Science.gov

Sample records for 8-oxoguanine-repair-deficient mutator phenotype

  1. The new mutation theory of phenotypic evolution

    PubMed Central

    Nei, Masatoshi

    2007-01-01

    Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimination of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incorporated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance. PMID:17640887

  2. Expanding the phenotype of GMPPB mutations.

    PubMed

    Cabrera-Serrano, Macarena; Ghaoui, Roula; Ravenscroft, Gianina; Johnsen, Russell D; Davis, Mark R; Corbett, Alastair; Reddel, Stephen; Sue, Carolyn M; Liang, Christina; Waddell, Leigh B; Kaur, Simranpreet; Lek, Monkol; North, Kathryn N; MacArthur, Daniel G; Lamont, Phillipa J; Clarke, Nigel F; Laing, Nigel G

    2015-04-01

    Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in which adult onset is a common presentation. Here we report eight patients from five non-consanguineous families where next generation sequencing identified mutations in the GMPPB gene. Six patients presented as an adult or adolescent-onset limb-girdle muscular dystrophy, one presented with isolated episodes of rhabdomyolysis, and one as a congenital muscular dystrophy. This report expands the phenotypic spectrum of GMPPB mutations to include limb-girdle muscular dystrophies with adult onset with or without intellectual disability, or isolated rhabdomyolysis. PMID:25681410

  3. The behavioral phenotype of FMR1 mutations.

    PubMed

    Boyle, Lia; Kaufmann, Walter E

    2010-11-15

    The purpose of this article is to provide an overview of the behavioral phenotype of FMR1 mutations, including fragile X syndrome (FXS) in order to better understand the clinical involvement of individuals affected by mutations in this gene. FXS is associated with a wide range of intellectual and behavioral problems, some relatively mild and others quite severe. FXS is the most common cause of inherited intellectual disability and one of the most prevalent genetic causes of autism spectrum disorder. Learning difficulties, attentional problems, anxiety, aggressive behavior, stereotypies, and mood disorders are also frequent in FXS. Recent studies of children and adults have identified associations between FMR1 premutation and many of the same disorders. We examine the neurobehavioral phenotypes of FXS and FMR1 premutation as they manifest across the lifespan of the individual. PMID:20981777

  4. The Evolutionary Potential of Phenotypic Mutations

    PubMed Central

    Yanagida, Hayato; Gispan, Ariel; Kadouri, Noam; Rozen, Shelly; Sharon, Michal; Barkai, Naama; Tawfik, Dan S.

    2015-01-01

    Errors in protein synthesis, so-called phenotypic mutations, are orders-of-magnitude more frequent than genetic mutations. Here, we provide direct evidence that alternative protein forms and phenotypic variability derived from translational errors paved the path to genetic, evolutionary adaptations via gene duplication. We explored the evolutionary origins of Saccharomyces cerevisiae IDP3 - an NADP-dependent isocitrate dehydrogenase mediating fatty acids ß-oxidation in the peroxisome. Following the yeast whole genome duplication, IDP3 diverged from a cytosolic ancestral gene by acquisition of a C-terminal peroxisomal targeting signal. We discovered that the pre-duplicated cytosolic IDPs are partially localized to the peroxisome owing to +1 translational frameshifts that bypass the stop codon and unveil cryptic peroxisomal targeting signals within the 3’-UTR. Exploring putative cryptic signals in all 3’-UTRs of yeast genomes, we found that other enzymes related to NADPH production such as pyruvate carboxylase 1 (PYC1) might be prone to peroxisomal localization via cryptic signals. Using laboratory evolution we found that these translational frameshifts are rapidly imprinted via genetic single base deletions occurring within the very same gene location. Further, as exemplified here, the sequences that promote translational frameshifts are also more prone to genetic deletions. Thus, genotypes conferring higher phenotypic variability not only meet immediate challenges by unveiling cryptic 3’-UTR sequences, but also boost the potential for future genetic adaptations. PMID:26244544

  5. Variable phenotypes are associated with PMP22 missense mutations.

    PubMed

    Russo, M; Laurá, M; Polke, J M; Davis, M B; Blake, J; Brandner, S; Hughes, R A C; Houlden, H; Bennett, D L H; Lunn, M P T; Reilly, M M

    2011-02-01

    Charcot-Marie-Tooth disease (CMT) is the commonest hereditary neuropathy encompassing a large group of clinically and genetically heterogeneous disorders. The commonest form of CMT, CMT1A, is usually caused by a 1.4 megabase duplication of chromosome 17 containing the PMP22 gene. Mutations of PMP22 are a less common cause of CMT. We describe clinical, electrophysiological and molecular findings of 10 patients carrying PMP22 missense mutations. The phenotype varied from mild hereditary neuropathy with liability to pressure palsies (HNPP) to severe CMT1. We identified six different point mutations, including two novel mutations. Three families were also found to harbour a Thr118Met mutation. Although PMP22 point mutations are not common, our findings highlight the importance of sequencing the PMP22 gene in patients with variable CMT phenotypes and also confirm that the PMP22 Thr118Met mutation is associated with a neuropathy albeit with reduced penetrance. PMID:21194947

  6. Cardiac sodium channel mutations: why so many phenotypes?

    PubMed Central

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  7. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  8. Cardiac Sodium Channel Mutations: Why so Many Phenotypes?

    PubMed

    Liu, M; Yang, K-C; Dudley, S C

    2016-01-01

    The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies. PMID:27586294

  9. IDH Mutations: Genotype-Phenotype Correlation and Prognostic Impact

    PubMed Central

    Wang, Xiao-Wei; Ciccarino, Pietro; Rossetto, Marta; Marie, Yannick; Desestret, Virginie; Mokhtari, Karima; Sanson, Marc; Labussière, Marianne

    2014-01-01

    IDH1/2 mutation is the most frequent genomic alteration found in gliomas, affecting 40% of these tumors and is one of the earliest alterations occurring in gliomagenesis. We investigated a series of 1305 gliomas and showed that IDH mutation is almost constant in 1p19q codeleted tumors. We found that the distribution of IDH1R132H, IDH1nonR132H, and IDH2 mutations differed between astrocytic, mixed, and oligodendroglial tumors, with an overrepresentation of IDH2 mutations in oligodendroglial phenotype and an overrepresentation of IDH1nonR132H in astrocytic tumors. We stratified grade II and grade III gliomas according to the codeletion of 1p19q and IDH mutation to define three distinct prognostic subgroups: 1p19q and IDH mutated, IDH mutated—which contains mostly TP53 mutated tumors, and none of these alterations. We confirmed that IDH mutation with a hazard ratio = 0.358 is an independent prognostic factor of good outcome. These data refine current knowledge on IDH mutation prognostic impact and genotype-phenotype associations. PMID:24877111

  10. High-throughput Phenotyping of Lung Cancer Somatic Mutations.

    PubMed

    Berger, Alice H; Brooks, Angela N; Wu, Xiaoyun; Shrestha, Yashaswi; Chouinard, Candace; Piccioni, Federica; Bagul, Mukta; Kamburov, Atanas; Imielinski, Marcin; Hogstrom, Larson; Zhu, Cong; Yang, Xiaoping; Pantel, Sasha; Sakai, Ryo; Watson, Jacqueline; Kaplan, Nathan; Campbell, Joshua D; Singh, Shantanu; Root, David E; Narayan, Rajiv; Natoli, Ted; Lahr, David L; Tirosh, Itay; Tamayo, Pablo; Getz, Gad; Wong, Bang; Doench, John; Subramanian, Aravind; Golub, Todd R; Meyerson, Matthew; Boehm, Jesse S

    2016-08-01

    Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer. PMID:27478040

  11. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.

    PubMed

    Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen

    2013-12-01

    Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve. PMID:24214728

  12. Atypical phenotype in two patients with LAMA2 mutations.

    PubMed

    Marques, Joana; Duarte, Sofia T; Costa, Sónia; Jacinto, Sandra; Oliveira, Jorge; Oliveira, Márcia E; Santos, Rosário; Bronze-da-Rocha, Elsa; Silvestre, Ana Rita; Calado, Eulália; Evangelista, Teresinha

    2014-05-01

    Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation). PMID:24534542

  13. Mutations and phenotype in isolated glycerol kinase deficiency.

    PubMed Central

    Walker, A. P.; Muscatelli, F.; Stafford, A. N.; Chelly, J.; Dahl, N.; Blomquist, H. K.; Delanghe, J.; Willems, P. J.; Steinmann, B.; Monaco, A. P.

    1996-01-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8651297

  14. Truncating mutations in APP cause a distinct neurological phenotype.

    PubMed

    Klein, Steven; Goldman, Alexander; Lee, Hane; Ghahremani, Shahnaz; Bhakta, Viraj; Nelson, Stanley F; Martinez-Agosto, Julian A

    2016-09-01

    Dominant missense mutations in the amyloid β (Aβ) precursor protein (APP) gene have been implicated in early onset Alzheimer disease. These mutations alter protein structure to favor the pathologic production of Aβ. We report that homozygous nonsense mutations in APP are associated with decreased somatic growth, microcephaly, hypotonia, developmental delay, thinning of the corpus callosum, and seizures. We compare the phenotype of this case to those reported in mouse models and demonstrate multiple similarities, strengthening the role of amyloid precursor protein in normal brain function and development. Ann Neurol 2016;80:456-460. PMID:27422356

  15. Inherited PTEN mutations and the prediction of phenotype.

    PubMed

    Leslie, Nicholas R; Longy, Michel

    2016-04-01

    PTEN has been heavily studied due to its role as a tumour suppressor and as a core inhibitory component of the phosphoinositide 3-kinase (PI3K) signalling network. It is a broadly expressed phosphatase which displays complexity and diversity in both its functions and regulation and accordingly, in the laboratory numerous classes of functionally distinct mutations have been generated. Inherited loss of function mutations in the PTEN gene were originally identified in sufferers of Cowden disease, but later shown to associate with more diverse human pathologies, mostly relating to cell and tissue overgrowth, leading to the use of the broader term, PTEN Hamartoma Tumour Syndrome. Recent phenotypic analysis of clinical cohorts of PTEN mutation carriers, combined with laboratory studies of the consequences of these mutations implies that stable catalytically inactive PTEN mutants may lead to the most severe phenotypes, and conversely, that mutants retaining partial function associate more frequently with a milder phenotype, with autism spectrum disorder often being diagnosed. Future work will be needed to confirm and to refine these genotype-phenotype relationships and convert this developing knowledge into improved patient management and potentially treatment with emerging drugs which target the PI3K pathway. PMID:26827793

  16. Novel SCN9A Mutations Underlying Extreme Pain Phenotypes: Unexpected Electrophysiological and Clinical Phenotype Correlations

    PubMed Central

    Emery, Edward C.; Habib, Abdella M.; Cox, James J.; Nicholas, Adeline K.; Gribble, Fiona M.

    2015-01-01

    The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype–phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies. PMID:25995458

  17. Homozygous MAPT R406W mutation causing FTDP phenotype: A unique instance of a unique mutation.

    PubMed

    Behnam, Mahdiyeh; Ghorbani, Fatemeh; Shin, Jin-Hong; Kim, Dae-Seong; Jang, Hojung; Nouri, Narges; Sedghi, Maryam; Salehi, Mansoor; Ansari, Behnaz; Basiri, Keivan

    2015-10-01

    Frontotemporal dementia is a neurodegenerative disorder among adults. An autosomal-dominantly form of frontotemporal dementia and parkinsonism linked to chromosome 17q21.2 (FTDP-17) was defined in 1996. The MAPT gene is responsible for the major cases of FTDP-17, and tau also has a role in Alzheimer's disease. So far, different FTDP-17 causing mutations have been identified in the MAPT gene. Among different MAPT mutations, the R406W mutation has been reported with a phenotype resembling Alzheimer's disease. Nonetheless, in this study we have identified the first homozygous case of R406W mutation in an Iranian family which shows characteristics of FTDP, just like the other heterozygous mutations of MAPT. This study clearly indicates that homozygous R406W mutation could result in FTDP phenotype. Our family confirms heterogeneity in the clinical phenotype of MAPT mutations; moreover, in the R406W mutation, a dosage effect is likely to contribute to this clinical heterogeneity. PMID:26086902

  18. Fragile X mutation and FG syndrome-like phenotype

    SciTech Connect

    Piussan, C.; Mathieu, M.; Berquin, P.

    1996-08-09

    We present data on 4 mentally retarded brothers, 2 of whom were dizygotic twins with congenital hypotonia, constipation, head size disproportionately large for length or height, and a combination of minor anomalies suggestive of FG syndrome. These brothers have a mentally retarded full sister with similar minor anomalies and an older half-brother with the Martin-Bell syndrome. The mother is mentally retarded; 4 of 7 individuals are positive for fragile X, but all have a CGG expansion ranging from 0.2-2 to 4 kb. Although the phenotype is not completely typical of the FG syndrome and the coincidence of the FMR1 mutation and segregation of the MCA/MR phenotype are highly unlikely, the FMR1 mutation may affect morphogenesis more extensively and differently than the Martin-Bell syndrome does to effect an FG syndrome-like phenotype in certain families. This phenotype does not appear to be a contiguous gene syndrome, but an effect of the FMR1 mutation on an adjacent gene must be considered. 18 refs., 4 figs.

  19. Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences

    PubMed Central

    Loeb, Lawrence A.

    2016-01-01

    The mutator phenotype hypothesis was postulated more than 40 years ago. It was based on the multiple enzymatic steps required to precisely replicate the 6 billion bases in the human genome each time a normal cell divides. A reduction in this accuracy during tumor progression could be responsible for the striking heterogeneity of malignant cells within a tumor and for the rapidity by which cancers become resistant to therapy. PMID:27197248

  20. A novel MED12 mutation: Evidence for a fourth phenotype.

    PubMed

    Prontera, Paolo; Ottaviani, Valentina; Rogaia, Daniela; Isidori, Ilenia; Mencarelli, Amedea; Malerba, Natascia; Cocciadiferro, Dario; Rolph, Pfundt; Stangoni, Gabriela; Vulto-van Silfhout, Anneke; Merla, Giuseppe

    2016-09-01

    Mutations of the MED12 gene have been reported mainly in males with FG (Opitz-Kaveggia), Lujan-Fryns, or X-linked Ohdo syndromes. Recently, a different phenotype characterized by minor anomalies, severe intellectual disability (ID), and absent language was reported in female and male patients belonging to the same family and carrying a frameshift MED12 mutation (c.5898dupC). Here, we report on two brothers and their niece affected by severe and mild ID, respectively, where whole exome sequencing combined with variant analysis within a panel of ID-related genes, disclosed a novel c.2312T>C (p.Ile771Thr) MED12 mutation. This variant, which has not been reported as a polymorphism, was not present in a third unaffected brother, and was predicted to be deleterious by five bioinformatic databases. This finding together with the phenotypic analogies shared with the carriers of c.5898dupC mutation suggests the existence of a fourth MED12-related disorder, characterized by severe ID, absent or deficient language and, milder, clinical manifestation in heterozygotes. We have reviewed the literature on MED12 heterozygotes, their clinical manifestations, and discuss the possible biological causes of this condition. © 2016 Wiley Periodicals, Inc. PMID:27312080

  1. Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations.

    PubMed

    Yaoita, Masako; Niihori, Tetsuya; Mizuno, Seiji; Okamoto, Nobuhiko; Hayashi, Shion; Watanabe, Atsushi; Yokozawa, Masato; Suzumura, Hiroshi; Nakahara, Akihiko; Nakano, Yusuke; Hokosaki, Tatsunori; Ohmori, Ayumi; Sawada, Hirofumi; Migita, Ohsuke; Mima, Aya; Lapunzina, Pablo; Santos-Simarro, Fernando; García-Miñaúr, Sixto; Ogata, Tsutomu; Kawame, Hiroshi; Kurosawa, Kenji; Ohashi, Hirofumi; Inoue, Shin-Ichi; Matsubara, Yoichi; Kure, Shigeo; Aoki, Yoko

    2016-02-01

    RASopathies are autosomal dominant disorders caused by mutations in more than 10 known genes that regulate the RAS/MAPK pathway. Noonan syndrome (NS) is a RASopathy characterized by a distinctive facial appearance, musculoskeletal abnormalities, and congenital heart defects. We have recently identified mutations in RIT1 in patients with NS. To delineate the clinical manifestations in RIT1 mutation-positive patients, we further performed a RIT1 analysis in RASopathy patients and identified 7 RIT1 mutations, including two novel mutations, p.A77S and p.A77T, in 14 of 186 patients. Perinatal abnormalities, including nuchal translucency, fetal hydrops, pleural effusion, or chylothorax and congenital heart defects, are observed in all RIT1 mutation-positive patients. Luciferase assays in NIH 3T3 cells demonstrated that the newly identified RIT1 mutants, including p.A77S and p.A77T, and the previously identified p.F82V, p.T83P, p.Y89H, and p.M90I, enhanced Elk1 transactivation. Genotype-phenotype correlation analyses of previously reported NS patients harboring RIT1, PTPN11, SOS1, RAF1, and KRAS revealed that hypertrophic cardiomyopathy (56 %) was more frequent in patients harboring a RIT1 mutation than in patients harboring PTPN11 (9 %) and SOS1 mutations (10 %). The rates of hypertrophic cardiomyopathy were similar between patients harboring RIT1 mutations and patients harboring RAF1 mutations (75 %). Short stature (52 %) was less prevalent in patients harboring RIT1 mutations than in patients harboring PTPN11 (71 %) and RAF1 (83 %) mutations. These results delineate the clinical manifestations of RIT1 mutation-positive NS patients: high frequencies of hypertrophic cardiomyopathy, atrial septal defects, and pulmonary stenosis; and lower frequencies of ptosis and short stature. PMID:26714497

  2. Correlated mutations: a hallmark of phenotypic amino acid substitutions.

    PubMed

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/. PMID:20862353

  3. Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation

    PubMed Central

    Van den Bossche, Tobi; Sleegers, Kristel; Cuyvers, Elise; Engelborghs, Sebastiaan; Sieben, Anne; De Roeck, Arne; Van Cauwenberghe, Caroline; Vermeulen, Steven; Van den Broeck, Marleen; Laureys, Annelies; Peeters, Karin; Mattheijssens, Maria; Vandenbulcke, Mathieu; Vandenberghe, Rik; Martin, Jean-Jacques; De Deyn, Peter P.; Cras, Patrick

    2016-01-01

    Objective: To generate a clinical and pathologic phenotype of patients carrying rare loss-of-function mutations in ABCA7, identified in a Belgian Alzheimer patient cohort and in an autosomal dominant family. Methods: We performed a retrospective review of available data records, medical records, results of CSF analyses and neuroimaging studies, and neuropathology data. Results: The mean onset age of the mutation carriers (n = 22) was 73.4 ± 8.4 years with a wide age range of 36 (54–90) years, which was independent of APOE genotype and cerebrovascular disease. The mean disease duration was 5.7 ± 3.0 years (range 2–12 years). A positive family history was recorded for 10 carriers (45.5%). All patient carriers except one presented with memory complaints. The 4 autopsied brains showed typical immunohistochemical changes of late-onset Alzheimer disease. Conclusions: All patients carrying a loss-of-function mutation in ABCA7 exhibited a classical Alzheimer disease phenotype, though with a striking wide onset age range, suggesting the influence of unknown modifying factors. PMID:27037232

  4. Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies

    PubMed Central

    Ilkovski, Biljana; Pagnamenta, Alistair T.; O'Grady, Gina L.; Kinoshita, Taroh; Howard, Malcolm F.; Lek, Monkol; Thomas, Brett; Turner, Anne; Christodoulou, John; Sillence, David; Knight, Samantha J.L.; Popitsch, Niko; Keays, David A.; Anzilotti, Consuelo; Goriely, Anne; Waddell, Leigh B.; Brilot, Fabienne; North, Kathryn N.; Kanzawa, Noriyuki; Macarthur, Daniel G.; Taylor, Jenny C.; Kini, Usha; Murakami, Yoshiko; Clarke, Nigel F.

    2015-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20–50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5′-UTR regions despite their typically low coverage in exome data. PMID:26293662

  5. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    PubMed Central

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  6. Discordant phenotypes in monozygotic twins with identical de novo WT1 mutation.

    PubMed

    Yu, Zihua; Yang, Yonghui; Feng, Dongning

    2012-06-01

    Mutations in the WT1 gene, leading to Denys-Drash syndrome and Frasier syndrome, can also cause isolated steroid-resistant nephrotic syndrome (ISRNS). Previous studies have reported six pairs of monozygotic twins with WT1 mutations, including one presenting with discordant phenotypes with identical WT1 mutations being of paternal origin and five pairs of monozygotic twins presenting the same phenotype with identical WT1 mutations. In this study, we report on female monozygotic twins showing discordant phenotypes with an identical de novo WT1 mutation, R394W, and presenting incomplete Denys-Drash syndrome and ISRNS. PMID:26069768

  7. The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    Johnston, Jennifer J.; Gropman, Andrea L.; Sapp, Julie C.; Teer, Jamie K.; Martin, Jodie M.; Liu, Cyndi F.; Yuan, Xuan; Ye, Zhaohui; Cheng, Linzhao; Brodsky, Robert A.; Biesecker, Leslie G.

    2012-01-01

    Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412∗. This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412∗ PIGA has residual function. Transfection of a mutant p.Arg412∗ PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412∗) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family. PMID:22305531

  8. Efficiency of carcinogenesis: is the mutator phenotype inevitable?

    PubMed

    Beckman, Robert A

    2010-10-01

    Cancer development requires multiple oncogenic mutations. Pathogenic mechanisms which accelerate this process may be favored carcinogenic pathways. Mutator mutations are mutations in genetic stability genes, and increase the mutation rate, speeding up the accumulation of oncogenic mutations. The mutator hypothesis states that mutator mutations play a critical role in carcinogenesis. Alternatively, tumors might arise by mutations occurring at the normal rate followed by selection and expansion of various premalignant lineages on the path to cancer. This alternative pathway is a significant argument against the mutator hypothesis. Mutator mutations may also lead to accumulation of deleterious mutations, which could lead to extinction of premalignant lineages before they become cancerous, another argument against the mutator hypothesis. Finally, the need for acquisition of a mutator mutation imposes an additional step on the carcinogenic process. Accordingly, the mutator hypothesis has been a seminal but controversial idea for several decades despite considerable experimental and theoretical work. To resolve this debate, the concept of efficiency has been introduced as a metric for comparing carcinogenic mechanisms, and a new theoretical approach of focused quantitative modeling has been applied. The results demonstrate that, given what is already known, the predominance of mutator mechanisms is likely inevitable, as they overwhelm less efficient non-mutator pathways to cancer. PMID:20934514

  9. Alzheimer's Disease Phenotypes and Genotypes Associated with Mutations in Presenilin 2

    ERIC Educational Resources Information Center

    Jayadev, Suman; Leverenz, James B.; Steinbart, Ellen; Stahl, Justin; Klunk, William; Yu, Cheng-En; Bird, Thomas D.

    2010-01-01

    Mutations in presenilin 2 are rare causes of early onset familial Alzheimer's disease. Eighteen presenilin 2 mutations have been reported, although not all have been confirmed pathogenic. Much remains to be learned about the range of phenotypes associated with these mutations. We have analysed our unique collection of 146 affected cases in 11…

  10. Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    PubMed Central

    Braendle, Christian; Baer, Charles F.; Félix, Marie-Anne

    2010-01-01

    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that

  11. UNSTABLE MUTATIONS IN THE FMR1 GENE AND THE PHENOTYPES

    PubMed Central

    Loesch, Danuta; Hagerman, Randi

    2014-01-01

    Fragile X syndrome (FXS), a severe neurodevelopmental anomaly, and one of the earliest disorders linked to an unstable (‘dynamic’) mutation, is caused by the large (>200) CGG repeat expansions in the noncoding portion of the FMR1 (Fragile X Mental Retardation-1) gene. These expansions, termed full mutations, normally silence this gene's promoter through methylation, leading to a gross deficit of the Fragile X Mental Retardation Protein (FMRP) that is essential for normal brain development. Rare individuals with the expansion but with an unmethylated promoter (and thus, FMRP production), present a much less severe form of FXS. However, a unique feature of the relationship between the different sizes of CGG expanded tract and phenotypic changes is that smaller expansions (<200) generate a series of different clinical manifestations and/or neuropsychological changes. The major part of this chapter is devoted to those FMR1 alleles with small (55-200) CGG expansions, termed ‘premutations’, which have the potential for generating the full mutation alleles on mother-offspring transmission, on the one hand, and are associated with some phenotypic changes, on the other. Thus, the role of several factors known to determine the rate of CGG expansion in the premutation alleles is discussed first. Then, an account of various neurodevelopmental, congnitive, behavioural and physical changes reported in carriers of these small expansions is given, and possible association of these conditions with a toxicity of the elevated FMR1 gene's transcript (mRNA) is discussed. The next two sections are devoted to major and well defined clinical conditions associated with the premutation alleles. The first one is the late onset neurodegenerative disorder termed fragile X-associated tremor ataxia syndrome (FXTAS). The wide range of clinical and neuropsychological manifestations of this syndrome, and their relevance to elevated levels of the FMR1 mRNA, are described. Another distinct

  12. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations

    PubMed Central

    Johnston, Jennifer J.; Sapp, Julie C.; Turner, Joyce T.; Amor, David; Aftimos, Salim; Aleck, Kyrieckos A.; Bocian, Maureen; Bodurtha, Joann N.; Cox, Gerald F.; Curry, Cynthia J.; Day, Ruth; Donnai, Dian; Field, Michael; Fujiwara, Ikuma; Gabbett, Michael; Gal, Moran; Graham, John M.; Hedera, Peter; Hennekam, Raoul C.M.; Hersh, Joseph H.; Hopkin, Robert J.; Kayserili, Hülya; Kidd, Alexa M.J.; Kimonis, Virginia; Lin, Angela E.; Lynch, Sally Ann; Maisenbacher, Melissa; Mansour, Sahar; McGaughran, Julie; Mehta, Lakshmi; Murphy, Helen; Raygada, Margarita; Robin, Nathaniel H.; Rope, Alan F.; Rosenbaum, Kenneth N.; Schaefer, G. Bradley; Shealy, Amy; Smith, Wendy; Soller, Maria; Sommer, Annmarie; Stalker, Heather J.; Steiner, Bernhard; Stephan, Mark J.; Tilstra, David; Tomkins, Susan; Trapane, Pamela; Tsai, Anne Chun-Hui; Van Allen, Margot I.; Vasudevan, Pradeep C.; Zabel, Bernhard; Zunich, Janice; Black, Graeme C.M.; Biesecker, Leslie G.

    2010-01-01

    A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining ninety-three probands here. This includes nineteen probands (twelve mutations) who fulfilled clinical criteria for GCPS or PHS, forty-eight probands (sixteen mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), twenty-one probands (six mutations) with features of PHS or GCPS and oral-facial-digital syndrome and five probands (one mutation) with non-syndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the phenotype-genotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria. PMID:20672375

  13. Phenotypic variability associated with Arg26Gln mutation in caveolin3.

    PubMed

    Fee, Dominic B; So, Yuen T; Barraza, Carlos; Figueroa, Karla P; Pulst, Stefan-M

    2004-09-01

    Caveolin3 (CAV3) is a protein associated with dystrophin, dystrophin-associated glycoproteins, and dysferlin. Mutations in the CAV3 gene result in certain autosomal-dominant inherited diseases, namely, rippling muscle disease (RMD), limb-girdle muscular dystrophy type 1C (LGMD1C), distal myopathy, and hyperCKemia. In this report we show that a previously reported family with RMD has a mutation in the CAV3 gene. Affected individuals had either a characteristic RMD phenotype, a combination of RMD and LGMD1C phenotypes, or a LGMD1C phenotype, but one mutation carrier was asymptomatic at age 86 years. This phenotypic variability associated with mutations in CAV3 has been reported previously but only in a few families. It is important to remember the significant phenotypic variability associated with CAV3 mutations when counseling families with these mutations. These observations also suggest the presence of factors independent of the CAV3 gene locus that modify phenotype. PMID:15318349

  14. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  15. A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations.

    PubMed

    Wallace, Stephanie E; Conta, Jessie H; Winder, Thomas L; Willer, Tobias; Eskuri, Jamie M; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P; Moore, Steven A; Gospe, Sidney M

    2014-04-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  16. Mutational analysis and genotype-phenotype correlations in southern Indian patients with sporadic and familial aniridia

    PubMed Central

    Dubey, Sushil Kumar; Mahalaxmi, Nagasubramanian; Vijayalakshmi, Perumalsamy

    2015-01-01

    Purpose Aniridia is a rare panocular disorder characterized by iris hypoplasia and other associated eye anomalies. Heterozygous null mutations in paired box gene 6 (PAX6) are the major cause of the classic aniridia phenotype. This study aims to detect the mutational spectrum of PAX6 and associated phenotypes in southern Indian patients with sporadic and familial aniridia. Methods Genomic DNA was isolated from peripheral blood from all participants. The coding regions and flanking intronic sequences of PAX6 were screened with Sanger sequencing in 30 probands with aniridia. The identified variations were further evaluated in available family members and 150 healthy controls. The pathogenic potential of the mutations were assessed using bioinformatics tools. Results Thirteen different mutations were detected in eight sporadic and five familial cases. Eleven novel mutations, including five insertions (c.7_10dupAACA, c.567dupC, c.704dupC, c.868dupA and c.753_754insTA), two deletions (c.242delC and c.249delT), and four splicing variants (c.10+1G>A, c.141G>A, c.141+4A>G and c.764A>G) were identified in this study. Clinical findings of the patients revealed phenotypic heterogeneity with the same or different mutations. Conclusions This study reported 11 novel mutations and thus expanded the spectrum of PAX6 mutations. Interestingly, all mutations reported in this study were truncations, which confirms the hypothesis that haploinsufficiency of PAX6 causes the aniridia phenotype. Our observations revealed inter- and intrafamilial phenotypic variability with PAX6 mutations. The common ocular findings associated with PAX6 mutations were iris hypoplasia, nystagmus, and foveal hypoplasia reported in almost all cases, with cataract, glaucoma, and keratopathy reported in approximately 50% of the patients. PMID:25678763

  17. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations.

    PubMed

    Scheffer, Ingrid E; Harkin, Louise A; Grinton, Bronwyn E; Dibbens, Leanne M; Turner, Samantha J; Zielinski, Marta A; Xu, Ruwei; Jackson, Graeme; Adams, Judith; Connellan, Mary; Petrou, Steven; Wellard, R Mark; Briellmann, Regula S; Wallace, Robyn H; Mulley, John C; Berkovic, Samuel F

    2007-01-01

    SCN1B, the gene encoding the sodium channel beta 1 subunit, was the first gene identified for generalized epilepsy with febrile seizures plus (GEFS+). Only three families have been published with SCN1B mutations. Here, we present four new families with SCN1B mutations and characterize the associated phenotypes. Analysis of SCN1B was performed on 402 individuals with various epilepsy syndromes. Four probands with missense mutations were identified. Detailed electroclinical phenotyping was performed on all available affected family members including quantitative MR imaging in those with temporal lobe epilepsy (TLE). Two new families with the original C121W SCN1B mutation were identified; novel mutations R85C and R85H were each found in one family. The following phenotypes occurred in the six families with SCN1B missense mutations: 22 febrile seizures, 20 febrile seizures plus, five TLE, three other GEFS+ phenotypes, two unclassified and ten unaffected individuals. All individuals with confirmed TLE had the C121W mutation; two underwent temporal lobectomy (one with hippocampal sclerosis and one without) and both are seizure free. We confirm the role of SCN1B in GEFS+ and show that the GEFS+ spectrum may include TLE alone. TLE with an SCN1B mutation is not a contraindication to epilepsy surgery. PMID:17020904

  18. Autism Spectrum Phenotype in Males and Females with Fragile X Full Mutation and Premutation

    ERIC Educational Resources Information Center

    Clifford, Sally; Dissanayake, Cheryl; Bui, Quang M.; Huggins, Richard; Taylor, Annette K.; Loesch, Danuta Z.

    2007-01-01

    The behavioural phenotype of autism was assessed in individuals with full mutation and premutation fragile X syndrome (FXS) using the Autism Diagnostic Observation Scale-Generic (ADOS-G) and the Autism Diagnostic Interview (ADI-R). The participants, aged 5-80 years, comprised 33 males and 31 females with full mutation, 7 males and 43 females with…

  19. Laminin 5 mutations in junctional epidermolysis bullosa: molecular basis of Herlitz vs. non-Herlitz phenotypes.

    PubMed

    Nakano, Aoi; Chao, Sheau-Chiou; Pulkkinen, Leena; Murrell, Dedee; Bruckner-Tuderman, Leena; Pfendner, Ellen; Uitto, Jouni

    2002-01-01

    Junctional epidermolysis bullosa (JEB) is a group of heritable blistering diseases in which tissue separation occurs within the lamina lucida of the cutaneous basement membrane zone. Clinically, two broad subcategories have been recognized: The Herlitz variant (H-JEB; OMIM 226700) is characterized by early demise of the affected individuals, usually within the first year of life, while non-Herlitz (nH-JEB; OMIM 226650) patients show a milder phenotype with life-long blistering, yet with normal lifespan. In this study, we have examined a cohort of 27 families, 15 with Herlitz and 12 with non-Herlitz JEB, for mutations in the candidate genes, LAMA3, LAMB3, and LAMC2, encoding the subunit polypeptides of laminin 5. The mutation detection strategy consisted of PCR amplification of all exons in these genes, followed by heteroduplex scanning and nucleotide sequencing. We were able to identify pathogenic mutations in both alleles of each proband, the majority of the mutations being in the LAMB3 gene. Examination of the mutation database revealed that most cases with Herlitz JEB harbored premature termination codon (PTC) mutations in both alleles. In non-Herlitz cases, the PTC mutation was frequently associated with a missense mutation or a putative splicing mutation in trans. In three cases with putative splicing mutations, RT-PCR analysis revealed a repertoire of splice variants in-frame, predicting the synthesis of either shortened or lengthened, yet partly functional, polypeptides. These observations would explain the relatively mild phenotype in cases with splicing mutations. Collectively, these findings, together with the global laminin 5 mutation database, contribute to our understanding of the genotype/phenotype correlations explaining the Herlitz vs non-Herlitz phenotypes. PMID:11810295

  20. Strong mutator phenotype drives faster adaptation from growth on glucose to growth on acetate in Salmonella.

    PubMed

    Le Bars, Hervé; Bonnaure-Mallet, Martine; Barloy-Hubler, Frédérique; Jolivet-Gougeon, Anne; Bousarghin, Latifa

    2014-10-01

    The metabolic adaptation of strong mutator strains was studied to better understand the link between the strong mutator phenotype and virulence. Analysis of the growth curves of isogenic strains of Salmonella, which were previously grown in M63 glucose media, revealed that the exponential phase of growth was reached earlier in an M63 acetate medium with strong mutator strains (mutated in mutS or in mutL) than with normomutator strains (P<0.05). Complemented strains confirmed the direct role of the strong mutator phenotype in this faster metabolic adaptation to the assimilation of acetate. In a mixed cell population, proliferation of strong mutators over normomutators was observed when the carbon source was switched from glucose to acetate. These results add to the sparse body of knowledge about strong mutators and highlight the selective advantage conferred by the strong mutator phenotype to adapt to a switch of carbon source in the environment. This work may provide clinically useful information given that there is a high prevalence of strong mutators among pathogenic strains of Salmonella and that acetate is the principal short chain fatty acid of the human terminal ileum and colon where Salmonella infection is localized. PMID:25031423

  1. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites

    PubMed Central

    Lee, Andrew H.; Fidock, David A.

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  2. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  3. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance.

    PubMed

    Rossi, A; Superti-Furga, A

    2001-03-01

    Mutations in the DTDST gene can result in a family of skeletal dysplasia conditions which comprise two lethal disorders, achondrogenesis type 1B (ACG1B) and atelosteogenesis type 2 (AO2); and two non-lethal disorders, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia (rMED). The gene product is a sulfate-chloride exchanger of the cell membrane. Inactivation of the sulfate exchanger leads to intracellular sulfate depletion and to the synthesis of undersulfated proteoglycans in susceptible cells such as chondrocytes and fibroblasts. Genotype-phenotype correlations are recognizable, with mutations predicting a truncated protein or a non-conservative amino acid substitution in a transmembrane domain giving the severe phenotypes, and non-transmembrane amino acid substitutions and splice site mutations giving the milder phenotypes. The clinical phenotype is modulated strictly by the degree of residual activity. Over 30 mutations have been observed, including 22 novel mutations reported here. The most frequent mutation, 862C>T (R279W), is a mild mutation giving the rMED phenotype when homozygous and mostly DTD when compounded; occurrence at a CpG dinucleotide and its panethnic distribution suggest independent recurrence. Mutation IVS1+2T>C is the second most common mutation, but is very frequent in Finland. It produces low levels of correctly spliced mRNA, and results in DTD when homozygous. Two other mutations, 1045-1047delGTT (V340del) and 558C>T (R178X), are associated with severe phenotypes and have been observed in multiple patients. Most other mutations are rare. Heterozygotes are clinically unaffected. When clinical samples are screened for radiologic and histologic features compatible with the ACG1B/AO2/DTD/rMED spectrum prior to analysis, the mutation detection rate is high (over 90% of alleles), and appropriate genetic counseling can be given. The sulfate uptake or sulfate incorporation assays in cultured fibroblasts have largely been

  4. MYH9-related disease: Five novel mutations expanding the spectrum of causative mutations and confirming genotype/phenotype correlations

    PubMed Central

    De Rocco, Daniela; Zieger, Barbara; Platokouki, Helen; Heller, Paula G.; Pastore, Annalisa; Bottega, Roberta; Noris, Patrizia; Barozzi, Serena; Glembotsky, Ana C.; Pergantou, Helen; Balduini, Carlo L.; Savoia, Anna; Pecci, Alessandro

    2013-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain. PMID:23123319

  5. Domain-dependent clustering and genotype-phenotype analysis of LGI1 mutations in ADPEAF

    PubMed Central

    Ho, Yuan-Yuan; Ionita-Laza, Iuliana

    2012-01-01

    Objective: In families with autosomal dominant partial epilepsy with auditory features (ADPEAF) with mutations in the LGI1 gene, we evaluated clustering of mutations within the gene and associations of penetrance and phenotypic features with mutation location and predicted effect (truncation or missense). Methods: We abstracted clinical and molecular information from the literature for all 36 previously published ADPEAF families with LGI1 mutations. We used a sliding window approach to analyze mutation clustering within the gene. Each mutation was mapped to one of the gene's 2 major functional domains, N-terminal leucine-rich repeats (LRRs) and C-terminal epitempin (EPTP) repeats, and classified according to predicted effect on the encoded protein (truncation vs missense). Analyses of phenotypic features (age at onset and occurrence of auditory symptoms) in relation to mutation site and predicted effect included 160 patients with idiopathic focal unprovoked seizures from the 36 families. Results: ADPEAF-causing mutations clustered significantly in the LRR domain (exons 3–5) of LGI1 (p = 0.026). Auditory symptoms were less frequent in individuals with truncation mutations in the EPTP domain than in those with other mutation type/domain combinations (58% vs 80%, p = 0.018). Conclusion: The LRR region of the LGI1 gene is likely to play a major role in pathogenesis of ADPEAF. PMID:22323750

  6. Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies

    PubMed Central

    Iannicelli, Miriam; Brancati, Francesco; Mougou-Zerelli, Soumaya; Mazzotta, Annalisa; Thomas, Sophie; Elkhartoufi, Nadia; Travaglini, Lorena; Gomes, Céline; Ardissino, Gian Luigi; Bertini, Enrico; Boltshauser, Eugen; Castorina, Pierangela; D'Arrigo, Stefano; Fischetto, Rita; Leroy, Brigitte; Loget, Philippe; Bonnière, Maryse; Starck, Lena; Tantau, Julia; Gentilin, Barbara; Majore, Silvia; Swistun, Dominika; Flori, Elizabeth; Lalatta, Faustina; Pantaleoni, Chiara; Johannes.Penzien; Grammatico, Paola; Dallapiccola, Bruno; Gleeson, Joseph G.; Attie-Bitach, Tania; Valente, Enza Maria

    2010-01-01

    Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin. PMID:20232449

  7. Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype

    PubMed Central

    Bresin, Elena; Rurali, Erica; Caprioli, Jessica; Sanchez-Corral, Pilar; Fremeaux-Bacchi, Veronique; Rodriguez de Cordoba, Santiago; Pinto, Sheila; Goodship, Timothy H.J.; Alberti, Marta; Ribes, David; Valoti, Elisabetta; Remuzzi, Giuseppe

    2013-01-01

    Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype–phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%–10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation. PMID:23431077

  8. MERRF-like phenotype associated with a rare mitochondrial trnaile mutation (m.4284 G>A).

    PubMed

    Hahn, A; Schänzer, A; Neubauer, B A; Gizewski, E; Ahting, U; Rolinski, B

    2011-08-01

    Nearly all patients affected by myoclonic epilepsy with ragged-red fibres (MERRF) harbour a mutation in the mitochondrial transfer RNALys gene. We report on an 8-year-old girl with clinical and diagnostic features of MERRF. After excluding one of the common mutations associated with MERRF, a complete sequence analysis of the mitochondrial genome revealed an m.4284 G>A mutation in the mitochondrial transfer RNAIle gene. This mutation has only once been described in a family with variable clinical symptoms, but has not yet been linked to MERRF. This case extends the mutational spectrum associated with the MERRF phenotype, and demonstrates the importance of performing a comprehensive mutational analysis in patients with suspected mitochondrial disease when common mutations have been ruled out. PMID:21766266

  9. Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia

    PubMed Central

    Stoll, Marion; Teoh, Hooiling; Lee, James; Reddel, Stephen; Zhu, Ying; Buckley, Michael; Sampaio, Hugo; Roscioli, Tony; Farrar, Michelle

    2016-01-01

    Objective: To describe the phenotypes in 2 families with vaccinia-related kinase 1 (VRK1) mutations including one novel VRK1 mutation. Methods: VRK1 mutations were found by whole exome sequencing in patients presenting with motor neuron disorders. Results: We identified pathogenic mutations in the VRK1 gene in the affected members of 2 families. In family 1, compound heterozygous mutations were identified in VRK1, c.356A>G; p.H119R, and c.1072C>T; p.R358*, in 2 siblings with adult onset distal spinal muscular atrophy (SMA). In family 2, a novel VRK1 mutation, c.403G>A; p.G135R and c.583T>G; p.L195V, were identified in a child with motor neuron disease. Conclusions: VRK1 mutations can produce adult-onset SMA and motor neuron disease in children without pontocerebellar hypoplasia. PMID:27281532

  10. Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage

    PubMed Central

    Smith, Katherine R.; Damiano, John; Franceschetti, Silvana; Carpenter, Stirling; Canafoglia, Laura; Morbin, Michela; Rossi, Giacomina; Pareyson, Davide; Mole, Sara E.; Staropoli, John F.; Sims, Katherine B.; Lewis, Jada; Lin, Wen-Lang; Dickson, Dennis W.; Dahl, Hans-Henrik; Bahlo, Melanie; Berkovic, Samuel F.

    2012-01-01

    We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states. PMID:22608501

  11. TRAPPC9-related autosomal recessive intellectual disability: report of a new mutation and clinical phenotype.

    PubMed

    Marangi, Giuseppe; Leuzzi, Vincenzo; Manti, Filippo; Lattante, Serena; Orteschi, Daniela; Pecile, Vanna; Neri, Giovanni; Zollino, Marcella

    2013-02-01

    Intellectual disability (ID) with autosomal recessive (AR) inheritance is believed to be common; however, very little is known about causative genes and genotype-phenotype correlations. The broad genetic heterogeneity of AR-ID, and its usually nonsyndromic nature make it difficult to pool multiple pedigrees with the same underlying genetic defect to achieve consistent nosology. Nearly all autosomal genes responsible for recessive cognitive disorders have been identified in large consanguineous families from the Middle East, and nonsense mutations in TRAPPC9 have been reported in a total of 5. Although several recurrent phenotypic abnormalities are described in some of these patients, the associated phenotype is usually referred to as nonsyndromic. By means of single-nucleotide polymorphism-array first and then by exome sequencing, we identified a new pathogenic mutation in TRAPPC9 in two Italian sisters born to healthy and apparently nonconsanguineous parents. It consists of a homozygous splice site mutation causing exon skipping with frameshift and premature termination, as confirmed by mRNA sequencing. By detailed phenotypic analysis of our patients, and by critical literature review, we found that homozygous TRAPPC9 loss-of-function mutations cause a distinctive phenotype, characterized by peculiar facial appearance, obesity, hypotonia (all signs resembling a Prader-Willi-like phenotype), moderate-to-severe ID, and consistent brain abnormalities. PMID:22549410

  12. Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes

    PubMed Central

    Romani, Marta; Isrie, Mala; Rosti, Rasim Ozgur; Micalizzi, Alessia; Musaev, Damir; Mazza, Tommaso; Al-gazali, Lihadh; Altunoglu, Umut; Boltshauser, Eugen; D'Arrigo, Stefano; De Keersmaecker, Bart; Kayserili, Hülya; Brandenberger, Sarah; Kraoua, Ichraf; Mark, Paul R; McKanna, Trudy; Van Keirsbilck, Joachim; Moerman, Philippe; Poretti, Andrea; Puri, Ratna; Van Esch, Hilde; Gleeson, Joseph G; Valente, Enza Maria

    2016-01-01

    Background Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. Methods Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. Results We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. Conclusion Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype–phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies. PMID:27208211

  13. Phenotype and Outcome in Hereditary Tubulointerstitial Nephritis Secondary to UMOD Mutations

    PubMed Central

    Bollée, Guillaume; Dahan, Karin; Flamant, Martin; Morinière, Vincent; Pawtowski, Audrey; Heidet, Laurence; Lacombe, Didier; Devuyst, Olivier; Pirson, Yves; Antignac, Corinne

    2011-01-01

    Summary Background UMOD mutations cause familial juvenile hyperuricemic nephropathy (FJHN) and medullary cystic kidney disease (MCKD), although these phenotypes are nonspecific. Design, setting, participants, & measurements We reviewed cases of UMOD mutations diagnosed in the genetic laboratories of Necker Hospital (Paris, France) and of Université Catholique de Louvain (Brussels, Belgium). We also analyzed patients with MCKD/FJHN but no UMOD mutation. To determine thresholds for hyperuricemia and uric-acid excretion fraction (UAEF) according to GFR, these parameters were analyzed in 1097 patients with various renal diseases and renal function levels. Results Thirty-seven distinct UMOD mutations were found in 109 patients from 45 families, all in exon 4 or 5 except for three novel mutations in exon 8. Median renal survival was 54 years. The type of mutation had a modest effect on renal survival, and intrafamilial variability was high. Detailed data available in 70 patients showed renal cysts in 24 (34.3%) of nonspecific localization in most patients. Uricemia was >75th percentile in 31 (71.4%) of 42 patients not under dialysis or allopurinol therapy. UAEF (n = 27) was <75th percentile in 70.4%. Among 136 probands with MCKD/FJHN phenotype, UMOD mutation was found in 24 (17.8%). Phenotype was not accurately predictive of UMOD mutation. Six probands had HNF1B mutations. Conclusions Hyperuricemia disproportionate to renal function represents the hallmark of renal disease caused by UMOD mutation. Renal survival is highly variable in patients with UMOD mutation. Our data also add novel insights into the interpretation of uricemia and UAEF in patients with chronic kidney diseases. PMID:21868615

  14. Mutational spectrometry without phenotypic selection: human mitochondrial DNA.

    PubMed Central

    Khrapko, K; Coller, H; André, P; Li, X C; Foret, F; Belenky, A; Karger, B L; Thilly, W G

    1997-01-01

    By first separating mutant from nonmutant DNA sequences on the basis of their melting temperatures and then increasing the number of copies by high-fidelity DNA amplification, we have developed a method that allows observation of point mutations in biological samples at fractions at or above 10-6. Using this method, we have observed the hotspot point mutations that lie in 100 base pairs of the mitochondrial genome in samples of cultured cells and human tissues. To date, 19 mutants have been isolated, their fractions ranging from 4x10-4 down to the limit of detection. We performed specific tests to determine if the observed signals were artefacts arising from contamination, polymerase errors during PCR or DNA adducts created during the procedure. We also tested the possibilities that DNA replication mismatch intermediates, or endogenous DNA adducts that were originally present in the cells, were included with true mutants in our separation steps and converted to mutants during PCR. We show that while most of the mutants behave as double-stranded point mutants in the cells, some appear to arise at least in part from mismatch intermediates or cellular DNA adducts. This technology is therefore sufficient for the observation of the spectrum of point mutations in human mitochondrial DNA and is a tool for discovering the primary causes of these mutations. PMID:9016616

  15. Mutation Spectrum and Genotype–Phenotype Correlation in Cornelia de Lange Syndrome

    PubMed Central

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Krantz, Ian D.; Musio, Antonio

    2013-01-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous developmental disorder. Clinical features include growth retardation, intellectual disability, limb defects, typical facial dysmorphism, and other systemic involvement. The increased understanding of the genetic basis of CdLS has led to diagnostic improvement and expansion of the phenotype. Mutations in five genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8), all regulators or structural components of cohesin, have been identified. Approximately 60% of CdLS cases are due to NIPBL mutations, 5% caused by mutations in SMC1A, RAD21, and HDAC8 and one proband was found to carry a mutation in SMC3. To date, 311 CdLS-causing mutations are known including missense, nonsense, small deletions and insertions, splice site mutations, and genomic rearrangements. Phenotypic variability is seen both intra- and intergenically. This article reviews the spectrum of CdLS mutations with a particular emphasis on their correlation to the clinical phenotype. PMID:24038889

  16. Characteristics of phenotype and genetic mutations in rice after spaceflight

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wu, H.; Wei, L. J.; Cheng, Z. L.; Xin, P.; Huang, C. L.; Zhang, K. P.; Sun, Y. Q.

    To investigate the mechanism of spaceflight induced mutations, seeds of 11 pure rice varieties carried by Shenzhou-3 spaceship of China in 2002 for six-day flight were planted and investigated. Results showed that mutations could be induced in the first generation (M 1). Five tall mutants were found in DongnongV7 variety, and the average height of the mutants was 31% taller than that of the control. Other traits such as the panicle length were also remarkably different from the control. In the second generation (M 2), various changes of traits were observed in all 11 varieties, including the height, heading date, leaf color, leaf shape, flag leaf angle, awns, panicle length, panicle type, rice shape (length-width ratio), and maturity. The mutation rate for the changes of the plant height and of the rice color (purple) varied from 0.05% to 0.52% among ten varieties except Xixuan-1. Changes of the height, fresh weight, dry weight, and culm width of the five DongnongV7 tall mutants were observed in the progeny individually. By using the AFLP (amplified fragment length polymorphism) method, 21 pairs of primers were employed and the mutated loci rate of the genome in 10 M 2 mutants from 10 varieties was found between 1.7% and 6.2%. In the third generation (M 3), many traits, such as the awn length, main panicle exertion date and plant height, were still segregated widely and diversely. In addition, the leaf color and awn color varied in the progenies of purple rice mutants. Our study suggested that spaceflight induced mutations were dependent on different rice varieties.

  17. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation.

    PubMed

    Tzeng, Michael; du Souich, Christèle; Cheung, Helen Wing-Hong; Boerkoel, Cornelius F

    2014-07-01

    Coffin-Siris Syndrome (CSS) is an intellectual disability disorder caused by mutation of components of the SWI/SNF chromatin-remodeling complex. We describe the evolution of the phenotypic features for a male patient with CSS from birth to age 7 years and 9 months and by review of reported CSS patients, we expand the phenotype to include neonatal and infantile hypertonia and upper airway obstruction. The propositus had a novel de novo heterozygous missense mutation in exon 17 of SMARCA4 (NM_001128849.1:c.2434C>T (NP_001122321.1:p.Leu812Phe)). This is the first reported mutation within motif Ia of the SMARCA4 SNF2 domain. In summary, SMARCA4-associated CSS is a pleiotropic disorder in which the pathognomic clinical features evolve and for which the few reported individuals do not demonstrate a clear genotype-phenotype correlation. PMID:24700502

  18. Somatic mosaicism and the phenotypic expression of COL2A1 mutations.

    PubMed

    Nagendran, Sonali; Richards, Allan J; McNinch, Annie; Sandford, Richard N; Snead, Martin P

    2012-05-01

    Mutations in COL2A1, the gene for type II-collagen, can result in a wide variety of phenotypes depending upon the nature of the mutation. Dominant negative mutations tend to result in severe and often lethal skeletal dysplasias such as achondrogenesis type 2, Kniest dysplasia, and spondyloepiphyseal dysplasia congenita. Stickler syndrome, a condition characterized by ophthalmological and orofacial features, deafness and arthritis, usually, but not exclusively, results from haploinsufficiency. Overlapping features of all these disorders can also be seen in the same family. Rare reports have demonstrated that phenotypic variability can be explained in some families by somatic mosaicism. Here, we describe five further examples of somatic mosaicism of COL2A1 mutations illustrating the importance of detailed clinical evaluation and molecular testing even in clinically normal parents of affected individuals. PMID:22496037

  19. HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery

    PubMed Central

    Leung, Alvin; Bader, Gary D.; Reimand, Jüri

    2014-01-01

    Summary: Correlating disease mutations with clinical and phenotypic information such as drug response or patient survival is an important goal of personalized cancer genomics and a first step in biomarker discovery. HyperModules is a network search algorithm that finds frequently mutated gene modules with significant clinical or phenotypic signatures from biomolecular interaction networks. Availability and implementation: HyperModules is available in Cytoscape App Store and as a command line tool at www.baderlab.org/Sofware/HyperModules. Contact: Juri.Reimand@utoronto.ca or Gary.Bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online PMID:24713437

  20. Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    PubMed Central

    Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.

    2010-01-01

    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841

  1. Novel mutations in LMNA A/C gene and associated phenotypes.

    PubMed

    Petillo, Roberta; D'Ambrosio, Paola; Torella, Annalaura; Taglia, Antonella; Picillo, Esther; Testori, Alessandro; Ergoli, Manuela; Nigro, Gerardo; Piluso, Giulio; Nigro, Vincenzo; Politano, Luisa

    2015-12-01

    Mutations in the lamin A/C gene (LMNA) have been associated with several phenotypes ranging from systemic to prevalent of muscle, heart, skin, nerve etc. More recently they have been associated with dilated cardiomyopathy (DCM) and severe forms of arrhythmogenic right ventricular cardiomyopathy (ARVC). We report four novel mutations - 3 missense and 1 deletion - in 4 unrelated patients showing different phenotypes, ranging from the early onset congenital form of laminopathy to classical LGMD phenotype, to LGMD and heart involvement. All these newly identified variants were not found in 300 ethnicallymatched control subjects. The variant c.103-105del CTG was described post-mortem in a young patient with congenital muscular dystrophy who presented at the age of 9 a first degree A-V block and subsequently several episodes of supraventricular parossystic tachycardia. Two patients presented as onset symptom lower limbs muscle weakness, and developed heart conduction defects requiring pacemaker implantation at the age of 26 and 38 years, respectively. One of them who carried the mutation c.1339G>C died at the age of 40 by intractable heart failure; the second one carrying the mutation 265C>T died at the age of 30, for a trmboembolic event. A classical LGMD phenotype without heart involvement was observed in the patient with the mutation 1579C>T, who died at the age of 68 years for respiratory insufficiency. PMID:27199538

  2. Molecular analysis of connexin26 asparagine14 mutations associated with syndromic skin phenotypes.

    PubMed

    de Zwart-Storm, Eugene A; Rosa, Rafael F M; Martin, Patricia E; Foelster-Holst, Regina; Frank, Jorge; Bau, Ana E K; Zen, Paulo R G; Graziadio, Carla; Paskulin, Giorgio A; Kamps, Miriam A; van Geel, Michel; van Steensel, Maurice A M

    2011-05-01

    Mutations in connexin26, a cutaneous gap junction protein, cause a wide variety of skin disorders including keratitis-ichthyosis-deafness syndrome (KID). We previously delineated a phenotype distinct from KID, hypotrichosis-deafness syndrome, caused by the mutation p.Asn14Lys in connexin26. However, a different mutation at the same location, p.Asn14Tyr, was reported to cause a disorder similar to KID. Distinct substitutions cause different conformational changes to the protein, each with unique consequences for its behaviour. This may explain the phenotypic differences. We found the previously described mutation p.Asn14Tyr in connexin26 in two patients from Brazil and Poland, and observe quite distinct phenotypes distinguishable from classical KID syndrome. We assessed functional consequences of p.Asn14Tyr and p.Asn14Lys, using fluorescently labelled proteins and parachute assay, comparing them with the classical KID mutation p.Asp50Asn. Our analyses show that p.Asn14Tyr, p.Asn14Lys and p.Asp50Asn have different consequences for protein localization and gap junction permeability. However, the differences between the phenotypes we observed cannot be readily explained from effects on protein trafficking or gap junction permeability. PMID:21410767

  3. Paediatric phenotype of Kallmann syndrome due to mutations of fibroblast growth factor receptor 1 (FGFR1).

    PubMed

    Zenaty, Delphine; Bretones, Patricia; Lambe, Cécile; Guemas, Isabelle; David, Michel; Léger, Juliane; de Roux, Nicolas

    2006-07-25

    Kallmann syndrome characterised by hypogonadotropic hypogonadism (HH) and anosmia is genetically heterogeneous with X-linked, autosomal dominant and autosomal recessive forms. The autosomal dominant form due to loss of function mutation in the fibroblast growth factor receptor 1 (FGFR1) accounts for about 10% of cases. We report here three paediatric cases of Kallmann syndrome with unusual phenotype in two unrelated patients with severe ear anomalies (hypoplasia or agenesis of external ear) associated with classical features, such as cleft palate, dental agenesis, syndactylia, micropenis and cryptorchidism. We found de novo mutation in these two patients (Cys178Ser and Arg622Gly, respectively), and one inherited Arg622Gln mutation with intrafamilial variable phenotype. These genotype-phenotype correlations indicate that paediatric phenotypic expression of FGFR1 loss of function mutations is highly variable, the severity of the oro-facial malformations at birth does not predict gonadotropic function at the puberty and that de novo mutations of FGFR1 are relatively frequent. PMID:16757108

  4. The Opdc missense mutation of Pax2 has a milder than loss-of-function phenotype

    PubMed Central

    Cross, Sally H.; McKie, Lisa; West, Katrine; Coghill, Emma L.; Favor, Jack; Bhattacharya, Shoumo; Brown, Steve D.M.; Jackson, Ian J.

    2011-01-01

    Renal-coloboma syndrome, also known as papillorenal syndrome, is an autosomal dominant human disorder in which optic disc coloboma is associated with kidney abnormalities. Mutations in the paired domain transcription factor PAX2 have been found to be the underlying cause of this disease. Disease severity varies between patients, and in some cases, renal hypoplasia has been found in the absence of any retinal defects. Here we report an N-ethyl-N-nitrosourea-induced mouse mutation, Opdc, which is an isoleucinetothreonine missense mutation, I40T, in the first α-helix of the Pax2 paired domain. The mutant protein binds target DNA sequences less strongly than the wild-type protein and acts poorly to transactivate target promoters in culture. The phenotypic consequence of this mutation on the development of the eye and ear is similar to that reported for null alleles of Pax2. However, in homozygotes, cerebellar development is normal on a genetic background in which loss of Pax2 results in failure of cerebellar formation. Moreover, there is a genetic background effect on the heterozygous phenotype such that on some strain backgrounds, kidney development is unaffected. Opdc is the first hypomorphic mutation reported for Pax2 that differs in phenotype from loss-of-function mutations. These results suggest that PAX2 is a strong candidate gene for cases in which human patients have optic disc coloboma not associated with renal dysplasia. PMID:20943750

  5. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  6. Phenotypic expression of the p.Leu1077Pro CFTR mutation in Sicilian cystic fibrosis patients

    PubMed Central

    2013-01-01

    Background The p.Leu1077Pro CFTR mutation was firstly described in 1992 as a mild allele that confers a pancreatic sufficiency phenotype but the information collected in database CFTR2 lead to consider p.Leu1077Pro as a severe CF mutation. Although it is typical of Southern Italy, p.Leu1077Pro is not included in the mutation panel firstly tested in individuals originated from this area. The aim of our study was to describe prevalence and clinical features in patients bearing this mutation followed in our Cystic Fibrosis Centre to demonstrate that this mutation should be included in the mutation panel firstly tested in patients originated from Southern Italy. Findings We reviewed data from a cohort of 111 cystic fibrosis patients. 4 patients who were heterozygous for the p.Leu1077Pro mutation were included in the study. In our Cystic Fibrosis Centre, the prevalence of p.Leu1077Pro is 3.6% among all mutations. All patients had positive sweat test values, pancreatic insufficiency and pulmonary exacerbations. One out of four patients even showed both FEV1 and FVC values significantly below the normal range, the presence of bronchiectasis and chronic Pseudomonas aeruginosa colonization. Conclusions We found that the p.Leu1077Pro CFTR mutation is associated with a classic CF phenotype confirming what is reported in CFTR2 database. The relatively high prevalence of p.Leu1077Pro associated with the severe clinical course of the disease in patients bearing this mutation is of interest for genetic counselling purposes, as it should be part of mutation panel to be tested in individuals originated from Southern Italy. PMID:24225052

  7. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome and Genotype-Phenotype Correlation

    PubMed Central

    Lalani, Seema R.; Safiullah, Arsalan M.; Fernbach, Susan D.; Harutyunyan, Karine G.; Thaller, Christina; Peterson, Leif E.; McPherson, John D.; Gibbs, Richard A.; White, Lisa D.; Hefner, Margaret; Davenport, Sandra L. H.; Graham, John M.; Bacino, Carlos A.; Glass, Nancy L.; Towbin, Jeffrey A.; Craigen, William J.; Neish, Steven R.; Lin, Angela E.; Belmont, John W.

    2006-01-01

    CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation. PMID:16400610

  8. Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    PubMed Central

    Voican, Adela; Amazit, Larbi; Trabado, Séverine; Fagart, Jérôme; Meduri, Geri; Brailly-Tabard, Sylvie; Chanson, Philippe; Lecomte, Pierre; Guiochon-Mantel, Anne; Young, Jacques

    2011-01-01

    Context TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. Objective To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. Results From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. Conclusion The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations. PMID:22031817

  9. Retinal Phenotypes in Patients Homozygous for the G1961E Mutation in the ABCA4 Gene

    PubMed Central

    Burke, Tomas R.; Fishman, Gerald A.; Zernant, Jana; Schubert, Carl; Tsang, Stephen H.; Smith, R. Theodore; Ayyagari, Radha; Koenekoop, Robert K.; Umfress, Allison; Ciccarelli, Maria Laura; Baldi, Alfonso; Iannaccone, Alessandro; Cremers, Frans P. M.; Klaver, Caroline C. W.; Allikmets, Rando

    2012-01-01

    Purpose. We evaluated the pathogenicity of the G1961E mutation in the ABCA4 gene, and present the range of retinal phenotypes associated with this mutation in homozygosity in a patient cohort with ABCA4-associated phenotypes. Methods. Patients were enrolled from the ABCA4 disease database at Columbia University or by inquiry from collaborating physicians. Only patients homozygous for the G1961E mutation were enrolled. The entire ABCA4 gene open reading frame, including all exons and flanking intronic sequences, was sequenced in all patients. Phenotype data were obtained from clinical history and examination, fundus photography, infrared imaging, fundus autofluorescence, fluorescein angiography, and spectral domain-optical coherence tomography. Additional functional data were obtained using the full-field electroretinogram, and static or kinetic perimetry. Results. We evaluated 12 patients homozygous for the G1961E mutation. All patients had evidence of retinal pathology consistent with the range of phenotypes observed in ABCA4 disease. The latest age of onset was recorded at 64 years, in a patient diagnosed initially with age-related macular degeneration (AMD). Of 6 patients in whom severe structural (with/without functional) fundus changes were detected, 5 had additional, heterozygous or homozygous, variants detected in the ABCA4 gene. Conclusions. Homozygous G1961E mutation in ABCA4 results in a range of retinal pathology. The phenotype usually is at the milder end of the disease spectrum, with severe phenotypes linked to the presence of additional ABCA4 variants. Our report also highlights that milder, late-onset Stargardt disease may be confused with AMD. PMID:22661473

  10. Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes.

    PubMed

    Lee, Winston; Xie, Yajing; Zernant, Jana; Yuan, Bo; Bearelly, Srilaxmi; Tsang, Stephen H; Lupski, James R; Allikmets, Rando

    2016-01-01

    Over 800 mutations in the ABCA4 gene cause autosomal recessive Stargardt disease. Due to extensive genetic heterogeneity, observed variant-associated phenotypes can manifest tremendous variability of expression. Furthermore, the high carrier frequency of pathogenic ABCA4 alleles in the general population (~1:20) often results in pseudo-dominant inheritance patterns further complicating the diagnosis and characterization of affected individuals. This study describes a genotype/phenotype analysis of an unusual family with multiple macular disease phenotypes spanning across two generations and segregating four distinct ABCA4 mutant alleles. Complete sequencing of ABCA4 discovered two known missense mutations, p.C54Y and p.G1961E. Array comparative genomic hybridization revealed a large novel deletion combined with a small insertion, c.6148-698_c.6670del/insTGTGCACCTCCCTAG, and complete sequencing of the entire ABCA4 genomic locus uncovered a new deep intronic variant, c.302+68C>T. Patients with the p.G1961E mutation had the mildest, confined maculopathy phenotype with peripheral flecks while those with all other mutant allele combinations exhibited a more advanced stage of generalized retinal and choriocapillaris atrophy. This family epitomizes the clinical and genetic complexity of ABCA4-associated diseases. It contained variants from all classes of mutations, in the coding region, deep intronic, both single nucleotide variants and copy number variants that accounted for varying phenotypes segregating in an apparent dominant fashion. Unequivocally defining disease-associated alleles in the ABCA4 locus requires a multifaceted approach that includes advanced mutation detection methods and a thorough analysis of clinical phenotypes. PMID:26527198

  11. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    SciTech Connect

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these families showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.

  12. Novel PRRT2 mutations in paroxysmal dyskinesia patients with variant inheritance and phenotypes.

    PubMed

    Liu, X-R; Wu, M; He, N; Meng, H; Wen, L; Wang, J-L; Zhang, M-P; Li, W-B; Mao, X; Qin, J-M; Li, B-M; Tang, B; Deng, Y-H; Shi, Y-W; Su, T; Yi, Y-H; Tang, B-S; Liao, W-P

    2013-03-01

    Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs-related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non-convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between

  13. Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations.

    PubMed

    Huang, Wenrui; Szczesna-Cordary, Danuta

    2015-12-01

    We discuss here the potential mechanisms of action associated with hypertrophic (HCM) or dilated (DCM) cardiomyopathy causing mutations in the myosin regulatory (RLC) and essential (ELC) light chains. Specifically, we focus on four HCM mutations: RLC-A13T, RLC-K104E, ELC-A57G and ELC-M173V, and one DCM RLC-D94A mutation shown by population studies to cause different cardiomyopathy phenotypes in humans. Our studies indicate that RLC and ELC mutations lead to heart disease through different mechanisms with RLC mutations triggering alterations of the secondary structure of the RLC which further affect the structure and function of the lever arm domain and impose changes in the cross bridge cycling rates and myosin force generation ability. The ELC mutations exert their detrimental effects through changes in the interaction of the N-terminus of ELC with actin altering the cross talk between the thick and thin filaments and ultimately resulting in an altered force-pCa relationship. We also discuss the effect of mutations on myosin light chain phosphorylation. Exogenous myosin light chain phosphorylation and/or pseudo-phosphorylation were explored as potential rescue tools to treat hypertrophy-related cardiac phenotypes. PMID:26385864

  14. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters

    PubMed Central

    Bröer, Stefan; Bailey, Charles G.; Kowalczuk, Sonja; Ng, Cynthia; Vanslambrouck, Jessica M.; Rodgers, Helen; Auray-Blais, Christiane; Cavanaugh, Juleen A.; Bröer, Angelika; Rasko, John E.J.

    2008-01-01

    Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes. PMID:19033659

  15. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    PubMed

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. PMID:25959749

  16. AB071. Mutations of AR gene in Vietnamese patients: genotype and phenotype

    PubMed Central

    Dung, Vu Chi; Fukami, Maki; Ngoc, Can Thi Bich; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Nga, Pham Thu; Dat, Nguyen Phu; Ogata, Tsutomu

    2015-01-01

    Androgen insensitivity syndrome (AIS) is the most common specific cause of 46,XY disorder in sex development. The androgen signaling pathway is complex but so far, the only gene linked with AIS is the androgen receptor (AR). Mutations in the AR are found in most subjects with complete AIS but in partial AIS, the rate has varied 28-73%, depending on the case selection. More than over 800 entries of mutations causing AIS, representing over 500 different AR mutations from more than 850 patients with AIS have been reported. We aim to describe clinical manifestations and to identify mutation of AR in Vietnamese patients with AIS. This case series study included 12 patients from 9 unrelated families with AIS. The gonadal position and external genitalia were evaluated clinically and using ultrasound. The mutation analysis of AR was performed using PCR and direct sequencing. The age of diagnosis was 1 to 83 years old. 8/12 cases were complete androgen insensitivity syndrome (CAIS) (female external genitalia) and 4 cases were predominantly female partial AIS phenotype. Four cases had two labial testes, six cases had inguinal testes and two cases had abdominal testes. Five different mutations of AR were identified from seven cases of three unrelated families including three novel ones. The novel missense mutation p.L701F (c.2103G > T) was identified in a patient of 83 years of age. The novel missense mutation p.L705F (c.2113C > T) was identified in two sibs. The novel mutation p. W752S (c.2256G > T) was identified in a child with CAIS phenotype and had family history. The reported missense mutation p.V747M was identified in two sibs. The reported mutation p.V867M (c.2599G > A) was identified in a child with female phenotype. Our study identified three novel and two reported mutation in the AR gene that may provide us new insights into the molecular mechanisms of AIS. The expanded database of these mutations should benefit patients in the diagnosis and treatment of this

  17. Phenotypic heterogeneity in British patients with a founder mutation in the FHL1 gene

    PubMed Central

    Sarkozy, Anna; Windpassinger, Christian; Hudson, Judith; Dougan, Charlotte F; Lecky, Bryan; Hilton-Jones, David; Eagle, Michelle; Charlton, Richard; Barresi, Rita; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2011-01-01

    Mutations in the four-and-a-half LIM domain 1 (FHL1) gene, which encodes a 280-amino-acid protein containing four LIM domains and a single zinc-finger domain in the N-terminal region, have been associated with a broad clinical spectrum of X-linked muscle diseases encompassing a variety of different phenotypes. Patients might present with a scapuloperoneal myopathy, a myopathy with postural muscle atrophy and generalized hypertrophy, an Emery–Dreifuss muscular dystrophy, or an early onset myopathy with reducing bodies. It has been proposed that the phenotypic variability is related to the position of the mutation within the FHL1 gene. Here, we report on three British families with a heterogeneous clinical presentation segregating a single FHL1 gene mutation and haplotype, suggesting that this represents a founder mutation. The underlying FHL1 gene mutation was detected by direct sequencing and the founder effect was verified by haplotype analysis of the FHL1 gene locus. A 3-bp insertion mutation (p.Phe127_Thr128insIle) within the second LIM domain of the FHL1 gene was identified in all available affected family members of the three families. Haplotype analysis of the FHL1 region on Xq26 revealed that the families shared a common haplotype. The p.Phe127_Thr128insIle mutation in the FHL1 gene therefore appears to be a British founder mutation and FHL1 gene screening, in particular of exon 6, should therefore be indicated in British patients with a broad phenotypic spectrum of X-linked muscle diseases. PMID:21629301

  18. A Computational Protein Phenotype Prediction Approach to Analyze the Deleterious Mutations of Human MED12 Gene.

    PubMed

    Banaganapalli, Babajan; Mohammed, Kaleemuddin; Khan, Imran Ali; Al-Aama, Jumana Y; Elango, Ramu; Shaik, Noor Ahmad

    2016-09-01

    Genetic mutations in MED12, a subunit of Mediator complex are seen in a broad spectrum of human diseases. However, the underlying basis of how these pathogenic mutations elicit protein phenotype changes in terms of 3D structure, stability and protein binding sites remains unknown. Therefore, we aimed to investigate the structural and functional impacts of MED12 mutations, using computational methods as an alternate to traditional in vivo and in vitro approaches. The MED12 gene mutations details and their corresponding clinical associations were collected from different databases and by text-mining. Initially, diverse computational approaches were applied to categorize the different classes of mutations based on their deleterious impact to MED12. Then, protein structures for wild and mutant types built by integrative modeling were analyzed for structural divergence, solvent accessibility, stability, and functional interaction deformities. Finally, this study was able to identify that genetic mutations mapped to exon-2 region, highly conserved LCEWAV and Catenin domains induce biochemically severe amino acid changes which alters the protein phenotype as well as the stability of MED12-CYCC interactions. To better understand the deleterious nature of FS-IDs and Indels, this study asserts the utility of computational screening based on their propensity towards non-sense mediated decay. Current study findings may help to narrow down the number of MED12 mutations to be screened for mediator complex dysfunction associated genetic diseases. This study supports computational methods as a primary filter to verify the plausible impact of pathogenic mutations based on the perspective of evolution, expression and phenotype of proteins. J. Cell. Biochem. 117: 2023-2035, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813965

  19. Classical MERRF phenotype associated with mitochondrial tRNA(Leu) (m.3243A>G) mutation.

    PubMed

    Brackmann, Florian; Abicht, Angela; Ahting, Uwe; Schröder, Rolf; Trollmann, Regina

    2012-05-01

    Myoclonic epilepsy with ragged red fibres (MERRF) and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) are established phenotypes of mitochondrial encephalopathies. Nearly all patients affected by MERRF harbour a mutation in the mitochondrial tRNA(Lys) gene. We report a 13-year-old patient who presented with the classical phenotype of MERRF but was found with the typical mutation of MELAS. The patient presented with myoclonic epilepsy beginning at 10 years of age, a muscle biopsy with ragged red fibres and some COX negative fibres and progressive bilateral MRI hyperintensitivities in the basal ganglia constituting MERRF syndrome but lacked clinical characteristics of MELAS. In particular, stroke-like episodes or lactic acidosis were not present. None of the tRNA mutations described in MERRF were found. However, further analyses showed the tRNA(Leu) mutation m.3243A>G usually found in MELAS to be responsible for the condition in this patient. This report highlights the broad phenotypic variability of mitochondrial encephalopathies with juvenile onset. It shows that m.3243A>G mutations can cause classical MERRF and emphasises the significance of comprehensive genetic studies if mitochondrial disease is suspected clinically. PMID:22270878

  20. Mutation spectrum and genotype–phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-ya; Usami, Shin-ichi

    2014-01-01

    Mutations in SLC26A4 cause a broad phenotypic spectrum, from typical Pendred syndrome to nonsyndromic hearing loss associated with enlarged vestibular aqueduct. Identification of these mutations is important for accurate diagnosis, proper medical management and appropriate genetic counseling and requires updated information regarding spectrum, clinical characteristics and genotype–phenotype correlations, based on a large cohort. In 100 patients with bilateral enlarged vestibular aqueduct among 1511 Japanese hearing loss probands registered in our gene bank, goiter data were available for 79, of whom 15 had Pendred syndrome and 64 had nonsyndromic hearing loss. We clarified the mutation spectrum for the SLC26A4 mutations and also summarized hearing levels, progression, fluctuation and existence of genotype–phenotype correlation. SLC26A4 mutations were identified in 82 of the 100 patients (82.0%). Of the Pendred syndrome patients, 93% (14/15) were carriers, as were 77% (49/64) of the nonsyndromic hearing loss patients. Clinical characteristics of patients with SLC26A4 mutations were congenital, fluctuating and progressive hearing loss usually associated with vertigo and/or goiter. We found no genotype–phenotype correlations, indicating that, unlike in the case of GJB2 mutations, the phenotype cannot be predicted from the genotype. Our mutation analysis confirmed the importance of mutations in the SLC26A4 gene among hearing loss patients with enlarged vestibular aqueduct and revealed the mutation spectrum, essential information when performing genetic testing. PMID:24599119

  1. Variability in dentofacial phenotypes in four families with WNT10A mutations

    PubMed Central

    Vink, Christian P; Ockeloen, Charlotte W; ten Kate, Sietske; Koolen, David A; Ploos van Amstel, Johannes Kristian; Kuijpers-Jagtman, Anne-Marie; van Heumen, Celeste C; Kleefstra, Tjitske; Carels, Carine E L

    2014-01-01

    This article describes the inter- and intra-familial phenotypic variability in four families with WNT10A mutations. Clinical characteristics of the patients range from mild to severe isolated tooth agenesis, over mild symptoms of ectodermal dysplasia, to more severe syndromic forms like odonto-onycho-dermal dysplasia (OODD) and Schöpf–Schulz–Passarge syndrome (SSPS). Recurrent WNT10A mutations were identified in all affected family members and the associated symptoms are presented with emphasis on the dentofacial phenotypes obtained with inter alia three-dimensional facial stereophotogrammetry. A comprehensive overview of the literature regarding WNT10A mutations, associated conditions and developmental defects is presented. We conclude that OODD and SSPS should be considered as variable expressions of the same WNT10A genotype. In all affected individuals, a dished-in facial appearance was observed which might be helpful in the clinical setting as a clue to the underlying genetic etiology. PMID:24398796

  2. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations.

    PubMed Central

    Maher, E R; Webster, A R; Richards, F M; Green, J S; Crossey, P A; Payne, S J; Moore, A T

    1996-01-01

    Von Hippel-Lindau disease is an autosomal dominantly inherited familial cancer syndrome predisposing to retinal and central nervous system haemangioblastomas, renal cell carcinoma, and phaeochromocytoma. VHL disease shows variable expression and interfamilial differences in predisposition to phaeochromocytoma. In a previous study of 65 VHL kindreds with defined VHL mutations we detected significant differences between VHL families with and without phaeochromocytoma such that missense mutations were more common and large deletions or protein truncating mutations less frequent in phaeochromocytoma positive families. To investigate the significance and cause of this association further, we studied 138 VHL kindreds for germline mutations and calculated the age related tumour risks for different classes of VHL gene mutations. Using SSCP, heteroduplex and Southern analysis we identified a germline VHL gene mutation in 101 families (73%). Direct sequencing of the VHL coding region further increased the mutation detection rate to 81%. In addition to precise presymptomatic diagnosis, identification of a VHL gene mutation can provide an indication of the likely phenotype. We found that large deletions and mutations predicted to cause a truncated protein were associated with a lower risk of phaeochromocytoma (6% and 9% at 30 and 50 years, respectively) than missense mutations (40% and 59%, respectively) and that missense mutations at codon 167 were associated with a high risk of phaeochromocytoma (53% and 82% at ages 30 and 50 years). Cumulative probabilities of renal cell carcinoma did not differ between the two groups (deletion/ truncation mutations: 8% and 60%, and missense mutations: 10% and 64% at ages 30 and 50 years, respectively). Age related risks for haemangioblastoma were similar in the two mutation groups, with the age related risks of cerebellar haemangioblastoma slightly less (35% and 64% v 38% and 75% at ages 30 and 50 years) and retinal haemangioblastoma

  3. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis.

    PubMed

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  4. Smith-Lemli-Opitz syndrome: new mutation with a mild phenotype.

    PubMed

    Prasad, Chitra; Marles, Sandra; Prasad, Asuri N; Nikkel, Sarah; Longstaffe, Sally; Peabody, Deborah; Eng, Barry; Wright, Sarah; Waye, John S; Nowaczyk, Małgorzata J M

    2002-02-15

    Smith-Lemli-Opitz syndrome (SLOS) (Online Mendelian Inheritance in Man, OMIM, 2001, http://www.ncbi.nlm.nih.gov/omim/ for SLOS, MIM 270400) is an autosomal recessive disorder of cholesterol biosynthesis caused by mutations of the 3beta-hydroxysterol Delta(7)-reductase gene, DHCR7. We report on a female infant with an exceptionally mild phenotype of SLOS, in whom molecular studies identified a new mutation in DHCR7. The proposita initially presented with feeding difficulties, failure to thrive, hypotonia, mild developmental delay, and oral tactile aversion. She had minor facial anomalies and 2-3 syndactyly of her toes in both feet. The plasma cholesterol was borderline low at 2.88 mmol/L (normal 2.97-4.40 mmol/L). Elevated plasma 7-dehydrocholesterol level of 200.0 micromol/L confirmed the clinical diagnosis of SLOS. Molecular analysis demonstrated compound heterozygosity for IVS8-1G -->C and Y280C, a new missense mutation in DHCR7. Since the other mutation in this patient is a known null mutation, this newly discovered mutation is presumably associated with significant residual enzyme activity and milder expression of clinical phenotype. PMID:11857552

  5. Variability in phenotype induced by the podocin variant R229Q plus a single pathogenic mutation

    PubMed Central

    Phelan, Paul J.; Hall, Gentzon; Wigfall, Delbert; Foreman, John; Nagaraj, Shashi; Malone, Andrew F.; Winn, Michelle P.; Howell, David N.; Gbadegesin, Rasheed

    2015-01-01

    Background Mutations in podocin (NPHS2) are the most common cause of childhood onset autosomal recessive steroid-resistant nephrotic syndrome (SRNS). The disease is characterized by early-onset proteinuria, resistance to immunosuppressive therapy and rapid progression to end-stage renal disease. Compound heterozygous changes involving the podocin variant R229Q combined with another pathogenic mutation have been associated with a mild phenotype with disease onset often in adulthood. Methods We screened 19 families with early-onset SRNS for mutations in NPHS2 and WT1 and identified four disease-causing mutations (three in NPHS2 and one in WT1) prior to planned whole-exome sequencing. Results We describe two families with three individuals presenting in childhood who are compound heterozygous for R229Q and one other pathogenic NPHS2 mutation, either L327F or A297V. One child presented at age 4 years (A297V plus R229Q) and the other two at age 13 (L327F plus R229Q), one with steadily deteriorating renal function. Conclusions These cases highlight the phenotypic variability associated with the NPHS2 R229Q variant plus pathogenic mutation. Individuals may present with early aggressive disease. PMID:26413278

  6. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis

    PubMed Central

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  7. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes

    PubMed Central

    Lyons, Susan E.; Lawson, Nathan D.; Lei, Lin; Bennett, Paul E.; Weinstein, Brant M.; Liu, P. Paul

    2002-01-01

    Vlad tepes (vltm651) is one of only five “bloodless” zebrafish mutants isolated through large-scale chemical mutagenesis screening. It is characterized by a severe reduction in blood cell progenitors and few or no blood cells at the onset of circulation. We now report characterization of the mutant phenotype and the identification of the gene mutated in vltm651. Embryos homozygous for the vltm651 mutation had normal expression of hematopoietic stem cell markers through 24 h postfertilization, as well as normal expression of myeloid and lymphoid markers. Analysis of erythroid development revealed variable expression of erythroid markers. Through positional and candidate gene cloning approaches we identified a nonsense mutation in the gata1 gene, 1015C → T (Arg-339 → Stop), in vltm651. The nonsense mutation was located C-terminal to the two zinc fingers and resulted in a truncated protein that was unable to bind DNA or mediate GATA-specific transactivation. A BAC clone containing the zebrafish gata1 gene was able to rescue the bloodless phenotype in vltm651. These results show that the vltm651 mutation is a previously uncharacterized gata1 allele in the zebrafish. The vltm651 mutation sheds new light on Gata1 structure and function in vivo, demonstrates that Gata1 plays an essential role in zebrafish hematopoiesis with significant conservation of function between mammals and zebrafish, and offers a powerful tool for future studies of the hematopoietic pathway. PMID:11960002

  8. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype–phenotype relationships

    PubMed Central

    Bodian, Dale L.; Chan, Ting-Fung; Poon, Annie; Schwarze, Ulrike; Yang, Kathleen; Byers, Peter H.; Kwok, Pui-Yan; Klein, Teri E.

    2009-01-01

    Osteogenesis imperfecta (OI), also known as brittle bone disease, is a clinically and genetically heterogeneous disorder primarily characterized by susceptibility to fracture. Although OI generally results from mutations in the type I collagen genes, COL1A1 and COL1A2, the relationship between genotype and phenotype is not yet well understood. To provide additional data for genotype–phenotype analyses and to determine the proportion of mutations in the type I collagen genes among subjects with lethal forms of OI, we sequenced the coding and exon-flanking regions of COL1A1 and COL1A2 in a cohort of 63 subjects with OI type II, the perinatal lethal form of the disease. We identified 61 distinct heterozygous mutations in type I collagen, including five non-synonymous rare variants of unknown significance, of which 43 had not been seen previously. In addition, we found 60 SNPs in COL1A1, of which 17 were not reported previously, and 82 in COL1A2, of which 18 are novel. In three samples without collagen mutations, we found inactivating mutations in CRTAP and LEPRE1, suggesting a frequency of these recessive mutations of ∼5% in OI type II. A computational model that predicts the outcome of substitutions for glycine within the triple helical domain of collagen α1(I) chains predicted lethality with ∼90% accuracy. The results contribute to the understanding of the etiology of OI by providing data to evaluate and refine current models relating genotype to phenotype and by providing an unbiased indication of the relative frequency of mutations in OI-associated genes. PMID:18996919

  9. A mutation in POLE predisposing to a multi-tumour phenotype

    PubMed Central

    ROHLIN, ANNA; ZAGORAS, THEOFANIS; NILSSON, STAFFAN; LUNDSTAM, ULF; WAHLSTRÖM, JAN; HULTÉN, LEIF; MARTINSSON, TOMMY; KARLSSON, GÖRAN B.; NORDLING, MARGARETA

    2014-01-01

    Somatic mutations in the POLE gene encoding the catalytic subunit of DNA polymerase ɛ have been found in sporadic colorectal cancers (CRCs) and are most likely of importance in tumour development and/or progression. Recently, families with dominantly inherited colorectal adenomas and colorectal cancer were shown to have a causative heterozygous germline mutation in the proofreading exonuclease domain of POLE. The highly penetrant mutation was associated with predisposition to CRC only and no extra-colonic tumours were observed. We have identified a mutation in a large family in which the carriers not only developed CRC, they also demonstrate a highly penetrant predisposition to extra-intestinal tumours such as ovarian, endometrial and brain tumours. The mutation, NM_006231.2:c.1089C>A, p.Asn363Lys, also located in the proofreading exonuclease domain is directly involved in DNA binding. Theoretical prediction of the amino acid substitution suggests a profound effect of the substrate binding capability and a more severe impairment of the catalytic activity compared to the previously reported germline mutation. A possible genotype to phenotype correlation for deleterious mutations in POLE might exist that needs to be considered in the follow-up of mutation carriers. PMID:24788313

  10. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    PubMed

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  11. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  12. Multivariate Phenotypic Divergence Due to the Fixation of Beneficial Mutations in Experimentally Evolved Lineages of a Filamentous Fungus

    PubMed Central

    Dali, Rola; Rundle, Howard D.; Kassen, Rees

    2012-01-01

    The potential for evolutionary change is limited by the availability of genetic variation. Mutations are the ultimate source of new alleles, yet there have been few experimental investigations of the role of novel mutations in multivariate phenotypic evolution. Here, we evaluated the degree of multivariate phenotypic divergence observed in a long-term evolution experiment whereby replicate lineages of the filamentous fungus Aspergillus nidulans were derived from a single genotype and allowed to fix novel (beneficial) mutations while maintained at two different population sizes. We asked three fundamental questions regarding phenotypic divergence following approximately 800 generations of adaptation: (1) whether divergence was limited by mutational supply, (2) whether divergence proceeded in relatively many (few) multivariate directions, and (3) to what degree phenotypic divergence scaled with changes in fitness (i.e. adaptation). We found no evidence that mutational supply limited phenotypic divergence. Divergence also occurred in all possible phenotypic directions, implying that pleiotropy was either weak or sufficiently variable among new mutations so as not to constrain the direction of multivariate evolution. The degree of total phenotypic divergence from the common ancestor was positively correlated with the extent of adaptation. These results are discussed in the context of the evolution of complex phenotypes through the input of adaptive mutations. PMID:23185601

  13. Intrafamilial phenotypic heterogeneity of epidermolytic ichthyosis associated with a new missense mutation in keratin 10.

    PubMed

    Abdul-Wahab, A; Takeichi, T; Liu, L; Stephens, C; Akiyama, M; McGrath, J A

    2016-04-01

    Mutations in the keratin 10 gene (KRT10) have been shown to underlie several forms of epidermolytic ichthyosis (EI), including generalized, annular and naevoid variants. We investigated an autosomal dominant pedigree with ichthyosis in which there was intrafamilial clinical heterogeneity, with the affected individual family members presenting with features of either erythrokeratoderma progressiva, annular EI, localized or superficial EI, or more generalized EI. Sanger sequencing identified a new heterozygous missense mutation (c.457C>A; p.Leu153Met) in KRT10 in all affected individuals. No additional mutations were identified in the genes for keratin 1 (KRT1) keratin 2 (KRT2), connexin 31 (GJB3) or connexin 30.3 (GJB4) that might account for the clinical heterogeneity seen in this family. Our findings illustrate the intrafamilial variability in phenotype and diverse clinical presentations that can occur in EI resulting from a single mutation in KRT10. PMID:26338057

  14. Next-generation Sequencing Extends the Phenotypic Spectrum for LCA5 Mutations: Novel LCA5 Mutations in Cone Dystrophy.

    PubMed

    Chen, Xue; Sheng, Xunlun; Sun, Xiantao; Zhang, Yuxin; Jiang, Chao; Li, Huiping; Ding, Sijia; Liu, Yani; Liu, Wenzhou; Li, Zili; Zhao, Chen

    2016-01-01

    We aim to characterize the clinical features and genetic causes for two affected siblings from a Chinese family with cone dystrophy (CD). Two patients and four unaffected family members were recruited and received complete ophthalmic examinations. Genomic DNA was isolated from the peripheral blood samples from all patients. Targeted next-generation sequencing (NGS) approach followed by intrafamilal cosegregation and in silico analyses were employed to determine the genetic defects. Ophthalmic evaluations finalized the clinical diagnosis of CD for the two patients in this family, both of whom presented macular atrophy with no remarkable changes in the peripheral retina. Comprehensive genetic screening approach revealed biallelic missense mutations in the Leber congenital amaurosis 5 (LCA5) gene, p.[Ala212Pro];[Tyr441Cys], as disease causative for this family. Both mutations were novel. The first substitution was predicted to eliminate a hydrogen bond and alter the tertiary structure of lebercilin, protein encoded by LCA5. We for the first time report novel biallelic LCA5 mutations in causing CD. Our study extends the phenotypic and genotypic spectrums for LCA5-associated retinopathies and better illustrates its genotype-phenotype correlations, which would help with better genetic diagnosis, prognosis, and personalized treatment for CD patients. PMID:27067258

  15. Next-generation Sequencing Extends the Phenotypic Spectrum for LCA5 Mutations: Novel LCA5 Mutations in Cone Dystrophy

    PubMed Central

    Chen, Xue; Sheng, Xunlun; Sun, Xiantao; Zhang, Yuxin; Jiang, Chao; Li, Huiping; Ding, Sijia; Liu, Yani; Liu, Wenzhou; Li, Zili; Zhao, Chen

    2016-01-01

    We aim to characterize the clinical features and genetic causes for two affected siblings from a Chinese family with cone dystrophy (CD). Two patients and four unaffected family members were recruited and received complete ophthalmic examinations. Genomic DNA was isolated from the peripheral blood samples from all patients. Targeted next-generation sequencing (NGS) approach followed by intrafamilal cosegregation and in silico analyses were employed to determine the genetic defects. Ophthalmic evaluations finalized the clinical diagnosis of CD for the two patients in this family, both of whom presented macular atrophy with no remarkable changes in the peripheral retina. Comprehensive genetic screening approach revealed biallelic missense mutations in the Leber congenital amaurosis 5 (LCA5) gene, p.[Ala212Pro];[Tyr441Cys], as disease causative for this family. Both mutations were novel. The first substitution was predicted to eliminate a hydrogen bond and alter the tertiary structure of lebercilin, protein encoded by LCA5. We for the first time report novel biallelic LCA5 mutations in causing CD. Our study extends the phenotypic and genotypic spectrums for LCA5-associated retinopathies and better illustrates its genotype-phenotype correlations, which would help with better genetic diagnosis, prognosis, and personalized treatment for CD patients. PMID:27067258

  16. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas

    PubMed Central

    Wakimoto, Hiroaki; Tanaka, Shota; Curry, William T.; Loebel, Franziska; Zhao, Dan; Tateishi, Kensuke; Chen, Juxiang; Klofas, Lindsay K.; Lelic, Nina; Kim, James C.; Dias-Santagata, Dora; Ellisen, Leif W.; Borger, Darrell R.; Fendt, Sarah-Maria; Heiden, Matthew G. Vander; Batchelor, Tracy T.; Iafrate, A. John; Cahill, Daniel P.; Chi, Andrew S.

    2014-01-01

    PURPOSE Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. METHODS We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. Gliomas with cancer driver mutations were tested for sensitivity to targeted inhibitors in vitro. Associations between genomic alterations and outcomes were analyzed in patients. RESULTS By 10 months, 8 of 20 IDH1-mutant gliomas developed intracerebral xenografts. All xenografts maintained mutant IDH1 and high levels of 2-hydroxyglutarate on serial transplantation. All xenograft-producing gliomas harbored “lineage-defining” mutations in CIC (oligodendroglioma) or TP53 (astrocytoma), and 6 of 8 additionally had activating mutations in PIK3CA or amplification of PDGFRA, MET or N-MYC. Only IDH1 and CIC/TP53 mutations were detected in non-xenograft-forming gliomas (P=.0007). Targeted inhibition of the additional alterations decreased proliferation in vitro. Moreover, we detected alterations in known cancer driver genes in 13.4% of IDH-mutant glioma patients, including PIK3CA, KRAS, AKT or PTEN mutation or PDGFRA, MET or N-MYC amplification. IDH/CIC mutant tumors were associated with PIK3CA/KRAS mutations while IDH/TP53 tumors correlated with PDGFRA/MET amplification. Presence of driver alterations at progression was associated with shorter subsequent progression-free survival (median 9.0 vs. 36.1 months, P=.0011). CONCLUSION A subset of IDH-mutant gliomas with mutations in driver oncogenes has a more malignant phenotype in patients. Identification of these alterations may provide an opportunity for use of targeted therapies in these patients. PMID:24714777

  17. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype.

    PubMed

    Meng, Heng; Xu, Hai-Qing; Yu, Lu; Lin, Guo-Wang; He, Na; Su, Tao; Shi, Yi-Wu; Li, Bin; Wang, Jie; Liu, Xiao-Rong; Tang, Bin; Long, Yue-Sheng; Yi, Yong-Hong; Liao, Wei-Ping

    2015-06-01

    Mutations in the SCN1A gene have been identified in epilepsy patients with widely variable phenotypes and modes of inheritance and in asymptomatic carriers. This raises challenges in evaluating the pathogenicity of SCN1A mutations. We systematically reviewed all SCN1A mutations and established a database containing information on functional alterations. In total, 1,257 mutations have been identified, of which 81.8% were not recurrent. There was a negative correlation between phenotype severity and missense mutation frequency. Further analyses suggested close relationships among genotype, functional alteration, and phenotype. Missense mutations located in different sodium channel regions were associated with distinct functional changes. Missense mutations in the pore region were characterized by the complete loss of function, similar to haploinsufficiency. Mutations with severe phenotypes were more frequently located in the pore region, suggesting that functional alterations are critical in evaluating pathogenicity and can be applied to patient management. A negative correlation was found between phenotype severity and familial incidence, and incomplete penetrance was associated with missense and splice site mutations, but not truncations or genomic rearrangements, suggesting clinical genetic counseling applications. Mosaic mutations with a load of 12.5-25.0% were potentially pathogenic with low penetrance, suggesting the need for future studies on less pathogenic genomic variations. PMID:25754450

  18. Mutations in the TTDN1 gene are associated with a distinct trichothiodystrophy phenotype#

    PubMed Central

    Kuschal, Christiane; Tamura, Deborah; DiGiovanna, John J.; Kraemer, Kenneth H.

    2015-01-01

    Trichothiodystrophy (TTD) is a rare multisystem disorder, characterized by sulfur deficient hair with alternating dark and light “tiger tail” banding on polarized light microscopy. TTD is caused by mutations in DNA repair/transcription genes XPD, XPB or TTDA, and in TTDN1, a gene of unknown function. While most TTD patients are photosensitive, patients with TTDN1 mutations were reported to be non-photosensitive. We followed a cohort of 36 TTD patients from 2001 to 2013. We describe 5 patients from 4 families with defects in the TTDN1 gene: 4 had no photosensitivity while 1 patient exhibited cutaneous burning. Deep phenotyping of our cohort revealed differences between the patients with and without TTDN1 mutations. Delayed bone age and seizure disorders were overrepresented in the TTDN1 group (p=0.009 and p=0.024, respectively), while some characteristic TTD clinical, laboratory, and imaging findings were absent. The 3 oldest TTDN1 patients displayed autistic behaviors in contrast to the characteristic friendly, socially interactive personality in the other patients. DNA sequencing revealed deletion mutations in TTDN1 ranging in size from a single base pair to over 120kb. These data identify a distinct phenotype relationship in TTD caused by TTDN1 mutations and suggest a different mechanism of disease. PMID:25290684

  19. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes.

    PubMed

    Takagi, Masaki; Takahashi, Mai; Ohtsu, Yoshiaki; Sato, Takeshi; Narumi, Satoshi; Arakawa, Hirokazu; Hasegawa, Tomonobu

    2016-04-25

    Heterozygous and/or homozygous HESX1 mutations have been reported to cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD), in association with septo optic dysplasia (SOD). We report a novel heterozygous HESX1 mutation in a CPHD patient without SOD phenotypes. The propositus was a one-year-old Japanese girl. Shortly after birth, she was found to be hypoglycemic. She was diagnosed with central adrenal insufficiency based on low cortisol and ACTH at a time of severe hypoglycemia. Further endocrine studies indicated that the patient also had central hypothyroidism and growth hormone deficiency. Using a next-generation sequencing strategy, we identified a novel heterozygous HESX1 mutation, c.326G>A (p.Arg109Gln). Western blotting and subcellular localization revealed no significant difference between wild type and mutant HESX1. Electrophoretic mobility shift assays showed that the mutant HESX1 abrogated DNA-binding ability. Mutant HESX1 was unable to repress PROP1-mediated activation. In conclusion, this study identified Arg109 as a critical residue in the HESX1 protein and extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in HESX1. When multiple genes need to be analyzed for mutations simultaneously, targeted sequence analysis of interesting genomic regions is an attractive approach. PMID:26781211

  20. Mutation in collagen II alpha 1 isoforms delineates Stickler and Wagner syndrome phenotypes

    PubMed Central

    Tran-Viet, Khanh-Nhat; Soler, Vincent; Quiette, Valencia; Powell, Caldwell; Yanovitch, Tammy; Metlapally, Ravikanth; Luo, Xiaoyan; Katsanis, Nicholas; Nading, Erica

    2013-01-01

    Purpose Stickler syndrome is an arthro-ophthalmopathy with phenotypic overlap with Wagner syndrome. The common Stickler syndrome type I is inherited as an autosomal dominant trait, with causal mutations in collagen type II alpha 1 (COL2A1). Wagner syndrome is associated with mutations in versican (VCAN), which encodes for a chondroitin sulfate proteoglycan. A three-generation Caucasian family variably diagnosed with either syndrome was screened for sequence variants in the COL2A1 and VCAN genes. Methods Genomic DNA samples derived from saliva were collected from all family members (six affected and four unaffected individuals). Complete sequencing of COL2A1 and VCAN was performed on two affected individuals. Direct sequencing of remaining family members was conducted if the discovered variants followed segregation. Results A base-pair substitution (c.258C>A) in exon 2 of COL2A1 cosegregated with familial disease status. This known mutation occurs in a highly conserved site that causes a premature stop codon (p.C86X). The mutation was not seen in 1,142 ethnically matched control DNA samples. Conclusions Premature stop codons in COL2A1 exon 2 lead to a Stickler syndrome type I ocular-only phenotype with few or no systemic manifestations. Mutation screening of COL2A1 exon 2 in families with autosomal dominant vitreoretinopathy is important for accurate clinical diagnosis. PMID:23592912

  1. Phenotypic variability in three families with valosin-containing protein mutation

    PubMed Central

    Spina, S.; Van Laar, A. D.; Murrell, J. R.; Hamilton, R. L.; Kofler, J. K.; Epperson, F.; Farlow, M. R.; Lopez, O. L.; Quinlan, J.; DeKosky, S. T.; Ghetti, B.

    2013-01-01

    Background and purpose The phenotype of IBMPFD [inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (FTD)] associated with valosin-containing protein(VCP) mutation is described in three families. Methods Probands were identified based on a pathological diagnosis of frontotemporal lobar degeneration with TDP-43-positive inclusions type IV. VCP sequencing was carried out. Clinical data on affected family members were reviewed. Results Ohio family: four subjects presented muscle weakness and wasting. (One subject had both neuropathic and myopathic findings and another subject showed only evidence of myopathy. The etiology of weakness could not be ascertained in the remaining two subjects.) Two individuals also showed Parkinsonism (with associated FTD in one of the two). The proband’s brain displayed FTLD-TDP type IV and Braak stage five Parkinson’s disease (PD). A VCP R191Q mutation was found. Pennsylvania family: 11 subjects developed IBMPFD. Parkinsonism was noted in two mutation carriers, whilst another subject presented with primary progressive aphasia (PPA). A novel VCP T262A mutation was found. Indiana family: three subjects developed IBMPFD. FTD was diagnosed in two individuals and suspected in the third one who also displayed muscle weakness. A VCP R159C mutation was found. Conclusions We identified three families with IBMPFD associated with VCP mutations. Clinical and pathological PD was documented for the first time in members of two families. A novel T262A mutation was found. One individual had PPA: an uncommon presentation of IBMPFD. PMID:22900631

  2. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations

    PubMed Central

    Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  3. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    PubMed

    Juan-Mateu, Jonas; Gonzalez-Quereda, Lidia; Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  4. Phenotypic variability of hyperandrogenemia in females heterozygous for CYP21A2 mutations

    PubMed Central

    Neocleous, Vassos; Shammas, Christos; Phedonos, Alexia AP; Phylactou, Leonidas A; Skordis, Nicos

    2014-01-01

    Objectives: The objective was to seek evidence on the prevalence and consequences of heterozygous CYP21A2 mutations in girls, adolescent, and adult females with clinical manifestation of androgen excess. Patients and Methods: The study included 64 girls diagnosed with premature adrenarche (PA) in childhood and 141 females with clinical hyperandrogenemia manifested in adolescence or adulthood. Direct DNA sequencing and multiplex ligation-dependent probe amplification analysis were used to identify mutations in the CYP21A2 gene. Results: (1) Thirty-four patients were diagnosed with nonclassical-congenital adrenal hyperplasia (NC-CAH) based on the 17-hydroxyprogesterone (17-OHP) levels and the presence of two mutations in CYP21A2 and therefore were excluded from the study, 66 were found to be heterozygotes and finally 105 had no identifiable mutations. The most frequent mutations among the carriers were the mild p.Val281 Leu and p.Qln318stop. Higher levels of mean stimulated 17-OHP were found in the carriers of the p.Val281 Leu. (2) A notable increased allelic frequency for the known p.Asn493 Ser polymorphism was observed in the pool of females with hyperandrogenemia in whom no mutation was identified. (3) In girls, who presented early with PA, 26.6% were diagnosed with NC-CAH and carried two mutations, 28.7% were identified as heterozygotes 43.7% had no identifiable genetic defect in the translated region of the CYP21A2 gene. On the contrary, in the group of 141 females with late onset hyperandrogenemia, the presence of 2 mutations was detected in 12%, 1 mutation in 33.4% and no mutation in 54.6%. Conclusions: The carrier status for 21-OHD, may be an important factor in the variable phenotype of hyperandrogenism and may be a contributing factor for the early manifestation of the disease. PMID:25538881

  5. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation

    PubMed Central

    Kuo, Yien-Ming; Giasson, Benoit I.; Nussbaum, Robert L.

    2014-01-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson’s disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson’s disease; and (ii) Lewy bodies in sporadic Parkinson’s disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson’s disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson’s disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson’s disease. PMID:25351739

  6. Fibrodysplasia Ossificans Progressiva: Clinical Course, Genetic Mutations and Genotype-Phenotype Correlation

    PubMed Central

    Hüning, Irina; Gillessen-Kaesbach, Gabriele

    2014-01-01

    Fibrodysplasia ossificans progressiva (FOP, MIM 135100) is a rare autosomal dominant genetic disorder and the most disabling condition of heterotopic (extraskeletal) ossification in humans. Mutations in the ACVR1 gene (MIM 102576) were identified as a genetic cause of FOP [Shore et al., 2006]. Most patients with FOP have the same recurrent single nucleotide change c.617G>A, p.R206H in the ACVR1 gene. Furthermore, 11 other mutations in the ACVR1 gene have been described as a cause of FOP. Here, we review phenotypic and molecular findings of 130 cases of FOP reported in the literature from 1982 to April 2014 and discuss possible genotype-phenotype correlations in FOP patients. PMID:25337067

  7. Mutations Causing Transformation of Sexual Phenotype in the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Hodgkin, Jonathan A.; Brenner, Sydney

    1977-01-01

    Ten mutations are described that transform genotypic hermaphrodites of the nematode Caenorhabditis elegans into phenotypic males. These fall into three autosomal complementation groups, termed tra-1, tra-2 , and tra-3. Two alleles of tra-1 produce almost complete transformation, to a fertile male phenotype; such transformed animals are useful for analyzing sex-linked genes. All alleles of tra-1 and tra-2 are recessive; the one known allele of tra-3 is both recessive and maternal in effect. Where tested, both XX and XXX hermaphrodites are transformed into males, but XO males (true males) are unaffected by these mutations. It is suggested that these genes are actually involved in hermaphrodite development and have no role in male development. PMID:560330

  8. Expanding the MYBPC1 phenotypic spectrum: a novel homozygous mutation causes arthrogryposis multiplex congenita.

    PubMed

    Ekhilevitch, N; Kurolap, A; Oz-Levi, D; Mory, A; Hershkovitz, T; Ast, G; Mandel, H; Baris, H N

    2016-07-01

    Arthrogryposis multiplex congenita (AMC) is characterized by heterogeneous nonprogressive multiple joint contractures appearing at birth. We present a consanguineous Israeli-Druze family with several members presenting with AMC. A variable intra-familial phenotype and pected autosomal recessive inheritance prompted molecular diagnosis by whole-exome sequencing. Variant analysis focused on rare homozygous changes, revealed a missense variant in MYBPC1, NM_002465:c.556G>A (p.E286K), affecting the last nucleotide of Exon 8. This novel variant was not observed in the common variant databases and co-segregated as expected within the extended family. MYBPC1 encodes a slow skeletal muscle isoform, essential for muscle contraction. Heterozygous mutations in this gene are associated with distal arthrogryposis types 1b and 2, whereas a homozygous nonsense mutation is implicated in one family with lethal congenital contractural syndrome 4. We present a novel milder MYBPC1 homozygous phenotype. PMID:26661508

  9. Mutations in ANKS6 Cause a Nephronophthisis-Like Phenotype with ESRD

    PubMed Central

    Taskiran, Ekim Z.; Korkmaz, Emine; Gucer, Safak; Kosukcu, Can; Kaymaz, Figen; Koyunlar, Cansu; Bryda, Elizabeth C.; Chaki, Moumita; Lu, Dongmei; Vadnagara, Komal; Candan, Cengiz; Topaloglu, Rezan; Schaefer, Franz; Attanasio, Massimo; Bergmann, Carsten

    2014-01-01

    Nephronophthisis (NPHP) is one of the most common genetic causes of CKD; however, the underlying genetic abnormalities have been established in <50% of patients. We performed genome-wide analysis followed by targeted resequencing in a Turkish consanguineous multiplex family and identified a canonic splice site mutation in ANKS6 associated with an NPHP-like phenotype. Furthermore, we identified four additional ANKS6 variants in a cohort of 56 unrelated patients diagnosed with CKD due to nephronophthisis, chronic GN, interstitial nephritis, or unknown etiology. Immunohistochemistry in human embryonic kidney tissue demonstrated that the expression patterns of ANKS6 change substantially during development. Furthermore, we detected increased levels of both total and active β-catenin in precystic tubuli in Han:SPRD Cy/+ rats. Overall, these data indicate the importance of ANKS6 in human kidney development and suggest a mechanism by which mutations in ANKS6 may contribute to an NPHP-like phenotype in humans. PMID:24610927

  10. MECP2 mutations in Czech patients with Rett syndrome and Rett-like phenotypes: novel mutations, genotype-phenotype correlations and validation of high-resolution melting analysis for mutation scanning.

    PubMed

    Zahorakova, Daniela; Lelkova, Petra; Gregor, Vladimir; Magner, Martin; Zeman, Jiri; Martasek, Pavel

    2016-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder characterized by developmental regression with loss of motor, communication and social skills, onset of stereotypic hand movements and often seizures. RTT is primarily caused by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). We established a high-resolution melting (HRM) technique for mutation scanning of the MECP2 gene and performed analyses in Czech patients with RTT, autism spectrum conditions and intellectual disability with Rett-like features. In the cases with confirmed MECP2 mutations, we determined X-chromosome inactivation (XCI), examined the relationships between genotype and clinical severity and evaluated the modifying influence of XCI. Our results demonstrate that HRM analysis is a reliable method for the detection of point mutations, small deletions and duplications in the MECP2 gene. We identified 29 pathogenic mutations in 75 girls, including four novel mutations: c.155_1189del1035;909_932inv;insC, c.573delC, c.857_858dupAA and c.1163_1200del38. Skewed XCI (ratio >75%) was found in 19.3% of the girls, but no gross divergence in clinical severity was observed. Our findings confirm a high mutation frequency in classic RTT (92%) and a correlation between the MECP2 mutation type and clinical severity. We also demonstrate limitations of XCI in explaining all of the phenotypic differences in RTT. PMID:26984561

  11. Characterization of spectrum, de novo rate and genotype-phenotype correlation of dominant GJB2 mutations in Chinese hans.

    PubMed

    Pang, Xiuhong; Chai, Yongchuan; Sun, Lianhua; Chen, Dongye; Chen, Ying; Zhang, Zhihua; Wu, Hao; Yang, Tao

    2014-01-01

    Dominant mutations in GJB2 may lead to various degrees of sensorineural hearing impairment and/or hyperproliferative epidermal disorders. So far studies of dominant GJB2 mutations were mostly limited to case reports of individual patients and families. In this study, we identified 7 families, 11 subjects with dominant GJB2 mutations by sequencing of GJB2 in 2168 Chinese Han probands with sensorineural hearing impairment and characterized the associated spectrum, de novo rate and genotype-phenotype correlation. We identified p.R75Q, p.R75W and p.R184Q as the most frequent dominant GJB2 mutations among Chinese Hans, which had a very high de novo rate (71% of probands). A majority (10/11) of subjects carrying dominant GJB2 mutations exhibited palmoplantar keratoderma in addition to hearing impairment. In two families segregated with additional c.235delC or p.V37I mutations of GJB2, family members with the compound heterozygous mutations exhibited more severe phenotype than those with single dominant GJB2 mutation. Our study suggested that the high de novo mutation rate gives rise to a significant portion of dominant GJB2 mutations. The severity of the hearing and epidermal phenotypes associated with dominant GJB2 mutations may be modified by additional recessive mutations of GJB2. PMID:24945352

  12. Choline acetyltransferase mutations causing congenital myasthenic syndrome: molecular findings and genotype-phenotype correlations

    PubMed Central

    Arredondo, Juan; Lara, Marian; Gospe, Sídney M.; Mazia, Claudio G.; Vaccarezza, Maria; Garcia-Erro, Marcela; Bowe, Constance; Chang, Celia; Mezei, Michelle; Maselli, Ricardo A.

    2015-01-01

    Choline acetyltransferase catalyzes the synthesis of acetylcholine at cholinergic nerves. Mutations in human CHAT cause a congenital myasthenic syndrome (CMS) due to impaired synthesis of ACh; this severe variant of the disease is frequently associated with unexpected episodes of potentially fatal apnea. The severity of this condition varies remarkably, and the molecular factors determining this variability are poorly understood. Furthermore, genotype–phenotype correlations have been difficult to establish in patients with biallelic mutations. We analyzed the protein expression of seven ChAT mutations, p.Val136Met, p.Arg207His, p.Arg186Trp, p.Val194Leu, p.Pro211Ala, p.Arg566Cys and p.Ser694Cys, in HEK-293 cells to phosphorylated ChAT, determined their enzyme kinetics and thermal instability, and examined their structural changes. Three mutations, p.Arg207His, p.Arg186Trp and p.Arg566Cys, are novel, and p.Val136Met and p.Arg207His are homozygous in three families and associated with severe disease. The characterization of mutants showed a decrease in the overall catalytic efficiency of ChAT; in particular, those located near the active-site tunnel produced the most seriously disruptive phenotypic effects. On the other hand, p.Val136Met is located far from both active and substrate-binding sites produced the most drastic reduction of ChAT expression. Overall, CHAT mutations producing low enzyme expression and severe kinetic effects are associated with the most severe phenotypes. PMID:26080897

  13. Additive dominant effect of a SOX10 mutation underlies a complex phenotype of PCWH.

    PubMed

    Ito, Yukiko; Inoue, Naoko; Inoue, Yukiko U; Nakamura, Shoko; Matsuda, Yoshiki; Inagaki, Masumi; Ohkubo, Takahiro; Asami, Junko; Terakawa, Youhei W; Kohsaka, Shinichi; Goto, Yu-ichi; Akazawa, Chihiro; Inoue, Takayoshi; Inoue, Ken

    2015-08-01

    Distinct classes of SOX10 mutations result in peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, collectively known as PCWH. Meanwhile, SOX10 haploinsufficiency caused by allelic loss-of-function mutations leads to a milder non-neurological disorder, Waardenburg-Hirschsprung disease. The cellular pathogenesis of more complex PCWH phenotypes in vivo has not been thoroughly understood. To determine the pathogenesis of PCWH, we have established a transgenic mouse model. A known PCWH-causing SOX10 mutation, c.1400del12, was introduced into mouse Sox10-expressing cells by means of bacterial artificial chromosome (BAC) transgenesis. By crossing the multiple transgenic lines, we examined the effects produced by various copy numbers of the mutant transgene. Within the nervous systems, transgenic mice revealed a delay in the incorporation of Schwann cells in the sciatic nerve and the terminal differentiation of oligodendrocytes in the spinal cord. Transgenic mice also showed defects in melanocytes presenting as neurosensory deafness and abnormal skin pigmentation, and a loss of the enteric nervous system. Phenotypes in each lineage were more severe in mice carrying higher copy numbers, suggesting a gene dosage effect for mutant SOX10. By uncoupling the effects of gain-of-function and haploinsufficiency in vivo, we have demonstrated that the effect of a PCWH-causing SOX10 mutation is solely pathogenic in each SOX10-expressing cellular lineage in a dosage-dependent manner. In both the peripheral and central nervous systems, the primary consequence of SOX10 mutations is hypomyelination. The complex neurological phenotypes in PCWH patients likely result from a combination of haploinsufficiency and additive dominant effect. PMID:25959061

  14. The Phenotypic Spectrum of DYT24 Due to ANO3 Mutations

    PubMed Central

    Stamelou, Maria; Charlesworth, Gavin; Cordivari, Carla; Schneider, Susanne A; Kägi, Georg; Sheerin, Una-Marie; Rubio-Agusti, Ignacio; Batla, Amit; Houlden, Henry; Wood, Nicholas W; Bhatia, Kailash P

    2014-01-01

    Genes causing primary dystonia are rare. Recently, pathogenic mutations in the anoctamin 3 gene (ANO3) have been identified to cause autosomal dominant craniocervical dystonia and have been assigned to the dystonia locus dystonia-24 (DYT24). Here, we expand on the phenotypic spectrum of DYT24 and provide demonstrative videos. Moreover, tremor recordings were performed, and back-averaged electroencephalography, sensory evoked potentials, and C-reflex studies were carried out in two individuals who carried two different mutations in ANO3. Ten patients from three families are described. The age at onset ranged from early childhood to the forties. Cervical dystonia was the most common site of onset followed by laryngeal dystonia. The characteristic feature in all affected individuals was the presence of tremor, which contrasts DYT24 from the typical DYT6 phenotype. Tremor was the sole initial manifestation in some individuals with ANO3 mutations, leading to misdiagnosis as essential tremor. Electrophysiology in two patients with two different mutations showed co-contraction of antagonist muscles, confirming dystonia, and a 6-Hz arm tremor at rest, which increased in amplitude during action. In one of the studied patients, clinically superimposed myoclonus was observed. The duration of the myoclonus was in the range of 250 msec at about 3 Hz, which is more consistent with subcortical myoclonus. In summary, ANO3 causes a varied phenotype of young-onset or adult-onset craniocervical dystonia with tremor and/or myoclonic jerks. Patients with familial cervical dystonia who also have myoclonus-dystonia as well as patients with prominent tremor and mild dystonia should be tested for ANO3 mutations. © 2014 The Authors. Movement Disorders published by International Parkinson and Movement Disorder Society PMID:24442708

  15. A novel homozygous ISPD gene mutation causing phenotype variability in a consanguineous family.

    PubMed

    Baranello, Giovanni; Saredi, Simona; Sansanelli, Serena; Savadori, Paolo; Canioni, Eleonora; Chiapparini, Luisa; Balestri, Paolo; Malandrini, Alessandro; Arnoldi, Maria Teresa; Pantaleoni, Chiara; Morandi, Lucia; Mora, Marina

    2015-01-01

    Within the group of muscular dystrophies, dystroglycanopathies represent an important subgroup of recessively inherited disorders. Their severity varies from the relatively mild forms of adult-onset limb-girdle muscular dystrophy (LGMD), to the severe congenital muscular dystrophies (CMD) with cerebral and ocular involvement. We describe 2 consanguineous children of Pakistani origin, carrying a new homozygous missense mutation c.367G>A (p.Gly123Arg) in the ISPD gene. Mutations in this gene have been recently reported as a common cause of congenital and limb-girdle muscular dystrophy. Patient 1 is an 8-year-old female with an intermediate phenotype between CMD and early LGMD; patient 2 is a 20-month-old male and second cousin of patient 1, showing a CMD phenotype. Cognitive development, brain MRI, eye examination, electrocardiogram and echocardiogram were normal in both patients. To our knowledge, this is the first report on the co-occurrence of both a CMD/early LGMD intermediate phenotype and a CMD within the same family carrying a homozygous ISPD mutation. PMID:25444434

  16. Intra-familiar discordant PKU phenotype explained by mutation analysis in three pedigrees.

    PubMed

    Trunzo, Roberta; Santacroce, Rosa; D'Andrea, Giovanna; Longo, Vittoria; De Girolamo, Giuseppe; Dimatteo, Claudia; Leccese, Angelica; Lillo, Vincenza; Papadia, Francesco; Margaglione, Maurizio

    2014-02-01

    Classical phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are two phenotypes of phenylalanine hydroxylase (PAH) deficiency with different degrees of severity. We have analyzed three families in which classical PKU, MHP and a normal phenotype occurred within each family due to the different combinations of three mutations segregating within the family. Indeed, sequence PAH analysis revealed three different alleles segregating in each family. This report suggests that when discordant phenotypes occur in a family, complete analysis of the PAH gene may be performed in order to support the diagnosis and assist in accurate genetic counseling and patient management. We further support the marked heterogeneity of hyperphenylalaninemia primarily due to allelic heterogeneity at the PAH locus. PMID:24296287

  17. ADAMTSL4-associated isolated ectopia lentis: Further patients, novel mutations and a detailed phenotype description.

    PubMed

    Neuhann, Teresa M; Stegerer, Annette; Riess, Angelika; Blair, Edward; Martin, Thomas; Wieser, Stefanie; Kläs, Rüdiger; Bouman, Arjan; Kuechler, Alma; Rittinger, Olaf

    2015-10-01

    ADAMTSL4 mutations seem to be the most common cause of isolated ectoplia lentis (EL) and thus are important concerning the differential diagnosis of connective tissue syndromes with EL as main feature. In this study, we describe an additional cohort of patients with apparently isolated EL. All underwent a detailed clinical exam with cardiac evaluation combined with ADAMTSL4 mutation analysis. Mutations were identified in 12/15 patients with EL. Besides the European founder mutation p. (Gln256Profs*38) we identified five further mutations not yet described in the literature: p. (Leu249Tyrfs*21), p. (Ala388Glyfs*8), p. (Arg746His), p. (Gly592Ser), and p. (Arg865His). Clinical evaluation showed common additional ocular features such as high myopia, but no major systemic findings. In particular: no dilatation of the aortic root was reported on. This report increases the total number of patients with ADAMTSL4 mutations reported on today and reviews in detail the clinical findings in all patients reported on to date demonstrate, that these patients have a mainly ocular phenotype. There are no consistent systemic findings. The differentiation between syndromic and isolated EL is crucial for the further surveillance, treatment, and counseling of these patients, especially in young children. PMID:25975359

  18. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders

    PubMed Central

    Travaglini, Lorena; Brancati, Francesco; Silhavy, Jennifer; Iannicelli, Miriam; Nickerson, Elizabeth; Elkhartoufi, Nadia; Scott, Eric; Spencer, Emily; Gabriel, Stacey; Thomas, Sophie; Ben-Zeev, Bruria; Bertini, Enrico; Boltshauser, Eugen; Chaouch, Malika; Roberta Cilio, Maria; de Jong, Mirjam M; Kayserili, Hulya; Ogur, Gonul; Poretti, Andrea; Signorini, Sabrina; Uziel, Graziella; Zaki, Maha S; Johnson, Colin; Attié-Bitach, Tania; Gleeson, Joseph G; Valente, Enza Maria

    2013-01-01

    Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus. PMID:23386033

  19. JP-HHT phenotype in Danish patients with SMAD4 mutations.

    PubMed

    Jelsig, A M; Tørring, P M; Kjeldsen, A D; Qvist, N; Bojesen, A; Jensen, U B; Andersen, M K; Gerdes, A M; Brusgaard, K; Ousager, L B

    2016-07-01

    Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14 patients with SMAD4-mutations. The study was a retrospective, register-based study. SMAD4 mutations carriers were identified through the Danish HHT-registry, the genetic laboratories - and the genetic departments in Denmark. The medical files from relevant departments were reviewed and symptoms of HHT, JPS, aortopathy and family history were noted. We detected 14 patients with SMAD4 mutations. All patients had polyps removed and 11 of 14 fulfilled the diagnostic criteria for JPS. Eight patients were screened for HHT-symptoms and seven of these fulfilled the Curaçao criteria. One patient had aortic root dilation. Our findings support that SMAD4 mutations carriers have symptoms of both HHT and JPS and that the frequency of PAVM and gastric involvement with polyps is higher than in patients with HHT or JPS not caused by a SMAD4 mutation. Out of eight patients screened for aortopathy, one had aortic root dilatation, highlighting the need for additional screening for aortopathy. PMID:26572829

  20. WDR35 Mutation in Siblings with Sensenbrenner Syndrome: A Ciliopathy With Variable Phenotype

    PubMed Central

    Bacino, Carlos A.; Dhar, Shweta U.; Brunetti-Pierri, Nicola; Lee, Brendan; Bonnen, Penelope E.

    2014-01-01

    Sensenbrenner syndrome and unclassified short rib-polydactyly conditions are ciliopathies with overlapping phenotypes and genetic heterogeneity. Mutations in WDR35 were identified recently in a sub-group of patients with Sensenbrenner syndrome and in a single family that presented with an unclassified form of short-rib polydactyly (SRP) syndrome. We report on siblings with an unusual combination of phenotypes: narrow thorax, short stature, minor anomalies, developmental delay, and severe hepatic fibrosis leading to liver failure and early death in two of the children. Both parents were unaffected suggesting autosomal recessive inheritance. The family and their affected children were followed over a decade. Exome sequencing was performed in one affected individual. It showed a homozygous missense mutation in a highly conserved position of the WDR35 gene. This family represents aWDR35-ciliopathy with a complex clinical presentation that includes significant overlap of the phenotypes described in Sensenbrenner syndrome and the unclassified SRPs. The accurate molecular diagnosis of this family exemplifies the power of exome sequencing in the diagnosis of Mendelian disorders and enabled us to broaden and refine our understanding of Sensenbrenner syndrome and SRP. Detailed genotype–phenotype information is provided as well as discussion of previously reported cases. PMID:22987818

  1. Four novel point mutations in the PMP22 gene with phenotypes of HNPP and Dejerine-Sottas neuropathy.

    PubMed

    Brožková, Dana; Mazanec, Radim; Rychlý, Zdeněk; Haberlová, Jana; Böhm, Jiří; Staněk, Jan; Plevová, Pavlína; Lisoňová, Jana; Sabová, Jana; Sakmaryová, Iva; Seeman, Pavel

    2011-11-01

    We report four novel point mutations in the PMP22 gene with two different phenotypes: mutation p.Ser79Thr arose de novo in a patient with the Dejerine-Sottas neuropathy (DSN) phenotype; and mutations c.78+5 G>A, c.320-1 G>C, and p.Trp140Stop segregated with HNPP in 5 families.Our findings show that point mutations in PMP22 may be more likely in HNPP patients than in CMT1 patients after exclusion of CMT1A/HNPP. PMID:22006697

  2. Predicting a clinical/biochemical phenotype for PKU/MHP patients with PAH gene mutations.

    PubMed

    Kasnauskiene, J; Cimbalistiene, L; Kucinskas, V

    2008-10-01

    Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). In this study, a total of 218 independent PAH chromosomes (109 unrelated patients with PKU residing in Lithuania) were investigated. All 13 exons of the PAH gene of all PKU probands were scanned for DNA alterations by denaturing gradient gel electrophoresis (DGGE). In the cases of a specific DGGE pattern recognised, mutations were identified by direct fluorescent automated sequencing or by restriction enzyme digestion analysis of a relevant exons. 25 different PAH gene mutations were identified in Lithuania. We estimated a connection between individual PAH locus mutations and biochemical and metabolic phenotypes in patients in whom the mutant allele acts on its own, i.e., in functionally hemizygous patients and using the assigned value (AV) method to determine the severity of both common and rare mutant alleles, as well as to check a model to predict the combined phenotypic effect of two mutant PAH alleles. PMID:19062537

  3. PCR assay confirms diagnosis in syndrome with variably expressed phenotype: mutation detection in Stickler syndrome.

    PubMed Central

    Ahmad, N N; McDonald-McGinn, D M; Dixon, P; Zackai, E H; Tasman, W S

    1996-01-01

    Stickler syndrome is an autosomal dominant disease with ocular (severe myopia, vitreal degeneration, and retinal detachment) and other systemic manifestations (hearing loss, cleft palate, epiphyseal dysplasia, and premature osteoarthritis). As with other dominantly inherited conditions, the clinical phenotype of Stickler syndrome varies considerably. To date, all mutations have been located in the type II procollagen (COL2A1) gene. Analysis of a C-->T mutation we had identified previously, in COL2A1 gene in exon 40, in a three generation pedigree showed the loss of a cleavage site for the TaqI restriction enzyme. We designed a rapid PCR based restriction enzyme assay to detect this mutation and used it to establish the diagnosis in a neonate from the same pedigree, presenting with the first occurrence of the Pierre-Robin sequence in the family and minimal ocular findings. These results underline the potential diagnostic value of many as yet undetected DNA mutations in families affected with Stickler syndrome, since the variability of the phenotype can impede accurate diagnosis, appropriate genetic counselling, and effective intervention and prophylactic treatment for affected people. Images PMID:8863161

  4. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs.

    PubMed

    Szafranski, Przemyslaw; Coban-Akdemir, Zeynep H; Rupps, Rosemarie; Grazioli, Serge; Wensley, David; Jhangiani, Shalini N; Popek, Edwina; Lee, Anna F; Lupski, James R; Boerkoel, Cornelius F; Stankiewicz, Paweł

    2016-09-01

    Mutations in the T-box transcription factor TBX4 gene have been reported in patients with Ischiocoxopodopatellar syndrome (MIM# 147891) and childhood-onset pulmonary arterial hypertension. Whole exome sequencing of DNA from a 1 day old deceased newborn, with severe diffuse developmental lung disorder exhibiting features of acinar dysplasia, and her unaffected parents identified a de novo TBX4 missense mutation p.E86Q (c.256G>C) in the DNA-binding T-box domain. We propose phenotypic expansion of the TBX4-related clinical disease spectrum to include acinar dysplasia of the lungs. The reported mutation is the first identified genetic variant causative for acinar dysplasia. © 2016 Wiley Periodicals, Inc. PMID:27374786

  5. Two Siblings With a CDKL5 Mutation: Genotype and Phenotype Evaluation.

    PubMed

    Hagebeuk, Eveline E O; Marcelis, Carlo L; Alders, Mariëlle; Kaspers, Ageeth; de Weerd, Al W

    2015-10-01

    This is the second report of a family with a recurrence of a CDKL5 mutation (c. 283-3_290del) in 2 sisters. Both parents tested negative for the mutation in all tissues, but germline mosaicism is likely. Clinically CDKL5 patients resemble those with Rett syndrome, caused by a MECP2 mutation, who experience a regression, after an initial normal development. Even though both siblings showed a typical CDKL5 phenotype, their presentation is different. From birth, the oldest daughter had a severe developmental delay, feeding problems, and hypotonia and experienced daily refractory seizures. The youngest daughter appeared to be normal until age 3 months. At that age seizures started, deterioration and regression became evident, and an epileptic encephalopathy developed. This report of familial recurrence, with suspected germline mosaicism in a healthy parent, has important consequences for genetic counseling. Although it is not possible to predict an exact recurrence risk, it is likely to be increased. PMID:25762588

  6. CASE REPORT: Phenotypic presentation of the Ser63Del MPZ mutation

    PubMed Central

    Miller, Lindsey J.; Patzko, Agnes; Lewis, Richard A.; Shy, Michael E.

    2013-01-01

    Mutations in MPZ cause CMT1B, the second most frequent cause of CMT1. Elegant studies with Ser63del mice suggest that Ser63del MPZ is retained in the ER where it activates the unfolded protein response (UPR) that contributes to the neuropathy. Clinical information about patients with this mutation is limited. We present clinical and electrophysiological data on a large multigenerational family with CMT1B caused by Ser63del MPZ. The patients have a classical CMT1 phenotype that is much less severe than that of patients with Arg98Cys MPZ that also activates the UPR. These results suggest that clinical presentation along cannot predict which MPZ mutations will be retained in the ER and activate the UPR. PMID:22734905

  7. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome.

    PubMed

    Brown, Kyla; Selfridge, Jim; Lagger, Sabine; Connelly, John; De Sousa, Dina; Kerr, Alastair; Webb, Shaun; Guy, Jacky; Merusi, Cara; Koerner, Martha V; Bird, Adrian

    2016-02-01

    Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions. PMID:26647311

  8. Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations

    PubMed Central

    Al Assaf, Carla; Van Obbergh, Florence; Billiet, Johan; Lierman, Els; Devos, Timothy; Graux, Carlos; Hervent, Anne-Sophie; Emmerechts, Jan; Tousseyn, Thomas; De Paepe, Pascale; Papadopoulos, Petros; Michaux, Lucienne; Vandenberghe, Peter

    2015-01-01

    The JAK2 V617F mutation, the thrombopoietin receptor MPL W515K/L mutation and calreticulin (CALR) mutations are mutually exclusive in essential thrombocythemia and support a novel molecular categorization of essential thrombocythemia. CALR mutations account for approximately 30% of cases of essential thrombocythemia. In a retrospective study, we examined the frequency of MPL and CALR mutations in JAK2 V617F-negative cases of essential thrombocythemia (n=103). In addition, we compared the clinical phenotype and outcome of CALR mutant cases of essential thrombocythemia with a cohort of JAK2 V617F-positive essential thrombocythemia (n=57). CALR-positive cases represented 63.7% of double-negative cases of essential thrombocythemia, and most carried CALR type 1 or type 2 indels. However, we also identified one patient who was positive for both the JAK2 V617F and the CALR mutations. This study revealed that CALR mutant essential thrombocythemia is associated with younger age, higher platelet counts, lower erythrocyte counts, leukocyte counts, hemoglobin, and hematocrit, and increased risk of progression to myelofibrosis in comparison with JAK2 V617F-positive essential thrombocythemia. Analysis of the CALR mutant group according to indel type showed that CALR type 1 deletion is strongly associated with male gender. CALR mutant patients had a better overall survival than JAK2 V617F-positive patients, in particular patients of age 60 years or younger. In conclusion, this study in a Belgian cohort of patients supports and extends the growing body of evidence that CALR mutant cases of essential thrombocythemia are phenotypically distinct from JAK2 V617F-positive cases, with regards to clinical and hematologic presentation as well as overall survival. PMID:25934766

  9. Mutations in PRRT2 result in familial infantile seizures with heterogeneous phenotypes including febrile convulsions and probable SUDEP.

    PubMed

    Labate, Angelo; Tarantino, Patrizia; Palamara, Grazia; Gagliardi, Monica; Cavalcanti, Francesca; Ferlazzo, Edoardo; Sturniolo, Miriam; Incorpora, Gemma; Annesi, Grazia; Aguglia, Umberto; Gambardella, Antonio

    2013-05-01

    Mutations of PRRT2, which encodes proline-rich transmembrane protein 2, are associated with heterogeneous phenotypes including benign familial infantile seizures (BFIS) and/or familial paroxysmal kinesigenic dystonia (PKD). Here, we performed mutation screening of PRRT2 in six Italian families with BFIS/PKD phenotypes. The mutation, c.649dupC (p.Arg217ProfsX8), was found in two families with BFIS phenotype. In a third BFIS family, a missense mutation, c.718C/T (R240X), was identified. All these mutations co-segregated with the disease and were not observed in 100 controls of matched ancestry. In one BFIS family that carried the c.649dupC mutation, one affected member developed afebrile focal seizures and died at age of 14 years of probable sudden unexpected death in epilepsy, while his brother also had simple febrile convulsions (FC) and performed poorly on complex psychomotor functioning. In another family carrying the c.718C/T mutation, two of three affected members also had simple FC. This study enlarges the clinical spectrum related to PPRT2 mutations and underscores the complexity of the phenotypic consequences of mutations in this gene. PMID:23352743

  10. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes

    PubMed Central

    Waters, Aoife M; Asfahani, Rowan; Carroll, Paula; Bicknell, Louise; Lescai, Francesco; Bright, Alison; Chanudet, Estelle; Brooks, Anthony; Christou-Savina, Sonja; Osman, Guled; Walsh, Patrick; Bacchelli, Chiara; Chapgier, Ariane; Vernay, Bertrand; Bader, David M; Deshpande, Charu; O’ Sullivan, Mary; Ocaka, Louise; Stanescu, Horia; Stewart, Helen S; Hildebrandt, Friedhelm; Otto, Edgar; Johnson, Colin A; Szymanska, Katarzyna; Katsanis, Nicholas; Davis, Erica; Kleta, Robert; Hubank, Mike; Doxsey, Stephen; Jackson, Andrew; Stupka, Elia; Winey, Mark; Beales, Philip L

    2015-01-01

    Background Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. Methods and results Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. Conclusions Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis. PMID:25564561

  11. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    PubMed

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. PMID:27312022

  12. Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.

    PubMed

    Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz

    2012-02-01

    We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. PMID:22246887

  13. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.

    PubMed

    Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L

    2016-08-01

    Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. PMID:27095821

  14. Spondyloocular Syndrome: Novel Mutations in XYLT2 Gene and Expansion of the Phenotypic Spectrum.

    PubMed

    Taylan, Fulya; Costantini, Alice; Coles, Nicole; Pekkinen, Minna; Héon, Elise; Şıklar, Zeynep; Berberoğlu, Merih; Kämpe, Anders; Kıykım, Ertuğrul; Grigelioniene, Giedre; Tüysüz, Beyhan; Mäkitie, Outi

    2016-08-01

    Spondyloocular syndrome is an autosomal-recessive disorder with spinal compression fractures, osteoporosis, and cataract. Mutations in XYLT2, encoding isoform of xylosyltransferase, were recently identified as the cause of the syndrome. We report on 4 patients, 2 unrelated patients and 2 siblings, with spondyloocular syndrome and novel mutations in XYLT2. Exome sequencing revealed a homozygous nonsense mutation, NM_022167.3(XYLT2): c.2188C>T, resulting in a premature stop codon (p.Arg730*) in a female patient. The patient presents visual impairment, generalized osteoporosis, short stature with short trunk, spinal compression fractures, and increased intervertebral disc space and hearing loss. We extended our XYLT2 analysis to a cohort of 22 patients with generalized osteoporosis, mostly from consanguineous families. In this cohort, we found by Sanger sequencing 2 siblings and 1 single patient who were homozygous for missense mutations in the XYLT2 gene (p.Arg563Gly and p.Leu605Pro). The patients had osteoporosis, compression fractures, cataracts, and hearing loss. Bisphosphonate treatment in 1 patient resulted in almost complete normalization of vertebral structures by adolescence, whereas treatment response in the others was variable. This report together with a previous study shows that mutations in the XYLT2 gene result in a variable phenotype dominated by spinal osteoporosis, cataract, and hearing loss. © 2016 American Society for Bone and Mineral Research. PMID:26987875

  15. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    PubMed

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. PMID:24599544

  16. Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.

    PubMed

    Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie

    2014-09-01

    Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. PMID:24845202

  17. Mice homozygous for c.451C>T mutation in Cln1 gene recapitulate INCL phenotype

    PubMed Central

    Bouchelion, Ashleigh; Zhang, Zhongjian; Li, Yichao; Qian, Haohua; Mukherjee, Anil B

    2014-01-01

    Objective Nonsense mutations account for 5–70% of all genetic disorders. In the United States, nonsense mutations in the CLN1/PPT1 gene underlie >40% of the patients with infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative lysosomal storage disease. We sought to generate a reliable mouse model of INCL carrying the most common Ppt1 nonsense mutation (c.451C>T) found in the United States patient population to provide a platform for evaluating nonsense suppressors in vivo. Methods We knocked-in c.451C>T nonsense mutation in the Ppt1 gene in C57 embryonic stem (ES) cells using a targeting vector in which LoxP flanked the Neo cassette, which was removed from targeted ES cells by electroporating Cre. Two independently targeted ES clones were injected into blastocysts to generate syngenic C57 knock-in mice, obviating the necessity for extensive backcrossing. Results Generation of Ppt1-KI mice was confirmed by DNA sequencing, which showed the presence of c.451C>T mutation in the Ppt1 gene. These mice are viable and fertile, although they developed spasticity (a “clasping” phenotype) at a median age of 6 months. Autofluorescent storage materials accumulated throughout the brain regions and in visceral organs. Electron microscopic analysis of the brain and the spleen showed granular osmiophilic deposits. Increased neuronal apoptosis was particularly evident in cerebral cortex and abnormal histopathological and electroretinographic (ERG) analyses attested striking retinal degeneration. Progressive deterioration of motor coordination and behavioral parameters continued until eventual death. Interpretation Our findings show that Ppt1-KI mice reliably recapitulate INCL phenotype providing a platform for testing the efficacy of existing and novel nonsense suppressors in vivo. PMID:25574475

  18. Osteogenesis imperfecta caused by PPIB mutation with severe phenotype and congenital hearing loss

    PubMed Central

    Rush, Eric T.; Caldwell, Kathleen S.; Kreikemeier, Rose M.; Lutz, Richard E.; Esposito, Paul W.

    2014-01-01

    Osteogenesis imperfecta (OI) is an inherited disorder of connective tissue typically caused by defects in either COL1A1 or COL1A2. A number of other genes causative of this disorder have been found, including PPIB, which forms one subunit of the prolyl 3-hydroxylase enzyme complex. Patients with homozygous or compound heterozygous mutations in this gene have OI with a trend toward lethal or severe phenotype. We present a Native American female with prenatal diagnosis of OI. Long bones were shortened with significant rhizomelia. At birth, fractures were present in ribs, humerii, and femurs. She had significant respiratory disease at birth, and required oxygen throughout her life. She also had recurrent pneumonias, one of which ultimately caused her death at age 16 mo. She also had significant bilateral sensorineural hearing loss. Molecular testing showed that the patient was homozygous for a single nucleotide substitution in PPIB (c. 136-2A>G). Patients with OI caused by PPIB mutations have had variable disease, but with majority of either with perinatal lethality or progressively deforming severe disease. Patients with OI due to PPIB mutation have shown some differences in phenotype. There appears to be a trend toward rhizomelic shortening and less severe bowing of the extremities, as compared to patients with comparably severe OI caused by COL1A1 or COL1A2 mutation. Congenital hearing loss may be an inconsistent feature of this condition, or may have co-occurred in our patient for unrelated reasons. Still, patients with OI caused by PPIB mutation should have appropriate early and regular management of their hearing.

  19. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    PubMed Central

    Kristjansdottir, Karen; Petersen, Ulrika S. S.; Bang, Jeanne Mari V.; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F.; Carey, John C.; Yu, Ping; Calhoun, Amy; Larsen, Martin R.; Dyrskjøt, Lars; Stevenson, David A.; Andresen, Brage S.

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3’ splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  20. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    PubMed

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E; Lapin, Morten; Kristjansdottir, Karen; Petersen, Ulrika S S; Bang, Jeanne Mari V; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F; Carey, John C; Yu, Ping; Vaughn, Cecily; Calhoun, Amy; Larsen, Martin R; Dyrskjøt, Lars; Stevenson, David A; Andresen, Brage S

    2016-05-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  1. AB070. Mutations of SRD5A2 in Vietnamese patients: phenotype and genotype

    PubMed Central

    Dung, Vu Chi; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Ngoc, Can Thi Bich; Fukami, Maki

    2015-01-01

    A rare form of the 46,XY disorders of sex development (DSD), 5α-reductase deficiency was first described in patients with pseudovaginal perineoscrotal hypospadias, microphallus, and cryptorchid testes in 1974 by Imperato-McGinley et al. and Walsh et al. This undervirilization in the male is due to an alteration in the 5α-reductase type 2 gene (SRD5A2), which encodes for 5α-reductase activity. Our registry of 750 patients with DSD showed no definitive diagnosis in 80% of cases with 46,XY DSD. Our aim is to identify mutations in SRD5A2 gene and to describe phenotype of detected mutative cases. Mutation analysis was performed for genomic DNA extracted from WBC of 10 patients with 46,XY DSD using PCR and direct sequencing. We identified mutations of SRD5A2 gene in two cases. The first case presented with isolated micropenis at birth, two palpable testes in the normal scrotum. Pelvic ultrasound showed no ovaries and uterus, karyotype was 46,XY and SRY was positive. Serum FSH level was 2.4 UI/L; LH level was 0.9 UI/L and testosterone level was 0.4 nmol/L at 8 years of age. A homozygous missense mutation (p.R237G) was identified in the SRD5A2 gene. The second case presented with microphallus, penoscrotal hypospadias, and gonad bilateral in labioscrotal folds. No uterus and ovaries were found by pelvic ultrasound. Karyotype was 46,XY and SRY was positive. A novel homozygous missense mutation (c.659C>T; p.S220L) was identified in the SRD5A2 gene. Mutation analysis of SRD5A2 gene helps to make definitive diagnosis for patients with 46,XY DSD.

  2. Mosaicism for dominant collagen VI mutations as a cause for intra-familial phenotypic variability

    PubMed Central

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol; Foley, A. Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Veronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B.; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell; Winder, Thomas L.; Crawford, Thomas; Weiss, Robert B.; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G.

    2015-01-01

    Collagen VI-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy (UCMD), intermediate phenotypes, to the milder Bethlem myopathy (BM). Both inter- and intra-familial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked inter-generational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional 5th simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2 and COL6A3) in genomic DNA (gDNA) from various tissues; including blood, saliva, and dermal fibroblasts. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared to the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intra-familial/inter-generational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. PMID:25204870

  3. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.

    PubMed

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G

    2015-01-01

    Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. PMID:25204870

  4. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12.

    PubMed

    Tsui, H C; Leung, H C; Winkler, M E

    1994-07-01

    The region immediately downstream from the miaA tRNA modification gene at 94.8 min contains the hfq gene and the hflA region, which are important in the bacteriophage Q beta and lambda life cycles. The roles of these genes in bacteria remain largely unknown. We report here the characterization of two chromosomal hfq insertion mutations. An omega (omega) cassette insertion near the end of hfq resulted in phenotypes only slightly different from the parent, although transcript mapping demonstrated that the insertion was completely polar on hflX expression. In contrast, an equally polar omega cassette insertion near the beginning of hfq caused pronounced pleiotropic phenotypes, including decreased growth rates and yields, decreased negative supercoiling of plasmids in stationary phase, increased cell size, osmosensitivity, increased oxidation of carbon sources, increased sensitivity to ultraviolet light, and suppression of bgl activation by hns mutations. hfq::omega mutant phenotypes were distinct from those caused by omega insertions early in the miaA tRNA modification gene. On the other hand, both hfq insertions interfered with lambda phage plaque formation, probably by means of polarity at the hflA region. Together, these results show that hfq function plays a fundamental role in Escherichia coli physiology and that hfq and the hflA-region are in the amiB-mutL-miaA-hfq-hflX superoperon. PMID:7984093

  5. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters

    PubMed Central

    Uettwiller, F; Sarrabay, G; Rodero, M P; Rice, G I; Lagrue, E; Marot, Y; Deiva, K; Touitou, I; Crow, Y J; Quartier, P

    2016-01-01

    The objective of this paper is to: describe the phenotype compound heterozygote for mutations in CECR1 in two children. We describe the clinical and immunological phenotype, including the assessment of ADA2 activity, cytokine expression, interferon-stimulated and neutrophil-stimulated gene signatures, and the results of CECR1 sequencing. The first patient presented with intermittent fever, cutaneous vasculitis, myalgia and muscle inflammation on MRI leading to a provisional diagnosis of periarteritis nodosa. Subsequently, two cerebral lacunar lesions were identified following a brain stroke. Clinical features improved on anti-tumour necrosis factor therapy. The first patient's sister demonstrated early-onset, long-lasting anaemia with mild biological inflammation; at the ages of 3 and 5 years, she had presented 2 acute, transient neurological events with lacunar lesions on MRI. CECR1 sequencing identified both sisters to be compound heterozygous for a p.Tyr453Cys mutation and a previously undescribed deletion of exon 7. ADA2 activity was reduced by 50%. Neutrophil-stimulated genes were not overexpressed, but interferon-stimulated genes were. The expression of a panel of other cytokine transcripts was not significantly altered. In conclusion, searching for CECR1 mutation or assessing ADA2 activity should be considered in patients with an atypical presentation of inflammatory disease. PMID:27252897

  6. Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene

    PubMed Central

    2013-01-01

    Background Intellectual disability (ID) is often associated with behavioral problems or disorders. Mutations in the GRIN2B gene (MRD6, MIM613970) have been identified as a common cause of ID (prevalence of 0.5 – 1% in individuals with ID) associated with EEG and behavioral problems. Methods We assessed five GRIN2B mutation carriers aged between 3 and 14 years clinically and via standardized questionnaires to delineate a detailed behavioral phenotype. Parents and teachers rated problem behavior of their affected children by completing the Developmental Behavior Checklist (DBC) and the Conners’ Rating Scales Revised (CRS-R:L). Results All individuals had mild to severe ID and needed guidance in daily routine. They showed characteristic behavior problems with prominent hyperactivity, impulsivity, distractibility and a short attention span. Stereotypies, sleeping problems and a friendly but boundless social behavior were commonly reported. Conclusion Our observations provide an initial delineation of the behavioral phenotype of GRIN2B mutation carriers. PMID:23718928

  7. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters.

    PubMed

    Uettwiller, F; Sarrabay, G; Rodero, M P; Rice, G I; Lagrue, E; Marot, Y; Deiva, K; Touitou, I; Crow, Y J; Quartier, P

    2016-01-01

    The objective of this paper is to: describe the phenotype compound heterozygote for mutations in CECR1 in two children. We describe the clinical and immunological phenotype, including the assessment of ADA2 activity, cytokine expression, interferon-stimulated and neutrophil-stimulated gene signatures, and the results of CECR1 sequencing. The first patient presented with intermittent fever, cutaneous vasculitis, myalgia and muscle inflammation on MRI leading to a provisional diagnosis of periarteritis nodosa. Subsequently, two cerebral lacunar lesions were identified following a brain stroke. Clinical features improved on anti-tumour necrosis factor therapy. The first patient's sister demonstrated early-onset, long-lasting anaemia with mild biological inflammation; at the ages of 3 and 5 years, she had presented 2 acute, transient neurological events with lacunar lesions on MRI. CECR1 sequencing identified both sisters to be compound heterozygous for a p.Tyr453Cys mutation and a previously undescribed deletion of exon 7. ADA2 activity was reduced by 50%. Neutrophil-stimulated genes were not overexpressed, but interferon-stimulated genes were. The expression of a panel of other cytokine transcripts was not significantly altered. In conclusion, searching for CECR1 mutation or assessing ADA2 activity should be considered in patients with an atypical presentation of inflammatory disease. PMID:27252897

  8. Neurobehavioral phenotype observed in KBG syndrome caused by ANKRD11 mutations.

    PubMed

    Lo-Castro, Adriana; Brancati, Francesco; Digilio, Maria Cristina; Garaci, Francesco Giuseppe; Bollero, Patrizio; Alfieri, Paolo; Curatolo, Paolo

    2013-01-01

    KBG syndrome is a rare disease characterized by typical facial dysmorphism, macrodontia of upper central incisors, skeletal abnormalities, and developmental delay. Recently, mutations in ANKRD11 gene have been identified in a subset of patients with KBG syndrome, while a contiguous gene deletion syndrome involving 16q24.3 region (including ANKRD11) was delineated in patients with facial dysmorphism, autism, intellectual disability, and brain abnormalities. Although numerous evidences point to a central causative role of ANKRD11 in the neurologic features of these patients, their neurocognitive and behavior phenotypes are still poorly characterized. Herein, we report the complete neurological and psychiatric features observed in two patients with KBG syndrome due to ANKRD11 mutations. Both patients show intellectual disabilities, severe impairment in communication skills, deficits in several aspects of executive functions and working memory and anxious traits. Their features are compared with those of previously reported patients with KBG syndrome aiding in the delineation of neurocognitive phenotype associated to ANKRD11 mutations. PMID:23184435

  9. Three Routes to Suppression of the Neurodegenerative Phenotypes Caused by Kinesin Heavy Chain Mutations

    PubMed Central

    Djagaeva, Inna; Rose, Debra J.; Lim, Angeline; Venter, Chris E.; Brendza, Katherine M.; Moua, Pangkong; Saxton, William M.

    2012-01-01

    Kinesin-1 is a motor protein that moves stepwise along microtubules by employing dimerized kinesin heavy chain (Khc) subunits that alternate cycles of microtubule binding, conformational change, and ATP hydrolysis. Mutations in the Drosophila Khc gene are known to cause distal paralysis and lethality preceded by the occurrence of dystrophic axon terminals, reduced axonal transport, organelle-filled axonal swellings, and impaired action potential propagation. Mutations in the equivalent human gene, Kif5A, result in similar problems that cause hereditary spastic paraplegia (HSP) and Charcot–Marie–Tooth type 2 (CMT2) distal neuropathies. By comparing the phenotypes and the complementation behaviors of a large set of Khc missense alleles, including one that is identical to a human Kif5A HSP allele, we identified three routes to suppression of Khc phenotypes: nutrient restriction, genetic background manipulation, and a remarkable intramolecular complementation between mutations known or likely to cause reciprocal changes in the rate of microtubule-stimulated ADP release by kinesin-1. Our results reveal the value of large-scale complementation analysis for gaining insight into protein structure–function relationships in vivo and point to possible paths for suppressing symptoms of HSP and related distal neuropathies. PMID:22714410

  10. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2

    PubMed Central

    Rossor, Alexander M.; Oates, Emily C.; Salter, Hannah K.; Liu, Yang; Murphy, Sinead M.; Schule, Rebecca; Gonzalez, Michael A.; Scoto, Mariacristina; Phadke, Rahul; Sewry, Caroline A.; Houlden, Henry; Jordanova, Albena; Tournev, Iyailo; Chamova, Teodora; Litvinenko, Ivan; Zuchner, Stephan; Herrmann, David N.; Blake, Julian; Sowden, Janet E.; Acsadi, Gyuda; Rodriguez, Michael L.; Menezes, Manoj P.; Clarke, Nigel F.; Auer Grumbach, Michaela; Bullock, Simon L.; Muntoni, Francesco; North, Kathryn N.

    2015-01-01

    Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower extremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible ‘hot spot’ mutation, p.Ser107

  11. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2.

    PubMed

    Rossor, Alexander M; Oates, Emily C; Salter, Hannah K; Liu, Yang; Murphy, Sinead M; Schule, Rebecca; Gonzalez, Michael A; Scoto, Mariacristina; Phadke, Rahul; Sewry, Caroline A; Houlden, Henry; Jordanova, Albena; Tournev, Iyailo; Chamova, Teodora; Litvinenko, Ivan; Zuchner, Stephan; Herrmann, David N; Blake, Julian; Sowden, Janet E; Acsadi, Gyuda; Rodriguez, Michael L; Menezes, Manoj P; Clarke, Nigel F; Auer Grumbach, Michaela; Bullock, Simon L; Muntoni, Francesco; Reilly, Mary M; North, Kathryn N

    2015-02-01

    Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower extremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible 'hot spot' mutation, p.Ser107Leu

  12. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies.

    PubMed

    Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A; Barnerias, Christine; Beggs, Alan H; Bertini, Enrico; Ceyhan-Birsoy, Ozge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G; Winder, Tom L; Monnier, Nicole; Clarke, Nigel F; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina

    2014-07-01

    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding. PMID:24692096

  13. Mutation Update and Genotype–Phenotype Correlations of Novel and Previously Described Mutations in TPM2 and TPM3 Causing Congenital Myopathies

    PubMed Central

    Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A.; Barnerias, Christine; Beggs, Alan H.; Bertini, Enrico; Ceyhan-Birsoy, OÖzge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S.; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B.; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N.; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J.; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G.; Winder, Tom L.; Monnier, Nicole; Clarke, Nigel F.; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina

    2014-01-01

    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding. PMID:24692096

  14. Impact of homozygosity for an amyloidogenic transthyretin mutation on phenotype and long term outcome

    PubMed Central

    Holmgren, G; Hellman, U; Lundgren, H; Sandgren, O; Suhr, O

    2005-01-01

    Although amyloidogenic transthyretin (ATTR) mutations are common in several populations, such as black Americans, the small number of diagnosed patients homozygous for TTR amyloid and the short follow up in most studies has until now prevented an analysis of their phenotype. In Sweden, nine homozygous patients from eight families carrying the ATTR mutation Val30Met, which gives rise to fatal neuropathic amyloidosis (FAP), have been identified and have now been followed for up to 15 years. This has enabled an analysis of the phenotype of homozygous patients. Genetic testing and detection of amyloid deposits in the vitreous body or in intestinal or skin biopsies confirmed the diagnosis in all patients. The patients' symptoms were obtained from medical records. For comparison, we used a group of 35 heterozygous non-transplanted patients with FAP (18 men and 17 women), who had been evaluated at the Department of Medicine, Umeå University Hospital before their deaths. Vitreous amyloidosis was the most prevalent symptom in the homozygous group, and in two patients it was the only manifestation of the disease during their lifetime. The age at onset was not different from that of heterozygous patients, and their survival tended not to be shorter but actually longer than for heterozygotes. Homozygosity for the mutation associated with FAP, ATTR Val30Met, does not implicate a more severe phenotype for Swedish patients. The most common symptom was vitreous opacity, which may be the only manifestation of the disease. These findings point to the possibilities of different pathways for amyloid formation, or the presence of hitherto unknown genes operating in amyloid formation. PMID:15930086

  15. Null mutations in human and mouse orthologs frequently result in different phenotypes

    PubMed Central

    Liao, Ben-Yang; Zhang, Jianzhi

    2008-01-01

    One-to-one orthologous genes of relatively closely related species are widely assumed to have similar functions and cause similar phenotypes when deleted from the genome. Although this assumption is the foundation of comparative genomics and the basis for the use of model organisms to study human biology and disease, its validity is known only from anecdotes rather than from systematic examination. Comparing documented phenotypes of null mutations in humans and mice, we find that >20% of human essential genes have nonessential mouse orthologs. These changes of gene essentiality appear to be associated with adaptive evolution at the protein-sequence, but not gene-expression, level. Proteins localized to the vacuole, a cellular compartment for waste management, are highly enriched among essentiality-changing genes. It is probable that the evolution of the prolonged life history in humans required enhanced waste management for proper cellular function until the time of reproduction, which rendered these vacuole proteins essential and generated selective pressures for their improvement. If our gene sample represents the entire genome, our results would mean frequent changes of phenotypic effects of one-to-one orthologous genes even between relatively closely related species, a possibility that should be considered in comparative genomic studies and in making cross-species inferences of gene function and phenotypic effect. PMID:18458337

  16. Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat

    PubMed Central

    Lehnert, Klaus; Ward, Hamish; Berry, Sarah D.; Ankersmit-Udy, Alex; Burrett, Alayna; Beattie, Elizabeth M.; Thomas, Natalie L.; Harris, Bevin; Ford, Christine A.; Browning, Sharon R.; Rawson, Pisana; Verkerk, Gwyneth A.; van der Does, Yvonne; Adams, Linda F.; Davis, Stephen R.; Jordan, T. William; MacGibbon, Alastair K. H.; Spelman, Richard J.; Snell, Russell G.

    2015-01-01

    Selective breeding has strongly reduced the genetic diversity in livestock species, and contemporary breeding practices exclude potentially beneficial rare genetic variation from the future gene pool. Here we test whether important traits arising by new mutations can be identified and rescued in highly selected populations. We screened milks from 2.5 million cows to identify an exceptional individual which produced milk with reduced saturated fat content, and improved unsaturated and omega-3 fatty acid concentrations. The milk traits were transmitted dominantly to her offspring, and genetic mapping and genome sequencing revealed a new mutation in a previously unknown splice enhancer of the DGAT1 gene. Homozygous carriers show features of human diarrheal disorders, and may be useful for the development of therapeutic strategies. Our study demonstrates that high-throughput phenotypic screening can uncover rich genetic diversity even in inbred populations, and introduces a novel strategy to develop novel milks with improved nutritional properties. PMID:25719731

  17. Mutations Conferring a Noncytotoxic Phenotype on Chikungunya Virus Replicons Compromise Enzymatic Properties of Nonstructural Protein 2

    PubMed Central

    Utt, Age; Das, Pratyush Kumar; Varjak, Margus; Lulla, Valeria; Lulla, Aleksei

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E116K (EK) substitution or a GEEGS sequence insertion after residue T648 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the

  18. Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation

    PubMed Central

    Odgerel, Zagaa; Sarkozy, Anna; Lee, Hee-Suk; McKenna, Caoimhe; Rankin, Julia; Straub, Volker; Lochmüller, Hanns; Paola, Francalanci; D’Amico, Adele; Bertini, Enrico; Bushby, Kate; Goldfarb, Lev G

    2010-01-01

    Myofibrillar myopathies (MFMs) are a heterogeneous group of neuromuscular disorders characterized by disintegration of myofibrils. The inheritance pattern in MFMs is commonly autosomal dominant, but there has been a striking absence of secondary cases noted in a BAG3-associated subtype. We studied three families with BAG3 p.Pro209Leu mutation showing a severe phenotype of myofibrillar myopathy and axonal neuropathy with giant axons. In one family, transmission to a pair of siblings has occurred from their asymptomatic father who showed somatic mosaicism. In two other families, neither of the parents was affected or showed detectable level of somatic mosaicism. These observations suggest that the BAG3 variant of MFM may result from a spontaneous mutation at an early point of embryonic development and that transmission from a mosaic parent may occur more than once. The study underlines the importance of parental evaluation as it may have implications for genetic counseling. PMID:20605452

  19. Expansion of the TARP Syndrome Phenotype Associated with De Novo Mutations and Mosaicism

    PubMed Central

    Johnston, Jennifer J.; Sapp, Julie C.; Curry, Cynthia; Horton, Margaret; Leon, Eyby; Cusmano-Ozog, Kristina; Dobyns, William B.; Hudgins, Louanne; Zackai, Elaine; Biesecker, Leslie G.

    2015-01-01

    The TARP syndrome (Talipes equinovarus, Atrial septal defect, Robin sequence, and Persistent left superior vena cava) is an X-linked disorder that was determined to be caused by mutations in RBM10 in two families, and confirmed in a subsequent case report. The first two original families were quite similar in phenotype, with uniform early lethality although a confirmatory case report showed survival into childhood. Here we report on five affecteds from three newly recognized families, including patients with atypical manifestations. None of the five patients had talipes and others also lacked cardinal TARP features of Robin sequence and atrial septal defect. All three families demonstrated de novo mutations, and one of the families had two recurrences, with demonstrable maternal mosaicism. PMID:24259342

  20. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  1. Phenotypic overlap among paroxysmal dyskinesia subtypes: Lesson from a family with PRRT2 gene mutation.

    PubMed

    Wang, Kang; Zhao, Xiaoyu; Du, Yue; He, Fangping; Peng, Guoping; Luo, Benyan

    2013-08-01

    Paroxysmal dyskinesia (PD) is a group of rare neurological conditions which was divided into paroxysmal kinesigenic dyskinesia (PKD), paroxysmal non-kinesigenic dyskinesia (PNKD) and paroxysmal exercise-induced dyskinesia (PED) according to their clinical features. PRRT2 gene was initially identified as the major gene responsible for PKD followed by presence of various PRRT2 mutations discovered in families with benign familial infantile convulsions (BFIC) and infantile convulsions and choreoathetosis (ICCA). We describe a family with characteristic PD showing overlaps in clinical pictures among the three PD subgroups, and a nonsense PRRT2 mutation c.649C>T (p.Arg217X) was also detected. This broadens the phenotypic spectrum in PRRT2-related disorders. In addition, an unusual exercise trigger observed in the proband, likely representing an underestimated occurrence, together with the current clinical PD classification is also elucidated. PMID:22902309

  2. The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene.

    PubMed

    Reilich, Peter; Horvath, Rita; Krause, Sabine; Schramm, Nicolai; Turnbull, Doug M; Trenell, Michael; Hollingsworth, Kieren G; Gorman, Grainne S; Hans, Volkmar H; Reimann, Jens; MacMillan, Andrée; Turner, Lesley; Schollen, Annette; Witte, Gregor; Czermin, Birgit; Holinski-Feder, Elke; Walter, Maggie C; Schoser, Benedikt; Lochmüller, Hanns

    2011-11-01

    Neutral lipid storage disease is caused by mutations in the CGI-58 or the PNPLA2 genes. Lipid storage can be detected in various cell types including blood granulocytes. While CGI-58 mutations are associated with Chanarin-Dorfman syndrome, a condition characterized by lipid storage and skin involvement (ichthyosis), mutations in the patatin-like phospholipase domain-containing protein 2 gene (PNPLA2) were reported with skeletal and cardiac muscle disease only. We describe clinical, myopathological, magnetic resonance imaging (MRI), and genetic findings of six patients carrying different recessive PNPLA2 mutations. Pulse-chase labeling of control and patient cells with supplementation of clenbuterol, salmeterol, and dexamethasone was performed in vitro. The patients share a recognizable phenotype with prominent shoulder girdle weakness and mild pelvic girdle and distal muscle weakness, with highly elevated creatine kinase (CK) and cardiomyopathy developing at later stages. Muscle histology invariably reveals massive accumulation of lipid droplets. New muscle or whole-body MRI techniques may assist diagnosis and may become a useful tool to quantify intramuscular lipid storage. Four novel and two previously reported mutations were detected, affecting different parts of the PNPLA2 gene. Activation of hormone-sensitive lipase by beta-adrenergic substances such as clenbuterol appears to bypass the enzymatic block in PNPLA2-deficient patient cells in vitro. PNPLA2 deficiency is a slowly progressive myopathy with onset around the third decade. Cardiac involvement is relatively common at a later stage. Muscle MRI may detect increased lipid in a characteristic distribution, which could be used for monitoring disease progression. Beta-adrenergic agents may be beneficial in improving triacylglycerol breakdown in patients with PNPLA2 mutations. PMID:21544567

  3. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    SciTech Connect

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  4. Phenotype of the fibroblast growth factor receptor 2 Ser351Cys mutation: Pfeiffer syndrome type III.

    PubMed

    Gripp, K W; Stolle, C A; McDonald-McGinn, D M; Markowitz, R I; Bartlett, S P; Katowitz, J A; Muenke, M; Zackai, E H

    1998-07-24

    We present a patient with pansynostosis, hydrocephalus, seizures, extreme proptosis with luxation of the eyes out of the lids, apnea and airway obstruction, intestinal non-rotation, and severe developmental delay. His skeletal abnormalities include bilateral elbow ankylosis, radial head dislocation, and unilateral broad and deviated first toe. The phenotype of this patient is consistent with that previously reported in Pfeiffer syndrome type III, but is unusual for the lack of broad thumbs. Our patient most closely resembles the case described by Kerr et al. [1996: Am J Med Genet 66:138-143] as Pfeiffer syndrome type III with normal thumbs. Mutations in the genes for fibroblast growth factor receptors (FGFR) 1 and 2 have previously been seen in patients with Pfeiffer syndrome type I. The mutation identified in our patient, Ser351Cys in FGFR2, represents the first reported cause of Pfeiffer syndrome type III. An identical mutation was described once previously by Pulleyn et al., in a patient whose brief clinical description included cloverleaf skull, significant developmental delay, and normal hands and feet [Eur. J. Hum. Genet. 4: 283-291, 1996]. In our patient, previously performed single-strand conformation polymorphism analysis failed to detect a band shift; the mutation was identified only after independent sequence analysis. PMID:9714439

  5. Genotype–Phenotype Correlations in Ornithine Transcarbamylase Deficiency: A Mutation Update

    PubMed Central

    Caldovic, Ljubica; Abdikarim, Iman; Narain, Sahas; Tuchman, Mendel; Morizono, Hiroki

    2015-01-01

    Ornithine transcarbamylase (OTC) deficiency is an X-linked trait that accounts for nearly half of all inherited disorders of the urea cycle. OTC is one of the enzymes common to both the urea cycle and the bacterial arginine biosynthesis pathway; however, the role of OTC has changed over evolution. For animals with a urea cycle, defects in OTC can trigger hyperammonemic episodes that can lead to brain damage and death. This is the fifth mutation update for human OTC with previous updates reported in 1993, 1995, 2002, and 2006. In the 2006 update, 341 mutations were reported. This current update contains 417 disease-causing mutations, and also is the first report of this series to incorporate information about natural variation of the OTC gene in the general population through examination of publically available genomic data and examination of phenotype/genotype correlations from patients participating in the Urea Cycle Disorders Consortium Longitudinal Study and the first to evaluate the suitability of systematic computational approaches to predict severity of disease associated with different types of OTC mutations. PMID:26059767

  6. Further defining the phenotypic spectrum of B4GALT7 mutations.

    PubMed

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc. PMID:26940150

  7. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    SciTech Connect

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  8. Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene

    PubMed Central

    D'Adamo, Maria C.; Gallenmüller, Constanze; Servettini, Ilenio; Hartl, Elisabeth; Tucker, Stephen J.; Arning, Larissa; Biskup, Saskia; Grottesi, Alessandro; Guglielmi, Luca; Imbrici, Paola; Bernasconi, Pia; Di Giovanni, Giuseppe; Franciolini, Fabio; Catacuzzeno, Luigi; Pessia, Mauro; Klopstock, Thomas

    2015-01-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant K+ channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K+ channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K+ channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1. PMID:25642194

  9. Heterogeneous Pulmonary Phenotypes Associated With Mutations in the Thyroid Transcription Factor Gene NKX2-1

    PubMed Central

    Deterding, Robin R.; Wert, Susan E.; White, Frances V.; Dishop, Megan K.; Alfano, Danielle N.; Halbower, Ann C.; Planer, Benjamin; Stephan, Mark J.; Uchida, Derek A.; Williames, Lee D.; Rosenfeld, Jill A.; Lebel, Robert Roger; Young, Lisa R.; Cole, F. Sessions; Nogee, Lawrence M.

    2013-01-01

    Background: Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Methods: Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. Results: We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Conclusions: Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease. PMID:23430038

  10. MUTATIONS IN TTC37 CAUSE TRICHOHEPATOENTERIC SYNDROME (PHENOTYPIC DIARRHOEA OF INFANCY)

    PubMed Central

    Hartley, Jane Louise; Zachos, Nicholas C.; Dawood, Ban; Donowitz, Mark; Forman, Julia; Pollitt, Rodney J; Morgan, Neil V; Tee, Louise; Gissen, Paul; Kahr, Walter H.A.; Knisely, A.S.; Watson, Steve; Chitayat, David; Booth, IW; Protheroe, Sue; Murphy, Stephen; de Vries, Esther; Kelly, Deirdre A; Maher, Eamonn R

    2010-01-01

    Background Trichohepatoenteric syndrome (THES) is an autosomal recessive disorder characterised by life-threatening diarrhoea in infancy, immunodeficiency, liver disease, trichorrhexis nodosa, facial dysmorphism, hypopigmentation and cardiac defects. We attempted to characterise the phenotype and elucidate the molecular basis of THES. Methods Twelve patients with classical THES from 11 families had detailed phenotyping. Autozygosity mapping was undertaken in 8 patients from consanguineous families using 250k single nucleotide polymorphism (SNP) arrays and linked regions evaluated using microsatellite markers. Linkage was confirmed to one region from which candidate genes were analysed. The effect of mutations on protein production and/or localisation in hepatocytes and intestinal epithelial cells from affected patients was characterised by immunohistochemistry. Results Previously unrecognised platelet abnormalities (reduced platelet α-granules, unusual stimulated alpha granule content release, abnormal lipid inclusions, abnormal platelet canalicular system and reduced number of microtubules) were identified. The THES locus was mapped to 5q14.3 – 5q21.2. Sequencing of candidate genes demonstrated mutations in TTC37, which encodes the uncharacterised tetratricopeptide repeat protein, thespin. Bioinformatic analysis suggested thespin to be involved in protein-protein interactions or chaperone. Preliminary studies of enterocyte brush-border ion transporter proteins (NHE2, NHE3, Aquaporin 7, Na/I symporter and H / K ATPase) showed reduced expression or mislocalisation in all THES patients with different profiles for each. In contrast the basolateral localisation of Na/K ATPase was not altered. Conclusion THES is caused by mutations in TTC37. TTC37 mutations have a multisystem effect which may be due to abnormal stability and / or intracellular localisation of TTC37 target proteins. PMID:20176027

  11. Novel Somatic Mutations in Primary Hyperaldosteronism are related to the Clinical, Radiological and Pathological Phenotype

    PubMed Central

    Scholl, Ute I.; Healy, James M.; Thiel, Anne; Fonseca, Annabelle L.; Brown, Taylor C.; Kunstman, John W.; Horne, Matthew J.; Dietrich, Dimo; Riemer, Jasmin; Kücükköylü, Seher; Reimer, Esther N.; Reis, Anna-Carinna; Goh, Gerald; Kristiansen, Glen; Mahajan, Amit; Korah, Reju; Lifton, Richard P.; Prasad, Manju L.; Carling, Tobias

    2016-01-01

    Summary Aldosterone-producing adenomas (APAs) and bilateral adrenal hyperplasia are important causes of secondary hypertension. Somatic mutations in KCNJ5, CACNA1D, ATP1A1, ATP2B3 and CTNNB1 have been described in APAs. Objective To characterize clinical-pathological features in APAs and unilateral adrenal hyperplasia, and correlate them with genotypes. Design Retrospective study. Subjects and Measurements Clinical and pathological characteristics of 90 APAs and 7 diffusely or focally hyperplastic adrenal glands were reviewed, and samples were examined for mutations in known disease genes by Sanger or exome sequencing. Results Mutation frequencies were: KCNJ5, 37.1%; CACNA1D, 10.3%; ATP1A1, 8.2%; ATP2B3, 3.1%; CTNNB1, 2.1%. Previously unidentified mutations included I157K, F154C and 2 insertions (I150_G151insM and I144_E145insAI) in KCNJ5, all close to the selectivity filter, V426G_V427Q_A428_L433del in ATP2B3, and A39Efs*3 in CTNNB1. Mutations in KCNJ5 were associated with female, and other mutations with male gender (p=0.007). On computed tomography, KCNJ5-mutant tumors displayed significantly greater diameter (p=0.023), calculated area (p=0.002) and lower pre-contrast Hounsfield Units (p=0.0002) vs. tumors with mutations in other genes. Accordingly, KCNJ5-mutant tumors were predominantly comprised of lipid-rich fasciculata-like clear cells, whereas other tumors were heterogeneous (p=5×10−6 vs. non-KCNJ5 mutant and p=0.0003 vs. wild type tumors, respectively). CACNA1D mutations were present in two samples with hyperplasia without adenoma. Conclusions KCNJ5 mutant tumors appear to be associated with fasciculata-like clear cell predominant histology and tend to be larger with a characteristic imaging phenotype. Novel somatic KCNJ5 variants likely cause adenomas by loss of potassium selectivity, similar to previously described mutations. PMID:26252618

  12. A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations

    PubMed Central

    Chen, Dong-Hui; Raskind, Wendy H.; Parson, William W.; Sonnen, Joshua A.; Vu, Tiffany; Zheng, YunLin; Matsushita, Mark; Wolff, John; Lipe, Hillary; Bird, Thomas D.

    2010-01-01

    An X-linked myopathy was recently associated with mutations in the four-and-a-half-LIM domains 1 (FHL1) gene. We identified a family with late onset, slowly progressive weakness of scapuloperoneal muscles in three brothers and their mother. A novel missense mutation in the LIM2 domain of FHL1 (W122C) co-segregated with disease in the family. The phenotype was less severe than that in other reported families. Muscle biopsy revealed myopathic changes with FHL1 inclusions that were ubiquitin- and desmin-positive. This mutation provides additional evidence for X-linked myopathy caused by a narrow spectrum of mutations in FHL1, mostly in the LIM2 domain. Molecular dynamics (MD) simulations of the newly identified mutation and five previously published missense mutations in the LIM2 domain revealed no major distortions of the protein structure or disruption of zinc binding. There were, however, increases in the nonpolar, solvent-accessible surface area in one or both of two clusters of residues, suggesting that the mutant proteins have a variably increased propensity to aggregate. Review of the literature shows a wide range of phenotypes associated with mutations in FHL1. However, recognizing the typical scapuloperoneal phenotype and X-linked inheritance pattern will help clinicians arrive at the correct diagnosis. PMID:20633900

  13. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination – including the optic disc – might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  14. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2.

    PubMed

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination - including the optic disc - might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  15. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes.

    PubMed

    Eckstein, Olive S; Wang, Linghua; Punia, Jyotinder N; Kornblau, Steven M; Andreeff, Michael; Wheeler, David A; Goodell, Margaret A; Rau, Rachel E

    2016-08-01

    Mixed-phenotype acute leukemia (MPAL) is a heterogeneous group of poor-prognosis leukemias with immunophenotypic features of at least two cell lineages. The full spectrum of genetic mutations in this rare disease has not been elucidated, limiting our understanding of disease pathogenesis and our ability to devise targeted therapeutic strategies. Here, we sought to define the mutational landscape of MPAL by performing whole-exome sequencing on samples from 23 adult and pediatric MPAL patients. We identified frequent mutations of epigenetic modifiers, most notably mutations of DNMT3A, in 33% of adult MPAL patients. Mutations of activated signaling pathways, tumor suppressors, and transcription factors were also frequent. Importantly, many of the identified mutations are potentially therapeutically targetable, with agents currently available or in various stages of clinical development. Therefore, the mutational spectrum that we have identified provides potential biological insights and is likely to have clinical relevance for patients with this poor-prognosis disease. PMID:27208809

  16. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

    PubMed

    Karniski, L P

    2001-07-01

    The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940

  17. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype.

    PubMed

    Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Jiao, Kangwei; Buena-Atienza, Elena; Sahaboglu, Ayse; Trifunović, Dragana; Balendran, Sukirthini; Koepfli, Tanja; Mühlfriedel, Regine; Schön, Christian; Biel, Martin; Heckmann, Angelique; Beck, Susanne C; Michalakis, Stylianos; Wissinger, Bernd; Seeliger, Mathias W; Paquet-Durand, François

    2015-10-01

    Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions. PMID:26188004

  18. A splicing mutation of the HMGA2 gene is associated with Silver-Russell syndrome phenotype.

    PubMed

    De Crescenzo, Agostina; Citro, Valentina; Freschi, Andrea; Sparago, Angela; Palumbo, Orazio; Cubellis, Maria Vittoria; Carella, Massimo; Castelluccio, Pia; Cavaliere, Maria Luigia; Cerrato, Flavia; Riccio, Andrea

    2015-06-01

    Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and post-natal growth retardation, dysmorphic facial features and body asymmetry. About 50% of the patients carry (epi)genetic alterations involving chromosomes 7 or 11.The high proportion of patients with unidentified molecular etiology suggests the involvement of other genes. Interestingly, SRS patients share clinical features with the 12q14 microdeletion syndrome, characterized by several deletions with a 2.6 Mb region of overlap. Among the genes present in this interval, high mobility AT-hook 2 (HMGA2) appears to be the most likely cause of the growth deficiency, due to its described growth control function. To define the role of HMGA2 in SRS, we looked for 12q14 chromosome imbalances and HMGA2 mutations in a cohort of 45 patients with growth retardation and SRS-like phenotype but no 11p15 (epi)mutations or maternal uniparental disomy of chromosome 7 (matUPD7). We identified a novel 7 bp intronic deletion in HMGA2 present in heterozygosity in the proband and her mother both displaying the typical features of SRS. We demonstrated that the deletion affected normal splicing, indicating that it is a likely cause of HMGA2 deficiency. This study provides the first evidence that a loss-of-function mutation of HMGA2 can be associated with a familial form of SRS. We suggest that HMGA2 mutations leading to haploinsufficiency should be investigated in the SRS patients negative for the typical 11p15 (epi)mutations and matUPD7. PMID:25809938

  19. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071

  20. Heteroplasmy levels of mtDNA1555A>G mutation is positively associated with diverse phenotypes and mutation transmission in a Chinese family.

    PubMed

    Shen, Shan-Shan; Liu, Chang; Xu, Zhi-Yong; Hu, Yu-Hua; Gao, Guo-Feng; Wang, Sha-Yan

    2012-04-20

    The mtDNA 1555A>G mutation was considered to be one of the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, this mutation was always found in homoplasmy with high phenotypic heterogeneity. Recently this mutation in heteroplasmy has been reported in several studies. In the present study, we have collected a large Chinese family harboring heteroplasmic mtDNA 1555A>G mutation with diverse clinical phenotypes. To investigate the relationship between the mutation load and the severity of hearing loss under Eastern Asian background, we performed clinical, molecular, genetic and phylogenic analysis. This pedigree was characterized by coexistence of eight subjects with homoplasmic mutation and ten subjects with various degrees of heteroplasmy, and the results suggested that there was a strong correlation between the mutation load and the severity/age-onset of hearing loss (r=0.758, p<0.001). We noticed that the mutation level of offspring was associated with their mothers' in this pedigree, which indicated that maybe exist a regular pattern during the process of the heteroplasmic transmission. In addition, analysis of the complete mtDNA genome of this family revealed that it belonged to Eastern Asian haplogroup B4C1. In addition, a rare homoplasmic mtDNA 9128T>C variant was identified, it located at a strictly conserved site of mtDNA ATP6 gene. PMID:22475488

  1. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139. PMID:19246746

  2. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations

    PubMed Central

    Orthmann-Murphy, Jennifer L.; Salsano, Ettore; Abrams, Charles K.; Bizzi, Alberto; Uziel, Graziella; Freidin, Mona M.; Lamantea, Eleonora; Zeviani, Massimo; Scherer, Steven S.

    2009-01-01

    Recessive mutations in GJA12/GJC2, the gene that encodes the gap junction protein connexin47 (Cx47), cause Pelizaeus-Merzbacher-like disease (PMLD), an early onset dysmyelinating disorder of the CNS, characterized by nystagmus, psychomotor delay, progressive spasticity and cerebellar signs. Here we describe three patients from one family with a novel recessively inherited mutation, 99C>G (predicted to cause an Ile>Met amino acid substitution; I33M) that causes a milder phenotype. All three had a late-onset, slowly progressive, complicated spastic paraplegia, with normal or near-normal psychomotor development, preserved walking capability through adulthood, and no nystagmus. MRI and MR spectroscopy imaging were consistent with a hypomyelinating leukoencephalopathy. The mutant protein forms gap junction plaques at cell borders similar to wild-type (WT) Cx47 in transfected cells, but fails to form functional homotypic channels in scrape-loading and dual whole-cell patch clamp assays. I33M forms overlapping gap junction plaques and functional channels with Cx43, however, I33M/Cx43 channels open only when a large voltage difference is applied to paired cells. These channels probably do not function under physiological conditions, suggesting that Cx47/Cx43 channels between astrocytes and oligodendrocytes are disrupted, similar to the loss-of-function endoplasmic reticulum-retained Cx47 mutants that cause PMLD. Thus, GJA12/GJC2 mutations can result in a milder phenotype than previously appreciated, but whether I33M retains a function of Cx47 not directly related to forming functional gap junction channels is not known. PMID:19056803

  3. Unusual Phenotypic Features in a Patient with a Novel Splice Mutation in the GHRHR Gene

    PubMed Central

    Hilal, Latifa; Hajaji, Yassir; Vie-Luton, Marie-Pierre; Ajaltouni, Zeina; Benazzouz, Bouchra; Chana, Maha; Chraïbi, Adelmajid; Kadiri, Abdelkrim; Amselem, Serge; Sobrier, Marie-Laure

    2008-01-01

    Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (−5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency. PMID:18297129

  4. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene.

    PubMed

    Hilal, Latifa; Hajaji, Yassir; Vie-Luton, Marie-Pierre; Ajaltouni, Zeina; Benazzouz, Bouchra; Chana, Maha; Chraïbi, Adelmajid; Kadiri, Abdelkrim; Amselem, Serge; Sobrier, Marie-Laure

    2008-01-01

    Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (-5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency. PMID:18297129

  5. Phenotypic Switching in Mycoplasma gallisepticum Hemadsorption Is Governed by a High-Frequency, Reversible Point Mutation

    PubMed Central

    Winner, Florian; Markovà, Ivana; Much, Peter; Lugmair, Albin; Siebert-Gulle, Karin; Vogl, Gunther; Rosengarten, Renate; Citti, Christine

    2003-01-01

    Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA− variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA− mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA+ clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover. PMID:12595441

  6. Phenotypic variation of Val1589Met mutation in a four-generation Chinese pedigree with mild paramyotonia congenitia: case report

    PubMed Central

    Xu, Changshui; Qi, Junjia; Shi, Yingying; Feng, Yan; Zang, Weizhou; Zhang, Jiewen

    2015-01-01

    Four generations of a Chinese family with a mild form of paramyotonia congenital was characterized in phenotype and genotype. For each member, clinical history, physical examination, laboratory tests, electrophysiological and gene analyses were recorded and carried out. A potassium loading, exercise and cold provocation were further tested to diagnose the clinical differentiation. All members shared the characteristics of mild muscle cramp and stiffness induced by exercise or exposed to cold. The symptoms were relieved after rest and warming. A Val1589Met mutation at exon 24 of the SCN4A gene appears in affected subjects, while healthy members had a point mutation at position 1513 at exon 24 of the SCN4A gene. The mild phenotype of the paramyotonia congenital in the family had a Val1589Met mutation in the SCN4A gene. Various phenotypes can exist among different families, indicating that family, individual, genetic or environmental factors influence symptoms. PMID:25755818

  7. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene.

    PubMed

    Sanmaneechai, Oranee; Feely, Shawna; Scherer, Steven S; Herrmann, David N; Burns, Joshua; Muntoni, Francesco; Li, Jun; Siskind, Carly E; Day, John W; Laura, Matilde; Sumner, Charlotte J; Lloyd, Thomas E; Ramchandren, Sindhu; Shy, Rosemary R; Grider, Tiffany; Bacon, Chelsea; Finkel, Richard S; Yum, Sabrina W; Moroni, Isabella; Piscosquito, Giuseppe; Pareyson, Davide; Reilly, Mary M; Shy, Michael E

    2015-11-01

    We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for

  8. Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α-Tropomyosin Mutation for Hypertrophic Cardiomyopathy

    PubMed Central

    Prajapati, Chandra; Pölönen, Risto-Pekka; Rajala, Kristiina; Pekkanen-Mattila, Mari; Rasku, Jyrki; Larsson, Kim; Aalto-Setälä, Katriina

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which affects the structure of heart muscle tissue. The clinical symptoms include arrhythmias, progressive heart failure, and even sudden cardiac death but the mutation carrier can also be totally asymptomatic. To date, over 1400 mutations have been linked to HCM, mostly in genes encoding for sarcomeric proteins. However, the pathophysiological mechanisms of the disease are still largely unknown. Two founder mutations for HCM in Finland are located in myosin-binding protein C (MYBPC3-Gln1061X) and α-tropomyosin (TPM1-Asp175Asn) genes. We studied the properties of HCM cardiomyocytes (CMs) derived from patient-specific human induced pluripotent stem cells (hiPSCs) carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn mutation. Both types of HCM-CMs displayed pathological phenotype of HCM but, more importantly, we found differences between CMs carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation in their cellular size, Ca2+ handling, and electrophysiological properties, as well as their gene expression profiles. These findings suggest that even though the clinical phenotypes of the patients carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation are similar, the genetic background as well as the functional properties on the cellular level might be different, indicating that the pathophysiological mechanisms behind the two mutations would be divergent as well. PMID:27057166

  9. Copy number variations are not modifiers of phenotypic expression in a pair of identical twins carrying a BRCA1 mutation.

    PubMed

    Lasa, A; Ramón y Cajal, T; Llort, G; Suela, J; Cigudosa, J C; Cornet, M; Alonso, C; Barnadas, A; Baiget, M

    2010-10-01

    Mutations in BRCA1 and BRCA2 genes confer a high risk of breast and ovarian cancer but the incomplete penetrance of these mutations suggests that other genetic and/or environmental factors may modify this risk. We present a family where all affected members carried a mutation in the BRCA1 gene and the index case had suffered from cancer twice in the last 27 years, whereas her monozygotic twin sister, also a carrier of the mutation, remained healthy. As copy number variants (CNVs) contribute to phenotypic diversity, a comparative genomic hybridization array (CGH) was performed to see whether the differences in the CNV profile were a modifier factor of the phenotype in our monozygotic twins. Our results show that differences in the CNVs profile were not the cause of the extremely variable penetrance observed in our MZ twin. The search for an explanation should not therefore be limited to genetic changes at the level of the DNA sequence. PMID:20369283

  10. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    SciTech Connect

    Putnam, E.A.; Cho, M.; Milewicz, D.M.

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  11. The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1

    PubMed Central

    Scharer, Gunter; Brocker, Chad; Vasiliou, Vasilis; Creadon-Swindell, Geralyn; Gallagher, Renata C.; Spector, Elaine

    2011-01-01

    Pyridoxine-dependent epilepsy is a disorder associated with severe seizures that may be caused by deficient activity of α-aminoadipic semialdehyde dehydrogenase, encoded by the ALDH7A1 gene, with accumulation of α-aminoadipic semialdehyde and piperideine-6-carboxylic acid. The latter reacts with pyridoxal-phosphate, explaining the effective treatment with pyridoxine. We report the clinical phenotype of three patients, their mutations and those of 12 additional patients identified in our clinical molecular laboratory. There were six missense, one nonsense, and five splice-site mutations, and two small deletions. Mutations c.1217_1218delAT, I431F, IVS-1(+2)T>G, IVS-2(+1)G>A, and IVS-12(+1)G>A are novel. Some disease alleles were recurring: E399Q (eight times), G477R (six times), R82X (two times), and c.1217_1218delAT (two times). A systematic review of mutations from the literature indicates that missense mutations cluster around exons 14, 15, and 16. Nine mutations represent 61% of alleles. Molecular modeling of missense mutations allows classification into three groups: those that affect NAD+binding or catalysis, those that affect the substrate binding site, and those that affect multimerization. There are three clinical phenotypes: patients with complete seizure control with pyridoxine and normal developmental outcome (group 1) including our first patient; patients with complete seizure control with pyridoxine but with developmental delay (group 2), including our other two patients; and patients with persistent seizures despite pyridoxine treatment and with developmental delay (group 3). There is preliminary evidence for a genotype-phenotype correlation with patients from group 1 having mutations with residual activity. There is evidence from patients with similar genotypes for nongenetic factors contributing to the phenotypic spectrum. PMID:20814824

  12. Molecular and phenotypic characteristics of seven novel mutations causing branched-chain organic acidurias.

    PubMed

    Stojiljkovic, M; Klaassen, K; Djordjevic, M; Sarajlija, A; Brasil, S; Kecman, B; Grkovic, S; Kostic, J; Rodriguez-Pombo, P; Desviat, L R; Pavlovic, S; Perez, B

    2016-09-01

    Specific mitochondrial enzymatic deficiencies in the catabolism of branched-chain amino acids cause methylmalonic aciduria (MMA), propionic acidemia (PA) and maple syrup urine disease (MSUD). Disease-causing mutations were identified in nine unrelated branched-chain organic acidurias (BCOA) patients. We detected eight previously described mutations: p.Asn219Tyr, p.Arg369His p.Val553Glyfs*17 in MUT, p.Thr198Serfs*6 in MMAA, p.Ile144_Leu181del in PCCB, p.Gly288Valfs*11, p.Tyr438Asn in BCKDHA and p.Ala137Val in BCKDHB gene. Interestingly, we identified seven novel genetic variants: p.Leu549Pro, p.Glu564*, p.Leu641Pro in MUT, p.Tyr206Cys in PCCB, p.His194Arg, p.Val298Met in BCKDHA and p.Glu286_Met290del in BCKDHB gene. In silico and/or eukaryotic expression studies confirmed pathogenic effect of all novel genetic variants. Aberrant enzymes p.Leu549Pro MUT, p.Leu641Pro MUT and p.Tyr206Cys PCCB did not show residual activity in activity assays. In addition, activity of MUT enzymes was not rescued in the presence of vitamin B12 precursor in vitro which was in accordance with non-responsiveness or partial responsiveness of patients to vitamin B12 therapy. Our study brings the first molecular genetic data and detailed phenotypic characteristics for MMA, PA and MSUD patients for Serbia and the whole South-Eastern European region. Therefore, our study contributes to the better understanding of molecular landscape of BCOA in Europe and to general knowledge on genotype-phenotype correlation for these rare diseases. PMID:26830710

  13. The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse.

    PubMed

    Stuck, Michael W; Conley, Shannon M; Naash, Muna I

    2014-12-01

    Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE). Since there is currently no satisfactory model to study pattern dystrophy disease mechanisms, we generated a knockin mouse model expressing an RDS pattern dystrophy mutation, Y141C. Y141C mice exhibited clinical signs similar to those in patients including late-onset fundus abnormalities characteristic of RPE and choroidal defects and electroretinogram defects. Ultrastructural examination indicated that disc formation was initiated by the Y141C protein, but proper sizing and alignment of discs required wild-type RDS. The biochemical mechanism underlying these abnormalities was tied to defects in the normal process of RDS oligomerization which is required for proper RDS function. Y141C-RDS formed strikingly abnormal disulfide-linked complexes which were localized to the outer segment (OS) where they impaired the formation of proper OS structure. These data support a model of pattern dystrophy wherein a primary molecular defect occurring in all photoreceptors leads to secondary sequellae in adjacent tissues, an outcome which leads to macular vision loss. An understanding of the role of RDS in the interplay between these tissues significantly enhances our understanding of RDS-associated pathobiology and our ability to design rational treatment strategies. PMID:25001182

  14. Nif- phenotype of Azotobacter vinelandii UW97. Characterization and mutational analysis.

    PubMed

    Pulakat, L; Hausman, B S; Lei, S; Gavini, N

    1996-01-26

    We have identified the molecular basis for the nitrogenase negative phenotype exhibited by Azotobacter vinelandii UW97. This strain was initially isolated following nitrosoguanidine mutagenesis. Recently, it was shown that this strain lacks the Fe protein activity, which results in the synthesis of a FeMo cofactor-deficient apodinitrogenase. Activation of this apodinitrogenase requires the addition of both MgATP and wild-type Fe protein to the crude extracts made by A. vinelandii UW97 (Allen, R.M., Homer, M.J., Chatterjee R., Ludden, P.W., Roberts, G.P., and Shah, V.K. (1993) J. Biol. Chem. 268 23670-23674). Earlier, we proposed the sequence of events in the MoFe protein assembly based on the biochemical and spectroscopic analysis of the purified apodinitrogenase from A. vinelandii DJ54 (Gavini, N., Ma, L., Watt, G., and Burgess, B.K. (1994) Biochemistry 33, 11842-11849). Taken together, these results imply that the assembly process of apodinitrogenase is arrested at the same step in both of these strains. Since A. vinelandii DJ54 is a delta nifH strain, this strain is not useful in identifying the features of the Fe protein involved in the MoFe protein assembly. Here, we report a systematic analysis of an A. vinelandii UW97 mutant and show that, unlike A. vinelandii DJ54, the nifH gene of A. vinelandii UW97 has no deletion in either coding sequence or the surrounding sequences. The specific mutation responsible for the Nif- phenotype of A. vinelandii UW97 is the substitution of a non-conserved serine at position 44 of the Fe protein by a phenylalanine as shown by DNA sequencing. Furthermore, oligonucleotide site-directed mutagenesis was employed to confirm that the Nif- phenotype in A. vinelandii UW97 is exclusively due to the substitution of the Fe protein residue serine 44 by phenylalanine. By contrast, replacing Ser-44 with alanine did not affect the Nif phenotype of A. vinelandii. Therefore, it seems that the Nif- phenotype of A. vinelandii UW97 is caused by a

  15. Identification of mutations, genotype-phenotype correlation and prenatal diagnosis of maple syrup urine disease in Indian patients.

    PubMed

    Gupta, Deepti; Bijarnia-Mahay, Sunita; Saxena, Renu; Kohli, Sudha; Dua-Puri, Ratna; Verma, Jyotsna; Thomas, E; Shigematsu, Yosuke; Yamaguchi, Seiji; Deb, Roumi; Verma, Ishwar Chander

    2015-09-01

    Maple syrup urine disease (MSUD) is caused by mutations in genes BCKDHA, BCKDHB, DBT encoding E1α, E1β, and E2 subunits of enzyme complex, branched-chain alpha-ketoacid dehydrogenase (BCKDH). BCKDH participates in catabolism of branched-chain amino acids (BCAAs) - leucine, isoleucine and valine in the energy production pathway. Deficiency or defect in the enzyme complex causes accumulation of BCAAs and keto-acids leading to toxicity. Twenty-four patients with MSUD were enrolled in the study for molecular characterization and genotype-phenotype correlation. Molecular studies were carried out by sequencing of the 3 genes by Sanger method. Bioinformatics tools were employed to classify novel variations into pathogenic or benign. The predicted effects of novel changes on protein structure were elucidated by 3D modeling. Mutations were detected in 22 of 24 patients (11, 7 and 4 in BCKDHB, BCKDHA and DBT genes, respectively). Twenty mutations including 11 novel mutations were identified. Protein modeling in novel mutations showed alteration of structure and function of these subunits. Mutations, c.1065 delT (BCKDHB gene) and c.939G > C (DBT gene) were noted to be recurrent, identified in 6 of 22 alleles and 5 of 8 alleles, respectively. Two-third patients were of neonatal classical phenotype (16 of 24). BCKDHB gene mutations were present in 10 of these 16 patients. Prenatal diagnoses were performed in 4 families. Consanguinity was noted in 37.5% families. Although no obvious genotype-phenotype correlation could be found in our study, most cases with mutation in BCKDHB gene presented in neonatal period. Large number of novel mutations underlines the heterogeneity and distinctness of gene pool from India. PMID:26257134

  16. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  17. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype

    PubMed Central

    Cuyàs, Elisabet; Fernández-Arroyo, Salvador; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Bosch-Barrera, Joaquim; Martin-Castillo, Begoña; De Llorens, Rafael; Joven, Jorge; Menendez, Javier A.

    2015-01-01

    Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG

  18. HIV1-viral protein R (Vpr) mutations: associated phenotypes and relevance for clinical pathologies.

    PubMed

    Soares, Rui; Rocha, Graça; Meliço-Silvestre, António; Gonçalves, Teresa

    2016-09-01

    Over the last 30 years, research into HIV has advanced the knowledge of virus genetics and the development of efficient therapeutic strategies. HIV-1 viral protein R (Vpr) is a specialized and multifunctional protein that plays important roles at multiple stages of the HIV-1 viral life cycle. This protein interacts with a number of cellular and viral proteins and with multiple activities including nuclear transport of the pre-integration complex (PIC) to the nucleus, transcriptional activation, cell cycle arrest at G2/M transition phase and induction of cell death via apoptosis. Specifically, Vpr has been shown to control many host cell functions through a variety of biological processes and by interaction with several cellular pathways. The different functions of Vpr may enhance viral replication and impair the immune system in HIV-1 infected patients. Importantly, functional defects induced by mutations in the Vpr protein correlate with slow disease progression of HIV-infected patients. Vpr is also associated with other concomitant pathologies developed by these patients, which may lead it to be considered as a potential novel therapeutic target. This review will focus on HIV-1 Vpr, mainly on the importance of its structural mutations on the progression of HIV infection, associated phenotypes and relevance for clinical pathologies. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27264019

  19. A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves.

    PubMed

    Sun, Xiao-yang; Takagishi, Yoshiko; Okabe, Erina; Chishima, Yûko; Kanou, Yasuhiko; Murase, Shiori; Mizumura, Kazue; Inaba, Mie; Komatsu, Yukio; Hayashi, Yoshitaka; Peles, Elior; Oda, Sen-ichi; Murata, Yoshiharu

    2009-11-01

    The neurological mouse mutation shambling (shm) exhibits ataxia and hindlimb paresis. Positional cloning of shm showed that it encodes contactin-associated protein (Caspr), which is required for formation of the paranodal junction in myelinated nerves. The shm mutation is a TT insertion in the Caspr gene that results in a frame shift and a premature stop codon at the COOH-terminus. The truncated Caspr protein that is generated lacks the transmembrane and cytoplasmic domains. Here, we found that the nodal/paranodal axoplasm of shm mice lack paranodal junctions and contain large mitochondria and abnormal accumulations of cytoplasmic organelles that indicate altered axonal transport. Immunohistochemical analysis of mutant mice showed reduced expression of Caspr, contactin, and neurofascin 155, which are thought to form a protein complex in the paranodal region; protein 4.1B, however, was normally distributed. The mutant mice had aberrant localization of voltage-gated ion channels on the axolemma of nodal/paranodal regions. Electrophysiological analysis demonstrated that the velocity of saltatory conduction was reduced in sciatic nerves and that the visual response was attenuated in the primary visual cortex. These abnormalities likely contribute to the neurological phenotype of the mutant mice. PMID:19816196

  20. p.R301X Mutation and Variable Phenotypic Appearance of Fabry Disease.

    PubMed

    Ozelsancak, Ruya; Uyar, Bulent

    2016-01-01

    BACKGROUND Fabry disease is an X-linked disorder. Due to deficiency of the enzyme a-galactosidase A, neutral glycosphingolipids (primarily globotriaosylceramide) progressively accumulate within lysosomes of cells in various organ systems, resulting in a multi-system disorder, affecting both men and women. Misdiagnosis and delayed diagnosis are common because of the nature of Fabry disease. CASE REPORT We report a case of Fabry disease with a p.R301X (c.901 C>T) mutation in a 39-year-old man who was being treated for chronic sclerosing glomerulonephritis for 2 years. Family screening tests showed that the proband's mother, sister, and daughter had the same mutation with different phenotypes. Levels of α-galactosidase A were low in the proband and his mother and sister. Cornea verticillata and heart involvement were present in multiple family members. Agalsidase alfa treatment was started in patients where indicated. CONCLUSIONS Pedigree analysis is still a powerful, readily available tool to identify individuals at risk for genetic diseases and allows earlier detection and management of disease. PMID:27156739

  1. Dominant lethal phenotype of a mutation in the -35 recognition region of Escherichia coli sigma 70.

    PubMed Central

    Keener, J; Nomura, M

    1993-01-01

    A dominant lethal mutation in the Escherichia coli rpoD gene, which encodes sigma 70, the promoter recognition subunit of RNA polymerase, was isolated after random mutagenesis. The lethal gene was maintained under control of the lac repressor on a low copy plasmid. An amount of lethal sigma 70 that was nearly equimolar with the chromosomally encoded sigma 70 was sufficient to cause cessation of growth. RNA synthesis per unit cell mass was unaffected, but protein synthesis was inhibited by the mutant sigma 70. The amino acid change (Glu-585 to Gln) was in a region of sigma 70 thought to bind the -35 hexamer of the promoter, and the mutant sigma 70 caused increased expression from promoters with nonconsensus bases in the third position of the -35 hexamer. A null mutation of the fis gene could partially suppress the mutant phenotype. These properties are consistent with those expected of a sigma 70 insensitive to growth rate control of rRNA and tRNA promoters. Images Fig. 2 PMID:7680477

  2. p.R301X Mutation and Variable Phenotypic Appearance of Fabry Disease

    PubMed Central

    Ozelsancak, Ruya; Uyar, Bulent

    2016-01-01

    Patient: Male, 39 Final Diagnosis: Fabry disease Symptoms: Acropareshesia • fatique Medication: — Clinical Procedure: Gene analysis Specialty: Metabolic Disorders and Diabetics Objective: Rare disease Background: Fabry disease is an X-linked disorder. Due to deficiency of the enzyme α-galactosidase A, neutral glycosphingolipids (primarily globotriaosylceramide) progressively accumulate within lysosomes of cells in various organ systems, resulting in a multi-system disorder, affecting both men and women. Misdiagnosis and delayed diagnosis are common because of the nature of Fabry disease. Case Report: We report a case of Fabry disease with a p.R301X (c.901 C>T) mutation in a 39-year-old man who was being treated for chronic sclerosing glomerulonephritis for 2 years. Family screening tests showed that the proband’s mother, sister, and daughter had the same mutation with different phenotypes. Levels of α-galactosidase A were low in the proband and his mother and sister. Cornea verticillata and heart involvement were present in multiple family members. Agalsidase alfa treatment was started in patients where indicated. Conclusions: Pedigree analysis is still a powerful, readily available tool to identify individuals at risk for genetic diseases and allows earlier detection and management of disease. PMID:27156739

  3. The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues.

    PubMed

    Woollacott, Ione O C; Mead, Simon

    2014-03-01

    The discovery of the C9ORF72 hexanucleotide repeat expansion in 2011 and the immediate realisation of a remarkably high prevalence in both familial and sporadic frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) triggered an explosion of interest in studies aiming to define the associated clinical and investigation phenotypes and attempts to develop technologies to measure more accurately the size of the repeat region. This article reviews progress in these areas over the subsequent 2 years, focussing on issues directly relevant to the practising physician. First, we summarise findings from studies regarding the global prevalence of the expansion, not only in FTLD and ALS cases, but also in other neurological diseases and its concurrence with other genetic mutations associated with FTLD and ALS. Second, we discuss the variability in normal repeat number in cases and controls and the theories regarding the relevance of intermediate and pathological repeat number for disease risk and clinical phenotype. Third, we discuss the usefulness of various features within the FTLD and ALS clinical phenotype in aiding differentiation between cases with and without the C9ORF72 expansion. Fourth, we review clinical investigations used to identify cases with the expansion, including neuroimaging and cerebrospinal fluid markers, and describe the mechanisms and limitations of the various diagnostic laboratory techniques used to quantify repeat number in cases and controls. Finally, we discuss the issues surrounding accurate clinical and technological diagnosis of patients with FTLD and/or ALS associated with the C9ORF72 expansion, and outline areas for future research that might aid better diagnosis and genetic counselling of patients with seemingly sporadic or familial FTLD or ALS and their relatives. PMID:24515836

  4. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated caucasian individuals: Correlation with phenotypic activity

    SciTech Connect

    Cascorbi, I.; Drakoulis, N.; Brockmoeller, J.

    1995-09-01

    The polymorphic arylamine N-acetyltransferase (NAT2; EC2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had a genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2{sup *}4/{sup *}4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles {sup *}5A, {sup *}5C, and {sup *}13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of {sup *}6A, {sup *}7B, and {sup *}13 alleles than the group of {sup *}5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations. 34 refs., 4 figs., 7 tabs.

  5. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations.

    PubMed

    Janecke, Andreas R; Li, Ben; Boehm, Manfred; Krabichler, Birgit; Rohrbach, Marianne; Müller, Thomas; Fuchs, Irene; Golas, Gretchen; Katagiri, Yasuhiro; Ziegler, Shira G; Gahl, William A; Wilnai, Yael; Zoppi, Nicoletta; Geller, Herbert M; Giunta, Cecilia; Slavotinek, Anne; Steinmann, Beat

    2016-01-01

    The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS. PMID:26373698

  6. Splicing mutation in the ATR-X gene can lead to a dysmorphic mental retardation phenotype without {alpha}-thalassemia

    SciTech Connect

    Villard, L.; Lossi, A.M.; Fontes, M.

    1996-03-01

    We have previously reported the isolation of a gene from Xq13 that codes for a putative regulator of transcription (XNP) and has now been shown to be the gene involved in the X-linked {alpha}-thalassemia with mental retardation (ATR-X) syndrome. The widespread expression and numerous domains present in the putative protein suggest that this gene could be involved in other phenotypes. The predominant expression of the gene in the developing brain, as well as its association with neuron differentiation, indicates that mutations of this gene might result in a mental retardation (MR) phenotype. In this paper we present a family with a splice junction mutation in XNP that results in the skipping of an exon and in the introduction of a stop codon in the middle of the XNP-coding sequence. Only the abnormal transcript is expressed in two first cousins presenting the classic ATR-X phenotype (with {alpha}-thalassemia and HbH inclusions). In a distant cousin presenting a similar dysmorphic MR phenotype but not having thalassemia, {approximately}30% of the XNP transcripts are normal. These data demonstrate that the mode of action of the XNP gene product on globin expression is distinct from its mode of action in brain development and facial morphogenesis and suggest that other dysmorphic mental retardation phenotypes, such as Juberg-Marsidi or some sporadic cases of Coffin-Lowry, could be due to mutations in XNP. 20 refs., 5 figs., 2 tabs.

  7. Severe congenital neutropenia with neurological impairment due to a homozygous VPS45 p.E238K mutation: A case report suggesting a genotype-phenotype correlation.

    PubMed

    Meerschaut, Ilse; Bordon, Victoria; Dhooge, Catharina; Delbeke, Patricia; Vanlander, Arnaud V; Simon, Amos; Klein, Christoph; Kooy, R Frank; Somech, Raz; Callewaert, Bert

    2015-12-01

    VPS45 mutations cause severe congenital neutropenia (SCN). We report on a girl with SCN and neurological impairment harboring a homozygous p.E238K mutation in VPS45 (vacuolar sorting protein 45). She successfully underwent hematopoietic stem cell transplantation. Our findings delineate the phenotype and indicate a possible genotype-phenotype correlation for neurological involvement. PMID:26358756

  8. A compound heterozygote of novel and recurrent DTDST mutations results in a novel intermediate phenotype of Desbuquois dysplasia, diastrophic dysplasia, and recessive form of multiple epiphyseal dysplasia.

    PubMed

    Miyake, Atsushi; Nishimura, Gen; Futami, Toru; Ohashi, Hirofumi; Chiba, Kazuhiro; Toyama, Yoshiaki; Furuichi, Tatsuya; Ikegawa, Shiro

    2008-01-01

    Diastrophic dysplasia sulfate transporter (DTDST) is required for synthesis of sulfated proteoglycans in cartilage, and its loss-of-function mutations result in recessively inherited chondrodysplasias. The 40 or so DTDST mutations reported to date cause a group of disorders termed the diastrophic dysplasia (DTD) group. The group ranges from the mildest recessive form of multiple epiphyseal dysplasia (r-MED) through the most common DTD to perinatally lethal atelosteogenesis type II and achondrogenesis 1B. Furthermore, the relationship between DTDST mutations, their sulfate transport function, and disease phenotypes has been described. Here we report a girl with DTDST mutations: a compound heterozygote of a novel p.T266I mutation and a recurrent p.DeltaV340 mutation commonly found in severe phenotypes of the DTD group. In infancy, the girl presented with skeletal manifestations reminiscent of Desbuquois dysplasia, another recessively inherited chondrodysplasia, the mutations of which have never been identified. Her phenotype evolved with age into an intermediate phenotype between r-MED and DTD. Considering her clinical phenotypes and known phenotypes of p.DeltaV340, p.T266I was predicted to be responsible for mild phenotypes of the DTD group. Our results further extend the phenotypic spectrum of DTDST mutations, adding Desbuquois dysplasia to the list of differential diagnosis of the DTD group. PMID:18553123

  9. Identification of 16 novel mutations in the argininosuccinate synthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients.

    PubMed

    Gao, Hong-Zhi; Kobayashi, Keiko; Tabata, Ayako; Tsuge, Hideaki; Iijima, Mikio; Yasuda, Tomotsugu; Kalkanoglu, H Serap; Dursun, Ali; Tokatli, Aysegul; Coskun, Turgay; Trefz, Friedrich K; Skladal, Daniela; Mandel, Hanna; Seidel, Joerg; Kodama, Soichi; Shirane, Seiko; Ichida, Takafumi; Makino, Shigeru; Yoshino, Makoto; Kang, Jong-Hon; Mizuguchi, Masashi; Barshop, Bruce A; Fuchinoue, Shohei; Seneca, Sara; Zeesman, Susan; Knerr, Ina; Rodés, Margarita; Wasant, Pornswan; Yoshida, Ichiro; De Meirleir, Linda; Abdul Jalil, Md; Begum, Laila; Horiuchi, Masahisa; Katunuma, Nobuhiko; Nakagawa, Shiro; Saheki, Takeyori

    2003-07-01

    Classical citrullinemia (CTLN1), a rare autosomal recessive disorder, is caused by mutations of the argininosuccinate synthetase (ASS) gene, localized on chromosome 9q34.1. ASS functions as a rate-limiting enzyme in the urea cycle. Previously, we identified 32 mutations in the ASS gene of CTLN1 patients mainly in Japan and the United States, and to date 34 different mutations have been described in 50 families worldwide. In the present study, we report ASS mutations detected in 35 additional CTLN1 families from 11 countries. By analyzing the entire coding sequence and the intron-exon boundaries of the ASS gene using RT-PCR and/or genomic DNA-PCR, we have identified 16 novel mutations (two different 1-bp deletions, a 67-bp insertion, and 13 missense) and have detected 12 known mutations. Altogether, 50 different mutations (seven deletion, three splice site, one duplication, two nonsense, and 37 missense) in 85 CTLN1 families were identified. On the basis of primary sequence comparisons with the crystal structure of E. coli ASS protein, it may be concluded that any of the 37 missense mutations found at 30 different positions led to structural and functional impairments of the human ASS protein. It has been found that three mutations are particularly frequent: IVS6-2A>G in 23 families (Japan: 20 and Korea: three), G390R in 18 families (Turkey: six, U.S.: five, Spain: three, Israel: one, Austria: one, Canada: one, and Bolivia: one), and R304W in 10 families (Japan: nine and Turkey: one). Most mutations of the ASS gene are "private" and are distributed throughout the gene, except for exons 5 and 12-14. It seems that the clinical course of the patients with truncated mutations or the G390R mutation is early-onset/severe. The phenotype of the patients with certain missense mutations (G362V or W179R) is more late-onset/mild. Eight patients with R86H, A118T, R265H, or K310R mutations were adult/late-onset and four of them showed severe symptoms during pregnancy or

  10. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: genotype/phenotype correlations.

    PubMed

    Superti-Furga, A; Rossi, A; Steinmann, B; Gitzelmann, R

    1996-05-01

    Achondrogenesis type 1B (ACG-1B), atelosteogenesis type 2 (AO-2), and diastrophic dysplasia (DTD) are recessively inherited chondrodysplasias of decreasing severity caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene on chromosome 5. In these conditions, sulfate transport across the cell membrane is impaired which results in insufficient sulfation of cartilage proteoglycans and thus in an abnormally low sulfate content of cartilage. The severity of the phenotype correlates well with the predicted effect of the underlying DTDST mutations: homozygosity or compound heterozygosity for stop codons or transmembrane domain substitutions mostly result in achondrogenesis type 1B, while other structural or regulatory mutations usually result in one of the less severe phenotypes. The chondrodysplasias arising at the DTDST locus constitute a bone dysplasia family with recessive inheritance. PMID:8723100

  11. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: Genotype/phenotype correlations

    SciTech Connect

    Superti-Furga, A.; Steinmann, B.; Gitzelmann, R.; Rossi, A.

    1996-05-03

    Achondrogenesis type 1B (ACG-1B), atelosteogenesis type 2 (AO-2), and diastrophic dysplasia (DTD) are recessively inherited chondrodysplasia of decreasing severity caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene on chromosome 5. In these conditions, sulfate transport across the cell membrane is impaired which results in insufficient sulfation of cartilage proteoglycans and thus in an abnormally low sulfate content of cartilage. The severity of the phenotype correlates well with the predicted effect of the underlying DTDST mutations: homozygosity or compound heterozygosity for stop codons or transmembrane domain substitutions mostly result in achondrogenesis type 1B, while other structural or regulatory mutations usually result in one of the less severe phenotypes. The chondrodysplasia arising at the DTDST locus constitute a bone dysplasia family with recessive inheritance. 28 refs., 2 tabs.

  12. VPS33B mutation with ichthyosis, cholestasis, and renal dysfunction but without arthrogryposis: incomplete ARC syndrome phenotype.

    PubMed

    Bull, Laura N; Mahmoodi, Venus; Baker, Alastair J; Jones, Rosamond; Strautnieks, Sandra S; Thompson, Richard J; Knisely, A S

    2006-02-01

    Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare multisystem disorder first described in 1979 and recently ascribed to mutation in VPS33B, whose product acts in intracellular trafficking. Arthrogryposis, spillage of various substances in the urine, and conjugated hyperbilirubinemia define an ARC core phenotype, in some patients associated with ichthyosis, central nervous system malformation, deafness, and platelet abnormalities. We describe a patient with cholestasis, aminoaciduria, ichthyosis, partial callosal agenesis, and sensorineural deafness who, although homozygous for the novel VPS33B mutation 971delA/K324fs, predicted to abolish VPS33B function, did not exhibit arthrogryposis. The phenotypes associated with VPS33B mutation may include incomplete ARC. PMID:16492441

  13. Interaction between Mutations in the Suppressor of Hairy Wing and Modifier of Mdg4 Genes of Drosophila Melanogaster Affecting the Phenotype of Gypsy-Induced Mutations

    PubMed Central

    Georgiev, P.; Kozycina, M.

    1996-01-01

    The suppressor of Hairy-wing [su(Hw)] protein mediates the mutagenic effect of the gypsy retrotransposon by repressing the function of transcriptional enhancers located distally from the promoter with respect to the position of the su(Hw)-binding region. Mutations in a second gene, modifier of mdg4, also affect the gypsy-induced phenotype. Two major effects of the mod(mdg4)(1u1) mutation can be distinguished: the interference with insulation by the su(Hw)-binding region and direct inhibition of gene expression that is not dependent on the su(Hw)-binding region position. The mod(mdg4)(1u1) mutation partially suppresses ct(6), sc(D1) and Hw(1) mutations, possibly by interfering with the insulation effect of the su(Hw)-binding region. An example of the second effect of mod(mdg4)(1u1) is a complete inactivation of yellow expression in combination with the y(2) allele. Phenotypic analyses of flies with combinations of mod(mdg4)(1u1) and different su(Hw) mutations, or with constructions carrying deletions of the acidic domains of the su(Hw) protein, suggest that the carboxy-terminal acidic domain is important for direct inhibition of yellow transcription in bristles, while the amino-terminal acidic domain is more essential for insulation. PMID:8852842

  14. An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes.

    PubMed

    Addis, Maria; Meloni, Cristiana; Tosetto, Enrica; Ceol, Monica; Cristofaro, Rosalba; Melis, Maria Antonietta; Vercelloni, Paolo; Del Prete, Dorella; Marra, Giuseppina; Anglani, Franca

    2013-06-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a very unusual phenotype (dysmorphic features, ocular abnormalities, growth delay, rickets, mild mental retardation) in which a digenic inheritance was discovered. Two different, novel disease-causing mutations were detected, both inherited from the patient's healthy mother, that is a truncating mutation in the CLCN5 gene (A249fs*20) and a donor splice-site alteration in the OCRL gene (c.388+3A>G). The mRNA analysis of the patient's leukocytes revealed an aberrantly spliced OCRL mRNA caused by in-frame exon 6 skipping, leading to a shorter protein, but keeping intact the central inositol 5-phosphatase domain and the C-terminal side of the ASH-RhoGAP domain. Only wild-type mRNA was observed in the mother's leukocytes due to a completely skewed X inactivation. Our results are the first to reveal the effect of an epistatic second modifier in Dent's disease too, which can modulate its expressivity. We surmise that the severe Dent disease 2 phenotype of our patient might be due to an addictive interaction of the mutations at two different genes. PMID:23047739

  15. NOVEL MUTATIONS WIDEN THE PHENOTYPIC SPECTRUM OF SLOW SKELETAL/β-CARDIAC MYOSIN (MYH7) DISTAL MYOPATHY

    PubMed Central

    Lamont, Phillipa J.; Wallefeld, William; Hilton-Jones, David; Udd, Bjarne; Argov, Zohar; Barboi, Alexandru C.; Bonneman, Carsten; Boycott, Kym M.; Bushby, Kate; Connolly, Anne M.; Davies, Nicholas; Beggs, Alan H.; Cox, Gerald F.; Dastgir, Jahannaz; DeChene, Elizabeth T.; Gooding, Rebecca; Jungbluth, Heinz; Muelas, Nuria; Palmio, Johanna; Penttilä, Sini; Schmedding, Eric; Suominen, Tiina; Straub, Volker; Staples, Christopher; Van den Bergh, Peter Y.K.; Vilchez, Juan J.; Wagner, Kathryn R.; Wheeler, Patricia G.; Wraige, Elizabeth; Laing, Nigel G.

    2014-01-01

    Laing early onset distal myopathy and myosin storage myopathy are caused by mutations of slow skeletal/β-cardiac myosin heavy chain encoded by the gene MYH7, as is a common form of familial hypertrophic/dilated cardiomyopathy. The mechanisms by which different phenotypes are produced by mutations in MYH7, even in the same region of the gene, are not known. To explore the clinical spectrum and pathobiology we screened the MYH7 gene in 88 patients from 21 previously unpublished families presenting with distal or generalised skeletal muscle weakness, with or without cardiac involvement. Twelve novel mutations have been identified in thirteen families. In one of these families the grandfather of the proband was found to be a mosaic for the MYH7 mutation. In eight cases de novo mutation appeared to have occurred, which was proven in three. The presenting complaint was footdrop, sometimes leading to delayed walking or tripping, in members of 17 families (81%), with other presentations including cardiomyopathy in infancy, generalised floppiness and scoliosis. Cardiac involvement as well as skeletal muscle weakness was identified in 9 of 21 families. Spinal involvement such as scoliosis or rigidity was identified in 12 (57%). This report widens the clinical and pathological phenotypes, and the genetics of MYH7 mutations leading to skeletal muscle diseases. PMID:24664454

  16. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  17. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  18. Phenotype-Genotype Correlations in Mouse Models of Amelogenesis Imperfecta Caused by Amelx and Enam Mutations

    PubMed Central

    Coxon, Thomas Liam; Brook, Alan Henry; Barron, Martin John; Smith, Richard Nigel

    2012-01-01

    Mutations in human and in mouse orthologous genes Amelx and Enam result in a diverse range of enamel defects. In this study we aimed to investigate the phenotype-genotype correlation between the mutants and the wild-type controls in mouse models of amelogenesis imperfecta using novel measurement approaches. Ten hemi-mandibles and incisors were dissected from each group of AmelxWT, AmelxX/Y64H, AmelxY/Y64H, AmelxY64H/Y64H, and EnamWT, EnamRgsc395 heterozygous and EnamRgsc395 homozygous mice. Their macro-morphology, colour and micro-topography were assessed using bespoke 2D and 3D image analysis systems and customized colour and whiteness algorithms. The novel methods identified significant differences (p ≤ 0.05) between the Amelx groups for mandible and incisor size and enamel colour and between the Enam groups for incisor size and enamel colour. The AmelxWT mice had the largest mandibles and incisors, followed in descending order of size by the AmelxX/Y64H, AmelxY/Y64H and AmelxY64H/Y64H mice. Within the Enam groups the EnamWT incisors were largest and the EnamRgsc395 heterozygous mice were smallest. The effect on tooth morphology was also reflected by the severity of the enamel defects in the colour and whiteness assessment. Amelogenin affected mandible morphology and incisor enamel formation, while enamelin only affected incisors, supporting the multifunctional role of amelogenin. The enamelin mutation was associated with earlier forming enamel defects. The study supported the critical involvement of amelogenin and enamelin in enamel mineralization. PMID:22759786

  19. Biochemical, molecular and behavioral phenotypes of Rab3A mutations in the mouse

    PubMed Central

    Yang, S.; Farias, M.; Kapfhamer, D.; Tobias, J.; Grant, G.; Abel, T.; Bućan, M.

    2010-01-01

    Ras-associated binding (Rab) protein 3A is a neuronal guanosine triphosphate (GTP)-binding protein that binds synaptic vesicles and regulates synaptic transmission. A mouse mutant, earlybird (Ebd), with a point mutation in the GTP-binding domain of Rab3A (D77G), exhibits anomalies in circadian behavior and homeostatic response to sleep loss. Here, we show that the D77G substitution in the Ebd allele causes reduced GTP and GDP binding, whereas GTPase activity remains intact, leading to reduced protein levels of both Rab3A and rabphilin3A. Expression profiling of the cortex and hippocampus of Ebd and Rab3a-deficient mice revealed subtle differences between wild-type and mutant mice. Although mice were backcrossed for three generations to a C57BL/6J background, the most robust changes at the transcriptional level between Rab3a−/− and Rab3a+/+ mice were represented by genes from the 129/Sv-derived chromosomal region surrounding the Rab3a gene. These results showed that differences in genetic background have a stronger effect on gene expression than the mutations in the Rab3a gene. In behavioral tests, the Ebd/Ebd mice showed a more pronounced mutant phenotype than the null mice; Ebd/Ebd have reduced anxiety-like behavior in the elevated zero-maze test, reduced response to stress in the forced swim test and a deficit in cued fear conditioning (FC), whereas Rab3a−/− showed only a deficit in cued FC. Our data implicate Rab3A in learning and memory as well as in the regulation of emotion. A combination of forward and reverse genetics has provided multiple alleles of the Rab3a gene; our studies illustrate the power and complexities of the parallel analysis of these alleles at the biochemical, molecular and behavioral levels. PMID:16734774

  20. Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features.

    PubMed

    Rossi, Giacomina; Bastone, Antonio; Piccoli, Elena; Morbin, Michela; Mazzoleni, Giulia; Fugnanesi, Valeria; Beeg, Marten; Del Favero, Elena; Cantù, Laura; Motta, Simona; Salsano, Ettore; Pareyson, Davide; Erbetta, Alessandra; Elia, Antonio Emanuele; Del Sorbo, Francesca; Silani, Vincenzo; Morelli, Claudia; Salmona, Mario; Tagliavini, Fabrizio

    2014-02-01

    Microtubule-associated protein tau gene (MAPT) is one of the major genes linked to frontotemporal lobar degeneration, a group of neurodegenerative diseases clinically, pathologically, and genetically heterogeneous. In particular, MAPT mutations give rise to the subgroup of tauopathies. The pathogenetic mechanisms underlying the MAPT mutations so far described are the decreased ability of tau protein to promote microtubule polymerization (missense mutations) or the altered ratio of tau isoforms (splicing mutations), both leading to accumulation of hyperphosphorylated filamentous tau protein. Following a genetic screening of patients affected by frontotemporal lobar degeneration, we identified 2 MAPT mutations, V363I and V363A, leading to atypical clinical phenotypes, such as posterior cortical atrophy. We investigated in vitro features of the recombinant mutated tau isoforms and revealed unusual functional and structural characteristics such as an increased ability to promote microtubule polymerization and a tendency to form oligomeric instead of filamentous aggregates. Thus, we disclosed a greater than expected complexity of abnormal features of mutated tau isoforms. Overall our findings suggest a high probability that these mutations are pathogenic. PMID:24018212

  1. A new family with an SLC9A6 mutation expanding the phenotypic spectrum of Christianson syndrome.

    PubMed

    Masurel-Paulet, Alice; Piton, Amélie; Chancenotte, Sophie; Redin, Claire; Thauvin-Robinet, Christel; Henrenger, Yvan; Minot, Delphine; Creppy, Audrey; Ruffier-Bourdet, Marie; Thevenon, Julien; Kuentz, Paul; Lehalle, Daphné; Curie, Aurore; Blanchard, Gaelle; Ghosn, Ezzat; Bonnet, Marlene; Archimbaud-Devilliers, Mélanie; Huet, Frédéric; Perret, Odile; Philip, Nicole; Mandel, Jean-Louis; Faivre, Laurence

    2016-08-01

    Using targeted next generation sequencing, we have identified a splicing mutation (c.526-9_526-5del) in the SLC9A6 gene in a 9-year-old boy with mild intellectual disability (ID), microcephaly, and social interaction disabilities. This intronic microdeletion leads to the skipping of exon 3 and to an in-frame deletion of 26 amino acids in the TM4 domain. It segregates with cognitive impairment or learning difficulties in other members of the family. Mutations in SLC9A6 have been reported in X-linked Christianson syndrome associating severe to profound intellectual deficiency and an Angelman-like phenotype with microcephaly, absent speech, ataxia with progressive cerebellar atrophy, ophthalmoplegia, epilepsy, and neurological regression. The proband and his maternal uncle both have an attenuated phenotype with mild ID, attention deficit disorder, speech difficulties, and mild asymptomatic cerebellar atrophy. The proband also have microcephaly. The mutation cosegregated with learning disabilities and speech difficulties in the female carriers (mother and three sisters of the proband). Detailed neuropsychological, speech, and occupational therapy investigations in the female carriers revealed impaired oral and written language acquisition, with dissociation between verbal and performance IQ. An abnormal phenotype, ranging from learning disability with predominant speech difficulties to mild intellectual deficiency, has been described previously in a large proportion of female carriers. Besides broadening the clinical spectrum of SLC9A6 gene mutations, we present an example of a monogenic origin of mild learning disability. © 2016 Wiley Periodicals, Inc. PMID:27256868

  2. Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency

    PubMed Central

    Felgentreff, Kerstin; Lee, Yu Nee; Frugoni, Francesco; Du, Likun; van der Burg, Mirjam; Giliani, Silvia; Tezcan, Ilhan; Reisli, Ismail; Mejstrikova, E; Villartay, JP; Sleckman, Barry P; Manis, John; Notarangelo, Luigi D

    2015-01-01

    Background The endonuclease ARTEMIS, encoded by the DCLRE1C gene, is a component of the non-homologous end-joining (NHEJ) pathway, and participates in hairpin opening during the V(D)J recombination process and repair of a subset of DNA double strand breaks. Patients with ARTEMIS deficiency usually present with severe combined immunodeficiency (SCID) and cellular radiosensitivity, but hypomorphic mutations may cause milder phenotypes (leaky SCID). Objective We sought to correlate the functional impact of human DCLRE1C mutations on phenotypic presentation in patients with ARTEMIS deficiency. Methods We studied recombination and DNA repair activity of 41 human DCLRE1C mutations in Dclre1c−/− v-abl kinase transformed pro-B cells retrovirally engineered with a construct that allows quantification of recombination activity by flow-cytometry. For assessment of DNA repair efficacy, resolution of γH2AX accumulation was studied after ionizing radiation. Results Low or absent activity was detected for mutations causing a typical SCID phenotype. Most of leaky SCID patients were compound heterozygous for one loss of function (LOF) and one hypomorphic allele with significant residual levels of recombination and DNA repair activity. Deletions disrupting the C-terminus result in truncated, but partially functional proteins, and are often associated with leaky SCID. Overexpression of hypomorphic mutants may improve the functional defect. Conclusions Correlation between the nature and location of DCLRE1C mutations, functional activity, and the clinical phenotype, has been observed. Hypomorphic variants that have been reported in the general population may be disease-causing if combined in trans with a LOF allele. Therapeutic strategies aimed at inducing overexpression of hypomorphic alleles may be beneficial. PMID:25917813

  3. Mutations in collagen 18A1 and their relevance to the human phenotype.

    PubMed

    Passos-Bueno, Maria Rita; Suzuki, Oscar T; Armelin-Correa, Lucia M; Sertié, Andréa L; Errera, Flavia I V; Bagatini, Kelly; Kok, Fernando; Leite, Katia R M

    2006-03-01

    Collagen XVIII, a proteoglycan, is a component of basement membranes (BMs). There are three distinct isoforms that differ only by their N-terminal, but with a specific pattern of tissue and developmental expression. Cleavage of its C-terminal produces endostatin, an inhibitor of angiogenesis. In its N-terminal, there is a frizzled motif which seems to be involved in Wnt signaling. Mutations in this gene cause Knobloch syndrome KS), an autosomal recessive disorder characterized by vitreoretinal and macular degeneration and occipital encephalocele. This review discusses the effect of both rare and polymorphic alleles in the human phenotype, showing that deficiency of one of the collagen XVIII isoforms is sufficient to cause KS and that null alleles causing deficiency of all collagen XVIII isoforms are associated with a more severe ocular defect. This review besides illustrating the functional importance of collagen XVIII in eye development and its structure maintenance throughout life, it also shows its role in other tissues and organs, such as nervous system and kidney. PMID:16532212

  4. Phenotypic effects of an induced mutation of the ObRa isoform of the leptin receptor★

    PubMed Central

    Li, Zhiying; Ceccarini, Giovanni; Eisenstein, Michael; Tan, Keith; Friedman, Jeffrey Michael

    2013-01-01

    Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian physiology. To date, six splice variants of the leptin receptor gene have been identified [1–3]. These splice variants have identical extracellular leptin binding motifs but different intracellular C termini. The finding that mutations specifically ablating the function of ObRb cause obesity has established a critical role for this isoform in leptin signaling [1,7]. ObRa is the most abundant splicing isoform with a broad tissue distribution [5], and it has been proposed to play roles in regulating leptin bioavailability, CSF (cerebrospinal fluid) transport and function by forming heterodimers with ObRb and also activating signal transduction via JAK2 in-vitro [5–10]. To assess the in-vivo role of ObRa, we generated an ObRa KO mouse by deleting the ObRa-specific exon 19a. Homozygous mutant mice breed normally and are indistinguishable from wild-type mice on regular chow diet, but show a slightly increased basal plasma leptin, a slight improvement of their GTT and a slightly reduced response to systemic leptin administration. These mice also show a modest but statistically significant increase in weight when placed on a high fat diet with a slightly reduced CSF/plasma ratio of leptin. These data suggest that ObRa plays a role in mediating some of leptin's effects but that the phenotypic consequences are modest compared to a deletion of ObRb. PMID:24327953

  5. A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations.

    PubMed

    Shahni, Rojeen; Wedatilake, Yehani; Cleary, Maureen A; Lindley, Keith J; Sibson, Keith R; Rahman, Shamima

    2013-09-01

    Nuclear-encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl-tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initially attributed to iron deficiency. Bone marrow aspirate at 5 years revealed ringed sideroblasts but transfusion dependency did not occur until 11 years. Other clinical features included lactic acidosis, poor weight gain, hypertrophic cardiomyopathy and severe myopathy leading to respiratory failure necessitating ventilatory support. Long-range PCR excluded mitochondrial DNA rearrangements. Clinical diagnosis of MLASA prompted direct sequence analysis of the YARS2 gene encoding the mitochondrial tyrosyl-tRNA synthetase, which revealed homozygosity for a known pathogenic mutation, c.156C>G;p.F52L. Comparison with four previously reported cases demonstrated remarkable clinical homogeneity. First line investigation of MLASA should include direct sequence analysis of YARS2 and PUS1 (encoding a tRNA modification factor) rather than muscle biopsy. Early genetic diagnosis is essential for counseling and to facilitate appropriate supportive therapy. Reasons for segregation of specific clinical phenotypes with particular mitochondrial aminoacyl tRNA-synthetase defects remain unknown. PMID:23918765

  6. A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations

    PubMed Central

    Shahni, Rojeen; Wedatilake, Yehani; Cleary, Maureen A; Lindley, Keith J; Sibson, Keith R; Rahman, Shamima

    2013-01-01

    Nuclear-encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl-tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initially attributed to iron deficiency. Bone marrow aspirate at 5 years revealed ringed sideroblasts but transfusion dependency did not occur until 11 years. Other clinical features included lactic acidosis, poor weight gain, hypertrophic cardiomyopathy and severe myopathy leading to respiratory failure necessitating ventilatory support. Long-range PCR excluded mitochondrial DNA rearrangements. Clinical diagnosis of MLASA prompted direct sequence analysis of the YARS2 gene encoding the mitochondrial tyrosyl-tRNA synthetase, which revealed homozygosity for a known pathogenic mutation, c.156C>G;p.F52L. Comparison with four previously reported cases demonstrated remarkable clinical homogeneity. First line investigation of MLASA should include direct sequence analysis of YARS2 and PUS1 (encoding a tRNA modification factor) rather than muscle biopsy. Early genetic diagnosis is essential for counseling and to facilitate appropriate supportive therapy. Reasons for segregation of specific clinical phenotypes with particular mitochondrial aminoacyl tRNA-synthetase defects remain unknown. © 2013 Wiley Periodicals, Inc. PMID:23918765

  7. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1.

    PubMed

    Strickland, Alleene V; Schabhüttl, Maria; Offenbacher, Hans; Synofzik, Matthis; Hauser, Natalie S; Brunner-Krainz, Michaela; Gruber-Sedlmayr, Ursula; Moore, Steven A; Windhager, Reinhard; Bender, Benjamin; Harms, Matthew; Klebe, Stephan; Young, Peter; Kennerson, Marina; Garcia, Avencia Sanchez Mejias; Gonzalez, Michael A; Züchner, Stephan; Schule, Rebecca; Shy, Michael E; Auer-Grumbach, Michaela

    2015-09-01

    Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways. PMID:26100331

  8. A Unique Mutation in a MYB Gene Cosegregates with the Nectarine Phenotype in Peach

    PubMed Central

    Dondini, Luca; Pacheco, Igor; Dettori, Maria Teresa; Gazza, Laura; Scalabrin, Simone; Strozzi, Francesco; Tartarini, Stefano; Bassi, Daniele; Verde, Ignazio; Rossini, Laura

    2014-01-01

    Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross ‘Contender’ (C, peach) x ‘Ambra’ (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs. PMID:24595269

  9. Expanding the SHOC2 Mutation Associated Phenotype of Noonan Syndrome with Loose Anagen Hair: Structural Brain Anomalies and Myelofibrosis

    PubMed Central

    Gripp, Karen W.; Zand, Dina J.; Demmer, Laurie; Anderson, Carol E.; Dobyns, William B.; Zackai, Elaine H.; Denenberg, Elizabeth; Jenny, Kim; Stabley, Deborah L.; Sol-Church, Katia

    2013-01-01

    Noonan syndrome is a heterogenous rasopathy typically presenting with short stature, characteristic facial features, cardiac abnormalities including pulmonic valve stenosis, ASD and hypertrophic cardiomyopathy (HCM), cryptorchidism, ectodermal abnormalities and learning differences. The phenotype is variable, and limited genotype phenotype correlation exists with SOS1 mutations often associated with normal cognition and stature, RAF1 mutations entailing a high HCM risk, and certain PTPN11 mutations predisposing to juvenile myelomonocytic leukemia. The recently identified SHOC2 mutation (p.Ser2Gly) causes Noonan syndrome with loose anagen hair. We report five patients with this mutation. All had skin hyperpigmentation, sparse light colored hair, increased fine wrinkles, ligamentous laxity, developmental delay and 4/4 had a structural cardiac anomaly. Hypotonia and macrocephaly occurred in 4/5 (80%); 3/5 (60%) had polyhydramnios, increased birth weight or required use of a feeding tube. Distinctive brain abnormalities included relative megalencephaly and enlarged subarachnoid spaces suggestive of benign external hydrocephalus, and a relatively small posterior fossa as indicated by a vertical tentorium. The combination of a large brain with a small posterior fossa likely resulted in the high rate of cerebellar tonsillar ectopia (3/4) (75%). Periventricular nodular heterotopia was seen in one patient with a thick and dysplastic corpus callosum. We report on the first hematologic neoplasm, myelofibrosis, in a 2-year-old patient with SHOC2 mutation. Myelofibrosis is exceedingly rare in children and young adults. The absence of a somatic JAK2 mutation, seen in the majority of patients with myelofibrosis, is noteworthy as it suggests that germline or somatic SHOC2 mutations are causally involved in myelofibrosis. PMID:23918763

  10. Nonsyndromic hearing loss DFNA10 and a novel mutation of EYA4: evidence for correlation of normal cardiac phenotype with truncating mutations of the Eya domain.

    PubMed

    Makishima, Tomoko; Madeo, Anne C; Brewer, Carmen C; Zalewski, Christopher K; Butman, John A; Sachdev, Vandana; Arai, Andrew E; Holbrook, Brenda M; Rosing, Douglas R; Griffith, Andrew J

    2007-07-15

    Dominant, truncating mutations of eyes absent 4 (EYA4) on chromosome 6q23 can cause either nonsyndromic hearing loss DFNA10 or hearing loss with dilated cardiomyopathy (DCM). It has been proposed that truncations of the C-terminal Eya domain cause DFNA10 whereas upstream truncations of the N-terminal variable region cause hearing loss with DCM. Here we report an extended family co-segregating autosomal dominant, postlingual-onset, progressive, sensorineural hearing loss (SNHL) with a novel frameshift mutation, 1,490insAA, of EYA4. The 1,490insAA allele is predicted to encode a truncated protein with an intact N-terminal variable region, but lacking the entire C-terminal Eya domain. Clinical studies including electrocardiography, echocardiography, and magnetic resonance imaging (MRI) of the heart in nine affected family members revealed no DCM or associated abnormalities and confirmed their nonsyndromic phenotype. These are the first definitive cardiac evaluations of DFNA10 hearing loss to support a correlation of EYA4 mutation position with the presence or absence of DCM. These results will facilitate the counseling of patients with these phenotypes and EYA4 mutations. PMID:17567890

  11. Inherited erythromelalgia due to mutations in SCN9A: natural history, clinical phenotype and somatosensory profile.

    PubMed

    McDonnell, Aoibhinn; Schulman, Betsy; Ali, Zahid; Dib-Hajj, Sulayman D; Brock, Fiona; Cobain, Sonia; Mainka, Tina; Vollert, Jan; Tarabar, Sanela; Waxman, Stephen G

    2016-04-01

    Inherited erythromelalgia, the first human pain syndrome linked to voltage-gated sodium channels, is widely regarded as a genetic model of human pain. Because inherited erythromelalgia was linked to gain-of-function changes of sodium channel Na(v)1.7 only a decade ago, the literature has mainly consisted of reports of genetic and/or clinical characterization of individual patients. This paper describes the pattern of pain, natural history, somatosensory profile, psychosocial status and olfactory testing of 13 subjects with primary inherited erythromelalgia with mutations of SCN9A, the gene encoding Na(v)1.7. Subjects were clinically profiled using questionnaires, quantitative sensory testing and olfaction testing during the in-clinic phase of the study. In addition, a detailed pain phenotype for each subject was obtained over a 3-month period at home using diaries, enabling subjects to self-report pain attacks, potential triggers, duration and severity of pain. All subjects reported pain and heat in the extremities (usually feet and/or hands), with pain attacks triggered by heat or exercise and relieved mainly by non-pharmacological manoeuvres such as cooling. A large proportion of pain attacks (355/1099; 32%) did not involve a specific trigger. There was considerable variability in the number, duration and severity of pain attacks between subjects, even those carrying the same mutation within a family, and within individuals over the 12-13 week observation period. Most subjects (11/13) had pain between attacks. For these subjects, mean pain severity between pain attacks was usually lower than that during an attack. Olfaction testing using the Sniffin'T test did not demonstrate hyperosmia. One subject had evidence of orthostatic hypotension. Overall, there was a statistically significant correlation between total Hospital Anxiety and Depression Scale scores (P= 0.005) and pain between attacks and for Hospital Anxiety and Depression Scale Depression scores and pain

  12. Distinct disease phenotypes linked to different combinations of GAA mutations in a large late-onset GSDII sibship

    PubMed Central

    2013-01-01

    Background Glycogenosis type II (GSDII or Pompe disease) is an autosomal recessive disease, often characterized by a progressive accumulation of glycogen within lysosomes caused by a deficiency of α-1,4-glucosidase (GAA; acid maltase), a key enzyme of the glycogen degradation pathway. To date, more than 326 different mutations in the GAA gene have been identified in patients with GSDII but the course of the disease is difficult to be predicted on the basis of molecular genetic changes. Studies on large informative families are advisable to better define how genetics and non genetics factors like exercise and diet may influence the clinical phenotype. Methods and results In this study, we report on clinical, instrumental, and pathological features as well as on molecular analysis of a family with 10 out of 13 siblings affected by late-onset Pompe disease. Three mutations segregated in the family, two of which are novel mutations. Siblings showing a more severe phenotype were compound heterozygous for c.118C > T [p.R40X] and c.2647-7G > A [p.N882fs] on GAA, whereas, two patients showing a mild phenotype were compound heterozygous c.2647-7G > A [p.N882fs] and c.2276G > C [p.G759A] mutations. Quantitative expression analysis showed, in the patients carrying p.R40X/ p.N882fs, a significant (p 0.01) correlation between the levels of expression of the mutated allele and the age at onset of the disease. Conclusions As far as we know, this is the largest informative family with late-onset Pompe disease described in the literature showing a peculiar complex set of mutations of GAA gene that may partially elucidate the clinical heterogeneity of this family. PMID:24107549

  13. Phenotypic variation and genotype-phenotype discordance in canine cone-rod dystrophy with an RPGRIP1 mutation

    PubMed Central

    Kato, Kumiko; Aguirre-Hernández, Jesús; Tokuriki, Tsuyoshi; Morimoto, Kyohei; Busse, Claudia; Barnett, Keith; Holmes, Nigel; Ogawa, Hiroyuki; Sasaki, Nobuo; Mellersh, Cathryn S.; Sargan, David R.

    2009-01-01

    Purpose Previously, a 44 bp insertion in exon 2 of retinitis pigmentosa GTPase interacting protein 1 (RPGRIP1) was identified as the cause of cone-rod dystrophy 1 (cord1), a recessive form of progressive retinal atrophy (PRA) in the Miniature Longhaired Dachshund (MLHD), a dog model for Leber congenital amaurosis. The cord1 locus was mapped using MLHDs from an inbred colony with a homogeneous early onset disease phenotype. In this paper, the MLHD pet population was studied to investigate phenotypic variation and genotype-phenotype correlation. Further, the cord1 locus was fine-mapped using PRA cases from the MLHD pet population to narrow the critical region. Other dog breeds were also screened for the RGPRIP1 insertion. Methods This study examined phenotypic variation in an MLHD pet population that included 59 sporadic PRA cases and 18 members of an extended family with shared environment and having six PRA cases. Ophthalmologic evaluations included behavioral abnormalities, responses to menace and light, fundoscopy, and electroretinography (ERG). The RPGRIP1 insertion was screened for in all cases and 200 apparently normal control MLHDs and in 510 dogs from 66 other breed. To fine-map the cord1 locus in the MLHD, 74 PRA cases and 86 controls aged 4 years or more were genotyped for 24 polymorphic markers within the previously mapped cord1 critical region of 14.15 Mb. Results Among sporadic PRA cases from the MLHD pet population, the age of onset varied from 4 months to 15 years old; MLHDs from the extended family also showed variable onset and rate of progression. Screening for the insertion in RPGRIP1 identified substantial genotype-phenotype discordance: 16% of controls were homozygous for the insertion (RPGRIP1−/−), while 20% of PRA cases were not homozygous for it. Four other breeds were identified to carry the insertion including English Springer Spaniels and Beagles with insertion homozygotes. The former breed included both controls and PRA cases, yet in

  14. SOS1 Mutations in Noonan Syndrome: Molecular Spectrum, Structural Insights on Pathogenic Effects, and Genotype–Phenotype Correlations

    PubMed Central

    Lepri, Francesca; De Luca, Alessandro; Stella, Lorenzo; Rossi, Cesare; Baldassarre, Giuseppina; Pantaleoni, Francesca; Cordeddu, Viviana; Williams, Bradley J; Dentici, Maria L; Caputo, Viviana; Venanzi, Serenella; Bonaguro, Michela; Kavamura, Ines; Faienza, Maria F; Pilotta, Alba; Stanzial, Franco; Faravelli, Francesca; Gabrielli, Orazio; Marino, Bruno; Neri, Giovanni; Silengo, Margherita Cirillo; Ferrero, Giovanni B; Torrrente, Isabella; Selicorni, Angelo; Mazzanti, Laura; Digilio, Maria C; Zampino, Giuseppe; Dallapiccola, Bruno; Gelb, Bruce D; Tartaglia, Marco

    2011-01-01

    Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype–phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies. Hum Mutat 32:760–772, 2011. © 2011 Wiley-Liss, Inc. PMID:21387466

  15. Clinical variability and novel mutations in the NHEJ1 gene in patients with a Nijmegen breakage syndrome-like phenotype.

    PubMed

    Dutrannoy, Véronique; Demuth, Ilja; Baumann, Ulrich; Schindler, Detlev; Konrat, Kateryna; Neitzel, Heidemarie; Gillessen-Kaesbach, Gabriele; Radszewski, Janina; Rothe, Susanne; Schellenberger, Mario T; Nürnberg, Gudrun; Nürnberg, Peter; Teik, Keng Wee; Nallusamy, Revathy; Reis, André; Sperling, Karl; Digweed, Martin; Varon, Raymonda

    2010-09-01

    We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous-end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS-like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS-like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. PMID:20597108

  16. X-exome sequencing in Finnish families with Intellectual Disability - four novel mutations and two novel syndromic phenotypes

    PubMed Central

    2014-01-01

    Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations

  17. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  18. Compound Heterozygous Desmoplakin Mutations Result in a Phenotype with a Combination of Myocardial, Skin, Hair, and Enamel Abnormalities

    PubMed Central

    Mahoney, Mỹ G.; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2014-01-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses. PMID:19924139

  19. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease.

    PubMed

    Kauppila, Johanna H K; Baines, Holly L; Bratic, Ana; Simard, Marie-Lune; Freyer, Christoph; Mourier, Arnaud; Stamp, Craig; Filograna, Roberta; Larsson, Nils-Göran; Greaves, Laura C; Stewart, James B

    2016-09-13

    Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials. PMID:27626666

  20. Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients

    PubMed Central

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Maryse; Boute, Odile; Cormier-Daire, Valerie; De Die-Smulders, Christine; Dieux-Coeslier, Anne; Dollfus, Hélène; Elting, Mariet; Green, Andrew; Guerci, Veronica I; Hennekam, Raoul C M; Hilhorts-Hofstee, Yvonne; Holder, Muriel; Hoyng, Carel; Jones, Kristi J; Josifova, Dragana; Kaitila, Ilkka; Kjaergaard, Suzanne; Kroes, Yolande H; Lagerstedt, Kristina; Lees, Melissa; LeMerrer, Martine; Magnani, Cinzia; Marcelis, Carlo; Martorell, Loreto; Mathieu, Michèle; McEntagart, Meriel; Mendicino, Angela; Morton, Jenny; Orazio, Gabrielli; Paquis, Véronique; Reish, Orit; Simola, Kalle O J; Smithson, Sarah F; Temple, Karen I; Van Aken, Elisabeth; Van Bever, Yolande; van den Ende, Jenneke; Van Hagen, Johanna M; Zelante, Leopoldo; Zordania, Riina; De Paepe, Anne; Leroy, Bart P; De Buyzere, Marc; Coucke, Paul J; Mortier, Geert R

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome. PMID:20179744

  1. Phenotypical diversity of patients with LEOPARD syndrome carrying the worldwide recurrent p.Tyr279Cys PTPN11 mutation.

    PubMed

    Nemes, Edina; Farkas, Katalin; Kocsis-Deák, Barbara; Drubi, Andrea; Sulák, Adrienn; Tripolszki, Kornélia; Dósa, Piroska; Ferenc, Lakatos; Nagy, Nikoletta; Széll, Márta

    2015-12-01

    LEOPARD syndrome (LS, OMIM 151100) is a rare monogenic disorder. The name is an acronym of its major features such as multiple lentigines, electrocardiographic conduction defects, ocular hypertelorism, pulmonary stenosis, abnormalities of genitalia, retardation of growth and sensorineural deafness. LS develops due to mutations in the protein-tyrosine phosphatase nonreceptor-type 11, PTPN11. Here, we have investigated a 51-year-old Hungarian male patient affected by LS. Direct sequencing of the PTPN11 gene revealed a worldwide recurrent missense mutation (c.836A/G; p.Tyr279Cys), which has been previously identified in 47 LS patients. Comparison of the clinical phenotypes of our patient and the ones reported in the literature demonstrates great phenotypic diversity despite the same genotype. PMID:26377839

  2. Behavioral phenotypic properties of a natural occurring rat model of congenital stationary night blindness with Cacna1f mutation.

    PubMed

    An, Jing; Wang, Li; Guo, Qun; Li, Li; Xia, Feng; Zhang, Zuoming

    2012-09-01

    Cacna1f gene mutation could lead to incomplete congenital stationary night blindness (iCSNB) disease. The CSNB-like phenotype rat is a spontaneous rat model caused by Cacna1f gene mutation. The present study explored the phenotypic properties of behavior performance in CSNB rats further. The vision-related behaviors of CSNB rats were assessed with a Morris water maze (MWM), passive avoidance tests, and open-field test. Motor ability was evaluated with a rotarod test and a wire hang test, and mechanical pain and thermalgia were used to evaluate sensory system function. Electroretinograms (ERGs) were recorded to evaluate the function of the retina. The vision-related results showed that longer latencies of escape and reduced probe trial in MWM for CSNB rats. There were more errors in avoidance test; CSNB rats were more active in the open field and presented a different pattern of exploration. The locomotor-related behaviors showed shorter falling latencies in the rotarod test and shorter gripping time in CSNB rats. And mechanical thresholds of pain increased in CSNB rats. The ERGs indicated that both the amplitude and latency of rod and cone systems were impaired in the CSNB rats. In summary, Cacna1f gene mutation changed the performance of various behaviors in the CSNB rat aside from vision-related phenotype. Cacna1f gene might play a role in a wide range of responses in the organism. These results confirm the importance of a comprehensive profile for understanding the behavior phenotype of Cacna1f gene mutation in CSNB rat. PMID:22800190

  3. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.

    PubMed Central

    Wedell, A; Ritzén, E M; Haglund-Stengler, B; Luthman, H

    1992-01-01

    Lesions in the gene encoding steroid 21-hydroxylase [steroid hydrogen-donor: oxygen oxidoreductase (21-hydroxylating), EC 1.14.99.10] result in defective adrenal steroid synthesis; the severe forms are known as congenital adrenal hyperplasia. To facilitate complete characterization of mutations in this region of tandemly repeated genes, we have developed selective PCR amplification and direct sequencing of full-length nonpseudogene steroid 21-hydroxylase genes. This technique identifies known mutations, characterizes or excludes unknown mutations, and determines the gene-copy number. Three additional defective alleles were found. A Gly-292----Ser mutation and a frameshift mutation at Arg-484 (GG----C) were identified in patients with severe steroid 21-hydroxylase deficiency. An allele with three additional sequence variations--C----T at 4 bases upstream of translation initiation, Pro-106----Leu, and Pro-454----Ser--were identified in two siblings with late-onset deficiency. Pro-454 is conserved in four species, indicating its importance for normal enzyme function. Functional consequences of individual alleles have been determined in vivo by studying individuals with only one steroid 21-hydroxylase gene. Detailed analyses of clinical data revealed that genotyping could predict the clinical course of the disease. The locations of disease-causing mutations on different haplotypes of the steroid 21-hydroxylase gene region are described. Images PMID:1496017

  4. Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype.

    PubMed

    Yis, Uluc; Uyanik, Gökhan; Heck, Pinar Bambul; Smitka, Martin; Nobel, Hannes; Ebinger, Friedrich; Dirik, Eray; Feng, Lucy; Kurul, Semra H; Brocke, Katja; Unalp, Aycan; Özer, Erdener; Cakmakci, Handan; Sewry, Caroline; Cirak, Sebahattin; Muntoni, Francesco; Hehr, Ute; Morris-Rosendahl, Deborah J

    2011-01-01

    Six genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan. We describe four new patients with FKTN mutations and phenotypes ranging from: severe WWS in a Greek-Croatian patient, to congenital muscular dystrophy and cobblestone lissencephaly resembling MEB-FCMD in two Turkish patients, and limb-girdle muscular dystrophy and no mental retardation in a German patient. Four of the five different FKTN mutations have not been previously described. PMID:20961758

  5. Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients' phenotypes

    PubMed Central

    Zampieri, Stefania; Buratti, Emanuele; Dominissini, Silvia; Montalvo, Anna Lisa; Pittis, Maria Gabriela; Bembi, Bruno; Dardis, Andrea

    2011-01-01

    Glycogen-storage disease type II is an autosomal recessive-inherited disorder due to the deficiency of acid α-glucosidase. A large number of mutations in the acid α-glucosidase gene have been described to date. Among them, ∼15% are variations that may affect mRNA splicing process. In this study, we have for the first time comprehensively reviewed the available information on splicing mutations of the acid α-glucosidase gene and we have evaluated their possible impact on the splicing process using different in silico approaches. Out of the 39 different GAA-sequence variations described, an in silico analysis using seven different programs showed that 97% of them are predicted to have an impact on the splicing process. Moreover, this analysis showed a quite good correlation between the impact of the mutation on the splicing process and the clinical phenotype. In addition, we have performed the functional characterization of three novel sequence variants found in Italian patients and still uncharacterized. Using a minigene system, we have confirmed their pathogenic nature. In conclusion, this study has shown that in silico analysis represents a useful tool to select mutations that affect the splicing process of the acid α-glucosidase gene and provides an updated picture of all this kind of mutations reported till now. PMID:21179066

  6. A novel RPE65 hypomorph expands the clinical phenotype of RPE65 mutations. A comprehensive clinical and biochemical functional study

    PubMed Central

    Lorenz, Birgit; Poliakov, Eugenia; Schambeck, Maria; Friedburg, Christoph; Preising, Markus N.; Redmond, T. Michael

    2009-01-01

    Purpose Later onset and progression of retinal dystrophy occur with some RPE65 missense mutations. We correlate the functional consequences of the novel P25L RPE65 mutation with its early childhood phenotype and compare it with other pathogenic missense mutations. Methods In addition to typical clinical tests, fundus autofluorescence (FAF), optical coherence tomography (OCT), and 2-color-threshold perimetry (2CTP) were measured. RPE65 mutations were screened by SSCP and direct sequencing. Isomerase activity of mutant RPE65 was assayed in 293F cells and quantified by HPLC analysis of retinoids. Results A very mild phenotype was detected in a now 7-y old boy homozygous for the P25L mutation in RPE65. Though abnormal dark adaptation was noticed early, best corrected visual acuity was 20/20 at age 5-y and 20/30 at age 7-y. Nystagmus was absent. Cone electroretinogram (ERG) was measurable, rod ERG severely reduced, and FAF very low. 2CTP detected mainly cone-mediated answers under scotopic conditions, light-adapted cone answers were about 1.5 log units below normal. High resolution spectral domain OCT revealed morphological changes. Isomerase activity in 293F cells transfected with RPE65/P25L was reduced to 7.7% of wildtype RPE65-transfected cells, while RPE65/L22P-transfected cells had 13.5%. Conclusions The mild clinical phenotype observed is consistent with the residual activity of a severely hypomorphic mutant RPE65. Reduction to < 10% of wildtype RPE65 activity by homozygous P25L correlates with almost complete rod function loss and cone amplitude reduction. We conclude that functional survival of cones is possible in patients with residual RPE65 isomerase activity. This patient should profit most from gene therapy. PMID:18599565

  7. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1.

    PubMed Central

    Mustilli, A C; Fenzi, F; Ciliento, R; Alfano, F; Bowler, C

    1999-01-01

    Tomato high pigment (hp) mutants are characterized by their exaggerated photoresponsiveness. Light-grown hp mutants display elevated levels of anthocyanins, are shorter and darker than wild-type plants, and have dark green immature fruits due to the overproduction of chlorophyll pigments. It has been proposed that HP genes encode negative regulators of phytochrome signal transduction. We have cloned the HP-2 gene and found that it encodes the tomato homolog of the nuclear protein DEETIOLATED1 (DET1) from Arabidopsis. Mutations in DET1 are known to result in constitutive deetiolation in darkness. In contrast to det1 mutants, tomato hp-2 mutants do not display any visible phenotypes in the dark but only very weak phenotypes, such as partial chloroplast development. Furthermore, whereas det1 mutations are epistatic to mutations in phytochrome genes, analysis of similar double mutants in tomato showed that manifestation of the phenotype of the hp-2 mutant is strictly dependent upon the presence of active phytochrome. Because only one DET1 gene is likely to be present in each of the two species, our data suggest that the phytochrome signaling pathways in which the corresponding proteins function are regulated differently in Arabidopsis and tomato. PMID:9927635

  8. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs

    PubMed Central

    Qian, Lili; Tang, Maoxue; Yang, Jinzeng; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Li, Hegang; Jiang, Ke; Gao, Pengfei; Ma, Dezun; Chen, Yaoxing; An, Xiaorong; Li, Kui; Cui, Wentao

    2015-01-01

    Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with MSTN mutations. Pigs are an important source of meat production, as well as serve as a preferred animal model for the studies of human disease. To study the impacts of MSTN mutations on skeletal muscle growth in pigs, we generated MSTN-mutant Meishan pigs with no marker gene via zinc finger nucleases (ZFN) technology. The MSTN-mutant pigs developed and grew normally, had increased muscle mass with decreased fat accumulation compared with wild type pigs, and homozygote MSTN mutant (MSTN−/−) pigs had apparent DM phenotype, and individual muscle mass increased by 100% over their wild-type controls (MSTN+/+) at eight months of age as a result of myofiber hyperplasia. Interestingly, 20% MSTN-mutant pigs had one extra thoracic vertebra. The MSTN-mutant pigs will not only offer a way of fast genetic improvement of lean meat for local fat-type indigenous pig breeds, but also serve as an important large animal model for biomedical studies of musculoskeletal formation, development and diseases. PMID:26400270

  9. The expanding phenotypic spectrum of female SLC9A6 mutation carriers: a case series and review of the literature.

    PubMed

    Sinajon, Pierre; Verbaan, Deborah; So, Joyce

    2016-08-01

    Christianson syndrome (OMIM 300243), caused by mutations in the X-linked SLC9A6 gene, is characterized by severe global developmental delay and intellectual disability, developmental regression, epilepsy, microcephaly and impaired ocular movements. It shares many common features with Angelman syndrome. Carrier females have been described as having learning difficulties with mild to moderate intellectual disability, behavioural issues and psychiatric illnesses. There is little literature on the carrier female phenotype of Christianson syndrome. We describe a large extended family with three affected males, four carrier females, one presumed carrier female and one obligate carrier female with a c.190G>T, p.E64X mutation known to cause a premature stop codon in SLC9A6. We characterize and expand the clinical phenotype of female SLC9A6 mutation carriers by comparing our described family with female carriers previously discussed in the literature. In particular, we highlight the neurodevelopmental and psychiatric phenotypes observed in our family and previous reports. PMID:27142213

  10. Phenotypic profile of early-onset familial Alzheimer's disease caused by presenilin-1 E280A mutation.

    PubMed

    Sepulveda-Falla, Diego; Glatzel, Markus; Lopera, Francisco

    2012-01-01

    Presenilin 1 (PS1) mutations are the most common cause of early-onset familial Alzheimer's disease (EOFAD). They show a common phenotypic profile characterized by early age of onset, severe dementia and distinct neurodegeneration. The largest population of EOFAD carries the E280A mutation in PS1 and resides in Antioquia, Colombia, currently comprising around 5,000 individuals. Carriers start showing memory impairment in the third decade of life, followed by progressive impairment of language and other cognitive processes. They reach mild cognitive impairment around 45 and dementia around 50 years of age. There is some phenotypic variability among the carriers of this single PS1 mutation. Some patients present with epilepsy, verbal impairment, and cerebellar ataxia. Neuropathologically, PS1 E280A cases show pronounced brain atrophy, severe amyloid-β pathology, distinct hyperphosphorylated tau-related pathology, and cerebellar damage. The earliest event identified by functional magnetic imaging resonance is hyperactivation within the right anterior hippocampus around 33 years of age. This well-studied population with a clear pre-clinical profile and wide phenotypic variability in age of onset and clinical presentation is ideally suited for clinical trials and to study molecular mechanisms of Alzheimer's disease. PMID:22766738