugating enzymes 3 (E3), PIAS1, PIASxbeta, and PIASy. The extreme C-terminal six amino acid residues of Axin are critical for the Axin/E3 interaction as deletion of the six residues (AxinDeltaC6) completely abolished the ability of Axin to interact with E3 enzymes. AxinDeltaC6 also failed to activate JNK, although it was intact in both its interaction with MEKK1 and homodimerization. Consistent with the presence of a doublet of the KV(E/D) sumoylation consensus motif at the C-terminal end (KVEKVD), we found that Axin is heavily sumoylated. Deletion of the C-terminal six amino acids drastically reduced sumoylation, indicating that the C-terminal six amino acids stretch is the main sumoylation site for Axin. Sumoylation-defective mutants failed to activate JNK but effectively destabilized beta-catenin and attenuated LEF1 transcriptional activity. In addition, we show that dominant negative Axin mutants blocked PIAS-mediated JNK activation, in accordance with the requirement of sumoylation for Axin-mediated JNK activation. Taken together, we demonstrate that sumoylation plays a role for Axin to function in the JNK pathway. PMID:12223491

  9. Effects of a one year physical activity program on serum C Terminal Agrin Fragment (CAF) concentrations among mobility limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVES: C terminal Agrin Fragment (CAF) has been proposed as a potential circulating biomarker for predicting changes in physical function among older adults. To determine the effect of a one year PA intervention on changes in CAF concentrations and to evaluate baseline and longitudinal associat...

  10. Presence and in vivo biosynthesis of fragments of CPP (the C-terminal glycopeptide of the rat vasopressin precursor) in the hypothalamo-neurohypophyseal system

    SciTech Connect

    Seger, M.A.; Burbach, J.P.

    1987-09-01

    The existence and rate of formation of fragments of the 39-residue C-terminal glycopeptide of propressophysin (CPP1-39) was investigated in the hypothalamo-neurohypophyseal system. Newly-prepared antisera to CPP were used to confirm the existence of smaller C-terminal fragments derived from CPP1-39. Radiolabelled fucose was injected into rats in vivo into the area of the supraoptic nucleus, and the labelled peptides formed in the neurohypophysis were examined at various time intervals up to five weeks after the injection. The products derived from the neurohypophyseal hormone precursors were separated by high-performance liquid chromatography. The level of the major immunoreactive C-terminal fragment (CPP22-39) was constant and represented about 5% of the intact CPP1-39 in the neurohypophysis. The appearance of newly-synthesized N-terminal fragment of CPP1-39 occurred only after 3 or 4 days. This fucose labelled fragment increased slowly thereafter until it reached the same level as the CPP C-terminal fragment immunoreactivity between 21 and 28 days after injection. The results suggest that CPP1-39 is extremely stable in the hypothalamo-neurohypophyseal neurons, and that the cleavage at Arg21-Leu22 is a delayed proteolytic event in the magnocellular neurons of the SON.

  11. Submolecular-Scale Imaging of α-Helices and C-Terminal Domains of Tubulins by Frequency Modulation Atomic Force Microscopy in Liquid

    PubMed Central

    Asakawa, Hitoshi; Ikegami, Koji; Setou, Mitsutoshi; Watanabe, Naoki; Tsukada, Masaru; Fukuma, Takeshi

    2011-01-01

    In this study, we directly imaged subnanometer-scale structures of tubulins by performing frequency modulation atomic force microscopy (FM-AFM) in liquid. Individual α-helices at the surface of a tubulin protofilament were imaged as periodic corrugations with a spacing of 0.53 nm, which corresponds to the common pitch of an α-helix backbone (0.54 nm). The identification of individual α-helices allowed us to determine the orientation of the deposited tubulin protofilament. As a result, C-terminal domains of tubulins were identified as protrusions with a height of 0.4 nm from the surface of the tubulin. The imaging mechanism for the observed subnanometer-scale contrasts is discussed in relation to the possible structures of the C-terminal domains. Because the C-terminal domains are chemically modified to regulate the interactions between tubulins and other biomolecules (e.g., motor proteins and microtubule-associated proteins), detailed structural information on individual C-terminal domains is valuable for understanding such regulation mechanisms. The results obtained in this study demonstrate that FM-AFM is capable of visualizing the structural variation of tubulins with subnanometer resolution. This is an important first step toward using FM-AFM to analyze the functions of tubulins. PMID:21889465

  12. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production.

    PubMed

    Tay, Moon Y F; Smith, Kate; Ng, Ivan H W; Chan, Kitti W K; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Luo, Dahai; Jans, David A; Forwood, Jade K; Vasudevan, Subhash G

    2016-09-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  13. Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria.

    PubMed Central

    Soares, I S; Levitus, G; Souza, J M; Del Portillo, H A; Rodrigues, M M

    1997-01-01

    In this study, we evaluated the naturally acquired immune response to Plasmodium vivax merozoite surface protein 1 (PvMSP1) in individuals with recent clinical episodes of malaria from the state of Para, Brazil. Ten recombinant proteins representing the first 682 amino acids (aa) of the N-terminal region and one representing the final 111 aa of the C-terminal region were expressed in Escherichia coli as glutathione S-transferase fusion proteins. Both of these regions have been suggested as candidates for development of a vaccine against Plasmodium sp. The total frequencies of individuals with antibodies and cellular immune responses to PvMSP1 were high (83.8 and 75%, respectively). The recombinant proteins representing the N- and C-terminal regions were recognized by 51.4 and 64.1% of sera, respectively. The frequency of responders to the C-terminal region increased according to the number of previous malaria episodes, reaching 83.3% after four episodes. Cellular immune response was measured by in vitro proliferation and gamma interferon production. Peripheral blood mononuclear cells of 75 and 47.2% of individuals proliferated in response to stimulation by the N- and C-terminal regions, respectively. Also, we found that one protein representing the N terminus and a second representing the C terminus of PvMSP1 stimulated 54.5% of individuals to secrete gamma interferon. We concluded that PvMSP1 is immunogenic to a large proportion of individuals exposed to malaria. Our results also suggested that the C-terminal region of PvMSP1 containing the two epidermal growth factor-like domains is particularly immunogenic to antibodies and T cells during natural infection in humans. PMID:9125537

  14. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    SciTech Connect

    He, Yuan; Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J.

    2014-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.

  15. Pharmacological activity of the C-terminal and N-terminal domains of secretory leukoprotease inhibitor in vitro.

    PubMed Central

    Masuda, K.; Kamimura, T.; Watanabe, K.; Suga, T.; Kanesaki, M.; Takeuchi, A.; Imaizumi, A.; Suzuki, Y.

    1995-01-01

    1. In order to characterize the physiological functions of the domain structure of secretory leukoprotease inhibitor (SLPI), the biological capacities of half-length SLPIs, (Ser1-Pro54)SLPI and (Asn55-Ala107)SLPI, were investigated and compared with those of full-length SLPI. 2. The activities of these inhibitors against several serine proteases were determined using synthetic chromogenic substrates. The inhibitory capacity of the C-terminal domain, (Asn55-Ala107)SLPI, was as strong as that of full-length SLPI against human neutrophil elastase (NE), cathepsin G and chymotrypsin. It possessed less trypsin inhibitory activity than intact SLPI. For the N-terminal domain of SLPI, (Ser1-Pro54)SLPI, no inhibitory activity could be detected against the serine proteases tested in this study. 3. The inhibitory activity of (Asn55-Ala107)SLPI against the proteolysis of the natural substrates elastin and collagen by NE was comparable with that of full-SLPI (elastin, IC50 = 907 +/- 31 nM for SLPI, 767 +/- 33 nM for (Asn55-Ala107)SLPI; collagen, IC50 = 862 +/- 36 nM for SLPI, 727 +/- 47 nM for (Asn55-Ala107)SLPI). 4. The binding affinities of full- and half-length SLPIs for heparin were measured by affinity column chromatography. Full-length SLPI showed high affinity for heparin while the binding capacities of both half-length SLPIs were lower. (Concentration of NaCl for elution, 0.45 M for SLPI, 0.24 M for (Ser1-Pro54)SLPI, 0.27 M for (Asn55-Ala107)SLPI). 5. The effects of full-SLPI and (Asn55-Ala107)SLPI on blood coagulation were measured using the activated partial thromboplastin time (APTT).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582515

  16. A zinc site in the C-terminal domain of RAG1 is essential for DNA cleavage activity

    PubMed Central

    Gwyn, Lori M.; Peak, Mandy M.; De, Pallabi; Rahman, Negar S.; Rodgers, Karla K.

    2009-01-01

    The recombination activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically-required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well-resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apo-protein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962. PMID:19500590

  17. SUMOylation of the C-terminal domain of DNA topoisomerase IIα regulates the centromeric localization of Claspin

    PubMed Central

    Ryu, Hyunju; Yoshida, Makoto M; Sridharan, Vinidhra; Kumagai, Akiko; Dunphy, William G; Dasso, Mary; Azuma, Yoshiaki

    2015-01-01

    DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity. PMID:26131587

  18. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution.

    PubMed

    Matsumoto, Shunsuke; Igura, Mayumi; Nyirenda, James; Matsumoto, Masaki; Yuzawa, Satoru; Noda, Nobuo; Inagaki, Fuyuhiko; Kohda, Daisuke

    2012-05-22

    Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers glycan to asparagine in the N-glycosylation sequon. The catalytic subunit of OST is called STT3 in eukaryotes, AglB in archaea, and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three AglB paralogs. Two of them are the shortest AglBs across all domains of life. We determined the crystal structure of the C-terminal globular domain of the smallest AglB to identify the minimal structural unit. The Archaeoglobus AglB lacked a β-barrel-like structure, which had been found in other AglB and PglB structures. In agreement, the deletion in a larger Pyrococcus AglB confirmed its dispensability for the activity. By contrast, the Archaeoglobus AglB contains a kinked helix bearing a conserved motif, called DK/MI motif. The lysine and isoleucine residues in the motif participate in the Ser/Thr recognition in the sequon. The Archaeoglobus AglB structure revealed that the kinked helix contained an unexpected insertion. A revised sequence alignment based on this finding identified a variant type of the DK motif with the insertion. A mutagenesis study of the Archaeoglobus AglB confirmed the contribution of this particular type of the DK motif to the activity. When taken together with our previous results, this study defined the classification of OST: one group consisting of eukaryotes and most archaea possesses the DK-type Ser/Thr pocket, and the other group consisting of eubacteria and the remaining archaea possesses the MI-type Ser/Thr pocket. This classification provides a useful framework for OST studies. PMID:22559858

  19. Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei.

    PubMed

    Selinheimo, Emilia; Saloheimo, Markku; Ahola, Elina; Westerholm-Parvinen, Ann; Kalkkinen, Nisse; Buchert, Johanna; Kruus, Kristiina

    2006-09-01

    A homology search of the genome database of the filamentous fungus Trichoderma reesei identified a new T. reesei tyrosinase gene tyr2, encoding a protein with a putative signal sequence. The gene was overexpressed in the native host under the strong cbh1 promoter, and the tyrosinase enzyme was secreted into the culture supernatant. This is the first report on a secreted fungal tyrosinase. Expression of TYR2 in T. reesei resulted in good yields, corresponding to approximately 0.3 and 1 g.L(-1) tyrosinase in shake flask cultures and laboratory-scale batch fermentation, respectively. T. reesei TYR2 was purified with a three-step purification procedure, consisting of desalting by gel filtration, cation exchange chromatography and size exclusion chromatography. The purified TYR2 protein had a significantly lower molecular mass (43.2 kDa) than that calculated from the putative amino acid sequence (61.151 kDa). According to N-terminal and C-terminal structural analyses by fragmentation, chromatography, MS and peptide sequencing, the mature protein is processed from the C-terminus by a cleavage of a peptide fragment of about 20 kDa. The T. reesei TYR2 polypeptide chain was found to be glycosylated at its only potential N-glycosylation site, with a glycan consisting of two N-acetylglucosamines and five mannoses. Also, low amounts of shorter glycan forms were detected at this site. T. reesei TYR2 showed the highest activity and stability within a neutral and alkaline pH range, having an optimum at pH 9. T. reesei tyrosinase retained its activity well at 30 degrees C, whereas at higher temperatures the enzyme started to lose its activity relatively quickly. T. reesei TYR2 was active on both l-tyrosine and l-dopa, and it showed broad substrate specificity. PMID:16939623

  20. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.

    PubMed

    Maier, Johannes A H; Albu, Razvan F; Jurkowski, Tomasz P; Jeltsch, Albert

    2015-12-01

    CcrM-related DNA-(adenine N6)-methyltransferases play very important roles in the biology of Caulobacter crescentus and other alpha-proteobacteria. These enzymes methylate GANTC sequences, but the molecular mechanism by which they recognize their target sequence is unknown. We carried out multiple sequence alignments and noticed that CcrM enzymes contain a conserved C-terminal domain (CTD) which is not present in other DNA-(adenine N6)-methyltransferases and we show here that deletion of this part abrogates catalytic activity and DNA binding of CcrM. A mutational study identified 7 conserved residues in the CTD (out of 13 tested), mutation of which led to a strong reduction in catalytic activity. All of these mutants showed altered DNA binding, but no change in AdoMet binding and secondary structure. Some mutants exhibited reduced DNA binding, but others showed an enhanced DNA binding. Moreover, we show that CcrM does not specifically bind to DNA containing GANTC sequences. Taken together, these findings suggest that the specific CcrM-DNA complex undergoes a conformational change, which is endergonic but essential for catalytic activity and this step is blocked by some of the mutations. Moreover, our data indicate that the CTD of CcrM is involved in DNA binding and recognition. This suggests that the CTD functions as target recognition domain of CcrM and, therefore, CcrM can be considered the first example of a δ-type DNA-(adenine N6)-methyltransferase identified so far. PMID:26475175

  1. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA

    SciTech Connect

    Agarwal, S.; Hong, D.; Desai, N.K.; H.Sazinsky, M.; Argüello, J.M.; Rosenzweig, A.C.

    2010-08-13

    The Cu(+)-ATPase CopA from Archaeoglobus fulgidus belongs to the P(1B) family of the P-type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P(1B-1)-type ATPases is the presence of soluble metal binding domains at the N-terminus (N-MBDs). The N-MBDs exhibit a conserved ferredoxin-like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N-MBDs enable Cu(+) regulation of turnover rates apparently through Cu-sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N-terminal MBD and a C-terminal MBD (C-MBD). The functional role of the unique C-MBD has not been established. Here, we report the crystal structure of the apo, oxidized C-MBD to 2.0 A resolution. In the structure, two C-MBD monomers form a domain-swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C-MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A-domain), has been investigated. Interestingly, the C-MBD interacts specifically with both of these domains, independent of the presence of Cu(+) or nucleotides. These data reinforce the uniqueness of the C-MBD and suggest a distinct structural role for the C-MBD in CopA transport.

  2. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  3. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II.

    PubMed Central

    Bourquin, J P; Stagljar, I; Meier, P; Moosmann, P; Silke, J; Baechi, T; Georgiev, O; Schaffner, W

    1997-01-01

    The largest subunit of RNA polymerase II shows a striking difference in the degree of phosphorylation, depending on its functional state: initiating and elongating polymerases are unphosphorylated and highly phosphorylated respectively. Phosphorylation mostly occurs at the C-terminal domain (CTD), which consists of a repetitive heptapeptide structure. Using the yeast two-hybrid system, we have selected for mammalian proteins that interact with the phosphorylated CTD of mammalian RNA polymerase II. A prominent isolate, designated SRcyp/CASP10, specifically interacts with the CTD not only in vivo but also in vitro . It contains a serine/arginine-rich (SR) domain, similar to that found in the SR protein family of pre-mRNA splicing factors, which is required for interaction with the CTD. Most remarkably, the N-terminal region of SRcyp includes a peptidyl-prolyl cis - trans isomerase domain characteristic of immunophilins/cyclophilins (Cyp), a protein family implicated in protein folding, assembly and transport. SRcyp is a nuclear protein with a characteristic distribution in large irregularly shaped nuclear speckles and co-localizes perfectly with the SR domain-containing splicing factor SC35. Recent independent investigations have provided complementary data, such as an association of the phosphorylated form of RNA polymerase II with the nuclear speckles, impaired splicing in a CTD deletion background and inhibition of in vitro splicing by CTD peptides. Taken together, these data indicate that factors directly or indirectly involved in splicing are associated with the elongating RNA polymerases, from where they might translocate to the nascent transcripts to ensure efficient splicing, concomitant with transcription. PMID:9153302

  4. C-Terminal Region of Pseudomonas aeruginosa Outer Membrane Porin OprD Modulates Susceptibility to Meropenem

    PubMed Central

    Epp, Simone F.; Köhler, Thilo; Plésiat, Patrick; Michéa-Hamzehpour, Mehri; Frey, Joachim; Pechère, Jean-Claude

    2001-01-01

    We investigated the unusual susceptibility to meropenem observed for seven imipenem-resistant clinical isolates of Pseudomonas aeruginosa. These strains were genetically closely related, expressed OprD, as determined by Western blot analyses, and were resistant to imipenem (>5 μg/ml) but susceptible to meropenem (<1 μg/ml). The oprD genes from two isolates were entirely sequenced, and their deduced protein sequences showed 93% identity with that of OprD of strain PAO1. The major alteration consisted of the replacement of a stretch of 12 amino acids, located in putative external loop L7 of OprD, by a divergent sequence of 10 amino acid residues. The oprD gene variants and the wild-type oprD gene were cloned and expressed in a defined oprD mutant. The meropenem MICs for strains carrying the oprD genes from clinical isolates were four times lower than that for the strain carrying the wild-type oprD gene. Imipenem activities, however, were comparable for all strains. Furthermore, meropenem hypersusceptibility was obtained with a hybrid OprD porin that consisted of the PAO1 oprD gene containing loop L7 from a clinical isolate. These results show that the C-terminal portion of OprD, in particular, loop L7, was responsible for the unusual meropenem hypersusceptibility. Competition experiments suggested that the observed OprD modifications in the clinical isolates did not affect antagonism between imipenem and the basic amino acid l-lysine. We further propose that shortening of putative loop L7 of the OprD porin by 2 amino acid residues sufficiently opens the porin channel to allow optimal penetration of meropenem and increase its activity. In contrast, this alteration would not affect susceptibility to a smaller carbapenem molecule, such as imipenem. PMID:11353625

  5. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II.

    PubMed

    Lu, Lei; Fan, Dacheng; Hu, Chia-Wei; Worth, Matthew; Ma, Zhi-Xiong; Jiang, Jiaoyang

    2016-02-23

    O-GlcNAcylation is a nutrient-responsive glycosylation that plays a pivotal role in transcriptional regulation. Human RNA polymerase II (Pol II) is extensively modified by O-linked N-acetylglucosamine (O-GlcNAc) on its unique C-terminal domain (CTD), which consists of 52 heptad repeats. One approach to understanding the function of glycosylated Pol II is to determine the mechanism of dynamic O-GlcNAcylation on the CTD. Here, we discovered that the Pol II CTD can be extensively O-GlcNAcylated in vitro and in cells. Efficient glycosylation requires a minimum of 20 heptad repeats of the CTD and more than half of the N-terminal domain of O-GlcNAc transferase (OGT). Under conditions of saturated sugar donor, we monitored the attachment of more than 20 residues of O-GlcNAc to the full-length CTD. Surprisingly, glycosylation on the periodic CTD follows a distributive mechanism, resulting in highly heterogeneous glycoforms. Our data suggest that initial O-GlcNAcylation can take place either on the proximal or on the distal region of the CTD, and subsequent glycosylation occurs similarly over the entire CTD with nonuniform distributions. Moreover, removal of O-GlcNAc from glycosylated CTD is also distributive and is independent of O-GlcNAcylation level. Our results suggest that O-GlcNAc cycling enzymes can employ a similar mechanism to react with other protein substrates on multiple sites. Distributive O-GlcNAcylation on Pol II provides another regulatory mechanism of transcription in response to fluctuating cellular conditions. PMID:26807597

  6. Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms

    PubMed Central

    Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke

    2015-01-01

    The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms. PMID:26090994

  7. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2015-01-20

    The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1-N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1-C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface. PMID:25606679

  8. Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403.

    PubMed

    Tarahomjoo, Shirin; Katakura, Yoshio; Satoh, Eiichi; Shioya, Suteaki

    2008-02-01

    With the aim of constructing an efficient protein display system for lactic acid bacteria (LABs), the effect of fusion direction on the cell-surface binding activity of the C-terminal region of the peptidoglycan hydrolase (CPH) of Lactococcus lactis IL1403 was studied. CPH fused to the alpha-amylase (AMY) of Streptococcus bovis 148 either at its C-terminus (CPH-AMY) or at its N-terminus (AMY-CPH) was expressed intracellularly in Escherichia coli. This domain was able to direct binding of AMY to the surface of L. lactis ATCC 19435 in both constructs. However, the number of bound molecules per cell and the specific activity for starch digestion in the case of CPH-AMY were 3 and 14 times greater than those in the case of AMY-CPH, respectively. Of the LABs tested, L. lactis ATCC 19435 showed the highest binding capability for CPH-AMY, up to 6 x 10(4) molecules per cell, with a dissociation rate constant of 5.00 x 10(-5) s(-1). The binding of CPH-AMY to the surface of Lactobacillus delbrueckii ATCC 9649 cells was very stable with a dissociation rate constant of 6.96 x 10(-6) s(-1). The production of CPH-AMY in the soluble form increased 3-fold as a result of coexpression with a molecular chaperone, trigger factor. The results of this study suggest the usefulness of CPH as a bidirectional anchor protein for the production of cell-surface adhesive enzymes in E. coli. Furthermore, the importance of the fusion direction of CPH in determining cell-surface binding and enzymatic activities was shown. PMID:18343337

  9. Novel endomorphin-1 analogs with C-terminal oligoarginine-conjugation display systemic antinociceptive activity with less gastrointestinal side effects.

    PubMed

    Wang, Chang-lin; Qiu, Ting-ting; Diao, Yu-xiang; Zhang, Yao; Gu, Ning

    2015-09-01

    In recent study, in order to improve the bioavailability of endomorphin-1 (EM-1), we designed and synthesized a series of novel EM-1 analogs by replacement of L-Pro(2) by β-Pro, D-Ala or Sar, together with C-terminal oligoarginine-conjugation. Our results indicated that the introduction of D-Ala and β-Pro in position 2, along with oligoarginine-conjugation, didn't significantly decrease the μ-affinity and in vitro bioactivity, and the enhancement of arginine residues did not markedly influence the μ-affinity of these analogs. All analogs displayed a significant enhancement of stability, which may be due to increased resistance to proline-specific enzymatic degradation. Moreover, following intracerebroventricular (i.c.v.) administration, analogs 1, 2, 4 and 5 produced significant antinociception and increased duration of action, with the ED50 values being about 1.8- to 4.2-fold less potent than that of EM-1. In addition, our results indicated that no significant antinociceptive activity of EM-1 was seen following subcutaneous (s.c.) injection, whereas analogs 1, 2, 4 and 5 with equimolar dose induced significant and prolonged antinociception by an opioid and central mechanism. Herein, we further examined the gastrointestinal transit and colonic propulsive latencies of EM-1 and its four analogs administered centrally and peripherally. I.c.v. administration of EM-1 and analogs 1, 2, 4 and 5 significantly delayed gastrointestinal transit and colonic bead propulsion in mice, but the inhibitory effects induced by these analogs were largely attenuated. It is noteworthy that no significant gastrointestinal side effects induced by these four analogs were observed after s.c. administration. Our results demonstrated that combined modifications of EM-1 with unnatural amino acid substitutions and oligoarginine-conjugation gave an efficient strategy to improve the analgesic profile of EM-1 analogs but with less gastrointestinal side effects when administered peripherally

  10. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end.

    PubMed

    Mahapa, Avisek; Mandal, Sukhendu; Biswas, Anindya; Jana, Biswanath; Polley, Soumitra; Sau, Subrata; Sau, Keya

    2015-01-01

    SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature. PMID:25822635

  11. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy.

    PubMed

    Bassil, Fares; Fernagut, Pierre-Olivier; Bezard, Erwan; Pruvost, Alain; Leste-Lasserre, Thierry; Hoang, Quyen Q; Ringe, Dagmar; Petsko, Gregory A; Meissner, Wassilios G

    2016-08-23

    Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation. PMID:27482103

  12. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis.

    PubMed

    Eves-Van Den Akker, Sebastian; Lilley, Catherine J; Yusup, Hazijah B; Jones, John T; Urwin, Peter E

    2016-10-01

    Sedentary plant-parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active 'feeding sites'. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up-regulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up-regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non-CEP-containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced. PMID:26996971

  13. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae

    PubMed Central

    Lou, Yuan-Chao; Wang, Iren; Rajasekaran, M.; Kao, Yi-Fen; Ho, Meng-Ru; Hsu, Shang-Te Danny; Chou, Shan-Ho; Wu, Shih-Hsiung; Chen, Chinpan

    2014-01-01

    Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphorylation of the response regulator enhances DNA recognition remains elusive. To gain insights, we determined the nuclear magnetic resonance solution structure of PmrAC and characterized the interactions between PmrAC or BeF3−-activated full-length PmrA (PmrAF) and two DNA sequences from the pbgP promoter of K. pneumoniae. We showed that PmrAC binds to the PmrA box, which was verified to contain two half-sites, 5′-CTTAAT-3′ and 5′-CCTAAG-3′, in a head-to-tail fashion with much stronger affinity to the first than the second site without cooperativity. The structural basis for the PmrAC–DNA complex was investigated using HADDOCK docking and confirmed by paramagnetic relaxation enhancement. Unlike PmrAC, PmrAF recognizes the two sites simultaneously and specifically. In the PmrAF–DNA complex, PmrAN may maintain an activated homodimeric conformation analogous to that in the free form and the interactions between two PmrAC molecules aid in bending and binding of the DNA duplex for transcription activation. PMID:24371275

  14. A Fluorescently Tagged C-Terminal Fragment of p47phox Detects NADPH Oxidase Dynamics during Phagocytosis

    PubMed Central

    Li, Xing Jun; Tian, Wei; Stull, Natalie D.; Grinstein, Sergio; Atkinson, Simon

    2009-01-01

    The assembly of cytosolic p47phox and p67phox with flavocytochrome b558 at the membrane is crucial for activating the leukocyte NADPH oxidase that generates superoxide for microbial killing. p47phox and p67phox are linked via a high-affinity, tail-to-tail interaction involving a proline-rich region (PRR) and a C-terminal SH3 domain (SH3b), respectively, in their C-termini. This interaction mediates p67phox translocation in neutrophils, but is not required for oxidase activity in model systems. Here we examined phagocytosis-induced NADPH oxidase assembly, showing the sequential recruitment of YFP-tagged p67phox to the phagosomal cup, and, after phagosome internalization, a probe for PI(3)P followed by a YFP-tagged fragment derived from the p47phox PRR. This fragment was recruited in a flavocytochrome b558-dependent, p67phox-specific, and PI(3)P-independent manner. These findings indicate that p47PRR fragment probes the status of the p67phox SH3b domain and suggest that the p47phox/p67phox tail-to-tail interaction is disrupted after oxidase assembly such that the p67phox-SH3b domain becomes accessible. Superoxide generation was sustained within phagosomes, indicating that this change does not correlate with loss of enzyme activity. This study defines a sequence of events during phagocytosis-induced NADPH oxidase assembly and provides experimental evidence that intermolecular interactions within this complex are dynamic and modulated after assembly on phagosomes. PMID:19129478

  15. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  16. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    NASA Astrophysics Data System (ADS)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  17. C-terminal Binding Proteins are Essential Pro-survival Factors that Undergo Caspase-dependent Downregulation during Neuronal Apoptosis

    PubMed Central

    Kelsey, Natalie A.; Bouchard, Ron J.; Linseman, Daniel A.

    2013-01-01

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes. PMID:23859824

  18. C-Terminal Fragment of Agrin (CAF): A Novel Marker for Progression of Kidney Disease in Type 2 Diabetics

    PubMed Central

    Devetzis, Vasilios; Daryadel, Arezoo; Roumeliotis, Stefanos; Theodoridis, Marios; Wagner, Carsten A.; Hettwer, Stefan; Huynh-Do, Uyen; Ploumis, Passadakis; Arampatzis, Spyridon

    2015-01-01

    Background Diabetes is the leading cause of CKD in the developed world. C-terminal fragment of agrin (CAF) is a novel kidney function and injury biomarker. We investigated whether serum CAF predicts progression of kidney disease in type 2 diabetics. Methods Serum CAF levels were measured in 71 elderly patients with diabetic nephropathy using a newly developed commercial ELISA kit (Neurotune®). Estimated glomerular filtration rate (eGFR) and proteinuria in spot urine were assessed at baseline and after 12 months follow up. The presence of end stage renal disease (ESRD) was evaluated after 24 months follow-up. Correlation and logistic regression analyses were carried out to explore the associations of serum CAF levels with GFR, proteinuria, GFR loss and incident ESRD. Renal handling of CAF was tested in neurotrypsin-deficient mice injected with recombinant CAF. Results We found a strong association of serum CAF levels with eGFR and a direct association with proteinuria both at baseline (r = 0.698, p<0.001 and r = 0. 287, p = 0.02) as well as after 12 months follow-up (r = 0.677, p<0.001 and r = 0.449, p<0.001), respectively. Furthermore, in multivariate analysis, serum CAF levels predicted eGFR decline at 12 months follow-up after adjusting for known risk factors (eGFR, baseline proteinuria) [OR (95%CI) = 4.2 (1.2–14.5), p = 0.024]. In mice, injected CAF was detected in endocytic vesicles of the proximal tubule. Conclusion Serum CAF levels reflect renal function and are highly associated with eGFR and proteinuria at several time points. Serum CAF was able to predict subsequent loss of renal function irrespective of baseline proteinuria in diabetic nephropathy. CAF is likely removed from circulation by glomerular filtration and subsequent endocytosis in the proximal tubule. These findings may open new possibilities for clinical trial design, since serum CAF levels may be used as a selection tool to monitor kidney function in high-risk patients with diabetic

  19. C-Terminal Domain Residues Important for Secretion and Attachment of RgpB in Porphyromonas gingivalis▿

    PubMed Central

    Slakeski, Nada; Seers, Christine A.; Ng, Kaiting; Moore, Caroline; Cleal, Steven M.; Veith, Paul D.; Lo, Alvin W.; Reynolds, Eric C.

    2011-01-01

    Porphyromonas gingivalis, a periodontal pathogen, expresses a group of surface proteins with a common C-terminal domain (CTD) that are exported by a novel secretion system to the surface, where they are covalently attached. Using RgpB as a model CTD protein, we have produced a series of site-directed mutations in the CTD sequence at conserved residues and at residues that may be modified and, hence, surface attached. The mutant RgpB proteins were expressed in a P. gingivalis host lacking functional RgpB and RgpA Arg-specific proteases. The RgpB mutants produced were Y674F, Y674F Y718F, T675Q S679Q T682Q T684Q, T693Q, F695A, D696A, N698A, G699P, G716P, T724Q, T728Q T730Q, and K732Q and a protein with a deletion of residues 692 to 702 (Δ692-702). The mutants were characterized for cell-associated Arg-specific protease activity and for cellular distribution using anti-Rgp antibodies and Western blotting of culture fractions. All the mutants exhibited cell-associated Arg-specific activity similar to that of the positive control except for the D696A and Δ692-702 mutants. For all mutants, except D696A and Δ692-702, the RgpB proteins were found modified and attached to the cell surface, which was the same profile found in the positive-control strain. Only trace amounts of the precursor form of the Δ692-702 mutant were detected in the outer membrane, with none detected in the periplasm or culture fluid although cell transcript levels were normal. The results suggest that residues 692 to 702 of the CTD, in particular, residue D696, have an important role in the attachment of RgpB at the cell surface and that without attachment secretion does not occur. PMID:20971915

  20. The C-terminal domain of CblD interacts with CblC and influences intracellular cobalamin partitioning☆

    PubMed Central

    Gherasim, Carmen; Hannibal, Luciana; Rajagopalan, Deepa; Jacobsen, Donald W.; Banerjee, Ruma

    2013-01-01

    Mutations in cobalamin or B12 trafficking genes needed for cofactor assimilation and targeting lead to inborn errors of cobalamin metabolism. The gene corresponding to one of these loci, cblD, affects both the mitochondrial and cytoplasmic pathways for B12 processing. We have demonstrated that fibroblast cell lines from patients with mutations in CblD, can dealkylate exogenously supplied methylcobalamin (MeCbl), an activity catalyzed by the CblC protein, but show imbalanced intracellular partitioning of the cofactor into the MeCbl and 5′-deoxyadenosylcobalamin (AdoCbl) pools. These results confirm that CblD functions downstream of CblC in the cofactor assimilation pathway and that it plays an important role in controlling the traffic of the cofactor between the competing cytoplasmic and mitochondrial routes for MeCbl and AdoCbl synthesis, respectively. In this study, we report the interaction of CblC with four CblD protein variants with variable N-terminal start sites. We demonstrate that a complex between CblC and CblD can be isolated particularly under conditions that permit dealkylation of alkylcobalamin by CblC or in the presence of the corresponding dealkylated and oxidized product, hydroxocobalamin (HOCbl). A weak CblC·CblD complex is also seen in the presence of cyanocobalamin. Formation of the CblC·CblD complex is observed with all four CblD variants tested suggesting that the N-terminal 115 residues missing in the shortest variant are not essential for this interaction. Furthermore, limited proteolysis of the CblD variants indicates the presence of a stable C-terminal domain spanning residues ~116–296. Our results are consistent with an adapter function for CblD, which in complex with CblC·HOCbl, or possibly the less oxidized CblC·cob(II)alamin, partitions the cofactor between AdoCbl and MeCbl assimilation pathways. PMID:23415655

  1. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis.

    PubMed

    Stankiewicz, Trisha R; Schroeder, Emily K; Kelsey, Natalie A; Bouchard, Ron J; Linseman, Daniel A

    2013-09-01

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post