Science.gov

Sample records for 99mtc-labelled radiopharmaceuticals version

  1. Radiopharmaceuticals

    SciTech Connect

    Theobald, A.E.

    1989-01-01

    This book is a review of the latest developments in radiopharmaceuticals. It covers the development of radiopharmaceutical compounds, the theory and practice of their synthesis, and examples of their application. Also covers safe handling of radiopharmaceuticals, legislation affecting their use, radiation monitoring, radiochromatography, and computer techniques.

  2. 'Naked' radiopharmaceuticals

    SciTech Connect

    Wallner, Paul E. . E-mail: pwallner@rtsx.com

    2006-10-01

    The term 'naked' radiopharmaceuticals, more appropriately, 'unbound' radiopharmaceuticals, refers to any radioisotope used for clinical research or clinical purposes that is not attached to a chemical or biological carrier, and that localizes in various tissues because of a physiologic or chemical propensity/affinity, or secondary to focal anatomic placement. Although they remain useful in selected clinical circumstances, the available agents (except for Iodine-131) have been relegated to an unfortunate and somewhat secondary role. The agents remain useful and worthy of consideration for new clinical investigation and clinical use.

  3. Organometallic Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    Although molecular imaging agents have to be synthesized ultimately from aqueous solutions, organometallic complexes are becoming more and more important as flexible yet kinetically stable building blocks for radiopharmaceutical drug discovery. The diversity of ligands, targets, and targeting molecules related to these complexes is an essential base for finding novel, noninvasive imaging agents to diagnose and eventually treat widespread diseases such as cancer. This review article covers the most important findings toward these objectives accomplished during the past 3-4 years. The two major available organometallic building blocks will be discussed in the beginning together with constraints for market introduction as imposed by science and industry. Since targeting radiopharmaceuticals are a major focus of current research in molecular imaging, attempts toward so-called technetium essential radiopharmaceuticals will be briefly touched in the beginning followed by the main discussion about the labeling of targeting molecules such as folic acid, nucleosides, vitamins, carbohydrates, and fatty acids. At the end, some new strategies for drug discovery will be introduced together with results from organometallic chemistry in water. The majority of the new results have been achieved with the [99mTc(OH2)3(CO)3]+ complex which will, though not exclusively, be a focus of this review.

  4. Medicinal Radiopharmaceutical Chemistry of Metal Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Saw, Maung Maung

    2012-06-01

    Metal complexes have been used as medicinal compounds. Metals have advantageous features over organic compounds. Significant applications of metal complexes are in the field of nuclear medicine. Radiopharmaceuticals are drugs containing radioisotopes used for diagnostic and therapeutic purposes. The generalized targeting strategy for molecular imaging probe consists of three essential parts: (i) reporter unit or payload, (ii) carrier, and (iii) targeting system. Medicinal radiopharmaceutical chemistry pays special consideration to radioisotopes, as a reporter unit for diagnostic application or as a payload for therapeutic application. Targeting is achieved by a few approaches but the most common is the bifunctional chelator approach. While designing a radiopharmaceutical, a range of issues needs to be considered including properties of metal radioisotopes, bifunctional chelators, linkers, and targeting molecules. Designing radiopharmaceuticals requires consideration of two key words: "compounds of biological interest" and "fit for intended use." The ultimate goal is the development of new diagnostic methods and treatment. Diagnostic metal radiopharmaceuticals are used for SPECT and PET applications. Technetium chemistry constitutes a major portion of SPECT and gallium chemistry constitutes a major portion of PET. Therapeutic radiopharmaceuticals can be constructed by using alpha-, beta minus-, or Auger electron-emitting radiometals. Special uses of medicinal radiopharmaceuticals include internal radiation therapy, brachytherapy, immunoPET, radioimmunotherapy, and peptide receptor radionuclide imaging and therapy.

  5. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  6. Cyclotron produced radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Kopička, K.; Fišer, M.; Hradilek, P.; Hanč, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides/compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed.

  7. Method for preparing radiopharmaceutical complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1989-05-02

    A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

  8. Audits of radiopharmaceutical formulations.

    PubMed

    Castronovo, F P

    1992-03-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team. PMID:1598931

  9. Radiopharmaceuticals for thrombus detection

    SciTech Connect

    Knight, L.C. )

    1990-01-01

    Most of the components of the thrombotic and fibrinolytic systems have at some time been evaluated as a means of carrying a radiolabel specifically to thrombi, although very few have been promising enough to emerge from investigational status to routine clinical use. New approaches are being explored, including improved methods of labeling platelets, chemically modified forms of previously tested plasma proteins, and new biomolecules, including monoclonal antibodies specific for fibrin and platelets. The current goal is to find one or more radiotracers that bind specifically and rapidly to thrombi, and that also have a rapid blood disappearance rate, permitting a clear diagnosis within a few hours after injection. Because this test may be needed to assess the course of therapy in an anticoagulated patient, the ideal radiopharmaceutical should be able to locate thrombi without interference by anticoagulants. Until a suitable thrombus-specific radiopharmaceutical becomes generally available, many hospitals will continue to attempt to make a diagnosis with nonspecific radiopharmaceuticals that can at best provide blood pool images to indicate filling defects. Several of the new approaches seem likely to provide the radiopharmaceutical sought, although clinical trials are at an early stage.137 references.

  10. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  11. Process for preparing radiopharmaceuticals

    DOEpatents

    Barak, Morton; Winchell, Harry S.

    1977-01-04

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

  12. Pharmacovigilance in radiopharmaceuticals

    PubMed Central

    Kumar, Rishi; Kalaiselvan, Vivekanandan; Kumar, Rakesh; Verma, Ravendra; Singh, Gyanendra Nath

    2016-01-01

    Indian Pharmacopoeia Commission is Committed for maintaining the standards of drugs including Radiopharmaceuticals (RPs) by publishing Indian Pharmacopoeia. These RPs are being used in India for diagnostic or therapeutic purpose. RPs though contain relatively small quantities of active ingredient and administered in small volumes could cause some adverse reactions to the patients. The objective of presenting this article is to introduce the system of adverse drug reaction reporting to the nuclear medicine fraternity who are dealing with RPs. PMID:27095855

  13. Radiopharmaceuticals in nuclear medicine practice

    SciTech Connect

    Kowalsky, R.J.; Perry, J.R.

    1987-01-01

    This book discusses the basic principles and clinical applications of radiopharmaceuticals. Topics include atomic physics as applied to radiopharmaceuticals, radionuclide generator function, nuclear pharmacy and safety, and radiopharmaceutical use in evaluating the major organ systems of the body. For each body system the author explains rationale for use, typical procedures, current agents of choice, and interpretation of results. Images, tables, and graphs illustrate normal and abnormal studies.

  14. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  15. Unconventional Nuclides for Radiopharmaceuticals

    PubMed Central

    Holland, Jason P.; Williamson, Matthew J.; Lewis, Jason S.

    2016-01-01

    Rapid and widespread growth in the use of nuclear medicine for both diagnosis and therapy of disease has been the driving force behind burgeoning research interests in the design of novel radiopharmaceuticals. Until recently, the majority of clinical and basic science research has focused on the development of 11C-, 13N-, 15O-, and 18F-radiopharmaceuticals for use with positron emission tomography (PET) and 99mTc-labeled agents for use with single-photon emission computed tomography (SPECT). With the increased availability of small, low-energy cyclotrons and improvements in both cyclotron targetry and purification chemistries, the use of “nonstandard” radionuclides is becoming more prevalent. This brief review describes the physical characteristics of 60 radionuclides, including β+, β−, γ-ray, and α-particle emitters, which have the potential for use in the design and synthesis of the next generation of diagnostic and/or radiotherapeutic drugs. As the decay processes of many of the radionuclides described herein involve emission of high-energy γ-rays, relevant shielding and radiation safety issues are also considered. In particular, the properties and safety considerations associated with the increasingly prevalent PET nuclides 64Cu, 68Ga, 86Y, 89Zr, and 124I are discussed. PMID:20128994

  16. Instrumentation and radiopharmaceutical validation.

    PubMed

    Zigler, S S

    2009-08-01

    Although the promise of new positron emission tomography (PET) imaging agents is great, the process of bringing these agents to commercialization remains in its infancy. There are no PET products today that have gone through the full clinical and chemistry development process required to gain marketing approval by the US Food and Drug Administration (FDA). The purpose of this paper was to review validation from the perspective of the chemistry, manufacturing and controls (CMC) section of an FDA filing, as well as the validation requirements described in FDA good manufacturing practice (GMP) regulations, guidance documents and general chapters of the US Pharmacopeia (USP). The review includes discussion of validation from development to commercial production of PET radiopharmaceuticals with a special emphasis on equipment and instrumentation used in production and testing. The goal is to stimulate a dialog that leads to the standardization of industry practices and regulatory requirements for validation practices in PET. PMID:19834450

  17. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  18. Radiopharmaceuticals for diagnosis and treatment

    SciTech Connect

    Kuhl, D.E.

    1992-01-01

    We report on our efforts in PET basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. These efforts are focused on three fronts. First predictive abilities in nucleophilic aromatic substitution with [[sup 18]F]fluorination of substituted aromatic rings. Although radiochemical yields can be predicted within a very similar group of compounds with similar leaving groups and substituent patterns, generalization to all nucleophilic substitutions with [[sup 18]F] fluoride is not warranted. Kinetic studies indicate significantly different rates of reactions, depending on ring substituents. Second, preclinical evaluation of new radiopharmaceuticals. We have synthesized and begun the preclinical evaluation of [[sup 11]C]tetrabenazine, a new radioligand based on the vesicular monoamine transport system. Third, our work, on [[sup 18]F]fluorination/decarbonylation reactions, structure-activity relationships in dopamine uptake inhibitors and effects of chronic drugs on radioligand binding is described.

  19. Preparation of radiopharmaceuticals labeled with metal radionuclides

    SciTech Connect

    Welch, M.J.

    1992-06-01

    We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

  20. Bioinorganic Activity of Technetium Radiopharmaceuticals.

    ERIC Educational Resources Information Center

    Pinkerton, Thomas C.; And Others

    1985-01-01

    Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)

  1. Radiopharmaceuticals for diagnosis. Final report

    SciTech Connect

    Not Available

    1994-03-01

    In the period 1969-1986, this project was directed to the evolution of target-specific labeled chemicals useful for nuclear medical imaging, especially radioactive indicators suited to tracing adrenal functions and localizing tumors in the neuroendocrine system. Since 1986, this project research has focused on the chemistry of positron emission tomography (PET) ligands. This project has involved the evaluation of methods for radiochemical syntheses with fluorine-18, as well as the development and preliminary evaluation of new radiopharmaceuticals for positron emission tomography. In the radiochemistry area, the ability to predict fluorine-18 labeling yields for aromatic substitution reactions through the use of carbon-13 NMR analysis was studied. Radiochemical yields can be predicted for some structurally analogous aromatic compounds, but this correlation could not be generally applied to aromatic substrates for this reaction, particularly with changes in ring substituents or leaving groups. Importantly, certain aryl ring substituents, particularly methyl groups, appeared to have a negative effect on fluorination reactions. These observations are important in the future design of syntheses of complicated organic radiopharmaceuticals. In the radiopharmaceutical area, this project has supported the development of a new class of radiopharmaceuticals based on the monoamine vesicular uptake systems. The new radioligands, based on the tetrabenazine structure, offer a new approach to the quantification of monoaminergic neurons in the brain. Preliminary primate imaging studies support further development of these radioligands for PET studies in humans. If successful, such radiopharmaceuticals will find application in studies of the causes and treatment of neurodegenerative disorders such as Parkinson`s disease.

  2. (Radiopharmaceutical and chemotherapeutic drug technology)

    SciTech Connect

    Srivastava, P.C.

    1988-01-14

    The purpose was to undertake a TOKTEN Distinguished Scientist Award assignment sponsored by the United Nations Development Programme (UNDP) in cooperation with the Council of Scientific and Industrial Research (CSIR) of India to conduct research in the areas of nucleosides and protein labeling agents at the Central Drug Research Institute (CDRI), Lucknow, and to help research scientists develop chemotherapeutic drugs in India. His work at CDRI consisted of syntheses of imidazole nucleosides, iodination reactions of nucleosides, synthesis of a bifunctional bismaleimide protein labeling agent, coordination of protein labeling studies with the Membrane Biology Group of CDRI, and initiation of several new collaborative research projects at CDRI. In addition, as a part of the CSIR-UNDP, the traveler visited several academic and industrial research institutions in India, delivered five seminars describing various aspects of radiopharmaceutical development at ORNL, and interacted extensively with scientists in India on current drug and radiopharmaceutical develop technologies in India and abroad.

  3. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  4. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  5. Prospective of 68Ga-Radiopharmaceutical Development

    PubMed Central

    Velikyan, Irina

    2014-01-01

    Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515

  6. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  7. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  8. Radiopharmaceuticals for diagnosis and treatment

    SciTech Connect

    Kuhl, D.E.

    1991-01-01

    In this grant period we have continued our efforts in the areas of PE basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. A new synthetic sequence, consisting, of no-carrier-added fluorine-18 labeling of substituted benzaldehydes followed by reductive decarbonylation, has been developed. This new methodology can be applied to the fluorine-18 labeling of a wide variety of drugs not previously accessible through existing fluorine-18 labeling methods. Following up on a literature report that the ability to radiolabel aromatic rings can be predicted by {sup 13}C-NMR chemical shifts, we have examined the generality of this correlation in aromatic rings bearing a variety of substituents. Although the original correlation holds for nitro substituted anisaldehydes, it cannot be extended to other rings substitution patterns. We have examined the relationship of in vivo localization of various fluorine-18 labeled dopamine uptake inhibitors to their in vitro binding affinities and lipophilicities. We have found that remarkably small decreases in binding affinity result in dramatic losses of in vivo binding to the desired high affinity binding sites. In order to probe the effects of endogenous neurotransmitter on the in vivo binding of radiolabeled dopamine uptake inhibitors, we have examined the in vivo regional localization of (18{sub F}) GBR 13119 after acute and chronic drug treatments which alter the endogenous levels of dopamine. We have found that acute changes in dopamine levels do not affect the binding of this radioligand, but chronic depletion of neurotransmitter results in down-regulation of the in vivo binding sites. 16 refs., 2 figs., 1 tab.

  9. Radiopharmaceuticals in PET, progress and promise

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters. 7 refs.

  10. Radiopharmaceuticals in PET, Progress and Promise

    DOE R&D Accomplishments Database

    Wolf, A. P.; Fowler, J. S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters.

  11. Rational development of radiopharmaceuticals for HIV-1.

    PubMed

    Lau, Chuen-Yen; Maldarelli, Frank; Eckelman, William C; Neumann, Ronald D

    2014-04-01

    The global battle against HIV-1 would benefit from a sensitive and specific radiopharmaceutical to localize HIV-infected cells. Ideally, this probe would be able to identify latently infected host cells containing replication competent HIV sequences. Clinical and research applications would include assessment of reservoirs, informing clinical management by facilitating assessment of burden of infection in different compartments, monitoring disease progression and monitoring response to therapy. A "rational" development approach could facilitate efficient identification of an appropriate targeted radiopharmaceutical. Rational development starts with understanding characteristics of the disease that can be effectively targeted and then engineering radiopharmaceuticals to hone in on an appropriate target, which in the case of HIV-1 (HIV) might be an HIV-specific product on or in the host cell, a differentially expressed gene product, an integrated DNA sequence specific enzymatic activity, part of the inflammatory response, or a combination of these. This is different from the current approach that starts with a radiopharmaceutical for a target associated with a disease, mostly from autopsy studies, without a strong rationale for the potential to impact patient care. At present, no targeted therapies are available for HIV latency, although a number of approaches are under study. Here we discuss requirements for a radiopharmaceutical useful in strategies targeting persistently infected cells. The radiopharmaceutical for HIV should be developed based on HIV biology, studied in an animal model and then in humans, and ultimately used in clinical and research settings. PMID:24607432

  12. Astatine Radiopharmaceuticals: Prospects and Problems.

    PubMed

    Vaidyanathan, Ganesan; Zalutsky, Michael R

    2008-09-01

    For the treatment of minimum residual diseases such micrometastases and residual tumor margins that remain after debulking of the primary tumor, targeted radiotherapy using radiopharmaceuticals tagged with alpha-particle-emitting radionuclides is very attractive. In addition to the their short range in tissue, which helps minimize harmful effects on adjacent normal tissues, alpha-particles, being high LET radiation, have several radiobiological advantages. The heavy halogen, astatine-211 is one of the prominent alpha-particle-emitting radionuclides in practice. Being a halogen, it can often be incorporated into biomolecules of interest by adapting radioiodination chemistry. A wide spectrum of compounds from the simple [(211)At]astatide ion to small organic molecules, peptides, and large proteins labeled with (211)At have been investigated with at least two reaching the stage of clinical evaluation. The chemistry, cytotoxic advantages, biodistribution studies, and microdosimetry/pharmacokinetic modeling of some of these agents will be reviewed. In addition, potential problems such as the harmful effect of radiolysis on the synthesis, lack of sufficient in vivo stability of astatinated compounds, and possible adverse effects when they are systemically administered will be discussed. PMID:20150978

  13. Astatine Radiopharmaceuticals: Prospects and Problems

    PubMed Central

    Vaidyanathan, Ganesan; Zalutsky, Michael R.

    2010-01-01

    For the treatment of minimum residual diseases such micrometastases and residual tumor margins that remain after debulking of the primary tumor, targeted radiotherapy using radiopharmaceuticals tagged with α-particle-emitting radionuclides is very attractive. In addition to the their short range in tissue, which helps minimize harmful effects on adjacent normal tissues, α-particles, being high LET radiation, have several radiobiological advantages. The heavy halogen, astatine-211 is one of the prominent α-particle-emitting radionuclides in practice. Being a halogen, it can often be incorporated into biomolecules of interest by adapting radioiodination chemistry. A wide spectrum of compounds from the simple [211At]astatide ion to small organic molecules, peptides, and large proteins labeled with 211At have been investigated with at least two reaching the stage of clinical evaluation. The chemistry, cytotoxic advantages, biodistribution studies, and microdosimetry/pharmacokinetic modeling of some of these agents will be reviewed. In addition, potential problems such as the harmful effect of radiolysis on the synthesis, lack of sufficient in vivo stability of astatinated compounds, and possible adverse effects when they are systemically administered will be discussed. PMID:20150978

  14. Radiopharmaceuticals for diagnosis and treatment. Progress report

    SciTech Connect

    Kuhl, D.E.

    1992-12-01

    We report on our efforts in PET basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. These efforts are focused on three fronts. First predictive abilities in nucleophilic aromatic substitution with [{sup 18}F]fluorination of substituted aromatic rings. Although radiochemical yields can be predicted within a very similar group of compounds with similar leaving groups and substituent patterns, generalization to all nucleophilic substitutions with [{sup 18}F] fluoride is not warranted. Kinetic studies indicate significantly different rates of reactions, depending on ring substituents. Second, preclinical evaluation of new radiopharmaceuticals. We have synthesized and begun the preclinical evaluation of [{sup 11}C]tetrabenazine, a new radioligand based on the vesicular monoamine transport system. Third, our work, on [{sup 18}F]fluorination/decarbonylation reactions, structure-activity relationships in dopamine uptake inhibitors and effects of chronic drugs on radioligand binding is described.

  15. Simplification of Methods for PET Radiopharmaceutical Syntheses

    SciTech Connect

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  16. Transport processes of radiopharmaceuticals and -modulators

    PubMed Central

    2011-01-01

    Radiotherapy and radiology have been indispensable components in cancer care for many years. The detection limit of small tumor foci as well as the development of radio-resistance and severe side effects towards normal tissues led to the development of strategies to improve radio-diagnostic and -therapeutic approaches by pharmaceuticals. The term "radiopharmaceutical" has been used for drugs labeled with radioactive tracers for therapy or diagnosis. In addition, drugs have been described to sensitize tumor cells to radiotherapy (radiosensitizers) or to protect normal tissues from detrimental effects of radiation (radioprotectors). The present review summarizes recent concepts on the transport of radiopharmaceuticals, radiosensitizers, and radioprotectors in cells and tissues, e.g. by ATP-binding cassette transporters such as P-glycoprotein. Strengths and weaknesses of current strategies to improve transport-based processes are discussed. PMID:21645349

  17. Advances in the robotic production of radiopharmaceuticals

    SciTech Connect

    Gaehle, G.; Welch, M.J.

    1994-12-31

    A variety of robotic systems, including Zymark, Hudson Control Group, Anotech, and Questech formerly U.M.I, have been used as a reliable and safe way to produce radiopharmaceuticals. A robotic system`s ability allows it to produce a variety of radiopharmaceuticals on a routine basis including final preparation and quality control. With proper scheduling, a single robotic system can synthesize {sup 18}F-fluorodeoxyglucose, {sup 18}F-estradiol, {sup 11}C-acetate, {sup 68}Ga-citrate and at the same time control black box type syntheses such as {sup 15}O-butanol in a single day. A robotic system`s flexibility allows it to be used in designing and testing new syntheses, thus making the development of the new radiopharmaceuticals safer for the chemist. The development of Windows, a multi-tasking operating system for PC computers, allows a robot controlled by that computer to function simultaneously with a large variety of other systems. This increases the system`s ability to communicate with other systems and it allows for change without replacing the entire system. Improvements in robot technology has increased their reliability while making them competitive in price to other means of automation. Today a robotic system to produce {sup 18}F-fluorodeoxyglucose can cost as little as $55,000 U.S. depending on the cost of the hot cell.

  18. Pitfalls and Limitations of SPECT, PET, and Therapeutic Radiopharmaceuticals.

    PubMed

    Ballinger, James R

    2015-09-01

    Radiopharmaceuticals are widely accepted to be a very safe class of drugs, with very few adverse reactions and unexpected biodistributions. However, problems can arise because of technical issues in manufacture or reconstitution, patient preparation, or drug administration. This review presents highlights of issues that have arisen in the newer classes of radiopharmaceuticals in the last 20 years and expands the scope of the previous report to include PET and therapeutic radiopharmaceuticals. Variations in the "quality" of the eluate of a (99)Mo/(99m)Tc generator remain a major issue. Several of the newer (99m)Tc tracers require a heating step in preparation that can also lead to unacceptably low radiochemical purity. Radiolytic breakdown can be a problem with all classes of radiopharmaceuticals. Many of the newer radiopharmaceuticals localize by receptor- or transporter-mediated processes and thus can be affected by other drugs, making patient preparation more important than ever. Therapeutic radiopharmaceuticals may require coadministration of radioprotectant regimens, such as the use of lysine-arginine infusions with radiopeptide therapy. Extravasation can have serious consequences with therapeutic radiopharmaceuticals. Adverse reactions to newer radiopharmaceuticals remain rare, though may increase because of coadministration of agents such as contrast media. However, there is known to be underreporting of minor adverse reactions. Knowledge of the pitfalls that can occur with radiopharmaceuticals is important in the interpretation of nuclear medicine images and optimal patient care. PMID:26278857

  19. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  20. Consequences of electroplated targets on radiopharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Finn, R. D.; Tirelli, S.; Sheh, Y.; Knott, A.; Gelbard, A. S.; Larson, S. M.; Dahl, J. R.

    1991-05-01

    The staff of the cyclotron facility at Memorial Sloan-Kettering Cancer Center is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived, positron-emitting radiopharmaceutical agents for clinical investigation. Both the produced radionuclide as well as the final radiolabeled compound are subjected to stringent quality control standards including assays for radiochemical and chemical purity. The subtle chemical consequences resulting from the irradiation of a nickel-plated target for 13N production serve to emphasize some of these potential technical difficulties.

  1. Small Molecule Radiopharmaceuticals – A Review of Current Approaches

    PubMed Central

    Chaturvedi, Shubhra; Mishra, Anil K.

    2016-01-01

    Radiopharmaceuticals are an integral component of nuclear medicine and are widely applied in diagnostics and therapy. Though widely applied, the development of an “ideal” radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over time, strategies to address the issues have evolved by making use of new technological advances in the fields of biology and chemistry. This review presents the application of few advances in design and synthesis of radiopharmaceuticals. The topics covered are bivalent ligand approach and lipidization as part of design modifications for enhanced selectivity and sensitivity and novel synthetic strategies for optimized chemistry and radiolabeling of radiopharmaceuticals. PMID:26942181

  2. Placental transfer of radiopharmaceuticals and dosimetry in pregnancy

    SciTech Connect

    Russell, J.R.; Stabin, M.G.; Sparks, R.B.

    1999-01-01

    The calculation of radiation dose estimates to the fetus is often important in nuclear medicine. To obtain the best estimates of radiation dose to the fetus, the best biological and physical models should be employed. In this paper, after identification of radiopharmaceuticals often administered to women of childbearing age, the most recent data available on the placental crossover of these radiopharmaceuticals was used (with standard kinetic models describing the maternal distribution and retention and with the best available physical models) to obtain fetal dose estimates for these radiopharmaceuticals were identified as those most commonly administered to women of childbearing years. The literature yielded information on placental crossover of 15 radiopharmaceuticals, from animal or human data. Radiation dose estimates are presented in early pregnancy and at 3-, 6-, and 9-months gestation for these radiopharmaceuticals, as well as for many others used in nuclear medicine (the latter considering only maternal organ contributions to fetal dose). 46 refs., 1 fig., 5 tabs.

  3. Radiopharmaceutical dosage selection for pediatric nuclear medicine

    SciTech Connect

    Shore, R.M.; Hendee, W.R.

    1986-02-01

    To identify the most rational method for adjusting adult radiopharmaceutical dosages for children, four methods of dosage computation were examined from the perspectives of diagnostic adequacy and radiation absorbed dose. For static imaging, information density is the most important factor in study quality, and adjustment of dosage by body weight (Wt) for thick organs, and body surface area (BSA) for thin organs is recommended. Compared with adults, small children receive less radiation exposure if radiopharmaceutical dosages are adjusted by Wt, and slightly greater exposure if dosages are adjusted by BSA. For dynamic imaging studies, dosage requirements are governed by the spatial resolution needed for region of interest assignment, and the statistical reliability of the time-activity data. For dynamic renal imaging, renograms of similar quality are obtained if dosages are adjusted by height (Ht). Dynamic cardiac studies might appear to require dosages even larger than those adjusted by Ht which would result in higher radiation absorbed doses to pediatric patients. However, smaller dosages can be used in children by prolonging the imaging time and accepting lower temporal resolution. Dosage requirements for dynamic studies depend on which physiologic characteristics are measured from the time-activity data. Since the measurements of some characteristics demand higher count rates than others, dosage requirements ultimately depend on which measurements are clinically necessary. Close attention to the factors that determine these requirements may yield significant reduction in dosages, and thus in radiation exposure, for patients of all ages.

  4. Manufacture of radiopharmaceuticals-recent advances

    SciTech Connect

    Krieger, J.K.

    1996-12-31

    Trends in radiopharmaceutical manufacturing have been influenced by the demands of the regulatory agencies, the demands of the customers, and the ever-increasing complexity of new products. Process improvements resulting from automation in the production of radionuclides for diagnostic imaging products, {sup 99m}/Tc generators, {sup 67}Ga, and {sup 201}Tl have been introduced to enhance compliance with current good manufacturing practices and to improve worker safety, both by reducing dose in accord with as low as reasonably achievable levels of radiation and by providing an ergonomically sound environment. Tighter process control has resulted in less lot-to-lot variability and ensures reliability of supply. Reduced manufacturing lapse time for {sup 99m}Tc generators minimizes decay and conserves the supply of {sup 99}Mo. Automation has resulted in an even greater degree of remote operation and has led to reductions in dose, improved process control, and faster throughput in the manufacture of radionuclides.

  5. Cancer-targeted therapies and radiopharmaceuticals.

    PubMed

    Rachner, Tilman D; Jakob, Franz; Hofbauer, Lorenz C

    2015-01-01

    The treatment of bone metastases remains a clinical challenge. Although a number of well-established agents, namely bisphosphonates and denosumab, are available to reduce the occurrence of skeletal-related events, additional cancer-targeted therapies are required to improve patients' prognosis and quality of life. This review focuses on novel targets and agents that are under clinical evaluation for the treatment of malignant bone diseases such as activin A, src and endothelin-1 inhibition or agents that are clinically approved and may positively influence bone, such as the mTOR inhibitor everolimus. In addition, the potential of alpharadin, a novel radiopharmaceutical approved for the treatment of prostatic bone disease, is discussed. PMID:26131359

  6. Radiopharmaceuticals for diagnosis and treatment. Progress report

    SciTech Connect

    Kuhl, D.E.

    1991-12-31

    In this grant period we have continued our efforts in the areas of PE basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. A new synthetic sequence, consisting, of no-carrier-added fluorine-18 labeling of substituted benzaldehydes followed by reductive decarbonylation, has been developed. This new methodology can be applied to the fluorine-18 labeling of a wide variety of drugs not previously accessible through existing fluorine-18 labeling methods. Following up on a literature report that the ability to radiolabel aromatic rings can be predicted by {sup 13}C-NMR chemical shifts, we have examined the generality of this correlation in aromatic rings bearing a variety of substituents. Although the original correlation holds for nitro substituted anisaldehydes, it cannot be extended to other rings substitution patterns. We have examined the relationship of in vivo localization of various fluorine-18 labeled dopamine uptake inhibitors to their in vitro binding affinities and lipophilicities. We have found that remarkably small decreases in binding affinity result in dramatic losses of in vivo binding to the desired high affinity binding sites. In order to probe the effects of endogenous neurotransmitter on the in vivo binding of radiolabeled dopamine uptake inhibitors, we have examined the in vivo regional localization of [18{sub F}] GBR 13119 after acute and chronic drug treatments which alter the endogenous levels of dopamine. We have found that acute changes in dopamine levels do not affect the binding of this radioligand, but chronic depletion of neurotransmitter results in down-regulation of the in vivo binding sites. 16 refs., 2 figs., 1 tab.

  7. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Bhattacharyya, Sibaprasad; Dixit, Manish

    2011-06-21

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  8. Application of a Small Molecule Radiopharmaceutical Concept to Improve Kinetics.

    PubMed

    Jeong, Jae Min

    2016-06-01

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. PMID:27275356

  9. Calculating patient-specific doses in X-ray diagnostics and from radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lampinen, Juha Sakari

    2000-06-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3% with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients undergoing systemic radiation therapy, the results by Intdose differed from measurements due to dynamic biodistribution

  10. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    SciTech Connect

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.

  11. Stroma Targeting Nuclear Imaging and Radiopharmaceuticals

    PubMed Central

    Shetty, Dinesh; Jeong, Jae-Min; Shim, Hyunsuk

    2012-01-01

    Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy. PMID:22685650

  12. Skin contamination by radiopharmaceuticals and decontamination strategies.

    PubMed

    Bolzinger, M A; Bolot, C; Galy, G; Chabanel, A; Pelletier, J; Briançon, S

    2010-12-15

    The aim of the present study was to evaluate the percutaneous penetration of five common radiopharmaceuticals ((99m)Tc, (67)Ga, (125)I, (111)In and (51)Cr) and to evaluate the effect of decontamination by a detergent solution dedicated to hospital institutions for that purpose. The skin kinetic profiles were established by using the in vitro Franz cell method over 24h. The skin distribution in each skin layer was quantified after 6h exposure time and the efficacy of the detergent solution to remove radionuclides was evaluated also after 6h. The most striking result was the repartition into two classes of kinetic profiles: (125)I and (99m)Tc permeated quickly (∼60% of applied activity after 24h) while the 3 other radionuclides permeated slowly (from ∼2.75% for (67)Ga to ∼10% of applied activity for (111)In). The lag times, i.e. the time necessary to cross the skin varied from 20min for (99m)Tc to 5h for (51)Cr, which accumulated in skin compartments. Skin washings with the detergent solution were particularly efficient for this radionuclide, contrary to the others for which the washing procedure should be applied earlier. The permeation of ions was dependent on their chemical and physical forms and on their salting-in or salting-out effects (coordination state and Hofmeister series). PMID:20888404

  13. Original Version

    Cancer.gov

    The EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version is a free comprehensive multimedia curricula for health professionals caring for persons with cancer and their families. The curricula is available as an online Self-Study Section and as a CD-ROM you can order.

  14. Aptamers as radiopharmaceuticals for nuclear imaging and therapy.

    PubMed

    Gijs, Marlies; Aerts, An; Impens, Nathalie; Baatout, Sarah; Luxen, André

    2016-04-01

    Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers. PMID:26746572

  15. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  16. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  17. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  18. Preparation of radiopharmaceuticals labeled with metal radionuclides. Progress report, July 1, 1988--June 30, 1992

    SciTech Connect

    Welch, M.J.

    1992-06-01

    We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

  19. Process for producing astatine-211 for radiopharmaceutical use

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A process for reliably and consistently producing astatine-211 in small controlled volumes of a solution, which is selected from a choice of solvents that are useful in selected radiopharmaceutical procedures in which the At-211 activities are to be applied.

  20. Process for producing astatine-211 for radiopharmaceutical use

    DOEpatents

    Mirzadeh, S.; Lambrecht, R.M.

    1984-04-10

    A process is described for reliably and consistently producing astatine-211 in small controlled volumes of a solution, which is selected from a choice of solvents that are useful in selected radiopharmaceutical procedures in which the At-211 activities are to be applied. 4 figures, 1 table.

  1. Radioisotope requirements and usage in the radiopharmaceutical industry

    SciTech Connect

    Langton, M.A.

    1995-12-31

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world`s largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a {open_quotes}cold kit,{close_quotes} which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product.

  2. Harvard-MIT research program in short-lived radiopharmaceuticals

    SciTech Connect

    Adelstein, S.J.

    1991-01-01

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  3. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    PubMed

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  4. A simple liquid detector for radiopharmaceutical processing systems

    SciTech Connect

    Alexoff, D.L.; Hallaba, K.; Schlyer, D.; Ferrieri, R.

    1995-03-01

    Sensing the presence of liquids in tubing and vessels in radiochemical processing equipment provides information important to the remote or automatic control of the production of clinical doses of radiopharmaceuticals. Although modern commercial automated radiopharmaceutical synthesis machines do not usually include liquid presence as a measured process variable, earlier more complex automated synthesis devices did; and the inclusion of such feedback can increase system reliability and simplify trouble-shooting tasks carried out by computer software or human operators. Commercial liquid level detectors are often designed for large-scale industrial processes and are therefore too large or expensive to be useful in many radiochemical hardware systems. An inexpensive miniature optical liquid detector originally by Kramer and Fuchs has been duplicated here for use in monitoring the presence of liquids in teflon tubing (1/16 in. O.D.) in an enriched oxygen-18 water recovery system.

  5. Freeware for reporting radiation dosimetry following the administration of radiopharmaceuticals.

    PubMed

    Gómez Perales, Jesús Luis; García Mendoza, Antonio

    2015-09-01

    This work describes the development of a software application for reporting patient radiation dosimetry following radiopharmaceutical administration. The resulting report may be included within the patient's medical records. The application was developed in the Visual Basic programming language. The dosimetric calculations are based on the values given by the International Commission on Radiological Protection (ICRP). The software is available in both Spanish and English and can be downloaded at no cost from www.radiopharmacy.net. PMID:26092354

  6. Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals

    PubMed Central

    Xu, Yu-Ping; Yang, Min

    2016-01-01

    Pancreatic cancer (PC) is a major health problem. Conventional imaging modalities show limited accuracy for reliable assessment of the tumor. Recent researches suggest that molecular imaging techniques with tracers provide more biologically relevant information and are benefit for the diagnosis of the cancer. In addition, radiopharmaceuticals also play more important roles in treatment of the disease. This review summaries the advancement of the radiolabeled compounds in the theranostics of PC. PMID:26909131

  7. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management. PMID:25144560

  8. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  9. Creation of ORNL NURBS-based phantoms: evaluation of the voxel effect on absorbed doses from radiopharmaceuticals.

    PubMed

    Gardumi, Anna; Farah, Jad; Desbrée, Aurélie

    2013-03-01

    Doses from radiopharmaceuticals absorbed by organs can be assessed using Monte Carlo simulations and computational phantoms. Patient-based voxel phantoms improve the realism of organ topology but present unrealistic stair-stepped surfaces. The goal of this research was to study the voxel effect on the basis of creation and voxelisation of a series of non-uniform rational B-spline (NURBS) reference phantoms issued from the publication of the Oak Ridge National Laboratory (ORNL). Absorbed doses from various radiopharmaceuticals were calculated and compared with the values obtained for the corresponding analytical phantoms for models of an adult male and a 5-y-old child. Dose differences lower than 12.5 % were observed when the critical structure of the skin was excluded. Moreover, the highest differences were noted for small organs and walls. Finally, all NURBS phantoms of the ORNL series, their voxelised version and the corresponding Monte Carlo N-Particle eXtended input files were programmed and are available for further simulations. PMID:22719045

  10. Silver-coated monolithic columns for separation in radiopharmaceutical applications.

    PubMed

    Sedlacek, Ondrej; Kucka, Jan; Svec, Frantisek; Hruby, Martin

    2014-04-01

    In this study, we demonstrate the preparation of a macroporous monolithic column containing anchored silver nanoparticles and its use for the elimination of excess radioiodine from the radiolabeled pharmaceutical. The poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was first functionalized with cystamine and the free thiol groups liberated by reaction with borohydride. In-house-prepared silver nanoparticles were then attached by interaction with the surface thiols. The deiodization process was demonstrated with the commonly used radiopharmaceutical m-iodobenzylguanidine labeled with radionuclide iodine-125. PMID:24478196

  11. Molecular Engineering of Technetium and Rhenium Based Radiopharmaceuticals

    SciTech Connect

    Zubieta, J.

    2003-06-30

    The research was based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of N{sub 2}S{sub 2} and N{sub 3}S donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents.

  12. Process for producing astatine-211 for radiopharmaceutical use

    SciTech Connect

    Mirzadeh, S.; Lambrecht, R.M.

    1987-07-21

    A one-step chemical manipulation is described in combination with a distillation and collection process for producing At-211 comprising; a. providing a target of irradiated Bismuth coated to a predetermined thickness of a backing member, b. providing a vapor-producing still operably connected with a condenser that has a water cooled condensate collector formed of a dry silica gel mesh maintained at a temperature above the freezing point of water, and providing an effluent gas filter that is operably connected to receive effluent gas from the condenser, c. heating the target in the still at a temperature in the range of about 630/sup 0/-680/sup 0/C for a time period in the range of 50 to 80 minutes, to evole At-211 vapor from the target, c. providing a dry carrier gas having an oxygen concentration that is sufficient to form Bi/sub 2/O/sub 3/ thereby to essentially preclude vaporization of Bi metal, passing the carrier gas through the still to carry the At-211 vapor to the condenser, and to carry effluent from the condenser to the effluent gas filter, e. eluting At-211 from the condensate collector of the condenser with a controlled volume of eluent containing predetermined solvents that are compatible with a given desired radiopharmaceutical procedure, and f. collecting the At-211 in the controlled volume of eluent for use in the given radiopharmaceutical procedure.

  13. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  14. Dose Assessments to the Hands of Radiopharmaceutical Workers

    SciTech Connect

    Ilas, Dan; Eckerman, Keith F; Sherbini, Sami; Karagiannis, Harriet

    2008-01-01

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticals were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.

  15. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  16. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    SciTech Connect

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  17. Deterioration of stannous ion in radiopharmaceutical kits during storage.

    PubMed

    McBride, M H; Shaw, S M; Kessler, W V

    1979-10-01

    The deterioration of stannous ion (Sn++) in inhouse-prepared and commercial radiopharmaceutical kits was studied. Sn++ content of three types of nonlyophilized, deoxygenated, aqueous inhouse-prepared kits [diethylenetriamine pentaacetic acid (DTPA), pyrophosphate and glucoheptonate] and of three commercially prepared kits (two lyophilized pyrophosphate kits and one diphosphonate in sealed glass ampul kit) was measured by differential pulse polarography. Inhouse-prepared kits were assayed initially and after storage for 6, 12, 24 and 48 days at 24, 5 and -18 C. Commercial kits were assayed initially and after storage for 12, 24 and 48 days at 5 and 24 C. Of the inhouse-prepared kits, Sn++ stability when stored for 48 days at 5 and 24 C. Freezer storage should be used, when possible, to insure maximum stability of Sn++ in inhouse-prepared, nonlyophilized ratiopharmaceutical kits. The commercial procedures of lyophilization and of sealing the reagent in a sealed glass ampul prolong Sn++ stability. PMID:507080

  18. Relative biological effectiveness of 99mTc radiopharmaceuticals.

    PubMed

    Narra, V R; Sastry, K S; Goddu, S M; Howell, R W; Strand, S E; Rao, D V

    1994-12-01

    The radiotoxicity of three 99mTc-labeled compounds is investigated using spermatogenesis in mouse testis as the experimental model, and spermatogonial cell survival as the biological end point. The radiopharmaceuticals studied are pertechnetate (99mTcO4-), pyrophosphate (99mTc-PYP), and hydroxyethylene diphosphate (99mTc-HDP). The mean lethal doses at 37% survival (D37) are 0.70 +/- 0.06, 0.84 +/- 0.13, and 0.59 +/- 0.08 Gy for 99mTcO4-, 99mTc-PYP, and 99mTc-HDP, respectively. When these results are compared with the D37 value obtained with external x rays or internal gamma rays, the relative biological effectiveness (RBE) of these compounds are 0.94 +/- 0.09, 0.79 +/- 0.13, and 1.1 +/- 0.16, respectively. These results show that the radiotoxicity of 99mTc in mouse testis is essentially similar to that of low-LET radiations (i.e., RBE approximately 1). To understand these results, the distribution of these radiocompounds in the testis is determined and correlated with the observed RBE values. The expected range of RBE values for 99mTc radiopharmaceuticals in organs is 0.95 to 1.5, depending on the fraction of organ activity that is bound to DNA. This suggests that the Auger electrons emitted in the decay of 99mTc are not capable of causing extreme toxicity in vivo. These results provide further support for 99mTc as the radionuclide of choice for imaging in nuclear medicine. PMID:7700199

  19. A rapid and efficient preparation of [123I]radiopharmaceuticals using a small HPLC (Rocket) column.

    PubMed

    Katsifis, Andrew; Papazian, Vahan; Jackson, Timothy; Loc'h, Christian

    2006-01-01

    A simplified method for the rapid and efficient preparation of [(123)I]radiopharmaceuticals is described. Three radiopharmaceuticals, [(123)I]beta-CIT, [(123)I]MIBG and [(123)I]clioquinol, were synthesised and purified as model compounds. The radiotracers were labelled with iodine-123 using electrophilic oxidative conditions and purified by a compact semi-preparative reverse phase column (C-18, 3 microm, 7 x 53 mm, Alltima Rocket, Alltech) using aqueous-ethanol as HPLC solvents that were directly used for radiopharmaceutical formulation. The radiochemical purity of the radioiodinated tracers as assessed by analytical HPLC was higher than 99% with specific activity higher than 3 GBq/nmol. The total preparation time of a radiotracer ranged from 40 to 60 min and, starting from 3.7 GBq of iodine-123, more than 2.5 GBq of formulated radiopharmaceuticals were available for clinical investigations. PMID:16129607

  20. USE OF RADIOPHARMACEUTICALS IN DIAGNOSTIC NUCLEAR MEDICINE IN THE UNITED STATES: 1960–2010

    PubMed Central

    Drozdovitch, Vladimir; Brill, Aaron B.; Callahan, Ronald J.; Clanton, Jeffrey A.; DePietro, Allegra; Goldsmith, Stanley J.; Greenspan, Bennett S.; Gross, Milton D.; Hays, Marguerite T.; Moore, Stephen C.; Ponto, James A.; Shreeve, Walton W.; Melo, Dunstana R.; Linet, Martha S.; Simon, Steven L.

    2014-01-01

    To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, we assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake, brain scan, brain blood flow, lung perfusion and ventilation, bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans, cardiac imaging procedures, tumor localization studies, localization of gastrointestinal bleeding, and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologist’s cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations. PMID:25811150

  1. Sophia Daemon Version 12

    SciTech Connect

    2012-08-09

    Sophia Daemon Version 12 contains the code that is exclusively used by the ‘sophiad’ application. It runs as a service on a Linux host and analyzes network traffic obtained from libpcap and produces a network fingerprint based on hosts and channels. Sophia Daemon Version 12 can, if desired by the user, produce alerts when its fingerprint changes. Sophia Daemon Version 12 can receive data from another Sophia Daemon or raw packet data. It can output data to another Sophia Daemon Version 12, OglNet Version 12 or MySQL. Sophia Daemon Version 12 runs in a passive real-time manner that allows it to be used on a SCADA network. Its network fingerprint is designed to be applicable to SCADA networks rather than general IT networks.

  2. Sophia Daemon Version 12

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    Sophia Daemon Version 12 contains the code that is exclusively used by the ‘sophiad’ application. It runs as a service on a Linux host and analyzes network traffic obtained from libpcap and produces a network fingerprint based on hosts and channels. Sophia Daemon Version 12 can, if desired by the user, produce alerts when its fingerprint changes. Sophia Daemon Version 12 can receive data from another Sophia Daemon or raw packet data. It can outputmore » data to another Sophia Daemon Version 12, OglNet Version 12 or MySQL. Sophia Daemon Version 12 runs in a passive real-time manner that allows it to be used on a SCADA network. Its network fingerprint is designed to be applicable to SCADA networks rather than general IT networks.« less

  3. Radiopharmaceutical Therapy in the Era of Precision Medicine*

    PubMed Central

    Sgouros, George; Goldenberg, David M.

    2014-01-01

    Precision medicine is the selection of a treatment modality that is specifically tailored to the genetic and phenotypic characteristics of a particular patient’s disease. In cancer, the objective is to treat with agents that inhibit cell signaling pathways that drive uncontrolled proliferation and dissemination of the disease. To overcome the eventual resistance to pathway inhibition therapy, this treatment modality has been combined with chemotherapy. We propose that pathway inhibition therapy is more rationally combined with radiopharmaceutical therapy (RPT), a cytotoxic treatment that is also targeted. RPT exploits pharmaceuticals that either bind specifically to tumors or accumulate by a broad array of physiological mechanisms indigenous to the neoplastic cells to deliver radiation specifically to these cells. Consistent with pathway inhibition therapy and in contrast to chemotherapy, RPT is well tolerated. However, the potential of RPT has not been fully exploited; for the most part, treatment has been implemented without using the ability to customize RPT by imaging and deriving individual patient tumor and normal organ radiation absorbed doses. These are more closely related to biological response and their determination should enable RPT treatment administration to maximum therapeutic benefit by treating to normal organ tolerance or demonstrating futility via tumor dosimetry. This is the essence of precision medicine. PMID:24953565

  4. AUTOMATION FOR THE SYNTHESIS AND APPLICATION OF PET RADIOPHARMACEUTICALS.

    SciTech Connect

    Alexoff, D.L.

    2001-09-21

    The development of automated systems supporting the production and application of PET radiopharmaceuticals has been an important focus of researchers since the first successes of using carbon-11 (Comar et al., 1979) and fluorine-18 (Reivich et al., 1979) labeled compounds to visualize functional activity of the human brain. These initial successes of imaging the human brain soon led to applications in the human heart (Schelbert et al., 1980), and quickly radiochemists began to see the importance of automation to support PET studies in humans (Lambrecht, 1982; Langstrom et al., 1983). Driven by the necessity of controlling processes emanating high fluxes of 511 KeV photons, and by the tedium of repetitive syntheses for carrying out these human PET investigations, academic and government scientists have designed, developed and tested many useful and novel automated systems in the past twenty years. These systems, originally designed primarily by radiochemists, not only carry out effectively the tasks they were designed for, but also demonstrate significant engineering innovation in the field of laboratory automation.

  5. Synthesis and biological studies of positron-emitting radiopharmaceuticals

    SciTech Connect

    Dischino, D.D.

    1983-01-01

    The development and clinical evaluation of two-positron emitting radiopharmaceuticals designed to image myelin in humans is reported. Carbon-11-labeled benzyl methyl ether was synthesized by the reaction of carbon-11-labeled methanol and benzyl chloride in dimethyl sulfoxide containing powdered potassium hydroxide in a radiochemical yield of 43% and a synthesis and purification time of 40 minutes. Carbon-11-labeled diphenylmethanol was synthesized by the reaction of carbon-11-labeled carbon dioxide and phenyllithium followed by the reduction of the carbon-11-labeled intermediate to diphenylmethanol via lithium aluminum hydride in a radiochemical yield of 71% and a synthesis and purification time of 38 minutes. Carbon-11-labeled benzyl methyl ether and diphenylmethanol were each evaluated as myelin imaging agents in three patients with multiple sclerosis via positron-emission tomography. In two out of three patients studied with carbon-11-labeled benzyl methyl ether, the distribution of activity in the brain was not consistent with local lipid content. A new synthesis of carbon-11-labeled-DL-phenylalanine labeled in the benzylic position and the synthesis of fluorine-18-labeled 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol, a potential in vivo marker of hypoxic tissue, are reported.

  6. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  7. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  8. PET - radiopharmaceutical facilities at Washington University Medical School - an overview

    SciTech Connect

    Dence, C.S.; Welch, M.J.

    1994-12-31

    The PET program at Washington University has evolved over more than three decades of research and development in the use of positron-emitting isotopes in medicine and biology. In 1962 the installation of the first hospital cyclotron in the USA was accomplished. This first machine was an Allis Chalmers (AC) cyclotron and it was operated until July, 1990. Simultaneously with this cyclotron the authors also ran a Cyclotron Corporation (TCC) CS-15 cyclotron that was purchased in 1977. Both of these cyclotrons were maintained in-house and operated with a relatively small downtime (approximately 3.5%). After the dismantling of the AC machine in 1990, a Japanese Steel Works 16/8 (JSW-16/8) cyclotron was installed in the vault. Whereas the AC cyclotron could only accelerate deuterons (6.2 MeV), the JSW - 16/8 machine can accelerate both protons and deuterons, so all of the radiopharmaceuticals can be produced on either of the two presently owned accelerators. At the end of May 1993, the medical school installed the first clinical Tandem Cascade Accelerator (TCA) a collaboration with Science Research Laboratories (SRL) of Somerville, MA. Preliminary target testing, design and development are presently under way. In 1973, the University installed the first operational PETT device in the country, and at present there is a large basic science and clinical research program involving more than a hundred staff in nuclear medicine, radiation sciences, neurology, neurosurgery, psychiatry, cardiology, pulmonary medicine, oncology, and surgery.

  9. Version 0 (V0)

    Atmospheric Science Data Center

    2012-11-29

    The development of EOSDIS will be evolutionary in nature and will be built in a series of versions to facilitate change by incorporating existing technologies, scientific expertise, ... and supporting infrastructure. The first step in this evolutionary process is EOSDIS Version 0 -- a working prototype. ...

  10. Versioning Complex Data

    SciTech Connect

    Macduff, Matt C.; Lee, Benno; Beus, Sherman J.

    2014-06-29

    Using the history of ARM data files, we designed and demonstrated a data versioning paradigm that is feasible. Assigning versions to sets of files that are modified with some special assumptions and domain specific rules was effective in the case of ARM data, which has more than 5000 datastreams and 500TB of data.

  11. CARE 3, Version 4 enhancements

    NASA Technical Reports Server (NTRS)

    Bryant, L. A.; Stiffler, J. J.

    1985-01-01

    The enhancements and error corrections to CARE III Version 4 are listed. All changes to Version 4 with the exception of the internal redundancy model were implemented in Version 5. Version 4 is the first public release version for execution on the CDC Cyber 170 series computers. Version 5 is the second release version and it is written in ANSI standard FORTRAN 77 for execution on the DEC VAX 11/700 series computers and many others.

  12. In Vitro Assessment of the In Vivo Stability of Cu-64 Radiopharmaceuticals

    SciTech Connect

    Packard, Alan B

    2011-12-15

    Research Plans: The successful development of Cu-64 radiopharmaceuticals depends upon retention of the Cu-64 atom in the radiopharmaceutical. To date, the focus has been on the development of chelators that better retain Cu-64, but there has been no effort to develop an effective method by which improved retention may be measured. In the absence of a suitable analytical method, the stability of Cu-64 radiopharmaceuticals is estimated indirectly, with decreased liver uptake suggesting higher in vivo complex stability. But this approach is inadequate for radiopharmaceuticals, such as radiolabeled antibodies, that are expected to accumulate in the liver even when there is no free Cu-64 present. The absence of such a method has also hampered efforts to systematically evaluate the chemical factors that may give rise to improved retention. The objective of this project is to develop and validate such a method. Accomplishments: The two primary accomplishments of this project will be 1) the development and validation of a method to measure the stability of Cu-64 radiopharmaceuticals and 2) the determination of the chemical factors that define the in vivo stability of Cu 64 radiopharmaceuticals. Because Cu(II) is extremely labile, the in vivo stability of Cu-64 radiopharmaceuticals is not primarily determined by the amount of free Cu that is present at any given time or by the thermodynamic stability constants, but rather by the rate at which Cu is lost from the complex, the dissociation rate constant, kd. The dissociation rate constants of the Cu-64 complexes from a series of bifunctional chelators (BFCs) will be measured using Free Ion Selective Radiotracer Extraction (FISRE), a technique originally developed to measure bioavailable Cu in environmental samples. FISRE will also be applied to the determination of the kd's of a series of reference Cu-64 complexes to determine the chemical factors that define the in vivo stability of Cu-64 radiopharmaceuticals. Potential

  13. Intelligent portal monitor for fast suppression of false positives due to radiopharmaceuticals

    SciTech Connect

    Johnson, M.W.; Butterfield, K.B.

    1985-01-01

    Monitoring the movement of radioactive material through secure or sensitive areas may be complicated by the existence of unanticipated sources of radiation carried by individuals passing through the area. Typical of such sources are radiopharmaceuticals prescribed for a medical procedure. We report here on an apparatus designed to quickly discriminate between in-vivo radiopharmaceuticals and other nuclear materials, based on a pattern-recognition algorithm and a microcomputer. Principles of operation are discussed, and the data base for the pattern-recognition algorithm is displayed. Operating experience with the apparatus in a trial location is also discussed. Our apparatus correctly identifies in-vivo radiopharmaceuticals in over 80% of all trials; challenges with radioisotopes other than radiopharmaceuticals have led the apparatus, without exception, to reject the challenge isotope as incompatible with medical practice. The apparatus thus rapidly discriminates between individuals bearing radiopharmaceuticals and those bearing illicit sources, such as special nuclear materials. Examples of applications are presented. 7 refs., 4 figs., 1 tab.

  14. Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.

    PubMed

    Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J

    1999-11-01

    Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF. PMID:10572914

  15. Underwire Version 12 (SOPHIA)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    Underwire Version 12 is code that provides generic functionality that is common between several projects of these authors. This functionality provides a common API for such things as logging and signal handling that speed up development of new applications.

  16. Sophia Client Version 12

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    Sophia Client Version 12 offers command line access to the Sophia Daemon and the Sophia database files. It provides print, fingerprint, acknowledge, color coding and status access to these other resources.

  17. Version pressure feedback mechanisms for speculative versioning caches

    DOEpatents

    Eichenberger, Alexandre E.; Gara, Alan; O& #x27; Brien, Kathryn M.; Ohmacht, Martin; Zhuang, Xiaotong

    2013-03-12

    Mechanisms are provided for controlling version pressure on a speculative versioning cache. Raw version pressure data is collected based on one or more threads accessing cache lines of the speculative versioning cache. One or more statistical measures of version pressure are generated based on the collected raw version pressure data. A determination is made as to whether one or more modifications to an operation of a data processing system are to be performed based on the one or more statistical measures of version pressure, the one or more modifications affecting version pressure exerted on the speculative versioning cache. An operation of the data processing system is modified based on the one or more determined modifications, in response to a determination that one or more modifications to the operation of the data processing system are to be performed, to affect the version pressure exerted on the speculative versioning cache.

  18. Radiopharmaceuticals for diagnosis. [Final] report, 1 January 1991--31 December 1993

    SciTech Connect

    Kuhl, D.E.

    1993-06-01

    Since 1987, this grant has supported the development of new radiochemical methods for use with short-lived, positron-emitting radionuclides; new laboratory techniques for radiochemical syntheses; and development of new radiopharmaceuticals which will be of use in Positron Emission Tomography. For the period 1 January 1991 to 31 December 1993, the authors have continued their efforts in all of these areas, as they feel that an integrated approach to the synthesis and characterization of new PET Radiopharmaceuticals is crucial to the continued growth and application of this imaging technique in modern medicine. Progress in a number of these areas is described in this report.

  19. Lutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System

    PubMed Central

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Pavlakis, Nick; Roach, Paul J

    2015-01-01

    Objective(s): Peptide Receptor Radionuclide Therapy (PRRT) with yttrium-90 (90Y) and lutetium-177 (177Lu)-labelled SST analogues are now therapy option for patients who have failed to respond to conventional medical therapy. In-house production with automated PRRT synthesis systems have clear advantages over manual methods resulting in increasing use in hospital-based radiopharmacies. We report on our one year experience with an automated radiopharmaceutical synthesis system. Methods: All syntheses were carried out using the Eckert & Ziegler Eurotope’s Modular-Lab Pharm Tracer® automated synthesis system. All materials and methods used were followed as instructed by the manufacturer of the system (Eckert & Ziegler Eurotope, Berlin, Germany). Sterile, GMP-certified, no-carrier added (NCA) 177Lu was used with GMP-certified peptide. An audit trail was also produced and saved by the system. The quality of the final product was assessed after each synthesis by ITLC-SG and HPLC methods. Results: A total of 17 [177Lu]-DOTATATE syntheses were performed between August 2013 and December 2014. The amount of radioactive [177Lu]-DOTATATE produced by each synthesis varied between 10-40 GBq and was dependant on the number of patients being treated on a given day. Thirteen individuals received a total of 37 individual treatment administrations in this period. There were no issues and failures with the system or the synthesis cassettes. The average radiochemical purity as determined by ITLC was above 99% (99.8 ± 0.05%) and the average radiochemical purity as determined by HPLC technique was above 97% (97.3 ± 1.5%) for this period. Conclusions: The automated synthesis of [177Lu]-DOTATATE using Eckert & Ziegler Eurotope’s Modular-Lab Pharm Tracer® system is a robust, convenient and high yield approach to the radiolabelling of DOTATATE peptide benefiting from the use of NCA 177Lu and almost negligible radiation exposure of the operators. PMID:27408890

  20. Auger Radiopharmaceutical Therapy Targeting Prostate-Specific Membrane Antigen

    PubMed Central

    Kiess, Ana P.; Hobbs, Robert; Sgouros, George; Mease, Ronnie C.; Pullambhatla, Mrudula; Shen, Colette J.; Foss, Catherine A.; Pomper, Martin G.

    2015-01-01

    Auger electron emitters such as 125I have a high linear energy transfer and short range of emission (<10 μm), making them suitable for treating micrometastases while sparing normal tissues. We used a highly specific small molecule targeting the prostate-specific membrane antigen (PSMA) to deliver 125I to prostate cancer cells. Methods The PSMA-targeting Auger emitter 2-[3-[1-carboxy-5-(4-125I-iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid (125I-DCIBzL) was synthesized. DNA damage (via phosphorylated H2A histone family member X staining) and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA−) PC3 flu human prostate cancer cells after treatment with 125I-DCIBzL. Subcellular drug distribution was assessed with confocal microscopy using a related fluorescent PSMA-targeting compound YC-36. In vivo antitumor efficacy was tested in nude mice bearing PSMA+ PC3 PIP or PSMA− PC3 flu flank xenografts. Animals were administered (intravenously) 111 MBq (3 mCi) of 125I-DCIBzL, 111 MBq (3 mCi) of 125I-NaI, an equivalent amount of nonradiolabeled DCIBzL, or saline. Results After treatment with 125I-DCIBzL, PSMA+ PC3 PIP cells exhibited increased DNA damage and decreased clonogenic survival when compared with PSMA− PC3 flu cells. Confocal microscopy of YC-36 showed drug distribution in the perinuclear area and plasma membrane. Animals bearing PSMA+ PC3 PIP tumors had significant tumor growth delay after treatment with 125I-DCIBzL, with only 1 mouse reaching 5 times the initial tumor volume by 60 d after treatment, compared with a median time to 5 times volume of less than 15 d for PSMA− PC3 flu tumors and all other treatment groups (P = 0.002 by log-rank test). Conclusion PSMA-targeted radiopharmaceutical therapy with the Auger emitter 125I-DCIBzL yielded highly specific antitumor efficacy in vivo, suggesting promise for treatment of prostate cancer micrometastases. PMID:26182968

  1. MAFIA Version 4

    NASA Astrophysics Data System (ADS)

    Weiland, T.; Bartsch, M.; Becker, U.; Bihn, M.; Blell, U.; Clemens, M.; Dehler, M.; Dohlus, M.; Drevlak, M.; Du, X.; Ehmann, R.; Eufinger, A.; Gutschling, S.; Hahne, P.; Klatt, R.; Krietenstein, B.; Langstrof, A.; Pinder, P.; Podebrad, O.; Pröpper, T.; van Rienen, U.; Schmidt, D.; Schuhmann, R.; Schulz, A.; Schupp, S.; Schütt, P.; Thoma, P.; Timm, M.; Wagner, B.; Weber, R.; Wipf, S.; Wolter, H.; Min, Z.

    1997-02-01

    MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundary conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.

  2. Solergy (Beta Version 1)

    Energy Science and Technology Software Center (ESTSC)

    2009-03-30

    SOLERGY simulates the operation and power output of a user-defined solar central receiver power plant for a time period of up to one year. SOLERGY utilizes recorded or simulated weather data and plant component performance models to calculate the power flowing through each part of the solar plant. A plant control subroutine monitors these powers and determines when to operate the various plant subsystems. The original version of the code was released in May 1987,more » within SAND86-8060 and was widely distributed. The Beta Version 1 to be released in 2009, includes some relatively small modifications to the original code.« less

  3. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2004-12-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  4. Versioning of printed products

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    2005-01-01

    During the definition of a printed product in an MIS system, a lot of attention is paid to the production process. The MIS systems typically gather all process-related parameters at such a level of detail that they can determine what the exact cost will be to make a specific product. This information can then be used to make a quote for the customer. Considerably less attention is paid to the content of the products since this does not have an immediate impact on the production costs (assuming that the number of inks or plates is known in advance). The content management is typically carried out either by the prepress systems themselves or by dedicated workflow servers uniting all people that contribute to the manufacturing of a printed product. Special care must be taken when considering versioned products. With versioned products we here mean distinct products that have a number of pages or page layers in common. Typical examples are comic books that have to be printed in different languages. In this case, the color plates can be shared over the different versions and the black plate will be different. Other examples are nation-wide magazines or newspapers that have an area with regional pages or advertising leaflets in different languages or currencies. When considering versioned products, the content will become an important cost factor. First of all, the content management (and associated proofing and approval cycles) becomes much more complex and, therefore, the risk that mistakes will be made increases considerably. Secondly, the real production costs are very much content-dependent because the content will determine whether plates can be shared across different versions or not and how many press runs will be needed. In this paper, we will present a way to manage different versions of a printed product. First, we will introduce a data model for version management. Next, we will show how the content of the different versions can be supplied by the customer

  5. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain.

    PubMed

    Paes, Fabio M; Serafini, Aldo N

    2010-03-01

    Bone pain due to skeletal metastases constitutes the most common type of chronic pain among patients with cancer. It significantly decreases the patient's quality of life and is associated with comorbidities, such as hypercalcemia, pathologic fractures and spinal cord compression. Approximately 65% of patients with prostate or breast cancer and 35% of those with advanced lung, thyroid, and kidney cancers will have symptomatic skeletal metastases. The management of bone pain is extremely difficult and involves a multidisciplinary approach, which usually includes analgesics, hormone therapies, bisphosphonates, external beam radiation, and systemic radiopharmaceuticals. In patients with extensive osseous metastases, systemic radiopharmaceuticals should be the preferred adjunctive therapy for pain palliation. In this article, we review the current approved radiopharmaceutical armamentarium for bone pain palliation, focusing on indications, patient selection, efficacy, and different biochemical characteristics and toxicity of strontium-89 chloride, samarium-153 lexidronam, and rhenium-186 etidronate. A brief discussion on the available data on rhenium-188 is presented focusing on its major advantages and disadvantages. We also perform a concise appraisal of the other available treatment options, including pharmacologic and hormonal treatment modalities, external beam radiation, and bisphosphonates. Finally, the available data on combination therapy of radiopharmaceuticals with bisphosphonates or chemotherapy are discussed. PMID:20113678

  6. Design of CGMP Production of 18F- and 68Ga-Radiopharmaceuticals

    PubMed Central

    Chu, Pei-Chun; Chao, Hao-Yu; Shieh, Wei-Chen; Chen, Chuck C.

    2014-01-01

    Objective. Radiopharmaceutical production process must adhere to current good manufacturing process (CGMP) compliance to ensure the quality of precursor, prodrug (active pharmaceutical ingredient, API), and the final drug product that meet acceptance criteria. We aimed to develop an automated system for production of CGMP grade of PET radiopharmaceuticals. Methods. The hardware and software of the automated synthesizer that fit in the hot cell under cGMP requirement were developed. Examples of production yield and purity for 68Ga-DOTATATE and 18F-FDG at CGMP facility were optimized. Analytical assays and acceptance criteria for cGMP grade of 68Ga-DOTATATE and 18F-FDG were established. Results. CGMP facility for the production of PET radiopharmaceuticals has been established. Radio-TLC and HPLC analyses of 68Ga-DOTATATE and 18F-FDG showed that the radiochemical purity was 92% and 96%, respectively. The products were sterile and pyrogenic-free. Conclusion. CGMP compliance of radiopharmaceuticals has been reviewed. 68Ga-DOTATATE and 18F-FDG were synthesized with high radiochemical yield under CGMP process. PMID:25276810

  7. Harvard-MIT research program in short-lived radiopharmaceuticals. Technical progress report, 1991

    SciTech Connect

    Adelstein, S.J.

    1991-12-31

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  8. Transport Version 3

    Energy Science and Technology Software Center (ESTSC)

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  9. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases.

    PubMed

    Lange, Rogier; Ter Heine, Rob; Knapp, Russ Ff; de Klerk, John M H; Bloemendal, Haiko J; Hendrikse, N Harry

    2016-10-01

    Therapeutic phosphonate-based radiopharmaceuticals radiolabeled with beta, alpha and conversion electron emitting radioisotopes have been investigated for the targeted treatment of painful bone metastases for >35years. We performed a systematic literature search and focused on the pharmaceutical development, preclinical research and early human studies of these radiopharmaceuticals. The characteristics of an ideal bone-targeting therapeutic radiopharmaceutical are presented and compliance with these criteria by the compounds discussed is verified. The importance of both composition and preparation conditions for the stability and biodistribution of several agents is discussed. Very few studies have described the characterization of these products, although knowledge on the molecular structure is important with respect to in vivo behavior. This review discusses a total of 91 phosphonate-based therapeutic radiopharmaceuticals, of which only six agents have progressed to clinical use. Extensive clinical studies have only been described for (186)Re-HEDP, (188)Re-HEDP and (153)Sm-EDTMP. Of these, (153)Sm-EDTMP represents the only compound with worldwide marketing authorization. (177)Lu-EDTMP has recently received approval for clinical use in India. This review illustrates that a thorough understanding of the radiochemistry of these agents is required to design simple and robust preparation and quality control methods, which are needed to fully exploit the potential benefits of these theranostic radiopharmaceuticals. Extensive biodistribution and dosimetry studies are indispensable to provide the portfolios that are required for assessment before human administration is possible. Use of the existing knowledge collected in this review should guide future research efforts and may lead to the approval of new promising agents. PMID:27496068

  10. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  11. AERONET Version 3 processing

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Slutsker, I.; Giles, D. M.; Eck, T. F.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Rodriguez, J.

    2014-12-01

    The Aerosol Robotic Network (AERONET) database has evolved in measurement accuracy, data quality products, availability to the scientific community over the course of 21 years with the support of NASA, PHOTONS and all federated partners. This evolution is periodically manifested as a new data version release by carefully reprocessing the entire database with the most current algorithms that fundamentally change the database and ultimately the data products used by the community. The newest processing, Version 3, will be released in 2015 after the entire database is reprocessed and real-time data processing becomes operational. All V 3 algorithms have been developed, individually vetted and represent four main categories: aerosol optical depth (AOD) processing, inversion processing, database management and new products. The primary trigger for release of V 3 lies with cloud screening of the direct sun observations and computation of AOD that will fundamentally change all data available for analysis and all subsequent retrieval products. This presentation will illustrate the innovative approach used for cloud screening and assesses the elements of V3 AOD relative to the current version. We will also present the advances in the inversion product processing with emphasis on the random and systematic uncertainty estimates. This processing will be applied to the new hybrid measurement scenario intended to provide inversion retrievals for all solar zenith angles. We will introduce automatic quality assurance criteria that will allow near real time quality assured aerosol products necessary for real time satellite and model validation and assimilation. Last we will introduce the new management structure that will improve access to the data database. The current version 2 will be supported for at least two years after the initial release of V3 to maintain continuity for on going investigations.

  12. Joint CDRH (Center for Devices and Radiological Health) and state quality-assurance surveys in nuclear medicine: Phase 2 - radiopharmaceuticals

    SciTech Connect

    Hamilton, D.R.; Evans, C.D.

    1986-08-01

    The report discusses survey results on aspects of the quality assurance of radio-pharmaceuticals from 180 nuclear-medicine facilities in the United States. Data were collected from facilities in 8 states. Demographic information about nuclear-medicine operations and quality-assurance programs was gathered by state radiation-control-program personnel. The data collected from the survey show an incomplete acceptance of quality-assurance practices for radiopharmaceuticals. Most of the facilities in the survey indicated that, because an inferior radiopharmaceutical was prepared so infrequently, they did not believe it was cost-effective to perform extensive quality-assurance testing. The Center for Devices and Radiological Health hopes that the information from the survey will stimulate nuclear-medicine professionals and their organizations to encourage appropriate testing of all radiopharmaceuticals.

  13. Radiobiological Optimization of Combination Radiopharmaceutical Therapy Applied to Myeloablative Treatment of Non-Hodgkin’s Lymphoma

    PubMed Central

    Hobbs, Robert F; Wahl, Richard L; Frey, Eric C; Kasamon, Yvette; Song, Hong; Huang, Peng; Jones, Richard J; Sgouros, George

    2014-01-01

    Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid ‘90s, such treatment strategies have only been implemented clinically recently, and without a rigorous methodology for treatment optimization. Radiobiological and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiological normal organ tolerance while optimizing the ratio of two different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-hodgkin’s lymphoma (NHL) patients using 131I-tositumomab and 90Y-ibritumomab tiuxetan. Methods The range of potential administered activities (AA) is limited by the normal organ maximum tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose limiting normal organs are expected to be the lungs for 131I-tositumomab and the liver for 90Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal organ constraints as a function of the AAs and calculating tumor biological effective dose (BED) along the normal organ MTBED limits, the optimal combination of activities is obtained. The model was tested using previously acquired patient normal organ and tumor kinetic data and MTBED values taken from the literature. Results The average AA values based solely on normal organ constraints was (19.0 ± 8.2) GBq with a range of 3.9 – 36.9 GBq for 131I-tositumomab, and (2.77 ± 1.64) GBq with a range of 0.42 – 7.54 GBq for 90Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal organ kinetics for the two radiopharmaceuticals. Results included AA ranges

  14. Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.

    2001-01-01

    Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.

  15. Development of a modular system for the synthesis of PET [(11)C]labelled radiopharmaceuticals.

    PubMed

    Boschi, Stefano; Lodi, Filippo; Cicoria, Gianfranco; Raul Ledesma, Jorge; Knopp, Roger; Rizzello, Anna; Di Pierro, Donato; Trespidi, Silvia; Marengo, Mario

    2009-10-01

    [((11))C]labelled radiopharmaceuticals as N-[(11)C]methyl-choline ([(11)C]choline), l-(S-methyl-[(11)C])methionine ([(11)C]methionine) and [(11)C]acetate have gained increasing importance in clinical PET and for the routine production of these radiopharmaceuticals, simple and reliable modules are needed to produce clinically relevant radioactivity. On the other hand, flexible devices are needed not only for the routine synthesis but also for more complex applications as the development of new tracers. The aim of this work was the adaptation of an Eckert Ziegler modular system for easy routine synthesis of [(11)C]choline, [(11)C]methionine and [(11)C]acetate using components that account for straightforward scaling up and upgrades. PMID:19535255

  16. Diagnostic radiopharmaceuticals for localization in target tissues exhibiting a regional PH shift relative to surrounding tissues

    SciTech Connect

    Blau, M.; Kung, H. F.

    1984-10-02

    A radiopharmaceutical chemical compound comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one amine group. The compound has a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compound has a percent protein binding of less than ninety percent. A method for selectively depositing a radiopharmaceutical compound in at least one target tissue or organ of a mammal, which tissue or organ has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal.

  17. Internal dose assessment for 211At α-emitter in isotonic solution as radiopharmaceutical

    NASA Astrophysics Data System (ADS)

    Yuminov, O. A.; Fotina, O. V.; Priselkova, A. B.; Tultaev, A. V.; Platonov, S. Yu.; Eremenko, D. O.; Drozdov, V. A.

    2003-12-01

    The functional fitness of the α-emitter 211At for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for 211At in isotonic solution and for 123I as sodium iodide. Analysis of the 211At radiation dose to the thyroid gland suggests that this radiopharmaceutical may be predominantly used for the treatment of the thyroid cancer.

  18. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms]. Performance report

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  19. Development new radiopharmaceutical based on 5-thio-d- glucose labeled technetium-99m

    NASA Astrophysics Data System (ADS)

    Stasyuk, E. S.; Skuridin, V. S.; Ilina, E. A.; Rogov, A. S.; Nesterov, E. A.; Sadkin, V. L.; Larionova, L. A.; Varlamova, N. V.; Zelchan, R.

    2016-06-01

    The article considers the obtaining and possibility of using 5-thio-D-glucose labeled technetium-99m for the diagnosis of malignant tumors by single photon emission computed tomography. The analysis of the level of international developments of radiopharmaceuticals based on derivatives of glucose has been carried out. Also the article provides information on of using experimental batches of lyophilisate on the basis of 5-thio-D-glucose for preliminary biomedical testing on the mice.

  20. PVWatts Version 5 Manual

    SciTech Connect

    Dobos, A. P.

    2014-09-01

    The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.

  1. In vitro assays for assessing the potential for copper complexes to function as radiopharmaceutical agents.

    PubMed

    Barnard, P J; Bayly, S R; Holland, J P; Dilworth, J R; Waghorn, P A

    2008-09-01

    A series of chemical in vitro assays are described to provide a rapid initial assessment of the in vivo stability and biological behaviour of potential new copper(II) based radiopharmaceutical agents. Chemical challenges using an excess of cysteine, glutathione (GSH) and histidine, which are models of S- and N-donor molecules found in vivo, are used to provide a measure of the potential for loss of the copper(II) ion from the radiopharmaceutical as a result of ligand dissociation. In addition, thiol containing molecules such as cysteine and GSH provide a redox challenge, whereby the copper(II) complex may be reduced to give a copper(I) species. The stability of the copper(I) species toward oxidation, protonation, and ligand dissociation may be crucial in determining the biodistribution, the biological half-life and excretion mechanisms of a potential radiopharmaceutical. Further evaluation of the redox stability is assessed using the ubiquitous biological reductant ascorbic acid. The relative stability of a complex with respect to ligand dissociation in human serum provides one of the most important experiments assessing the potential of a complex to be used in vivo. Further challenge experiments with serum proteins such as thioredoxin and serum albumin can be used to provide more detailed information on the probable fate of the complex in serum. Evaluation of complex stability and speciation over a range of pH values may also be used to obtain information on potential biodistribution. PMID:18551094

  2. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    SciTech Connect

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  3. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1977-October 31, 1980

    SciTech Connect

    Welch, M.J.

    1980-06-01

    Although the germanium-68 ..-->.. gallium-68 generator is probably the only source of positron-emitting radionuclides that could enable the widespread application of positron tomography, the commercially available /sup 68/Ga//sup 68/Ge generator system suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, which forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than /sup 68/Ga-EDTA, it is first necessary to break the stable EDTA complex and remove all traces of EDTA. This procedure adds several steps and a significant amount of time to procedures for preparing /sup 68/Ga-radiopharmaceuticals. We have developed a new generator using a solvent extraction system which will produce /sup 68/Ga-oxine (8-hydroxyquinoline), a weak chelate. Using this agent we have synthesized several /sup 68/Ga-radiopharmaceuticals and tested them in vitro and in vivo. We have also carried out some preliminary studies to compare generator systems which produce /sup 68/Ga in an ionic form. Attempts have been made using polarographic and chromatographic techniques, and in vivo distribution data to investigate the stability of radiogallium complexes with a series of potentially lipophilic complexing agents.

  4. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223.

    PubMed

    Anderson, Peter M; Subbiah, Vivek; Rohren, Eric

    2014-01-01

    Osteosarcoma is a cancer characterized by formation of bone by malignant cells. Routine bone scan imaging with Tc-99m-MDP is done at diagnosis to evaluate primary tumor uptake and check for bone metastases. At time of relapse the Tc-99m-MDP bone scan also provides a specific means to assess formation of bone by malignant osteosarcoma cells and the potential for bone-seeking radiopharmaceuticals to deliver radioactivity directly into osteoblastic osteosarcoma lesions. This chapter will review and compare a bone-seeking radiopharmaceutical that emits beta-particles, samarium-153-EDTMP, with an alpha-particle emitter, radium-223. The charged alpha particles from radium-223 have far more mass and energy than beta particles (electrons) from Sm-153-EDTMP. Because radium-223 has less marrow toxicity and more radiobiological effectiveness, especially if inside the bone forming cancer cell than samarium-153-EDTMP, radium-223 may have greater potential to become widely used against osteosarcoma as a targeted therapy. Radium-223 also has more potential to be used with chemotherapy against osteosarcoma and bone metastases. Because osteosarcoma makes bone and radium-223 acts like calcium, this radiopharmaceutical could possibly become a new targeted means to achieve safe and effective reduction of tumor burden as well as facilitate better surgery and/or radiotherapy for difficult to resect large, or metastatic tumors. PMID:24924181

  5. Species Dependence of [64Cu]Cu-Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumins

    PubMed Central

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction Interactions of three copper(II) bis(thiosemicarbazone) PET radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods 64Cu-labeled diacetyl bis(N4-methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II) (Cu-PTSM), and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon, and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat, and mouse serum. Results The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/mL, “% Free” (non-albumin-bound) levels of radiopharmaceutical were 4.0 ± 0.1%; 5.3 ± 0.2%; and 38.6 ± 0.8% for Cu-PTSM; Cu-ATSM; and Cu-ETS, respectively. Conclusions Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans. PMID:18355683

  6. Traceability from governmental producers of radiopharmaceuticals in measuring (18)F in Brazil.

    PubMed

    Oliveira, A E; Iwahara, A; Silva, C J; Cruz, P A L; Poledna, R; Silva, R L; Laranjeira, A S; Delgado, J U; Tauhata, L; Loureiro, J S; Toledo, B C; Braghirolli, A M S; Andrade, E A L; Silva, J L; Hernandes, H O K; Valente, E S; Dalle, H M; Almeida, V M; Silva, T G; Fragoso, M C F; Oliveira, M L; Nascimento, E S S; Oliveira, E M; Herrerias, R; Souza, A A; Bambalas, E; Bruzinga, W A

    2016-03-01

    Since the inception of its proficiency test program to evaluate radionuclide measurement in hospitals and clinics, the National Metrology Laboratory of Ionizing Radiation-LNMRI, that represents Brazilian National Metrology Institute (NMI) for ionizing radiation has expanded its measurement and calibration capability. Requirements from the National Health Surveillance Agency from Ministry of Health (ANVISA), to producers of radiopharmaceuticals provided an opportunity to improve the full traceability chain to the highest level. Fluorodeoxyglucose (FDG-(18)F) is the only radiopharmaceutical simultaneously produced by all Brazilian radiopharmaceutical production centers (RPCs). By running this proficiency test, LNMRI began to provide them with the required traceability. For evaluation, the ratio of RPC to reference value results and ISO/IEC17043:2010 criteria were used. The reference value established as calibration factor on the secondary standard ionization chamber was obtained from three absolute measurements systems, and routinely confirmed in each round of proficiency test by CIEMAT/NIST liquid scintillation counting. The γ-emitting impurities were checked using a High-Purity Germanium (HPGe) detector. The results show that Brazilian RPCs are in accordance with (accuracy within ±10%) the Brazilian standard for evaluation of measurements with radionuclide calibrators (CNEN NN 3.05., 2013). Nevertheless, the RPCs should improve the methodology of uncertainty estimates, essential when using the statistical criteria of ISO/IEC 17043 standard, in addition to improving accuracy to levels consistent with their position in the national traceability chain. PMID:26688362

  7. SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

    SciTech Connect

    Fernandes, F; Silva, D da; Rodrigues, L

    2015-06-15

    Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transport (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup

  8. New radiopharmaceutical agents for the treatment of castration-resistant prostate cancer.

    PubMed

    Maffioli, L; Florimonte, L; Costa, D C; Correia Castanheira, J; Grana, C; Luster, M; Bodei, L; Chinol, M

    2015-12-01

    Prostate cancer (PCa) is the fourth most common cancer worldwide in terms of incidence and third among male, but is becoming the most common cancer in developed countries. In many patients the disease will progress despite of castration levels of testosterone, to become castration-resistant PCa (CRPC). Nearly all patients with CRPC show bone metastases. The treatment of patients with bony metastases has dramatically changed during the past three years because of new therapeutic approaches addressed to obtain pain control, reduced skeletal morbidity, and most importantly, increased survival rate. A possible therapy can be based also on the use of radiopharmaceuticals systemically administered to slow or reverse the bone metastatic progression. In facts bone-homing radiopharmaceuticals are taken up in areas of high bone turnover, including areas with high osteoblastic activity. Recently, a bone targeting radiopharmaceutical, Radium-223 dichloride was added to this group of drugs clearly representing a new generation of radiopharmaceutical in bone therapy. Clinical trials had shown that the treatment with Ra-223 allowed the reduction of the risk of death respect to placebo. No other radiometabolic treatment achieved such result, evidentiating the disease-modifying properties of this bone-homing radiopharmaceutical. In an effort to treat patients with disseminated PCa, who became resistant to hormonal therapy, molecular targets have been recently identified. Prostate specific membrane antigen (PSMA) is one attractive target for diagnosis and therapy of metastasized PCa since its expression levels are directly correlated to androgen independence, metastasis, and progression. Gastrin-releasing peptide receptors (GRPr) are also highly overexpressed in PCa. Numerous studies suggest the possibility of a high PCa-specific signal with radiolabeled bombesin analogs targeting GRPr. Low molecular weight peptides directed against these molecular targets have been radiolabeled

  9. Femaxi-6 Version 1

    SciTech Connect

    Suzuki, Motoe

    2006-10-01

    FEMAXI-6(Updated) predicts the thermal and mechanical behaviour of a light water reactor fuel rod during normal and transient (not accident) conditions. It can analyse the integral behaviour of a whole fuel rod throughout its life as well as the localised behaviour of a small part of fuel rod. Temperature distribution, radial and axial deformations, fission gas release, and inner gas pressure are calculated as a function of irradiation time and axial position. Stresses and strains in the pellet and cladding are calculated and PCMI analysis is performed. Also, thermal conductivity degradation of pellet and cladding waterside oxidation are modeled. Its analytical capabilities also cover the boiling transient anticipated in BWR. RODBURN calculates the power generation density profile in the radial and axial directions and fast neutron flux, and concentrations of fission product isotopes and fissile materials of a single rod irradiated in PWR, BWR and Halden BWR. RODBURN gives an output file which can be read by FEMAXI-6. NEA-1080/10: This version differs from the previous one in the following: a few formulae were updated in the manual and the source code. the input options were expanded in the following points: Thermal expansion modelling; Pellet swelling option; Pellet plasticity model; Cladding surface heat transfer model All changes are marked in red in the reference report.

  10. Femaxi-6 Version 1

    Energy Science and Technology Software Center (ESTSC)

    2006-10-01

    FEMAXI-6(Updated) predicts the thermal and mechanical behaviour of a light water reactor fuel rod during normal and transient (not accident) conditions. It can analyse the integral behaviour of a whole fuel rod throughout its life as well as the localised behaviour of a small part of fuel rod. Temperature distribution, radial and axial deformations, fission gas release, and inner gas pressure are calculated as a function of irradiation time and axial position. Stresses and strainsmore » in the pellet and cladding are calculated and PCMI analysis is performed. Also, thermal conductivity degradation of pellet and cladding waterside oxidation are modeled. Its analytical capabilities also cover the boiling transient anticipated in BWR. RODBURN calculates the power generation density profile in the radial and axial directions and fast neutron flux, and concentrations of fission product isotopes and fissile materials of a single rod irradiated in PWR, BWR and Halden BWR. RODBURN gives an output file which can be read by FEMAXI-6. NEA-1080/10: This version differs from the previous one in the following: a few formulae were updated in the manual and the source code. the input options were expanded in the following points: Thermal expansion modelling; Pellet swelling option; Pellet plasticity model; Cladding surface heat transfer model All changes are marked in red in the reference report.« less

  11. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'. PMID:17987979

  12. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    SciTech Connect

    Golas, D.B.

    1993-12-31

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented.

  13. Enigma Version 12

    NASA Technical Reports Server (NTRS)

    Shores, David; Goza, Sharon P.; McKeegan, Cheyenne; Easley, Rick; Way, Janet; Everett, Shonn; Guerra, Mark; Kraesig, Ray; Leu, William

    2013-01-01

    Enigma Version 12 software combines model building, animation, and engineering visualization into one concise software package. Enigma employs a versatile user interface to allow average users access to even the most complex pieces of the application. Using Enigma eliminates the need to buy and learn several software packages to create an engineering visualization. Models can be created and/or modified within Enigma down to the polygon level. Textures and materials can be applied for additional realism. Within Enigma, these models can be combined to create systems of models that have a hierarchical relationship to one another, such as a robotic arm. Then these systems can be animated within the program or controlled by an external application programming interface (API). In addition, Enigma provides the ability to use plug-ins. Plugins allow the user to create custom code for a specific application and access the Enigma model and system data, but still use the Enigma drawing functionality. CAD files can be imported into Enigma and combined to create systems of computer graphics models that can be manipulated with constraints. An API is available so that an engineer can write a simulation and drive the computer graphics models with no knowledge of computer graphics. An animation editor allows an engineer to set up sequences of animations generated by simulations or by conceptual trajectories in order to record these to highquality media for presentation. Enigma Version 12 Lyndon B. Johnson Space Center, Houston, Texas 28 NASA Tech Briefs, September 2013 Planetary Protection Bioburden Analysis Program NASA's Jet Propulsion Laboratory, Pasadena, California This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous

  14. How is Version 6 different than earlier versions?

    Atmospheric Science Data Center

    2015-10-28

    ... integrated a priori CO profile. Second, the diagnostic 'Water Vapor Climatology Content' has been deleted. This diagnostic was ... More details can be found in the: MOPITT (Measurements of Pollution in the Troposphere) Version 6 Product User's Guide: ...

  15. brulilo, Version 0.x

    Energy Science and Technology Software Center (ESTSC)

    2015-04-16

    effectively remove some of the stiffness and allow for efficient explicit integration techniques to be used. The original intent of brulilo was to implement these stiffness-alleviating techniques with explicit integrators and compare the performance to traditional implicit integrations of the full stiff system. This is still underway, as the code is very much in an alpha-release state. Furthermore, explicit integrators are often much easier to parallelize than their implicit counterparts. brulilo will implement parallelization of these techniques, leveraging both the Python implementation of MPI, mpi4py, as well as highly parallelized versions targeted at GPUs with PyOpenCL and/or PyCUDA.« less

  16. brulilo, Version 0.x

    SciTech Connect

    Malone, Chris

    2015-04-16

    remove some of the stiffness and allow for efficient explicit integration techniques to be used. The original intent of brulilo was to implement these stiffness-alleviating techniques with explicit integrators and compare the performance to traditional implicit integrations of the full stiff system. This is still underway, as the code is very much in an alpha-release state. Furthermore, explicit integrators are often much easier to parallelize than their implicit counterparts. brulilo will implement parallelization of these techniques, leveraging both the Python implementation of MPI, mpi4py, as well as highly parallelized versions targeted at GPUs with PyOpenCL and/or PyCUDA.

  17. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    PubMed Central

    Bernard-Gauthier, Vadim; Wängler, Carmen; Wängler, Bjoern; Schirrmacher, Ralf

    2014-01-01

    Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry. PMID:25157357

  18. Radiopharmaceuticals for radiation synovectomy: Evaluation of two yttrium-90 particulate agents

    SciTech Connect

    Davis, M.A.; Chinol, M.

    1989-06-01

    Radiation synovectomy, a noninvasive therapeutic alternative to surgical synovectomy, has not gained widespread acceptance in the United States because of the lack of a suitable radiopharmaceutical. Two new radioactive particles, (/sup 90/Y)Ca oxalate and (/sup 90/Y)ferric hydroxide macroaggregates (FHMA), were developed in our laboratory and evaluated for size, stability, and joint leakage. More than 90% of the (/sup 90/Y)Ca oxalate particles were in the optimal size range of 1-10 microns, and the unbound activity in serum and synovial fluid was 3.7% to 5.0%. Following injection in rabbit knees, leakage of (/sup 90/Y)Ca oxalate was 5 +/- 2%, with localization primarily in the bone and virtually no uptake by the lymph nodes or liver. Yttrium-90 FHMA particles were larger (95% greater than 10 microns), and at least on a microscopic level, appeared to distribute homogeneously over the articular surface. Leakage of (/sup 90/Y)FHMA was initially less but eventually slightly exceeded that of (/sup 90/Y)Ca oxalate. Nevertheless, both radiopharmaceuticals can provide a satisfactory therapeutic dose to the knee with less than half the leakage and a marked reduction in absorbed dose to nontarget tissues compared to previously tested agents. Ease of preparation, physical characteristics of the /sup 90/Y beta ray, and apparent lack of substantial leakage from the joint make these agents extremely attractive for clinical evaluation in rheumatoid arthritis patients who are unresponsive to medical therapy.

  19. Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. [Baboons

    SciTech Connect

    Dischino, D.D.; Welch, M.J.; Kilbourn, M.R.; Raichle, M.E.

    1983-11-01

    The brain extraction of fifteen C-11-labeled compounds during a single capillary transit was studied in adult baboons by external detection of these tracers after injection into the internal carotid artery. The log P/sub oct/ (partition coefficient for octanol/water) values of these compounds range from -0.7 to greater than 4.0. A parabolic relationship was found between the log P/sub oct/value of the C-11-labeled compounds and the fraction of the radiopharmaceutical entering the brain. Compounds with log P/sub oct/ values between 0.9 and 2.5 were found to pass freely across the blood-brain barrier at a cerebral blood flow of 100 ml-min/sup -1/-hg/sup -1/. An apparently decreased extraction of very lipophilic compounds was shown to be related to binding of the tracer to blood components and macromolecules (red blood cells, albumin, etc.). These data suggest that a radiopharmaceutical designed to measure blood flow should have a log P/sub oct/ value of between 0.9 and 2.5.

  20. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    SciTech Connect

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    2009-01-01

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals were performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.

  1. Radiation for bone metastases: conventional techniques and the role of systemic radiopharmaceuticals.

    PubMed

    Janjan, N A

    1997-10-15

    Pain management often is difficult in patients with bone metastases. Metastatic disease represents >40% of oncologic practice, and >70% of patients with metastatic disease have uncontrolled cancer-related pain. Significant morbidity caused by pathologic fracture and spinal cord compression can result from untreated bone metastases. Representing both a manifestation of systemic disease as well as causing localized symptoms, bone metastases require a multidisciplinary therapeutic approach. Radiation therapy provides both localized and systemic treatment options in addition to chemohormonal therapies and surgery. External beam irradiation provides palliation in >70% of patients through tumor regression of a localized lesion. Systemic radiopharmaceuticals treat multifocal disease either alone or as an adjuvant to external beam irradiation. Efficient and comprehensive management of bone metastases is imperative because of the associated symptoms, prior therapies, complex underlying medical problems, and clinical presentations that often require emergent interventions. Intensification of pain may be observed with hormonal therapy and systemic radiopharmaceuticals. Symptomatic relief from antineoplastic therapies generally requires 4-12 weeks and may be related to reossification. Symptoms, occurring due to the disease and/or while awaiting response to therapy, must be aggressively managed. Persistent or recurrent pain after therapy may be due to bony instability or fracture before reossification occurs. An Interdisciplinary Bone Metastases Clinic, with representatives from Diagnostic Radiology, Medical Oncology, Nuclear Medicine, Orthopedic Surgery, Pain and Symptom Management, Physical Medicine and Rehabilitation, and Radiation Oncology, was developed that allows coordinated evaluation, treatment, and symptom management of these complex clinical presentations. PMID:9362430

  2. Checkpointing in speculative versioning caches

    DOEpatents

    Eichenberger, Alexandre E; Gara, Alan; Gschwind, Michael K; Ohmacht, Martin

    2013-08-27

    Mechanisms for generating checkpoints in a speculative versioning cache of a data processing system are provided. The mechanisms execute code within the data processing system, wherein the code accesses cache lines in the speculative versioning cache. The mechanisms further determine whether a first condition occurs indicating a need to generate a checkpoint in the speculative versioning cache. The checkpoint is a speculative cache line which is made non-speculative in response to a second condition occurring that requires a roll-back of changes to a cache line corresponding to the speculative cache line. The mechanisms also generate the checkpoint in the speculative versioning cache in response to a determination that the first condition has occurred.

  3. Packet Daemon Version 12(SOPHIA)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    Packet Daemon Version 12 is the code exclusively used by the ‘packetd’ executable. It provides packet data to the OglNet Version 12 visualization tool. It reads PCAP data and sends an abstraction of the packets to the ‘oglnet’ executable for display. ‘packetd’will run as a service on a Linux host thereby capturing data continuously and make that data available for ‘oglnet’ whenever it connects to the service.

  4. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  5. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters.

    PubMed

    Cheng, Lishui; Hobbs, Robert F; Segars, Paul W; Sgouros, George; Frey, Eric C

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  6. Current activities in the ICRP concerning estimation of radiation doses to patients from radiopharmaceuticals for diagnostic use

    NASA Astrophysics Data System (ADS)

    Mattsson, S.; Johansson, L.; Leide-Svegborn, S.; Liniecki, J.; Nosske, D.; Riklund, K.; Stabin, M.; Taylor, D.

    2011-09-01

    A Task Group within the ICRP Committees 2 and 3 is continuously working to improve absorbed dose estimates to patients investigated with radiopharmaceuticals. The work deals with reviews of the literature, initiation of new or complementary studies of the biokinetics of a compound and dose estimates. Absorbed dose calculations for organs and tissues have up to now been carried out using the MIRD formalism. There is still a lack of necessary biokinetic data from measurements in humans. More time series obtained by nuclear medicine imaging techniques such as whole-body planar gamma-camera imaging, SPECT or PET are highly desirable for this purpose. In 2008, a new addendum to ICRP Publication 53 was published under the name of ICRP Publication 106 containing biokinetic data and absorbed dose information to organs and tissues of patients of various ages for radiopharmaceuticals in common use. That report also covers a number of generic models and realistic maximum models covering other large groups of substances (e.g. "123I-brain receptor substances"). Together with ICRP Publication 80, most radiopharmaceuticals in clinical use at the time of publication were covered except the radioiodine labeled compounds for which the ICRP dose estimates are still found in Publication 53. There is an increasing use of new radiopharmaceuticals, especially PET-tracers and the TG has recently finished its work with biokinetic and dosimetric data for 18F-FET, 18F-FLT and 18F-choline. The work continues now with new data for 11C-raclopride, 11C-PiB and 123I-ioflupan as well as re-evaluation of published data for 82Rb-chloride, 18F-fluoride and radioiodide. This paper summarises published ICRP-information on dose to patients from radiopharmaceuticals and gives some preliminary data for substances under review.

  7. GENII Version 2 Users’ Guide

    SciTech Connect

    Napier, Bruce A.

    2004-03-08

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can

  8. Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with (177)Lu and Conjugated to Peptides.

    PubMed

    Ferro-Flores, Guillermina; Ocampo-García, Blanca E; Santos-Cuevas, Clara L; de María Ramírez, Flor; Azorín-Vega, Erika P; Meléndez-Alafort, Laura

    2015-01-01

    Gold nanoparticles (AuNPs) have been proposed for a variety of medical applications such as localized heat sources for cancer treatment and drug delivery systems. The conjugation of peptides to AuNPs produces stable multimeric systems with target-specific molecular recognition. Lutetium- 177 ((177)Lu) has been successfully used in peptide radionuclide therapy. Recently, (177)Lu-AuNPs conjugated to different peptides have been proposed as a new class of theranostic radiopharmaceuticals. These radioconjugates may function simultaneously as molecular imaging agents, radiotherapy systems and thermal-ablation systems. This article covers advancements in the design, synthesis, physicochemical characterization, molecular recognition assessment and preclinical therapeutic efficacy of gold nanoparticles radiolabeled with (177)Lu and conjugated to RGD (-Arg-Gly-Asp-), Lys(3)-Bombesin and Tat(49-57) peptides. PMID:25771363

  9. Positron emission tomography radiopharmaceutical studies in humans: a guide to regulations for academic researchers.

    PubMed

    Fleming, Ian N; Whelan, Mark; Baxendale, Roy; Gilbert, Fiona J; Matthews, Paul P; Aigbirhio, Franklin I

    2012-09-01

    All clinical trials are covered by a series of regulations that seek to protect the rights, safety and welfare of participating patients. The regulations covering PET studies are especially complex to interpret because of the specialized nature of the language of the regulations and of PET studies themselves. It is often unclear whether the application demands that the radiotracer used be treated as an investigational medical product. This paper is intended to act as a general guide for UK researchers planning to perform PET research in humans by clarifying key aspects of the regulations that may affect the study and/or the radiopharmaceutical manufacturing process, providing links to useful information sources, introducing the concept of a UK Medicines and Healthcare products Regulatory Agency (MHRA) PET expert panel and outlining the value of sharing investigational medical product dossiers. PMID:22773151

  10. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging.

    PubMed

    Hu, Zhenhua; Qu, Yawei; Wang, Kun; Zhang, Xiaojun; Zha, Jiali; Song, Tianming; Bao, Chengpeng; Liu, Haixiao; Wang, Zhongliang; Wang, Jing; Liu, Zhongyu; Liu, Haifeng; Tian, Jie

    2015-01-01

    Cerenkov luminescence imaging utilizes visible photons emitted from radiopharmaceuticals to achieve in vivo optical molecular-derived signals. Since Cerenkov radiation is weak, non-optimum for tissue penetration and continuous regardless of biological interactions, it is challenging to detect this signal with a diagnostic dose. Therefore, it is challenging to achieve useful activated optical imaging for the acquisition of direct molecular information. Here we introduce a novel imaging strategy, which converts γ and Cerenkov radiation from radioisotopes into fluorescence through europium oxide nanoparticles. After a series of imaging studies, we demonstrate that this approach provides strong optical signals with high signal-to-background ratios, an ideal tissue penetration spectrum and activatable imaging ability. In comparison with present imaging techniques, it detects tumour lesions with low radioactive tracer uptake or small tumour lesions more effectively. We believe it will facilitate the development of nuclear and optical molecular imaging for new, highly sensitive imaging applications. PMID:26123615

  11. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Paterson, Brett M; Donnelly, Paul S

    2011-05-01

    The molecules known as bis(thiosemicarbazones) derived from 1,2-diones can act as tetradentate ligands for Cu(II), forming stable, neutral complexes. As a family, these complexes possess fascinating biological activity. This critical review presents an historical perspective of their progression from potential chemotherapeutics through to more recent applications in nuclear medicine. Methods of synthesis are presented followed by studies focusing on their potential application as anti-cancer agents and more recent investigations into their potential as therapeutics for Alzheimer's disease. The Cu(II) complexes are of sufficient stability to be used to coordinate copper radioisotopes for application in diagnostic and therapeutic radiopharmaceuticals. Detailed understanding of the coordination chemistry has allowed careful manipulation of the metal based properties to engineer specific biological activities. Perhaps the most promising complex radiolabelled with copper radioisotopes to date is Cu(II)(atsm), which has progressed to clinical trials in humans (162 references). PMID:21409228

  12. Quantitative autoradiography with radiopharmaceuticals, Part 1: Digital film-analysis system by videodensitometry: concise communication

    SciTech Connect

    Yonekura, Y.; Brill, A.B.; Som, P.; Bennett, G.W.; Fand, I.

    1983-03-01

    A simple low-cost digital film-analysis system using videodensitometry was developed to quantitate autoradiograms. It is based on a TV-film analysis system coupled to a minicomputer. Digital sampling of transmitted light intensities through the autoradiogram is performed with 8-bit gray levels according to the selected array size (128 X 128 to 1024 X 1024). The performance characteristics of the system provide sufficient stability, uniformity, linearity, and intensity response for use in quantitative analysis. Digital images of the autoradiograms are converted to radioactivity content, pixel by pixel, using step-wedge standards. This type of low-cost system can be installed on conventional mini-computers commonly used in modern nuclear medical facilities. Quantitative digital autoradiography can play an important role, with applications stretching from dosimetry calculations of radiopharmaceuticals to metabolic studies in conjunction with positron-emission tomography.

  13. Overview and perspectives on automation strategies in (68)Ga radiopharmaceutical preparations.

    PubMed

    Boschi, Stefano; Malizia, Claudio; Lodi, Filippo

    2013-01-01

    The renaissance of (68)Ga radiopharmacy has led to great advances in automation technology. The availability of a highly efficient, reliable, long-lived (68)Ge/(68)Ga generator system along with a well-established coordination chemistry based on bifunctional chelating agents have been the bases of this development in (68)Ga radiopharmacy. Syntheses of (68)Ga peptides were originally performed by manual or semiautomated systems, but increasing clinical demand, radioprotection, and regulatory issues have driven extensive automation of their production process. Several automated systems, based on different post-processing of the (68)Ga generator eluate, on different engineering, and on fixed tubing or disposable cassette approaches, have been developed and are discussed in this chapter. Since automatic systems for preparation of radiopharmaceuticals should comply with qualification and validation protocols established by regulations such as current Good Manufacturing Practices (cGMP) and local regulations, some regulatory issues and the more relevant qualification protocols are also discussed. PMID:22918752

  14. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  15. Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier.

    PubMed

    Raaphorst, R M; Windhorst, A D; Elsinga, P H; Colabufo, N A; Lammertsma, A A; Luurtsema, G

    2015-04-01

    ABC transporters protect the brain by transporting neurotoxic compounds from the brain back into the blood. P-glycoprotein (P-gp) is the most investigated ABC (efflux) transporter, as it is implicated in neurodegenerative diseases such as Alzheimer's disease. Altered function of P-gp can be studied in vivo, using Positron Emission Tomography (PET). To date, several radiopharmaceuticals have been developed to image P-gp function in vivo. So far, attempts to image expression levels of P-gp using radiolabeled P-gp inhibitors have not been successful. Improved knowledge of compound behavior toward P-gp from in vitro studies should increase predictability of in vivo outcome. PMID:25669763

  16. Receptor-specific positron emission tomography radiopharmaceuticals: /sup 75/Br-labeled butyrophenone neuroleptics

    SciTech Connect

    Moerlein, S.M.; Stoecklin, G.; Weinhard, K.; Pawlik, G.; Heiss, W.D.

    1985-11-01

    Cerebral dopaminergic D/sub 2/ receptors are involved in several common disease states, such as schizophrenia, Parkinson's disease, and Huntington's chorea. The use of radiolabeled D/sub 2/ receptor-binding ligands with positron emission tomography (PET) to noninvasively quantitate D/sub 2/ receptor densities thus has potential application in medicine. Butyrophenone neuroleptics have a high in vitro and in vivo binding affinity for cerebral D/sub 2/ receptors, and due to the useful chemical and nuclear decay properties of /sup 74/Br (76% ..beta../sup +/, half-life = 1.6 h), the authors have evaluated radiobrominated bromospiperone (BSP), brombenperidol (BBP), and bromperidol (BP) as radiopharmaceuticals for use with PET.

  17. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging

    PubMed Central

    Hu, Zhenhua; Qu, Yawei; Wang, Kun; Zhang, Xiaojun; Zha, Jiali; Song, Tianming; Bao, Chengpeng; Liu, Haixiao; Wang, Zhongliang; Wang, Jing; Liu, Zhongyu; Liu, Haifeng; Tian, Jie

    2015-01-01

    Cerenkov luminescence imaging utilizes visible photons emitted from radiopharmaceuticals to achieve in vivo optical molecular-derived signals. Since Cerenkov radiation is weak, non-optimum for tissue penetration and continuous regardless of biological interactions, it is challenging to detect this signal with a diagnostic dose. Therefore, it is challenging to achieve useful activated optical imaging for the acquisition of direct molecular information. Here we introduce a novel imaging strategy, which converts γ and Cerenkov radiation from radioisotopes into fluorescence through europium oxide nanoparticles. After a series of imaging studies, we demonstrate that this approach provides strong optical signals with high signal-to-background ratios, an ideal tissue penetration spectrum and activatable imaging ability. In comparison with present imaging techniques, it detects tumour lesions with low radioactive tracer uptake or small tumour lesions more effectively. We believe it will facilitate the development of nuclear and optical molecular imaging for new, highly sensitive imaging applications. PMID:26123615

  18. Scaling animal to human biodistribution of the radiopharmaceutical [68Ga]Ga-PSMA-HBED-CC

    NASA Astrophysics Data System (ADS)

    Parra, Pamela Ochoa; Veloza, Stella

    2016-07-01

    The radiotracer called 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) is a novel radiophar-maceutical for the detection of prostate cancer lesions by positron emission tomography (PET) imaging. Setting up a cost-effective manual synthesis of this radiotracer and making its clinical translation in Colombia will require two important elements: the evaluation of the procedure to yield a consistent product, meeting standards of radio-chemical purity and low toxicity and then, the evaluation of the radiation dosimetry. In this paper a protocol to extrapolate the biokinetic model made in normal mice to humans by using the computer software for internal dose assessment OLINDA/EXM® is presented as an accurate and standardized method for the calculation of radiation dosimetry estimates.

  19. Highway accident involving radiopharmaceuticals near Brookhaven, Mississippi on December 3, 1983

    SciTech Connect

    Mohr, P.B.; Mount, M.E.; Schwartz, M.W.

    1985-04-01

    A rear-end collision occurred between a passenger automobile and a luggage trailer carrying 84 packages, 76 of which contained radiopharmaceuticals, on US Highway 84 near Brookhaven, Mississippi on the afternoon of December 3, 1983. The purpose of this report is to document the mechanical circumstances of the accident, confirm the nature and quantity of radioactive materials involved, and assess the nature of the physical environment to which the packages were exposed and the response of the packages. The report consists of three major sections. The first deals wth the nature and circumstances of the accident and findings of fact. The second gives an accounting and description of the materials involved and the consequences of their exposure. The third gives an assessment and analysis of the mechanisms of damage and the conclusions which may be drawn from the investigation. 4 refs., 24 figs., 4 tabs.

  20. Design Features Of Microfluidic Reactor For [18F]FDG Radiopharmaceutical Synthesis

    NASA Astrophysics Data System (ADS)

    Oh, J. H.; Lee, B. N.; Nam, K. R.; Attla, G. A.; Lee, K. C.; Cjai, J. S.

    2011-06-01

    Microfluidic reactor exhibits advantages for radiopharmaceutical synthesis. Microfluidic chips can reduce the time for radiosynthesis using tiny quantities of chemical compounds. It also has a good heat transfer, performance and provides an integrated system including synthesis, separation, and purification. These advantages make FDG production. So we have designed a microreactor chip which included the whole chemical processing; water evaporation, solvent exchange, radiofluorination and so on. It was designed by using a commercial 3D CAD modeling program CATIA V5, heat transfer performance was analyzed by ANSYS, and CFX was used for analyzing fluid performance. This paper described the design of FDG synthesis system on a microchip, the relevant locations of its parts, both heat and fluid performance efficiency analysis.

  1. Effect of altered thyroid status on the transport of hepatobiliary radiopharmaceuticals

    SciTech Connect

    Pahuja, D.N.; Noronha, O.P.

    1985-10-01

    The effect of induced hypothyroidism (by feeding an antithyroid drug-propylthiouracil) on the transport and clearance of the routinely used hepatobiliary radiopharmaceuticals--radioiodinated iodine- T (131I) rose bengal and technetium-99m-N-(4-n-butylphenylcarbamoylmethyl) iminodiacetate, was studied in the rats. Hypothyroidism was associated with depressed growth and retarded clearance of these radiotracers from the in vivo system. Treatment of the hypothyroid rats with thyroxine (2-5 micrograms/100 g b.w. day) for 6 wk, restored these parameters towards normal values. These data suggest that delayed clearance of these hepatobiliary tracers could be related to reduced metabolic rate accompanied with the hypotonia and hypomotility of intestine normally observed in the hypothyroid state.

  2. [A new radiopharmaceutical for bone imaging: experimental study of 99mTc-HEDTMP].

    PubMed

    Hu, Shu; Deng, Houfu; Jiang, Shubin; Luo, Shunzhong; Lei, Yong

    2010-08-01

    The purpose of this study is to prepare 99mTc-HEDTMP [N-(2-hydroxyethyl) ethlenediamine-1,1,2-tri (methylene phosphonic acid), a new kind of bone seeking compound; to investigate its biological properties; and to explore the possibility of using it as a potential radiopharmaceutical for skeleton scintigraphy. HEDTMP was labeled with 99mTc by "pretinning" method, the radiochemical purity was 97.00% +/- 0.34%. 99mTc-HEDTMP was found to be stable in 5 hours in vitro with the radiochemical purity over 95% even after being diluted by physiological saline with the factor of dilution 100. The plane bone scanning of rabbits showed that 99mTc-HEDTMP was principally absorbed by skeletal system. Skull, spine and legs could be observed clearly, and were more legible than the images of 99mTc-MDP. Mice trial also indicated the high bone seeking of 99mTc-HEDTMP. The skeletal uptake was 11.92% ID/g, 13.19% ID/g, 10.14% ID/g, 10.04% ID/g, 7.71% ID/g separately at 30 minutes, 1 hour, 3 hours, 6 hours and 24 hours after the injection. Kidney seemed to be the major excretory organ. The clearance of blood was quick and the retaining amount in non-target organs was small. These results indicate that 99mTc-HEDTMP can be prepared easily, and its biological properties can be compared favorably with the commonly used bone imaging agent, and it is well worth further researching as a promising potential radiopharmaceutical in nuclide diagnosis for skeleton diseases. PMID:20842850

  3. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.

    PubMed

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-21

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity. PMID:26406778

  4. (177) Lu-5-Fluorouracil a potential theranostic radiopharmaceutical: radiosynthesis, quality control, biodistribution, and scintigraphy.

    PubMed

    Rasheed, Rashid; Tariq, Saleha; Naqvi, Syed Ali Raza; Gillani, Syed Jawad Hussain; Rizvi, Faheem Askari; Sajid, Muhammad; Rasheed, Shahid

    2016-08-01

    The aim of this study is to develop (177) Lu-5-Flourouracil as a potential cancer therapeutic radiopharmaceutical. 5-Flourouracil (5-FU) is widely accepted as an anticancer drug of broad spectrum fame. The labeling of 5-FU was carried out at different set of experimental conditions using high specific activity of (177) LuCl3 . The optimum conditions for maximum radiochemical yield was set: 5-FU (5 mg), (177) LuCl3 (185 MBq), diethylenetriaminepentaacetic acid (10 µg), reaction volume (2 mL), pH (5.5), temperature (80°C), and reaction time (20 min). The radiochemical labeling was assessed with Whatman No. 2 paper, instant thin layer chromatographic, and radio-HPLC, which revealed >94% labeling results with sufficient stability up to 6 h. Serum stability study also showed (177) Lu-5-FU promising stability. Biodistribution study in normal rats and rabbits showed liver, stomach, kidney, and heart as area of increased tracer accumulation just after injection, which decreased to 1.4%, 0.4%, 0.2%, and 0.39% ID/g, respectively, after 72 h. Glomerular filtration rate and cytotoxicity study results of (177) Lu-5-FU showed it had no adverse effect on renal function and nontoxic to blood cells. The promising characteristics of (177) Lu-5-FU, that is, clever elimination from kidney and nontoxic nature toward blood cells make it the radiopharmaceutical for further testing in patients for therapeutic purposes. PMID:27444959

  5. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters

    NASA Astrophysics Data System (ADS)

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-01

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  6. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  7. SophiNet Version 12

    SciTech Connect

    2012-08-09

    SophiNet Version 12 is part of the code contained in the application ‘oglnet’ and comprises the portions that make ‘oglnet’ receive and display Sophia data from the Sophia Daemon ‘sophiad’. Specifically this encompasses the channel, host and alert receiving and the treeview HUD widget.

  8. Montage Version 3.0

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia

    2006-01-01

    The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.

  9. CCAIN, Version 1.0

    Energy Science and Technology Software Center (ESTSC)

    2005-05-26

    CCAIN, Version 1.0 Date: 06/15/2005 This software is an instantiation of Common Component Architecture (CCA) framework written in C. The framework is used to compose (create, register, destroy) C, C++, and Fortran components into a running CCA application. Language bindings are provided for F90 and F03 to allow codes in these languages to interface with the framework.

  10. ALSSAT Version 6.0

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsia; Brown, Cheryl; Jeng, Frank

    2012-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem.

  11. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  12. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    SciTech Connect

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-06-01

    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  13. A new approach to the analysis of radiopharmaceuticals. Final technical report, January 15, 1987--June 30, 1991

    SciTech Connect

    Jones, A.G.; Davison, A.; Costello, C.E.

    1998-03-01

    The objective of this research was to investigate analytical techniques that could be used in the study of both the basic chemistry and the radiopharmaceutical chemistry of {sup 99m}Tc. First funded in 1981, the work focused initially upon the use of high performance liquid chromatography (HPLC) and various forms of mass spectrometry for the identification of technetium species. This funding allowed the authors to combine HPLC and mass spectrometry to identify radiopharmaceuticals which, although in clinical use, had not previously been characterized. Other techniques that have been examined include resonance Raman spectroscopy and, more significantly, {sup 99}Tc nuclear magnetic resonance spectroscopy (NMR), with the latter not only being used in purely chemical experiments but also in biologic studies. In 1985 a grant to the Department of Chemistry at MIT from DOE allowed the purchase of an X-ray diffractometer and access to this instrument has enabled them to broaden the analytical base with routine structural determinations.

  14. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.

    PubMed

    Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad

    2016-07-01

    During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I

  15. Cardiac blood-pool scintigraphy in rats and hamsters: comparison of five radiopharmaceuticals and three pinhole collimator apertures

    SciTech Connect

    Pieri, P.; Fischman, A.J.; Ahmad, M.; Moore, R.H.; Callahan, R.J.; Strauss, H.W. )

    1991-05-01

    Preclinical evaluation of cardiac drugs may require evaluation of cardiac function in intact animals. To optimize the quality of radionuclide measurements of ventricular function in small animals, a comparison was made of gated blood-pool scans recorded with five blood-pool radiopharmaceuticals ({sup 99}mTc-labeled human polyclonal IgG, {sup 99}mTc-human serum albumin labeled by two methods, and red blood cells radiolabeled with {sup 99}mTc via in vivo and in vitro methods) in rats and three pinhole apertures in hamsters. The quality of the radiopharmaceuticals was evaluated by comparing count density ratios (LV/BACKGROUND and LV/LIVER) and ejection fractions recorded with each agent. The edge definition of the left ventricle and count rate performance of the 1-, 2-, and 3-mm apertures was evaluated in hamsters. In general, the images obtained with the radiolabeled cells were superior to those obtained with the labeled proteins and no significant differences between the protein preparations were detected. Left ventricular ejection fractions calculated with all five radiopharmaceuticals were not significantly different. The best quality images were obtained with the 1-mm pinhole collimator. Ejection fraction and acquisition time were inversely related to aperture size. A good compromise between resolution and sensitivity was obtained with the 2-mm pinhole collimator.

  16. Development of more efficacious [Tc]-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  17. Gallium-68 DOTATATE Production with Automated PET Radiopharmaceutical Synthesis System: A Three Year Experience

    PubMed Central

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Roach, Paul J

    2014-01-01

    Objective(s): Gallium-68 (Ga-68) is an ideal research and hospital-based PET radioisotope. Currently, the main form of Ga-68 radiopharmaceutical that is being synthesised in-house is Ga-68 conjugated with DOTA based derivatives. The development of automated synthesis systems has increased the reliability, reproducibility and safety of radiopharmaceutical productions. Here we report on our three year, 500 syntheses experience with an automated system for Ga-68 DOTATATE. Methods: The automated synthesis system we use is divided into three parts of a) servomotor modules, b) single use sterile synthesis cassettes and, c) a computerised system that runs the modules. An audit trail is produced by the system as a requirement for GMP production. The required reagents and chemicals are made in-. The Germanium breakthrough is determined on a weekly basis. Production yields for each synthesis are calculated to monitor the performance and efficiency of the synthesis. The quality of the final product is assessed after each synthesis by ITLC-SG and HPLC methods. Results: A total of 500 Ga-68 DOTATATE syntheses (>800 patient doses) were performed between March 2011 and February 2014. The average generator yield was 81.3±0.2% for 2011, 76.7±0.4% for 2012 and 75.0±0.3% for 2013. Ga-68 DOTATATE yields for 2011, 2012, and 2013 were 81.8±0.4%, 82.2±0.4% and 87.9±0.4%, respectively. These exceed the manufacturer's expected value of approximately 70%. Germanium breakthrough averaged 8.6×10-6% of total activity which is well below the recommended level of 0.001%. The average ITLC-measured radiochemical purity was above 98.5% and the average HPLC-measured radiochemical purity was above 99.5%. Although there were some system failures during synthesis, there were only eight occasions where the patient scans needed to be rescheduled. Conclusion: In our experience the automated synthesis system performs reliably with a relatively low incident of failures. Our system had a consistent

  18. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  19. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  20. Autogen Version 2.0

    NASA Technical Reports Server (NTRS)

    Gladden, Roy

    2007-01-01

    Version 2.0 of the autogen software has been released. "Autogen" (automated sequence generation) signifies both a process and software used to implement the process of automated generation of sequences of commands in a standard format for uplink to spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes.

  1. FORM version 4.0

    NASA Astrophysics Data System (ADS)

    Kuipers, J.; Ueda, T.; Vermaseren, J. A. M.; Vollinga, J.

    2013-05-01

    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Gröbner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Finally, FORM 4.0 has become available as open source under the GNU General Public License version 3. Program summaryProgram title: FORM. Catalogue identifier: AEOT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 151599 No. of bytes in distributed program, including test data, etc.: 1 078 748 Distribution format: tar.gz Programming language: The FORM language. FORM itself is programmed in a mixture of C and C++. Computer: All. Operating system: UNIX, LINUX, Mac OS, Windows. Classification: 5. Nature of problem: FORM defines a symbolic manipulation language in which the emphasis lies on fast processing of very large formulas. It has been used successfully for many calculations in Quantum Field Theory and mathematics. In speed and size of formulas that can be handled it outperforms other systems typically by an order of magnitude. Special in this version: The version 4.0 contains many new features. Most important are factorization and rational arithmetic. The program has also become open source under the GPL. The code in CPC is for reference. You are encouraged to upload the most recent sources from www.nikhef.nl/form/formcvs.php because of frequent bug fixes. Solution method: See "Nature of Problem", above. Additional comments: NOTE: The code in CPC is for reference. You are encouraged

  2. SITE CHARACTERIZATION LIBRARY VERSION 3.0

    EPA Science Inventory

    The Site Characterization Library is a CD that provides a centralized, field-portable source for site characterization information. Version 3 of the Site Characterization Library contains additional (from earlier versions) electronic documents and computer programs related to th...

  3. BUCKY instruction manual, version 3.3

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1994-01-01

    The computer program BUCKY is a p-version finite element package for the solution of structural problems. The current version of BUCKY solves the 2-D plane stress, 3-D plane stress plasticity, 3-D axisymmetric, Mindlin and Kirchoff plate bending, and buckling problems. The p-version of the finite element method is a highly accurate version of the traditional finite element method. Example cases are presented to show the accuracy and application of BUCKY.

  4. Complexation study on no-carrier-added astatine with insulin: a candidate radiopharmaceutical.

    PubMed

    Lahiri, Susanta; Roy, Kamalika; Sen, Souvik

    2008-12-01

    No-carrier-added astatine radionuclides produced in the (7)Li-irradiated lead matrix were separated from bulk lead nitrate target by complexing At with insulin, followed by dialysis. The method offers simultaneous separation of At from lead as well as its complexation with insulin. The At-insulin complex might be a potential radiopharmaceutical in the treatment of hepatocellular carcinoma. The stability of At-insulin complex was checked by dialysis against deionized water and Ringer lactate (RL) solution. It has been found that the half-life of At-insulin complex is about approximately 12h, when dialyzed against deionized water and is only 6h, when dialyzed against RL solution having the same composition as blood serum. The 6h half-life of this Insulin-At complex is perfect for killing cancer cells from external cell surfaces as the half-life of internalization of insulin molecule inside the cell is 7-12h. PMID:18674921

  5. A Concise Radiosynthesis of the Tau Radiopharmaceutical, [18F]T807

    PubMed Central

    Shoup, Timothy M.; Yokell, Daniel L.; Rice, Peter A.; Jackson, Raul N.; Livni, Eli; Johnson, Keith A.; Brady, Thomas J.; Vasdev, Neil

    2014-01-01

    Fluorine-18 labelled 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([18F]T807) is a potent and selective agent for imaging paired helical filaments of tau (PHF-tau) and is among the most promising PET radiopharmaceuticals for this target in early clinical trials. The present study reports a simplified one-step method for the synthesis of [18F]T807 that is broadly applicable for routine clinical production using a GE Tracerlab™ FXFN radiosynthesis module. Key facets of our optimized radiosynthesis include development and use of a more soluble protected precursor, tert-butyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, as well as new HPLC separation conditions that enable a facile one-step synthesis. During the nucleophilic fluorinating reaction with potassium cryptand [18F]fluoride (K[18F]/K222) in DMSO at 130 °C over 10 min, the precursor is concurrently deprotected. Formulated [18F]T807 was prepared in an uncorrected radiochemical yield of 14 ± 3%, with a specific activity of 216 ± 60 GBq/μmol (5837 ± 1621 mCi/μmol) at the end of synthesis (60 min; n = 3) and validated for human use. This methodology offers the advantage of faster synthesis in fewer steps, with simpler automation which we anticipate will facilitate widespread clinical use of [18F]T807. PMID:24339014

  6. Laser stimulation of the acupoint 'Zusanli' (ST.36) on the radiopharmaceutical biodistribution in Wistar rats.

    PubMed

    Frederico, Éric H F F; Santos, Ailton A; Sá-Caputo, Danubia C C; Neves, Rosane F; Guimarães, Carlos A S; Chang, Shyang; Bernardo-Filho, Mario

    2016-03-01

    Laser used to stimulate acupoints is called laser acupuncture (LA). It is generally believed that similar clinical responses to manual acupuncture can be achieved. Here we analysed the effects of the laser (904 nm) at the 'Zusanli' acupoint (ST.36) of the stomach meridian on the biodistribution of the radiopharmaceutical Na(99m)TcO4. Wistar rats were divided into control (CG) and experimental groups (EG). The EG were exposed daily to the laser (904 nm) at ST.36 with 1 joule/min (40 mW/cm(2)) for 1 min. The animals of the CG were not exposed to laser at all. On the 8th day after LA, the animals were sedated and Na(99m)TcO4 was administered. After 10 min, the animals were all sacrificed and the organs removed. The radioactivity was counted in each organ to calculate the percentage of radioactivity of the injected dose per gram (%ATI/ g). Comparison of the %ATI/g in EG and CG was performed by Mann-Whitney test. The %ATI/g was significantly increased in the thyroid due to the stimulation of the ST.36 by laser. It is possible to conclude that the stimulation of ST.36 does lead to biological phenomena that interfere with the metabolism of the thyroid. PMID:26949088

  7. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals.

    PubMed

    Taggart, Matthew P; Tarn, Mark D; Esfahani, Mohammad M N; Schofield, Daniel M; Brown, Nathaniel J; Archibald, Stephen J; Deakin, Tom; Pamme, Nicole; Thompson, Lee F

    2016-04-26

    The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate. PMID:27044712

  8. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence

    PubMed Central

    Lopci, Egesta; Grassi, Ilaria; Chiti, Arturo; Nanni, Cristina; Cicoria, Gianfranco; Toschi, Luca; Fonti, Cristina; Lodi, Filippo; Mattioli, Sandro; Fanti, Stefano

    2014-01-01

    Hypoxia is a pathological condition arising in living tissues when oxygen supply does not adequately cover the cellular metabolic demand. Detection of this phenomenon in tumors is of the utmost clinical relevance because tumor aggressiveness, metastatic spread, failure to achieve tumor control, increased rate of recurrence, and ultimate poor outcome are all associated with hypoxia. Consequently, in recent decades there has been increasing interest in developing methods for measurement of oxygen levels in tumors. Among the image-based modalities for hypoxia assessment, positron emission tomography (PET) is one of the most extensively investigated based on the various advantages it offers, i.e., broad range of radiopharmaceuticals, good intrinsic resolution, three-dimensional tumor representation, possibility of semiquantification/quantification of the amount of hypoxic tumor burden, overall patient friendliness, and ease of repetition. Compared with the other non-invasive techniques, the biggest advantage of PET imaging is that it offers the highest specificity for detection of hypoxic tissue. Starting with the 2-nitroimidazole family of compounds in the early 1980s, a great number of PET tracers have been developed for the identification of hypoxia in living tissue and solid tumors. This paper provides an overview of the principal PET tracers applied in cancer imaging of hypoxia and discusses in detail their advantages and pitfalls. PMID:24982822

  9. Technetium Tc-99m pyrophosphate for cerebrospinal fluid leaks: radiopharmaceutical considerations.

    PubMed

    Ponto, James A; Graham, Michael M

    2014-01-01

    OBJECTIVE To confirm the anticipated image quality and absence of adverse reactions in patients undergoing clinical practice cerebrospinal fluid (CSF) leak imaging procedures using technetium Tc-99m pyrophosphate (PYP). METHODS Following the recent discontinuation of preservative-free calcium trisodium diethylene triamine pentaacetic acid kits, PYP was selected as a suitable alternative for CSF leak imaging procedures. Procedures were established for its preparation and dispensing, paying special attention to safety considerations, and its use in clinical practice was implemented. Medical records, including images, were reviewed for the first 15 patients undergoing clinical practice CSF imaging procedures using Tc-99m PYP to confirm anticipated image quality and absence of adverse effects. RESULTS Review of CSF leak imaging procedures using Tc-99m PYP in 15 patients showed images to be of uniformly high quality. The vast majority of injected radiopharmaceutical remained in the CSF throughout the duration of the imaging procedure, allowing visualization of CSF leaks. Only a small amount of Tc-99m PYP diffused into the blood with resultant uptake on the skeleton and excretion into the urine, which did not interfere with image interpretation. No adverse reactions were noted in any of the patients. CONCLUSION With proper attention to safety considerations, Tc-99m PYP is a safe and effective alternative for performing CSF leak imaging procedures. PMID:24257695

  10. Multi-scale hybrid models for radiopharmaceutical dosimetry with Geant4.

    PubMed

    Marcatili, S; Villoing, D; Garcia, M P; Bardiès, M

    2014-12-21

    The accuracy of radiopharmaceutical absorbed dose distributions computed through Monte Carlo (MC) simulations is mostly limited by the low spatial resolution of 3D imaging techniques used to define the simulation geometry. This issue also persists with the implementation of realistic hybrid models built using polygonal mesh and/or NURBS as they require to be simulated in their voxel form in order to reduce computation times. The existing trade-off between voxel size and simulation speed leads on one side, in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs walls and, on the other, to unnecessarily detailed voxelization of large, homogeneous structures.We developed a set of computational tools based on VTK and Geant4 in order to build multi-resolution organ models. Our aim is to use different voxel sizes to represent anatomical regions of different clinical relevance: the MC implementation of these models is expected to improve spatial resolution in specific anatomical structures without significantly affecting simulation speed. Here we present the tools developed through a proof of principle example. Our approach is validated against the standard Geant4 technique for the simulation of voxel geometries. PMID:25415621

  11. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    SciTech Connect

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C. )

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2) less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.

  12. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  13. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  14. Development of dopamine receptor radiopharmaceuticals for the study of neurological and psychiatric disorders

    SciTech Connect

    Dr. Jogeshwar Mukherjee

    2009-01-02

    Our goals in this grant application are directed towards the development of radiotracers that may allow the study of the high-affinity state (functional state) of the dopamine receptors. There have been numerous reports on the presence of two inter-convertible states of these (G-protein coupled) receptors in vitro. However, there is no report that establishes the presence of these separate affinity states in vivo. We have made efforts in this direction in order to provide such direct in vivo evidence about the presence of the high affinity state. This understanding of the functional state of the receptors is of critical significance in our overall diagnosis and treatment of diseases that implicate the G-protein coupled receptors. Four specific aims have been listed in the grant application: (1). Design and syntheses of agonists (2). Radiosyntheses of agonists (3). In vitro pharmacology of agonists (4). In vivo distribution and pharmacology of labeled derivatives. We have accomplished the syntheses and radiosyntheses of three agonist radiotracers labeled with carbon-11. In vitro and in vivo pharmacological experiments have been accomplished in rats and preliminary PET studies in non-human primates have been carried out. Various accomplishments during the funded years, briefly outlined in this document, have been disseminated by several publications in various journals and presentations in national and international meetings (Society of Nuclear Medicine, Society for Neuroscience and International Symposium on Radiopharmaceutical Chemistry).

  15. Multi-scale hybrid models for radiopharmaceutical dosimetry with Geant4

    NASA Astrophysics Data System (ADS)

    Marcatili, S.; Villoing, D.; Garcia, M. P.; Bardiès, M.

    2014-12-01

    The accuracy of radiopharmaceutical absorbed dose distributions computed through Monte Carlo (MC) simulations is mostly limited by the low spatial resolution of 3D imaging techniques used to define the simulation geometry. This issue also persists with the implementation of realistic hybrid models built using polygonal mesh and/or NURBS as they require to be simulated in their voxel form in order to reduce computation times. The existing trade-off between voxel size and simulation speed leads on one side, in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs walls and, on the other, to unnecessarily detailed voxelization of large, homogeneous structures. We developed a set of computational tools based on VTK and Geant4 in order to build multi-resolution organ models. Our aim is to use different voxel sizes to represent anatomical regions of different clinical relevance: the MC implementation of these models is expected to improve spatial resolution in specific anatomical structures without significantly affecting simulation speed. Here we present the tools developed through a proof of principle example. Our approach is validated against the standard Geant4 technique for the simulation of voxel geometries.

  16. Uncertainty and sensitivity analysis of biokinetic models for radiopharmaceuticals used in nuclear medicine.

    PubMed

    Li, W B; Hoeschen, C

    2010-01-01

    Mathematical models for kinetics of radiopharmaceuticals in humans were developed and are used to estimate the radiation absorbed dose for patients in nuclear medicine by the International Commission on Radiological Protection and the Medical Internal Radiation Dose (MIRD) Committee. However, due to the fact that the residence times used were derived from different subjects, partially even with different ethnic backgrounds, a large variation in the model parameters propagates to a high uncertainty of the dose estimation. In this work, a method was developed for analysing the uncertainty and sensitivity of biokinetic models that are used to calculate the residence times. The biokinetic model of (18)F-FDG (FDG) developed by the MIRD Committee was analysed by this developed method. The sources of uncertainty of all model parameters were evaluated based on the experiments. The Latin hypercube sampling technique was used to sample the parameters for model input. Kinetic modelling of FDG in humans was performed. Sensitivity of model parameters was indicated by combining the model input and output, using regression and partial correlation analysis. The transfer rate parameter of plasma to other tissue fast is the parameter with the greatest influence on the residence time of plasma. Optimisation of biokinetic data acquisition in the clinical practice by exploitation of the sensitivity of model parameters obtained in this study is discussed. PMID:20185457

  17. SRT Status and Plans for Version-7

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena

    2013-01-01

    Status of Version-6 at GSFC-GSFC version-6 must match JPL version-6 before we can improve it. Short-range plans evolutionary improvements. Mid-Range plans- New thrusts, Higher spatial resolution retrievals cloud spectral emissivity. Long-range plans- more challenging ideas

  18. Embrittlement data base, version 1

    SciTech Connect

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets.

  19. SAMRSolvers Version 0.1

    SciTech Connect

    Philip, Bobby; Pernice, Michael

    2006-09-01

    SAMRSolvers is a collection of multilevel solvers for systems of linear equations that result from finite volume discretization of an elliptic partial differential equation on a block-structure (or patch-based) locally refined grid. SAMRSolvers provides implementations of the Fast Adaptive Composite grid (FAC) method, and the AFACx method, which is a less expensive version of AFAC that smooths the error instead of solving for it on all but the coarsest level. These methods can be shown to converge at rates that are independent of the number of refinement levels. SAMRSolvers is intended for use with SAMRAIV2.0 and requires the SAMRUtilities package.

  20. Two alternative versions of strangeness

    PubMed Central

    Nishijima, Kazuhikoa

    2008-01-01

    The concept of strangeness emerged from the low energy phenomenology before the entry of quarks in particle physics. The connection between strangeness and isospin is rather accidental and loose and we recognize later that the definition of strangeness is model-dependent. Indeed, in Gell-Mann’s triplet quark model we realize that there is a simple alternative representation of strangeness. When the concept of generations is incorporated into the quark model we find that only the second alternative version of strangeness remains meaningful, whereas the original one does no longer keep its significance. PMID:18997448

  1. CANFOR Portuguese version: validation study

    PubMed Central

    2013-01-01

    Background The increase in prisoner population is a troublesome reality in several regions of the world. Along with this growth there is increasing evidence that prisoners have a higher proportion of mental illnesses and suicide than the general population. In order to implement strategies that address criminal recidivism and the health and social status of prisoners, particularly in mental disordered offenders, it is necessary to assess their care needs in a comprehensive, but individual perspective. This assessment must include potential harmful areas like comorbid personality disorder, substance misuse and offending behaviours. The Camberwell Assessment of Need – Forensic Version (CANFOR) has proved to be a reliable tool designed to accomplish such aims. The present study aimed to validate the CANFOR Portuguese version. Methods The translation, adaptation to the Portuguese context, back-translation and revision followed the usual procedures. The sample comprised all detainees receiving psychiatric care in four forensic facilities, over a one year period. A total of 143 subjects, and respective case manager, were selected. The forensic facilities were chosen by convenience: one prison hospital psychiatric ward (n=68; 47.6%), one male (n=24; 16.8%) and one female (n=22; 15.4%) psychiatric clinic and one civil security ward (n=29; 20.3%), all located nearby Lisbon. Basic descriptive statistics and Kappa weighted coefficients were calculated for the inter-rater and the test-retest reliability studies. The convergent validity was evaluated using the Global Assessment of Functioning and the Brief Psychiatric Rating Scale scores. Results The majority of the participants were male and single, with short school attendance, and accused of a crime involving violence against persons. The most frequent diagnosis was major depression (56.1%) and almost half presented positive suicide risk. The reliability study showed average Kappa weighted coefficients of 0.884 and 0

  2. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  3. The Basis version of LASNEX

    NASA Astrophysics Data System (ADS)

    Dubois, P. F.

    1990-10-01

    We have made major changes to the computer science aspects of our laser fusion simulation program LASNEX. LASNEX is now using the Basis system, a FORTRAN development system developed over the last six years at Lawrence Livermore National Laboratory. This has given users greatly increased power and flexibility. We have eliminated all non-standard usage and macros, enabling us to begin the port of LASNEX to workstations. At the same time, we have completely redone the system used to maintain the source and create new versions of LASNEX, resulting in major gains in capability and productivity.

  4. The Basis version of LASNEX

    SciTech Connect

    Dubois, P.F.

    1990-10-26

    We have made major changes to the computer science aspects of our laser fusion simulation program LASNEX. LASNEX is now using the Basis system, a Fortran development system developed over the last six years at Lawrence Livermore National Laboratory. This has given users greatly increased power and flexibility. We have eliminated all non-standard usage and macros, enabling us to begin the port of LASNEX to workstations. At the same time, we have completely redone the system used to maintain the source and create new versions of LASNEX, resulting in major gains in capability and productivity. 5 refs.

  5. ASPEN Version 3.0

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Chien, Steve; Knight, Russell; Schaffer, Steven; Tran, Daniel; Cichy, Benjamin; Sherwood, Robert

    2006-01-01

    The Automated Scheduling and Planning Environment (ASPEN) computer program has been updated to version 3.0. ASPEN is a modular, reconfigurable, application software framework for solving batch problems that involve reasoning about time, activities, states, and resources. Applications of ASPEN can include planning spacecraft missions, scheduling of personnel, and managing supply chains, inventories, and production lines. ASPEN 3.0 can be customized for a wide range of applications and for a variety of computing environments that include various central processing units and random access memories.

  6. SRT Status and Plans for Version-7

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Kouvaris, Louis

    2015-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. Research is continuing at SRT toward the development of AIRS Version-7. At the last Science Team Meeting, we described results using SRT AIRS Version-6.19. SRT Version-6.19 is now an official build at JPL called 6.2. SRTs latest version is AIRS Version-6.22. We have also adapted AIRS Version-6.22 to run with CrISATMS. AIRS Version-6.22 and CrIS Version- 6.22 both run now on JPL computers, but are not yet official builds. The main reason for finalization of Version-7, and using it in the relatively near future for the future processing and reprocessing of old AIRS data, is to produce even better CDRs for use by climate scientists. For this reason all results shown in this talk use only AIRS Climate QC.

  7. A model of cellular dosimetry for macroscopic tumors in radiopharmaceutical therapy

    PubMed Central

    Hobbs, Robert F.; Baechler, Sébastien; Fu, De-Xue; Esaias, Caroline; Pomper, Martin G.; Ambinder, Richard F.; Sgouros, George

    2011-01-01

    Purpose: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment’s ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. Methods: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, Nr: 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1∕2. From dose volume histograms the surviving fraction of cells

  8. Synthesis and radioiodination of ergoline derivatives: potential in-vivo dopamine receptor site mapping radiopharmaceuticals

    SciTech Connect

    Mikhail, E.A.

    1985-01-01

    The need of a dopamine-receptor based radiopharmaceutical for brain imaging is apparent. If such an agent is made available to physicians, it could provide means for detecting brain tumors, and diagnose such mental disorders as parkinsonism, schizophrenia and psychosis. Currently, such agents are yet to be discovered. Procedures were developed to synthesize and label four ergoline derivatives which could potentially exhibit affinity to dopamine receptors. Labelling with /sup 125/I was accomplished in some cases by displacing a suitably positioned leaving group with /sup 125/I-anion, while in other cases iodine exchange procedures were utilized. Formulations of the labeled derivatives were achieved via the formation of their water soluble tartarate salts. Biodistribution studies in mature Sprague-Dawley rats showed that of the four radioactive compounds injected, the highest uptake in the brain and adrenals was achieved with 8 ..beta..-(I-125)-iodomethyl-6-propylergoline. In addition, high target/nontarget ratios were obtained with the above mentioned compound. On the other hand, the least brain and adrenal uptake as well as the lowest target/nontarget ratios were exhibited by 8 ..beta..-(I-125)-(p-iodobenzenesulfonyl)-lysergol presumably due to its in-vivo instability. A comparative biodistribution study for ergoline derivatives and N-isopropyl-(I-123)-p-iodoamphetamine was conducted. The biodistribution studies showed that the brain to blood ratio for the ergoline derivative 8 ..beta..-(I-125)-iodomethyl-6-propylergoline to be very close to that for /sup 125/I-IMP at 1 minute after dose administration. However after 15 minutes the brain/blood ratio of compound XLVI was half the value of /sup 123/I-IMP. Different mechanisms of brain influx and efflux are known to occur with the amphetamine and ergoline derivatives.

  9. A concise radiosynthesis of the tau radiopharmaceutical, [(18) F]T807.

    PubMed

    Shoup, Timothy M; Yokell, Daniel L; Rice, Peter A; Jackson, Raul N; Livni, Eli; Johnson, Keith A; Brady, Thomas J; Vasdev, Neil

    2013-12-01

    Fluorine-18 labeled 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([(18) F]T807) is a potent and selective agent for imaging paired helical filaments of tau and is among the most promising PET radiopharmaceuticals for this target in early clinical trials. The present study reports a simplified one-step method for the synthesis of [(18) F]T807 that is broadly applicable for routine clinical production using a GE TRACERlab™ FXFN radiosynthesis module. Key facets of our optimized radiosynthesis include development and use of a more soluble protected precursor, tert-butyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, as well as new HPLC separation conditions that enable a facile one-step synthesis. During the nucleophilic fluorinating reaction with potassium cryptand [(18) F]fluoride (K[(18) F]/K222 ) in DMSO at 130 °C over 10 min the precursor is concurrently deprotected. Formulated [(18) F]T807 was prepared in an uncorrected radiochemical yield of 14 ± 3%, with a specific activity of 216 ± 60 GBq/µmol (5837 ± 1621 mCi/µmol) at the end of synthesis (60 min; n = 3) and validated for human use. This methodology offers the advantage of faster synthesis in fewer steps, with simpler automation that we anticipate will facilitate widespread clinical use of [(18) F]T807. PMID:24339014

  10. Integrating bone targeting radiopharmaceuticals into the management of patients with castrate-resistant prostate cancer with symptomatic bone metastases.

    PubMed

    Blacksburg, Seth R; Witten, Matthew R; Haas, Jonathan A

    2015-03-01

    Metastatic castrate-resistant prostate cancer (CRPC) refers to the disease state in which metastatic prostate cancer fails to respond to androgen deprivation therapy (ADT). This can be manifest as a rising PSA, increase in radiographically measurable disease, or progression of clinical disease. Roughly 90 % of men with metastatic prostate cancer have bone metastases, which is a predictor of both morbidity and mortality. Historically, treatment has been palliative, consisting of external beam radiation therapy (EBRT) and pharmacological analgesics for pain control and osteoclast inhibitors, such as bisphosphonates and denosumab to mitigate skeletal-related events. Older radiopharmaceuticals, such as Strontium-89 and Samarium-153, are Beta-emitting agents that were found to provide palliation but were without survival benefit and carried high risks of myelosuppression. Radium-223 is an Alpha-emitting radiopharmaceutical that has demonstrated a significant overall survival benefit in men with metastatic CRPC, delay to symptomatic skeletal events (SSEs), and improvement in pain control, with a favorable toxicity profile compared with placebo. Unlike EBRT, Radium-223 has systemic uptake, with the potential to address several bone metastases concurrently and provides overall survival benefit. It is a simple administration with minimal complexity and shielding requirements in experienced hands. EBRT appears to provide a more rapid and dramatic palliative benefit to any given lesion. Because Radium-223 has limited myelosuppression, the two can be thoughtfully integrated, along with multiple agents, for the treatment of men with CRPC with symptomatic bone metastases. Given its excellent safety profile, there is interest and anecdotal safety combining Radium-223 with therapies, such as abiraterone and enzalutamide. Formal recommendations regarding combination therapies will require clinical trials. The use of Alpha-emitting radiopharmaceuticals in castrate-sensitive disease

  11. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  12. 175Yb-TTHMP as a good candidate for bone pain palliation and substitute of other radiopharmaceuticals

    PubMed Central

    Safarzadeh, Laleh

    2014-01-01

    Bone metastasis is one of the most frequent causes of pain in cancer patients. Different radioisotopes such as P-32, Sm-153, Ho-166, Lu-177, and Re-186 with several chemical ligands as ethylenediaminetetramethylene phosphonic acid (EDTMP), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid (DOTMP), and propylenediaminetetramethylene phosphonate (PDTMP) are recommended for bone pain palliation. In this work, 175Yb-triethylenetetraminehexamethylene phosphonic acid (TTHMP) was produced as a proper alternative to other radiopharmaceuticals. Relatively long half-life (T1/2 = 4.18 days), maximum energy beta particle Eβ =470 keV (86.5%), low abundance gamma emission 396 keV (6.4%), 286 keV (3.01%), 113.8 keV (1.88%) and low cost are considered advantageous of Yb-175 are to wider usage of this isotope; in addition, TTHMP is an ideal carrier moiety for bone metastases. Production, quality control, and biodistribution studies of 175Yb-TTHMP were targeted. Yb-175 chloride was obtained by thermal neutron bombardment of a natural Yb2O3 sample at Tehran Research Reactor (TRR), radiolabeling was completed in 1 h by the addition of TTHMP at the room temperature and pH was 7.5-8, radiochemical purity was higher than 95%. Biodistribution studies in normal rats were carried out. The results showed favorable biodistribution features of 175Yb-TTHMP, indicating significant accumulation in bone tissues compared with clinically used bone-seeking radiopharmaceuticals. This research presents 175Yb-TTHMP can be a good candidate for bone pain palliation and substitute of other radiopharmaceuticals, however, further biological studies in other mammals are still needed. PMID:25210277

  13. NQS - NETWORK QUEUING SYSTEM, VERSION 2.0 (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Walter, H.

    1994-01-01

    ; device queues hold and prioritize device requests; pipe queues transport both batch and device requests to other batch, device, or pipe queues at local or remote machines. Unique to batch queues are resource quota limits that restrict the amounts of different resources that a batch request can consume during execution. Unique to each device queue is a set of one or more devices, such as a line printer, to which requests can be sent for execution. Pipe queues have associated destinations to which they route and deliver requests. If the proper destination machine is down or unreachable, pipe queues are able to requeue the request and deliver it later when the destination is available. All NQS network conversations are performed using the Berkeley socket mechanism as ported into the respective vendor kernels. NQS is written in C language. The generic UNIX version (ARC-13179) has been successfully implemented on a variety of UNIX platforms, including Sun3 and Sun4 series computers, SGI IRIS computers running IRIX 3.3, DEC computers running ULTRIX 4.1, AMDAHL computers running UTS 1.3 and 2.1, platforms running BSD 4.3 UNIX. The IBM RS/6000 AIX version (COS-10042) is a vendor port. NQS 2.0 will also communicate with the Cray Research, Inc. and Convex, Inc. versions of NQS. The standard distribution medium for either machine version of NQS 2.0 is a 60Mb, QIC-24, .25 inch streaming magnetic tape cartridge in UNIX tar format. Upon request the generic UNIX version (ARC-13179) can be provided in UNIX tar format on alternate media. Please contact COSMIC to discuss the availability and cost of media to meet your specific needs. An electronic copy of the NQS 2.0 documentation is included on the program media. NQS 2.0 was released in 1991. The IBM RS/6000 port of NQS was developed in 1992. IRIX is a trademark of Silicon Graphics Inc. IRIS is a registered trademark of Silicon Graphics Inc. UNIX is a registered trademark of UNIX System Laboratories Inc. Sun3 and Sun4 are trademarks of

  14. EnergyPlus Version 6

    SciTech Connect

    2011-01-14

    EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. Each version of EnergyPlus is tested extensively before release. EnergyPlus models heating, cooling, lighting, ventilation, other energy flows, and water use. EnergyPlus includes many innovative simulation capabilities: time-steps less than an hour, modular systems and plant integrated with heat balance-based zone simulation, multizone air flow, thermal comfort, water use, natural ventilation, and photovoltaic systems. Read about new features. EnergyPlus runs on the Windows, Macintosh, and Linux platforms. Free add-ons and other third-party software products are available for use with EnergyPlus.

  15. EnergyPlus Version 7

    SciTech Connect

    Wetter, Michael

    2011-11-01

    EnergyPlus is a whole building energy simulation program that engineers, architects and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. Each version of EnergyPlus is tested extensively before release. EnergyPlus models heating, cooling, lighting, ventilation, other energy flows, and water use. EnergyPlus includes many innovation simulation capabilities: time-steps less than an hour, modular systems and plant integrated with heat balance-based zone simulation, multizone air flow, thermal comfort, water use, natural ventilation, and photovoltaic systems. EnergyPlus runs on the Windows, Macintosh, and Linux platforms. Free add-ons and other third party software products are available for use with EnergyPlus.

  16. EnergyPlus Version 7

    Energy Science and Technology Software Center (ESTSC)

    2011-11-01

    EnergyPlus is a whole building energy simulation program that engineers, architects and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. Each version of EnergyPlus is tested extensively before release. EnergyPlus models heating, cooling, lighting, ventilation, other energy flows, and water use. EnergyPlus includes many innovation simulation capabilities: time-steps less than anmore » hour, modular systems and plant integrated with heat balance-based zone simulation, multizone air flow, thermal comfort, water use, natural ventilation, and photovoltaic systems. EnergyPlus runs on the Windows, Macintosh, and Linux platforms. Free add-ons and other third party software products are available for use with EnergyPlus.« less

  17. EnergyPlus Version 6

    Energy Science and Technology Software Center (ESTSC)

    2011-01-14

    EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. Each version of EnergyPlus is tested extensively before release. EnergyPlus models heating, cooling, lighting, ventilation, other energy flows, and water use. EnergyPlus includes many innovative simulation capabilities: time-steps less than anmore » hour, modular systems and plant integrated with heat balance-based zone simulation, multizone air flow, thermal comfort, water use, natural ventilation, and photovoltaic systems. Read about new features. EnergyPlus runs on the Windows, Macintosh, and Linux platforms. Free add-ons and other third-party software products are available for use with EnergyPlus.« less

  18. CASPER Version 2.0

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Rabideau, Gregg; Tran, Daniel; Knight, Russell; Chouinard, Caroline; Estlin, Tara; Gaines, Daniel; Clement, Bradley; Barrett, Anthony

    2007-01-01

    CASPER is designed to perform automated planning of interdependent activities within a system subject to requirements, constraints, and limitations on resources. In contradistinction to the traditional concept of batch planning followed by execution, CASPER implements a concept of continuous planning and replanning in response to unanticipated changes (including failures), integrated with execution. Improvements over other, similar software that have been incorporated into CASPER version 2.0 include an enhanced executable interface to facilitate integration with a wide range of execution software systems and supporting software libraries; features to support execution while reasoning about urgency, importance, and impending deadlines; features that enable accommodation to a wide range of computing environments that include various central processing units and random- access-memory capacities; and improved generic time-server and time-control features.

  19. SAMRSolvers Version 0.1

    Energy Science and Technology Software Center (ESTSC)

    2006-09-01

    SAMRSolvers is a collection of multilevel solvers for systems of linear equations that result from finite volume discretization of an elliptic partial differential equation on a block-structure (or patch-based) locally refined grid. SAMRSolvers provides implementations of the Fast Adaptive Composite grid (FAC) method, and the AFACx method, which is a less expensive version of AFAC that smooths the error instead of solving for it on all but the coarsest level. These methods can be shownmore » to converge at rates that are independent of the number of refinement levels. SAMRSolvers is intended for use with SAMRAIV2.0 and requires the SAMRUtilities package.« less

  20. BINSYN a Publicly Available Version

    NASA Astrophysics Data System (ADS)

    Linnell, Albert P.; DeStefano, P.

    2012-01-01

    A public version of the Binsyn program package now is available for download. Binsyn is a set of programs, running on Linux, that simulate binary star systems, either with or without an optically thick accretion disk. The package includes facilities for parameter optimization by differentials correction. Light curve generation optionally is on the black body approximation or by synthetic photometry. In the latter case, the filter response curves provided with the release are on the Bessell, 1990, PASP, 102, 1181 (Table 2) tabulation. Substitution of different response curves to represent other photometric systems can be accomplished easily. The package produces synthetic spectra and calculated radial velocities of system components as function of orbital phase for comparison with observational data. It has been used extensively in studies of cataclysmic variables (e.g., Linnell et al., 2010, ApJ, 719, 271). The presentation will demonstrate program performance in a variety of contexts.

  1. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [11C ]-DTBZ, [11C ]-RAC, and [18F ]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  2. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    SciTech Connect

    Lara-Camacho, V. M. Ávila-García, M. C. Ávila-Rodríguez, M. A.

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  3. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy.

    PubMed

    Ljungberg, Michael; Celler, Anna; Konijnenberg, Mark W; Eckerman, Keith F; Dewaraja, Yuni K; Sjögreen-Gleisner, Katarina; Bolch, Wesley E; Brill, A Bertrand; Fahey, Frederic; Fisher, Darrell R; Hobbs, Robert; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Zanzonico, Pat; Bacher, Klaus; Chiesa, Carlo; Flux, Glenn; Lassmann, Michael; Strigari, Lidia; Walrand, Stephan

    2016-01-01

    The accuracy of absorbed dose calculations in personalized internal radionuclide therapy is directly related to the accuracy of the activity (or activity concentration) estimates obtained at each of the imaging time points. MIRD Pamphlet no. 23 presented a general overview of methods that are required for quantitative SPECT imaging. The present document is next in a series of isotope-specific guidelines and recommendations that follow the general information that was provided in MIRD 23. This paper focuses on (177)Lu (lutetium) and its application in radiopharmaceutical therapy. PMID:26471692

  4. A procedure for the standardization of gamma reference sources for quality assurance in activity measurements of radiopharmaceuticals.

    PubMed

    Oropesa, P; Serra, R; Gutiérrez, S; Hernández, A T

    2002-06-01

    A simplified procedure for the standardization of gamma reference sources, for use in quality assurance of activity measurements during production and application of radiopharmaceuticals in Cuban nuclear medicine laboratories, is described. The method is based on the reliable achievement of consistent measurements by both gamma-spectrometry and ionization chamber techniques, and allows to obtain reference sources with uncertainties lower than 2%. Experimental setup, validation procedure and typical results obtained for 99mTc, 131I, 201Tl and 153Sm are described and discussed. The method will serve also as a secondary reference system for radioactivity measurements in the country. PMID:12102334

  5. Untangling the web of European regulations for the preparation of unlicensed radiopharmaceuticals: a concise overview and practical guidance for a risk-based approach.

    PubMed

    Lange, Rogier; ter Heine, Rob; Decristoforo, Clemens; Peñuelas, Iván; Elsinga, Philip H; van der Westerlaken, Monique M L; Hendrikse, N Harry

    2015-05-01

    Radiopharmaceuticals are highly regulated, because they are controlled both as regular medicinal products and as radioactive substances. This can pose a hurdle for their development and clinical use. Radiopharmaceuticals are fundamentally different from other medicinal products and these regulations are not always adequate for their production. Strict compliance may have a huge resource impact, without further improving product quality. In this paper we give an overview of the applicable legislation and guidelines and propose a risk-based approach for their implementation. We focus on a few controversial Good Manufacturing Practice topics: cleanroom classification, air pressure regime, cleanroom qualification and microbiological monitoring. We have developed an algorithm to assess the combined risk of microbiological contamination of a radiopharmaceutical preparation process and propose corresponding Good Manufacturing Practice classification levels. In our opinion, the risk of carry-over of radiopharmaceuticals by individuals cannot be contained by pressure differences, and complicated regimes with underpressured rooms are not necessary in most situations. We propose a sterility assurance level of 10 for radiopharmaceuticals that are administered within a working day, irrespective of their use. We suggest the adoption of limits for environmental monitoring of microbial contamination, as proposed by Bruel and colleagues, on behalf of the French Society of Radiopharmacy. Recently launched regulatory documents seem to breathe a more liberal spirit than current legislation and recognize the need for the use of risk assessment. We argue that future legislation be further harmonized and state risk assessment as the gold standard for implementation of drug quality regulations for the preparation of unlicensed radiopharmaceuticals. PMID:25646703

  6. HST archive primer, version 4.1

    NASA Technical Reports Server (NTRS)

    Fruchter, A. (Editor); Baum, S. (Editor)

    1994-01-01

    This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.

  7. Versions to Address Business Process Flexibility Issue

    NASA Astrophysics Data System (ADS)

    Chaâbane, Mohamed Amine; Andonoff, Eric; Bouaziz, Rafik; Bouzguenda, Lotfi

    This paper contributes to address an important issue in business process management: the Business Process (BP) flexibility issue. First, it defends that versions are an interesting solution to deal with both a priori (when designing BPs) and a posteriori (when executing BPs) flexibility. It also explains why previous contributions about versions of BPs are incomplete, and need to be revisited. Then, the paper presents a meta-model for BP versions, which combines five perspectives -the functional, process, informational, organizational and operation perspectives- for BP modelling, and which allows a comprehensive description of versionalized BPs.

  8. Radiation absorbed dose estimates for oxygen-15 radiopharmaceuticals (H2( V)O, C VO, O VO) in newborn infants

    SciTech Connect

    Powers, W.J.; Stabin, M.; Howse, D.; Eichling, J.O.; Herscovitch, P.

    1988-12-01

    In preparation for measurement of regional cerebral oxygen metabolism by positron emission tomography, radiation absorbed dose estimates for 19 internal organs, blood, and total body were calculated for newborn infants following bolus intravenous administration of H2( V)O and brief inhalation of C VO and O VO. Cumulated activity for each radiopharmaceutical was calculated from a compartmental model based on the known biologic behavior of the compound. Values for mean absorbed dose/unit cumulated activity (S) for internal organs and total body were based on a newborn phantom. S was separately calculated for blood. Total radiopharmaceutical absorbed dose estimates necessary to measure cerebral oxygen metabolism in a 3.51-kg infant based on 0.7 mCi/kg H2( V)O and 1 mCi/kg C VO and O VO were determined to be 1.6 rad to the lung (maximum organ dose), 0.28 rad to the marrow, 0.46 rad to the gonads, and 0.22 rad to total body. These values are similar to those for current clinical nuclear medicine procedures employing /sup 99m/Tc in newborn infants.

  9. MCNP(TM) Version 5.

    SciTech Connect

    Cox, L. J.; Barrett, R. F.; Booth, Thomas Edward; Briesmeister, Judith F.; Brown, F. B.; Bull, J. S.; Giesler, G. C.; Goorley, J. T.; Mosteller, R. D.; Forster, R. A.; Post, S. E.; Prael, R. E.; Selcow, Elizabeth Carol,; Sood, A.

    2002-01-01

    The Monte Carlo transport workhorse, MCNP, is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP Version 5 (V5) (expected to be released to RSICC in Spring, 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, and improved parallelism support (PVM, MPI, OpenMP).

  10. ROSE Version 1.0

    Energy Science and Technology Software Center (ESTSC)

    2005-02-17

    ROSE is an object-oriented software infrastructure for source-to-source translation that provides an interface for programmers to write their own specialized translators for optimizing scientific applications. ROSE is a part of current research on telescoping languages, which provides optimizations of the use of libraries in scientific applications. ROSE defines approaches to extend the optimization techniques, common in well defined languages, to the optimization of scientific applications using well defined libraries. ROSE includes a rich set ofmore » tools for generating customized transformations to support optimization of applications codes. We currently support full C and C++ (including template instantiation etc.), with Fortran 90 support under development as part of a collaboration and contract with Rice to use their version of the open source Open64 F90 front-end. ROSE represents an attempt to define an open compiler infrastructure to handle the full complexity of full scale DOE applications codes using the languages common to scientific computing within DOE. We expect that such an infrastructure will also be useful for the development of numerous tools that may then realistically expect to work on DOE full scale applications.« less

  11. UPGRADES TO Monteburns, VERSION 3.0

    SciTech Connect

    Galloway, Jack D; Trellue, Holly R

    2012-06-22

    Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

  12. VruiNet Version 12(SOPHIA)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    VruiNet Version 12 is the code used exclusively by the executable ‘vruinet’. VruiNet Version 12 provides a wrapper around the code for ‘oglnet’ that makes it compatible for VRUI systems such as the CAVE at CAES.

  13. MISR File Naming and Versioning Conventions

    Atmospheric Science Data Center

    2013-06-26

    ... that generates that product. In addition, product version numbers were incremented if a new ancillary dataset was delivered that ... are applicable to two different temporal ranges. The version numbers 0005 and 0001 bear no relation to each other. For more details, please ...

  14. [Extravasation of radiopharmaceuticals: preventive measures and management recommended by SoFRa (Société Française de Radiopharmacie)].

    PubMed

    Barré, E; Nguyen, M-L; Bruel, D; Fournel, C; Hosten, B; Lao, S; Vercellino, L; Rizzo-Padoin, N

    2013-07-01

    Radiopharmaceuticals extravasation is rare but may have serious clinical issues. Because no specific recommendations are being proposed to date, the goals of our working group created within the French Society of Radiopharmacy are to determine preventive measures and to establish a pragmatic management of extravasation of these drugs. Our preventive measures are to recognize the symptoms (erythema, venous discoloration, swelling), to know the risk factors (which are related to radiopharmaceutical, patient, site of injection, injection technique) and severity (from erythema to skin necrosis, depending on the radionuclide) and how to avoid them (training and awareness of staff, choice of injection site, route of drug administration test, use of a catheter for administration of therapeutic radiopharmaceuticals). Management should be immediate. It can be facilitated by a specific emergency kit. General measures recommended are the immediate cessation of injection, aspiration of fluid extravasation, delimitation of the extravasated area with an indelible pen, informing the doctor. Specific measures taking into account the radiotoxicity of the radionuclide and the type of radiopharmaceutical were also established. The patient should be informed by the doctor about the risks and how to take care of. Traceability of the incident must be ensured. A multidisciplinary reflexion is essential to manage the extravasation as early and effectively as possible. PMID:23835019

  15. OASIS, LLNL version: Software maintenance manual

    SciTech Connect

    Auerbach, J.M.

    1990-03-01

    The OASIS laser beam propagation code has been used extensively to support design and analysis in the Free Electron Laser Master Oscillator Program, the Medium Power Solid State Laser Program, and the Active Optical Countermeasures Program. The version of OASIS currently used at LLNL is significantly enhanced compared to the initial version supplied by the Air Force Weapons Laboratory. This software maintenance manual presents the details of the LLNL version of OASIS so it can be modified as necessary by new personnel. The manual presents in great detail the content and organization of the OASIS software configured for the VMS operating system.

  16. Studying the General Toxicity and Cumulative Properties of a Radiopharmaceutical Nanocolloid, (99m)Tc-Al2O3.

    PubMed

    Varlamova, N V; Churin, A A; Fomina, T I; Ermolaeva, L A; Vetoshkina, T V; Dubskaya, T Yu; Lamzina, T Yu; Fedorova, E P; Neupokoeva, O V; Skuridin, V S; Nesterov, E A; Larionova, L A; Chernov, V I

    2016-07-01

    We studied toxicity of a new Russian radiopharmaceutical Nanocolloid, (99m)Tc-Al2O3. Tests for acute toxicity showed that this agent belongs to a class of moderate-toxicity substances and does not have cumulative properties. The evaluation of subchronic toxicity after subcutaneous injection of this product to rats (0.04, 0.2, and 0.4 ml/kg) and rabbits (0.02 and 0.2 ml/kg) for 7 days did not reveal changes in the general state, temperature, body weight, indices of the peripheral blood and bone marrow, functions of the heart, liver, kidneys, and nervous system, and morphological characteristics of the internal organs in animals. The drug does not produce a local irritant effect. PMID:27502539

  17. Food and Drug Administration process for development and approval of drugs and radiopharmaceuticals: treatments in urologic oncology.

    PubMed

    Ning, Yang-Min; Maher, V Ellen

    2015-03-01

    Regulatory advice and assessment play an important role in the successful development of new drugs and radiopharmaceuticals for the treatment of urologic malignancies. Cooperation between the US Food and Drug Administration (FDA) and the pharmaceutical industry has led to the approval of more than 20 new urologic oncology products in the last 2 decades. Despite these advances, more effective treatments need to be developed and approved for the treatment of urologic malignancies. This review provides general information about the FDA's role in the development of investigational new drugs, with an emphasis on the regulatory process and the requirements for marketing approval. In addition, this review summarizes the products for the treatment of urologic malignancies that were approved by the FDA in the last 30 years and the key issues concerning urologic oncology products that were discussed publicly at Oncologic Drug Advisory Committee meetings in the past 10 years. PMID:25613202

  18. Phenylpiperazine-based radiopharmaceuticals for brain imaging. 3. Synthesis and evaluation of radioiodinated 1-alkyl-4-phenylpiperazines

    SciTech Connect

    Hanson, R.N.; Hassan, M.

    1987-01-01

    As part of our program in radiopharmaceutical chemistry we have prepared and evaluated a series of radioiodinated 1-alkyl-4-phenylpiperazines as potential brain-imaging agents. The compounds were chosen on the basis of their synthetic versatility, activation toward electrophilic substitution, and ease of purification. The intermediates 1-6 were readily obtained and converted to the corresponding radioiodinated products 7-12 in 76-91% isolated radiochemical yields. The tissue distribution in rats indicated that the 1-N-butyl derivative 9 possesses the best combination of brain uptake (0.28-0.35% ID X kg/g), retention, and selectivity (brain/blood greater than 20) over the 4-h evaluation period. A subsequent imaging and tissue distribution study in the dog using 131I-labeled 9 supported the results observed in the rat and suggested the potential of this agent as a brain-imaging agent.

  19. Performance of a Lanthanum Bromide Detector and a New Conception Collimator for Radiopharmaceuticals Molecular Imaging in Oncology

    NASA Astrophysics Data System (ADS)

    Pani, Roberto; Pellegrini, Rosanna; Bennati, Paolo; Cinti, Maria Nerina; Scafè, Raffaele; De Vincentis, Giuseppe; Navarria, Francesco; Moschini, Giuliano; Cencelli, Valentino Orsolini; De Notaristefani, Francesco; Rossi, Paolo

    2009-03-01

    We have realized and tested a new-design compact gamma camera for high resolution SPET (Single Photon Emission Tomography), and small animals' radio-pharmaceutical molecular imaging. The camera is based on a "continuous" Lanthanum tri-Bromide crystal, and a new Low Energy (LE) collimator. The crystal is interfaced to a 2×2 array of Hamamatsu-H8500 position sensitive photo-multipliers. The lead collimator features parallel hexagonal 1.0 mm holes, 18 mm length, 0.2 mm septa and 10×10 cm2 detection area. It was newly designed to fully exploit the high spatial resolution a Lanthanum crystal may provide. To better evaluate its role, we have compared our camera to three other systems with similar crystals and photomultipliers, but employing traditional collimators, either pinhole or parallel. The new camera seems to be complementary to pinhole systems and shows a very attractive trade-off between spatial resolution and detection area.

  20. Source code management with version control software

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.

    2016-01-01

    Developing and maintaining software is an important part of astronomy research. As time progresses projects can move in unexpected directions or simply last longer than expected. Making changes to software can quickly result in many different versions of the code, wanting to return to a previous lost version, and problems sharing updated code with others. It is simple to update and collaboratively edit source code when you use version control software. This short talk will highlight the version control softwares svn, git, and hg for use with local and remote software repositories. In addition I will touch on using GitHub and BitBucket as excellent ways to share your code using an online interface.

  1. Integrated Procurement Management System, Version II

    NASA Technical Reports Server (NTRS)

    Collier, L. J.

    1985-01-01

    Integrated Procurement Management System, Version II (IPMS II) is online/ batch system for collecting developing, managing and disseminating procurementrelated data at NASA Johnson Space Center. Portions of IPMS II adaptable to other procurement situations.

  2. DATAMAP upgrade version 4.0

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Dejpour, Shabob R.

    1989-01-01

    The changes made on the data analysis and management program DATAMAP (Data from Aeromechanics Test and Analytics - Management and Analysis Package) are detailed. These changes are made to Version 3.07 (released February, 1981) and are called Version 4.0. Version 4.0 improvements were performed by Sterling Software under contract to NASA Ames Research Center. The increased capabilities instituted in this version include the breakout of the source code into modules for ease of modification, addition of a more accurate curve fit routine, ability to handle higher frequency data, additional data analysis features, and improvements in the functionality of existing features. These modification will allow DATAMAP to be used on more data sets and will make future modifications and additions easier to implement.

  3. [External cephalic version using tocalytica (author's transl)].

    PubMed

    Meyenburg, M; Busch, W

    1976-12-01

    1. This report relates our experiences with 63 external versions of random breech or transverse presentations in cranial presentation between the 35th and 40th week of pregnancy p.m. using tocolytica. Only 22 of the 63 versions were successful when only tocolytica were administered. In 17 cases from a total of 34 the external version was successful under subsequent general anasthesia. 2. Of these 39, in whose case an external version of the foetus was successful, there were only two caesarian deliveries. The number of caesarian sections in the case of breech presentation on the other hand totalled, in the year the present investigation was carried out, 62%. By external version the number of caesarian sections performed on those women whose external version was successful was indirectly reduced twelve-fold. 3. It was not possible to turn 24 of the total of 63 foetuses - either by tocolytica or under general anaesthesia. The following factors - partly in combination - were responsible for this: 10 tendencies to contraction; 9 cases of a relatively narrow amniotic cavity: 3 cases of adiposity of the abdominal wall; 3 dorso-anterior or -posterior presentations; one case of "extended legs"; one relatively broad amniotic cavity. 4. An external version can cause damage to the placenta: a) in the case of 6 out of 22 women under obervation foetomaternal transfusion was detected. b) In once case materno-foetel transfusion with polyglobulism of the new-born was suspected. c) In one case a premature partial abruption of the placenta had to be assumed. The danger of damage to the placenta is especially great when the placenta is located next to the anterior wall of the uterus. 5. In 40% of the cases a brief deceleration of the foetal heart-frequency occurred immediately after the external version. Two cases were observed in which the foetal heart-frequency remained low over a period of several minutes. 6. In 5 out of the total of 63 cases a caesarian section was performed after

  4. Online Information Searching Strategy Inventory (OISSI): A Quick Version and a Complete Version

    ERIC Educational Resources Information Center

    Tsai, Meng-Jung

    2009-01-01

    This study developed an instrument to evaluate student online information searching strategies based on a framework comprising three domains and seven aspects. Two versions of the Online Information Searching Strategies Inventory (OISSI), including both quick and complete versions, were finally established and exhibited good validities and…

  5. Examining Equivalency of the Driver Risk Inventory Test Versions: Does It Matter Which Version I Use?

    ERIC Educational Resources Information Center

    Degiorgio, Lisa

    2015-01-01

    Equivalency of test versions is often assumed by counselors and evaluators. This study examined two versions, paper-pencil and computer based, of the Driver Risk Inventory, a DUI/DWI (driving under the influence/driving while intoxicated) risk assessment. An overview of computer-based testing and standards for equivalency is also provided. Results…

  6. New developments in program STANSOL version 3

    SciTech Connect

    Gray, W.H.

    1981-10-01

    STANSOL is a computer program that applied a solution for the mechanical displacement, stress, and strain in rotationally-transversely isotropic, homogeneous, axisymmetric solenoids. Careful application of the solution permits the complex mechanical behavior of multilayered, nonhomogeneous solenoids to be examined in which the loads may vary arbitrarily from layer to layer. Loads applied to the solenoid model by program STANSOL may consist of differential temperature, winding preload, internal and/or external surface pressure, and electromagnetic Lorentz body forces. STANSOL version 3, the latest update to the original version of the computer program, also permits structural analysis of solenoid magnets in which frictionless interlayer gaps may open or close. This paper presents the new theory coded into version 3 of the STANSOL program, as well as the new input data format and graphical output display of the resulting analysis.

  7. Praxis release notes: version 7. 3

    SciTech Connect

    Holloway, F.W.; DeGroot, A.

    1985-05-03

    These release notes are intended as a guide to those responsible for Nova software. They assume extensive knowledge of the present Praxis language. Each improvement made in Praxis is described. Many of the improvements have example programs which are contained within the chapter on example programs. For completeness, details are also included on the specific areas within the compiler which were modified. These will only be useful to those working on the compiler itself. The principal improvements made in this version of the compiler are: support under version 4.1 of the VMS operating system, ability to directly call the VMS Run Time Library, repair of two bugs introduced by version 7.2, and reintroduction and cleanup of the VMS System Service routines (OSI).

  8. Comparison of effective dose and lifetime risk of cancer incidence of CT attenuation correction acquisitions and radiopharmaceutical administration for myocardial perfusion imaging

    PubMed Central

    Szczepura, K; Hogg, P

    2014-01-01

    Objective: To measure the organ dose and calculate effective dose from CT attenuation correction (CTAC) acquisitions from four commonly used gamma camera single photon emission CT/CT systems. Methods: CTAC dosimetry data was collected using thermoluminescent dosemeters on GE Healthcare's Infinia™ Hawkeye™ (GE Healthcare, Buckinghamshire, UK) four- and single-slice systems, Siemens Symbia™ T6 (Siemens Healthcare, Erlangen, Germany) and the Philips Precedence (Philips Healthcare, Amsterdam, Netherlands). Organ and effective dose from the administration of 99mTc-tetrofosmin and 99mTc-sestamibi were calculated using International Commission of Radiological Protection reports 80 and 106. Using these data, the lifetime biological risk was calculated. Results: The Siemens Symbia gave the lowest CTAC dose (1.8 mSv) followed by the GE Infinia Hawkeye single-slice (1.9 mSv), GE Infinia Hawkeye four-slice (2.5 mSv) and Philips Precedence v. 3.0. Doses were significantly lower than the calculated doses from radiopharmaceutical administration (11 and 14 mSv for 99mTc-tetrofosmin and 99mTc-sestamibi, respectively). Overall lifetime biological risks were lower, which suggests that using CTAC data posed minimal risk to the patient. Comparison of data for breast tissue demonstrated a higher risk than that from the radiopharmaceutical administration. Conclusion: CTAC doses were confirmed to be much lower than those from radiopharmaceutical administration. The localized nature of the CTAC exposure compared to the radiopharmaceutical biological distribution indicated dose and risk to the breast to be higher. Advances in knowledge: This research proved that CTAC is a comparatively low-dose acquisition. However, it has been shown that there is increased risk for breast tissue especially in the younger patients. As per legislation, justification is required and CTAC should only be used in situations that demonstrate sufficient net benefit. PMID:24998249

  9. A simple low-cost of liquid I-131 dispenser for routine radiopharmaceutical dispensing at nuclear medicine department, Institut Kanser Negara

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Ashhar, Z. N.; Suhaimi, N. E. F.; Zainon, R.

    2016-01-01

    In routine radiopharmaceutical Iodine-131 (131I) dispensing, the amount of radiation dose received by the personnel depends on the distance between the personnel and the source, the time spent manipulating the source and the amount of shielding used to reduce the dose rate from the source. The novel iRAD-I131 dispenser using recycle 131I liquid lead pot will lead into low cost production, less maintenance and low dose received by the personnel that prepared the 131I. The new fabricated of low cost 131I dispenser was tested and the dose received by personnel were evaluated. The body of lead material is made from 2.5 cm lead shielded coated with epoxy paint to absorb the radiation dose up to 7.4 GBq of 131 I. The lead pot was supported with two stainless steel rod. The Optically Stimulated Luminescence (OSL) nanodot was used in this study to measure the dose rate at both extremities for every personnel who prepared the 131I. Each OSL nanodot was attached at the fingertip. Three different personnel (experienced between one to ten years above in preparing the radiopharmaceuticals) were participated in this study. The average equivalent dose at right and left hand were 122.694 ± 121.637 µSv/GBq and 77.281 ± 62.146 µSv/GBq respectively. This study found that the dose exposure received using iRAD-I131 was less up to seven times compared to the conventional method. The comparison of experimental data using iRAD-I131 and established radiopharmaceutical dispenser was also discussed. The innovation of 131I dispenser is highly recommended in a small radiopharmaceutical facility with limited budget. The novel iRAD-I131 enables implementation of higher output liquid dispensing with low radiation dose to the personnel.

  10. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    SciTech Connect

    Rohe, R.C.; Valentine, J.D.

    1996-12-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction ({Delta}E = E{sub 0} {minus} E{sub SC}, where E{sub 0}, {Delta}E, and E{sub SC} are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented.