Science.gov

Sample records for 97ru precision measurement

  1. /sup 97/Ru-DMSA for delayed renal imaging. [Dogs

    SciTech Connect

    Oster, Z.H.; Som, P.; Gil, M.C.; Goldman, A.G.; Fairchild, R.G.; Meinken, G.E.; Srivastava, S.C.; Atkins, H.L.; Richards, P.; Brill, A.B.

    1981-01-01

    Dimercaptosuccinic acid (DMSA) was labeled with /sup 97/Ru both with and without the addition of SnCl.2H/sub 2/O. The tin-containing preparation was found to induce higher cortical deposition of /sup 97/Ru-DMSA than the tin-free preparation. Visualization of the renal cortex was excellent 4 to 48 hours after injection in normal dogs with renal insufficiency. It is concluded that /sup 97/Ru-(Sn+/sup 2/)-DMSA is a potentially useful renal imaging agent when delayed scintigraphy is necessary because of decompensaton of the kidneys.

  2. /sup 97/Ru-DMSA for delayed renal imaging

    SciTech Connect

    Oster, Z.H.; Som, P.; Gil, M.C.

    1981-10-01

    Dimercaptosuccinic acid (DMSA) was labeled with /sup 97/Ru both with and without the addition of SnCl-2H/sub 2/O. The tin-containing preparation was found to induce higher cortical deposition of /sup 97/Ru-DMSA than the tin-free preparation. Visualization of the renal cortex was excellent 4 to 48 hours after injection in normal dogs and in dogs with renal insufficiency. It is concluded that /sup 97/Ru-(SN/sup 2 +/)-DMSA is a potentially useful renal imaging agent when delayed scintigraphy is necessary because of decompensation of the kidneys.

  3. Enhancement of the cyclotron effective mass in U0.03Th0.97Ru2Si2

    NASA Astrophysics Data System (ADS)

    Haga, Yoshinori; Matsumoto, Yuji; Tateiwa, Naoyuki; Yamamoto, Etsuji; Kimura, Noriaki; Yamamura, Tomoo; Fisk, Zachary

    2015-03-01

    Electronic states of a dilute uranium alloy U0.03Th0.97Ru2Si2 have been investigated by using de Haas-van Alphen (dHvA) measurements on single crystal samples. Quantum oscillations were successfully observed for the field along the principal axes. The dHvA frequency of the observed branches roughly agrees with those of the reference compound ThRu2Si2, indicating the change of Fermi surface volume is not significant. On the other hand, the dHvA amplitude is strongly diminished compared to ThRu2Si2. Furthermore, cyclotron effective masses for corresponding branches are strongly enhanced. The latter effects are indicative of the strong scattering as well as the mass renormalization due to 5f moments.

  4. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  5. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  6. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  7. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  8. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  9. Precision signal power measurement

    NASA Technical Reports Server (NTRS)

    Winkelstein, R.

    1972-01-01

    Accurate estimation of signal power is an important Deep Space Network (DSN) consideration. Ultimately, spacecraft power and weight is saved if no reserve transmitter power is needed to compensate for inaccurate measurements. Spectral measurement of the received signal has proved to be an effective method of estimating signal power over a wide dynamic range. Furthermore, on-line spectral measurements provide an important diagnostic tool for examining spacecraft anomalies. Prototype equipment installed at a 64-m-diameter antenna site has been successfully used to make measurements of carrier power and sideband symmetry of telemetry signals received from the Mariner Mars 1971 spacecraft.

  10. Environment-Assisted Precision Measurement

    SciTech Connect

    Goldstein, G.; Maze, J. R.; Lukin, M. D.; Cappellaro, P.; Hodges, J. S.; Jiang, L.; Soerensen, A. S.

    2011-04-08

    We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond.

  11. Environment-assisted precision measurement.

    PubMed

    Goldstein, G; Cappellaro, P; Maze, J R; Hodges, J S; Jiang, L; Sørensen, A S; Lukin, M D

    2011-04-01

    We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond. PMID:21561175

  12. Precision luminosity measurements at LHCb

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration

    2014-12-01

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.

  13. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  14. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  15. Precision Measurements in 37K

    NASA Astrophysics Data System (ADS)

    Anholm, Melissa; Ashery, Daniel; Behling, Spencer; Fenker, Benjamin; Melconian, Dan; Mehlman, Michael; Behr, John; Gorelov, Alexandre; Olchanski, Konstantin; Preston, Claire; Warner, Claire; Gwinner, Gerald

    2015-10-01

    We have performed precision measurements of the kinematics of the daughter particles in the decay of 37K. This isotope decays by β+ emission in a mixed Fermi/Gamow-Teller transition to its isobaric analog, 37Ar. Because the higher-order standard model corrections to this decay process are well understood, it is an ideal candidate for for improving constraints on interactions beyond the standard model. Our setup utilizes a magneto-optical trap to confine and cool samples of 37K, which are then spin-polarized by optical pumping. This allows us to perform measurements on both polarized and unpolarized nuclei, which is valuable for a complete understanding of systematic effects. Precision measurements of this decay are expected to be sensitive to the presence of right-handed vector currents, as well as a linear combination of scalar and tensor currents. Progress towards a final result is presented here. Support provided by: NSERC, NRC through TRIUMF, DOE ER40773, Early Career ER41747, Israel Science Foundation.

  16. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  17. High-purity radionuclide production: material, construction, target chemistry for 26Al, 97Ru, 178W, 235Np, 236,237Pu

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. N.; Zaitseva, N. G.; Starodub, G. Ya.; Maslov, O. D.; Shishkin, S. V.; Shishkina, T. V.; Buklanov, G. V.; Sabelnikov, A. V.

    1997-02-01

    The work on isotopically pure 26Al, 97Ru, 178W/ 178Ta, 235Np, 236Pu and 237Pu production was initiated because of intensive research on their applications in the biomedical field and environmental chemistry. The conditions for isotopically pure production have been investigated. This paper describes the data for the nuclear reactions of the radionuclide production, the different target designs and target chemistry procedures.

  18. Towards Precision Measurements at UASLP

    NASA Astrophysics Data System (ADS)

    Hamzeloui, S.; Arias, N.; Abediyeh, V.; Martínez, D.; Gutiérrez, M.; Uruñuela, E.; del Rio, E.; Cerda-Méndez, E.; Gomez, E.; Valenzuela, V. M.

    2016-03-01

    Atomic interferometry is a very sensitive technique to measure small forces. Here we present an overview of the progress towards interferometric measurements in our laboratory. We characterize the magnetic field noise and describe the strategies to minimize the sensitivity to magnetic field fluctuations. We introduce as well a system for Raman excitation with minimum phase noise and the frequency filtering needed to implement it. Finally, we demonstrate atomic interferometry with a frequency sensitivity of 3 Hz.

  19. Precision Measurement of Isospin Diffusion

    NASA Astrophysics Data System (ADS)

    Winkelbauer, Jack; Hodges, R.; Tsang, M. B.; Lynch, W. G.; Chajecki, Z.; Coupland, D.; Youngs, M.; Lu, F.; Sanetullaev, A.; Shane, R.; Tangwancharoen, S.; Famiano, M.; George, S.; Ghosh, T.; Dunn, J.; Dye, S.; Nielsen, S.; Ramos, A.; Charity, R.; Sobotka, L.; Elson, J.; Rana, T.; El Houssieny, M.

    2011-10-01

    In heavy-ion collisions, the tendency for isospin to drift from a neutron (proton) rich region to a neutron (proton) deficient region is sensitive to the density dependence of the symmetry energy. Until recently, most of the isospin diffusion results have been obtained with mid central to central collisions and different isospin observables have been used in experiment and in model simulations. To provide more accurate understanding of the dependence of isospin diffusion on impact parameters and different isospin observables, we have measured isotopic fragment and residue yields for 112 , 118 , 124Sn + 112 , 118 , 124Sn collisions at E/A = 70 MeV. The measurements were carried out at the Coupled Cyclotron Facility at Michigan State University. Fragment yields were measured using the Large Area Silicon Strip Array (LASSA) and heavy residue yields emitted at the forward angles were measured using the S800 Spectrograph. Impact parameter was selected using the MSU Miniball-WU Miniwall phoswich array. Preliminary results will be presented. Work supported by the National Science Foundation under Grant PHY-0606007.

  20. Theory of precision electroweak measurements

    SciTech Connect

    Peskin, M.E.

    1990-03-01

    In these lectures, I will review the theoretical concepts needed to understand the goals and implications of experiments in this new era of weak interactions. I will explain how to compute the most important order-{alpha} radiative corrections to weak interaction processes and discuss the physical implications of these correction terms. I hope that this discussion will be useful to those --- experimentalists and theorists --- who will try to interpret the new data that we will soon receive. This paper is organized as follows: I will review the structure of the standard weak interaction model at zeroth order. I will discuss the measurement of the Z{sup 0} boson mass in e{sup +}e{sup {minus}} annihilation. This measurement is affected by radiative correction to the form of the Z{sup 0} resonance, and so I will review the theory of the resonance line shape. I will briefly review the modifications of the properties of the Z{sup 0} which would be produced by additional neutral gauge bosons. I will review the theory of the renormalization of weak interaction parameters such as sin{sup 2} {theta}{sub {omega}}, concentrating especially on the contributions of the top quark and other heavy, undiscovered particles.

  1. Iterative Precise Conductivity Measurement with IDEs

    PubMed Central

    Hubálek, Jaromír

    2015-01-01

    The paper presents a new approach in the field of precise electrolytic conductivity measurements with planar thin- and thick-film electrodes. This novel measuring method was developed for measurement with comb-like electrodes called interdigitated electrodes (IDEs). Correction characteristics over a wide range of specific conductivities were determined from an interface impedance characterization of the thick-film IDEs. The local maximum of the capacitive part of the interface impedance is used for corrections to get linear responses. The measuring frequency was determined at a wide range of measured conductivity. An iteration mode of measurements was suggested to precisely measure the conductivity at the right frequency in order to achieve a highly accurate response. The method takes precise conductivity measurements in concentration ranges from 10−6 to 1 M without electrode cell replacement. PMID:26007745

  2. Nucleon measurements at the precision frontier

    SciTech Connect

    Carlson, Carl E.

    2013-11-07

    We comment on nucleon measurements at the precision frontier. As examples of what can be learned, we concentrate on three topics, which are parity violating scattering experiments, the proton radius puzzle, and the symbiosis between nuclear and atomic physics.

  3. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  4. Ultrastable Lasers and High-Precision Measurements

    NASA Astrophysics Data System (ADS)

    Chardonnet, Christian; Cohadon, Pierre-François Guellati-Khélifa, Saïda

    2015-10-01

    Lasers quickly escaped research laboratories to be included in just a few years' time into a large number of everyday life applications, but they remain a yet unrivaled tool for fundamental physics. This chapter presents the main characteristics of the lasers that physicists take advantage of in precision measurements, and a few examples of such measurements...

  5. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Rianon, Nahid; Feiveson, Alan; Shackelford, Linda; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Bone Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift. The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values (less than 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  6. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  7. Needs and challenges in precision wear measurement

    SciTech Connect

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  8. Precision measurements of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    de Bernardis, Paolo; Masi, Silvia; Wuensche, Carlos Alexandre

    2015-12-01

    Precision measurements of the Cosmic Microwave Background (CMB) sample the entire history of the Universe. In this paper we give a short review, from the experimentalist point of view, of the current status and of what can still be done, using this extraordinary tool, to investigate cosmology and fundamental physics.

  9. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS.

    SciTech Connect

    MARCIANO, W.J.

    2004-08-02

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m{sub w} and sin{sup 2} {theta}{sub w} (m{sub z}){sub {ovr MS}} imply a relatively light Higgs {approx}< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  10. Precision Measurements with Matter-wave Interferometry

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher; Christensen, Dan; Washburn, Matthew; Archibald, James; van Zjill, Marshall; Birrell, Jeremiah; Burdett, Adam; Durfee, Dallin

    2007-06-01

    We will discuss progress on a neutral-calcium beam interferometer which is nearing completion. We will also present a proposal to measure electric and magnetic fields with extreme precision using a slow ion interferometer. The calcium interferometer utilizes a thermal beam for simplicity and high atom flux. Doppler shifts will be reduced using a novel alignment scheme for the Ramsey beams using precision prisms. The ion interferometer will utilize a slow beam of strontium-87 ions created by photon-ionizing a slow atomic beam. The ions will interact with three sets of laser beams which will drive stimulated Raman transitions. The proposed device will be used to search for variations from Coulomb's inverse-square law and a possible photon rest mass with a precision which is several orders of magnitude better than previous laboratory experiments.

  11. High Precision Noise Measurements at Microwave Frequencies

    SciTech Connect

    Ivanov, Eugene; Tobar, Michael

    2009-04-23

    We describe microwave noise measurement system capable of detecting the phase fluctuations of rms amplitude of 2{center_dot}10{sup -11} rad/{radical}(Hz). Such resolution allows the study of intrinsic fluctuations in various microwave components and materials, as well as precise tests of fundamental physics. Employing this system we discovered a previously unknown phenomenon of down-conversion of pump oscillator phase noise into the low-frequency voltage fluctuations.

  12. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  13. Precise delay measurement through combinatorial logic

    NASA Technical Reports Server (NTRS)

    Burke, Gary R. (Inventor); Chen, Yuan (Inventor); Sheldon, Douglas J. (Inventor)

    2010-01-01

    A high resolution circuit and method for facilitating precise measurement of on-chip delays for FPGAs for reliability studies. The circuit embeds a pulse generator on an FPGA chip having one or more groups of LUTS (the "LUT delay chain"), also on-chip. The circuit also embeds a pulse width measurement circuit on-chip, and measures the duration of the generated pulse through the delay chain. The pulse width of the output pulse represents the delay through the delay chain without any I/O delay. The pulse width measurement circuit uses an additional asynchronous clock autonomous from the main clock and the FPGA propagation delay can be displayed on a hex display continuously for testing purposes.

  14. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  15. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  16. Precision timing measurements for high energy photons

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium-yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  17. Precision optical displacement measurements using biphotons

    NASA Astrophysics Data System (ADS)

    Lyons, Kevin; Pang, Shengshi; Kwiat, Paul G.; Jordan, Andrew N.

    2016-04-01

    We propose and examine the use of biphoton pairs, such as those created in parametric down-conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that the precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number ("Heisenberg scaling"), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an N -pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear crystal.

  18. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  19. Investigating of precision measurement on ultrasonic flow

    NASA Astrophysics Data System (ADS)

    Jiang, Fangliang; Ji, Qizheng; Zhai, Dongwei; Dong, Yibo; Dong, Chun

    2015-02-01

    The flow rate is calculated via ultrasonic flow meter (UFM), which is through measuring the difference of time transmitting flow between flow direction and reverse direction. This paper describes the uncertainty analysis for the method of time difference which is commonly used in ultrasonic flow measurement, and the analysis of error source of uncertainty components as well as the general method of elimination. Based on the technique of pseudo random sequence, this paper presents a precise time difference method based on digital correlation technology, and its principle, realization way and uncertainty evaluation are introduced. On the DSP and FPGA system platform, an ultrasonic flow meter scheme based on the digital correlation technology is suggested.

  20. Precision Measurement of Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    2001-01-01

    The purpose of this grant was to develop and to start to apply new precision methods for measuring the power spectrum and redshift distortions from the anticipated new generation of large redshift surveys. A highlight of work completed during the award period was the application of the new methods developed by the PI to measure the real space power spectrum and redshift distortions of the IRAS PSCz survey, published in January 2000. New features of the measurement include: (1) measurement of power over an unprecedentedly broad range of scales, 4.5 decades in wavenumber, from 0.01 to 300 h/Mpc; (2) at linear scales, not one but three power spectra are measured, the galaxy-galaxy, galaxy-velocity, and velocity-velocity power spectra; (3) at linear scales each of the three power spectra is decorrelated within itself, and disentangled from the other two power spectra (the situation is analogous to disentangling scalar and tensor modes in the Cosmic Microwave Background); and (4) at nonlinear scales the measurement extracts not only the real space power spectrum, but also the full line-of-sight pairwise velocity distribution in redshift space.

  1. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  2. Precision Measurements with a Molecular Clock

    NASA Astrophysics Data System (ADS)

    Grier, Andrew; McDonald, Mickey; McGuyer, Bart; Iwata, Geoffrey; Apfelbeck, Florian; Tarallo, Marco; Zelevinsky, Tanya

    2015-05-01

    We report on recent results obtained with photoassociated Sr2 molecules confined in a lattice. Sr2 has a range of electronically excited bound states which are readily accessible with optical wavelengths using the narrow 1S0->3P1 intercombination line. As in Nat. Phys. 11, 32, we measure the lifetimes of the narrow, deeply-bound subradiant states in the 1g (1S0+3P1 dissociative limit) potential, allowing for coherent control of molecules and a comparison with theoretical predictions of the lifetimes and transition strengths of these states. Next, we study ultracold photodissociation of Sr2 molecules through abortion of one and two photons near the atomic intercombination line. This allows us to observe the vector character of transition elements through the angular dissociation pattern and to directly measure barrier heights in the excited state potentials. Finally, as shown in PRL 114, 023001, we demonstrate that in a non-magic lattice, a narrow transition can be used to measure the trapped gas temperature through the linewidth of the spectral feature corresponding to the carrier transitions. We use this technique to measure the temperature of Sr2 molecules to 10x higher precision than with standard techniques. We discuss future prospects with this molecular lattice clock. Funding from NIST, ARO, and NSF IGERT.

  3. KamLAND's precision neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  4. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  5. Precision Electroweak Measurements on the Z Presonance

    SciTech Connect

    Aleph,Delphi,L3,Opal,SLD , Collaborations

    2005-09-08

    The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a

  6. Precision measurements of tau lepton decays

    NASA Astrophysics Data System (ADS)

    Nugent, Ian M.

    Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a centre-of-mass energy near 10.58 GeV, the branching fractions B (tau-- → pi--pi --pi+nutau) = (8.83 +/- 0.01 +/- 0.13)%, B (tau-- → K--pi --pi+nutau) = (0.273 +/- 0.002 +/- 0.009)%, B (tau-- → K--pi --K+nutau) = (0.1346 +/- 0.0010 +/- 0.0036)%, and B (tau-- → K-- K--K +nutau) = (1.58 +/- 0.13 +/- 0.12) x 10--5 are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the tau -- → pi--pi--pi +nutau, tau-- → K--pi--pi+nu tau, tau-- → K --pi--K+nu tau and tau-- → K --K--K +nutau decays are unfolded to correct for detector effects. A measurement of B (tau-- → φpi--nu tau) = (3.42 +/- 0.55 +/- 0.25) x 10--5 , a measurement of B (tau-- → φK --nutau) = (3.39 +/- 0.20 +/- 0.28) x 10--5 and an upper limit on B (tau-- → K-- K--K +nutau [ex.φ]) ≤ 2.5 x 10--6 90%CL are determined from a binned maximum likelihood fit of the tau-- → K-- pi--K+nu tau and tau-- → K --K--K +nutau K+K -- invariant mass distributions. The branching ratio Bt-→K -nt Bt-→p -nt is measured to be (6.531 +/- 0.056 +/- 0.093) x 10 --2 from which |Vus| is determined to be 0.2255 +/- 0.0023. The branching ratio Bt-→m -ntn¯ mB t-→e-nt n¯e = (9.796 +/- 0.016 +/- 0.035) x 10--1 is measured enabling a precision test of the Standard Model assumption of charged current lepton universality, gmge = 1.0036 +/- 0.0020. The branching ratios Bt-→K -nt Bt-→e- ntn¯ e = (3.882 +/- 0.032 +/- 0.056) x 10--2 , and Bt-→p -nt Bt-→e- ntn¯ e = (5.945 +/- 0.014 +/- 0.061) x 10--1 are measured which provide additional tests of charged current lepton universality, gtgm p = 0.9856 +/- 0.0057 and gtgm K = 0.9827 +/- 0.0086 which can be combined to give gtgm p/K = 0.9850 +/- 0.0054. Any deviation of these measurements from the expected Standard Model values would be an indication of new physics.

  7. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  8. Precision Measurements of Tau Lepton Decays

    SciTech Connect

    Nugent, Ian M.

    2008-01-01

    Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a centre-of-mass energy near 10.58 GeV, the branching fractions B(τ- → π-π-π+ντ) =(8.83±0.01±0.13)%, B(τ- → K-π-π+ντ) =(0.273± 0.002 ± 0.009)%, B(τ- → K-π-K+ντ) =(0.1346 ± 0.0010 ± 0.0036)%, and B(τ- → K-K-K+ντ) =(1.58 ± 0.13 ± 0.12) × 10-5 are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the τ- → π-π-π+ντ , τ- → K-π-π+ντ , τ- → K-π-K+ντ and τ- → K-K-K+ντ decays are unfolded to correct for detector effects. A measurement of B(τ- → φπ-ντ ) =(3.42±0.55±0.25)×10-5, a measurement of B(τ- → φK-ντ) =(3.39±0.20±0.28)× 10-5 and an upper limit on B(τ- → K-K-K+ντ [ex.φ]) ≤ 2.5 × 10-6@90%CL are determined from a binned maximum likelihood fit of the τ- → K-π-K+ντ and τ- → K-K-K+ντ K+K- invariant mass distributions. The branching ratio B(τ-→K-ντ )/ B(τ-→π-ντ ) is measured to be (6.531±0.056±0.093)×10-2 from which |Vus| is determined to be 0.2255 ± 0.0023. The branching ratio B(τ-→μ-ντ $\\bar{v}$μ)/ B(τ-→e-ντ $\\bar{v}$e) =(9.796 ± 0.016 ± 0.035) × 10-1 is measured enabling a precision test of the Standard Model assumption of

  9. Precision measurements with an ultracold molecular clock

    NASA Astrophysics Data System (ADS)

    Zelevinsky, Tanya

    2014-05-01

    High-precision spectroscopy has been instrumental in the progress of atomic physics. In this talk, we extend precision spectroscopy techniques to ultracold diatomic strontium molecules tightly trapped in an optical lattice, and discuss the results from the point of view of molecular and fundamental science. For weakly bound molecules near the atomic threshold corresponding to the narrow intercombination transition, we observe peculiar and unexpected physics, including multiply forbidden transitions and anomalously large linear and quadratic Zeeman shifts. The Zeeman shifts are highly sensitive to nonadiabatic mixing angles of the molecular wave functions. For the first time, we quantitatively compare the electric- and magnetic-dipole transition strengths for forbidden transitions in molecules, and discuss the dependence on the internuclear separation. In addition, we study ground state molecules, and discuss the present status of the molecular lattice clock and the physics it is able to probe. Magic-wavelength spectroscopy is successfully demonstrated for a range of narrow molecular transitions.

  10. Higgs triplets and limits from precision measurements

    SciTech Connect

    Chen, Mu-Chun; Dawson, Sally; Krupovnickas, Tadas; /Brookhaven

    2006-04-01

    In this letter, they present the results on a global fit to precision electroweak data in a Higgs triplet model. In models with a triplet Higgs boson, a consistent renormalization scheme differs from that of the Standard Model and the global fit shows that a light Higgs boson with mass of 100-200 GeV is preferred. Triplet Higgs bosons arise in many extensions of the Standard Model, including the left-right model and the Little Higgs models. The result demonstrates the importance of the scalar loops when there is a large mass splitting between the heavy scalars. It also indicates the significance of the global fit.

  11. Precise Measurement of Effective Focal Length

    NASA Technical Reports Server (NTRS)

    Wise, T. D.; Young, J. B.

    1983-01-01

    Computerized instrument measures effective focal lengths to 0.01 percent accuracy. Laser interferometers measure mirror angle and stage coordinate y in instrument for accurate measurment of focal properties of optical systems. Operates under computer control to measure effective focal length, focal surface shape, modulation transfer function, and astigmatism.

  12. Precision Ultrasonic Wave Measurements With Simple Equipment

    PubMed Central

    Fick, Steven E.; Palmer, C. Harvey

    2001-01-01

    We describe the design and construction of a relatively simple, inexpensive laser interferometer system for accurate measurements of ultrasonic surface displacement waveforms in reasonably friendly environments. We show how analysis of a single waveform can provide both the calibration constant required for absolute measurements and an estimate of the uncertainty of these measurements. We demonstrate the performance of this interferometer by measuring ultrasonic waveforms generated by a novel conical-element ultrasonic transducer.

  13. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  14. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  15. Precision measurement of changes in physical dimensions

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.; Norton, M.

    1977-01-01

    Interferometric method is used to measure small changes in size of optical materials. Error introduced with optical phase shifts occurring with time is overcome by using parts of Fabry-Perot resonators with unequal lengths. Both stability of optical phase shifts upon reflection from multilayer stacks and dimensional stability of optical contacts is measured.

  16. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  17. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  18. Calibration of line-scan cameras for precision measurement.

    PubMed

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Niu, Zhiyuan

    2016-09-01

    Calibration of line-scan cameras for precision measurement should have large calibration volume and be flexible in the actual measurement field. In this paper, we present a high-precision calibration method. Instead of using a large 3D pattern, we use a small planar pattern and a precalibrated matrix camera to obtain plenty of points with a suitable distribution, which would ensure the precision of the calibration results. The matrix camera removes the necessity of precise adjustment and movement and links the line-scan camera to the world easily, both of which enhance flexibility in the measurement field. The method has been verified by experiments. The experimental results demonstrated that the proposed method gives a practical solution to calibrate line scan cameras for precision measurement. PMID:27607257

  19. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  20. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. High-precision camera distortion measurements with a ``calibration harp''

    NASA Astrophysics Data System (ADS)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2012-10-01

    This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.

  2. Enhanced precision CD measurements via topographic modeling

    NASA Astrophysics Data System (ADS)

    Henstra, Alexander; Jackman, James J.

    1994-05-01

    To evaluate the rigorousness of existing algorithms for critical dimension (CD) linewidth measurements in the SEM, a Monte Carlo program was developed to model the topographic signal of line-and-space patterns for both backscattered and secondary electrons. The line cross-section is assumed to be a perfect trapezoid. In this paper we present the results of the modeling of submicron photoresist lines on a silicon substrate for primary beam energies measuring algorithms. The simulated secondary electron profiles are compared with reality by recording top-view and cross-section SEM images of submicron resist lines on Si. For comparison reasons only, we also recorded the same images after gold-coating the specimen, thus eliminating charging effects. The experimental profiles are very similar to the simulated profiles, but the geometrical imperfectness of the resist lines inhibits a quantitative comparison.

  3. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  4. Workshop on Precision Measurements of $\\alpha_s$

    SciTech Connect

    Bethke, Siegfried; Hoang, Andre H.; Kluth, Stefan; Schieck, Jochen; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  5. Precision measurements of linear scattering density using muon tomography

    NASA Astrophysics Data System (ADS)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  6. Metering gun for dispensing precisely measured charges of fluid

    NASA Technical Reports Server (NTRS)

    Cook, T. A.; Scheibe, H. (Inventor)

    1974-01-01

    A cyclically operable fluid dispenser for use in dispensing precisely measured charges of potable water aboard spacecraft is described. The dispenser is characterized by (1) a sealed housing adapted to be held within a crewman's palm and coupled with a pressurized source of potable water; (2) a dispensing jet projected from the housing and configured to be received within a crewman's lips; (3) an expansible measuring chamber for measuring charges of drinking water received from the source; (4) and a dispenser actuator including a lever extended from the housing to be digitated for initiating operational cycles, whereby precisely measured charges of potable water selectively are delivered for drinking purposes in a weightless environment.

  7. Ultrasonic detector for high precision measurements of carbon dioxide.

    PubMed

    Andersen, Peter C; Williford, Craig J; David, Donald E; Birks, John W

    2010-10-01

    A new instrument for monitoring atmospheric CO(2) has been developed based on the measurement of the speed of sound in air. The instrument uses a selective scrubber to yield highly precise and accurate measurements of CO(2) mixing ratios at ambient concentrations. The instrument has a precision of 0.3 ppmv (1σ) with a signal that is independent of pressure and requires a flow rate of only 30 mL/min. Laboratory measurements of atmospheric CO(2) showed excellent agreement with values obtained by nondispersive infrared absorption. The instrument has the advantage of collecting continuous, high-precision data every 25 s and can be modified for vertical profiling studies using kites, balloons, or light aircraft for the purpose of measuring landscape-scale fluxes. PMID:20822160

  8. A Precise Measurement of Reactor Antineutrino at RENO

    NASA Astrophysics Data System (ADS)

    Jang, J. S.

    2014-06-01

    RENO is the reactor experiment to measure the neutrino mixing angle θ1 3 by observing the disappearance of the reactor antineutrino. Antineutrinos from six reactors at Yonggwang Nuclear Power Plant in Korea, are detected and compared by two identical detectors located at 294 m and 1383 m, respectively, from the center of the reactor array. The far (near) detector observes 73 (780) electron antineutrino candidate events per day after background subtraction with the precise measurement of reactor antineutrino flux. In this paper, an updated result is presented about the energy spectra of antineutrino signals in RENO detectors. A precise measurement of reactor antineutrino flux is also presented in comparison with expectations.

  9. Precise measurement of the {sup 19}Ne half-life

    SciTech Connect

    Triambak, S.

    2011-11-30

    We describe a high-precision measurement of the half-life of the T = 1/2 nucleus {sup 19}Ne, performed at TRIUMF, Canada's National Laboratory for Nuclear and Particle Physics, Vancouver, Canada. Some implications of this measurement related to tests of the Standard Model are discussed.

  10. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.

    2016-01-01

    Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.

  11. A method to improve the precision of measuring focusing system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoliang; An, Tao; Chen, Ke

    2015-10-01

    Most of the telescope focusing systems adopt the measuring distance method to focus the quick-moving target because the imaging position of moving target is constantly changing. The focusing system calculates the focal position, controls the motor according to the distance of the target. This focusing method has a faster focusing and a better real-time performance compared to the image focusing method based on the image quality. But restricted by the external environment, the precision of instruments and technical level, Distance measuring focus system(DMFS) generally have low precision, higher dynamic adjusting delay problem. This paper mainly analyses the main error sources affecting the accuracy of DMFS, aiming at the existing defects of commonly used current speed compensation method, put forward a kind of solution path delay lag method predicted method measuring focusing system, and then simulate it, the result shows that this method can greatly improve the precision of DMFS.

  12. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  13. Precision spectroscopic measurements in few-electron ions

    SciTech Connect

    Dunford, R.W.; Berry, H.G.; Church, D.A.; Dinneen, T.P.; Hass, M.; Liu, C.J.; Berrah-Mansour, N.; Pardo, R.C.; Raphaelian, M.L.A.; Young, L.; Zabransky, B.J. ); Curtis, L.J. . Dept. of Physics and Astronomy)

    1990-01-01

    We describe recent precision experiments in few-electron ions including measurements of the lifetimes of two-photon-emitting levels in Ni{sup 26+} and Ni{sup 27+}, a measurement of the lifetime of the 2{sup 3}S{sub 1} level in Br{sup 33+} and measurements of the 2{sup 3}S{sub 1} {yields} 2{sup 3}{sub 0,1,2} transition energies in B{sup 3+}. 13 refs., 4 figs.

  14. Precise atomic mass measurements by deflection mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  15. The precision of higgs boson measurements and their implications

    SciTech Connect

    J. Conway et al.

    2002-12-05

    The prospects for a precise exploration of the properties of a single or many observed Higgs bosons at future accelerators are summarized, with particular emphasis on the abilities of a Linear Collider (LC). Some implications of these measurements for discerning new physics beyond the Standard Model (SM) are also discussed.

  16. MODEL TESTING IN PRECISION AGRICULTURE – COMPARING MEASURES OF VARIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical tests that compare means are widely known and used; tests that compare variation are less so. However, evaluating performance of a simulation model over a range of results requires both. In precision agriculture, comparing simulated results to measured results is usually done using linea...

  17. Precision measurement of the off-diagonal hyperfine interaction

    SciTech Connect

    Gilbert, S.L.; Masterson, B.P.; Noecker, M.C.; Wieman, C.E.

    1986-10-01

    We have measured the hyperfine mixing of the 6S and 7S states of cesium using a new high-precision experimental technique. By comparing the diagonal and off-diagonal hyperfine interaction for these states, we find that a single-particle description of the states is accurate to better than 2%.

  18. Measurement Precision for Repeat Examinees on a Standardized Patient Examination

    ERIC Educational Resources Information Center

    Raymond, Mark R.; Swygert, Kimberly A.; Kahraman, Nilufer

    2012-01-01

    Examinees who initially fail and later repeat an SP-based clinical skills exam typically exhibit large score gains on their second attempt, suggesting the possibility that examinees were not well measured on one of those attempts. This study evaluates score precision for examinees who repeated an SP-based clinical skills test administered as part…

  19. Precision half-life measurement of 17F

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Nicoloff, C.; Ahn, T.; Allen, J.; Bardayan, D. W.; Becchetti, F. D.; Gupta, Y. K.; Hall, M. R.; Hall, O.; Hu, J.; Kelly, J. M.; Kolata, J. J.; Long, J.; O'Malley, P.; Schultz, B. E.

    2016-02-01

    Background: The precise determination of f t values for superallowed mixed transitions between mirror nuclide are gaining attention as they could provide an avenue to test the theoretical corrections used to extract the Vu d matrix element from superallowed pure Fermi transitions. The 17F decay is particularly interesting as it proceeds completely to the ground state of 17O, removing the need for branching ratio measurements. The dominant uncertainty on the f t value of the 17F mirror transition stems from a number of conflicting half-life measurements. Purpose: A precision half-life measurement of 17F was performed and compared to previous results. Methods: The life-time was determined from the β counting of implanted 17F on a Ta foil that was removed from the beam for counting. The 17F beam was produced by transfers reaction and separated by the TwinSol facility of the Nuclear Science Laboratory of the University of Notre Dame. Results: The measured value of t1/2 new=64.402 (42) s is in agreement with several past measurements and represents one of the most precise measurements to date. In anticipation of future measurements of the correlation parameters for the decay and using the new world average t1/2 world=64.398 (61) s, we present a new estimate of the mixing ratio ρ for the mixed transition as well as the correlation parameters based on assuming Standard Model validity. Conclusions: The relative uncertainty on the new world average for the half-life is dominated by the large χ2=31 of the existing measurements. More precision measurements with different systematics are needed to remedy to the situation.

  20. Alignment techniques required by precise measurement of effective focal length

    NASA Technical Reports Server (NTRS)

    Wise, T. D.

    1980-01-01

    The characteristics of false color imagery produced by instrumentation on earth resource mapping satellites are examined. The spatial fidelity of the imagery is dependent upon the geometric accuracy (GA) and the band-to-band registration (BBR) with which the telescope instrument is assembled. BBR and GA require knowledge of telescope effective focal length (EFL) to one part in 10,000 in order that the next generation of earth mappers be able to carry out their missions. The basis for this level of precision is briefly considered, and a description is given of the means by which such precise EFL measurements have been carried out. Attention is given to accuracy requirements, the technique used to measure effective focal length, possible sources of error in the EFL measurement, approaches for eliminating errors, and the results of the efforts to control measurement errors in EFL determinations.

  1. New Precision Measurement for Proton Zemach Radius with Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Ishida, K.; Iwasaki, M.; Matsuzaki, Y.; Oishi, Y.; Okada, S.; Sato, M.; Midorikawa, K.; Saito, N.; Wada, S.; Aikawa, S.; Kanda, S.; Matsuda, Y.; Tanaka, K.; Takamine, A.

    2016-02-01

    In this proceeding, a new proposal aiming to improve the precision of the proton Zemach radius will be presented. A circularly polarized laser will be shed on a sample of muonic hydrogen in its ground state. By observing the maximum muon decay asymmetry during scanning laser wave length, the ground-state hyperfine splitting energy can be identified, which is directly related to Zemach radius.citedupays The precision of Zemach radius by this measurement is estimated to be three times better compared to PSI experiment. This result will contribute to the solution of proton size puzzle.

  2. Measuring devices for precision manufacturing and quality control

    NASA Astrophysics Data System (ADS)

    Wilhelm, J.; Jacoby, H. D.; Preuss, H. J.

    1980-12-01

    Various miniaturized and low cost transducers were developed for different applications in metrology, precision manufacturing and fabrication control. They comprise: (1) photoelectric linear transducer with micron step pression; (2) incremental and coded transducers; (3) concave mirror x-y transducer; (4) correlation systems for linear and speed measurements; (5) high resolution angle transducers; and (6) correlation optical sensor for distance measurement. Operation principles are explained and several applications are illustrated. Some of the devices are already available.

  3. Precision measurement of muonium hyperfine splitting at J-PARC

    NASA Astrophysics Data System (ADS)

    Kanda, Sohtaro; J-PARC MuHFS Collaboration

    2014-09-01

    Muonium is the bound state of a positive muon and an electron. Because neither muon nor electron has internal structure, muonium's ground state hyperfine splitting (MuHFS) can be the most precise probe for the test of the bound state QED and for the determination of the ratio of magnetic moments of muon and proton. At J-PARC, we plan to perform a precision measurement of the MuHFS via microwave spectroscopy of muonium. Muonium is formed in Kr gas target and state transition between energy levels is induced by microwave resonance. Spectroscopy of the muonium states can be performed by measurement of positron asymmetry from muonium decay. Precision of the most recent experimental result (LAMPF1999) was mostly statistically limited. Hence, improved statistics is essential for higher precision of the measurement. Our goal is to improve accuracy by an order of magnitude compared to the most recent experiment. In order to achieve the goal, we utilize J-PARC's highest-intensity pulsed muon beam (expected intensity is 1 ×108μ+ / s), highly segmented positron detector with SiPM (Silicon PhotoMultiplier), and an online/offline muon beam profile monitor. In this presentation, we discuss the experimental overview and development status of each components.

  4. Precision mass measurements at TITAN with radioactive ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Macdonald, T. D.; Andreoiu, C.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2013-12-01

    Measurements of the atomic mass further our understanding in many disciplines from metrology to physics beyond the standard model. The accuracy and precision of Penning trap mass spectrometry have been well demonstrated at TITAN, including measurements of neutron-rich calcium and potassium isotopes to investigate three-body forces in nuclear structure and within the island of inversion to study the mechanism of shell quenching and deformation. By charge breeding ions, TITAN has enhanced the precision of the measurement technique. The precision achieved in the measurement of the superallowed β-emitter 74Rb in the 8+ charge state rivaled earlier measurements with singly charged ions in a fraction of the time. By breeding 78Rb to the same charge state, the ground state could be easily distinguished from the isomer. Further developments led to threshold charge breeding, which permitted capturing and measuring isobarically and elementally pure ion samples in the Penning trap. This was demonstrated via the Q-value determination of 71Ge. An overview of the TITAN facility and recent results are presented herein.

  5. Automated high precision secondary pH measurements

    NASA Astrophysics Data System (ADS)

    Bastkowski, F.; Jakobsen, P. T.; Stefan, F.; Kristensen, H. B.; Jensen, H. D.; Kawiecki, R.; Wied, C. E.; Kauert, A.; Seidl, B.; Spitzer, P.; Eberhardt, R.; Adel, B.

    2013-04-01

    A new setup for high precision, automated secondary pH measurements together with a reference measurement procedure has been developed and tested in interlaboratory comparisons using buffers pH 4.005, pH 7.000, and pH 10.012 at 25 °C and 37 °C. Using primary buffers as standards, a standard uncertainty in pH better than 0.005 can be reached. The central measuring device is a one piece, thermostatted cell of PFA (perfluoroalkoxy) with a built-in Hamilton® Single Pore™ Glass electrode. Due to its flow-through principle this device allows pH measurements with low consumption of measurement solutions. The very hydrophobic and smooth PFA as construction material facilitates complete emptying of the cell. Furthermore, the tempering unit affords very precise temperature control and hence contributes to the low target uncertainty of the produced secondary buffer solutions. Use of a symmetric measurement sequence and the two point calibration was sufficient to reach high precision and accuracy.

  6. Precise curvature measurement of Yb:YAG thin disk

    NASA Astrophysics Data System (ADS)

    Muzik, Jiri; Chyla, Michal; Nagisetty, Siva S.; Miura, Taisuke; Mann, Klaus; Endo, Akira; Mocek, Tomas

    2015-01-01

    We are developing an Yb:YAG thin disk regenerative amplifier operating at 1 kHz repetition rate which should deliver output of 100 W of average power which corresponds to the pulse energy of 100 mJ. In order to achieve such high output energy, large size mode matching on a thin-disk is required to avoid optical damage but on the other hand, larger mode area is more susceptible to the influence of optical phase distortions (OPD's) thus limits achievable pulse energy and beam quality. We developed a compact setup allowing precise measurement of the thin-disk deformations by implementation of a Hartmann-Shack wavefront sensor and a single mode probe laser diode. In comparison to the interferometric measurement methods, our approach brings a number of advantages like simplicity of alignment, compactness and robustness, at the same time keeping the high precision of measurement in a range of few nanometers.

  7. Navy precision optical interferometer measurements of 10 stellar oscillators

    SciTech Connect

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Benson, James A.; Zavala, R. T.; Van Belle, Gerard T.

    2014-02-01

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. The precision of the relations is not as well constrained for giant stars as it is for less evolved stars.

  8. A Precise Measurement of Reactor Antineutrino at RENO

    SciTech Connect

    Jang, J.S.

    2014-06-15

    RENO is the reactor experiment to measure the neutrino mixing angle θ{sub 1}3 by observing the disappearance of the reactor antineutrino. Antineutrinos from six reactors at Yonggwang Nuclear Power Plant in Korea, are detected and compared by two identical detectors located at 294 m and 1383 m, respectively, from the center of the reactor array. The far (near) detector observes 73 (780) electron antineutrino candidate events per day after background subtraction with the precise measurement of reactor antineutrino flux. In this paper, an updated result is presented about the energy spectra of antineutrino signals in RENO detectors. A precise measurement of reactor antineutrino flux is also presented in comparison with expectations.

  9. A fully automated precise electrical resistance measurement system

    SciTech Connect

    Marhas, M.K.; Balakrishnan, K.; Ganesan, V.; Srinivasan, R.

    1996-08-01

    A fully automated precise electrical resistance measurement system for more than one sample has been constructed. Conventional four-probe measurements with van der Pauw and Montgomery configurations are possible with this system. Resistance measurements in the range of a few {mu}{Omega} to a few G{Omega} are possible for six samples at a time from room temperature down to liquid-helium or liquid-nitrogen temperatures with a temperature control accuracy of better than 10 mK. The design features of the system with special reference to the low-noise switching methods of currents and voltages are described in detail. Precision of the results thus obtained using this system are highlighted for a few superconducting and semiconducting samples. {copyright} {ital 1996 American Institute of Physics.}

  10. Precision Penning Trap Mass Measurements for Nuclear Structure at Triumf

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Dilling, J.; Andreoiu, C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Delheij, P.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Gwinner, G.; Lennarz, A.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.

    2013-03-01

    Precision determinations of ground state or even isomeric state masses reveal fingerprints of nuclear structure. In particular at the limits at existence for very neutron-rich or deficient isotopes, this allows one to find detailed information about nuclear structure from separation energies or binding energies. This is important to test theoretical predictions or to refine model approaches, for example for new "magic numbers," as predicted around N = 34, where strong indications exist that the inclusion of NNN forces in theoretical calculations for Ca isotopes leads to significantly better predictions for ground state binding energies. Similarly, halo nuclei present an excellent application for ab-initio theory, where ground state properties, like masses and radii, present prime parameters for testing our understanding of nuclear structure. Precision mass determinations at TRIUMF are carried out with the TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) system. It is an ion trap setup coupled to the on-line facility ISAC. TITAN has measured masses of isotopes as short-lived as 9 ms (almost an order of magnitude shorter-lived than any other Penning trap system) and the only one with charge breeding capabilities, a feature that allows us to boost the precision by almost 2 orders of magnitude. We recently were able to make use of this feature by measuring short-lived Rb-isotopes, up to 74Rb, and reaching the 12+ charge state, which together with other improvements lead to an increase in precision by a factor 36.

  11. Precision Measurement of the Electron/Muon Gyromagnetic Factors

    NASA Astrophysics Data System (ADS)

    Awobode, Ayodeji

    2009-05-01

    Clear, persuasive arguments are brought forward to motivate the need for highly precise measurements of the electron/muon orbital g, i.e. gL, as a test of QED. It is demonstrated, using the data of Kusch & Foley on the measurement of (δS - 2δL) together with the modern precise measurements of the electron δS (δS ≡ gS -- 2)), that δL may be a small (--0.6 x 10-4), non-zero quantity, where we have assumed Russel-Saunders (LS) coupling and proposed, along with Kusch and Foley, that gS = 2 + δS and gL = 1 + δL. Therefore, there is probable evidence from experimental data that gL is not equal to 1 exactly; the expectation that quantum effects will significantly modify the classical value of the orbital g is therefore reasonable. It is significant that available spectroscopic data indicate that gS and gL are probably modified such that gS is increased by δS while gL is decreased by δL. Modern, high precision measurements of the electron and muon orbital gL are therefore required, in order to properly determine by experiments the true value of gL -- 1, perhaps to about one part in a trillion as was recently done for gS -- 2.

  12. Development of precision measurement network of experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Liandong; Zhao, Huining; Zhang, Wei; Li, Weishi; Deng, Huaxia; Song, Yuntao; Gu, Yongqi

    2014-12-01

    In order to obtain accurate position of the inner key components in the experimental advanced superconducting tokamak (EAST), a combined optical measurement method which is comprised of a laser tracker (LT) and articulated coordinate measuring machine (CMM) has been brought forward. LT, which is an optical measurement instrument and has a large measurement range and high accuracy, is employed for establishing the precision measurement network of EAST, and the articulated CMM is also employed for measuring the inner key components of EAST. The measurement uncertainty analyzed by the Unified Spatial Metrology Network (USMN) is 0.20 mm at a confidence probability of 95.44%. The proposed technology is appropriate for the inspection of the reconstruction of the EAST.

  13. High-Precision Motorcycle Trajectory Measurements Using GPS

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    A method for measuring motorcycle trajectory using GPS is needed for simulating motorcycle dynamics. In GPS measurements of a motorcycle, both the declination of the motorcycle and obstacles near the course can cause problems. Therefore, we propose a new algorithm for GPS measurement of motorcycle trajectory. We interpolate the missing observation data within a few seconds using polynomial curves, and use a Kalman filter to smoothen position calculations. This results in obtaining trajectory with high accuracy and with sufficient continuity. The precision is equal to that of fixed point positioning, given a sufficient number of available satellites.

  14. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  15. Precise measurement techniques of millimeter-wave power

    NASA Astrophysics Data System (ADS)

    Inoue, T.

    1981-06-01

    Precise power measurement techniques in the millimeter-wave region are described, with attention to a calorimetric method based on thermal balance control, on the basis of which a calorimeter for measuring effective bolometer mount efficiency has been developed. Automatic power measurement systems which incorporate digital techniques are also designed and developed, and two types of circular bolometer mount having high effective efficiency in the 100 GHz band are described. For the case of the 30 GHz band, a method which employs a coupler as a comparator and quarter-wavelength spacer is proposed which significantly reduces the influence of impedance mismatch.

  16. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    Not Available

    2011-11-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

  17. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    The , ALEPH, CDF, D0, ...

    2009-12-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  18. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    None, None

    2009-11-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  19. A precise measurement of the B^0 meson oscillation frequency

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; C. Forshaw, D.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; K. Kuonen, A.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; W. Ronayne, J.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.

    2016-07-01

    The oscillation frequency, Δ m_d, of B^0 mesons is measured using semileptonic decays with a D^- or D^{*-} meson in the final state. The data sample corresponds to 3.0fb^{-1} of pp collisions, collected by the LHCb experiment at centre-of-mass energies √{s} = 7 and 8 TeV. A combination of the two decay modes gives Δ m_d = (505.0 ± 2.1 ± 1.0) ns^{-1}, where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.

  20. Vernier scales and other early devices for precise measurement

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2011-04-01

    Vernier scales have been extensively used since the 17th century. They replaced the Nonius scale, a unpopular device due to difficulty in its fabrication and use, and they coexisted alongside other types of scales that increased measurement precision and accuracy in complementary ways. I suggest that the success of Vernier and diagonal scales is due not only to simplicity of fabrication, but also to their exploitation of visual hyperacuities.

  1. Precision measurements of the SLC (Stanford Linear Collider) beam energy

    SciTech Connect

    Kent, J.; King, M.; Von Zanthier, C.; Watson, S.; Levi, M.; Rouse, F.; Bambade, P.; Erickson, R.; Jung, C.K.; Nash, J.

    1989-03-01

    A method of precisely determining the beam energy in high energy linear colliders has been developed using dipole spectrometers and synchrotron radiation detectors. Beam lines implementing this method have been installed on the Stanford Linear Collider. An absolute energy measurement with an accuracy of better than deltaE/E = 5 /times/ 10/sup /minus/4/ can be achieved on a pulse-to-pulse basis. The operation of this system will be described. 4 refs., 3 figs., 1 tab.

  2. Precision measurements on the photoionization of neutral atomic species

    NASA Astrophysics Data System (ADS)

    Stolte, Wayne

    2016-05-01

    In contrast to studies on rare gas atoms, experimental studies of open-shell atoms offers very challenging problems, such as creation of the atom, low signal, purity and stability. Because of this, studies of inner-shell excitations for open shell atoms are limited. In this talk I will discuss precision experimental measurements for photoionization of atomic oxygen, nitrogen, and chlorine over the last two decades on various beamlines at Lawrence Berkeley National Laboratories, Advanced Light Source.

  3. Interlaboratory comparison of autoradiographic DNA profiling measurements: precision and concordance.

    PubMed

    Duewer, D L; Lalonde, S A; Aubin, R A; Fourney, R M; Reeder, D J

    1998-05-01

    Knowledge of the expected uncertainty in restriction fragment length polymorphism (RFLP) measurements is required for confident exchange of such data among different laboratories. The total measurement uncertainty among all Technical Working Group for DNA Analysis Methods laboratories has previously been characterized and found to be acceptably small. Casework cell line control measurements provided by six Royal Canadian Mounted Police (RCMP) and 30 U.S. commercial, local, state, and Federal forensic laboratories enable quantitative determination of the within-laboratory precision and among-laboratory concordance components of measurement uncertainty typical of both sets of laboratories. Measurement precision is the same in the two countries for DNA fragments of size 1000 base pairs (bp) to 10,000 bp. However, the measurement concordance among the RCMP laboratories is clearly superior to that within the U.S. forensic community. This result is attributable to the use of a single analytical protocol in all RCMP laboratories. Concordance among U.S. laboratories cannot be improved through simple mathematical adjustments. Community-wide efforts focused on improved concordance may be the most efficient mechanism for further reduction of among-laboratory RFLP measurement uncertainty, should the resources required to fully evaluate potential cross-jurisdictional matches become burdensome as the number of RFLP profiles on record increases. PMID:9608684

  4. New Precise Measurement of the Hyperfine Splitting of Positronium

    SciTech Connect

    Ishida, A.

    2015-09-15

    Positronium (Ps) is an ideal system for precision test of bound state quantum electrodynamics. The hyperfine splitting (HFS) of the ground state of Ps, which is one of the most precisely tested quantity, has a large discrepancy of 16 ppm (4.5 σ) between previous experiments and theoretical calculation up to O(α{sup 3}lnα{sup −1}) and part of O(α{sup 3}) corrections. A new experiment which reduces possible systematic uncertainties of Ps thermalization effect and nonuniformity of magnetic field was performed. It revealed that the Ps thermalization effect was as large as 10 ± 2 ppm. Treating the thermalization effect correctly, a new result of 203.3942 ± 0.0016(stat., 8.0 ppm) ± 0.0013(sys., 6.4 ppm) GHz was obtained. This result is consistent with theory within 1.1 σ, whereas it disfavors the previous experimental result by 2.6 σ. It shows that the Ps thermalization effect is crucial for precision measurement of HFS. Future prospects for improved precision are briefly discussed.

  5. Advances in Swept-Wavelength Interferometry for Precision Measurements

    NASA Astrophysics Data System (ADS)

    Moore, Eric D.

    2011-12-01

    Originally developed for radar applications in the 1950s, swept-wavelength interferometry (SWI) at optical wavelengths has been an active area of research for the past thirty years, with applications in fields ranging from fiber optic telecommunications to biomedical imaging. It now forms the basis of several measurement techniques, including optical frequency domain reflectometry (OFDR), swept-source optical coherence tomography (SS-OCT), and frequency-modulated continuous-wave (FMCW) lidar. In this thesis, I present several novel contributions to the field of SWI that include improvements and extensions to the state of the art in SWI for performing precision measurements. The first is a method for accurately monitoring the instantaneous frequency of the tunable source to accommodate nonlinearities in the source tuning characteristics. This work ex- tends the commonly used method incorporating an auxiliary interferometer to the increasingly relevant cases of long interferometer path mismatches and high-speed wavelength tuning. The second contribution enables precision absolute range measurements to within a small fraction of the transform-limited range resolution of the SWI system. This is accomplished through the use of digital filtering in the time domain and phase slope estimation in the frequency domain. Measurements of optical group delay with attosecond-level precision are experimentally demonstrated and applied to measurements of group refractive index and physical thickness. The accuracy of the group refractive index measurement is shown to be on the order of 10-6, while measurements of absolute thicknesses of macroscopic samples are accomplished with accuracy on the order of 10 nm. Furthermore, sub-nanometer uncertainty for relative thickness measurements can be achieved. For the case of crystalline silicon wafers, the achievable uncertainty is on the same order as the Si-Si bond length, opening the door to potential thickness profiling with single atomic

  6. Precision measurements and applications of femtosecond frequency combs

    NASA Astrophysics Data System (ADS)

    Jones, R. Jason

    2002-05-01

    The merging of femtosecond (fs) laser physics with the field of optical f requency metrology over recent years has had a profound impact on both di sciplines. Precision control of the broad frequency bandwidth from fs la sers has enabled new areas of exploration in ultrafast physics and revolu tionized optical frequency measurement and precision spectroscopy. Most recently, the transition frequency of the length standard at 514.7 nm,^ 127I2 P(13) 43-0 a3 has been measured in our lab with an improvement of more than 100 times in precision. Interesting molecular dynamics and s tructure are being explored using absolute frequency map of molecular tra nsitions over a large wavelength range. The iodine transition at 532 nm h as been used to establish an optical atomic clock with a fs comb providin g both an RF standard with stability comparable to the best atomic clocks and millions of optical frequencies across the visible and near IR spect rum, each stable to the Hz level. Work is presently underway to directly compare the iodine optical clocks at JILA with the Hg and Ca optical cloc ks currently being refined at NIST via a direct optical fiber link. A wi dely tunable single frequency laser in combination with a fs comb has bee n employed to realize an optical frequency synthesizer. Frequency combs of two independent ultrafast lasers have been coherently locked, enablin g several different avenues of application such as synthesis of arbitrary waveforms, coherent control of quantum systems, and coherent anti-Stokes Raman scattering microscopy. This talk will review these recent accompl ishments from our lab and discuss plans for further improving the control and precision of fs laser based measurements. te

  7. Border effect-based precise measurement of any frequency signal

    NASA Astrophysics Data System (ADS)

    Bai, Li-Na; Ye, Bo; Xuan, Mei-Na; Jin, Yu-Zhen; Zhou, Wei

    2015-12-01

    Limited detection resolution leads to fuzzy areas during the measurement, and the discrimination of the border of a fuzzy area helps to use the resolution stability. In this way, measurement precision is greatly improved, hence this phenomenon is named the border effect. The resolution fuzzy area and its application should be studied to realize high-resolution measurement. During the measurement of any frequency signal, the fuzzy areas of phase-coincidence detection are always discrete and irregular. In this paper the difficulty in capturing the border information of discrete fuzzy areas is overcome and extra-high resolution measurement is implemented. Measurement precision of any frequency-signal can easily reach better than 1 × 10-11/s in a wide range of frequencies, showing the great importance of the border effect. An in-depth study of this issue has great significance for frequency standard comparison, signal processing, telecommunication, and fundamental subjects. Project supported by the National Natural Science Foundation of China (Grant Nos. 10978017 and 61201288), the Natural Science Foundation of Research Plan Projects of Shaanxi Province, China (Grant No. 2014JM2-6128), and the Sino-Poland Science and Technology Cooperation Projects (Grant No. 36-33).

  8. Scatterometry measurement precision and accuracy below 70 nm

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Archie, Charles N.

    2003-05-01

    Scatterometry is a contender for various measurement applications where structure widths and heights can be significantly smaller than 70 nm within one or two ITRS generations. For example, feedforward process control in the post-lithography transistor gate formation is being actively pursued by a number of RIE tool manufacturers. Several commercial forms of scatterometry are available or under development which promise to provide satisfactory performance in this regime. Scatterometry, as commercially practiced today, involves analyzing the zeroth order reflected light from a grating of lines. Normal incidence spectroscopic reflectometry, 2-theta fixed-wavelength ellipsometry, and spectroscopic ellipsometry are among the optical techniques, while library based spectra matching and realtime regression are among the analysis techniques. All these commercial forms will find accurate and precise measurement a challenge when the material constituting the critical structure approaches a very small volume. Equally challenging is executing an evaluation methodology that first determines the true properties (critical dimensions and materials) of semiconductor wafer artifacts and then compares measurement performance of several scatterometers. How well do scatterometers track process induced changes in bottom CD and sidewall profile? This paper introduces a general 3D metrology assessment methodology and reports upon work involving sub-70 nm structures and several scatterometers. The methodology combines results from multiple metrologies (CD-SEM, CD-AFM, TEM, and XSEM) to form a Reference Measurement System (RMS). The methodology determines how well the scatterometry measurement tracks critical structure changes even in the presence of other noncritical changes that take place at the same time; these are key components of accuracy. Because the assessment rewards scatterometers that measure with good precision (reproducibility) and good accuracy, the most precise

  9. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGESBeta

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  10. Precision measurement of a particle mass at the linear collider

    SciTech Connect

    Milstene, C.; Freitas, A.; Schmitt, M.; Sopczak, A.; /Lancaster U.

    2007-06-01

    Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle (LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.

  11. Precise measurements of primordial power spectrum with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We discuss the issue of how precisely we can measure the primordial power spectrum by using future observations of 21 cm fluctuations and cosmic microwave background (CMB). For this purpose, we investigate projected constraints on the quantities characterizing primordial power spectrum: the spectral index n{sub s}, its running α{sub s} and even its higher order running β{sub s}. We show that future 21 cm observations in combinations with CMB would accurately measure above mentioned observables of primordial power spectrum. We also discuss its implications to some explicit inflationary models.

  12. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  13. Precise measurements of the energy losses of heavy ions

    SciTech Connect

    Bichsel, H.; Hiraoka, T. |

    1995-12-31

    Accurate measurements of the energy loss of all charged particles are needed to determine the reliability of the Bethe theory of stopping power. Few measurements have been made for particles with energies greater than 20 MeV/u. A first step to accurate measurements is to establish the precision of an experimental method. The authors report here about the recent energy loss measurements for 290 MeV/u carbon ions from the HIMAC. They have been made with the method used for 70 MeV protons. The ion beam traverses an absorber of thickness t and the residual range of the ions is measured with a water container of adjustable thickness (``range gauge``).

  14. Photonic systems for high precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel

    2016-01-01

    I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.

  15. Precision of the CAESAR scan-extracted measurements.

    PubMed

    Robinette, Kathleen M; Daanen, Hein A M

    2006-05-01

    Three-dimensional (3D) body scanners are increasingly used to derive 1D body dimensions from 3D whole body scans for instance, as input for clothing grading systems to make made-to-measure clothing or for width and depth dimensions of a seated workstation. In this study, the precision of the scanner-derived 1D dimensions from the CAESAR survey, a multinational anthropometric survey, was investigated. Two combinations of scanning teams with 3D whole body scanners were compared, one called the US Team and the other the Dutch Team. Twenty subjects were measured three times by one scanner and one team, and three times by the other combination. The subjects were marked prior to scanning using small dots, and the linear distances between the dots were calculated after processing the scans. The mean absolute difference (MAD) of the repetitions was calculated and this was compared to reported acceptable errors in manual measurements from the US Army's ANSUR survey when similar measurements were available. In addition, the coefficient of variation (CV) was calculated for all measurements. The results indicate that the CAESAR scan-extracted measurements are highly reproducible; for most measures the MAD is less than 5mm. In addition, more than 93% of the MAD values for CAESAR are significantly smaller than the ANSUR survey acceptable errors. Therefore, it is concluded that the type of scan-extracted measures used in CAESAR are as good as or better than comparable manual measurements. Scan-extracted measurements that do not use markers or are not straight-line distances are not represented here and additional studies would be needed to verify their precision. PMID:16202970

  16. Towards quantum-enhanced precision measurements: Promise and challenges

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Jian; Xiao, Min

    2013-11-01

    Quantum metrology holds the promise of improving the measurement precision beyond the limit of classical approaches. To achieve such enhancement in performance requires the development of quantum estimation theories as well as novel experimental techniques. In this article, we provide a brief review of some recent results in the field of quantum metrology. We emphasize that the unambiguous demonstration of the quantum-enhanced precision needs a careful analysis of the resources involved. In particular, the implementation of quantum metrology in practice requires us to take into account the experimental imperfections included, for example, particle loss and dephasing noise. For a detailed introduction to the experimental demonstrations of quantum metrology, we refer the reader to another article ‘Quantum metrology’ in the same issue.

  17. Precision electroweak measurements and constraints on the Standard Model

    SciTech Connect

    Not Available

    2010-12-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results obtained at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  18. Precise measurement of deuteron tensor analyzing powers with BLAST.

    PubMed

    Zhang, C; Kohl, M; Akdogan, T; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J R; Clasie, B; Crawford, C; DeGrush, A; Dow, K; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Geis, E; Gilad, S; Hasell, D; Karpius, P; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, R; Rapaport, J; Redwine, R; Seely, J; Shinozaki, A; Sindile, A; Širca, S; Six, E; Smith, T; Tonguc, B; Tschalär, C; Tsentalovich, E; Turchinetz, W; Xiao, Y; Xu, W; Zhou, Z-L; Ziskin, V; Zwart, T

    2011-12-16

    We report a precision measurement of the deuteron tensor analyzing powers T(20) and T(21) at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15-4.50 fm(-1) with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G(C) and G(Q) were separated with improved precision, and the location of the first node of G(C) was confirmed at Q=4.19±0.05 fm(-1). The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T(20) and the first node of G(C). PMID:22243068

  19. Superallowed nuclear beta decay: Precision measurements for basic physics

    SciTech Connect

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  20. Highly precise measurement of HIV DNA by droplet digital PCR.

    PubMed

    Strain, Matthew C; Lada, Steven M; Luong, Tiffany; Rought, Steffney E; Gianella, Sara; Terry, Valeri H; Spina, Celsa A; Woelk, Christopher H; Richman, Douglas D

    2013-01-01

    Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it. PMID:23573183

  1. Highly Precise Measurement of HIV DNA by Droplet Digital PCR

    PubMed Central

    Strain, Matthew C.; Lada, Steven M.; Luong, Tiffany; Rought, Steffney E.; Gianella, Sara; Terry, Valeri H.; Spina, Celsa A.; Woelk, Christopher H.; Richman, Douglas D.

    2013-01-01

    Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it. PMID:23573183

  2. Note: Precision viscosity measurement using suspended microchannel resonators

    SciTech Connect

    Lee, I.; Lee, J.; Park, K.

    2012-11-15

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 Degree-Sign C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s){sup -1} for a lower (1-4 mPa s) and 355 (mPa s){sup -1} for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 {approx} 1 ms while the Q-factor-based measurement takes {approx}30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  3. 3D precision surface measurement by dynamic structured light

    NASA Astrophysics Data System (ADS)

    Franke, Ernest A.; Magee, Michael J.; Mitchell, Joseph N.; Rigney, Michael P.

    2004-02-01

    This paper describes a 3-D imaging technique developed as an internal research project at Southwest Research Institute. The technique is based on an extension of structured light methods in which a projected pattern of parallel lines is rotated over the surface to be measured. A sequence of images is captured and the surface elevation at any location can then be determined from measurements of the temporal pattern, at any point, without considering any other points on the surface. The paper describes techniques for system calibration and surface measurement based on the method of projected quadric shells. Algorithms were developed for image and signal analysis and computer programs were written to calibrate the system and to calculate 3-D coordinates of points on a measured surface. A prototype of the Dynamic Structured Light (DSL) 3-D imaging system was assembled and typical parts were measured. The design procedure was verified and used to implement several different configurations with different measurement volumes and measurement accuracy. A small-parts measurement accuracy of 32 micrometers (.0012") RMS was verified by measuring the surface of a precision-machined plane. Large aircraft control surfaces were measured with a prototype setup that provided .02" depth resolution over a 4" by 8" field of view. Measurement times are typically less than three minutes for 300,000 points. A patent application has been filed.

  4. Self calibrating wavelength multiplexed heterodyne interferometer for angstrom precision measurements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Riza, Nabeel A.

    2005-05-01

    Measurement of refractive index, surface quality and temperature of the process materials in defense, petrochemical, power systems, glass, and metal industries is a fundamental need for precision systems performance. However, making these measurements in a super noisy defense or industrial environment is a big challenge faced by sensor technologies. Reported in this paper is the first ever demonstration of a wavelength multiplexed heterodyne interferometer using a single acousto-optic device (AOD). Heterodyne interferometry is pivotal in realizing a highly stable low noise interferometer. Inspite of the physical separation of the two arms of the interferometer, the sensor demonstrates Angstrom level optical path length sensitivity. The proposed sensor can be used in optical path length measurement-based sensing of parameters such as surface profile, refractive index, temperature, and pressure. Proof-of-concept experiment features a high resolution, low-loss, ultra compact, free space scanning interferometer implementation. Results include measurement of surface quality of a test mirror.

  5. Real-time precision concentration measurement for flowing liquid solutions

    NASA Astrophysics Data System (ADS)

    Krishna, V.; Fan, C. H.; Longtin, J. P.

    2000-10-01

    The precise, real-time measurement of liquid concentration is important in fundamental research, chemical analysis, mixing processes, and manufacturing, e.g., in the food and semiconductor industries. This work presents a laser-based, noninvasive technique to measure concentration changes of flowing liquids in real time. The essential components in the system include a 5 mW laser diode coupled to a single-mode optical fiber, a triangular optical cell, and a high-resolution beam position sensor. The instrument provides a large range of concentration measurement, typically 0%-100% for binary liquid mixtures, while providing a resolution on the order of 0.05% concentration or better. The experimental configuration is small, reliable, and inexpensive. Results are presented for NaCl and MgCl2 aqueous solutions with concentrations ranging from 0% to 25%, with very good agreement found between measured and true concentrations.

  6. Multiply-ionized Atoms at Low Energy for Precise Measurements

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Tan, Joseph N.

    2014-05-01

    Recent work at NIST introduced a new system for the slowing, capture and manipulation of multiply-ionized atoms in a controlled environment suitable for precision measurements. As a demonstration of its potentials, we have measured the lifetimes of metastable states in krypton and argon (gases), and are now extending this technique to metals such as iron. Work is also underway on a table-top apparatus that incorporates a miniature electron-beam ion trap (EBIT) coupled to a cryo-cooled, compact Penning trap to enable spectroscopic studies of interest for atomic physics, astrophysics, and metrology. This apparatus will allow charge exchange between laser-excited Rydberg rubidium atoms and isolated bare nuclei, opening the way for precision spectroscopy of one-electron ions in Rydberg states using optical frequency comb technology. Earlier theoretical work at NIST has shown that such measurements would provide a new determination of the Rydberg constant that was independent of the proton radius. Such a measurement could help resolve the proton-radius puzzle. Additional applications could include the study of very-long-lived atomic states proposed for new atomic frequency standards or laboratory studies of potential time variation of the fine structure constant. SFH acknowledges funding through a National Research Council Reseach Associateship award.

  7. Precision lifetime measurements of the 2p levels in lithium

    SciTech Connect

    Berry, H.G.; Kurtz, C.; Tanner, C.E.

    1995-08-01

    These measurements are motivated by the theoretical challenges posed by lithium. The three-electron lithium atom is one of the simplest atomic systems with which to test atomic structure calculations. Recently, there were several ab initio calculations of the lithium 2s-2p oscillator strengths, which agree to 0.15%. However, the theoretical results differ by 5 sigma from the precise fast-beam-laser lifetime measurement of Gaupp and Andra (Berlin). Hence the need for a new independent and precise measurement. Improvements were added to the fast beam laser techniques developed for cesium in order to measure the lithium 2p state lifetime. Although the technique is similar to that of cesium, the lithium atom presents a few new complications. Since the atom is lighter, it travels more quickly through the interaction and detection regions. Therefore, the 670 nm wavelength requires a dye laser to produce sufficient intensity to populate the excited state. Unfortunately, the intensity of the dye laser is inherently less stable than that of a diode laser. Another complication is that the ion-beam intensity is much more sensitive to fluctuations in the accelerating voltage. Two detectors were added: one to monitor the ion-beam intensity, and the other to monitor the laser power. With the information from the additional detectors, a new data analysis scheme was developed. Sufficient data were taken to evaluate the benefits of the new detectors. No additional work is planned at Argonne for this experiment.

  8. A precision measurement of the mass of the top quark.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baffioni, S; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A; Klima, B; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A; Merkin, A; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Sirotenko, V; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2004-06-10

    The standard model of particle physics contains parameters--such as particle masses--whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M(t)) and W boson (M(W)) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M(t) can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10(-24) s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3 GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M(t) becomes 178.0 +/- 4.3 GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c2. PMID:15190311

  9. Accuracy, Precision, and Resolution in Strain Measurements on Diffraction Instruments

    NASA Astrophysics Data System (ADS)

    Polvino, Sean M.

    Diffraction stress analysis is a commonly used technique to evaluate the properties and performance of different classes of materials from engineering materials, such as steels and alloys, to electronic materials like Silicon chips. Often to better understand the performance of these materials at operating conditions they are also commonly subjected to elevated temperatures and different loading conditions. The validity of any measurement under these conditions is only as good as the control of the conditions and the accuracy and precision of the instrument being used to measure the properties. What is the accuracy and precision of a typical diffraction system and what is the best way to evaluate these quantities? Is there a way to remove systematic and random errors in the data that are due to problems with the control system used? With the advent of device engineering employing internal stress as a method for increasing performance the measurement of stress from microelectronic structures has become of enhanced importance. X-ray diffraction provides an ideal method for measuring these small areas without the need for modifying the sample and possibly changing the strain state. Micro and nano diffraction experiments on Silicon-on-Insulator samples revealed changes to the material under investigation and raised significant concerns about the usefulness of these techniques. This damage process and the application of micro and nano diffraction is discussed.

  10. Precise measurement of chromium isotopes by MC-ICPMS

    PubMed Central

    Schiller, Martin; Van Kooten, Elishevah; Holst, Jesper C.; Olsen, Mia B.; Bizzarro, Martin

    2014-01-01

    We report novel analytical procedures allowing for the concurrent determination of the stable and mass-independent Cr isotopic composition of silicate materials by multiple collector inductively coupled mass spectrometry (MC-ICPMS). In particular, we focus on improved precision of the measurement of the neutron-rich isotope 54Cr. Because nitride and oxide interferences are a major obstacle to precise and accurate 54Cr measurements by MC-ICPMS, our approach is designed to minimize these interferences. Based on repeat measurements of standards, we show that the mass-independent 53Cr and 54Cr compositions can be routinely determined with an external reproducibility better than 2.5 and 5.8 ppm (2 sd), respectively. This represents at least a two-fold improvement compared to previous studies. Although this approach uses significantly more Cr (30–60 μg) than analysis by thermal ionization mass spectrometry (TIMS), our result indicate that it is possible to obtain an external reproducibility of 19 ppm for the μ54Cr when consuming amounts similar to that typically analyzed by TIMS (1 μg). In addition, the amount of time required for analysis by MC-ICPMS is much shorter thereby enabling a higher sample throughput. As a result of the improved analytical precision, we identified small apparent mass-independent differences between different synthetic Cr standards and bulk silicate Earth (BSE) when using the kinetic law for the mass bias correction. These differences are attributed to the Cr loss by equilibrium processes during production of the synthetic standards. The stable isotope data concurrently obtained have a precision of 0.05‰ Da −1, which is comparable to earlier studies. Comparison of the measured isotopic composition of four meteorites with published data indicates that Cr isotope data measured by the technique described here are accurate to stated uncertainties. The stable Cr composition of the Bilanga and NWA 2999 achondrites suggests that the

  11. Precision Measurement Based on Ultracold Atoms and Cold Molecules

    SciTech Connect

    Ye Jun; Blatt, Sebastian; Boyd, Martin M.; Foreman, Seth M.; Hudson, Eric R.; Ido, Tetsuya; Lev, Benjamin; Ludlow, Andrew D.; Sawyer, Brian C.; Stuhl, Benjamin; Zelevinsky, Tanya

    2006-11-07

    Ultracold atoms and molecules provide ideal stages for precision tests of fundamental physics. With microkelvin neutral strontium atoms confined in an optical lattice, we have achieved a fractional resolution of 4 x 10-15 on the 1S0 - 3P0 doubly-forbidden 87Sr clock transition at 698 nm. The overall systematic uncertainty of the clock is evaluated below the 10-15 level. The ultrahigh spectral resolution permits resolving the nuclear spin states of the clock transition at small magnetic fields, leading to measurements of the 3P0 magnetic moment and metastable lifetime. In addition, photoassociation spectroscopy performed on the narrow 1S0 - 3P1 transition of 88Sr shows promise for efficient optical tuning of the ground state scattering length and production of ultracold ground-state molecules. Lattice-confined Sr2 molecules are suitable for constraining the time-variation of electron-proton mass ratio. In a separate experiment, cold, ground state polar molecules produced from Stark decelerators have enabled an order of magnitude improvement in measurement precision of ground-state, {lambda}-doublet microwave transitions in the OH molecule. Comparing the laboratory results to those from OH megamasers in interstellar space will allow a sensitivity of 10-6 for measuring the potential time variation of the fundamental fine structure constant {delta}{alpha}/{alpha} over 1010 years. These results have also led to improved understandings in the molecular structure. The study of the low magnetic field behavior of OH in its 2{pi}3/2 ro-vibronic ground state precisely determines a differential Lande g-factor between opposite parity components of the {lambda}-doublet.

  12. Fundamental Symmetries Probed by Precision Nuclear Mass Measurements at ISOLTRAP

    NASA Astrophysics Data System (ADS)

    Bollen, Georg

    2005-04-01

    Mass measurements on rare isotopes can play an important role in testing the nature of fundamental interactions. Precise mass values together with decay data are required for critical tests of the conserved vector current (CVC) hypothesis and the standard model. Substantial progress in Penning trap mass spectrometry has made this technique the best choice for precision measurements on rare isotopes, by providing high accuracy and sensitivity even for short-lived nuclides. The pioneering facility in this field is ISOLTRAP at ISOLDE/CERN. ISOLTRAP is a mass spectrometer capable to determine nuclear binding energies with an uncertainty of 10-8 on nuclides that are produced with yields as low as a few 100 ions/s and at half-lives well below 100 ms. It is used for mass measurements relevant for a better understanding of nuclear structure and the nucleosynthesis of the elements. It is also used for the determination of masses that are important for the test of CVC, the unitary of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and for putting constrains on the existence of scalars currents. Measurements along this line include ^74Rb (T1/2=65 ms), which is the shortest-lived nuclide studied in a Penning trap. The QEC values of ^74Rb, determined with a precision of 6.10-8, serves as a test of CVC or of related theoretical corrections [1]. Masses of ^32Ar and ^33Ar have been determined with uncertainties of 6.0 . 10-8 and 1.4 . 10-8 [2]. The improved mass for ^32Ar helps to provide a better constraint on scalar contributions to the weak interaction and both argon data serve as the most stringent test of isobaric multiplet mass equation IMME. ^34Ar, another CVC test candidate, has been studied with an uncertainty of 1.1.10-8 (δm = 0.41 keV). Similar precision has been achieved for ^22Mg and neighboring ^21Na and ^22Na [4]. The importance of these results is twofold: First, an Ft value has been obtained for the super-allowed β decay of ^22Mg to further test the CVC hypothesis

  13. High-precision measurements of global stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Plachinda, S. I.

    2014-06-01

    This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.

  14. Precision measurement of the weak mixing angle in Moller scattering

    SciTech Connect

    Anthony, P.L.; Arnold, R.G.; Arroyo, C.; Bega, K.; Biesiada, J.; Bosted, P.E.; Bower, G.; Cahoon, J.; Carr, R.; Cates, G.D.; Chen, J-P.; Chudakov, E.; Cooke, M.; Decowski, P.; Deur, A.; Emam, W.; Erickson, R.; Fieguth, T.; Field, C.; Gao, J.; Gary, M.; /UC, Berkeley /Caltech /Massachusetts U., Amherst /Princeton U. /DAPNIA, Saclay /Smith Coll. /SLAC /Syracuse U. /Jefferson Lab /Virginia U.

    2005-05-04

    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moeller) scattering: A{sub PV} = (-131 {+-} 14 (stat.) {+-} 10 (syst.)) x 10{sup -9}, leading to the determination of the weak mixing angle sin{sup 2} {theta}{sub W}{sup eff} = 0.2397 {+-} 0.0010 (stat.) {+-} 0.0008 (syst.), evaluated at Q{sup 2} = 0.026 GeV{sup 2}. Combining this result with the measurements of sin{sup 2} {theta}{sub W}{sup eff} at the Z{sup 0} pole, the running of the weak mixing angle is observed with over 6{sigma} significance. The measurement sets constraints on new physics effects at the TeV scale.

  15. A precise measurement of the τ lepton lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhiére, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Kreemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Takashima, M.; Thomas, J.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foá, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Rivera, F.; Schäfer, U.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Lan Wu, Sau; Wu, X.; Zobernig, G.; Aleph Collaboration

    1992-12-01

    Three different techniques are used to measure the mean decay length of the τ lepton with a high precision vertex detector in a sample of 11 800 τ pairs coming from Z decays, collected in1991 by ALEPH at LEP. Events in which both τ's decay into one charged track are analyzed using two largely independent methods. Displaced vertices in three-prong decays yield another independent measurement. The derived lifetime is 295.5 ± 5.9 ± 3.1 fs, using mτ = 1777.1 ± 0.5 MeV/ c2. Including previous (1989-1990) ALEPH measurements, the combined τ lifetime is 294.7 ± 5.4 ± 3.0 fs.

  16. Detecting Large Quantum Fisher Information with Finite Measurement Precision

    NASA Astrophysics Data System (ADS)

    Fröwis, Florian; Sekatski, Pavel; Dür, Wolfgang

    2016-03-01

    We propose an experimentally accessible scheme to determine the lower bounds on the quantum Fisher information (QFI), which ascertains multipartite entanglement or usefulness for quantum metrology. The scheme is based on comparing the measurement statistics of a state before and after a small unitary rotation. We argue that, in general, the limited resolution of collective observables prevents the detection of large QFI. This can be overcome by performing an additional operation prior to the measurement. We illustrate the power of this protocol for present-day spin-squeezing experiments, where the same operation used for the preparation of the initial spin-squeezed state improves also the measurement precision and hence the lower bound on the QFI by 2 orders of magnitude. We also establish a connection to the Leggett-Garg inequalities. We show how to simulate a variant of the inequalities with our protocol and demonstrate that large QFI is necessary for their violation with coarse-grained detectors.

  17. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information. PMID:23368314

  18. Ultra High Precision Laser Monitor for Oxygen Eddy Flux Measurements

    NASA Astrophysics Data System (ADS)

    Nelson, David; Herndon, Scott; McManus, Barry; Roscioli, Rob; Jervis, Dylan; Zahniser, Mark

    2016-04-01

    Atmospheric oxygen provides one of the most powerful tracers to study the carbon cycle through its close interaction with carbon dioxide. Keeling and co-workers demonstrated this at the global scale by using small variations in atmospheric oxygen content to disentangle oceanic and terrestrial carbon sinks. It would be very exciting to apply similar ideas at the ecosystem level to improve our understanding of biosphere-atmosphere exchange and our ability to predict the response of the biosphere and atmosphere to climate change. The eddy covariance technique is perhaps the most effective approach available to quantify the exchange of gases between these spheres. Therefore, eddy covariance flux measurements of oxygen would be extremely valuable. However, this requires a fast response (0.1 seconds), high relative precision (0.001% or 10 per meg) oxygen sensor. We report recent progress in developing such a sensor using a high resolution visible laser to probe the oxygen A-band electronic transition. We have demonstrated precision of 1 ppmv or 5 per meg for a 100 second measurement duration. This sensor will enable oxygen flux measurements using eddy covariance. In addition, we will incorporate a second laser in this instrument to simultaneously determine the fluxes of oxygen, carbon dioxide and water vapor within the same sampling cell. This will provide a direct, real time measurement of the ratio of the flux of oxygen to that of carbon dioxide. This ratio is expected to vary on short time scales and small spatial scales due to the differing stoichiometry of processes producing and consuming carbon dioxide. Thus measuring the variations in the ratio of oxygen and carbon dioxide fluxes will provide mechanistic information to improve our understanding of the crucial exchange of carbon between the atmosphere and biosphere.

  19. Precision Measurement of the Undulator K Parameter using Spontaneous Radiation

    SciTech Connect

    Welch, J.J.; Arthur, J.; Emma, P.; Hastings, J.B.; Huang, Z.; Nuhn, H.D.; Stefan, P.; Bionta, R.M.; Dejus, R.J.; Yang, B.X.; /Argonne

    2007-04-17

    Obtaining precise values of the undulator parameter, K, is critical for producing high-gain FEL radiation. At the LCLS [1], where the FEL wavelength reaches down to 1.5 {angstrom}, the relative precision of K must satisfy ({Delta}K/K){sub rms} {approx}< 0.015% over the full length of the undulator. Transverse misalignments, construction errors, radiation damage, and temperature variations all contribute to errors in the mean K values among the undulator segments. It is therefore important to develop some means to measure relative K values, after installation and alignment. We propose a method using the angle-integrated spontaneous radiation spectrum of two nearby undulator segments, and the natural shot-to-shot energy jitter of the electron beam. Simulation of this scheme is presented using both ideal and measured undulator fields. By ''leap-frogging'' to different pairs of segments with extended separations we hope to confirm or correct the values of K, including proper tapering, over the entire 130-m long LCLS undulator.

  20. Precision Top-Quark Mass Measurements at CDF

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-07-01

    We present a precision measurement of the top-quark mass using the full sample of Tevatron {radical}s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb{sup -1}. Using a sample of t{bar t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, mtop = 172.85 {+-} 0.71 (stat) {+-} 0.85 (syst) GeV/c{sup 2}.

  1. High precision measurement system based on coplanar XY-stage

    NASA Astrophysics Data System (ADS)

    Fan, Kuang-Chao; Miao, Jin-Wei; Gong, Wei; Zhang, You-Liang; Cheng, Fang

    2011-12-01

    A coplanar XY-stage, together with a high precise measurement system, is presented in this paper. The proposed coplanar XY-stage fully conforms to the Abbe principle. The symmetric structural design is considered to eliminate the structure deformation due to force and temperature changes. For consisting of a high precise measurement system, a linear diffraction grating interferometer(LDGI) is employed as the position feedback sensor with the resolution to 1 nm after the waveform interpolation, an ultrasonic motor HR4 is used to generate both the long stroke motion and the nano positioning on the same stage. Three modes of HR4 are used for positioning control: the AC mode in continuous motion control for the long stroke; the gate mode to drive the motor in low velocity for the short stroke; and the DC mode in which the motor works as a piezo actuator, enabling accurate positioning of a few nanometers. The stage calibration is carried out by comparing the readings of LDGI with a Renishaw laser interferometer and repeated 5 times. Experimental results show the XY-stage has achieved positioning accuracy in less than 20nm after the compensation of systematic errors, and standard deviation is within 20 nm for travels up to 20 mm.

  2. A precision translation stage for reproducing measured target volume motions.

    PubMed

    Litzenberg, Dale W; Hadley, Scott W; Lam, Kwok L; Balter, James M

    2007-01-01

    The development of 4D imaging, treatment planning and treatment delivery methods for radiation therapy require the use of a high-precision translation stage for testing and validation. These technologies may require spatial resolutions of 1 mm, and temporal resolutions of 2-30 Hz for CT imaging, electromagnetic tracking, and fluoroscopic imaging. A 1D programmable translation stage capable of reproducing idealized and measured anatomic motions common to the thorax has been design and built to meet these spatial and temporal resolution requirement with phantoms weighing up to 27 kg. The stage consists of a polycarbonate base and table, driven by an AC servo motor with encoder feedback by means of a belt-coupled precision screw. Complex motions are possible through a programmable motion controller that is capable of running multiple independent control and monitoring programs concurrently. Programmable input and output ports allow motion to be synchronized with beam delivery and other imaging and treatment delivery devices to within 2.0 ms. Average deviations from the programmed positions are typically 0.2 mm or less, while the average typical maximum positional errors are typically 0.5 mm for an indefinite number of idealized breathing motion cycles and while reproducing measured target volume motions for several minutes. PMID:17712294

  3. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  4. The design of an ultra-precision CNC measuring machine

    SciTech Connect

    Thompson, D.C.

    1989-01-01

    A specialized ultra-precision CNC measuring machine is being developed to provide an inspection capability compatible with existing precision turning machines. The instrument is to be applied to the inspection of the inner and outer surfaces of hemispherical shells and other axisymmetric parts, with diameters of up to 400 mm. The overall accuracy of the machine operating in continuous path contouring mode is to be less than 0.75 micrometre (p-v) per surface, including both instrument and process-related errors. In addition, an accuracy of 1.75 micrometres is required for the inspection of wall thickness on some categories of parts, which in some instances may be distorted by gravity loading. This latter requirement dictates a single setup for the inspection of inner and outer surfaces, and effectively eliminates a standard Coordinate Measuring Machine (CMM) configuration for the new gauge. The new instrument is known as the Certification of Process (COP) Gauge. 9 refs., 5 figs., 2 tabs.

  5. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  6. Precision measures of the primordial abundance of deuterium

    SciTech Connect

    Cooke, Ryan J.; Jorgenson, Regina A.; Murphy, Michael T.; Steidel, Charles C.

    2014-01-20

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = –2.88) damped Lyα system at z {sub abs} = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H){sub p} = (2.53 ± 0.04) × 10{sup –5}, corresponding to a universal baryon density 100 Ω{sub b,} {sub 0} h {sup 2} = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H){sub p} with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N {sub eff} = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N {sub eff} = 4.046) at 99.3% confidence (2.7σ), provided that the values of N {sub eff} and of the baryon-to-photon ratio (η{sub 10}) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the {sup 4}He primordial mass fraction, Y {sub P}: ξ{sub D} = +0.05 ± 0.13 based only on the CMB+(D/H){sub p} observations. Combining this value of ξ{sub D} with the current best literature measure of Y {sub P}, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| ≤ +0.062.

  7. Precision Measures of the Primordial Abundance of Deuterium

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.; Murphy, Michael T.; Steidel, Charles C.

    2014-01-01

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyα system at z abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)p = (2.53 ± 0.04) × 10-5, corresponding to a universal baryon density 100 Ωb, 0 h 2 = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H)p with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N eff = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N eff = 4.046) at 99.3% confidence (2.7σ), provided that the values of N eff and of the baryon-to-photon ratio (η10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the 4He primordial mass fraction, Y P: ξD = +0.05 ± 0.13 based only on the CMB+(D/H)p observations. Combining this value of ξD with the current best literature measure of Y P, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| <= +0.062. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (VLT program IDs: 68.B-0115(A), 70.A-0425(C), 078.A-0185(A), 085.A-0109(A)), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of

  8. PRECISION MEASUREMENT OF MUON G-2 AND ACCELERATOR RELATED ISSUES

    SciTech Connect

    BROWN,H.N.; BUNCE,G.; CAREY,R.M.; CUSHMAN,P.; DANBY,G.T.; DEBEVEC,P.T.; DEILE,M.; DENG,H.; DENINGER,W.; DHAWAN,S.K.; ET AL; MENG,W.

    2001-09-21

    A precision measurement of the anomalous g value, a{sub {mu}}=(g-2)/2, for the positive muon has been made using high intensity protons available at the Brookhaven AGS. The result based on the 1999 data a{sub {mu}}=11659202(14)(6) x 10{sup 10} (1.3ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a{sub {mu}} (SM)=11659159.6(6.7) x 10{sup 10} (0.57 ppm) and differ by over 2.5 standard deviation with experiment. Issues with reducing systematic errors and enhancing the injection and storage efficiencies are discussed.

  9. High Precision Measurement of Stellar Radial Velocity Variations

    NASA Technical Reports Server (NTRS)

    Cochran, W. D.

    1984-01-01

    A prototype instrument for measurement of stellar radial velocity variations to a precision of a few meters per second is discussed. The instrument will be used to study low amplitude stellar non-radial oscillations, to search for binary systems with large mass ratios, and ultimately to search for extrasolar planetary systems. The instrument uses a stable Fabry-Perot etalon, in reflection, to impose a set of fixed reference absorption lines on the stellar spectrum before it enters the coude spectrograph of the McDonald Observatory 2.7-m telescope. The spectrum is recorded on the Octicon detector, which consists of eight Reticon arrays placed end to end. Radial velocity variations of the star are detected by measuring the shift of the stellar lines with respect the artificial Fabry-Perot lines, and correcting for the known motions in the solar system.

  10. Acceleration of matrix element computations for precision measurements

    SciTech Connect

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  11. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more

  12. Precision measurement of the Newtonian gravitational constant using cold atoms.

    PubMed

    Rosi, G; Sorrentino, F; Cacciapuoti, L; Prevedelli, M; Tino, G M

    2014-06-26

    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G = 6.67191(99) × 10(-11) m(3) kg(-1) s(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models. PMID:24965653

  13. Development of a Precise and in Situ Turbidity Measurement System

    NASA Astrophysics Data System (ADS)

    Ren, Kuanfang; Xu, Feng; Dorey, Jean-Marc; Cai, Xiaoshu

    2007-06-01

    The turbidimetry is a technique based on the transmittance spectra of the light passing through the media containing of small particles. It permits to measure the size distribution of particles for size in the range of sub-micrometer or micrometer. But the inversion problem is one of the most important obstacle for its applications. Based on the Non-negative Least Square method, we have developed stable and rapid algorithm and a measurement system permitting to the temporal acquisition (in ms) and to realize in-line measurement. To ensure its performance, the sensibility and the stability of the system have been examined in different stages: the light source, the spectrometer and the variation of the media concentration according to the optics configuration. By the measurements in the laboratory and that of the wet steam in a turbine we show that such system permits to measure very precisely the variation of the volume fraction of the particle or the wetness of wet steam.

  14. Real-time precision measuring device of tree diameter growth

    NASA Astrophysics Data System (ADS)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  15. Precise calibration of binocular vision system used for vision measurement.

    PubMed

    Cui, Yi; Zhou, Fuqiang; Wang, Yexin; Liu, Liu; Gao, He

    2014-04-21

    Binocular vision calibration is of great importance in 3D machine vision measurement. With respect to binocular vision calibration, the nonlinear optimization technique is a crucial step to improve the accuracy. The existing optimization methods mostly aim at minimizing the sum of reprojection errors for two cameras based on respective 2D image pixels coordinate. However, the subsequent measurement process is conducted in 3D coordinate system which is not consistent with the optimization coordinate system. Moreover, the error criterion with respect to optimization and measurement is different. The equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. To address these issues, we propose a precise calibration method for binocular vision system which is devoted to minimizing the metric distance error between the reconstructed point through optimal triangulation and the ground truth in 3D measurement coordinate system. In addition, the inherent epipolar constraint and constant distance constraint are combined to enhance the optimization process. To evaluate the performance of the proposed method, both simulative and real experiments have been carried out and the results show that the proposed method is reliable and efficient to improve measurement accuracy compared with conventional method. PMID:24787804

  16. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    SciTech Connect

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  17. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  18. Correlation between precision gravity and subsidence measurements at Cerro Prieto

    SciTech Connect

    Zelwer, R.; Grannell, R.B.

    1982-10-01

    Precision gravity measurements were made in the region of the Cerro Prieto geothermal field at yearly intervals from 1977 to 1981 to assess the feasibility of using gravity to determine subsurface reservoir changes with time. The extent of mass recharge in response to the continued production of fluids from this field was studied. Changes in gravity and ground elevation were observed throughout the region for the period of observation. Results indicate that the largest changes observed were the result of the Magnitude 6.1 (Caltech) Victoria earthquake of 8 June 1980. The epicenter of this earthquake was located 25 km southeast of the field on the Cerro Prieto Fault, which bounds the field on the southwest. Subsidence of up to 55 cm was measured east of the power plant, in the region between the northern end of the Cerro Prieto Fault and the southern end of the Imperial Fault. This area has been postulated to be the site of an active spreading center or pull-apart basin, and has been characterized by a high level of seismic activity during the last 10 years. Minor subsidence and small related gravity changes for the period preceeding the Victoria earthquake suggest that in spite of large fluid production rates, the reservoir is being almost completely recharged and that a measurable increase in subsurface density may be taking place. The results of measurements of horizontal ground motions made in this area are discussed in relation to the gravity and subsidence observations.

  19. Prospects for Precision Measurement of CO2 Column from Space

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph; Burris, John F.; Wilson, Emily L.; Georgieva, Elena; Miodek, Marty

    2005-01-01

    In order to address the problem of sources and sinks of CO2 measurements are needed on a global scale. Clearly a satellite is a promising approach to meeting this requirement. Unfortunately, most methods for making a CO2 measurement from space involve the whole column. Since sources and sinks at the surface represent a small perturbation to the total column one is faced with the need to measure the column with a precision better than 1%. No species has ever been measured from space at this level. We have developed over the last 3 years a small instrument based upon a Fabry-Perot interferometer that is very sensitive to atmospheric CO2 and has a high signal to noise ratio. We have tested this instrument in a ground based configuration and from aircraft platforms simulating operation from a satellite. We will present results from these tests and discuss ways that this promising new instrument could be used to improve our understanding of the global carbon budget.

  20. Precision measurement of the electromagnetic dipole strengths in Be11

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.

    2014-05-01

    The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.

  1. Precise measurement of the performance of thermoelectric modules

    NASA Astrophysics Data System (ADS)

    Díaz-Chao, Pablo; Muñiz-Piniella, Andrés; Selezneva, Ekaterina; Cuenat, Alexandre

    2016-08-01

    The potential exploitation of thermoelectric modules into mass market applications such as exhaust gas heat recovery in combustion engines requires an accurate knowledge of their performance. Further expansion of the market will also require confidence on the results provided by suppliers to end-users. However, large variation in performance and maximum operating point is observed for identical modules when tested by different laboratories. Here, we present the first metrological study of the impact of mounting and testing procedures on the precision of thermoelectric modules measurement. Variability in the electrical output due to mechanical pressure or type of thermal interface materials is quantified for the first time. The respective contribution of the temperature difference and the mean temperature to the variation in the output performance is quantified. The contribution of these factors to the total uncertainties in module characterisation is detailed.

  2. Francis M. Pipkin Award Talk - Precision Measurement with Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Müller, Holger

    2015-05-01

    Atom interferometers are relatives of Young's double-slit experiment that use matter waves. They leverage light-atom interactions to masure fundamental constants, test fundamental symmetries, sense weak fields such as gravity and the gravity gradient, search for elusive ``fifth forces,'' and potentially test properties of antimatter and detect gravitational waves. We will discuss large (multiphoton-) momentum transfer that can enhance sensitivity and accuracy of atom interferometers several thousand fold. We will discuss measuring the fine structure constant to sub-part per billion precision and how it tests the standard model of particle physics. Finally, there has been interest in light bosons as candidates for dark matter and dark energy; atom interferometers have favorable sensitivity in searching for those fields. As a first step, we present our experiment ruling out chameleon fields and a broad class of other theories that would reproduce the observed dark energy density.

  3. Precision Measurement and Improvement of e+, e- Storage Rings

    SciTech Connect

    Yan, Y.T.; Cai, Y.; Colocho, W.; Decker, F-J.; Seeman, J.; Sullivan, M.; Turner, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2006-06-27

    Through horizontal and vertical excitations, we have been able to make a precision measurement of linear geometric optics parameters with a Model-Independent Analysis (MIA). We have also been able to build up a computer model that matches the real accelerator in linear geometric optics with an SVD-enhanced Least-square fitting process. Recently, with the addition of longitudinal excitation, we are able to build up a computer virtual machine that matches the real accelerators in linear optics including dispersion without additional fitting variables. With this optics-matched virtual machine, we are able to find solutions that make changes of selected normal and skew quadrupoles for machine optics improvement. It has made major contributions to improve PEP-II optics and luminosity. Examples from application to PEP-II machines will be presented.

  4. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  5. Precisely measuring the orbital angular momentum of beams via weak measurement

    NASA Astrophysics Data System (ADS)

    Qiu, Jiangdong; Ren, Changliang; Zhang, Zhiyou

    2016-06-01

    We proposed and analyzed a scheme of precisely measuring orbital angular momentum (OAM) of the vortex beams with the help of weak measurement process. The orbital angular momentum information l of the unknown OAM state can be obtained by its spatial displacements. The valid condition of precisely measuring orbital angular momentum was completely discussed. Interestingly, it is shown that the measurement by using the two-dimensional spatial displacements jointly is very useful for precisely measuring the OAM state with a large orbital angular momentum l . The signal-to-noise ratio of the measurement can be enhanced by increasing the weak-coupling γ linearly as the valid condition is still satisfied. For fixed γ , the maximal signal-to-noise ratio for each weak value increases with the decrease of the weak value.

  6. Orientation precision of electron backscatter diffraction measurements near grain boundaries.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Chan, Lisa

    2014-06-01

    Electron backscatter diffraction (EBSD) has become a common technique for measuring crystallographic orientations at spatial resolutions on the order of tens of nanometers and at angular resolutions <0.1°. In a recent search of EBSD papers using Google Scholar™, 60% were found to address some aspect of deformation. Generally, deformation manifests itself in EBSD measurements by small local misorientations. An increase in the local misorientation is often observed near grain boundaries in deformed microstructures. This may be indicative of dislocation pile-up at the boundaries but could also be due to a loss of orientation precision in the EBSD measurements. When the electron beam is positioned at or near a grain boundary, the diffraction volume contains the crystal lattices from the two grains separated by the boundary. Thus, the resulting pattern will contain contributions from both lattices. Such mixed patterns can pose some challenge to the EBSD pattern band detection and indexing algorithms. Through analysis of experimental local misorientation data and simulated pattern mixing, this work shows that some of the rise in local misorientation is an artifact due to the mixed patterns at the boundary but that the rise due to physical phenomena is also observed. PMID:24576405

  7. Report on APMP supplementary comparison: high precision roundness measurement

    NASA Astrophysics Data System (ADS)

    Buajarern, J.; Naoi, K.; Baker, A.; Zi, X.; Tsai, C.-L.; Eom, T. B.; Leng, T. S.; Kruger, O.

    2016-01-01

    A regional supplementary comparison, APMP.L-S4, was held in 2012 to demonstrate the equivalence of routine calibration services offered by NMIs to clients. Participants in this APMP.L-S4 comparison agreed to apply multi-step method for spidle error separation in order to yield the high precision roundness measurement. Eight laboratories from NMIs participated in this supplementary comparison; NIMT, NMIJ, NMIA, NIM, CMS/ITRI, KRISS, NMC/A*STAR and NMISA. This report describes the measurement results of 2 glass hemispheres and 2 softgauges. The calibrations of this comparison were carried out by participants during the period from March 2012 to May 2013. The results show that there is a degree of equivalence within 0.8 for all measurands. Hence, there is a close agreement between the measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Detecting Large Quantum Fisher Information with Finite Measurement Precision.

    PubMed

    Fröwis, Florian; Sekatski, Pavel; Dür, Wolfgang

    2016-03-01

    We propose an experimentally accessible scheme to determine the lower bounds on the quantum Fisher information (QFI), which ascertains multipartite entanglement or usefulness for quantum metrology. The scheme is based on comparing the measurement statistics of a state before and after a small unitary rotation. We argue that, in general, the limited resolution of collective observables prevents the detection of large QFI. This can be overcome by performing an additional operation prior to the measurement. We illustrate the power of this protocol for present-day spin-squeezing experiments, where the same operation used for the preparation of the initial spin-squeezed state improves also the measurement precision and hence the lower bound on the QFI by 2 orders of magnitude. We also establish a connection to the Leggett-Garg inequalities. We show how to simulate a variant of the inequalities with our protocol and demonstrate that large QFI is necessary for their violation with coarse-grained detectors. PMID:26991166

  9. Precise Measurement of Vibrational Transition Frequency of Optically Trapped Molecules

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2013-06-01

    We propose to measure the X^{2}Σ(v,N,F,M) =( 0,0,3/2,±3/2) →( v_{u},0,3/2,±3/2) ( v_{u}=1,2,3,4,,,,) transition frequencies of X^{6}Li molecules with the uncertainty lower than 10^{-16} (X: ^{174}Yb, ^{88}Sr, ^{40}Ca). Molecules are produced by photo-association of cold atoms and trapped in the optical lattices. Measurement with molecules in optical lattices is particularly advantageous for precision measurements because (1) the molecules and probe laser interact for a long time, (2) molecules are localized within the Lamb-Dicke region, (3) the measurement is possible with a large number of molecules, and (4) collision effects are suppressed (molecules are trapped at different positions in 2D lattices). Using the proper trap laser frequency, the Stark shift induced by the trap laser is eliminated as the Stark energy shift of the upper and lower states are equal (magic frequency). When the trap laser frequency is shifted from the magic frequency by 1 MHz, the Stark shift is less than 3×10^{-15}. The N=0→0 transition is one-photon forbidden, and it is stimulated by Raman transition using two lasers. When one of two Raman lasers is higher than the magic frequency and another is lower, the total Stark shift induced by two Raman lasers can be eliminated. Measurement of molecular vibrational transition frequencies is useful to test the variation in the proton-to-electron mass ratio. The ^{1}S_{0}-^{3}% P_{0} transition frequencies of ^{27}Al^{+} ion or ^{87}Sr atom are useful as the reference.

  10. Statistical precision and sensitivity of measures of dynamic gait stability.

    PubMed

    Bruijn, Sjoerd M; van Dieën, Jaap H; Meijer, Onno G; Beek, Peter J

    2009-04-15

    Recently, two methods for quantifying a system's dynamic stability have been applied to human locomotion: local stability (quantified by finite time maximum Lyapunov exponents, lambda(S-stride) and lambda(L-stride)) and orbital stability (quantified as maximum Floquet multipliers, MaxFm). Thus far, however, it has remained unclear how many data points are required to obtain precise estimates of these measures during walking, and to what extent these estimates are sensitive to changes in walking behaviour. To resolve these issues, we collected long data series of healthy subjects (n=9) walking on a treadmill in three conditions (normal walking at 0.83 m/s (3 km/h) and 1.38 m/s (5 km/h), and walking at 1.38 m/s (5 km/h) while performing a Stroop dual task). Data series from 0.83 and 1.38 m/s trials were submitted to a bootstrap procedure and paired t-tests for samples of different data series lengths were performed between 0.83 and 1.38 m/s and between 1.38 m/s with and without Stroop task. Longer data series led to more precise estimates for lambda(S-stride), lambda(L-stride), and MaxFm. All variables showed an effect of data series length. Thus, when estimating and comparing these variables across conditions, data series covering an equal number of strides should be analysed. lambda(S-stride), lambda(L-stride), and MaxFm were sensitive to the change in walking speed while only lambda(S-stride) and MaxFm were sensitive enough to capture the modulations of walking induced by the Stroop task. Still, these modulations could only be detected when using a substantial number of strides (>150). PMID:19135478

  11. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the

  12. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    PubMed

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise. PMID:25968386

  13. Acceleration of matrix element computations for precision measurements

    DOE PAGESBeta

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix elementmore » technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  14. Breaking Quantum and Thermal Limits on Precision Measurements

    NASA Astrophysics Data System (ADS)

    Thompson, James K.

    2016-05-01

    I will give an overview of our efforts to use correlations and entanglement between many atoms to overcome quantum and thermal limits on precision measurements. In the first portion of my talk, I will present a path toward a 10000 times reduced sensitivity to the thermal mirror motion that limits the linewidth of today's best lasers. By utilizing narrow atomic transitions, the laser's phase information is primarily stored in the atomic gain medium rather than in the vibration-sensitive cavity field. To this end, I will present the first observation of lasing based on the mHz linewidth optical-clock transition in a laser-cooled ensemble of strontium atoms. In the second portion of my talk, I will describe how we use collective measurements to surpass the standard quantum limit on phase estimation 1 /√{ N} for N unentangled atoms. We achieve a directly observed reduction in phase variance relative to the standard quantum limit of as much as 17.7(6) dB. Supported by DARPA QuASAR, NIST, ARO, and NSF PFC. This material is based upon work supported by the National Science Foundation under Grant Number 1125844 Physics Frontier Center.

  15. Precise Measurement of the K - to Pi -E E- Decay

    SciTech Connect

    Batley, J.R.; Culling, A.J.; Kalmus, G.; Lazzeroni, C.; Munday, D.J.; Slater, M.W.; Wotton, S.A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; /CERN /Dubna, JINR /Pisa, Scuola Normale Superiore /Dubna, JINR /Dubna, JINR /Birmingham U. /Dubna, JINR /CERN /Dubna, JINR /Dubna, JINR /Sofiya U. /Dubna, JINR /Dubna, JINR /INFN, Perugia /Dubna, JINR /Dubna, JINR /Northwestern U. /Dubna, JINR /Chicago U., EFI /Marseille, CPPM /Chicago U., EFI /Edinburgh U. /George Mason U. /Edinburgh U. /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /CERN /Ferrara U. /INFN, Ferrara /Florence U. /INFN, Florence /Modena U. /Florence U. /INFN, Florence /Florence U. /INFN, Florence /Urbino U. /Florence U. /INFN, Florence /Pisa, Scuola Normale Superiore /Florence U. /INFN, Florence /Urbino U. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Bonn U. /Mainz U., Inst. Phys. /Northwestern U. /SLAC /Northwestern U. /Northwestern U. /Royal Holloway, U. of London /Northwestern U. /Northwestern U. /UCLA /Perugia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Frascati /Perugia U. /INFN, Perugia /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Barcelona, IFAE /Pisa U. /INFN, Pisa /DAPNIA, Saclay /DAPNIA, Saclay /CERN /DAPNIA, Saclay /Siegen U. /Turin U. /INFN, Turin /Bern U. /Turin U. /INFN, Turin /Turin U. /INFN, Turin /CERN /Turin U. /INFN, Turin /Madrid, CIEMAT /Turin U. /INFN, Turin /Vienna, OAW

    2011-11-22

    A sample of 7253 K{sup {+-}} {yields} {pi}{sup {+-}}e{sup +}e{sup -}({gamma}) decay candidates with 1.0% background contamination has been collected by the NA 48/2 experiment at the CERN SPS, which allowed a precise measurement of the decay properties. The branching ratio in the full kinematic range was measured to be BR = (3.11 {+-} 0.12) x 10{sup -7}, where the uncertainty includes also the model dependence. The shape of the form factor W(z), where z = (M{sub ee}/M{sub K}){sup 2}, was parameterized according to several models, and, in particular, the slope {delta} of the linear form factor W(z) = W{sub 0}(1 + {delta}z) was determined to be {delta} = 2.32 {+-} 0.18. A possible CP violating asymmetry of K{sup +} and K{sup -} decay widths was investigated, and a conservative upper limit of 2.1 x 10{sup -2} at 90% CL was established.

  16. High precision zinc isotopic measurements applied to mouse organs.

    PubMed

    Moynier, Frédéric; Le Borgne, Marie

    2015-01-01

    We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility. PMID:26065372

  17. The Mainz high-precision proton form factor measurement

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan

    2011-04-01

    Form factors offer a direct approach to fundamental properties of the nucleons like the radius and charge distribution. Renewed interest was stirred up by the 5 sigma discrepancy between a recent determination of the proton radius from the Lamb shift in muonic hydrogen and preceding electron scattering results. The low-q shape of the form factors might also contain a direct signal of a pion cloud around the nucleus and is a strong test of hadron models. In my talk, I will discuss the electron scattering experiment performed with the 3-spectrometer-facility of the A1 collaboration at MAMI in Mainz, Germany. The data set covers the Q2-range from 0.004 to 1 (GeV / c) 2 and includes about 1400 separate cross section measurements, spanning the range of scattering angles from below 20° to above 120° at six beam energies between 180 and 855 MeV, with statistical uncertainties below 0.4%. The 3-spectrometer-setup allowed for a simultaneous monitoring of the luminosity and overlapping and redundant measurements of the cross section to achieve stringent control over systematic uncertainties. Beam stabilization systems and redundant current measurements further limit systematic effects. The measured cross sections were analyzed with the standard Rosenbluth separation technique and by employing direct fits of a large set of form factor models. The high redundancy of the data set allowed us to extract the form factors up to 0.6 (GeV / c) 2 with very small uncertainties and to give a new, precise value for the proton radius from electron scattering. From the form factors, the charge distribution and Zemach moments were calculated. The latter constitute important input for the theoretical corrections of the muonic Lamb shift experiment. However, the revised values can not explain the discrepancy. Further possible explanations include higher order QED-corrections, vacuum effects or even physics beyond the standard model.

  18. Constraints on Lava Flow Emplacement Derived From Precision Topographic Measurements

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Bjonnes, E. E.

    2005-12-01

    Precision topography obtained with a Differential Global Positioning System (DGPS) was used to derive constraints on the physical properties of two lava flows on the Big Island of Hawaii. We used a Trimble 4800 DGPS to collect positional information across the lava flows with < 2 cm horizontal and < 4 cm vertical precision (but field tests show that points are usually repeatable to < 1 cm both horizontally and vertically). The DGPS data were overlaid on georeferenced aerial and satellite imaging data, allowing us to correlate the measured topographic points to field notes and photographs, as well as to the local setting evident in the vertical images. We combined field and imaging data for the eastern lobe of the 1907 basalt flow from the southwestern rift zone of Mauna Loa volcano, east of the Ocean View Estates subdivision, and for portions of a grass-covered Pleistocene benmoreite flow near Mana on the western flank of Mauna Kea volcano. Measured physical dimensions of the Hawaiian lava flows obtained from the DGPS data were then used to calculate the yield strength, average effusion rate, and effective viscosity of the lavas using published relationships derived from diverse theories of fluid flow. Yield strengths obtained from three different expressions ranged from 5800 to 56000 Pa for the Mauna Loa basalt flow and from 13000 to 28000 Pa for the Mauna Kea benmoreite flow. Total flow length could not be determined for the Mauna Kea flow, but the entire surface portion of the 1907 flow is well exposed; this allowed us to calculate an average effusion rate of 29 m/s and effective viscosities ranging from 17000 to 280000 Pa-s for this flow, broadly consistent with values published for the 1984 basalt flow from the eastern rift zone of Mauna Loa. These results improve our confidence in being able to derive similar constraints on the likely emplacement conditions of lava flows on other planets, such as the enormous lava flows commonly found on the martian, venusian

  19. Methodes and apparature for precise measurements of solar UV radiation

    NASA Astrophysics Data System (ADS)

    Anevsky, S.; Ivanov, V.; Minaeva, O.; Morozov, O.; Sapritsky, V.

    2003-04-01

    The precise measurements of solar UV radiation are based on the use of the national primary standards of the flux, irradiance and spectral radiance. Standard sources and detectors were developed for the establishing of spectral and integral irradiance units for regions UV-A, -A1,-A2, -B, -C, herythemical, dangerous and other effective and UV irradiance. The primary standard detector is based on the high-responsivety pneumatic thermoelement with electrical substitution. The primary standard sources are based on the high-temperature black-body model and laboratory synchrotron radiation sources with strong magnetic field [1, 2]. For the integral effective irradiance standards are used the tabulated spectral coefficients of UV action. As the secondary standard for the spectral range of air UV was created the integral multichannel filter radiometer. The investigations of the main UV sources spectral irradiance allowed to optimize the number of parallel channels. Multichannel radiometer permits to estimate the spectral irradiance of any UV sources and to measure integral and effective characteristics with high precision. Every channel consists of high-quality interference filter, special photodiode with spectral responsivety in the range from 200 to 650 nm and operational amplifier. The high responsivety level of each channel permits to use the integral sphere for creation of the cosine angular dependence. The creation of primary and secondary standards lets to compare the quality of any types of ordinary one-channel radiometers developed for applications in photobiology, ozon monitoring and solar radiation material protection. The investigations of the integral responsivety of one-channel radiometers by use of the set of control UV sources with small dimensions of the emitting area permit to estimate the quality of their spectral corrections, to calculate the coefficients of the spectral corrections and to restrict their applications. The same approach was developed for

  20. Optical Coatings and Thermal Noise in Precision Measurement

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Bodiya, Timothy P.; DeSalvo, Riccardo

    2012-01-01

    1. Theory of thermal noise in optical mirrors Y. Levin; 2. Coating technology S. Chao; 3. Compendium of thermal noises in optical mirrors V. B. Braginsky, M. L. Gorodetsky and S. P. Vyatchanin; 4. Coating thermal noise I. Martin and S. Reid; 5. Direct measurements of coating thermal noise K. Numata; 6. Methods of improving thermal noise S. Ballmer and K. Somiya; 7. Substrate thermal noise S. Rowan and I. Martin; 8. Cryogenics K. Numata and K. Yamamoto; 9. Thermo-optic noise M. Evans and G. Ogin; 10. Absorption and thermal issues P. Willems, D. Ottaway and P. Beyersdorf; 11. Optical scatter J. R. Smith and M. E. Zucker; 12. Reflectivity and thickness optimisation I. M. Pinto, M. Principe and R. DeSalvo; 13. Beam shaping A. Freise; 14. Gravitational wave detection D. Ottaway and S. D. Penn; 15. High-precision laser stabilisation via optical cavities M. J. Martin and J. Ye; 16. Quantum optomechanics G. D. Cole and M. Aspelmeyer; 17. Cavity quantum electrodynamics T. E. Northup.

  1. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  2. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  3. Precision evaluation for intensive GPS acoustic measurements along Japan trench

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Tadokoro, K.; Watanabe, T.; Nagai, S.; Yasuda, K.; Okuda, T.; Yamamoto, J.

    2013-12-01

    After the Tohoku-oki earthquake in 2011, researchers recognized the importance of the state of inter-plate coupling close to the trench for giant earthquakes, in where seafloor geodetic surveys were few or not available. To overcome this limitation, we have developed GPS/acoustic instrument for greater depth up to 6000m, which can cover the region close to the trench for most subduction zones. MEXT, Japan promotes to construct a network of GPS/acoustic survey sites along the Japan trench to elucidate post-seismic behavior after the giant earthquake. In 2012, research group in Tohoku and Nagoya Universities constructed 20 new survey sites along the Japan trench and started their initial positioning. Three to six transponders were installed for each site, which were 86 transponders in total. The network covers large portion of the Japan trench, mainly along the deep land-side of the trench, covering the region of expected significant afterslip as well as of the large coseismic slip. In this year second phase surveys are planned to detect displacement of roughly 1-yesr since the last survey. These are the first intensive surveys that we have never been experienced, and with new survey style. Therefore, in advance to the second phase survey, we summarize the first phase survey in 2012 in the presentation. As one of the most important key to obtain precise positioning of seafloor transponders is how to estimate horizontal variation of sound speed in ocean, which are neglected in the past analysis. For this purpose, some of the sites consist of six transponders, with which such variation can be potentially estimated. For this context, in the second phase surveys, we are going to introduce automatic surface vehicle to enable simultaneous measurement from two points from sea surface, which will provide information of the horizontal variation in sound speed even for three or four transponders. In addition we have made both moving and stationary surveys, in which we can

  4. An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    SciTech Connect

    LaBrecque, Douglas J; Adkins, Paula L

    2008-12-09

    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at

  5. High-precision measurement of chlorine stable isotope ratios

    USGS Publications Warehouse

    Long, A.; Eastoe, C.J.; Kaufmann, R.S.; Martin, J.G.; Wirt, L.; Finley, J.B.

    1993-01-01

    We present an analysis procedure that allows stable isotopes of chlorine to be analyzed with precision sufficient for geological and hydrological studies. The total analytical precision is ?????0.09%., and the present known range of chloride in the surface and near-surface environment is 3.5???. As Cl- is essentially nonreactive in natural aquatic environments, it is a conservative tracer and its ??37Cl is also conservative. Thus, the ??37Cl parameter is valuable for quantitative evaluation of mixing of different sources of chloride in brines and aquifers. ?? 1993.

  6. Application of Geo-refrenced Geophysical Measurements to Precision Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield varies within a field because conventional farming manages fields uniformly with no consideration for spatial variability. Site-specific management units (SSMUs), a key component of precision agriculture, have been proposed as a means of handling the spatial variability of various factor...

  7. A 3-D Multilateration: A Precision Geodetic Measurement System

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Fliegel, H. F.; Jaffe, R. M.; Muller, P. M.; Ong, K. M.; Vonroos, O. H.

    1972-01-01

    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination.

  8. Precision Teaching: Advancing Student Achievement through Daily Drill and Measurement.

    ERIC Educational Resources Information Center

    Rawers, Lois J.

    1983-01-01

    After reviewing the conceptual bases and practical application of precision teaching, this analysis traces its evolution as the Sacajawea Plan, reports on its implementation in central Oregon school districts, and details the costs and procedures of adoption. Developed by Ogden Lindsley from B. F. Skinner's work in operant conditioning and…

  9. On-line qualification of a micro probing system for precision length measurement of micro-features on precision parts

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Ito, So; Kikuchi, Hirotaka; Kobayashi, Ryo; Shimizu, Yuki; Gao, Wei

    2016-07-01

    This paper presents on-line qualification of the effective diameter of the micro-stylus tip ball of a micro probing system for precision length measurement of micro-features on precision parts by utilizing a set of gauge blocks as the qualification artefact, which is composed by one calibrated gauge block and two supporting gauge blocks that are wrung together for a good mechanical stability. The qualification artefact is aligned side by side with the precision part to be measured for enabling a rapid transfer between the qualification step of the probe two-point tip ball diameter and the length measurement step of the precision part. Based on the proposed setup, on-line qualifications of a micro-stylus with a nominal tip ball diameter of 52.6 μm were carried out by using two methods referred to as Method A and Method B, respectively. Method A is operated by probing the opposite sides of the gap between the two supporting gauge blocks separated by the calibrated gauge block, and Method B is operated by probing the opposite sides of the calibrated gauge block supported by the two supporting gauge blocks. Intensive uncertainty analyses based on the experimental results and the geometrical models were carried out to compare the performances of these two methods. Method A, which was confirmed to be more accurate and faster than Method B, was then employed to measure the width of a micro-gap on a precision part with compensation of the determined effective two-point tip ball diameter.

  10. Three-D multilateration: A precision geodetic measurement system

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Ong, K. M.; Vonroos, O. H.; Shumate, M. S.; Jaffe, R. M.; Fliegel, H. F.; Muller, P. M.

    1973-01-01

    A technique of satellite geodesy for determining the relative three dimensional coordinates of ground stations within one centimeter over baselines of 20 to 10,000 kilometers is discussed. The system is referred to as 3-D Multilateration and has applications in earthquake hazard assessment, precision surveying, plate tectonics, and orbital mechanics. The accuracy is obtained by using pulsed lasers to obtain simultaneous slant ranges between several ground stations and a moving retroreflector with known trajectory for aiming the lasers.

  11. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration.

    PubMed

    Rupprecht, Kevin R; Lang, Ewa Z; Gregory, Svetoslava D; Bergsma, Janet M; Rae, Tracey D; Fishpaugh, Jeffrey R

    2015-10-01

    Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise. PMID:26150094

  12. Precision Measurements of Solar Energetic Particle Elemental Composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spaceraft were used to determined, solar energetic particle abundances or upper limits for all elements with Z 30 from a combined set of 10 solar flares during the 1977 to 1982 time period. Statistically meaningful abundances were determined for several rare elements including P, C1, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements was proved. When compared to solar photospheric spectroscopic abundances, these new SEP abundances more clearly exhibit the step-function dependence on first ionization potential previously reported.

  13. Precision measurements of solar energetic particle elemental composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Using data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft, solar energetic particle abundances or upper limits for all elements with 3 = Z = 30 from a combined set of 10 solar flares during the 1977 to 1982 time period were determined. Statistically meaningful abundances have been determined for the first time for several rare elements including P, Cl, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements has been improved by typically a factor of approximately 3 over previously reported values.

  14. Measuring the masses of the charged hadrons using a RICH as a precision velocity spectrometer

    SciTech Connect

    Cooper, Peter S.; Engelfried, Jurgen; /San Luis Potosi U.

    2010-08-01

    The Selex experiment measured several billion charged hadron tracks with a high precision magnetic momentum spectrometer and high precision RICH velocity spectrometer. We have analyzed these data to simultaneously measure the masses of all the long lived charged hadrons and anti-hadrons from the {pi} to the {Omega} using the same detector and technique. The statistical precision achievable with this data sample is more than adequate for 0.1% mass measurements. We have used these measurements to develop and understand the systematic effects in using a RICH as a precision velocity spectrometer with the goal of measuring 10 masses with precision ranging from 100 KeV for the lightest to 1000 KeV for the heaviest. This requires controlling the radius measurement of RICH rings to the {approx} 10{sup -4} level. Progress in the mass measurements and the required RICH analysis techniques developed are discussed.

  15. Electronic measurement of variable torques in precision work technology

    NASA Technical Reports Server (NTRS)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  16. Precise Measurement of Lunar Spectral Irradiance at Visible Wavelengths

    PubMed Central

    Cramer, CE; Lykke, KR; Woodward, JT; Smith, AW

    2013-01-01

    We report a measurement of lunar spectral irradiance with an uncertainty below 1 % from 420 nm to 1000 nm. This measurement uncertainty meets the stability requirement for many climate data records derived from satellite images, including those for vegetation, aerosols, and snow and ice albedo. It therefore opens the possibility of using the Moon as a calibration standard to bridge gaps in satellite coverage and validate atmospheric retrieval algorithms. Our measurement technique also yields detailed information about the atmosphere at the measurement site, suggesting that lunar observations are a possible solution for aerosol monitoring during the polar winter and can provide nighttime measurements to complement aerosol data collected with sun photometers. Our measurement, made with a novel apparatus, is an order of magnitude more accurate than the previous state-of-the-art and has continuous spectral coverage, removing the need to interpolate between filter passbands. PMID:26401440

  17. The study of precision measurement of pelvis spatial structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiang; Ouyang, Jianfei; Qu, Xinghua

    2009-12-01

    Osteometry is fundamental for anthropometry. It provides the key technology and value to the study of palaeoanthropology, medicine, and criminal investigation. The traditional osteometry that has been widely accepted and used since 18th century has no longer met the information demand for modern research and application. It is significant and necessary to create an advanced 3-dimensional osteometry technique for anthropometry. This paper presents a new quick and accurate method to measure human pelvis through mathematical modeling. The pelvis is a complex combination of bones, which consists of three connected parts: hipbones, sacrum, and coccyx. There are over 40 items to be measured for the 1-dimension characteristics. In this paper, a combined measuring technology is developed for pelvis measurement. It uses machine vision systems and a portable measuring arm to obtain key geometry parameters of the pelvis. The mathematics models of the pelvis spatial structure and its parts are created through the process of data collecting, digging, assembling, and modeling. The experiment shows that the proposed technology can meet traditional osteometry and obtain entire 1D geometric parameters of the pelvis, such as maximum breadth and height, diameter of obstetric conjugata, inclination angle, and sakralneigungswinkel, etc. at the same time after modeling. Besides making the measurements above, the proposed technology can measure the geometry characteristics of pelvis and its parts, such as volume, surface area, curvature, and spatial structure, which are almost impossible for traditional technology. The overall measuring error is less than 0.1mm.

  18. The study of precision measurement of pelvis spatial structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiang; Ouyang, Jianfei; Qu, Xinghua

    2010-03-01

    Osteometry is fundamental for anthropometry. It provides the key technology and value to the study of palaeoanthropology, medicine, and criminal investigation. The traditional osteometry that has been widely accepted and used since 18th century has no longer met the information demand for modern research and application. It is significant and necessary to create an advanced 3-dimensional osteometry technique for anthropometry. This paper presents a new quick and accurate method to measure human pelvis through mathematical modeling. The pelvis is a complex combination of bones, which consists of three connected parts: hipbones, sacrum, and coccyx. There are over 40 items to be measured for the 1-dimension characteristics. In this paper, a combined measuring technology is developed for pelvis measurement. It uses machine vision systems and a portable measuring arm to obtain key geometry parameters of the pelvis. The mathematics models of the pelvis spatial structure and its parts are created through the process of data collecting, digging, assembling, and modeling. The experiment shows that the proposed technology can meet traditional osteometry and obtain entire 1D geometric parameters of the pelvis, such as maximum breadth and height, diameter of obstetric conjugata, inclination angle, and sakralneigungswinkel, etc. at the same time after modeling. Besides making the measurements above, the proposed technology can measure the geometry characteristics of pelvis and its parts, such as volume, surface area, curvature, and spatial structure, which are almost impossible for traditional technology. The overall measuring error is less than 0.1mm.

  19. Precision compliance techniques for slow crack growth measurements

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1975-01-01

    A method is presented for using simple electronic components to obtain the high sensitivity needed to measure very slow crack growth rates. The technique presented can reduce the experimental time considerably and also yield a greater amount of data more accurately than optical techniques for measuring crack growth rates.

  20. High-Precision Nucleation Rate Measurements for Higher Melting Metals

    NASA Astrophysics Data System (ADS)

    Bokeloh, Joachim; Wilde, Gerhard

    2014-08-01

    Nucleation of a crystal in undercooled melts of higher melting face-centered-cubic-metals has often been studied in the past. However, the data available were not of sufficient accuracy and only covered nucleation rates in too small of a range to allow precise conclusions concerning the nature of the underlying process as well as concerning important parameters such as the solid-liquid interface free energy that can in principle be deducted from such analyses. One way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single droplet experiments. Application of proper statistics analyses yields nucleation rates that are independent of a specific nucleation model. The first studies that were conducted in accordance with this approach on pure model materials revealed that the approach is valid. The results are comparable to those obtained by classic nucleation theory applied to experimental data, and it was shown that one might need to rethink the common assumption that heterogeneous nucleation is almost always responsible for solidification initiation. The current results also show that often-used models for the solid-liquid interface free energy might lead to overestimated values.

  1. High precision Hugoniot measurements of D2 near maximum compression

    NASA Astrophysics Data System (ADS)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  3. Precise synchronization of phasor measurements in electric power systems

    NASA Technical Reports Server (NTRS)

    Phadke, Arun G.

    1990-01-01

    Phasors representing positive sequence voltages and currents in a power network are in the most important parameters in several monitoring, control, and protection functions in interconnected electric power networks. Recent advances in computer relaying have led to very efficient and accurate phasor measurement systems. When the phasors to be measured are separated by hundreds of miles, it becomes necessary to synchronize the measurement processes, so that a consistent description of the state of the power system can be established. Global Positioning System (GPS) transmissions offer an ideal source for synchronization of phasor measurements. The concept and implementation of this technique are described. Several uses of synchronized phasor measurements are also described. Among these are improved state estimation algorithms, state estimator enhancements, dynamic state estimates, improved control techniques, and improved protection concepts.

  4. Comparison of precise ionising Radiation Dose Measurements on board Aircraft

    NASA Astrophysics Data System (ADS)

    Lindborg, L.; Beck, P.; Bottollier, J. F.; Roos, H.; Spurny, F.; Wissman, F.

    2003-04-01

    The cosmic radiation makes aircrew one of the most exposed occupational groups. The European Council has therefore in its Directive 96/29Euratom on basic safety standards for radiation protection a particular article (42) for the protection of aircrew. One of the measures to be taken is to assess the exposure of the crew. This is, however, not a trivial task. The radiation consists of many different types of radiation with energies that are hardly met on ground. The knowledge on the dose levels on board aircraft has improved gradually during the last decade as several groups around the world have performed measurements on board civil aircraft in cooperation with airlines. Only occasionally has more than one instrument been able to fly at the same time for practical reasons. The statistical uncertainty in a measurement of the dose equivalent rate is typically ±15 % (1 relative standard deviation) if determined during half an hour. Systematic uncertainties add to this. The dose rate depends on flight altitude, geographic coordinates of the flight, the phase of the solar cycle and the prevailing solar wind. For that reason the possibility to fly on the same flight will eliminate some of the systematic uncertainties that limits an evaluation of the measurement techniques. The proposal aims at measurements on board the aircraft on a geographically limited area for a few hours to decrease the statistical uncertainty of the measurements and thereby get an excellent opportunity to look for possible systematic differences between the different measurement systems. As the dose equivalent rate will be quite well established it will also be possible to compare the measured values with calculated ones. The dose rate increases towards the geomagnetic poles and decreases towards the equator. The composition of the radiation components varies also with altitude. For that reason measurements both at southern latitude and at northern latitude are planned.

  5. Repeatability and Precision of Laser Diffraction Measurements of Small Objects

    NASA Astrophysics Data System (ADS)

    Dudley, Scott C.; Mudry, R.

    2006-12-01

    In this poster we’ll present results of using diffraction measurements to infer the size of small objects such as the diameter of a human hair. We’ll compare the diffraction results with visual measurements through a microscope, and we’ll discuss repeatability of the diffraction measurements across semesters, which can enable the use of hair samples as an unknown in a diffraction laboratory. Finally, we’ll show that there are large variations in the diameter of human hair even from a single spot of an individual’s head.

  6. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  7. Generating high precision ionospheric ground-truth measurements

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Sparks, Lawrence (Inventor); Mannucci, Anthony J. (Inventor)

    2007-01-01

    A method, apparatus and article of manufacture provide ionospheric ground-truth measurements for use in a wide-area augmentation system (WAAS). Ionospheric pseudorange/code and carrier phase data as primary observables is received by a WAAS receiver. A polynomial fit is performed on the phase data that is examined to identify any cycle slips in the phase data. The phase data is then leveled. Satellite and receiver biases are obtained and applied to the leveled phase data to obtain unbiased phase-leveled ionospheric measurements that are used in a WAAS system. In addition, one of several measurements may be selected and data is output that provides information on the quality of the measurements that are used to determine corrective messages as part of the WAAS system.

  8. Prospects for the precision measurement of {alpha}{sub s}

    SciTech Connect

    Burrows, P.N.; Dixon, L.; El-Khadra, A.X.

    1996-12-01

    The prospects for the measurement of the strong coupling constant {alpha}{sub MS}(M{sub Z}) to a relative uncertainty of 1 % are discussed. Particular emphasis is placed on the implications relating to future High Energy Physics facilities.

  9. Precision frequency measurement of visible intercombination lines of strontium.

    PubMed

    Ferrari, G; Cancio, P; Drullinger, R; Giusfredi, G; Poli, N; Prevedelli, M; Toninelli, C; Tino, G M

    2003-12-12

    We report the direct frequency measurement of the visible 5s(2) 1S0-5s5p 3P1 intercombination line of strontium that is considered a possible candidate for a future optical-frequency standard. The frequency of a cavity-stabilized laser is locked to the saturated fluorescence in a thermal Sr atomic beam and is measured with an optical-frequency comb generator referenced to the SI second through a global positioning system signal. The 88Sr transition is measured to be at 434 829 121 311 (10) kHz. We measure also the 88Sr-86Sr isotope shift to be 163 817.4 (0.2) kHz. PMID:14683113

  10. Intercomparison of snow density measurements: bias, precision and spatial resolution

    NASA Astrophysics Data System (ADS)

    Proksch, M.; Rutter, N.; Fierz, C.; Schneebeli, M.

    2015-07-01

    Density is a fundamental property of porous media such as snow. A wide range of snow properties and physical processes are linked to density, but few studies have addressed the uncertainty in snow density measurements. No study has yet considered the recent advances in snow measurement methods such as micro-computed tomography (CT). During the MicroSnow Davos 2014 workshop different approaches to measure snow density were applied in a controlled laboratory environment and in the field. Overall, the agreement between CT and gravimetric methods (density cutters) was 5 to 9 %, with a bias of -5 to 2 %, expressed as percentage of the mean CT density. In the field, the density cutters tend to overestimate (1 to 6 %) densities below and underestimate (1 to 6 %) densities above 296 to 350 kg m-3, respectively, depending on the cutter type. Using the mean per layer of all measurement methods applied in the field (CT, box, wedge and cylinder cutter) and ignoring ice layers, the variation of layer density between the methods was 2 to 5 % with a bias of -1 to 1 %. In general, our result suggests that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably. In particular, the millimeter scale density variations revealed by the high resolution CT contrasted the thick layers with sharp boundaries introduced by the observer. In this respect, the unresolved variation, i.e. the density variation within a layer, which is lost by sampling with lower resolution or layer aggregation, is critical when snow density measurements are used as boundary or initial conditions in numerical simulations.

  11. Intercomparison of snow density measurements: bias, precision, and vertical resolution

    NASA Astrophysics Data System (ADS)

    Proksch, Martin; Rutter, Nick; Fierz, Charles; Schneebeli, Martin

    2016-02-01

    Density is a fundamental property of porous media such as snow. A wide range of snow properties and physical processes are linked to density, but few studies have addressed the uncertainty in snow density measurements. No study has yet quantitatively considered the recent advances in snow measurement methods such as micro-computed tomography (μCT) in alpine snow. During the MicroSnow Davos 2014 workshop, different approaches to measure snow density were applied in a controlled laboratory environment and in the field. Overall, the agreement between μCT and gravimetric methods (density cutters) was 5 to 9 %, with a bias of -5 to 2 %, expressed as percentage of the mean μCT density. In the field, density cutters overestimate (1 to 6 %) densities below and underestimate (1 to 6 %) densities above a threshold between 296 to 350 kg m-3, dependent on cutter type. Using the mean density per layer of all measurement methods applied in the field (μCT, box, wedge, and cylinder cutters) and ignoring ice layers, the variation between the methods was 2 to 5 % with a bias of -1 to 1 %. In general, our result suggests that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably. In particular, the millimeter-scale density variations revealed by the high-resolution μCT contrasted the thick layers with sharp boundaries introduced by the observer. In this respect, the unresolved variation, i.e., the density variation within a layer which is lost by lower resolution sampling or layer aggregation, is critical when snow density measurements are used in numerical simulations.

  12. Precision lifetime measurements by single-proton counting

    SciTech Connect

    Young, L.; Hill, W.T. III; Leone, S.R.

    1995-08-01

    There is renewed interest in the accurate measurement of lifetimes of excited states in alkalis in order to test ab initio theories which are needed for the interpretation of atomic parity nonconservation measurements. While it is often assumed that the fast-beam laser method yields the most accurate lifetimes, we demonstrated that an alternative technique, time-correlated single-photon counting, is capable of achieving comparable accuracy. Using this method at JILA, we measured the lifetimes of the 6p {sup 2}p{sub 1/2} and 6p {sup 2}P{sub 3/2} levels in atomic Cs with accuracies {approx}0.2-0.3%. A high-repetition rate, femtosecond, self-modelocked Ti:sapphire laser is used to excite Cs produced in a well-collimated atomic beam. The time interval between the excitation pulse and the arrival of a fluorescence photon is measured repetitively until the desired statistics are obtained. The lifetime results are 34.75(7) ns and 30.41(10) ns for the 6p {sup 2}P{sub 1/2} and 6p {sup 2}P{sub 3/2} levels, respectively. These lifetimes are in agreement with those extracted from ab initio many-ody perturbation theory calculations at the sub 1% level. The measurement errors are dominated by systematic effects, and methods to alleviate these and approach an accuracy of 0.1% were determined.

  13. Impact of Planetary Gravitation on High Precision Neutral Atom Measurements

    NASA Astrophysics Data System (ADS)

    Kucharek, H.; Galli, A.; Wurz, P.; Moebius, E.; Lee, M. A.; Park, J.; Fuselier, S. A.; Bzowski, M.; Schwadron, N.; McComas, D. J.

    2015-12-01

    Measurements of energetic neutral atoms (ENAs) have been extremely successful in providing very important information on physical processes inside and outside our heliosphere. For instance, recent IBEX observations provided new insights into the local interstellar environment and improved measurements of the interstellar He temperature, velocity, and direction of the interstellar flow vector. Since particle collisions are rare and radiation pressure is negligible for these neutrals, gravitational forces mainly determine the trajectories of neutral He atoms. Depending on the distance of an ENA to the source of a gravitational field and its relative speed and direction this can result in a significant deflection and acceleration. In this presentation we study the impact of the gravitational effects of the Earth, Moon, and Jupiter on ENA measurements performed in Earth orbit. We show that planetary gravitational effects do not significantly affect the interstellar neutral gas parameters obtained from IBEX observations. We further study the possibility whether the He focusing cone of the Sun or Jupiter could be measured by IBEX, and whether these cones could be used as an independent measure of the interstellar He temperature. These topics are of particular importance for future missions such as IMAP, which will provide ENA images for a broader energy range and with better sensitivity and resolution.

  14. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  15. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  16. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  17. Comparison of simple rain gauge measurements with precision lysimeter data

    NASA Astrophysics Data System (ADS)

    Hoffmann, Marieke; Schwartengräber, Reinhild; Wessolek, Gerd; Peters, Andre

    2016-06-01

    Standard precipitation measurement techniques are subject to random and systematic errors, affecting the exact determination of precipitation at ground level. The aim of this study was to find a useful and cost-efficient workaround to minimize these errors. For a period of 418 days, precipitation was measured by a tipping bucket rain gauge installed at 1 m height, three Hellmann rain gauges placed on the ground and three lysimeters. Precipitation catch of the lysimeters showed very small deviation (< 0.5%) and was regarded as reference. The tipping bucket at 1 m height caught 12.7% less precipitation. By contrast, ground-level Hellmann gauges caught, on average, similar precipitation as lysimeters. Both methods exhibited large undercatch in wintertime and low undercatch (tipping bucket) or even overcatch (Hellmann gauge) in summertime. Hellmann gauge measurements at ground level allow a fairly exact determination of precipitation for long time periods with low cost and effort.

  18. Precise speed measurement using an interlaced scan image

    NASA Astrophysics Data System (ADS)

    Peng, Zhao

    2011-02-01

    In this paper, we propose a novel scheme for speed measurement of a moving object with translational motion. First, this scheme uses one interlaced scan CCD camera to obtain only one interlaced scan image of a moving object. The odd and even field images are extracted and resized. Second, image matte is applied in these two field images to extract the moving object's silhouettes. The distance between two centroids in the two silhouettes is then computed. Finally, the object's speed is calculated using the above distance and the camera imaging parameters. Simulation and real experiments prove that our scheme can fulfill the speed measurement for translational motion accurately.

  19. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  20. Improving Measurement Precision of Hierarchical Latent Traits Using Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun

    2014-01-01

    Many latent traits in social sciences display a hierarchical structure, such as intelligence, cognitive ability, or personality. Usually a second-order factor is linearly related to a group of first-order factors (also called domain abilities in cognitive ability measures), and the first-order factors directly govern the actual item responses.…

  1. Improved measurement precision in decay time-based phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Abou Nada, F.; Knappe, C.; Aldén, M.; Richter, M.

    2016-06-01

    This study comprises a continuation of the previous efforts of the authors to characterize different sources of errors in phosphor thermometry based on the determination of luminescence decays from thermographic phosphors. Whereas earlier investigations focused on point detectors utilizing different sensor technology, this work presents a comparison of four PMTs that are identical in terms of their product type. These detectors are supposedly identical, but the investigations revealed that their response is strictly individual. This study also shows a linear excitation energy dependence for the decay time of cadmium tungstate (CdWO4), the phosphor being used in this work. In addition, the potential influence of the intense and short fluorescence peak preceding the weaker and longer exponential decay in some phosphor materials was investigated using the electrical signal gating capability of the PMT. Finally, the evaluated decay time also appeared to be affected by the oscilloscope settings used when recording the phosphorescence signals. The presented results indicate that all operating parameters from the calibration measurement need to be rigorously reproduced in order to avoid systematic temperature errors in phosphor thermometry experiments that are based on reproducible measurements of the decay time. These results should be of more general interest also outside the phosphor community as the findings, presented herein, in principal concern all kinds of measurements that are dependent on reproducible measurements of signal shapes or time transients.

  2. Research on high-precision hole measurement based on robot vision method

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao

    2014-09-01

    A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.

  3. High Precision Measurement of the Avogadro Constant Based on Silicon

    NASA Astrophysics Data System (ADS)

    Becker, Peter

    2005-06-01

    This paper describes an attempt to replace the present definition of the kilogram with the mass of a certain number of carbon atoms. This requires determination of the Avogadro constant, NA, with a relative uncertainty of 1 × 10-8. Silicon crystals are used in this determination. At present, a limiting factor is the measurement of the average molar mass of natural Si. Consequently, a worldwide collaboration has been set up, to produce, approximately, 5 kg of 28Si single-crystal with an enrichment greater than 99.985% and of sufficient chemical purity to be used for the determination of NA with a target relative measurement uncertainty better than 2 × 10-8.

  4. High-precision three-dimensional coordinate measurement with subwavelength-aperture-fiber point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Xu, Yangbo; Chen, Xixi; Wang, Fumin; Kong, Ming; Zhao, Jun

    2014-11-01

    To overcome the accuracy limitation due to the machining error of standard parts in measurement system, a threedimensional coordinate measurement method with subwavelength-aperture-fiber point diffraction interferometer (PDI) is proposed, in which the high-precision measurement standard is obtained from the ideal point-diffracted spherical wavefront instead of standard components. On the basis of the phase distribution demodulated from point-diffraction interference field, high-precision three-dimensional coordinate measurement is realized with numerical iteration optimization algorithm. The subwavelength-aperture fiber is used as point-diffraction source to get precise and highenergy spherical wavefront within high aperture angle range, by which the conflict between diffraction wave angle and energy in traditional PDI can be avoided. Besides, a double-iterative method based on Levenbery-Marquardt algorithm is proposed to realize precise reconstruct three-dimensional coordinate. The analysis shows that the proposed method can reach the measurement precision better than microns within a 200×200×300 (in unit of mm) working volume. This measurement method does not rely on the initial iteration value in numerical coordinate reconstruction, and also has high measurement precision, large measuring range, fast processing speed and preferable anti-noise ability. It is of great practicality for measurement of three-dimensional coordinate and calibration of measurement system.

  5. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau

    NASA Astrophysics Data System (ADS)

    Manske, E.; Froehlich, T.

    2012-07-01

    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole

  6. A precise measurement of the average b hadron lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Casper, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; van Gemmeren, P.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Thulasidas, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Sau Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 ± 0.013 ± 0.022 ps.

  7. Instrument for measuring moment of inertia with high precision

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Lin, Min; Guo, Bin

    2010-08-01

    Accurate calculation of the moment of inertia of an irregular body is made difficult by the large number of quantities. A popular method is to use a trifilar suspension system to measure the period of oscillation of the body in the horizontal plane. In this paper, an instrument for measuring the moment of inertia based on trifilar pendulum is designed; some sources of error are discussed; three metal disks with known moments of inertia are used to calibrate the instrument, the other metal disks with known moments of inertia are used to test the accuracy of the instrument. The results are consistent when compared with calculated moment of inertia of the metal disks. In addition, the instrument could be used to measure the moment of inertia of other irregular objects. The period of oscillation is acquired by the capture mode of MSP430 microprocessor, the mass is obtained by the Electronic Balance and the data is transferred to the MSP430 via serial port.

  8. Precision measurement of the local bias of dark matter halos

    NASA Astrophysics Data System (ADS)

    Lazeyras, Titouan; Wagner, Christian; Baldauf, Tobias; Schmidt, Fabian

    2016-02-01

    We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth & Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b2(b1) and b3(b1), which work well over a range of redshifts.

  9. An experimental assembly for precise measurement of thermal accommodation coefficients.

    PubMed

    Trott, Wayne M; Castañeda, Jaime N; Torczynski, John R; Gallis, Michael A; Rader, Daniel J

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. PMID:21456801

  10. Precise Measurement of ^{40}CaH^{+} Vibrational Transition Frequency

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Abe, Minori

    2013-06-01

    Small number of molecular ions in a linear trap can be sympathetically cooled with atomic ions and form a string crystal at the position, where the electric field is zero. Molecular ions in a strinc crystal are advantageous to measure the transition frequencies without Stark shift induced by the trap electric field, but it is required to localize small number of molecular ions in a single quantum state. ^{40}CaH^{+} molecular ion is advantageous to solve this problem, because (1) molecular ion with rotational constant of 141 GHz is localized in the vibrational-rotational ground state when the surrounding temperature is lower than 10 K, and (2) there is no hyperfine splitting in the J=0 state. In this presentation, we porpose to measure the ^{40}CaH^{+} X^{1}% Σ( v,N,F,M) =(0,0,1/2,±1/2) → (v_{u},0,1/2,±1/2) (v_{u}=1,2,3,,,) transition with the uncertainty lower than 10^{-16}. With these transitions, Zeeman shift is less than 10^{-16}/G (given by the slight dependence of schielding effect by electron cloud on the vibrational state) and electric quadrupole shift is zero because of F=1/2. The J=0→0 transition is one-photon forbidden, and it can be observed also by Raman transition using two lasers. Stark shift induced by Raman lasers actually dominates the measurement uncertainty. When v=0→1 transition is observed using Raman lasers in the 6000-15000 /cm, Stark shift with saturation power is of the order of 1.5×10^{-14} and it is higher for overtone transitions. With the following Raman laser frequencies, total Stark shift induced by two Raman lasers is zero. v=0→1 24527 /cm and 23079 /cm v=0→2 24600 /cm and 21745 /cm v=0→3 26237 /cm and 22017 /cm v=0→4 25354 /cm and 19814 /cm The ^{40}CaH^{+} X^{1}Σ( v,N,F,M) =(0,0,1/2,±1/2) →(v_{u},0,1/2,±1/2) (v_{u}=1,2,3,,,) transition can be measured with the uncertainty lower than 10^{-16}, and it is useful to test the variation in the proton-to-electron mass ratio.

  11. A Superconducting Magnet UCN Trap for Precise Neutron Lifetime Measurements

    PubMed Central

    Picker, R.; Altarev, I.; Bröcker, J.; Gutsmiedl, E.; Hartmann, J.; Müller, A.; Paul, S.; Schott, W.; Trinks, U.; Zimmer, O.

    2005-01-01

    Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from β-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation. PMID:27308150

  12. A preliminary, precise measurement of the average B hadron lifetime

    SciTech Connect

    SLD Collaboration

    1994-07-01

    The average B hadron lifetime was measured using data collected with the SLD detector at the SLC in 1993. From a sample of {approximately}50,000 Z{sup 0} events, a sample enriched in Z{sup 0} {yields} b{bar b} was selected by applying an impact parameter tag. The lifetime was extracted from the decay length distribution of inclusive vertices reconstructed in three dimensions. A binned maximum likelihood method yielded an average B hadron lifetime of {tau}{sub B} = 1.577 {plus_minus} 0.032(stat.) {plus_minus} 0.046(syst.) ps.

  13. Antenna pointing compensation based on precision optical measurement techniques

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1988-01-01

    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors.

  14. Precision measurement of the Λb(0) baryon lifetime.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-01

    The ratio of the Λb(0) baryon lifetime to that of the B(0) meson is measured using 1.0  fb(-1) of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λb(0) baryon is observed for the first time in the decay mode Λb(0)→J/ψpK-, while the B(0) meson decay used is the well known B(0)→J/ψπ+ K- mode, where the π+ K- mass is consistent with that of the K(*0)(892) meson. The ratio of lifetimes is measured to be 0.976±0.012±0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B(0) meson lifetime, the Λb(0) lifetime is found to be 1.482±0.018±0.012  ps. In both cases, the first uncertainty is statistical and the second systematic. PMID:25166658

  15. High-Precision Mass Measurements At TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Smorra, C.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Ketelaer, J.; Knuth, K.; Nörtershäuser, W.; Nagy, Sz.

    2010-04-01

    In order to study neutron-rich nuclides far from the valley of stability as well as long-lived actinoids the double Penning-trap mass spectrometer TRIGA-TRAP has been recently installed at the research reactor TRIGA Mainz. Short-lived neutron-rich fission products are produced by thermal neutron-induced fission of an actinoid target installed close to the reactor core. A helium gas-jet system with carbon aerosol particles is used to extract the fission products to the experiment. The Penning trap system has already been commissioned. Off-line mass measurements are routinely performed using a recently developed laser ablation ion source, and the gas-jet system has been tested. An overview of the experiment and current status will be given.

  16. A precision isotonic measuring system for isolated tissues.

    PubMed

    Mellor, P M

    1984-12-01

    An isotonic measuring system is described which utilizes an angular position transducer of the linear differential voltage transformer type. Resistance to corrosion, protection against the ingress of solutions, and ease of mounting and setting up were the mechanical objectives. Accuracy, linearity, and freedom from drift were essential requirements of the electrical specification. A special housing was designed to accommodate the transducer to overcome these problems. A control unit incorporating a power supply and electronic filtering components was made to serve up to four such transducers. The transducer output voltage is sufficiently high to drive directly even low sensitivity chart recorders. Constructional details and a circuit diagram are included. Fifty such transducers have been in use for up to four years in these laboratories. Examples of some of the published work done using this transducer system are referenced. PMID:6536830

  17. Precision measurement of the ionization energy of Cs i

    NASA Astrophysics Data System (ADS)

    Deiglmayr, Johannes; Herburger, Holger; Saßmannshausen, Heiner; Jansen, Paul; Schmutz, Hansjürg; Merkt, Frédéric

    2016-01-01

    We present absolute-frequency measurements for the transitions from the 6 s1 /2 ground state of 133Cs to n p1 /2 and n p3 /2 Rydberg states. The transition frequencies are determined by one-photon UV spectroscopy in ultracold samples of Cs atoms using a narrow-band laser system referenced to a frequency comb. From a global fit of the ionization energy EI and the quantum defects of the two series we determine an improved value of EI/h c =31 406.467 732 5 (14 ) cm-1 for the ionization energy of Cs with a relative uncertainty of 5 ×10-11 . We also report improved values for the quantum defects of the n p1 /2 , n p3 /2 , n s1 /2 , and n d5 /2 series.

  18. Probing a QCD String Axion with Precision Cosmological Measurements

    SciTech Connect

    Fox, P

    2004-09-21

    String and M-theory compactifications generically have compact moduli which can potentially act as the QCD axion. However, as demonstrated here, such a compact modulus can not play the role of a QCD axion and solve the strong CP problem if gravitational waves interpreted as arising from inflation with Hubble constant H{sub inf} {approx}> 10{sup 13} GeV are observed by the PLANCK polarimetry experiment. In this case axion fluctuations generated during inflation would leave a measurable isocurvature and/or non-Gaussian imprint in the spectrum of primordial temperature fluctuations. This conclusion is independent of any assumptions about the initial axion misalignment angle, how much of the dark matter is relic axions, or possible entropy release by a late decaying particle such as the saxion; it relies only on the mild assumption that the Peccei-Quinn symmetry remains unbroken in the early universe.

  19. High Precision Superconducting Cavity Diagnostics With Higher Order Mode Measurements

    SciTech Connect

    Molloy, S.; Frisch, J.; McCormick, D.; May, J.; Ross, M.; Smith, T.; Baboi, N.; Hensler, O.; Petrosian, L.; Napoly, O.; Paparella, R.C.; Simon, C.; Eddy, N.; Nagaitsev, S.; Wendt, M.; /Fermilab

    2007-02-12

    Experiments at the FLASH facility at DESY have demonstrated that the higher order modes induced in superconducting cavities can be used to provide a variety of beam and cavity diagnostics. The axes of the modes can be determined from the beam orbit that produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used to obtain high resolution beam position information, and the phase of the monopole modes to measure the beam phase relative to the accelerator rf. For most superconducting accelerators, the existing higher order mode couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional beam position monitor.

  20. Control systems improvements in a precision coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Douglass, S. S.; Babelay, E. F., Jr.; Igou, R. E.; Woodard, L. M.; Green, W. L.

    1981-09-01

    A conventional, manually driven Moore No. 3 coordinate measuring machine at the Oak Ridge Y-12 Plant is being upgraded to provide a continuous-path numerical control capability and simultaneously serve as a vehicle for testing new machine slide-control concepts. Besides new lead screw drive motors, an NC machine control unit, and a closed-loop servo system, the machine has also been equipped with vibration isolation, air-bearing slideways, and laser interferometric position feedback. The present conventional slide servo system will be replaced with a digital servo system wherein various feedback and compensation techniques can be realized through the use of a high speed, dedicated digital processor. The improvements to data are described with emphasis on identification and compensation of the slide control systems.

  1. Precise polarization measurements via detection of compton scattered electrons

    SciTech Connect

    Tvaskis, Vladas; Dutta, Dipangkar; Gaskell, David J.; Narayan, Amrendra

    2014-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam off a proton target. One of the dominant experimental systematic uncertainties in Qweak will result from determining the beam polarization. A new Compton polarimeter was installed in the fall of 2010 to provide a non-invasive and continuous monitoring of the electron beam polarization in Hall C at Jefferson Lab. The Compton-scattered electrons are detected in four planes of diamond micro-strip detectors. We have achieved the design goals of <1% statistical uncertainty per hour and expect to achieve <1% systematic uncertainty.

  2. High Precision SC Cavity Diagnostics with HOM Measurements

    SciTech Connect

    Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc; /SLAC

    2006-08-18

    Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the down mix and digitizing electronics are straightforward, similar to those for a conventional BPM.

  3. Precision measurement of crack closure state with vibrothermography

    NASA Astrophysics Data System (ADS)

    Schiefelbein, Bryan E.; Holland, Stephen D.; Bastawros, Ashraf

    2016-02-01

    Crack closure state is a controlling parameter in Vibrothermographpy testing as well as other Non-Destructive Evaluation (NDE) techniques. The closure phenomenon reduces probability of detection (POD) by reducing the effective crack size. For this reason, understanding and quantifying closure has implications in the field of NDE. Cracks grown under fatigue have unpredictable and diffcult to quantify closure states. We propose a simple model to quantify crack closure and measure residual stress. The analysis is limited to the case of 1D residual loading of a through crack. Extensions can be made to the more applicable semi-elliptical surface crack. This model is introduced to replace the model previously suggested by Renshaw [1]. The model is applied to thermal data taken on rectangular test specimens with fatigue cracks.

  4. Precision measurement of cosmic-Ray antiproton spectrum

    PubMed

    Orito; Maeno; Matsunaga; Abe; Anraku; Asaoka; Fujikawa; Imori; Ishino; Makida; Matsui; Matsumoto; Mitchell; Mitsui; Moiseev; Motoki; Nishimura; Nozaki; Ormes; Saeki; Sanuki; Sasaki; Seo; Shikaze; Sonoda; Streitmatter

    2000-02-01

    The energy spectrum of cosmic-ray antiprotons ( &pmacr;'s) has been measured in the range 0.18-3.56 GeV, based on 458 &pmacr;'s collected by BESS in a recent solar-minimum period. We have detected for the first time a characteristic peak at 2 GeV of &pmacr;'s originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS data with still higher statistics will allow us to study the solar modulation and the propagation in detail and to search for primary &pmacr; components. PMID:11017448

  5. High-Precision Mass Measurements At TRIGA-TRAP

    SciTech Connect

    Smorra, C.; Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Herfurth, F.; Eberhardt, K.; Ketelaer, J.; Knuth, K.; Noertershaeuser, W.; Nagy, Sz.

    2010-04-30

    In order to study neutron-rich nuclides far from the valley of stability as well as long-lived actinoids the double Penning-trap mass spectrometer TRIGA-TRAP has been recently installed at the research reactor TRIGA Mainz. Short-lived neutron-rich fission products are produced by thermal neutron-induced fission of an actinoid target installed close to the reactor core. A helium gas-jet system with carbon aerosol particles is used to extract the fission products to the experiment. The Penning trap system has already been commissioned. Off-line mass measurements are routinely performed using a recently developed laser ablation ion source, and the gas-jet system has been tested. An overview of the experiment and current status will be given.

  6. Precise measurement of parity nonconservation in atomic thallium

    SciTech Connect

    Hunter, L.R.

    1981-05-01

    Observation of parity non-conservation in the 6P/sub 1/2/ - 7P/sub 1/2/ transition in /sub 81/Tl/sup 203/ /sup 205/ is reported. The transition is nominally forbidden M1 with amplitude M. Due to the violation of parity in the electron-nucleon interaction, the transition acquires an additional (parity nonconserving) amplitude e/sub p/. In the presence of an electric field, incident 293 nm circularly polarized light results in a polarization of the 7P/sub 1/2/ state through interference of the Stark amplitude with M and E/sub p/. This polarization is observed by selective excitation of the 7P/sub 1/2/ - (8S/sub 1/2) transition with circularly polarized 2.18 ..mu..m light and observation of the subsequent fluorescence at 323 nm. By utilizing this technique and carefully determining possible systematic contributions through auxiliary measurements, the circular dichroism delta = 2Im(E/sub p/)/ M is observed: delta/sub exp/ = (2.8 + 1.0 - .9) x 10/sup -3/. In addition, measurements of A(6D/sub 3/2/ - 7P/sub 1/2/) = (5.97 +- .78) x 10/sup 5/ s/sup -1/, A(7P/sub 1/2/ - 7S/sub 1/2/) = (1.71 +- .07) x 10/sup 7/ s/sup -1/ and A(7P/sub 3/2/ - 7S/sub 1/2/) = (2.37 +- .09) s/sup -1/ are reported. These values are employed in a semiempirical determination of delta based on the Weinberg-Salam Model. The result of this calculation for sin/sup 2/THETA/sub 2/ = .23 is delta/sub Theo/ = 1.7 +- .8) x 10/sup -3/.

  7. Precision measurement of the neutron spin dependent structure functions

    SciTech Connect

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  8. The research of precision timing measurement in application of TDC_GP2 in laser ranging

    NASA Astrophysics Data System (ADS)

    Song, Bo; Zheng, Wei

    2013-09-01

    Laser ranging could measure the distance between laser range finder and detection target by calculate the flight time of laser. The laser of laser range finder adopt semiconductor pump laser of 1064nm, PerkinElmer C30659 APD was used in photoelectric detection circuit, STC89C52 MCU and the FPGA of XC3S400 were used as the core of control system. High precision time interval measurement is one of the most important techniques in laser ranging. In this paper, we adopt a high precision time interval measurement time to digital converter chip of ACAM corporation in Germany. TDC_GP2 is the next generation of Acam general-purpose TDCs, higher resolution and smaller package size make it ideal for cost sensitive industrial applications. We select the measurement range 2 of the TDC_GP2, and the maximum time resolution is 65ps. Digital TDCs use internal propagation delays of signals through gates to measure time intervals with very high precision. Through researching the working principle of TDC_GP2, hardware circuit diagram of TDC_GP2、measurement time diagram of TDC_GP2、the system software design of TDC_GP2, and applying in the different measuring distances and different time measurement temperatures, research shows that the precision of time measurement lies on the different measuring distances and different time measurement temperatures. In the end, we make some suggestions of improving the precision of time measurement.

  9. Alignment Jig for the Precise Measurement of THz Radiation

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid H.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  10. Precision electron flow measurements in a disk transmission line.

    SciTech Connect

    Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

    2008-01-01

    An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.